• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2016 The SwiftShader Authors. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //    http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "SamplerCore.hpp"
16 
17 #include "Constants.hpp"
18 #include "PixelRoutine.hpp"
19 #include "System/Debug.hpp"
20 #include "Vulkan/VkSampler.hpp"
21 
22 namespace sw {
23 
SamplerCore(Pointer<Byte> & constants,const Sampler & state)24 SamplerCore::SamplerCore(Pointer<Byte> &constants, const Sampler &state)
25     : constants(constants)
26     , state(state)
27 {
28 }
sampleTexture(Pointer<Byte> & texture,Float4 uvwa[4],Float4 & dRef,Float && lodOrBias,Float4 & dsx,Float4 & dsy,Vector4i & offset,Int4 & sample,SamplerFunction function)29 Vector4f SamplerCore::sampleTexture(Pointer<Byte> &texture, Float4 uvwa[4], Float4 &dRef, Float &&lodOrBias, Float4 &dsx, Float4 &dsy, Vector4i &offset, Int4 &sample, SamplerFunction function)
30 {
31 	Vector4f c;
32 
33 	Float4 u = uvwa[0];
34 	Float4 v = uvwa[1];
35 	Float4 w = uvwa[2];
36 	Float4 a;  // Array layer coordinate
37 	switch(state.textureType)
38 	{
39 	case VK_IMAGE_VIEW_TYPE_1D_ARRAY: a = uvwa[1]; break;
40 	case VK_IMAGE_VIEW_TYPE_2D_ARRAY: a = uvwa[2]; break;
41 	case VK_IMAGE_VIEW_TYPE_CUBE_ARRAY: a = uvwa[3]; break;
42 	default: break;
43 	}
44 
45 	Float lod;
46 	Float anisotropy;
47 	Float4 uDelta;
48 	Float4 vDelta;
49 	Float4 M;  // Major axis
50 
51 	if(state.isCube())
52 	{
53 		Int4 face = cubeFace(u, v, uvwa[0], uvwa[1], uvwa[2], M);
54 		w = As<Float4>(face);
55 	}
56 
57 	// Determine if we can skip the LOD computation. This is the case when the mipmap has only one level, except for LOD query,
58 	// where we have to return the computed value. Anisotropic filtering requires computing the anisotropy factor even for a single mipmap level.
59 	bool singleMipLevel = (state.minLod == state.maxLod);
60 	bool requiresLodComputation = (function == Query) || (state.textureFilter == FILTER_ANISOTROPIC);
61 	bool skipLodComputation = singleMipLevel && !requiresLodComputation;
62 
63 	if(skipLodComputation)
64 	{
65 		lod = state.minLod;
66 	}
67 	else if(function == Implicit || function == Bias || function == Grad || function == Query)
68 	{
69 		if(state.is1D())
70 		{
71 			computeLod1D(texture, lod, u, dsx, dsy, function);
72 		}
73 		else if(state.is2D())
74 		{
75 			computeLod2D(texture, lod, anisotropy, uDelta, vDelta, u, v, dsx, dsy, function);
76 		}
77 		else if(state.isCube())
78 		{
79 			computeLodCube(texture, lod, uvwa[0], uvwa[1], uvwa[2], dsx, dsy, M, function);
80 		}
81 		else
82 		{
83 			computeLod3D(texture, lod, u, v, w, dsx, dsy, function);
84 		}
85 
86 		Float bias = state.mipLodBias;
87 
88 		if(function == Bias)
89 		{
90 			// Add SPIR-V Bias operand to the sampler provided bias and clamp to maxSamplerLodBias limit.
91 			bias = Min(Max(bias + lodOrBias, -vk::MAX_SAMPLER_LOD_BIAS), vk::MAX_SAMPLER_LOD_BIAS);
92 		}
93 
94 		lod += bias;
95 	}
96 	else if(function == Lod)
97 	{
98 		// Vulkan 1.1: "The absolute value of mipLodBias must be less than or equal to VkPhysicalDeviceLimits::maxSamplerLodBias"
99 		// Hence no explicit clamping to maxSamplerLodBias is required in this case.
100 		lod = lodOrBias + state.mipLodBias;
101 	}
102 	else if(function == Fetch)
103 	{
104 		// TODO: Eliminate int-float-int conversion.
105 		lod = Float(As<Int>(lodOrBias));
106 	}
107 	else if(function == Base || function == Gather)
108 	{
109 		lod = Float(0);
110 	}
111 	else
112 		UNREACHABLE("Sampler function %d", int(function));
113 
114 	if(function != Base && function != Fetch && function != Gather)
115 	{
116 		if(function == Query)
117 		{
118 			c.y = Float4(lod);  // Unclamped LOD.
119 		}
120 
121 		if(!skipLodComputation)
122 		{
123 			lod = Max(lod, state.minLod);
124 			lod = Min(lod, state.maxLod);
125 		}
126 
127 		if(function == Query)
128 		{
129 			if(state.mipmapFilter == MIPMAP_POINT)
130 			{
131 				lod = Round(lod);  // TODO: Preferred formula is ceil(lod + 0.5) - 1
132 			}
133 
134 			c.x = lod;
135 			//	c.y contains unclamped LOD.
136 
137 			return c;
138 		}
139 	}
140 
141 	bool force32BitFiltering = state.highPrecisionFiltering && !isYcbcrFormat() && (state.textureFilter != FILTER_POINT);
142 	bool use32BitFiltering = hasFloatTexture() || hasUnnormalizedIntegerTexture() || force32BitFiltering ||
143 	                         state.isCube() || state.unnormalizedCoordinates || state.compareEnable ||
144 	                         borderModeActive() || (function == Gather) || (function == Fetch);
145 	const sw::float4 compScale = getComponentScale();
146 	int gatherComponent = (function == Gather) ? getGatherComponent() : 0;
147 	int numComponents = (function == Gather) ? 4 : textureComponentCount();
148 
149 	if(use32BitFiltering)
150 	{
151 		c = sampleFloatFilter(texture, u, v, w, a, dRef, offset, sample, lod, anisotropy, uDelta, vDelta, function);
152 
153 		if(!hasFloatTexture() && !hasUnnormalizedIntegerTexture() && !state.compareEnable)
154 		{
155 			for(int component = 0; component < numComponents; component++)
156 			{
157 				c[component] *= Float4(1.0f / compScale[(function == Gather) ? gatherComponent : component]);
158 			}
159 		}
160 	}
161 	else  // 16-bit filtering.
162 	{
163 		Vector4s cs = sampleFilter(texture, u, v, w, a, offset, sample, lod, anisotropy, uDelta, vDelta, function);
164 
165 		for(int component = 0; component < numComponents; component++)
166 		{
167 			if(hasUnsignedTextureComponent(component))
168 			{
169 				c[component] = Float4(As<UShort4>(cs[component]));
170 			}
171 			else
172 			{
173 				c[component] = Float4(cs[component]);
174 			}
175 
176 			c[component] *= Float4(1.0f / compScale[(function == Gather) ? gatherComponent : component]);
177 		}
178 	}
179 
180 	if(state.textureFormat.isSignedNormalized())
181 	{
182 		for(int component = 0; component < numComponents; component++)
183 		{
184 			c[component] = Max(c[component], Float4(-1.0f));
185 		}
186 	}
187 
188 	if(state.textureFilter != FILTER_GATHER)
189 	{
190 		if((state.swizzle.r != VK_COMPONENT_SWIZZLE_R) ||
191 		   (state.swizzle.g != VK_COMPONENT_SWIZZLE_G) ||
192 		   (state.swizzle.b != VK_COMPONENT_SWIZZLE_B) ||
193 		   (state.swizzle.a != VK_COMPONENT_SWIZZLE_A))
194 		{
195 			const Vector4f col = c;
196 			bool integer = hasUnnormalizedIntegerTexture();
197 			c.x = applySwizzle(col, state.swizzle.r, integer);
198 			c.y = applySwizzle(col, state.swizzle.g, integer);
199 			c.z = applySwizzle(col, state.swizzle.b, integer);
200 			c.w = applySwizzle(col, state.swizzle.a, integer);
201 		}
202 	}
203 	else  // Gather
204 	{
205 		VkComponentSwizzle swizzle = gatherSwizzle();
206 
207 		// R/G/B/A swizzles affect the component collected from each texel earlier.
208 		// Handle the ZERO and ONE cases here because we don't need to know the format.
209 
210 		if(swizzle == VK_COMPONENT_SWIZZLE_ZERO)
211 		{
212 			c.x = c.y = c.z = c.w = Float4(0);
213 		}
214 		else if(swizzle == VK_COMPONENT_SWIZZLE_ONE)
215 		{
216 			bool integer = hasUnnormalizedIntegerTexture();
217 			c.x = c.y = c.z = c.w = integer ? As<Float4>(Int4(1)) : RValue<Float4>(Float4(1.0f));
218 		}
219 	}
220 
221 	return c;
222 }
223 
applySwizzle(const Vector4f & c,VkComponentSwizzle swizzle,bool integer)224 Float4 SamplerCore::applySwizzle(const Vector4f &c, VkComponentSwizzle swizzle, bool integer)
225 {
226 	switch(swizzle)
227 	{
228 	default: UNSUPPORTED("VkComponentSwizzle %d", (int)swizzle);
229 	case VK_COMPONENT_SWIZZLE_R: return c.x;
230 	case VK_COMPONENT_SWIZZLE_G: return c.y;
231 	case VK_COMPONENT_SWIZZLE_B: return c.z;
232 	case VK_COMPONENT_SWIZZLE_A: return c.w;
233 	case VK_COMPONENT_SWIZZLE_ZERO: return Float4(0.0f, 0.0f, 0.0f, 0.0f);
234 	case VK_COMPONENT_SWIZZLE_ONE:
235 		if(integer)
236 		{
237 			return Float4(As<Float4>(sw::Int4(1, 1, 1, 1)));
238 		}
239 		else
240 		{
241 			return Float4(1.0f, 1.0f, 1.0f, 1.0f);
242 		}
243 		break;
244 	}
245 };
246 
offsetSample(Short4 & uvw,Pointer<Byte> & mipmap,int halfOffset,bool wrap,int count,Float & lod)247 Short4 SamplerCore::offsetSample(Short4 &uvw, Pointer<Byte> &mipmap, int halfOffset, bool wrap, int count, Float &lod)
248 {
249 	Short4 offset = *Pointer<Short4>(mipmap + halfOffset);
250 
251 	if(state.textureFilter == FILTER_MIN_LINEAR_MAG_POINT)
252 	{
253 		offset &= Short4(CmpNLE(Float4(lod), Float4(0.0f)));
254 	}
255 	else if(state.textureFilter == FILTER_MIN_POINT_MAG_LINEAR)
256 	{
257 		offset &= Short4(CmpLE(Float4(lod), Float4(0.0f)));
258 	}
259 
260 	if(wrap)
261 	{
262 		switch(count)
263 		{
264 		case -1: return uvw - offset;
265 		case 0: return uvw;
266 		case +1: return uvw + offset;
267 		case 2: return uvw + offset + offset;
268 		}
269 	}
270 	else  // Clamp or mirror
271 	{
272 		switch(count)
273 		{
274 		case -1: return SubSat(As<UShort4>(uvw), As<UShort4>(offset));
275 		case 0: return uvw;
276 		case +1: return AddSat(As<UShort4>(uvw), As<UShort4>(offset));
277 		case 2: return AddSat(AddSat(As<UShort4>(uvw), As<UShort4>(offset)), As<UShort4>(offset));
278 		}
279 	}
280 
281 	return uvw;
282 }
283 
sampleFilter(Pointer<Byte> & texture,Float4 & u,Float4 & v,Float4 & w,const Float4 & a,Vector4i & offset,const Int4 & sample,Float & lod,Float & anisotropy,Float4 & uDelta,Float4 & vDelta,SamplerFunction function)284 Vector4s SamplerCore::sampleFilter(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, const Float4 &a, Vector4i &offset, const Int4 &sample, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta, SamplerFunction function)
285 {
286 	Vector4s c = sampleAniso(texture, u, v, w, a, offset, sample, lod, anisotropy, uDelta, vDelta, false, function);
287 
288 	if(function == Fetch)
289 	{
290 		return c;
291 	}
292 
293 	if(state.mipmapFilter == MIPMAP_LINEAR)
294 	{
295 		Vector4s cc = sampleAniso(texture, u, v, w, a, offset, sample, lod, anisotropy, uDelta, vDelta, true, function);
296 
297 		lod *= Float(1 << 16);
298 
299 		UShort4 utri = UShort4(Float4(lod));  // FIXME: Optimize
300 		Short4 stri = utri >> 1;              // FIXME: Optimize
301 
302 		if(hasUnsignedTextureComponent(0))
303 			cc.x = MulHigh(As<UShort4>(cc.x), utri);
304 		else
305 			cc.x = MulHigh(cc.x, stri);
306 		if(hasUnsignedTextureComponent(1))
307 			cc.y = MulHigh(As<UShort4>(cc.y), utri);
308 		else
309 			cc.y = MulHigh(cc.y, stri);
310 		if(hasUnsignedTextureComponent(2))
311 			cc.z = MulHigh(As<UShort4>(cc.z), utri);
312 		else
313 			cc.z = MulHigh(cc.z, stri);
314 		if(hasUnsignedTextureComponent(3))
315 			cc.w = MulHigh(As<UShort4>(cc.w), utri);
316 		else
317 			cc.w = MulHigh(cc.w, stri);
318 
319 		utri = ~utri;
320 		stri = Short4(0x7FFF) - stri;
321 
322 		if(hasUnsignedTextureComponent(0))
323 			c.x = MulHigh(As<UShort4>(c.x), utri);
324 		else
325 			c.x = MulHigh(c.x, stri);
326 		if(hasUnsignedTextureComponent(1))
327 			c.y = MulHigh(As<UShort4>(c.y), utri);
328 		else
329 			c.y = MulHigh(c.y, stri);
330 		if(hasUnsignedTextureComponent(2))
331 			c.z = MulHigh(As<UShort4>(c.z), utri);
332 		else
333 			c.z = MulHigh(c.z, stri);
334 		if(hasUnsignedTextureComponent(3))
335 			c.w = MulHigh(As<UShort4>(c.w), utri);
336 		else
337 			c.w = MulHigh(c.w, stri);
338 
339 		c.x += cc.x;
340 		c.y += cc.y;
341 		c.z += cc.z;
342 		c.w += cc.w;
343 
344 		if(!hasUnsignedTextureComponent(0)) c.x += c.x;
345 		if(!hasUnsignedTextureComponent(1)) c.y += c.y;
346 		if(!hasUnsignedTextureComponent(2)) c.z += c.z;
347 		if(!hasUnsignedTextureComponent(3)) c.w += c.w;
348 	}
349 
350 	return c;
351 }
352 
sampleAniso(Pointer<Byte> & texture,Float4 & u,Float4 & v,Float4 & w,const Float4 & a,Vector4i & offset,const Int4 & sample,Float & lod,Float & anisotropy,Float4 & uDelta,Float4 & vDelta,bool secondLOD,SamplerFunction function)353 Vector4s SamplerCore::sampleAniso(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, const Float4 &a, Vector4i &offset, const Int4 &sample, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta, bool secondLOD, SamplerFunction function)
354 {
355 	Vector4s c;
356 
357 	if(state.textureFilter != FILTER_ANISOTROPIC)
358 	{
359 		c = sampleQuad(texture, u, v, w, a, offset, sample, lod, secondLOD, function);
360 	}
361 	else
362 	{
363 		Int N = RoundInt(anisotropy);
364 
365 		Vector4s cSum;
366 
367 		cSum.x = Short4(0);
368 		cSum.y = Short4(0);
369 		cSum.z = Short4(0);
370 		cSum.w = Short4(0);
371 
372 		Float4 A = *Pointer<Float4>(constants + OFFSET(Constants, uvWeight) + 16 * N);
373 		Float4 B = *Pointer<Float4>(constants + OFFSET(Constants, uvStart) + 16 * N);
374 		UShort4 cw = *Pointer<UShort4>(constants + OFFSET(Constants, cWeight) + 8 * N);
375 		Short4 sw = Short4(cw >> 1);
376 
377 		Float4 du = uDelta;
378 		Float4 dv = vDelta;
379 
380 		Float4 u0 = u + B * du;
381 		Float4 v0 = v + B * dv;
382 
383 		du *= A;
384 		dv *= A;
385 
386 		Int i = 0;
387 
388 		Do
389 		{
390 			c = sampleQuad(texture, u0, v0, w, a, offset, sample, lod, secondLOD, function);
391 
392 			u0 += du;
393 			v0 += dv;
394 
395 			if(hasUnsignedTextureComponent(0))
396 				cSum.x += As<Short4>(MulHigh(As<UShort4>(c.x), cw));
397 			else
398 				cSum.x += MulHigh(c.x, sw);
399 			if(hasUnsignedTextureComponent(1))
400 				cSum.y += As<Short4>(MulHigh(As<UShort4>(c.y), cw));
401 			else
402 				cSum.y += MulHigh(c.y, sw);
403 			if(hasUnsignedTextureComponent(2))
404 				cSum.z += As<Short4>(MulHigh(As<UShort4>(c.z), cw));
405 			else
406 				cSum.z += MulHigh(c.z, sw);
407 			if(hasUnsignedTextureComponent(3))
408 				cSum.w += As<Short4>(MulHigh(As<UShort4>(c.w), cw));
409 			else
410 				cSum.w += MulHigh(c.w, sw);
411 
412 			i++;
413 		}
414 		Until(i >= N);
415 
416 		if(hasUnsignedTextureComponent(0))
417 			c.x = cSum.x;
418 		else
419 			c.x = AddSat(cSum.x, cSum.x);
420 		if(hasUnsignedTextureComponent(1))
421 			c.y = cSum.y;
422 		else
423 			c.y = AddSat(cSum.y, cSum.y);
424 		if(hasUnsignedTextureComponent(2))
425 			c.z = cSum.z;
426 		else
427 			c.z = AddSat(cSum.z, cSum.z);
428 		if(hasUnsignedTextureComponent(3))
429 			c.w = cSum.w;
430 		else
431 			c.w = AddSat(cSum.w, cSum.w);
432 	}
433 
434 	return c;
435 }
436 
sampleQuad(Pointer<Byte> & texture,Float4 & u,Float4 & v,Float4 & w,const Float4 & a,Vector4i & offset,const Int4 & sample,Float & lod,bool secondLOD,SamplerFunction function)437 Vector4s SamplerCore::sampleQuad(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, const Float4 &a, Vector4i &offset, const Int4 &sample, Float &lod, bool secondLOD, SamplerFunction function)
438 {
439 	if(state.textureType != VK_IMAGE_VIEW_TYPE_3D)
440 	{
441 		return sampleQuad2D(texture, u, v, w, a, offset, sample, lod, secondLOD, function);
442 	}
443 	else
444 	{
445 		return sample3D(texture, u, v, w, offset, sample, lod, secondLOD, function);
446 	}
447 }
448 
sampleQuad2D(Pointer<Byte> & texture,Float4 & u,Float4 & v,Float4 & w,const Float4 & a,Vector4i & offset,const Int4 & sample,Float & lod,bool secondLOD,SamplerFunction function)449 Vector4s SamplerCore::sampleQuad2D(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, const Float4 &a, Vector4i &offset, const Int4 &sample, Float &lod, bool secondLOD, SamplerFunction function)
450 {
451 	Vector4s c;
452 
453 	int componentCount = textureComponentCount();
454 	bool gather = (state.textureFilter == FILTER_GATHER);
455 
456 	Pointer<Byte> mipmap;
457 	Pointer<Byte> buffer;
458 	selectMipmap(texture, mipmap, buffer, lod, secondLOD);
459 
460 	Short4 uuuu = address(u, state.addressingModeU, mipmap);
461 	Short4 vvvv = address(v, state.addressingModeV, mipmap);
462 	Short4 wwww = address(w, state.addressingModeW, mipmap);
463 	Short4 layerIndex = computeLayerIndex(a, mipmap);
464 
465 	if(state.textureFilter == FILTER_POINT)
466 	{
467 		c = sampleTexel(uuuu, vvvv, wwww, layerIndex, offset, sample, mipmap, buffer, function);
468 	}
469 	else
470 	{
471 		Short4 uuuu0 = offsetSample(uuuu, mipmap, OFFSET(Mipmap, uHalf), state.addressingModeU == ADDRESSING_WRAP, -1, lod);
472 		Short4 vvvv0 = offsetSample(vvvv, mipmap, OFFSET(Mipmap, vHalf), state.addressingModeV == ADDRESSING_WRAP, -1, lod);
473 		Short4 uuuu1 = offsetSample(uuuu, mipmap, OFFSET(Mipmap, uHalf), state.addressingModeU == ADDRESSING_WRAP, +1, lod);
474 		Short4 vvvv1 = offsetSample(vvvv, mipmap, OFFSET(Mipmap, vHalf), state.addressingModeV == ADDRESSING_WRAP, +1, lod);
475 
476 		Vector4s c00 = sampleTexel(uuuu0, vvvv0, wwww, layerIndex, offset, sample, mipmap, buffer, function);
477 		Vector4s c10 = sampleTexel(uuuu1, vvvv0, wwww, layerIndex, offset, sample, mipmap, buffer, function);
478 		Vector4s c01 = sampleTexel(uuuu0, vvvv1, wwww, layerIndex, offset, sample, mipmap, buffer, function);
479 		Vector4s c11 = sampleTexel(uuuu1, vvvv1, wwww, layerIndex, offset, sample, mipmap, buffer, function);
480 
481 		if(!gather)  // Blend
482 		{
483 			// Fractions
484 			UShort4 f0u = As<UShort4>(uuuu0) * UShort4(*Pointer<Int4>(mipmap + OFFSET(Mipmap, width)));
485 			UShort4 f0v = As<UShort4>(vvvv0) * UShort4(*Pointer<Int4>(mipmap + OFFSET(Mipmap, height)));
486 
487 			UShort4 f1u = ~f0u;
488 			UShort4 f1v = ~f0v;
489 
490 			UShort4 f0u0v = MulHigh(f0u, f0v);
491 			UShort4 f1u0v = MulHigh(f1u, f0v);
492 			UShort4 f0u1v = MulHigh(f0u, f1v);
493 			UShort4 f1u1v = MulHigh(f1u, f1v);
494 
495 			// Signed fractions
496 			Short4 f1u1vs;
497 			Short4 f0u1vs;
498 			Short4 f1u0vs;
499 			Short4 f0u0vs;
500 
501 			if(!hasUnsignedTextureComponent(0) || !hasUnsignedTextureComponent(1) || !hasUnsignedTextureComponent(2) || !hasUnsignedTextureComponent(3))
502 			{
503 				f1u1vs = f1u1v >> 1;
504 				f0u1vs = f0u1v >> 1;
505 				f1u0vs = f1u0v >> 1;
506 				f0u0vs = f0u0v >> 1;
507 			}
508 
509 			// Bilinear interpolation
510 			if(componentCount >= 1)
511 			{
512 				if(has16bitTextureComponents() && hasUnsignedTextureComponent(0))
513 				{
514 					c00.x = As<UShort4>(c00.x) - MulHigh(As<UShort4>(c00.x), f0u) + MulHigh(As<UShort4>(c10.x), f0u);
515 					c01.x = As<UShort4>(c01.x) - MulHigh(As<UShort4>(c01.x), f0u) + MulHigh(As<UShort4>(c11.x), f0u);
516 					c.x = As<UShort4>(c00.x) - MulHigh(As<UShort4>(c00.x), f0v) + MulHigh(As<UShort4>(c01.x), f0v);
517 				}
518 				else
519 				{
520 					if(hasUnsignedTextureComponent(0))
521 					{
522 						c00.x = MulHigh(As<UShort4>(c00.x), f1u1v);
523 						c10.x = MulHigh(As<UShort4>(c10.x), f0u1v);
524 						c01.x = MulHigh(As<UShort4>(c01.x), f1u0v);
525 						c11.x = MulHigh(As<UShort4>(c11.x), f0u0v);
526 					}
527 					else
528 					{
529 						c00.x = MulHigh(c00.x, f1u1vs);
530 						c10.x = MulHigh(c10.x, f0u1vs);
531 						c01.x = MulHigh(c01.x, f1u0vs);
532 						c11.x = MulHigh(c11.x, f0u0vs);
533 					}
534 
535 					c.x = (c00.x + c10.x) + (c01.x + c11.x);
536 					if(!hasUnsignedTextureComponent(0)) c.x = AddSat(c.x, c.x);  // Correct for signed fractions
537 				}
538 			}
539 
540 			if(componentCount >= 2)
541 			{
542 				if(has16bitTextureComponents() && hasUnsignedTextureComponent(1))
543 				{
544 					c00.y = As<UShort4>(c00.y) - MulHigh(As<UShort4>(c00.y), f0u) + MulHigh(As<UShort4>(c10.y), f0u);
545 					c01.y = As<UShort4>(c01.y) - MulHigh(As<UShort4>(c01.y), f0u) + MulHigh(As<UShort4>(c11.y), f0u);
546 					c.y = As<UShort4>(c00.y) - MulHigh(As<UShort4>(c00.y), f0v) + MulHigh(As<UShort4>(c01.y), f0v);
547 				}
548 				else
549 				{
550 					if(hasUnsignedTextureComponent(1))
551 					{
552 						c00.y = MulHigh(As<UShort4>(c00.y), f1u1v);
553 						c10.y = MulHigh(As<UShort4>(c10.y), f0u1v);
554 						c01.y = MulHigh(As<UShort4>(c01.y), f1u0v);
555 						c11.y = MulHigh(As<UShort4>(c11.y), f0u0v);
556 					}
557 					else
558 					{
559 						c00.y = MulHigh(c00.y, f1u1vs);
560 						c10.y = MulHigh(c10.y, f0u1vs);
561 						c01.y = MulHigh(c01.y, f1u0vs);
562 						c11.y = MulHigh(c11.y, f0u0vs);
563 					}
564 
565 					c.y = (c00.y + c10.y) + (c01.y + c11.y);
566 					if(!hasUnsignedTextureComponent(1)) c.y = AddSat(c.y, c.y);  // Correct for signed fractions
567 				}
568 			}
569 
570 			if(componentCount >= 3)
571 			{
572 				if(has16bitTextureComponents() && hasUnsignedTextureComponent(2))
573 				{
574 					c00.z = As<UShort4>(c00.z) - MulHigh(As<UShort4>(c00.z), f0u) + MulHigh(As<UShort4>(c10.z), f0u);
575 					c01.z = As<UShort4>(c01.z) - MulHigh(As<UShort4>(c01.z), f0u) + MulHigh(As<UShort4>(c11.z), f0u);
576 					c.z = As<UShort4>(c00.z) - MulHigh(As<UShort4>(c00.z), f0v) + MulHigh(As<UShort4>(c01.z), f0v);
577 				}
578 				else
579 				{
580 					if(hasUnsignedTextureComponent(2))
581 					{
582 						c00.z = MulHigh(As<UShort4>(c00.z), f1u1v);
583 						c10.z = MulHigh(As<UShort4>(c10.z), f0u1v);
584 						c01.z = MulHigh(As<UShort4>(c01.z), f1u0v);
585 						c11.z = MulHigh(As<UShort4>(c11.z), f0u0v);
586 					}
587 					else
588 					{
589 						c00.z = MulHigh(c00.z, f1u1vs);
590 						c10.z = MulHigh(c10.z, f0u1vs);
591 						c01.z = MulHigh(c01.z, f1u0vs);
592 						c11.z = MulHigh(c11.z, f0u0vs);
593 					}
594 
595 					c.z = (c00.z + c10.z) + (c01.z + c11.z);
596 					if(!hasUnsignedTextureComponent(2)) c.z = AddSat(c.z, c.z);  // Correct for signed fractions
597 				}
598 			}
599 
600 			if(componentCount >= 4)
601 			{
602 				if(has16bitTextureComponents() && hasUnsignedTextureComponent(3))
603 				{
604 					c00.w = As<UShort4>(c00.w) - MulHigh(As<UShort4>(c00.w), f0u) + MulHigh(As<UShort4>(c10.w), f0u);
605 					c01.w = As<UShort4>(c01.w) - MulHigh(As<UShort4>(c01.w), f0u) + MulHigh(As<UShort4>(c11.w), f0u);
606 					c.w = As<UShort4>(c00.w) - MulHigh(As<UShort4>(c00.w), f0v) + MulHigh(As<UShort4>(c01.w), f0v);
607 				}
608 				else
609 				{
610 					if(hasUnsignedTextureComponent(3))
611 					{
612 						c00.w = MulHigh(As<UShort4>(c00.w), f1u1v);
613 						c10.w = MulHigh(As<UShort4>(c10.w), f0u1v);
614 						c01.w = MulHigh(As<UShort4>(c01.w), f1u0v);
615 						c11.w = MulHigh(As<UShort4>(c11.w), f0u0v);
616 					}
617 					else
618 					{
619 						c00.w = MulHigh(c00.w, f1u1vs);
620 						c10.w = MulHigh(c10.w, f0u1vs);
621 						c01.w = MulHigh(c01.w, f1u0vs);
622 						c11.w = MulHigh(c11.w, f0u0vs);
623 					}
624 
625 					c.w = (c00.w + c10.w) + (c01.w + c11.w);
626 					if(!hasUnsignedTextureComponent(3)) c.w = AddSat(c.w, c.w);  // Correct for signed fractions
627 				}
628 			}
629 		}
630 		else  // Gather
631 		{
632 			VkComponentSwizzle swizzle = gatherSwizzle();
633 			switch(swizzle)
634 			{
635 			case VK_COMPONENT_SWIZZLE_ZERO:
636 			case VK_COMPONENT_SWIZZLE_ONE:
637 				// Handled at the final component swizzle.
638 				break;
639 			default:
640 				c.x = c01[swizzle - VK_COMPONENT_SWIZZLE_R];
641 				c.y = c11[swizzle - VK_COMPONENT_SWIZZLE_R];
642 				c.z = c10[swizzle - VK_COMPONENT_SWIZZLE_R];
643 				c.w = c00[swizzle - VK_COMPONENT_SWIZZLE_R];
644 				break;
645 			}
646 		}
647 	}
648 
649 	return c;
650 }
651 
sample3D(Pointer<Byte> & texture,Float4 & u_,Float4 & v_,Float4 & w_,Vector4i & offset,const Int4 & sample,Float & lod,bool secondLOD,SamplerFunction function)652 Vector4s SamplerCore::sample3D(Pointer<Byte> &texture, Float4 &u_, Float4 &v_, Float4 &w_, Vector4i &offset, const Int4 &sample, Float &lod, bool secondLOD, SamplerFunction function)
653 {
654 	Vector4s c_;
655 
656 	int componentCount = textureComponentCount();
657 
658 	Pointer<Byte> mipmap;
659 	Pointer<Byte> buffer;
660 	selectMipmap(texture, mipmap, buffer, lod, secondLOD);
661 
662 	Short4 uuuu = address(u_, state.addressingModeU, mipmap);
663 	Short4 vvvv = address(v_, state.addressingModeV, mipmap);
664 	Short4 wwww = address(w_, state.addressingModeW, mipmap);
665 
666 	if(state.textureFilter == FILTER_POINT)
667 	{
668 		c_ = sampleTexel(uuuu, vvvv, wwww, 0, offset, sample, mipmap, buffer, function);
669 	}
670 	else
671 	{
672 		Vector4s c[2][2][2];
673 
674 		Short4 u[2][2][2];
675 		Short4 v[2][2][2];
676 		Short4 s[2][2][2];
677 
678 		for(int i = 0; i < 2; i++)
679 		{
680 			for(int j = 0; j < 2; j++)
681 			{
682 				for(int k = 0; k < 2; k++)
683 				{
684 					u[i][j][k] = offsetSample(uuuu, mipmap, OFFSET(Mipmap, uHalf), state.addressingModeU == ADDRESSING_WRAP, i * 2 - 1, lod);
685 					v[i][j][k] = offsetSample(vvvv, mipmap, OFFSET(Mipmap, vHalf), state.addressingModeV == ADDRESSING_WRAP, j * 2 - 1, lod);
686 					s[i][j][k] = offsetSample(wwww, mipmap, OFFSET(Mipmap, wHalf), state.addressingModeW == ADDRESSING_WRAP, k * 2 - 1, lod);
687 				}
688 			}
689 		}
690 
691 		// Fractions
692 		UShort4 f0u = As<UShort4>(u[0][0][0]) * UShort4(*Pointer<Int4>(mipmap + OFFSET(Mipmap, width)));
693 		UShort4 f0v = As<UShort4>(v[0][0][0]) * UShort4(*Pointer<Int4>(mipmap + OFFSET(Mipmap, height)));
694 		UShort4 f0s = As<UShort4>(s[0][0][0]) * UShort4(*Pointer<Int4>(mipmap + OFFSET(Mipmap, depth)));
695 
696 		UShort4 f1u = ~f0u;
697 		UShort4 f1v = ~f0v;
698 		UShort4 f1s = ~f0s;
699 
700 		UShort4 f[2][2][2];
701 		Short4 fs[2][2][2];
702 
703 		f[1][1][1] = MulHigh(f1u, f1v);
704 		f[0][1][1] = MulHigh(f0u, f1v);
705 		f[1][0][1] = MulHigh(f1u, f0v);
706 		f[0][0][1] = MulHigh(f0u, f0v);
707 		f[1][1][0] = MulHigh(f1u, f1v);
708 		f[0][1][0] = MulHigh(f0u, f1v);
709 		f[1][0][0] = MulHigh(f1u, f0v);
710 		f[0][0][0] = MulHigh(f0u, f0v);
711 
712 		f[1][1][1] = MulHigh(f[1][1][1], f1s);
713 		f[0][1][1] = MulHigh(f[0][1][1], f1s);
714 		f[1][0][1] = MulHigh(f[1][0][1], f1s);
715 		f[0][0][1] = MulHigh(f[0][0][1], f1s);
716 		f[1][1][0] = MulHigh(f[1][1][0], f0s);
717 		f[0][1][0] = MulHigh(f[0][1][0], f0s);
718 		f[1][0][0] = MulHigh(f[1][0][0], f0s);
719 		f[0][0][0] = MulHigh(f[0][0][0], f0s);
720 
721 		// Signed fractions
722 		if(!hasUnsignedTextureComponent(0) || !hasUnsignedTextureComponent(1) || !hasUnsignedTextureComponent(2) || !hasUnsignedTextureComponent(3))
723 		{
724 			fs[0][0][0] = f[0][0][0] >> 1;
725 			fs[0][0][1] = f[0][0][1] >> 1;
726 			fs[0][1][0] = f[0][1][0] >> 1;
727 			fs[0][1][1] = f[0][1][1] >> 1;
728 			fs[1][0][0] = f[1][0][0] >> 1;
729 			fs[1][0][1] = f[1][0][1] >> 1;
730 			fs[1][1][0] = f[1][1][0] >> 1;
731 			fs[1][1][1] = f[1][1][1] >> 1;
732 		}
733 
734 		for(int i = 0; i < 2; i++)
735 		{
736 			for(int j = 0; j < 2; j++)
737 			{
738 				for(int k = 0; k < 2; k++)
739 				{
740 					c[i][j][k] = sampleTexel(u[i][j][k], v[i][j][k], s[i][j][k], 0, offset, sample, mipmap, buffer, function);
741 
742 					if(componentCount >= 1)
743 					{
744 						if(hasUnsignedTextureComponent(0))
745 							c[i][j][k].x = MulHigh(As<UShort4>(c[i][j][k].x), f[1 - i][1 - j][1 - k]);
746 						else
747 							c[i][j][k].x = MulHigh(c[i][j][k].x, fs[1 - i][1 - j][1 - k]);
748 					}
749 					if(componentCount >= 2)
750 					{
751 						if(hasUnsignedTextureComponent(1))
752 							c[i][j][k].y = MulHigh(As<UShort4>(c[i][j][k].y), f[1 - i][1 - j][1 - k]);
753 						else
754 							c[i][j][k].y = MulHigh(c[i][j][k].y, fs[1 - i][1 - j][1 - k]);
755 					}
756 					if(componentCount >= 3)
757 					{
758 						if(hasUnsignedTextureComponent(2))
759 							c[i][j][k].z = MulHigh(As<UShort4>(c[i][j][k].z), f[1 - i][1 - j][1 - k]);
760 						else
761 							c[i][j][k].z = MulHigh(c[i][j][k].z, fs[1 - i][1 - j][1 - k]);
762 					}
763 					if(componentCount >= 4)
764 					{
765 						if(hasUnsignedTextureComponent(3))
766 							c[i][j][k].w = MulHigh(As<UShort4>(c[i][j][k].w), f[1 - i][1 - j][1 - k]);
767 						else
768 							c[i][j][k].w = MulHigh(c[i][j][k].w, fs[1 - i][1 - j][1 - k]);
769 					}
770 
771 					if(i != 0 || j != 0 || k != 0)
772 					{
773 						if(componentCount >= 1) c[0][0][0].x += c[i][j][k].x;
774 						if(componentCount >= 2) c[0][0][0].y += c[i][j][k].y;
775 						if(componentCount >= 3) c[0][0][0].z += c[i][j][k].z;
776 						if(componentCount >= 4) c[0][0][0].w += c[i][j][k].w;
777 					}
778 				}
779 			}
780 		}
781 
782 		if(componentCount >= 1) c_.x = c[0][0][0].x;
783 		if(componentCount >= 2) c_.y = c[0][0][0].y;
784 		if(componentCount >= 3) c_.z = c[0][0][0].z;
785 		if(componentCount >= 4) c_.w = c[0][0][0].w;
786 
787 		// Correct for signed fractions
788 		if(componentCount >= 1)
789 			if(!hasUnsignedTextureComponent(0)) c_.x = AddSat(c_.x, c_.x);
790 		if(componentCount >= 2)
791 			if(!hasUnsignedTextureComponent(1)) c_.y = AddSat(c_.y, c_.y);
792 		if(componentCount >= 3)
793 			if(!hasUnsignedTextureComponent(2)) c_.z = AddSat(c_.z, c_.z);
794 		if(componentCount >= 4)
795 			if(!hasUnsignedTextureComponent(3)) c_.w = AddSat(c_.w, c_.w);
796 	}
797 
798 	return c_;
799 }
800 
sampleFloatFilter(Pointer<Byte> & texture,Float4 & u,Float4 & v,Float4 & w,const Float4 & a,Float4 & dRef,Vector4i & offset,const Int4 & sample,Float & lod,Float & anisotropy,Float4 & uDelta,Float4 & vDelta,SamplerFunction function)801 Vector4f SamplerCore::sampleFloatFilter(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, const Float4 &a, Float4 &dRef, Vector4i &offset, const Int4 &sample, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta, SamplerFunction function)
802 {
803 	Vector4f c = sampleFloatAniso(texture, u, v, w, a, dRef, offset, sample, lod, anisotropy, uDelta, vDelta, false, function);
804 
805 	if(function == Fetch)
806 	{
807 		return c;
808 	}
809 
810 	if(state.mipmapFilter == MIPMAP_LINEAR)
811 	{
812 		Vector4f cc = sampleFloatAniso(texture, u, v, w, a, dRef, offset, sample, lod, anisotropy, uDelta, vDelta, true, function);
813 
814 		Float4 lod4 = Float4(Frac(lod));
815 
816 		c.x = (cc.x - c.x) * lod4 + c.x;
817 		c.y = (cc.y - c.y) * lod4 + c.y;
818 		c.z = (cc.z - c.z) * lod4 + c.z;
819 		c.w = (cc.w - c.w) * lod4 + c.w;
820 	}
821 
822 	return c;
823 }
824 
sampleFloatAniso(Pointer<Byte> & texture,Float4 & u,Float4 & v,Float4 & w,const Float4 & a,Float4 & dRef,Vector4i & offset,const Int4 & sample,Float & lod,Float & anisotropy,Float4 & uDelta,Float4 & vDelta,bool secondLOD,SamplerFunction function)825 Vector4f SamplerCore::sampleFloatAniso(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, const Float4 &a, Float4 &dRef, Vector4i &offset, const Int4 &sample, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta, bool secondLOD, SamplerFunction function)
826 {
827 	Vector4f c;
828 
829 	if(state.textureFilter != FILTER_ANISOTROPIC)
830 	{
831 		c = sampleFloat(texture, u, v, w, a, dRef, offset, sample, lod, secondLOD, function);
832 	}
833 	else
834 	{
835 		Int N = RoundInt(anisotropy);
836 
837 		Vector4f cSum;
838 
839 		cSum.x = Float4(0.0f);
840 		cSum.y = Float4(0.0f);
841 		cSum.z = Float4(0.0f);
842 		cSum.w = Float4(0.0f);
843 
844 		Float4 A = *Pointer<Float4>(constants + OFFSET(Constants, uvWeight) + 16 * N);
845 		Float4 B = *Pointer<Float4>(constants + OFFSET(Constants, uvStart) + 16 * N);
846 
847 		Float4 du = uDelta;
848 		Float4 dv = vDelta;
849 
850 		Float4 u0 = u + B * du;
851 		Float4 v0 = v + B * dv;
852 
853 		du *= A;
854 		dv *= A;
855 
856 		Int i = 0;
857 
858 		Do
859 		{
860 			c = sampleFloat(texture, u0, v0, w, a, dRef, offset, sample, lod, secondLOD, function);
861 
862 			u0 += du;
863 			v0 += dv;
864 
865 			cSum.x += c.x * A;
866 			cSum.y += c.y * A;
867 			cSum.z += c.z * A;
868 			cSum.w += c.w * A;
869 
870 			i++;
871 		}
872 		Until(i >= N);
873 
874 		c.x = cSum.x;
875 		c.y = cSum.y;
876 		c.z = cSum.z;
877 		c.w = cSum.w;
878 	}
879 
880 	return c;
881 }
882 
sampleFloat(Pointer<Byte> & texture,Float4 & u,Float4 & v,Float4 & w,const Float4 & a,Float4 & dRef,Vector4i & offset,const Int4 & sample,Float & lod,bool secondLOD,SamplerFunction function)883 Vector4f SamplerCore::sampleFloat(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, const Float4 &a, Float4 &dRef, Vector4i &offset, const Int4 &sample, Float &lod, bool secondLOD, SamplerFunction function)
884 {
885 	if(state.textureType != VK_IMAGE_VIEW_TYPE_3D)
886 	{
887 		return sampleFloat2D(texture, u, v, w, a, dRef, offset, sample, lod, secondLOD, function);
888 	}
889 	else
890 	{
891 		return sampleFloat3D(texture, u, v, w, dRef, offset, sample, lod, secondLOD, function);
892 	}
893 }
894 
sampleFloat2D(Pointer<Byte> & texture,Float4 & u,Float4 & v,Float4 & w,const Float4 & a,Float4 & dRef,Vector4i & offset,const Int4 & sample,Float & lod,bool secondLOD,SamplerFunction function)895 Vector4f SamplerCore::sampleFloat2D(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, const Float4 &a, Float4 &dRef, Vector4i &offset, const Int4 &sample, Float &lod, bool secondLOD, SamplerFunction function)
896 {
897 	Vector4f c;
898 
899 	int componentCount = textureComponentCount();
900 	bool gather = (state.textureFilter == FILTER_GATHER);
901 
902 	Pointer<Byte> mipmap;
903 	Pointer<Byte> buffer;
904 	selectMipmap(texture, mipmap, buffer, lod, secondLOD);
905 
906 	Int4 x0, x1, y0, y1;
907 	Float4 fu, fv;
908 	Int4 filter = computeFilterOffset(lod);
909 	address(u, x0, x1, fu, mipmap, offset.x, filter, OFFSET(Mipmap, width), state.addressingModeU, function);
910 	address(v, y0, y1, fv, mipmap, offset.y, filter, OFFSET(Mipmap, height), state.addressingModeV, function);
911 
912 	Int4 pitchP = *Pointer<Int4>(mipmap + OFFSET(Mipmap, pitchP), 16);
913 	y0 *= pitchP;
914 
915 	Int4 z;
916 	if(state.isCube() || state.isArrayed())
917 	{
918 		Int4 face = As<Int4>(w);
919 		Int4 layerIndex = computeLayerIndex(a, mipmap, function);
920 
921 		// For cube maps, the layer argument is per cube, each of which has 6 layers
922 		if(state.textureType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY)
923 		{
924 			layerIndex *= Int4(6);
925 		}
926 
927 		z = state.isCube() ? face : layerIndex;
928 
929 		if(state.textureType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY)
930 		{
931 			z += layerIndex;
932 		}
933 
934 		z *= *Pointer<Int4>(mipmap + OFFSET(Mipmap, sliceP), 16);
935 	}
936 
937 	if(state.textureFilter == FILTER_POINT || (function == Fetch))
938 	{
939 		c = sampleTexel(x0, y0, z, dRef, sample, mipmap, buffer, function);
940 	}
941 	else
942 	{
943 		y1 *= pitchP;
944 
945 		Vector4f c00 = sampleTexel(x0, y0, z, dRef, sample, mipmap, buffer, function);
946 		Vector4f c10 = sampleTexel(x1, y0, z, dRef, sample, mipmap, buffer, function);
947 		Vector4f c01 = sampleTexel(x0, y1, z, dRef, sample, mipmap, buffer, function);
948 		Vector4f c11 = sampleTexel(x1, y1, z, dRef, sample, mipmap, buffer, function);
949 
950 		if(!gather)  // Blend
951 		{
952 			if(componentCount >= 1) c00.x = c00.x + fu * (c10.x - c00.x);
953 			if(componentCount >= 2) c00.y = c00.y + fu * (c10.y - c00.y);
954 			if(componentCount >= 3) c00.z = c00.z + fu * (c10.z - c00.z);
955 			if(componentCount >= 4) c00.w = c00.w + fu * (c10.w - c00.w);
956 
957 			if(componentCount >= 1) c01.x = c01.x + fu * (c11.x - c01.x);
958 			if(componentCount >= 2) c01.y = c01.y + fu * (c11.y - c01.y);
959 			if(componentCount >= 3) c01.z = c01.z + fu * (c11.z - c01.z);
960 			if(componentCount >= 4) c01.w = c01.w + fu * (c11.w - c01.w);
961 
962 			if(componentCount >= 1) c.x = c00.x + fv * (c01.x - c00.x);
963 			if(componentCount >= 2) c.y = c00.y + fv * (c01.y - c00.y);
964 			if(componentCount >= 3) c.z = c00.z + fv * (c01.z - c00.z);
965 			if(componentCount >= 4) c.w = c00.w + fv * (c01.w - c00.w);
966 		}
967 		else  // Gather
968 		{
969 			VkComponentSwizzle swizzle = gatherSwizzle();
970 			switch(swizzle)
971 			{
972 			case VK_COMPONENT_SWIZZLE_ZERO:
973 			case VK_COMPONENT_SWIZZLE_ONE:
974 				// Handled at the final component swizzle.
975 				break;
976 			default:
977 				c.x = c01[swizzle - VK_COMPONENT_SWIZZLE_R];
978 				c.y = c11[swizzle - VK_COMPONENT_SWIZZLE_R];
979 				c.z = c10[swizzle - VK_COMPONENT_SWIZZLE_R];
980 				c.w = c00[swizzle - VK_COMPONENT_SWIZZLE_R];
981 				break;
982 			}
983 		}
984 	}
985 
986 	return c;
987 }
988 
sampleFloat3D(Pointer<Byte> & texture,Float4 & u,Float4 & v,Float4 & w,Float4 & dRef,Vector4i & offset,const Int4 & sample,Float & lod,bool secondLOD,SamplerFunction function)989 Vector4f SamplerCore::sampleFloat3D(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, Float4 &dRef, Vector4i &offset, const Int4 &sample, Float &lod, bool secondLOD, SamplerFunction function)
990 {
991 	Vector4f c;
992 
993 	int componentCount = textureComponentCount();
994 
995 	Pointer<Byte> mipmap;
996 	Pointer<Byte> buffer;
997 	selectMipmap(texture, mipmap, buffer, lod, secondLOD);
998 
999 	Int4 x0, x1, y0, y1, z0, z1;
1000 	Float4 fu, fv, fw;
1001 	Int4 filter = computeFilterOffset(lod);
1002 	address(u, x0, x1, fu, mipmap, offset.x, filter, OFFSET(Mipmap, width), state.addressingModeU, function);
1003 	address(v, y0, y1, fv, mipmap, offset.y, filter, OFFSET(Mipmap, height), state.addressingModeV, function);
1004 	address(w, z0, z1, fw, mipmap, offset.z, filter, OFFSET(Mipmap, depth), state.addressingModeW, function);
1005 
1006 	Int4 pitchP = *Pointer<Int4>(mipmap + OFFSET(Mipmap, pitchP), 16);
1007 	Int4 sliceP = *Pointer<Int4>(mipmap + OFFSET(Mipmap, sliceP), 16);
1008 	y0 *= pitchP;
1009 	z0 *= sliceP;
1010 
1011 	if(state.textureFilter == FILTER_POINT || (function == Fetch))
1012 	{
1013 		c = sampleTexel(x0, y0, z0, dRef, sample, mipmap, buffer, function);
1014 	}
1015 	else
1016 	{
1017 		y1 *= pitchP;
1018 		z1 *= sliceP;
1019 
1020 		Vector4f c000 = sampleTexel(x0, y0, z0, dRef, sample, mipmap, buffer, function);
1021 		Vector4f c100 = sampleTexel(x1, y0, z0, dRef, sample, mipmap, buffer, function);
1022 		Vector4f c010 = sampleTexel(x0, y1, z0, dRef, sample, mipmap, buffer, function);
1023 		Vector4f c110 = sampleTexel(x1, y1, z0, dRef, sample, mipmap, buffer, function);
1024 		Vector4f c001 = sampleTexel(x0, y0, z1, dRef, sample, mipmap, buffer, function);
1025 		Vector4f c101 = sampleTexel(x1, y0, z1, dRef, sample, mipmap, buffer, function);
1026 		Vector4f c011 = sampleTexel(x0, y1, z1, dRef, sample, mipmap, buffer, function);
1027 		Vector4f c111 = sampleTexel(x1, y1, z1, dRef, sample, mipmap, buffer, function);
1028 
1029 		// Blend first slice
1030 		if(componentCount >= 1) c000.x = c000.x + fu * (c100.x - c000.x);
1031 		if(componentCount >= 2) c000.y = c000.y + fu * (c100.y - c000.y);
1032 		if(componentCount >= 3) c000.z = c000.z + fu * (c100.z - c000.z);
1033 		if(componentCount >= 4) c000.w = c000.w + fu * (c100.w - c000.w);
1034 
1035 		if(componentCount >= 1) c010.x = c010.x + fu * (c110.x - c010.x);
1036 		if(componentCount >= 2) c010.y = c010.y + fu * (c110.y - c010.y);
1037 		if(componentCount >= 3) c010.z = c010.z + fu * (c110.z - c010.z);
1038 		if(componentCount >= 4) c010.w = c010.w + fu * (c110.w - c010.w);
1039 
1040 		if(componentCount >= 1) c000.x = c000.x + fv * (c010.x - c000.x);
1041 		if(componentCount >= 2) c000.y = c000.y + fv * (c010.y - c000.y);
1042 		if(componentCount >= 3) c000.z = c000.z + fv * (c010.z - c000.z);
1043 		if(componentCount >= 4) c000.w = c000.w + fv * (c010.w - c000.w);
1044 
1045 		// Blend second slice
1046 		if(componentCount >= 1) c001.x = c001.x + fu * (c101.x - c001.x);
1047 		if(componentCount >= 2) c001.y = c001.y + fu * (c101.y - c001.y);
1048 		if(componentCount >= 3) c001.z = c001.z + fu * (c101.z - c001.z);
1049 		if(componentCount >= 4) c001.w = c001.w + fu * (c101.w - c001.w);
1050 
1051 		if(componentCount >= 1) c011.x = c011.x + fu * (c111.x - c011.x);
1052 		if(componentCount >= 2) c011.y = c011.y + fu * (c111.y - c011.y);
1053 		if(componentCount >= 3) c011.z = c011.z + fu * (c111.z - c011.z);
1054 		if(componentCount >= 4) c011.w = c011.w + fu * (c111.w - c011.w);
1055 
1056 		if(componentCount >= 1) c001.x = c001.x + fv * (c011.x - c001.x);
1057 		if(componentCount >= 2) c001.y = c001.y + fv * (c011.y - c001.y);
1058 		if(componentCount >= 3) c001.z = c001.z + fv * (c011.z - c001.z);
1059 		if(componentCount >= 4) c001.w = c001.w + fv * (c011.w - c001.w);
1060 
1061 		// Blend slices
1062 		if(componentCount >= 1) c.x = c000.x + fw * (c001.x - c000.x);
1063 		if(componentCount >= 2) c.y = c000.y + fw * (c001.y - c000.y);
1064 		if(componentCount >= 3) c.z = c000.z + fw * (c001.z - c000.z);
1065 		if(componentCount >= 4) c.w = c000.w + fw * (c001.w - c000.w);
1066 	}
1067 
1068 	return c;
1069 }
1070 
log2sqrt(Float lod)1071 static Float log2sqrt(Float lod)
1072 {
1073 	// log2(sqrt(lod))                              // Equals 0.25 * log2(lod^2).
1074 	lod *= lod;                                     // Squaring doubles the exponent and produces an extra bit of precision.
1075 	lod = Float(As<Int>(lod)) - Float(0x3F800000);  // Interpret as integer and subtract the exponent bias.
1076 	lod *= As<Float>(Int(0x33000000));              // Scale by 0.25 * 2^-23 (mantissa length).
1077 
1078 	return lod;
1079 }
1080 
log2(Float lod)1081 static Float log2(Float lod)
1082 {
1083 	lod *= lod;                                     // Squaring doubles the exponent and produces an extra bit of precision.
1084 	lod = Float(As<Int>(lod)) - Float(0x3F800000);  // Interpret as integer and subtract the exponent bias.
1085 	lod *= As<Float>(Int(0x33800000));              // Scale by 0.5 * 2^-23 (mantissa length).
1086 
1087 	return lod;
1088 }
1089 
computeLod1D(Pointer<Byte> & texture,Float & lod,Float4 & uuuu,Float4 & dsx,Float4 & dsy,SamplerFunction function)1090 void SamplerCore::computeLod1D(Pointer<Byte> &texture, Float &lod, Float4 &uuuu, Float4 &dsx, Float4 &dsy, SamplerFunction function)
1091 {
1092 	Float4 dudxy;
1093 
1094 	if(function != Grad)  // Implicit
1095 	{
1096 		dudxy = uuuu.yz - uuuu.xx;
1097 	}
1098 	else
1099 	{
1100 		dudxy = UnpackLow(dsx, dsy);
1101 	}
1102 
1103 	// Scale by texture dimensions.
1104 	Float4 dUdxy = dudxy * *Pointer<Float4>(texture + OFFSET(Texture, widthWidthHeightHeight));
1105 
1106 	// Note we could take the absolute value here and omit the square root below,
1107 	// but this is more consistent with the 2D calculation and still cheap.
1108 	Float4 dU2dxy = dUdxy * dUdxy;
1109 
1110 	lod = Max(Float(dU2dxy.x), Float(dU2dxy.y));
1111 	lod = log2sqrt(lod);
1112 }
1113 
computeLod2D(Pointer<Byte> & texture,Float & lod,Float & anisotropy,Float4 & uDelta,Float4 & vDelta,Float4 & uuuu,Float4 & vvvv,Float4 & dsx,Float4 & dsy,SamplerFunction function)1114 void SamplerCore::computeLod2D(Pointer<Byte> &texture, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta, Float4 &uuuu, Float4 &vvvv, Float4 &dsx, Float4 &dsy, SamplerFunction function)
1115 {
1116 	Float4 duvdxy;
1117 
1118 	if(function != Grad)  // Implicit
1119 	{
1120 		duvdxy = Float4(uuuu.yz, vvvv.yz) - Float4(uuuu.xx, vvvv.xx);
1121 	}
1122 	else
1123 	{
1124 		Float4 dudxy = Float4(dsx.xx, dsy.xx);
1125 		Float4 dvdxy = Float4(dsx.yy, dsy.yy);
1126 
1127 		duvdxy = Float4(dudxy.xz, dvdxy.xz);
1128 	}
1129 
1130 	// Scale by texture dimensions.
1131 	Float4 dUVdxy = duvdxy * *Pointer<Float4>(texture + OFFSET(Texture, widthWidthHeightHeight));
1132 
1133 	Float4 dUV2dxy = dUVdxy * dUVdxy;
1134 	Float4 dUV2 = dUV2dxy.xy + dUV2dxy.zw;
1135 
1136 	lod = Max(Float(dUV2.x), Float(dUV2.y));  // Square length of major axis
1137 
1138 	if(state.textureFilter == FILTER_ANISOTROPIC)
1139 	{
1140 		Float det = Abs(Float(dUVdxy.x) * Float(dUVdxy.w) - Float(dUVdxy.y) * Float(dUVdxy.z));
1141 
1142 		Float4 dudx = duvdxy.xxxx;
1143 		Float4 dudy = duvdxy.yyyy;
1144 		Float4 dvdx = duvdxy.zzzz;
1145 		Float4 dvdy = duvdxy.wwww;
1146 
1147 		Int4 mask = As<Int4>(CmpNLT(dUV2.x, dUV2.y));
1148 		uDelta = As<Float4>((As<Int4>(dudx) & mask) | ((As<Int4>(dudy) & ~mask)));
1149 		vDelta = As<Float4>((As<Int4>(dvdx) & mask) | ((As<Int4>(dvdy) & ~mask)));
1150 
1151 		anisotropy = lod * Rcp(det, Precision::Relaxed);
1152 		anisotropy = Min(anisotropy, state.maxAnisotropy);
1153 
1154 		// TODO(b/151263485): While we always need `lod` above, when there's only
1155 		// a single mipmap level the following calculations could be skipped.
1156 		lod *= Rcp(anisotropy * anisotropy, Precision::Relaxed);
1157 	}
1158 
1159 	lod = log2sqrt(lod);  // log2(sqrt(lod))
1160 }
1161 
computeLodCube(Pointer<Byte> & texture,Float & lod,Float4 & u,Float4 & v,Float4 & w,Float4 & dsx,Float4 & dsy,Float4 & M,SamplerFunction function)1162 void SamplerCore::computeLodCube(Pointer<Byte> &texture, Float &lod, Float4 &u, Float4 &v, Float4 &w, Float4 &dsx, Float4 &dsy, Float4 &M, SamplerFunction function)
1163 {
1164 	Float4 dudxy, dvdxy, dsdxy;
1165 
1166 	if(function != Grad)  // Implicit
1167 	{
1168 		Float4 U = u * M;
1169 		Float4 V = v * M;
1170 		Float4 W = w * M;
1171 
1172 		dudxy = Abs(U - U.xxxx);
1173 		dvdxy = Abs(V - V.xxxx);
1174 		dsdxy = Abs(W - W.xxxx);
1175 	}
1176 	else
1177 	{
1178 		dudxy = Float4(dsx.xx, dsy.xx);
1179 		dvdxy = Float4(dsx.yy, dsy.yy);
1180 		dsdxy = Float4(dsx.zz, dsy.zz);
1181 
1182 		dudxy = Abs(dudxy * Float4(M.x));
1183 		dvdxy = Abs(dvdxy * Float4(M.x));
1184 		dsdxy = Abs(dsdxy * Float4(M.x));
1185 	}
1186 
1187 	// Compute the largest Manhattan distance in two dimensions.
1188 	// This takes the footprint across adjacent faces into account.
1189 	Float4 duvdxy = dudxy + dvdxy;
1190 	Float4 dusdxy = dudxy + dsdxy;
1191 	Float4 dvsdxy = dvdxy + dsdxy;
1192 
1193 	dudxy = Max(Max(duvdxy, dusdxy), dvsdxy);
1194 
1195 	lod = Max(Float(dudxy.y), Float(dudxy.z));  // FIXME: Max(dudxy.y, dudxy.z);
1196 
1197 	// Scale by texture dimension.
1198 	lod *= *Pointer<Float>(texture + OFFSET(Texture, width));
1199 
1200 	lod = log2(lod);
1201 }
1202 
computeLod3D(Pointer<Byte> & texture,Float & lod,Float4 & uuuu,Float4 & vvvv,Float4 & wwww,Float4 & dsx,Float4 & dsy,SamplerFunction function)1203 void SamplerCore::computeLod3D(Pointer<Byte> &texture, Float &lod, Float4 &uuuu, Float4 &vvvv, Float4 &wwww, Float4 &dsx, Float4 &dsy, SamplerFunction function)
1204 {
1205 	Float4 dudxy, dvdxy, dsdxy;
1206 
1207 	if(function != Grad)  // Implicit
1208 	{
1209 		dudxy = uuuu - uuuu.xxxx;
1210 		dvdxy = vvvv - vvvv.xxxx;
1211 		dsdxy = wwww - wwww.xxxx;
1212 	}
1213 	else
1214 	{
1215 		dudxy = Float4(dsx.xx, dsy.xx);
1216 		dvdxy = Float4(dsx.yy, dsy.yy);
1217 		dsdxy = Float4(dsx.zz, dsy.zz);
1218 	}
1219 
1220 	// Scale by texture dimensions.
1221 	dudxy *= *Pointer<Float4>(texture + OFFSET(Texture, width));
1222 	dvdxy *= *Pointer<Float4>(texture + OFFSET(Texture, height));
1223 	dsdxy *= *Pointer<Float4>(texture + OFFSET(Texture, depth));
1224 
1225 	dudxy *= dudxy;
1226 	dvdxy *= dvdxy;
1227 	dsdxy *= dsdxy;
1228 
1229 	dudxy += dvdxy;
1230 	dudxy += dsdxy;
1231 
1232 	lod = Max(Float(dudxy.y), Float(dudxy.z));  // FIXME: Max(dudxy.y, dudxy.z);
1233 
1234 	lod = log2sqrt(lod);  // log2(sqrt(lod))
1235 }
1236 
cubeFace(Float4 & U,Float4 & V,Float4 & x,Float4 & y,Float4 & z,Float4 & M)1237 Int4 SamplerCore::cubeFace(Float4 &U, Float4 &V, Float4 &x, Float4 &y, Float4 &z, Float4 &M)
1238 {
1239 	// TODO: Comply with Vulkan recommendation:
1240 	// Vulkan 1.1: "The rules should have as the first rule that rz wins over ry and rx, and the second rule that ry wins over rx."
1241 
1242 	Int4 xn = CmpLT(x, Float4(0.0f));  // x < 0
1243 	Int4 yn = CmpLT(y, Float4(0.0f));  // y < 0
1244 	Int4 zn = CmpLT(z, Float4(0.0f));  // z < 0
1245 
1246 	Float4 absX = Abs(x);
1247 	Float4 absY = Abs(y);
1248 	Float4 absZ = Abs(z);
1249 
1250 	Int4 xy = CmpNLE(absX, absY);  // abs(x) > abs(y)
1251 	Int4 yz = CmpNLE(absY, absZ);  // abs(y) > abs(z)
1252 	Int4 zx = CmpNLE(absZ, absX);  // abs(z) > abs(x)
1253 	Int4 xMajor = xy & ~zx;        // abs(x) > abs(y) && abs(x) > abs(z)
1254 	Int4 yMajor = yz & ~xy;        // abs(y) > abs(z) && abs(y) > abs(x)
1255 	Int4 zMajor = zx & ~yz;        // abs(z) > abs(x) && abs(z) > abs(y)
1256 
1257 	// FACE_POSITIVE_X = 000b
1258 	// FACE_NEGATIVE_X = 001b
1259 	// FACE_POSITIVE_Y = 010b
1260 	// FACE_NEGATIVE_Y = 011b
1261 	// FACE_POSITIVE_Z = 100b
1262 	// FACE_NEGATIVE_Z = 101b
1263 
1264 	Int yAxis = SignMask(yMajor);
1265 	Int zAxis = SignMask(zMajor);
1266 
1267 	Int4 n = ((xn & xMajor) | (yn & yMajor) | (zn & zMajor)) & Int4(0x80000000);
1268 	Int negative = SignMask(n);
1269 
1270 	Int faces = *Pointer<Int>(constants + OFFSET(Constants, transposeBit0) + negative * 4);
1271 	faces |= *Pointer<Int>(constants + OFFSET(Constants, transposeBit1) + yAxis * 4);
1272 	faces |= *Pointer<Int>(constants + OFFSET(Constants, transposeBit2) + zAxis * 4);
1273 
1274 	Int4 face;
1275 	face.x = faces & 0x7;
1276 	face.y = (faces >> 4) & 0x7;
1277 	face.z = (faces >> 8) & 0x7;
1278 	face.w = (faces >> 12) & 0x7;
1279 
1280 	M = Max(Max(absX, absY), absZ);
1281 
1282 	// U = xMajor ? (neg ^ -z) : ((zMajor & neg) ^ x)
1283 	U = As<Float4>((xMajor & (n ^ As<Int4>(-z))) | (~xMajor & ((zMajor & n) ^ As<Int4>(x))));
1284 
1285 	// V = !yMajor ? -y : (n ^ z)
1286 	V = As<Float4>((~yMajor & As<Int4>(-y)) | (yMajor & (n ^ As<Int4>(z))));
1287 
1288 	M = reciprocal(M) * Float4(0.5f);
1289 	U = U * M + Float4(0.5f);
1290 	V = V * M + Float4(0.5f);
1291 
1292 	return face;
1293 }
1294 
applyOffset(Short4 & uvw,Int4 & offset,const Int4 & whd,AddressingMode mode)1295 Short4 SamplerCore::applyOffset(Short4 &uvw, Int4 &offset, const Int4 &whd, AddressingMode mode)
1296 {
1297 	Int4 tmp = Int4(As<UShort4>(uvw));
1298 	tmp = tmp + offset;
1299 
1300 	switch(mode)
1301 	{
1302 	case AddressingMode::ADDRESSING_WRAP:
1303 		tmp = (tmp + whd * Int4(-MIN_TEXEL_OFFSET)) % whd;
1304 		break;
1305 	case AddressingMode::ADDRESSING_CLAMP:
1306 	case AddressingMode::ADDRESSING_MIRROR:
1307 	case AddressingMode::ADDRESSING_MIRRORONCE:
1308 	case AddressingMode::ADDRESSING_BORDER:  // FIXME: Implement and test ADDRESSING_MIRROR, ADDRESSING_MIRRORONCE, ADDRESSING_BORDER
1309 		tmp = Min(Max(tmp, Int4(0)), whd - Int4(1));
1310 		break;
1311 	case AddressingMode::ADDRESSING_SEAMLESS:
1312 		ASSERT(false);  // Cube sampling doesn't support offset.
1313 	default:
1314 		ASSERT(false);
1315 	}
1316 
1317 	return As<Short4>(UShort4(tmp));
1318 }
1319 
computeIndices(UInt index[4],Short4 uuuu,Short4 vvvv,Short4 wwww,const Short4 & layerIndex,Vector4i & offset,const Int4 & sample,const Pointer<Byte> & mipmap,SamplerFunction function)1320 void SamplerCore::computeIndices(UInt index[4], Short4 uuuu, Short4 vvvv, Short4 wwww, const Short4 &layerIndex, Vector4i &offset, const Int4 &sample, const Pointer<Byte> &mipmap, SamplerFunction function)
1321 {
1322 	uuuu = MulHigh(As<UShort4>(uuuu), UShort4(*Pointer<Int4>(mipmap + OFFSET(Mipmap, width))));
1323 
1324 	if(function.offset)
1325 	{
1326 		uuuu = applyOffset(uuuu, offset.x, *Pointer<Int4>(mipmap + OFFSET(Mipmap, width)), state.addressingModeU);
1327 	}
1328 
1329 	UInt4 indices = Int4(uuuu);
1330 
1331 	if(state.is2D() || state.is3D() || state.isCube())
1332 	{
1333 		vvvv = MulHigh(As<UShort4>(vvvv), UShort4(*Pointer<Int4>(mipmap + OFFSET(Mipmap, height))));
1334 
1335 		if(function.offset)
1336 		{
1337 			vvvv = applyOffset(vvvv, offset.y, *Pointer<Int4>(mipmap + OFFSET(Mipmap, height)), state.addressingModeV);
1338 		}
1339 
1340 		Short4 uv0uv1 = As<Short4>(UnpackLow(uuuu, vvvv));
1341 		Short4 uv2uv3 = As<Short4>(UnpackHigh(uuuu, vvvv));
1342 		Int2 i01 = MulAdd(uv0uv1, *Pointer<Short4>(mipmap + OFFSET(Mipmap, onePitchP)));
1343 		Int2 i23 = MulAdd(uv2uv3, *Pointer<Short4>(mipmap + OFFSET(Mipmap, onePitchP)));
1344 
1345 		indices = UInt4(As<UInt2>(i01), As<UInt2>(i23));
1346 	}
1347 
1348 	if(state.is3D())
1349 	{
1350 		wwww = MulHigh(As<UShort4>(wwww), UShort4(*Pointer<Int4>(mipmap + OFFSET(Mipmap, depth))));
1351 
1352 		if(function.offset)
1353 		{
1354 			wwww = applyOffset(wwww, offset.z, *Pointer<Int4>(mipmap + OFFSET(Mipmap, depth)), state.addressingModeW);
1355 		}
1356 
1357 		indices += As<UInt4>(Int4(As<UShort4>(wwww))) * *Pointer<UInt4>(mipmap + OFFSET(Mipmap, sliceP));
1358 	}
1359 
1360 	if(state.isArrayed())
1361 	{
1362 		Int4 layer = Int4(As<UShort4>(layerIndex));
1363 
1364 		if(state.textureType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY)
1365 		{
1366 			layer *= Int4(6);
1367 		}
1368 
1369 		UInt4 layerOffset = As<UInt4>(layer) * *Pointer<UInt4>(mipmap + OFFSET(Mipmap, sliceP));
1370 
1371 		indices += layerOffset;
1372 	}
1373 
1374 	if(function.sample)
1375 	{
1376 		UInt4 sampleOffset = Min(As<UInt4>(sample), *Pointer<UInt4>(mipmap + OFFSET(Mipmap, sampleMax), 16)) *
1377 		                     *Pointer<UInt4>(mipmap + OFFSET(Mipmap, samplePitchP), 16);
1378 		indices += sampleOffset;
1379 	}
1380 
1381 	index[0] = Extract(indices, 0);
1382 	index[1] = Extract(indices, 1);
1383 	index[2] = Extract(indices, 2);
1384 	index[3] = Extract(indices, 3);
1385 }
1386 
computeIndices(UInt index[4],Int4 uuuu,Int4 vvvv,Int4 wwww,const Int4 & sample,Int4 valid,const Pointer<Byte> & mipmap,SamplerFunction function)1387 void SamplerCore::computeIndices(UInt index[4], Int4 uuuu, Int4 vvvv, Int4 wwww, const Int4 &sample, Int4 valid, const Pointer<Byte> &mipmap, SamplerFunction function)
1388 {
1389 	UInt4 indices = uuuu;
1390 
1391 	if(state.is2D() || state.is3D() || state.isCube())
1392 	{
1393 		indices += As<UInt4>(vvvv);
1394 	}
1395 
1396 	if(state.is3D() || state.isCube() || state.isArrayed())
1397 	{
1398 		indices += As<UInt4>(wwww);
1399 	}
1400 
1401 	if(function.sample)
1402 	{
1403 		indices += Min(As<UInt4>(sample), *Pointer<UInt4>(mipmap + OFFSET(Mipmap, sampleMax), 16)) *
1404 		           *Pointer<UInt4>(mipmap + OFFSET(Mipmap, samplePitchP), 16);
1405 	}
1406 
1407 	if(borderModeActive())
1408 	{
1409 		// Texels out of range are still sampled before being replaced
1410 		// with the border color, so sample them at linear index 0.
1411 		indices &= As<UInt4>(valid);
1412 	}
1413 
1414 	for(int i = 0; i < 4; i++)
1415 	{
1416 		index[i] = Extract(As<Int4>(indices), i);
1417 	}
1418 }
1419 
sampleTexel(UInt index[4],Pointer<Byte> buffer)1420 Vector4s SamplerCore::sampleTexel(UInt index[4], Pointer<Byte> buffer)
1421 {
1422 	Vector4s c;
1423 
1424 	if(has16bitPackedTextureFormat())
1425 	{
1426 		c.x = Insert(c.x, Pointer<Short>(buffer)[index[0]], 0);
1427 		c.x = Insert(c.x, Pointer<Short>(buffer)[index[1]], 1);
1428 		c.x = Insert(c.x, Pointer<Short>(buffer)[index[2]], 2);
1429 		c.x = Insert(c.x, Pointer<Short>(buffer)[index[3]], 3);
1430 
1431 		switch(state.textureFormat)
1432 		{
1433 		case VK_FORMAT_R5G6B5_UNORM_PACK16:
1434 			c.z = (c.x & Short4(0x001Fu)) << 11;
1435 			c.y = (c.x & Short4(0x07E0u)) << 5;
1436 			c.x = (c.x & Short4(0xF800u));
1437 			break;
1438 		case VK_FORMAT_B5G6R5_UNORM_PACK16:
1439 			c.z = (c.x & Short4(0xF800u));
1440 			c.y = (c.x & Short4(0x07E0u)) << 5;
1441 			c.x = (c.x & Short4(0x001Fu)) << 11;
1442 			break;
1443 		case VK_FORMAT_R4G4B4A4_UNORM_PACK16:
1444 			c.w = (c.x << 12) & Short4(0xF000u);
1445 			c.z = (c.x << 8) & Short4(0xF000u);
1446 			c.y = (c.x << 4) & Short4(0xF000u);
1447 			c.x = (c.x) & Short4(0xF000u);
1448 			break;
1449 		case VK_FORMAT_B4G4R4A4_UNORM_PACK16:
1450 			c.w = (c.x << 12) & Short4(0xF000u);
1451 			c.z = (c.x) & Short4(0xF000u);
1452 			c.y = (c.x << 4) & Short4(0xF000u);
1453 			c.x = (c.x << 8) & Short4(0xF000u);
1454 			break;
1455 		case VK_FORMAT_A4R4G4B4_UNORM_PACK16_EXT:
1456 			c.w = (c.x) & Short4(0xF000u);
1457 			c.z = (c.x << 12) & Short4(0xF000u);
1458 			c.y = (c.x << 8) & Short4(0xF000u);
1459 			c.x = (c.x << 4) & Short4(0xF000u);
1460 			break;
1461 		case VK_FORMAT_A4B4G4R4_UNORM_PACK16_EXT:
1462 			c.w = (c.x) & Short4(0xF000u);
1463 			c.z = (c.x << 4) & Short4(0xF000u);
1464 			c.y = (c.x << 8) & Short4(0xF000u);
1465 			c.x = (c.x << 12) & Short4(0xF000u);
1466 			break;
1467 		case VK_FORMAT_R5G5B5A1_UNORM_PACK16:
1468 			c.w = (c.x << 15) & Short4(0x8000u);
1469 			c.z = (c.x << 10) & Short4(0xF800u);
1470 			c.y = (c.x << 5) & Short4(0xF800u);
1471 			c.x = (c.x) & Short4(0xF800u);
1472 			break;
1473 		case VK_FORMAT_B5G5R5A1_UNORM_PACK16:
1474 			c.w = (c.x << 15) & Short4(0x8000u);
1475 			c.z = (c.x) & Short4(0xF800u);
1476 			c.y = (c.x << 5) & Short4(0xF800u);
1477 			c.x = (c.x << 10) & Short4(0xF800u);
1478 			break;
1479 		case VK_FORMAT_A1R5G5B5_UNORM_PACK16:
1480 			c.w = (c.x) & Short4(0x8000u);
1481 			c.z = (c.x << 11) & Short4(0xF800u);
1482 			c.y = (c.x << 6) & Short4(0xF800u);
1483 			c.x = (c.x << 1) & Short4(0xF800u);
1484 			break;
1485 		default:
1486 			ASSERT(false);
1487 		}
1488 	}
1489 	else if(has8bitTextureComponents())
1490 	{
1491 		switch(textureComponentCount())
1492 		{
1493 		case 4:
1494 			{
1495 				Byte4 c0 = Pointer<Byte4>(buffer)[index[0]];
1496 				Byte4 c1 = Pointer<Byte4>(buffer)[index[1]];
1497 				Byte4 c2 = Pointer<Byte4>(buffer)[index[2]];
1498 				Byte4 c3 = Pointer<Byte4>(buffer)[index[3]];
1499 				c.x = Unpack(c0, c1);
1500 				c.y = Unpack(c2, c3);
1501 
1502 				switch(state.textureFormat)
1503 				{
1504 				case VK_FORMAT_B8G8R8A8_UNORM:
1505 				case VK_FORMAT_B8G8R8A8_SRGB:
1506 					c.z = As<Short4>(UnpackLow(c.x, c.y));
1507 					c.x = As<Short4>(UnpackHigh(c.x, c.y));
1508 					c.y = c.z;
1509 					c.w = c.x;
1510 					c.z = UnpackLow(As<Byte8>(Short4(0)), As<Byte8>(c.z));
1511 					c.y = UnpackHigh(As<Byte8>(Short4(0)), As<Byte8>(c.y));
1512 					c.x = UnpackLow(As<Byte8>(Short4(0)), As<Byte8>(c.x));
1513 					c.w = UnpackHigh(As<Byte8>(Short4(0)), As<Byte8>(c.w));
1514 					break;
1515 				case VK_FORMAT_R8G8B8A8_UNORM:
1516 				case VK_FORMAT_R8G8B8A8_SNORM:
1517 				case VK_FORMAT_R8G8B8A8_SINT:
1518 				case VK_FORMAT_R8G8B8A8_SRGB:
1519 				case VK_FORMAT_A8B8G8R8_UNORM_PACK32:
1520 				case VK_FORMAT_A8B8G8R8_SNORM_PACK32:
1521 				case VK_FORMAT_A8B8G8R8_SINT_PACK32:
1522 				case VK_FORMAT_A8B8G8R8_SRGB_PACK32:
1523 					c.z = As<Short4>(UnpackHigh(c.x, c.y));
1524 					c.x = As<Short4>(UnpackLow(c.x, c.y));
1525 					c.y = c.x;
1526 					c.w = c.z;
1527 					c.x = UnpackLow(As<Byte8>(Short4(0)), As<Byte8>(c.x));
1528 					c.y = UnpackHigh(As<Byte8>(Short4(0)), As<Byte8>(c.y));
1529 					c.z = UnpackLow(As<Byte8>(Short4(0)), As<Byte8>(c.z));
1530 					c.w = UnpackHigh(As<Byte8>(Short4(0)), As<Byte8>(c.w));
1531 					// Propagate sign bit
1532 					if(state.textureFormat == VK_FORMAT_R8G8B8A8_SINT ||
1533 					   state.textureFormat == VK_FORMAT_A8B8G8R8_SINT_PACK32)
1534 					{
1535 						c.x >>= 8;
1536 						c.y >>= 8;
1537 						c.z >>= 8;
1538 						c.w >>= 8;
1539 					}
1540 					break;
1541 				case VK_FORMAT_R8G8B8A8_UINT:
1542 				case VK_FORMAT_A8B8G8R8_UINT_PACK32:
1543 					c.z = As<Short4>(UnpackHigh(c.x, c.y));
1544 					c.x = As<Short4>(UnpackLow(c.x, c.y));
1545 					c.y = c.x;
1546 					c.w = c.z;
1547 					c.x = UnpackLow(As<Byte8>(c.x), As<Byte8>(Short4(0)));
1548 					c.y = UnpackHigh(As<Byte8>(c.y), As<Byte8>(Short4(0)));
1549 					c.z = UnpackLow(As<Byte8>(c.z), As<Byte8>(Short4(0)));
1550 					c.w = UnpackHigh(As<Byte8>(c.w), As<Byte8>(Short4(0)));
1551 					break;
1552 				default:
1553 					ASSERT(false);
1554 				}
1555 			}
1556 			break;
1557 		case 2:
1558 			c.x = Insert(c.x, Pointer<Short>(buffer)[index[0]], 0);
1559 			c.x = Insert(c.x, Pointer<Short>(buffer)[index[1]], 1);
1560 			c.x = Insert(c.x, Pointer<Short>(buffer)[index[2]], 2);
1561 			c.x = Insert(c.x, Pointer<Short>(buffer)[index[3]], 3);
1562 
1563 			switch(state.textureFormat)
1564 			{
1565 			case VK_FORMAT_R8G8_UNORM:
1566 			case VK_FORMAT_R8G8_SNORM:
1567 			case VK_FORMAT_R8G8_SRGB:
1568 				c.y = (c.x & Short4(0xFF00u));
1569 				c.x = (c.x << 8);
1570 				break;
1571 			case VK_FORMAT_R8G8_SINT:
1572 				c.y = c.x >> 8;
1573 				c.x = (c.x << 8) >> 8;  // Propagate sign bit
1574 				break;
1575 			case VK_FORMAT_R8G8_UINT:
1576 				c.y = As<Short4>(As<UShort4>(c.x) >> 8);
1577 				c.x &= Short4(0x00FFu);
1578 				break;
1579 			default:
1580 				ASSERT(false);
1581 			}
1582 			break;
1583 		case 1:
1584 			{
1585 				Int c0 = Int(*Pointer<Byte>(buffer + index[0]));
1586 				Int c1 = Int(*Pointer<Byte>(buffer + index[1]));
1587 				Int c2 = Int(*Pointer<Byte>(buffer + index[2]));
1588 				Int c3 = Int(*Pointer<Byte>(buffer + index[3]));
1589 				c0 = c0 | (c1 << 8) | (c2 << 16) | (c3 << 24);
1590 
1591 				switch(state.textureFormat)
1592 				{
1593 				case VK_FORMAT_R8_SINT:
1594 				case VK_FORMAT_R8_UINT:
1595 				case VK_FORMAT_S8_UINT:
1596 					{
1597 						Int zero(0);
1598 						c.x = Unpack(As<Byte4>(c0), As<Byte4>(zero));
1599 						// Propagate sign bit
1600 						if(state.textureFormat == VK_FORMAT_R8_SINT)
1601 						{
1602 							c.x = (c.x << 8) >> 8;
1603 						}
1604 					}
1605 					break;
1606 				case VK_FORMAT_R8_SNORM:
1607 				case VK_FORMAT_R8_UNORM:
1608 				case VK_FORMAT_R8_SRGB:
1609 					// TODO: avoid populating the low bits at all.
1610 					c.x = Unpack(As<Byte4>(c0));
1611 					c.x &= Short4(0xFF00u);
1612 					break;
1613 				default:
1614 					c.x = Unpack(As<Byte4>(c0));
1615 					break;
1616 				}
1617 			}
1618 			break;
1619 		default:
1620 			ASSERT(false);
1621 		}
1622 	}
1623 	else if(has16bitTextureComponents())
1624 	{
1625 		switch(textureComponentCount())
1626 		{
1627 		case 4:
1628 			c.x = Pointer<Short4>(buffer)[index[0]];
1629 			c.y = Pointer<Short4>(buffer)[index[1]];
1630 			c.z = Pointer<Short4>(buffer)[index[2]];
1631 			c.w = Pointer<Short4>(buffer)[index[3]];
1632 			transpose4x4(c.x, c.y, c.z, c.w);
1633 			break;
1634 		case 2:
1635 			c.x = *Pointer<Short4>(buffer + 4 * index[0]);
1636 			c.x = As<Short4>(UnpackLow(c.x, *Pointer<Short4>(buffer + 4 * index[1])));
1637 			c.z = *Pointer<Short4>(buffer + 4 * index[2]);
1638 			c.z = As<Short4>(UnpackLow(c.z, *Pointer<Short4>(buffer + 4 * index[3])));
1639 			c.y = c.x;
1640 			c.x = UnpackLow(As<Int2>(c.x), As<Int2>(c.z));
1641 			c.y = UnpackHigh(As<Int2>(c.y), As<Int2>(c.z));
1642 			break;
1643 		case 1:
1644 			c.x = Insert(c.x, Pointer<Short>(buffer)[index[0]], 0);
1645 			c.x = Insert(c.x, Pointer<Short>(buffer)[index[1]], 1);
1646 			c.x = Insert(c.x, Pointer<Short>(buffer)[index[2]], 2);
1647 			c.x = Insert(c.x, Pointer<Short>(buffer)[index[3]], 3);
1648 			break;
1649 		default:
1650 			ASSERT(false);
1651 		}
1652 	}
1653 	else if(state.textureFormat == VK_FORMAT_A2B10G10R10_UNORM_PACK32)
1654 	{
1655 		Int4 cc;
1656 		cc = Insert(cc, Pointer<Int>(buffer)[index[0]], 0);
1657 		cc = Insert(cc, Pointer<Int>(buffer)[index[1]], 1);
1658 		cc = Insert(cc, Pointer<Int>(buffer)[index[2]], 2);
1659 		cc = Insert(cc, Pointer<Int>(buffer)[index[3]], 3);
1660 
1661 		c.x = Short4(cc << 6) & Short4(0xFFC0u);
1662 		c.y = Short4(cc >> 4) & Short4(0xFFC0u);
1663 		c.z = Short4(cc >> 14) & Short4(0xFFC0u);
1664 		c.w = Short4(cc >> 16) & Short4(0xC000u);
1665 	}
1666 	else if(state.textureFormat == VK_FORMAT_A2R10G10B10_UNORM_PACK32)
1667 	{
1668 		Int4 cc;
1669 		cc = Insert(cc, Pointer<Int>(buffer)[index[0]], 0);
1670 		cc = Insert(cc, Pointer<Int>(buffer)[index[1]], 1);
1671 		cc = Insert(cc, Pointer<Int>(buffer)[index[2]], 2);
1672 		cc = Insert(cc, Pointer<Int>(buffer)[index[3]], 3);
1673 
1674 		c.x = Short4(cc >> 14) & Short4(0xFFC0u);
1675 		c.y = Short4(cc >> 4) & Short4(0xFFC0u);
1676 		c.z = Short4(cc << 6) & Short4(0xFFC0u);
1677 		c.w = Short4(cc >> 16) & Short4(0xC000u);
1678 	}
1679 	else if(state.textureFormat == VK_FORMAT_A2B10G10R10_UINT_PACK32)
1680 	{
1681 		Int4 cc;
1682 		cc = Insert(cc, Pointer<Int>(buffer)[index[0]], 0);
1683 		cc = Insert(cc, Pointer<Int>(buffer)[index[1]], 1);
1684 		cc = Insert(cc, Pointer<Int>(buffer)[index[2]], 2);
1685 		cc = Insert(cc, Pointer<Int>(buffer)[index[3]], 3);
1686 
1687 		c.x = Short4(cc & Int4(0x3FF));
1688 		c.y = Short4((cc >> 10) & Int4(0x3FF));
1689 		c.z = Short4((cc >> 20) & Int4(0x3FF));
1690 		c.w = Short4((cc >> 30) & Int4(0x3));
1691 	}
1692 	else if(state.textureFormat == VK_FORMAT_A2R10G10B10_UINT_PACK32)
1693 	{
1694 		Int4 cc;
1695 		cc = Insert(cc, Pointer<Int>(buffer)[index[0]], 0);
1696 		cc = Insert(cc, Pointer<Int>(buffer)[index[1]], 1);
1697 		cc = Insert(cc, Pointer<Int>(buffer)[index[2]], 2);
1698 		cc = Insert(cc, Pointer<Int>(buffer)[index[3]], 3);
1699 
1700 		c.z = Short4((cc & Int4(0x3FF)));
1701 		c.y = Short4(((cc >> 10) & Int4(0x3FF)));
1702 		c.x = Short4(((cc >> 20) & Int4(0x3FF)));
1703 		c.w = Short4(((cc >> 30) & Int4(0x3)));
1704 	}
1705 	else
1706 		ASSERT(false);
1707 
1708 	if(state.textureFormat.isSRGBformat())
1709 	{
1710 		for(int i = 0; i < textureComponentCount(); i++)
1711 		{
1712 			if(isRGBComponent(i))
1713 			{
1714 				// The current table-based sRGB conversion requires 0xFF00 to represent 1.0.
1715 				ASSERT(state.textureFormat.has8bitTextureComponents());
1716 
1717 				sRGBtoLinearFF00(c[i]);
1718 			}
1719 		}
1720 	}
1721 
1722 	return c;
1723 }
1724 
sampleTexel(Short4 & uuuu,Short4 & vvvv,Short4 & wwww,const Short4 & layerIndex,Vector4i & offset,const Int4 & sample,Pointer<Byte> & mipmap,Pointer<Byte> buffer,SamplerFunction function)1725 Vector4s SamplerCore::sampleTexel(Short4 &uuuu, Short4 &vvvv, Short4 &wwww, const Short4 &layerIndex, Vector4i &offset, const Int4 &sample, Pointer<Byte> &mipmap, Pointer<Byte> buffer, SamplerFunction function)
1726 {
1727 	Vector4s c;
1728 
1729 	UInt index[4];
1730 	computeIndices(index, uuuu, vvvv, wwww, layerIndex, offset, sample, mipmap, function);
1731 
1732 	if(isYcbcrFormat())
1733 	{
1734 		// Pointers to the planes of YCbCr images are stored in consecutive mipmap levels.
1735 		Pointer<Byte> bufferY = buffer;                                                                         // *Pointer<Pointer<Byte>>(mipmap + 0 * sizeof(Mipmap) + OFFSET(Mipmap, buffer));
1736 		Pointer<Byte> bufferU = *Pointer<Pointer<Byte>>(mipmap + 1 * sizeof(Mipmap) + OFFSET(Mipmap, buffer));  // U/V for 2-plane interleaved formats.
1737 		Pointer<Byte> bufferV = *Pointer<Pointer<Byte>>(mipmap + 2 * sizeof(Mipmap) + OFFSET(Mipmap, buffer));
1738 
1739 		// Luminance
1740 		Int c0 = Int(bufferY[index[0]]);
1741 		Int c1 = Int(bufferY[index[1]]);
1742 		Int c2 = Int(bufferY[index[2]]);
1743 		Int c3 = Int(bufferY[index[3]]);
1744 		c0 = c0 | (c1 << 8) | (c2 << 16) | (c3 << 24);
1745 		UShort4 Y = As<UShort4>(Unpack(As<Byte4>(c0)));
1746 
1747 		UShort4 Cb, Cr;
1748 
1749 		// Chroma
1750 		{
1751 			computeIndices(index, uuuu, vvvv, wwww, layerIndex, offset, sample, mipmap + sizeof(Mipmap), function);
1752 			UShort4 U, V;
1753 
1754 			if(state.textureFormat == VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM)
1755 			{
1756 				c0 = Int(bufferU[index[0]]);
1757 				c1 = Int(bufferU[index[1]]);
1758 				c2 = Int(bufferU[index[2]]);
1759 				c3 = Int(bufferU[index[3]]);
1760 				c0 = c0 | (c1 << 8) | (c2 << 16) | (c3 << 24);
1761 				U = As<UShort4>(Unpack(As<Byte4>(c0)));
1762 
1763 				c0 = Int(bufferV[index[0]]);
1764 				c1 = Int(bufferV[index[1]]);
1765 				c2 = Int(bufferV[index[2]]);
1766 				c3 = Int(bufferV[index[3]]);
1767 				c0 = c0 | (c1 << 8) | (c2 << 16) | (c3 << 24);
1768 				V = As<UShort4>(Unpack(As<Byte4>(c0)));
1769 			}
1770 			else if(state.textureFormat == VK_FORMAT_G8_B8R8_2PLANE_420_UNORM)
1771 			{
1772 				Short4 UV;
1773 				UV = Insert(UV, Pointer<Short>(bufferU)[index[0]], 0);  // TODO: Insert(UShort4, UShort)
1774 				UV = Insert(UV, Pointer<Short>(bufferU)[index[1]], 1);
1775 				UV = Insert(UV, Pointer<Short>(bufferU)[index[2]], 2);
1776 				UV = Insert(UV, Pointer<Short>(bufferU)[index[3]], 3);
1777 				U = (UV & Short4(0x00FFu)) | (UV << 8);
1778 				V = (UV & Short4(0xFF00u)) | As<Short4>(As<UShort4>(UV) >> 8);
1779 			}
1780 			else
1781 				UNSUPPORTED("state.textureFormat %d", (int)state.textureFormat);
1782 
1783 			if(!state.swappedChroma)
1784 			{
1785 				Cb = U;
1786 				Cr = V;
1787 			}
1788 			else
1789 			{
1790 				Cb = V;
1791 				Cr = U;
1792 			}
1793 		}
1794 
1795 		if(state.ycbcrModel == VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY)
1796 		{
1797 			// YCbCr formats are treated as signed 15-bit.
1798 			c.x = Cr >> 1;
1799 			c.y = Y >> 1;
1800 			c.z = Cb >> 1;
1801 		}
1802 		else
1803 		{
1804 			// Scaling and bias for studio-swing range: Y = [16 .. 235], U/V = [16 .. 240]
1805 			// Scale down by 0x0101 to normalize the 8.8 samples, and up by 0x7FFF for signed 15-bit output.
1806 			float yOffset = static_cast<float>(state.studioSwing ? 16 * 0x0101 : 0);
1807 			float uvOffset = static_cast<float>(128 * 0x0101);
1808 			float yFactor = static_cast<float>(0x7FFF) / static_cast<float>(state.studioSwing ? 219 * 0x0101 : 255 * 0x0101);
1809 			float uvFactor = static_cast<float>(0x7FFF) / static_cast<float>(state.studioSwing ? 224 * 0x0101 : 255 * 0x0101);
1810 
1811 			Float4 y = (Float4(Y) - Float4(yOffset)) * Float4(yFactor);
1812 			Float4 u = (Float4(Cb) - Float4(uvOffset)) * Float4(uvFactor);
1813 			Float4 v = (Float4(Cr) - Float4(uvOffset)) * Float4(uvFactor);
1814 
1815 			if(state.ycbcrModel == VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY)
1816 			{
1817 				c.x = Short4(v);
1818 				c.y = Short4(y);
1819 				c.z = Short4(u);
1820 			}
1821 			else
1822 			{
1823 				// Generic YCbCr to RGB transformation:
1824 				// R = Y                               +           2 * (1 - Kr) * Cr
1825 				// G = Y - 2 * Kb * (1 - Kb) / Kg * Cb - 2 * Kr * (1 - Kr) / Kg * Cr
1826 				// B = Y +           2 * (1 - Kb) * Cb
1827 
1828 				float Kb = 0.114f;
1829 				float Kr = 0.299f;
1830 
1831 				switch(state.ycbcrModel)
1832 				{
1833 				case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_709:
1834 					Kb = 0.0722f;
1835 					Kr = 0.2126f;
1836 					break;
1837 				case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_601:
1838 					Kb = 0.114f;
1839 					Kr = 0.299f;
1840 					break;
1841 				case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_2020:
1842 					Kb = 0.0593f;
1843 					Kr = 0.2627f;
1844 					break;
1845 				default:
1846 					UNSUPPORTED("ycbcrModel %d", int(state.ycbcrModel));
1847 				}
1848 
1849 				const float Kg = 1.0f - Kr - Kb;
1850 
1851 				const float Rr = 2 * (1 - Kr);
1852 				const float Gb = -2 * Kb * (1 - Kb) / Kg;
1853 				const float Gr = -2 * Kr * (1 - Kr) / Kg;
1854 				const float Bb = 2 * (1 - Kb);
1855 
1856 				Float4 r = y + Float4(Rr) * v;
1857 				Float4 g = y + Float4(Gb) * u + Float4(Gr) * v;
1858 				Float4 b = y + Float4(Bb) * u;
1859 
1860 				c.x = Short4(r);
1861 				c.y = Short4(g);
1862 				c.z = Short4(b);
1863 			}
1864 		}
1865 	}
1866 	else
1867 	{
1868 		return sampleTexel(index, buffer);
1869 	}
1870 
1871 	return c;
1872 }
1873 
sampleTexel(Int4 & uuuu,Int4 & vvvv,Int4 & wwww,Float4 & dRef,const Int4 & sample,Pointer<Byte> & mipmap,Pointer<Byte> buffer,SamplerFunction function)1874 Vector4f SamplerCore::sampleTexel(Int4 &uuuu, Int4 &vvvv, Int4 &wwww, Float4 &dRef, const Int4 &sample, Pointer<Byte> &mipmap, Pointer<Byte> buffer, SamplerFunction function)
1875 {
1876 	Int4 valid;
1877 
1878 	if(borderModeActive())
1879 	{
1880 		// Valid texels have positive coordinates.
1881 		Int4 negative = uuuu;
1882 		if(state.is2D() || state.is3D() || state.isCube()) negative |= vvvv;
1883 		if(state.is3D() || state.isCube() || state.isArrayed()) negative |= wwww;
1884 		valid = CmpNLT(negative, Int4(0));
1885 	}
1886 
1887 	UInt index[4];
1888 	computeIndices(index, uuuu, vvvv, wwww, sample, valid, mipmap, function);
1889 
1890 	Vector4f c;
1891 
1892 	if(hasFloatTexture() || has32bitIntegerTextureComponents())
1893 	{
1894 		UInt4 t0, t1, t2, t3;
1895 
1896 		switch(state.textureFormat)
1897 		{
1898 		case VK_FORMAT_R16_SFLOAT:
1899 			t0 = Int4(*Pointer<UShort4>(buffer + index[0] * 2));
1900 			t1 = Int4(*Pointer<UShort4>(buffer + index[1] * 2));
1901 			t2 = Int4(*Pointer<UShort4>(buffer + index[2] * 2));
1902 			t3 = Int4(*Pointer<UShort4>(buffer + index[3] * 2));
1903 
1904 			c.x.x = Extract(As<Float4>(halfToFloatBits(t0)), 0);
1905 			c.x.y = Extract(As<Float4>(halfToFloatBits(t1)), 0);
1906 			c.x.z = Extract(As<Float4>(halfToFloatBits(t2)), 0);
1907 			c.x.w = Extract(As<Float4>(halfToFloatBits(t3)), 0);
1908 			break;
1909 		case VK_FORMAT_R16G16_SFLOAT:
1910 			t0 = Int4(*Pointer<UShort4>(buffer + index[0] * 4));
1911 			t1 = Int4(*Pointer<UShort4>(buffer + index[1] * 4));
1912 			t2 = Int4(*Pointer<UShort4>(buffer + index[2] * 4));
1913 			t3 = Int4(*Pointer<UShort4>(buffer + index[3] * 4));
1914 
1915 			// FIXME: shuffles
1916 			c.x = As<Float4>(halfToFloatBits(t0));
1917 			c.y = As<Float4>(halfToFloatBits(t1));
1918 			c.z = As<Float4>(halfToFloatBits(t2));
1919 			c.w = As<Float4>(halfToFloatBits(t3));
1920 			transpose4x4(c.x, c.y, c.z, c.w);
1921 			break;
1922 		case VK_FORMAT_R16G16B16A16_SFLOAT:
1923 			t0 = Int4(*Pointer<UShort4>(buffer + index[0] * 8));
1924 			t1 = Int4(*Pointer<UShort4>(buffer + index[1] * 8));
1925 			t2 = Int4(*Pointer<UShort4>(buffer + index[2] * 8));
1926 			t3 = Int4(*Pointer<UShort4>(buffer + index[3] * 8));
1927 
1928 			c.x = As<Float4>(halfToFloatBits(t0));
1929 			c.y = As<Float4>(halfToFloatBits(t1));
1930 			c.z = As<Float4>(halfToFloatBits(t2));
1931 			c.w = As<Float4>(halfToFloatBits(t3));
1932 			transpose4x4(c.x, c.y, c.z, c.w);
1933 			break;
1934 		case VK_FORMAT_R32_SFLOAT:
1935 		case VK_FORMAT_R32_SINT:
1936 		case VK_FORMAT_R32_UINT:
1937 		case VK_FORMAT_D32_SFLOAT:
1938 			// FIXME: Optimal shuffling?
1939 			c.x.x = *Pointer<Float>(buffer + index[0] * 4);
1940 			c.x.y = *Pointer<Float>(buffer + index[1] * 4);
1941 			c.x.z = *Pointer<Float>(buffer + index[2] * 4);
1942 			c.x.w = *Pointer<Float>(buffer + index[3] * 4);
1943 			break;
1944 		case VK_FORMAT_R32G32_SFLOAT:
1945 		case VK_FORMAT_R32G32_SINT:
1946 		case VK_FORMAT_R32G32_UINT:
1947 			// FIXME: Optimal shuffling?
1948 			c.x.xy = *Pointer<Float4>(buffer + index[0] * 8);
1949 			c.x.zw = *Pointer<Float4>(buffer + index[1] * 8 - 8);
1950 			c.z.xy = *Pointer<Float4>(buffer + index[2] * 8);
1951 			c.z.zw = *Pointer<Float4>(buffer + index[3] * 8 - 8);
1952 			c.y = c.x;
1953 			c.x = Float4(c.x.xz, c.z.xz);
1954 			c.y = Float4(c.y.yw, c.z.yw);
1955 			break;
1956 		case VK_FORMAT_R32G32B32A32_SFLOAT:
1957 		case VK_FORMAT_R32G32B32A32_SINT:
1958 		case VK_FORMAT_R32G32B32A32_UINT:
1959 			c.x = *Pointer<Float4>(buffer + index[0] * 16, 16);
1960 			c.y = *Pointer<Float4>(buffer + index[1] * 16, 16);
1961 			c.z = *Pointer<Float4>(buffer + index[2] * 16, 16);
1962 			c.w = *Pointer<Float4>(buffer + index[3] * 16, 16);
1963 			transpose4x4(c.x, c.y, c.z, c.w);
1964 			break;
1965 		case VK_FORMAT_E5B9G9R9_UFLOAT_PACK32:
1966 			{
1967 				Float4 t;  // TODO: add Insert(UInt4, RValue<UInt>)
1968 				t.x = *Pointer<Float>(buffer + index[0] * 4);
1969 				t.y = *Pointer<Float>(buffer + index[1] * 4);
1970 				t.z = *Pointer<Float>(buffer + index[2] * 4);
1971 				t.w = *Pointer<Float>(buffer + index[3] * 4);
1972 				t0 = As<UInt4>(t);
1973 				c.w = Float4(UInt4(1) << ((t0 >> 27) & UInt4(0x1F))) * Float4(1.0f / (1 << 24));
1974 				c.x = Float4(t0 & UInt4(0x1FF)) * c.w;
1975 				c.y = Float4((t0 >> 9) & UInt4(0x1FF)) * c.w;
1976 				c.z = Float4((t0 >> 18) & UInt4(0x1FF)) * c.w;
1977 			}
1978 			break;
1979 		case VK_FORMAT_B10G11R11_UFLOAT_PACK32:
1980 			{
1981 				Float4 t;  // TODO: add Insert(UInt4, RValue<UInt>)
1982 				t.x = *Pointer<Float>(buffer + index[0] * 4);
1983 				t.y = *Pointer<Float>(buffer + index[1] * 4);
1984 				t.z = *Pointer<Float>(buffer + index[2] * 4);
1985 				t.w = *Pointer<Float>(buffer + index[3] * 4);
1986 				t0 = As<UInt4>(t);
1987 				c.x = As<Float4>(halfToFloatBits((t0 << 4) & UInt4(0x7FF0)));
1988 				c.y = As<Float4>(halfToFloatBits((t0 >> 7) & UInt4(0x7FF0)));
1989 				c.z = As<Float4>(halfToFloatBits((t0 >> 17) & UInt4(0x7FE0)));
1990 			}
1991 			break;
1992 		default:
1993 			UNSUPPORTED("Format %d", VkFormat(state.textureFormat));
1994 		}
1995 	}
1996 	else
1997 	{
1998 		ASSERT(!isYcbcrFormat());
1999 
2000 		Vector4s cs = sampleTexel(index, buffer);
2001 
2002 		bool isInteger = state.textureFormat.isUnnormalizedInteger();
2003 		int componentCount = textureComponentCount();
2004 		for(int n = 0; n < componentCount; n++)
2005 		{
2006 			if(hasUnsignedTextureComponent(n))
2007 			{
2008 				if(isInteger)
2009 				{
2010 					c[n] = As<Float4>(Int4(As<UShort4>(cs[n])));
2011 				}
2012 				else
2013 				{
2014 					c[n] = Float4(As<UShort4>(cs[n]));
2015 				}
2016 			}
2017 			else
2018 			{
2019 				if(isInteger)
2020 				{
2021 					c[n] = As<Float4>(Int4(cs[n]));
2022 				}
2023 				else
2024 				{
2025 					c[n] = Float4(cs[n]);
2026 				}
2027 			}
2028 		}
2029 	}
2030 
2031 	if(state.compareEnable)
2032 	{
2033 		Float4 ref = dRef;
2034 
2035 		if(!hasFloatTexture())
2036 		{
2037 			// D16_UNORM: clamp reference, normalize texel value
2038 			ref = Min(Max(ref, Float4(0.0f)), Float4(1.0f));
2039 			c.x = c.x * Float4(1.0f / 0xFFFF);
2040 		}
2041 
2042 		Int4 boolean;
2043 
2044 		switch(state.compareOp)
2045 		{
2046 		case VK_COMPARE_OP_LESS_OR_EQUAL: boolean = CmpLE(ref, c.x); break;
2047 		case VK_COMPARE_OP_GREATER_OR_EQUAL: boolean = CmpNLT(ref, c.x); break;
2048 		case VK_COMPARE_OP_LESS: boolean = CmpLT(ref, c.x); break;
2049 		case VK_COMPARE_OP_GREATER: boolean = CmpNLE(ref, c.x); break;
2050 		case VK_COMPARE_OP_EQUAL: boolean = CmpEQ(ref, c.x); break;
2051 		case VK_COMPARE_OP_NOT_EQUAL: boolean = CmpNEQ(ref, c.x); break;
2052 		case VK_COMPARE_OP_ALWAYS: boolean = Int4(-1); break;
2053 		case VK_COMPARE_OP_NEVER: boolean = Int4(0); break;
2054 		default: ASSERT(false);
2055 		}
2056 
2057 		c.x = As<Float4>(boolean & As<Int4>(Float4(1.0f)));
2058 		c.y = Float4(0.0f);
2059 		c.z = Float4(0.0f);
2060 		c.w = Float4(1.0f);
2061 	}
2062 
2063 	if(borderModeActive())
2064 	{
2065 		c = replaceBorderTexel(c, valid);
2066 	}
2067 
2068 	return c;
2069 }
2070 
replaceBorderTexel(const Vector4f & c,Int4 valid)2071 Vector4f SamplerCore::replaceBorderTexel(const Vector4f &c, Int4 valid)
2072 {
2073 	Vector4i border;
2074 
2075 	const bool scaled = !hasFloatTexture() && !hasUnnormalizedIntegerTexture() && !state.compareEnable;
2076 	const sw::float4 scaleComp = scaled ? getComponentScale() : sw::float4(1.0f, 1.0f, 1.0f, 1.0f);
2077 
2078 	switch(state.border)
2079 	{
2080 	case VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK:
2081 	case VK_BORDER_COLOR_INT_TRANSPARENT_BLACK:
2082 		border.x = Int4(0);
2083 		border.y = Int4(0);
2084 		border.z = Int4(0);
2085 		border.w = Int4(0);
2086 		break;
2087 	case VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK:
2088 		border.x = Int4(0);
2089 		border.y = Int4(0);
2090 		border.z = Int4(0);
2091 		border.w = Int4(bit_cast<int>(scaleComp.w));
2092 		break;
2093 	case VK_BORDER_COLOR_INT_OPAQUE_BLACK:
2094 		border.x = Int4(0);
2095 		border.y = Int4(0);
2096 		border.z = Int4(0);
2097 		border.w = Int4(1);
2098 		break;
2099 	case VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE:
2100 		border.x = Int4(bit_cast<int>(scaleComp.x));
2101 		border.y = Int4(bit_cast<int>(scaleComp.y));
2102 		border.z = Int4(bit_cast<int>(scaleComp.z));
2103 		border.w = Int4(bit_cast<int>(scaleComp.w));
2104 		break;
2105 	case VK_BORDER_COLOR_INT_OPAQUE_WHITE:
2106 		border.x = Int4(1);
2107 		border.y = Int4(1);
2108 		border.z = Int4(1);
2109 		border.w = Int4(1);
2110 		break;
2111 	case VK_BORDER_COLOR_FLOAT_CUSTOM_EXT:
2112 		// This bit-casts from float to int in C++ code instead of Reactor code
2113 		// because Reactor does not guarantee preserving infinity (b/140302841).
2114 		border.x = Int4(bit_cast<int>(scaleComp.x * state.customBorder.float32[0]));
2115 		border.y = Int4(bit_cast<int>(scaleComp.y * state.customBorder.float32[1]));
2116 		border.z = Int4(bit_cast<int>(scaleComp.z * state.customBorder.float32[2]));
2117 		border.w = Int4(bit_cast<int>(scaleComp.w * state.customBorder.float32[3]));
2118 		break;
2119 	case VK_BORDER_COLOR_INT_CUSTOM_EXT:
2120 		border.x = Int4(state.customBorder.int32[0]);
2121 		border.y = Int4(state.customBorder.int32[1]);
2122 		border.z = Int4(state.customBorder.int32[2]);
2123 		border.w = Int4(state.customBorder.int32[3]);
2124 		break;
2125 	default:
2126 		UNSUPPORTED("sint/uint/sfloat border: %u", state.border);
2127 	}
2128 
2129 	Vector4f out;
2130 	out.x = As<Float4>((valid & As<Int4>(c.x)) | (~valid & border.x));  // TODO: IfThenElse()
2131 	out.y = As<Float4>((valid & As<Int4>(c.y)) | (~valid & border.y));
2132 	out.z = As<Float4>((valid & As<Int4>(c.z)) | (~valid & border.z));
2133 	out.w = As<Float4>((valid & As<Int4>(c.w)) | (~valid & border.w));
2134 
2135 	return out;
2136 }
2137 
selectMipmap(const Pointer<Byte> & texture,Pointer<Byte> & mipmap,Pointer<Byte> & buffer,const Float & lod,bool secondLOD)2138 void SamplerCore::selectMipmap(const Pointer<Byte> &texture, Pointer<Byte> &mipmap, Pointer<Byte> &buffer, const Float &lod, bool secondLOD)
2139 {
2140 	Pointer<Byte> mipmap0 = texture + OFFSET(Texture, mipmap[0]);
2141 
2142 	if(state.mipmapFilter == MIPMAP_NONE)
2143 	{
2144 		mipmap = mipmap0;
2145 	}
2146 	else
2147 	{
2148 		Int ilod;
2149 
2150 		if(state.mipmapFilter == MIPMAP_POINT)
2151 		{
2152 			// TODO: Preferred formula is ceil(lod + 0.5) - 1
2153 			ilod = RoundInt(lod);
2154 		}
2155 		else  // MIPMAP_LINEAR
2156 		{
2157 			ilod = Int(lod);
2158 		}
2159 
2160 		mipmap = mipmap0 + ilod * sizeof(Mipmap) + secondLOD * sizeof(Mipmap);
2161 	}
2162 
2163 	buffer = *Pointer<Pointer<Byte>>(mipmap + OFFSET(Mipmap, buffer));
2164 }
2165 
computeFilterOffset(Float & lod)2166 Int4 SamplerCore::computeFilterOffset(Float &lod)
2167 {
2168 	if(state.textureFilter == FILTER_POINT)
2169 	{
2170 		return Int4(0);
2171 	}
2172 	else if(state.textureFilter == FILTER_MIN_LINEAR_MAG_POINT)
2173 	{
2174 		return CmpNLE(Float4(lod), Float4(0.0f));
2175 	}
2176 	else if(state.textureFilter == FILTER_MIN_POINT_MAG_LINEAR)
2177 	{
2178 		return CmpLE(Float4(lod), Float4(0.0f));
2179 	}
2180 
2181 	return Int4(~0);
2182 }
2183 
address(const Float4 & uw,AddressingMode addressingMode,Pointer<Byte> & mipmap)2184 Short4 SamplerCore::address(const Float4 &uw, AddressingMode addressingMode, Pointer<Byte> &mipmap)
2185 {
2186 	if(addressingMode == ADDRESSING_UNUSED)
2187 	{
2188 		return Short4(0);  // TODO(b/134669567): Optimize for 1D filtering
2189 	}
2190 	else if(addressingMode == ADDRESSING_CLAMP || addressingMode == ADDRESSING_BORDER)
2191 	{
2192 		Float4 clamp = Min(Max(uw, Float4(0.0f)), Float4(65535.0f / 65536.0f));
2193 
2194 		return Short4(Int4(clamp * Float4(1 << 16)));
2195 	}
2196 	else if(addressingMode == ADDRESSING_MIRROR)
2197 	{
2198 		Int4 convert = Int4(uw * Float4(1 << 16));
2199 		Int4 mirror = (convert << 15) >> 31;
2200 
2201 		convert ^= mirror;
2202 
2203 		return Short4(convert);
2204 	}
2205 	else if(addressingMode == ADDRESSING_MIRRORONCE)
2206 	{
2207 		// Absolute value
2208 		Int4 convert = Int4(Abs(uw * Float4(1 << 16)));
2209 
2210 		// Clamp
2211 		convert -= Int4(0x00008000, 0x00008000, 0x00008000, 0x00008000);
2212 		convert = As<Int4>(PackSigned(convert, convert));
2213 
2214 		return As<Short4>(Int2(convert)) + Short4(0x8000u);
2215 	}
2216 	else  // Wrap
2217 	{
2218 		return Short4(Int4(uw * Float4(1 << 16)));
2219 	}
2220 }
2221 
computeLayerIndex(const Float4 & a,Pointer<Byte> & mipmap)2222 Short4 SamplerCore::computeLayerIndex(const Float4 &a, Pointer<Byte> &mipmap)
2223 {
2224 	if(!state.isArrayed())
2225 	{
2226 		return {};
2227 	}
2228 
2229 	Int4 layers = *Pointer<Int4>(mipmap + OFFSET(Mipmap, depth));
2230 
2231 	return Short4(Min(Max(RoundInt(a), Int4(0)), layers - Int4(1)));
2232 }
2233 
2234 // TODO: Eliminate when the gather + mirror addressing case is handled by mirroring the footprint.
mirror(Int4 n)2235 static Int4 mirror(Int4 n)
2236 {
2237 	auto positive = CmpNLT(n, Int4(0));
2238 	return (positive & n) | (~positive & (-(Int4(1) + n)));
2239 }
2240 
mod(Int4 n,Int4 d)2241 static Int4 mod(Int4 n, Int4 d)
2242 {
2243 	auto x = n % d;
2244 	auto positive = CmpNLT(x, Int4(0));
2245 	return (positive & x) | (~positive & (x + d));
2246 }
2247 
address(const Float4 & uvw,Int4 & xyz0,Int4 & xyz1,Float4 & f,Pointer<Byte> & mipmap,Int4 & offset,Int4 & filter,int whd,AddressingMode addressingMode,SamplerFunction function)2248 void SamplerCore::address(const Float4 &uvw, Int4 &xyz0, Int4 &xyz1, Float4 &f, Pointer<Byte> &mipmap, Int4 &offset, Int4 &filter, int whd, AddressingMode addressingMode, SamplerFunction function)
2249 {
2250 	if(addressingMode == ADDRESSING_UNUSED)
2251 	{
2252 		f = Float4(0.0f);  // TODO(b/134669567): Optimize for 1D filtering
2253 		return;
2254 	}
2255 
2256 	Int4 dim = *Pointer<Int4>(mipmap + whd, 16);
2257 	Int4 maxXYZ = dim - Int4(1);
2258 
2259 	if(function == Fetch)  // Unnormalized coordinates
2260 	{
2261 		Int4 xyz = function.offset ? As<Int4>(uvw) + offset : As<Int4>(uvw);
2262 		xyz0 = Min(Max(xyz, Int4(0)), maxXYZ);
2263 
2264 		// VK_EXT_image_robustness requires checking for out-of-bounds accesses.
2265 		// TODO(b/162327166): Only perform bounds checks when VK_EXT_image_robustness is enabled.
2266 		// If the above clamping altered the result, the access is out-of-bounds.
2267 		// In that case set the coordinate to -1 to perform texel replacement later.
2268 		Int4 outOfBounds = CmpNEQ(xyz, xyz0);
2269 		xyz0 |= outOfBounds;
2270 	}
2271 	else if(addressingMode == ADDRESSING_CUBEFACE)
2272 	{
2273 		xyz0 = As<Int4>(uvw);
2274 	}
2275 	else
2276 	{
2277 		const int halfBits = 0x3EFFFFFF;  // Value just under 0.5f
2278 		const int oneBits = 0x3F7FFFFF;   // Value just under 1.0f
2279 		const int twoBits = 0x3FFFFFFF;   // Value just under 2.0f
2280 
2281 		Float4 coord = uvw;
2282 
2283 		if(state.unnormalizedCoordinates)
2284 		{
2285 			switch(addressingMode)
2286 			{
2287 			case ADDRESSING_CLAMP:
2288 				coord = Min(Max(coord, Float4(0.0f)), Float4(dim) * As<Float4>(Int4(oneBits)));
2289 				break;
2290 			case ADDRESSING_BORDER:
2291 				// Don't map to a valid range here.
2292 				break;
2293 			default:
2294 				// "If unnormalizedCoordinates is VK_TRUE, addressModeU and addressModeV must each be
2295 				//  either VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE or VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER"
2296 				UNREACHABLE("addressingMode %d", int(addressingMode));
2297 				break;
2298 			}
2299 		}
2300 		else if(state.textureFilter == FILTER_GATHER && addressingMode == ADDRESSING_MIRROR)
2301 		{
2302 			// Gather requires the 'footprint' of the texels from which a component is taken, to also mirror around.
2303 			// Therefore we can't just compute one texel's location and find the other ones at +1 offsets from it.
2304 			// Here we handle that case separately by doing the mirroring per texel coordinate.
2305 			// TODO: Mirror the footprint by adjusting the sign of the 0.5f and 1 offsets.
2306 
2307 			coord = coord * Float4(dim);
2308 			coord -= Float4(0.5f);
2309 			Float4 floor = Floor(coord);
2310 			xyz0 = Int4(floor);
2311 
2312 			if(function.offset)
2313 			{
2314 				xyz0 += offset;
2315 			}
2316 
2317 			xyz1 = xyz0 + Int4(1);
2318 
2319 			xyz0 = (maxXYZ)-mirror(mod(xyz0, Int4(2) * dim) - dim);
2320 			xyz1 = (maxXYZ)-mirror(mod(xyz1, Int4(2) * dim) - dim);
2321 
2322 			return;
2323 		}
2324 		else
2325 		{
2326 			if(!function.offset)
2327 			{
2328 				switch(addressingMode)
2329 				{
2330 				case ADDRESSING_CLAMP:
2331 				case ADDRESSING_SEAMLESS:
2332 					// While cube face coordinates are nominally already in the [0.0, 1.0] range
2333 					// due to the projection, and numerical imprecision is tolerated due to the
2334 					// border of pixels for seamless filtering, the projection doesn't cause
2335 					// range normalization for Inf and NaN values. So we always clamp.
2336 					{
2337 						Float4 one = As<Float4>(Int4(oneBits));
2338 						coord = Min(Max(coord, Float4(0.0f)), one);
2339 					}
2340 					break;
2341 				case ADDRESSING_MIRROR:
2342 					{
2343 						Float4 half = As<Float4>(Int4(halfBits));
2344 						Float4 one = As<Float4>(Int4(oneBits));
2345 						Float4 two = As<Float4>(Int4(twoBits));
2346 						coord = one - Abs(two * Frac(coord * half) - one);
2347 					}
2348 					break;
2349 				case ADDRESSING_MIRRORONCE:
2350 					{
2351 						Float4 half = As<Float4>(Int4(halfBits));
2352 						Float4 one = As<Float4>(Int4(oneBits));
2353 						Float4 two = As<Float4>(Int4(twoBits));
2354 						coord = one - Abs(two * Frac(Min(Max(coord, -one), two) * half) - one);
2355 					}
2356 					break;
2357 				case ADDRESSING_BORDER:
2358 					// Don't map to a valid range here.
2359 					break;
2360 				default:  // Wrap
2361 					coord = Frac(coord);
2362 					break;
2363 				}
2364 			}
2365 
2366 			coord = coord * Float4(dim);
2367 		}
2368 
2369 		if(state.textureFilter == FILTER_POINT)
2370 		{
2371 			if(addressingMode == ADDRESSING_BORDER || function.offset)
2372 			{
2373 				xyz0 = Int4(Floor(coord));
2374 			}
2375 			else  // Can't have negative coordinates, so floor() is redundant when casting to int.
2376 			{
2377 				xyz0 = Int4(coord);
2378 			}
2379 		}
2380 		else
2381 		{
2382 			if(state.textureFilter == FILTER_MIN_POINT_MAG_LINEAR ||
2383 			   state.textureFilter == FILTER_MIN_LINEAR_MAG_POINT)
2384 			{
2385 				coord -= As<Float4>(As<Int4>(Float4(0.5f)) & filter);
2386 			}
2387 			else
2388 			{
2389 				coord -= Float4(0.5f);
2390 			}
2391 
2392 			Float4 floor = Floor(coord);
2393 			xyz0 = Int4(floor);
2394 			f = coord - floor;
2395 		}
2396 
2397 		if(function.offset)
2398 		{
2399 			xyz0 += offset;
2400 		}
2401 
2402 		if(addressingMode == ADDRESSING_SEAMLESS)  // Adjust for border.
2403 		{
2404 			xyz0 += Int4(1);
2405 		}
2406 
2407 		xyz1 = xyz0 - filter;  // Increment
2408 
2409 		if(addressingMode == ADDRESSING_BORDER)
2410 		{
2411 			// Replace the coordinates with -1 if they're out of range.
2412 			Int4 border0 = CmpLT(xyz0, Int4(0)) | CmpNLT(xyz0, dim);
2413 			Int4 border1 = CmpLT(xyz1, Int4(0)) | CmpNLT(xyz1, dim);
2414 			xyz0 |= border0;
2415 			xyz1 |= border1;
2416 		}
2417 		else if(function.offset)
2418 		{
2419 			switch(addressingMode)
2420 			{
2421 			case ADDRESSING_SEAMLESS:
2422 				UNREACHABLE("addressingMode %d", int(addressingMode));  // Cube sampling doesn't support offset.
2423 			case ADDRESSING_MIRROR:
2424 			case ADDRESSING_MIRRORONCE:
2425 				// TODO: Implement ADDRESSING_MIRROR and ADDRESSING_MIRRORONCE.
2426 				// Fall through to Clamp.
2427 			case ADDRESSING_CLAMP:
2428 				xyz0 = Min(Max(xyz0, Int4(0)), maxXYZ);
2429 				xyz1 = Min(Max(xyz1, Int4(0)), maxXYZ);
2430 				break;
2431 			default:  // Wrap
2432 				xyz0 = mod(xyz0, dim);
2433 				xyz1 = mod(xyz1, dim);
2434 				break;
2435 			}
2436 		}
2437 		else if(state.textureFilter != FILTER_POINT)
2438 		{
2439 			switch(addressingMode)
2440 			{
2441 			case ADDRESSING_SEAMLESS:
2442 				break;
2443 			case ADDRESSING_MIRROR:
2444 			case ADDRESSING_MIRRORONCE:
2445 			case ADDRESSING_CLAMP:
2446 				xyz0 = Max(xyz0, Int4(0));
2447 				xyz1 = Min(xyz1, maxXYZ);
2448 				break;
2449 			default:  // Wrap
2450 				{
2451 					Int4 under = CmpLT(xyz0, Int4(0));
2452 					xyz0 = (under & maxXYZ) | (~under & xyz0);  // xyz < 0 ? dim - 1 : xyz   // TODO: IfThenElse()
2453 
2454 					Int4 nover = CmpLT(xyz1, dim);
2455 					xyz1 = nover & xyz1;  // xyz >= dim ? 0 : xyz
2456 				}
2457 				break;
2458 			}
2459 		}
2460 	}
2461 }
2462 
computeLayerIndex(const Float4 & a,Pointer<Byte> & mipmap,SamplerFunction function)2463 Int4 SamplerCore::computeLayerIndex(const Float4 &a, Pointer<Byte> &mipmap, SamplerFunction function)
2464 {
2465 	if(!state.isArrayed())
2466 	{
2467 		return {};
2468 	}
2469 
2470 	Int4 layers = *Pointer<Int4>(mipmap + OFFSET(Mipmap, depth), 16);
2471 	Int4 maxLayer = layers - Int4(1);
2472 
2473 	if(function == Fetch)  // Unnormalized coordinates
2474 	{
2475 		Int4 xyz = As<Int4>(a);
2476 		Int4 xyz0 = Min(Max(xyz, Int4(0)), maxLayer);
2477 
2478 		// VK_EXT_image_robustness requires checking for out-of-bounds accesses.
2479 		// TODO(b/162327166): Only perform bounds checks when VK_EXT_image_robustness is enabled.
2480 		// If the above clamping altered the result, the access is out-of-bounds.
2481 		// In that case set the coordinate to -1 to perform texel replacement later.
2482 		Int4 outOfBounds = CmpNEQ(xyz, xyz0);
2483 		xyz0 |= outOfBounds;
2484 
2485 		return xyz0;
2486 	}
2487 	else
2488 	{
2489 		return Min(Max(RoundInt(a), Int4(0)), maxLayer);
2490 	}
2491 }
2492 
sRGBtoLinearFF00(Short4 & c)2493 void SamplerCore::sRGBtoLinearFF00(Short4 &c)
2494 {
2495 	c = As<UShort4>(c) >> 8;
2496 
2497 	Pointer<Byte> LUT = Pointer<Byte>(constants + OFFSET(Constants, sRGBtoLinearFF_FF00));
2498 
2499 	c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 0))), 0);
2500 	c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 1))), 1);
2501 	c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 2))), 2);
2502 	c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 3))), 3);
2503 }
2504 
hasFloatTexture() const2505 bool SamplerCore::hasFloatTexture() const
2506 {
2507 	return state.textureFormat.isFloatFormat();
2508 }
2509 
hasUnnormalizedIntegerTexture() const2510 bool SamplerCore::hasUnnormalizedIntegerTexture() const
2511 {
2512 	return state.textureFormat.isUnnormalizedInteger();
2513 }
2514 
hasUnsignedTextureComponent(int component) const2515 bool SamplerCore::hasUnsignedTextureComponent(int component) const
2516 {
2517 	return state.textureFormat.isUnsignedComponent(component);
2518 }
2519 
textureComponentCount() const2520 int SamplerCore::textureComponentCount() const
2521 {
2522 	return state.textureFormat.componentCount();
2523 }
2524 
has16bitPackedTextureFormat() const2525 bool SamplerCore::has16bitPackedTextureFormat() const
2526 {
2527 	return state.textureFormat.has16bitPackedTextureFormat();
2528 }
2529 
has8bitTextureComponents() const2530 bool SamplerCore::has8bitTextureComponents() const
2531 {
2532 	return state.textureFormat.has8bitTextureComponents();
2533 }
2534 
has16bitTextureComponents() const2535 bool SamplerCore::has16bitTextureComponents() const
2536 {
2537 	return state.textureFormat.has16bitTextureComponents();
2538 }
2539 
has32bitIntegerTextureComponents() const2540 bool SamplerCore::has32bitIntegerTextureComponents() const
2541 {
2542 	return state.textureFormat.has32bitIntegerTextureComponents();
2543 }
2544 
isYcbcrFormat() const2545 bool SamplerCore::isYcbcrFormat() const
2546 {
2547 	return state.textureFormat.isYcbcrFormat();
2548 }
2549 
isRGBComponent(int component) const2550 bool SamplerCore::isRGBComponent(int component) const
2551 {
2552 	return state.textureFormat.isRGBComponent(component);
2553 }
2554 
borderModeActive() const2555 bool SamplerCore::borderModeActive() const
2556 {
2557 	return state.addressingModeU == ADDRESSING_BORDER ||
2558 	       state.addressingModeV == ADDRESSING_BORDER ||
2559 	       state.addressingModeW == ADDRESSING_BORDER;
2560 }
2561 
gatherSwizzle() const2562 VkComponentSwizzle SamplerCore::gatherSwizzle() const
2563 {
2564 	switch(state.gatherComponent)
2565 	{
2566 	case 0: return state.swizzle.r;
2567 	case 1: return state.swizzle.g;
2568 	case 2: return state.swizzle.b;
2569 	case 3: return state.swizzle.a;
2570 	default:
2571 		UNREACHABLE("Invalid component");
2572 		return VK_COMPONENT_SWIZZLE_R;
2573 	}
2574 }
2575 
getComponentScale() const2576 sw::float4 SamplerCore::getComponentScale() const
2577 {
2578 	// TODO(b/204709464): Unlike other formats, the fixed-point representation of the formats below are handled with bit extension.
2579 	// This special handling of such formats should be removed later.
2580 	switch(state.textureFormat)
2581 	{
2582 	case VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM:
2583 	case VK_FORMAT_G8_B8R8_2PLANE_420_UNORM:
2584 		return sw::float4(0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF);
2585 	default:
2586 		break;
2587 	};
2588 
2589 	const sw::float4 scale = state.textureFormat.getScale();
2590 	const sw::int4 bits = state.textureFormat.bitsPerComponent();
2591 	const sw::int4 shift = sw::int4(std::max(16 - bits.x, 0), std::max(16 - bits.y, 0), std::max(16 - bits.z, 0),
2592 	                                std::max(16 - bits.w, 0));
2593 
2594 	return sw::float4(static_cast<uint16_t>(scale.x) << shift.x,
2595 	                  static_cast<uint16_t>(scale.y) << shift.y,
2596 	                  static_cast<uint16_t>(scale.z) << shift.z,
2597 	                  static_cast<uint16_t>(scale.w) << shift.w);
2598 }
2599 
getGatherComponent() const2600 int SamplerCore::getGatherComponent() const
2601 {
2602 	VkComponentSwizzle swizzle = gatherSwizzle();
2603 
2604 	switch(swizzle)
2605 	{
2606 	default: UNSUPPORTED("VkComponentSwizzle %d", (int)swizzle); return 0;
2607 	case VK_COMPONENT_SWIZZLE_R:
2608 	case VK_COMPONENT_SWIZZLE_G:
2609 	case VK_COMPONENT_SWIZZLE_B:
2610 	case VK_COMPONENT_SWIZZLE_A:
2611 		// Normalize all components using the gather component scale.
2612 		return swizzle - VK_COMPONENT_SWIZZLE_R;
2613 	case VK_COMPONENT_SWIZZLE_ZERO:
2614 	case VK_COMPONENT_SWIZZLE_ONE:
2615 		// These cases are handled later.
2616 		return 0;
2617 	}
2618 
2619 	return 0;
2620 }
2621 
2622 }  // namespace sw
2623