1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
100 #include <linux/user_events.h>
101 #include <linux/iommu.h>
102
103 #include <asm/pgalloc.h>
104 #include <linux/uaccess.h>
105 #include <asm/mmu_context.h>
106 #include <asm/cacheflush.h>
107 #include <asm/tlbflush.h>
108
109 #include <trace/events/sched.h>
110
111 #define CREATE_TRACE_POINTS
112 #include <trace/events/task.h>
113
114 /*
115 * Minimum number of threads to boot the kernel
116 */
117 #define MIN_THREADS 20
118
119 /*
120 * Maximum number of threads
121 */
122 #define MAX_THREADS FUTEX_TID_MASK
123
124 /*
125 * Protected counters by write_lock_irq(&tasklist_lock)
126 */
127 unsigned long total_forks; /* Handle normal Linux uptimes. */
128 int nr_threads; /* The idle threads do not count.. */
129
130 static int max_threads; /* tunable limit on nr_threads */
131
132 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
133
134 static const char * const resident_page_types[] = {
135 NAMED_ARRAY_INDEX(MM_FILEPAGES),
136 NAMED_ARRAY_INDEX(MM_ANONPAGES),
137 NAMED_ARRAY_INDEX(MM_SWAPENTS),
138 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
139 };
140
141 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
142
143 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
144
145 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)146 int lockdep_tasklist_lock_is_held(void)
147 {
148 return lockdep_is_held(&tasklist_lock);
149 }
150 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
151 #endif /* #ifdef CONFIG_PROVE_RCU */
152
nr_processes(void)153 int nr_processes(void)
154 {
155 int cpu;
156 int total = 0;
157
158 for_each_possible_cpu(cpu)
159 total += per_cpu(process_counts, cpu);
160
161 return total;
162 }
163
arch_release_task_struct(struct task_struct * tsk)164 void __weak arch_release_task_struct(struct task_struct *tsk)
165 {
166 }
167
168 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
169 static struct kmem_cache *task_struct_cachep;
170
alloc_task_struct_node(int node)171 static inline struct task_struct *alloc_task_struct_node(int node)
172 {
173 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
174 }
175
free_task_struct(struct task_struct * tsk)176 static inline void free_task_struct(struct task_struct *tsk)
177 {
178 kmem_cache_free(task_struct_cachep, tsk);
179 }
180 #endif
181
182 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
183
184 /*
185 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
186 * kmemcache based allocator.
187 */
188 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
189
190 # ifdef CONFIG_VMAP_STACK
191 /*
192 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
193 * flush. Try to minimize the number of calls by caching stacks.
194 */
195 #define NR_CACHED_STACKS 2
196 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
197
198 struct vm_stack {
199 struct rcu_head rcu;
200 struct vm_struct *stack_vm_area;
201 };
202
try_release_thread_stack_to_cache(struct vm_struct * vm)203 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
204 {
205 unsigned int i;
206
207 for (i = 0; i < NR_CACHED_STACKS; i++) {
208 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
209 continue;
210 return true;
211 }
212 return false;
213 }
214
thread_stack_free_rcu(struct rcu_head * rh)215 static void thread_stack_free_rcu(struct rcu_head *rh)
216 {
217 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
218
219 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
220 return;
221
222 vfree(vm_stack);
223 }
224
thread_stack_delayed_free(struct task_struct * tsk)225 static void thread_stack_delayed_free(struct task_struct *tsk)
226 {
227 struct vm_stack *vm_stack = tsk->stack;
228
229 vm_stack->stack_vm_area = tsk->stack_vm_area;
230 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
231 }
232
free_vm_stack_cache(unsigned int cpu)233 static int free_vm_stack_cache(unsigned int cpu)
234 {
235 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
236 int i;
237
238 for (i = 0; i < NR_CACHED_STACKS; i++) {
239 struct vm_struct *vm_stack = cached_vm_stacks[i];
240
241 if (!vm_stack)
242 continue;
243
244 vfree(vm_stack->addr);
245 cached_vm_stacks[i] = NULL;
246 }
247
248 return 0;
249 }
250
memcg_charge_kernel_stack(struct vm_struct * vm)251 static int memcg_charge_kernel_stack(struct vm_struct *vm)
252 {
253 int i;
254 int ret;
255 int nr_charged = 0;
256
257 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
258
259 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
260 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
261 if (ret)
262 goto err;
263 nr_charged++;
264 }
265 return 0;
266 err:
267 for (i = 0; i < nr_charged; i++)
268 memcg_kmem_uncharge_page(vm->pages[i], 0);
269 return ret;
270 }
271
alloc_thread_stack_node(struct task_struct * tsk,int node)272 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
273 {
274 struct vm_struct *vm;
275 void *stack;
276 int i;
277
278 for (i = 0; i < NR_CACHED_STACKS; i++) {
279 struct vm_struct *s;
280
281 s = this_cpu_xchg(cached_stacks[i], NULL);
282
283 if (!s)
284 continue;
285
286 /* Reset stack metadata. */
287 kasan_unpoison_range(s->addr, THREAD_SIZE);
288
289 stack = kasan_reset_tag(s->addr);
290
291 /* Clear stale pointers from reused stack. */
292 memset(stack, 0, THREAD_SIZE);
293
294 if (memcg_charge_kernel_stack(s)) {
295 vfree(s->addr);
296 return -ENOMEM;
297 }
298
299 tsk->stack_vm_area = s;
300 tsk->stack = stack;
301 return 0;
302 }
303
304 /*
305 * Allocated stacks are cached and later reused by new threads,
306 * so memcg accounting is performed manually on assigning/releasing
307 * stacks to tasks. Drop __GFP_ACCOUNT.
308 */
309 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
310 VMALLOC_START, VMALLOC_END,
311 THREADINFO_GFP & ~__GFP_ACCOUNT,
312 PAGE_KERNEL,
313 0, node, __builtin_return_address(0));
314 if (!stack)
315 return -ENOMEM;
316
317 vm = find_vm_area(stack);
318 if (memcg_charge_kernel_stack(vm)) {
319 vfree(stack);
320 return -ENOMEM;
321 }
322 /*
323 * We can't call find_vm_area() in interrupt context, and
324 * free_thread_stack() can be called in interrupt context,
325 * so cache the vm_struct.
326 */
327 tsk->stack_vm_area = vm;
328 stack = kasan_reset_tag(stack);
329 tsk->stack = stack;
330 return 0;
331 }
332
free_thread_stack(struct task_struct * tsk)333 static void free_thread_stack(struct task_struct *tsk)
334 {
335 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
336 thread_stack_delayed_free(tsk);
337
338 tsk->stack = NULL;
339 tsk->stack_vm_area = NULL;
340 }
341
342 # else /* !CONFIG_VMAP_STACK */
343
thread_stack_free_rcu(struct rcu_head * rh)344 static void thread_stack_free_rcu(struct rcu_head *rh)
345 {
346 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
347 }
348
thread_stack_delayed_free(struct task_struct * tsk)349 static void thread_stack_delayed_free(struct task_struct *tsk)
350 {
351 struct rcu_head *rh = tsk->stack;
352
353 call_rcu(rh, thread_stack_free_rcu);
354 }
355
alloc_thread_stack_node(struct task_struct * tsk,int node)356 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
357 {
358 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
359 THREAD_SIZE_ORDER);
360
361 if (likely(page)) {
362 tsk->stack = kasan_reset_tag(page_address(page));
363 return 0;
364 }
365 return -ENOMEM;
366 }
367
free_thread_stack(struct task_struct * tsk)368 static void free_thread_stack(struct task_struct *tsk)
369 {
370 thread_stack_delayed_free(tsk);
371 tsk->stack = NULL;
372 }
373
374 # endif /* CONFIG_VMAP_STACK */
375 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
376
377 static struct kmem_cache *thread_stack_cache;
378
thread_stack_free_rcu(struct rcu_head * rh)379 static void thread_stack_free_rcu(struct rcu_head *rh)
380 {
381 kmem_cache_free(thread_stack_cache, rh);
382 }
383
thread_stack_delayed_free(struct task_struct * tsk)384 static void thread_stack_delayed_free(struct task_struct *tsk)
385 {
386 struct rcu_head *rh = tsk->stack;
387
388 call_rcu(rh, thread_stack_free_rcu);
389 }
390
alloc_thread_stack_node(struct task_struct * tsk,int node)391 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
392 {
393 unsigned long *stack;
394 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
395 stack = kasan_reset_tag(stack);
396 tsk->stack = stack;
397 return stack ? 0 : -ENOMEM;
398 }
399
free_thread_stack(struct task_struct * tsk)400 static void free_thread_stack(struct task_struct *tsk)
401 {
402 thread_stack_delayed_free(tsk);
403 tsk->stack = NULL;
404 }
405
thread_stack_cache_init(void)406 void thread_stack_cache_init(void)
407 {
408 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
409 THREAD_SIZE, THREAD_SIZE, 0, 0,
410 THREAD_SIZE, NULL);
411 BUG_ON(thread_stack_cache == NULL);
412 }
413
414 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
415 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
416
alloc_thread_stack_node(struct task_struct * tsk,int node)417 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
418 {
419 unsigned long *stack;
420
421 stack = arch_alloc_thread_stack_node(tsk, node);
422 tsk->stack = stack;
423 return stack ? 0 : -ENOMEM;
424 }
425
free_thread_stack(struct task_struct * tsk)426 static void free_thread_stack(struct task_struct *tsk)
427 {
428 arch_free_thread_stack(tsk);
429 tsk->stack = NULL;
430 }
431
432 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
433
434 /* SLAB cache for signal_struct structures (tsk->signal) */
435 static struct kmem_cache *signal_cachep;
436
437 /* SLAB cache for sighand_struct structures (tsk->sighand) */
438 struct kmem_cache *sighand_cachep;
439
440 /* SLAB cache for files_struct structures (tsk->files) */
441 struct kmem_cache *files_cachep;
442
443 /* SLAB cache for fs_struct structures (tsk->fs) */
444 struct kmem_cache *fs_cachep;
445
446 /* SLAB cache for vm_area_struct structures */
447 static struct kmem_cache *vm_area_cachep;
448
449 /* SLAB cache for mm_struct structures (tsk->mm) */
450 static struct kmem_cache *mm_cachep;
451
452 #ifdef CONFIG_PER_VMA_LOCK
453
454 /* SLAB cache for vm_area_struct.lock */
455 static struct kmem_cache *vma_lock_cachep;
456
vma_lock_alloc(struct vm_area_struct * vma)457 static bool vma_lock_alloc(struct vm_area_struct *vma)
458 {
459 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
460 if (!vma->vm_lock)
461 return false;
462
463 init_rwsem(&vma->vm_lock->lock);
464 vma->vm_lock_seq = -1;
465
466 return true;
467 }
468
vma_lock_free(struct vm_area_struct * vma)469 static inline void vma_lock_free(struct vm_area_struct *vma)
470 {
471 kmem_cache_free(vma_lock_cachep, vma->vm_lock);
472 }
473
474 #else /* CONFIG_PER_VMA_LOCK */
475
vma_lock_alloc(struct vm_area_struct * vma)476 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
vma_lock_free(struct vm_area_struct * vma)477 static inline void vma_lock_free(struct vm_area_struct *vma) {}
478
479 #endif /* CONFIG_PER_VMA_LOCK */
480
vm_area_alloc(struct mm_struct * mm)481 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
482 {
483 struct vm_area_struct *vma;
484
485 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
486 if (!vma)
487 return NULL;
488
489 vma_init(vma, mm);
490 if (!vma_lock_alloc(vma)) {
491 kmem_cache_free(vm_area_cachep, vma);
492 return NULL;
493 }
494
495 return vma;
496 }
497
vm_area_dup(struct vm_area_struct * orig)498 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
499 {
500 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
501
502 if (!new)
503 return NULL;
504
505 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
506 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
507 /*
508 * orig->shared.rb may be modified concurrently, but the clone
509 * will be reinitialized.
510 */
511 data_race(memcpy(new, orig, sizeof(*new)));
512 if (!vma_lock_alloc(new)) {
513 kmem_cache_free(vm_area_cachep, new);
514 return NULL;
515 }
516 INIT_LIST_HEAD(&new->anon_vma_chain);
517 vma_numab_state_init(new);
518 dup_anon_vma_name(orig, new);
519
520 return new;
521 }
522
__vm_area_free(struct vm_area_struct * vma)523 void __vm_area_free(struct vm_area_struct *vma)
524 {
525 vma_numab_state_free(vma);
526 free_anon_vma_name(vma);
527 vma_lock_free(vma);
528 kmem_cache_free(vm_area_cachep, vma);
529 }
530
531 #ifdef CONFIG_PER_VMA_LOCK
vm_area_free_rcu_cb(struct rcu_head * head)532 static void vm_area_free_rcu_cb(struct rcu_head *head)
533 {
534 struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
535 vm_rcu);
536
537 /* The vma should not be locked while being destroyed. */
538 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
539 __vm_area_free(vma);
540 }
541 #endif
542
vm_area_free(struct vm_area_struct * vma)543 void vm_area_free(struct vm_area_struct *vma)
544 {
545 #ifdef CONFIG_PER_VMA_LOCK
546 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
547 #else
548 __vm_area_free(vma);
549 #endif
550 }
551
account_kernel_stack(struct task_struct * tsk,int account)552 static void account_kernel_stack(struct task_struct *tsk, int account)
553 {
554 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
555 struct vm_struct *vm = task_stack_vm_area(tsk);
556 int i;
557
558 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
559 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
560 account * (PAGE_SIZE / 1024));
561 } else {
562 void *stack = task_stack_page(tsk);
563
564 /* All stack pages are in the same node. */
565 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
566 account * (THREAD_SIZE / 1024));
567 }
568 }
569
exit_task_stack_account(struct task_struct * tsk)570 void exit_task_stack_account(struct task_struct *tsk)
571 {
572 account_kernel_stack(tsk, -1);
573
574 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
575 struct vm_struct *vm;
576 int i;
577
578 vm = task_stack_vm_area(tsk);
579 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
580 memcg_kmem_uncharge_page(vm->pages[i], 0);
581 }
582 }
583
release_task_stack(struct task_struct * tsk)584 static void release_task_stack(struct task_struct *tsk)
585 {
586 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
587 return; /* Better to leak the stack than to free prematurely */
588
589 free_thread_stack(tsk);
590 }
591
592 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)593 void put_task_stack(struct task_struct *tsk)
594 {
595 if (refcount_dec_and_test(&tsk->stack_refcount))
596 release_task_stack(tsk);
597 }
598 #endif
599
free_task(struct task_struct * tsk)600 void free_task(struct task_struct *tsk)
601 {
602 #ifdef CONFIG_SECCOMP
603 WARN_ON_ONCE(tsk->seccomp.filter);
604 #endif
605 release_user_cpus_ptr(tsk);
606 scs_release(tsk);
607
608 #ifndef CONFIG_THREAD_INFO_IN_TASK
609 /*
610 * The task is finally done with both the stack and thread_info,
611 * so free both.
612 */
613 release_task_stack(tsk);
614 #else
615 /*
616 * If the task had a separate stack allocation, it should be gone
617 * by now.
618 */
619 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
620 #endif
621 rt_mutex_debug_task_free(tsk);
622 ftrace_graph_exit_task(tsk);
623 arch_release_task_struct(tsk);
624 if (tsk->flags & PF_KTHREAD)
625 free_kthread_struct(tsk);
626 bpf_task_storage_free(tsk);
627 free_task_struct(tsk);
628 }
629 EXPORT_SYMBOL(free_task);
630
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)631 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
632 {
633 struct file *exe_file;
634
635 exe_file = get_mm_exe_file(oldmm);
636 RCU_INIT_POINTER(mm->exe_file, exe_file);
637 /*
638 * We depend on the oldmm having properly denied write access to the
639 * exe_file already.
640 */
641 if (exe_file && deny_write_access(exe_file))
642 pr_warn_once("deny_write_access() failed in %s\n", __func__);
643 }
644
645 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)646 static __latent_entropy int dup_mmap(struct mm_struct *mm,
647 struct mm_struct *oldmm)
648 {
649 struct vm_area_struct *mpnt, *tmp;
650 int retval;
651 unsigned long charge = 0;
652 LIST_HEAD(uf);
653 VMA_ITERATOR(old_vmi, oldmm, 0);
654 VMA_ITERATOR(vmi, mm, 0);
655
656 uprobe_start_dup_mmap();
657 if (mmap_write_lock_killable(oldmm)) {
658 retval = -EINTR;
659 goto fail_uprobe_end;
660 }
661 flush_cache_dup_mm(oldmm);
662 uprobe_dup_mmap(oldmm, mm);
663 /*
664 * Not linked in yet - no deadlock potential:
665 */
666 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
667
668 /* No ordering required: file already has been exposed. */
669 dup_mm_exe_file(mm, oldmm);
670
671 mm->total_vm = oldmm->total_vm;
672 mm->data_vm = oldmm->data_vm;
673 mm->exec_vm = oldmm->exec_vm;
674 mm->stack_vm = oldmm->stack_vm;
675
676 retval = ksm_fork(mm, oldmm);
677 if (retval)
678 goto out;
679 khugepaged_fork(mm, oldmm);
680
681 retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
682 if (retval)
683 goto out;
684
685 mt_clear_in_rcu(vmi.mas.tree);
686 for_each_vma(old_vmi, mpnt) {
687 struct file *file;
688
689 vma_start_write(mpnt);
690 if (mpnt->vm_flags & VM_DONTCOPY) {
691 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
692 continue;
693 }
694 charge = 0;
695 /*
696 * Don't duplicate many vmas if we've been oom-killed (for
697 * example)
698 */
699 if (fatal_signal_pending(current)) {
700 retval = -EINTR;
701 goto loop_out;
702 }
703 if (mpnt->vm_flags & VM_ACCOUNT) {
704 unsigned long len = vma_pages(mpnt);
705
706 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
707 goto fail_nomem;
708 charge = len;
709 }
710 tmp = vm_area_dup(mpnt);
711 if (!tmp)
712 goto fail_nomem;
713 retval = vma_dup_policy(mpnt, tmp);
714 if (retval)
715 goto fail_nomem_policy;
716 tmp->vm_mm = mm;
717 retval = dup_userfaultfd(tmp, &uf);
718 if (retval)
719 goto fail_nomem_anon_vma_fork;
720 if (tmp->vm_flags & VM_WIPEONFORK) {
721 /*
722 * VM_WIPEONFORK gets a clean slate in the child.
723 * Don't prepare anon_vma until fault since we don't
724 * copy page for current vma.
725 */
726 tmp->anon_vma = NULL;
727 } else if (anon_vma_fork(tmp, mpnt))
728 goto fail_nomem_anon_vma_fork;
729 vm_flags_clear(tmp, VM_LOCKED_MASK);
730 file = tmp->vm_file;
731 if (file) {
732 struct address_space *mapping = file->f_mapping;
733
734 get_file(file);
735 i_mmap_lock_write(mapping);
736 if (tmp->vm_flags & VM_SHARED)
737 mapping_allow_writable(mapping);
738 flush_dcache_mmap_lock(mapping);
739 /* insert tmp into the share list, just after mpnt */
740 vma_interval_tree_insert_after(tmp, mpnt,
741 &mapping->i_mmap);
742 flush_dcache_mmap_unlock(mapping);
743 i_mmap_unlock_write(mapping);
744 }
745
746 /*
747 * Copy/update hugetlb private vma information.
748 */
749 if (is_vm_hugetlb_page(tmp))
750 hugetlb_dup_vma_private(tmp);
751
752 /* Link the vma into the MT */
753 if (vma_iter_bulk_store(&vmi, tmp))
754 goto fail_nomem_vmi_store;
755
756 mm->map_count++;
757 if (!(tmp->vm_flags & VM_WIPEONFORK))
758 retval = copy_page_range(tmp, mpnt);
759
760 if (tmp->vm_ops && tmp->vm_ops->open)
761 tmp->vm_ops->open(tmp);
762
763 if (retval)
764 goto loop_out;
765 }
766 /* a new mm has just been created */
767 retval = arch_dup_mmap(oldmm, mm);
768 loop_out:
769 vma_iter_free(&vmi);
770 if (!retval)
771 mt_set_in_rcu(vmi.mas.tree);
772 out:
773 mmap_write_unlock(mm);
774 flush_tlb_mm(oldmm);
775 mmap_write_unlock(oldmm);
776 dup_userfaultfd_complete(&uf);
777 fail_uprobe_end:
778 uprobe_end_dup_mmap();
779 return retval;
780
781 fail_nomem_vmi_store:
782 unlink_anon_vmas(tmp);
783 fail_nomem_anon_vma_fork:
784 mpol_put(vma_policy(tmp));
785 fail_nomem_policy:
786 vm_area_free(tmp);
787 fail_nomem:
788 retval = -ENOMEM;
789 vm_unacct_memory(charge);
790 goto loop_out;
791 }
792
mm_alloc_pgd(struct mm_struct * mm)793 static inline int mm_alloc_pgd(struct mm_struct *mm)
794 {
795 mm->pgd = pgd_alloc(mm);
796 if (unlikely(!mm->pgd))
797 return -ENOMEM;
798 return 0;
799 }
800
mm_free_pgd(struct mm_struct * mm)801 static inline void mm_free_pgd(struct mm_struct *mm)
802 {
803 pgd_free(mm, mm->pgd);
804 }
805 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)806 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
807 {
808 mmap_write_lock(oldmm);
809 dup_mm_exe_file(mm, oldmm);
810 mmap_write_unlock(oldmm);
811 return 0;
812 }
813 #define mm_alloc_pgd(mm) (0)
814 #define mm_free_pgd(mm)
815 #endif /* CONFIG_MMU */
816
check_mm(struct mm_struct * mm)817 static void check_mm(struct mm_struct *mm)
818 {
819 int i;
820
821 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
822 "Please make sure 'struct resident_page_types[]' is updated as well");
823
824 for (i = 0; i < NR_MM_COUNTERS; i++) {
825 long x = percpu_counter_sum(&mm->rss_stat[i]);
826
827 if (unlikely(x))
828 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
829 mm, resident_page_types[i], x);
830 }
831
832 if (mm_pgtables_bytes(mm))
833 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
834 mm_pgtables_bytes(mm));
835
836 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
837 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
838 #endif
839 }
840
841 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
842 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
843
do_check_lazy_tlb(void * arg)844 static void do_check_lazy_tlb(void *arg)
845 {
846 struct mm_struct *mm = arg;
847
848 WARN_ON_ONCE(current->active_mm == mm);
849 }
850
do_shoot_lazy_tlb(void * arg)851 static void do_shoot_lazy_tlb(void *arg)
852 {
853 struct mm_struct *mm = arg;
854
855 if (current->active_mm == mm) {
856 WARN_ON_ONCE(current->mm);
857 current->active_mm = &init_mm;
858 switch_mm(mm, &init_mm, current);
859 }
860 }
861
cleanup_lazy_tlbs(struct mm_struct * mm)862 static void cleanup_lazy_tlbs(struct mm_struct *mm)
863 {
864 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
865 /*
866 * In this case, lazy tlb mms are refounted and would not reach
867 * __mmdrop until all CPUs have switched away and mmdrop()ed.
868 */
869 return;
870 }
871
872 /*
873 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
874 * requires lazy mm users to switch to another mm when the refcount
875 * drops to zero, before the mm is freed. This requires IPIs here to
876 * switch kernel threads to init_mm.
877 *
878 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
879 * switch with the final userspace teardown TLB flush which leaves the
880 * mm lazy on this CPU but no others, reducing the need for additional
881 * IPIs here. There are cases where a final IPI is still required here,
882 * such as the final mmdrop being performed on a different CPU than the
883 * one exiting, or kernel threads using the mm when userspace exits.
884 *
885 * IPI overheads have not found to be expensive, but they could be
886 * reduced in a number of possible ways, for example (roughly
887 * increasing order of complexity):
888 * - The last lazy reference created by exit_mm() could instead switch
889 * to init_mm, however it's probable this will run on the same CPU
890 * immediately afterwards, so this may not reduce IPIs much.
891 * - A batch of mms requiring IPIs could be gathered and freed at once.
892 * - CPUs store active_mm where it can be remotely checked without a
893 * lock, to filter out false-positives in the cpumask.
894 * - After mm_users or mm_count reaches zero, switching away from the
895 * mm could clear mm_cpumask to reduce some IPIs, perhaps together
896 * with some batching or delaying of the final IPIs.
897 * - A delayed freeing and RCU-like quiescing sequence based on mm
898 * switching to avoid IPIs completely.
899 */
900 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
901 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
902 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
903 }
904
905 /*
906 * Called when the last reference to the mm
907 * is dropped: either by a lazy thread or by
908 * mmput. Free the page directory and the mm.
909 */
__mmdrop(struct mm_struct * mm)910 void __mmdrop(struct mm_struct *mm)
911 {
912 BUG_ON(mm == &init_mm);
913 WARN_ON_ONCE(mm == current->mm);
914
915 /* Ensure no CPUs are using this as their lazy tlb mm */
916 cleanup_lazy_tlbs(mm);
917
918 WARN_ON_ONCE(mm == current->active_mm);
919 mm_free_pgd(mm);
920 destroy_context(mm);
921 mmu_notifier_subscriptions_destroy(mm);
922 check_mm(mm);
923 put_user_ns(mm->user_ns);
924 mm_pasid_drop(mm);
925 mm_destroy_cid(mm);
926 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
927
928 free_mm(mm);
929 }
930 EXPORT_SYMBOL_GPL(__mmdrop);
931
mmdrop_async_fn(struct work_struct * work)932 static void mmdrop_async_fn(struct work_struct *work)
933 {
934 struct mm_struct *mm;
935
936 mm = container_of(work, struct mm_struct, async_put_work);
937 __mmdrop(mm);
938 }
939
mmdrop_async(struct mm_struct * mm)940 static void mmdrop_async(struct mm_struct *mm)
941 {
942 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
943 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
944 schedule_work(&mm->async_put_work);
945 }
946 }
947
free_signal_struct(struct signal_struct * sig)948 static inline void free_signal_struct(struct signal_struct *sig)
949 {
950 taskstats_tgid_free(sig);
951 sched_autogroup_exit(sig);
952 /*
953 * __mmdrop is not safe to call from softirq context on x86 due to
954 * pgd_dtor so postpone it to the async context
955 */
956 if (sig->oom_mm)
957 mmdrop_async(sig->oom_mm);
958 kmem_cache_free(signal_cachep, sig);
959 }
960
put_signal_struct(struct signal_struct * sig)961 static inline void put_signal_struct(struct signal_struct *sig)
962 {
963 if (refcount_dec_and_test(&sig->sigcnt))
964 free_signal_struct(sig);
965 }
966
__put_task_struct(struct task_struct * tsk)967 void __put_task_struct(struct task_struct *tsk)
968 {
969 WARN_ON(!tsk->exit_state);
970 WARN_ON(refcount_read(&tsk->usage));
971 WARN_ON(tsk == current);
972
973 io_uring_free(tsk);
974 cgroup_free(tsk);
975 task_numa_free(tsk, true);
976 security_task_free(tsk);
977 exit_creds(tsk);
978 delayacct_tsk_free(tsk);
979 put_signal_struct(tsk->signal);
980 sched_core_free(tsk);
981 free_task(tsk);
982 }
983 EXPORT_SYMBOL_GPL(__put_task_struct);
984
__put_task_struct_rcu_cb(struct rcu_head * rhp)985 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
986 {
987 struct task_struct *task = container_of(rhp, struct task_struct, rcu);
988
989 __put_task_struct(task);
990 }
991 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
992
arch_task_cache_init(void)993 void __init __weak arch_task_cache_init(void) { }
994
995 /*
996 * set_max_threads
997 */
set_max_threads(unsigned int max_threads_suggested)998 static void set_max_threads(unsigned int max_threads_suggested)
999 {
1000 u64 threads;
1001 unsigned long nr_pages = totalram_pages();
1002
1003 /*
1004 * The number of threads shall be limited such that the thread
1005 * structures may only consume a small part of the available memory.
1006 */
1007 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1008 threads = MAX_THREADS;
1009 else
1010 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1011 (u64) THREAD_SIZE * 8UL);
1012
1013 if (threads > max_threads_suggested)
1014 threads = max_threads_suggested;
1015
1016 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1017 }
1018
1019 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1020 /* Initialized by the architecture: */
1021 int arch_task_struct_size __read_mostly;
1022 #endif
1023
1024 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
task_struct_whitelist(unsigned long * offset,unsigned long * size)1025 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1026 {
1027 /* Fetch thread_struct whitelist for the architecture. */
1028 arch_thread_struct_whitelist(offset, size);
1029
1030 /*
1031 * Handle zero-sized whitelist or empty thread_struct, otherwise
1032 * adjust offset to position of thread_struct in task_struct.
1033 */
1034 if (unlikely(*size == 0))
1035 *offset = 0;
1036 else
1037 *offset += offsetof(struct task_struct, thread);
1038 }
1039 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
1040
fork_init(void)1041 void __init fork_init(void)
1042 {
1043 int i;
1044 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1045 #ifndef ARCH_MIN_TASKALIGN
1046 #define ARCH_MIN_TASKALIGN 0
1047 #endif
1048 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1049 unsigned long useroffset, usersize;
1050
1051 /* create a slab on which task_structs can be allocated */
1052 task_struct_whitelist(&useroffset, &usersize);
1053 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1054 arch_task_struct_size, align,
1055 SLAB_PANIC|SLAB_ACCOUNT,
1056 useroffset, usersize, NULL);
1057 #endif
1058
1059 /* do the arch specific task caches init */
1060 arch_task_cache_init();
1061
1062 set_max_threads(MAX_THREADS);
1063
1064 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1065 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1066 init_task.signal->rlim[RLIMIT_SIGPENDING] =
1067 init_task.signal->rlim[RLIMIT_NPROC];
1068
1069 for (i = 0; i < UCOUNT_COUNTS; i++)
1070 init_user_ns.ucount_max[i] = max_threads/2;
1071
1072 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
1073 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
1074 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1075 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
1076
1077 #ifdef CONFIG_VMAP_STACK
1078 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1079 NULL, free_vm_stack_cache);
1080 #endif
1081
1082 scs_init();
1083
1084 lockdep_init_task(&init_task);
1085 uprobes_init();
1086 }
1087
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1088 int __weak arch_dup_task_struct(struct task_struct *dst,
1089 struct task_struct *src)
1090 {
1091 *dst = *src;
1092 return 0;
1093 }
1094
set_task_stack_end_magic(struct task_struct * tsk)1095 void set_task_stack_end_magic(struct task_struct *tsk)
1096 {
1097 unsigned long *stackend;
1098
1099 stackend = end_of_stack(tsk);
1100 *stackend = STACK_END_MAGIC; /* for overflow detection */
1101 }
1102
dup_task_struct(struct task_struct * orig,int node)1103 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1104 {
1105 struct task_struct *tsk;
1106 int err;
1107
1108 if (node == NUMA_NO_NODE)
1109 node = tsk_fork_get_node(orig);
1110 tsk = alloc_task_struct_node(node);
1111 if (!tsk)
1112 return NULL;
1113
1114 err = arch_dup_task_struct(tsk, orig);
1115 if (err)
1116 goto free_tsk;
1117
1118 #ifdef CONFIG_ACCESS_TOKENID
1119 tsk->token = orig->token;
1120 tsk->ftoken = 0;
1121 #endif
1122
1123 err = alloc_thread_stack_node(tsk, node);
1124 if (err)
1125 goto free_tsk;
1126
1127 #ifdef CONFIG_THREAD_INFO_IN_TASK
1128 refcount_set(&tsk->stack_refcount, 1);
1129 #endif
1130 account_kernel_stack(tsk, 1);
1131
1132 err = scs_prepare(tsk, node);
1133 if (err)
1134 goto free_stack;
1135
1136 #ifdef CONFIG_SECCOMP
1137 /*
1138 * We must handle setting up seccomp filters once we're under
1139 * the sighand lock in case orig has changed between now and
1140 * then. Until then, filter must be NULL to avoid messing up
1141 * the usage counts on the error path calling free_task.
1142 */
1143 tsk->seccomp.filter = NULL;
1144 #endif
1145
1146 setup_thread_stack(tsk, orig);
1147 clear_user_return_notifier(tsk);
1148 clear_tsk_need_resched(tsk);
1149 set_task_stack_end_magic(tsk);
1150 clear_syscall_work_syscall_user_dispatch(tsk);
1151
1152 #ifdef CONFIG_STACKPROTECTOR
1153 tsk->stack_canary = get_random_canary();
1154 #endif
1155 if (orig->cpus_ptr == &orig->cpus_mask)
1156 tsk->cpus_ptr = &tsk->cpus_mask;
1157 dup_user_cpus_ptr(tsk, orig, node);
1158
1159 /*
1160 * One for the user space visible state that goes away when reaped.
1161 * One for the scheduler.
1162 */
1163 refcount_set(&tsk->rcu_users, 2);
1164 /* One for the rcu users */
1165 refcount_set(&tsk->usage, 1);
1166 #ifdef CONFIG_BLK_DEV_IO_TRACE
1167 tsk->btrace_seq = 0;
1168 #endif
1169 tsk->splice_pipe = NULL;
1170 tsk->task_frag.page = NULL;
1171 tsk->wake_q.next = NULL;
1172 tsk->worker_private = NULL;
1173
1174 kcov_task_init(tsk);
1175 kmsan_task_create(tsk);
1176 kmap_local_fork(tsk);
1177
1178 #ifdef CONFIG_FAULT_INJECTION
1179 tsk->fail_nth = 0;
1180 #endif
1181
1182 #ifdef CONFIG_BLK_CGROUP
1183 tsk->throttle_disk = NULL;
1184 tsk->use_memdelay = 0;
1185 #endif
1186
1187 #ifdef CONFIG_IOMMU_SVA
1188 tsk->pasid_activated = 0;
1189 #endif
1190
1191 #ifdef CONFIG_MEMCG
1192 tsk->active_memcg = NULL;
1193 #endif
1194
1195 #ifdef CONFIG_CPU_SUP_INTEL
1196 tsk->reported_split_lock = 0;
1197 #endif
1198
1199 #ifdef CONFIG_SCHED_MM_CID
1200 tsk->mm_cid = -1;
1201 tsk->last_mm_cid = -1;
1202 tsk->mm_cid_active = 0;
1203 tsk->migrate_from_cpu = -1;
1204 #endif
1205 return tsk;
1206
1207 free_stack:
1208 exit_task_stack_account(tsk);
1209 free_thread_stack(tsk);
1210 free_tsk:
1211 free_task_struct(tsk);
1212 return NULL;
1213 }
1214
1215 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1216
1217 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1218
coredump_filter_setup(char * s)1219 static int __init coredump_filter_setup(char *s)
1220 {
1221 default_dump_filter =
1222 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1223 MMF_DUMP_FILTER_MASK;
1224 return 1;
1225 }
1226
1227 __setup("coredump_filter=", coredump_filter_setup);
1228
1229 #include <linux/init_task.h>
1230
mm_init_aio(struct mm_struct * mm)1231 static void mm_init_aio(struct mm_struct *mm)
1232 {
1233 #ifdef CONFIG_AIO
1234 spin_lock_init(&mm->ioctx_lock);
1235 mm->ioctx_table = NULL;
1236 #endif
1237 }
1238
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)1239 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1240 struct task_struct *p)
1241 {
1242 #ifdef CONFIG_MEMCG
1243 if (mm->owner == p)
1244 WRITE_ONCE(mm->owner, NULL);
1245 #endif
1246 }
1247
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1248 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1249 {
1250 #ifdef CONFIG_MEMCG
1251 mm->owner = p;
1252 #endif
1253 }
1254
mm_init_uprobes_state(struct mm_struct * mm)1255 static void mm_init_uprobes_state(struct mm_struct *mm)
1256 {
1257 #ifdef CONFIG_UPROBES
1258 mm->uprobes_state.xol_area = NULL;
1259 #endif
1260 }
1261
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1262 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1263 struct user_namespace *user_ns)
1264 {
1265 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1266 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1267 atomic_set(&mm->mm_users, 1);
1268 atomic_set(&mm->mm_count, 1);
1269 seqcount_init(&mm->write_protect_seq);
1270 mmap_init_lock(mm);
1271 INIT_LIST_HEAD(&mm->mmlist);
1272 #ifdef CONFIG_PER_VMA_LOCK
1273 mm->mm_lock_seq = 0;
1274 #endif
1275 mm_pgtables_bytes_init(mm);
1276 mm->map_count = 0;
1277 mm->locked_vm = 0;
1278 atomic64_set(&mm->pinned_vm, 0);
1279 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1280 spin_lock_init(&mm->page_table_lock);
1281 spin_lock_init(&mm->arg_lock);
1282 mm_init_cpumask(mm);
1283 mm_init_aio(mm);
1284 mm_init_owner(mm, p);
1285 mm_pasid_init(mm);
1286 RCU_INIT_POINTER(mm->exe_file, NULL);
1287 mmu_notifier_subscriptions_init(mm);
1288 init_tlb_flush_pending(mm);
1289 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1290 mm->pmd_huge_pte = NULL;
1291 #endif
1292 mm_init_uprobes_state(mm);
1293 hugetlb_count_init(mm);
1294
1295 if (current->mm) {
1296 mm->flags = mmf_init_flags(current->mm->flags);
1297 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1298 } else {
1299 mm->flags = default_dump_filter;
1300 mm->def_flags = 0;
1301 }
1302
1303 if (mm_alloc_pgd(mm))
1304 goto fail_nopgd;
1305
1306 if (init_new_context(p, mm))
1307 goto fail_nocontext;
1308
1309 if (mm_alloc_cid(mm))
1310 goto fail_cid;
1311
1312 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1313 NR_MM_COUNTERS))
1314 goto fail_pcpu;
1315
1316 mm->user_ns = get_user_ns(user_ns);
1317 lru_gen_init_mm(mm);
1318 return mm;
1319
1320 fail_pcpu:
1321 mm_destroy_cid(mm);
1322 fail_cid:
1323 destroy_context(mm);
1324 fail_nocontext:
1325 mm_free_pgd(mm);
1326 fail_nopgd:
1327 free_mm(mm);
1328 return NULL;
1329 }
1330
1331 /*
1332 * Allocate and initialize an mm_struct.
1333 */
mm_alloc(void)1334 struct mm_struct *mm_alloc(void)
1335 {
1336 struct mm_struct *mm;
1337
1338 mm = allocate_mm();
1339 if (!mm)
1340 return NULL;
1341
1342 memset(mm, 0, sizeof(*mm));
1343 return mm_init(mm, current, current_user_ns());
1344 }
1345
__mmput(struct mm_struct * mm)1346 static inline void __mmput(struct mm_struct *mm)
1347 {
1348 VM_BUG_ON(atomic_read(&mm->mm_users));
1349
1350 uprobe_clear_state(mm);
1351 exit_aio(mm);
1352 ksm_exit(mm);
1353 khugepaged_exit(mm); /* must run before exit_mmap */
1354 exit_mmap(mm);
1355 mm_put_huge_zero_page(mm);
1356 set_mm_exe_file(mm, NULL);
1357 if (!list_empty(&mm->mmlist)) {
1358 spin_lock(&mmlist_lock);
1359 list_del(&mm->mmlist);
1360 spin_unlock(&mmlist_lock);
1361 }
1362 if (mm->binfmt)
1363 module_put(mm->binfmt->module);
1364 lru_gen_del_mm(mm);
1365 mmdrop(mm);
1366 }
1367
1368 /*
1369 * Decrement the use count and release all resources for an mm.
1370 */
mmput(struct mm_struct * mm)1371 void mmput(struct mm_struct *mm)
1372 {
1373 might_sleep();
1374
1375 if (atomic_dec_and_test(&mm->mm_users))
1376 __mmput(mm);
1377 }
1378 EXPORT_SYMBOL_GPL(mmput);
1379
1380 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1381 static void mmput_async_fn(struct work_struct *work)
1382 {
1383 struct mm_struct *mm = container_of(work, struct mm_struct,
1384 async_put_work);
1385
1386 __mmput(mm);
1387 }
1388
mmput_async(struct mm_struct * mm)1389 void mmput_async(struct mm_struct *mm)
1390 {
1391 if (atomic_dec_and_test(&mm->mm_users)) {
1392 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1393 schedule_work(&mm->async_put_work);
1394 }
1395 }
1396 EXPORT_SYMBOL_GPL(mmput_async);
1397 #endif
1398
1399 /**
1400 * set_mm_exe_file - change a reference to the mm's executable file
1401 *
1402 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1403 *
1404 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1405 * invocations: in mmput() nobody alive left, in execve it happens before
1406 * the new mm is made visible to anyone.
1407 *
1408 * Can only fail if new_exe_file != NULL.
1409 */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1410 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1411 {
1412 struct file *old_exe_file;
1413
1414 /*
1415 * It is safe to dereference the exe_file without RCU as
1416 * this function is only called if nobody else can access
1417 * this mm -- see comment above for justification.
1418 */
1419 old_exe_file = rcu_dereference_raw(mm->exe_file);
1420
1421 if (new_exe_file) {
1422 /*
1423 * We expect the caller (i.e., sys_execve) to already denied
1424 * write access, so this is unlikely to fail.
1425 */
1426 if (unlikely(deny_write_access(new_exe_file)))
1427 return -EACCES;
1428 get_file(new_exe_file);
1429 }
1430 rcu_assign_pointer(mm->exe_file, new_exe_file);
1431 if (old_exe_file) {
1432 allow_write_access(old_exe_file);
1433 fput(old_exe_file);
1434 }
1435 return 0;
1436 }
1437
1438 /**
1439 * replace_mm_exe_file - replace a reference to the mm's executable file
1440 *
1441 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1442 *
1443 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1444 */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1445 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1446 {
1447 struct vm_area_struct *vma;
1448 struct file *old_exe_file;
1449 int ret = 0;
1450
1451 /* Forbid mm->exe_file change if old file still mapped. */
1452 old_exe_file = get_mm_exe_file(mm);
1453 if (old_exe_file) {
1454 VMA_ITERATOR(vmi, mm, 0);
1455 mmap_read_lock(mm);
1456 for_each_vma(vmi, vma) {
1457 if (!vma->vm_file)
1458 continue;
1459 if (path_equal(&vma->vm_file->f_path,
1460 &old_exe_file->f_path)) {
1461 ret = -EBUSY;
1462 break;
1463 }
1464 }
1465 mmap_read_unlock(mm);
1466 fput(old_exe_file);
1467 if (ret)
1468 return ret;
1469 }
1470
1471 ret = deny_write_access(new_exe_file);
1472 if (ret)
1473 return -EACCES;
1474 get_file(new_exe_file);
1475
1476 /* set the new file */
1477 mmap_write_lock(mm);
1478 old_exe_file = rcu_dereference_raw(mm->exe_file);
1479 rcu_assign_pointer(mm->exe_file, new_exe_file);
1480 mmap_write_unlock(mm);
1481
1482 if (old_exe_file) {
1483 allow_write_access(old_exe_file);
1484 fput(old_exe_file);
1485 }
1486 return 0;
1487 }
1488
1489 /**
1490 * get_mm_exe_file - acquire a reference to the mm's executable file
1491 *
1492 * Returns %NULL if mm has no associated executable file.
1493 * User must release file via fput().
1494 */
get_mm_exe_file(struct mm_struct * mm)1495 struct file *get_mm_exe_file(struct mm_struct *mm)
1496 {
1497 struct file *exe_file;
1498
1499 rcu_read_lock();
1500 exe_file = rcu_dereference(mm->exe_file);
1501 if (exe_file && !get_file_rcu(exe_file))
1502 exe_file = NULL;
1503 rcu_read_unlock();
1504 return exe_file;
1505 }
1506
1507 /**
1508 * get_task_exe_file - acquire a reference to the task's executable file
1509 *
1510 * Returns %NULL if task's mm (if any) has no associated executable file or
1511 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1512 * User must release file via fput().
1513 */
get_task_exe_file(struct task_struct * task)1514 struct file *get_task_exe_file(struct task_struct *task)
1515 {
1516 struct file *exe_file = NULL;
1517 struct mm_struct *mm;
1518
1519 task_lock(task);
1520 mm = task->mm;
1521 if (mm) {
1522 if (!(task->flags & PF_KTHREAD))
1523 exe_file = get_mm_exe_file(mm);
1524 }
1525 task_unlock(task);
1526 return exe_file;
1527 }
1528
1529 /**
1530 * get_task_mm - acquire a reference to the task's mm
1531 *
1532 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1533 * this kernel workthread has transiently adopted a user mm with use_mm,
1534 * to do its AIO) is not set and if so returns a reference to it, after
1535 * bumping up the use count. User must release the mm via mmput()
1536 * after use. Typically used by /proc and ptrace.
1537 */
get_task_mm(struct task_struct * task)1538 struct mm_struct *get_task_mm(struct task_struct *task)
1539 {
1540 struct mm_struct *mm;
1541
1542 task_lock(task);
1543 mm = task->mm;
1544 if (mm) {
1545 if (task->flags & PF_KTHREAD)
1546 mm = NULL;
1547 else
1548 mmget(mm);
1549 }
1550 task_unlock(task);
1551 return mm;
1552 }
1553 EXPORT_SYMBOL_GPL(get_task_mm);
1554
mm_access(struct task_struct * task,unsigned int mode)1555 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1556 {
1557 struct mm_struct *mm;
1558 int err;
1559
1560 err = down_read_killable(&task->signal->exec_update_lock);
1561 if (err)
1562 return ERR_PTR(err);
1563
1564 mm = get_task_mm(task);
1565 if (mm && mm != current->mm &&
1566 !ptrace_may_access(task, mode)) {
1567 mmput(mm);
1568 mm = ERR_PTR(-EACCES);
1569 }
1570 up_read(&task->signal->exec_update_lock);
1571
1572 return mm;
1573 }
1574
complete_vfork_done(struct task_struct * tsk)1575 static void complete_vfork_done(struct task_struct *tsk)
1576 {
1577 struct completion *vfork;
1578
1579 task_lock(tsk);
1580 vfork = tsk->vfork_done;
1581 if (likely(vfork)) {
1582 tsk->vfork_done = NULL;
1583 complete(vfork);
1584 }
1585 task_unlock(tsk);
1586 }
1587
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1588 static int wait_for_vfork_done(struct task_struct *child,
1589 struct completion *vfork)
1590 {
1591 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1592 int killed;
1593
1594 cgroup_enter_frozen();
1595 killed = wait_for_completion_state(vfork, state);
1596 cgroup_leave_frozen(false);
1597
1598 if (killed) {
1599 task_lock(child);
1600 child->vfork_done = NULL;
1601 task_unlock(child);
1602 }
1603
1604 put_task_struct(child);
1605 return killed;
1606 }
1607
1608 /* Please note the differences between mmput and mm_release.
1609 * mmput is called whenever we stop holding onto a mm_struct,
1610 * error success whatever.
1611 *
1612 * mm_release is called after a mm_struct has been removed
1613 * from the current process.
1614 *
1615 * This difference is important for error handling, when we
1616 * only half set up a mm_struct for a new process and need to restore
1617 * the old one. Because we mmput the new mm_struct before
1618 * restoring the old one. . .
1619 * Eric Biederman 10 January 1998
1620 */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1621 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1622 {
1623 uprobe_free_utask(tsk);
1624
1625 /* Get rid of any cached register state */
1626 deactivate_mm(tsk, mm);
1627
1628 /*
1629 * Signal userspace if we're not exiting with a core dump
1630 * because we want to leave the value intact for debugging
1631 * purposes.
1632 */
1633 if (tsk->clear_child_tid) {
1634 if (atomic_read(&mm->mm_users) > 1) {
1635 /*
1636 * We don't check the error code - if userspace has
1637 * not set up a proper pointer then tough luck.
1638 */
1639 put_user(0, tsk->clear_child_tid);
1640 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1641 1, NULL, NULL, 0, 0);
1642 }
1643 tsk->clear_child_tid = NULL;
1644 }
1645
1646 /*
1647 * All done, finally we can wake up parent and return this mm to him.
1648 * Also kthread_stop() uses this completion for synchronization.
1649 */
1650 if (tsk->vfork_done)
1651 complete_vfork_done(tsk);
1652 }
1653
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1654 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1655 {
1656 futex_exit_release(tsk);
1657 mm_release(tsk, mm);
1658 }
1659
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1660 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1661 {
1662 futex_exec_release(tsk);
1663 mm_release(tsk, mm);
1664 }
1665
1666 /**
1667 * dup_mm() - duplicates an existing mm structure
1668 * @tsk: the task_struct with which the new mm will be associated.
1669 * @oldmm: the mm to duplicate.
1670 *
1671 * Allocates a new mm structure and duplicates the provided @oldmm structure
1672 * content into it.
1673 *
1674 * Return: the duplicated mm or NULL on failure.
1675 */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1676 static struct mm_struct *dup_mm(struct task_struct *tsk,
1677 struct mm_struct *oldmm)
1678 {
1679 struct mm_struct *mm;
1680 int err;
1681
1682 mm = allocate_mm();
1683 if (!mm)
1684 goto fail_nomem;
1685
1686 memcpy(mm, oldmm, sizeof(*mm));
1687
1688 if (!mm_init(mm, tsk, mm->user_ns))
1689 goto fail_nomem;
1690
1691 err = dup_mmap(mm, oldmm);
1692 if (err)
1693 goto free_pt;
1694
1695 mm->hiwater_rss = get_mm_rss(mm);
1696 mm->hiwater_vm = mm->total_vm;
1697
1698 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1699 goto free_pt;
1700
1701 return mm;
1702
1703 free_pt:
1704 /* don't put binfmt in mmput, we haven't got module yet */
1705 mm->binfmt = NULL;
1706 mm_init_owner(mm, NULL);
1707 mmput(mm);
1708
1709 fail_nomem:
1710 return NULL;
1711 }
1712
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1713 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1714 {
1715 struct mm_struct *mm, *oldmm;
1716
1717 tsk->min_flt = tsk->maj_flt = 0;
1718 tsk->nvcsw = tsk->nivcsw = 0;
1719 #ifdef CONFIG_DETECT_HUNG_TASK
1720 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1721 tsk->last_switch_time = 0;
1722 #endif
1723
1724 tsk->mm = NULL;
1725 tsk->active_mm = NULL;
1726
1727 /*
1728 * Are we cloning a kernel thread?
1729 *
1730 * We need to steal a active VM for that..
1731 */
1732 oldmm = current->mm;
1733 if (!oldmm)
1734 return 0;
1735
1736 if (clone_flags & CLONE_VM) {
1737 mmget(oldmm);
1738 mm = oldmm;
1739 } else {
1740 mm = dup_mm(tsk, current->mm);
1741 if (!mm)
1742 return -ENOMEM;
1743 }
1744
1745 tsk->mm = mm;
1746 tsk->active_mm = mm;
1747 sched_mm_cid_fork(tsk);
1748 return 0;
1749 }
1750
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1751 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1752 {
1753 struct fs_struct *fs = current->fs;
1754 if (clone_flags & CLONE_FS) {
1755 /* tsk->fs is already what we want */
1756 spin_lock(&fs->lock);
1757 if (fs->in_exec) {
1758 spin_unlock(&fs->lock);
1759 return -EAGAIN;
1760 }
1761 fs->users++;
1762 spin_unlock(&fs->lock);
1763 return 0;
1764 }
1765 tsk->fs = copy_fs_struct(fs);
1766 if (!tsk->fs)
1767 return -ENOMEM;
1768 return 0;
1769 }
1770
copy_files(unsigned long clone_flags,struct task_struct * tsk,int no_files)1771 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1772 int no_files)
1773 {
1774 struct files_struct *oldf, *newf;
1775 int error = 0;
1776
1777 /*
1778 * A background process may not have any files ...
1779 */
1780 oldf = current->files;
1781 if (!oldf)
1782 goto out;
1783
1784 if (no_files) {
1785 tsk->files = NULL;
1786 goto out;
1787 }
1788
1789 if (clone_flags & CLONE_FILES) {
1790 atomic_inc(&oldf->count);
1791 goto out;
1792 }
1793
1794 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1795 if (!newf)
1796 goto out;
1797
1798 tsk->files = newf;
1799 error = 0;
1800 out:
1801 return error;
1802 }
1803
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1804 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1805 {
1806 struct sighand_struct *sig;
1807
1808 if (clone_flags & CLONE_SIGHAND) {
1809 refcount_inc(¤t->sighand->count);
1810 return 0;
1811 }
1812 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1813 RCU_INIT_POINTER(tsk->sighand, sig);
1814 if (!sig)
1815 return -ENOMEM;
1816
1817 refcount_set(&sig->count, 1);
1818 spin_lock_irq(¤t->sighand->siglock);
1819 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1820 spin_unlock_irq(¤t->sighand->siglock);
1821
1822 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1823 if (clone_flags & CLONE_CLEAR_SIGHAND)
1824 flush_signal_handlers(tsk, 0);
1825
1826 return 0;
1827 }
1828
__cleanup_sighand(struct sighand_struct * sighand)1829 void __cleanup_sighand(struct sighand_struct *sighand)
1830 {
1831 if (refcount_dec_and_test(&sighand->count)) {
1832 signalfd_cleanup(sighand);
1833 /*
1834 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1835 * without an RCU grace period, see __lock_task_sighand().
1836 */
1837 kmem_cache_free(sighand_cachep, sighand);
1838 }
1839 }
1840
1841 /*
1842 * Initialize POSIX timer handling for a thread group.
1843 */
posix_cpu_timers_init_group(struct signal_struct * sig)1844 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1845 {
1846 struct posix_cputimers *pct = &sig->posix_cputimers;
1847 unsigned long cpu_limit;
1848
1849 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1850 posix_cputimers_group_init(pct, cpu_limit);
1851 }
1852
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1853 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1854 {
1855 struct signal_struct *sig;
1856
1857 if (clone_flags & CLONE_THREAD)
1858 return 0;
1859
1860 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1861 tsk->signal = sig;
1862 if (!sig)
1863 return -ENOMEM;
1864
1865 sig->nr_threads = 1;
1866 sig->quick_threads = 1;
1867 atomic_set(&sig->live, 1);
1868 refcount_set(&sig->sigcnt, 1);
1869
1870 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1871 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1872 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1873
1874 init_waitqueue_head(&sig->wait_chldexit);
1875 sig->curr_target = tsk;
1876 init_sigpending(&sig->shared_pending);
1877 INIT_HLIST_HEAD(&sig->multiprocess);
1878 seqlock_init(&sig->stats_lock);
1879 prev_cputime_init(&sig->prev_cputime);
1880
1881 #ifdef CONFIG_POSIX_TIMERS
1882 INIT_LIST_HEAD(&sig->posix_timers);
1883 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1884 sig->real_timer.function = it_real_fn;
1885 #endif
1886
1887 task_lock(current->group_leader);
1888 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1889 task_unlock(current->group_leader);
1890
1891 posix_cpu_timers_init_group(sig);
1892
1893 tty_audit_fork(sig);
1894 sched_autogroup_fork(sig);
1895
1896 sig->oom_score_adj = current->signal->oom_score_adj;
1897 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1898
1899 mutex_init(&sig->cred_guard_mutex);
1900 init_rwsem(&sig->exec_update_lock);
1901
1902 return 0;
1903 }
1904
copy_seccomp(struct task_struct * p)1905 static void copy_seccomp(struct task_struct *p)
1906 {
1907 #ifdef CONFIG_SECCOMP
1908 /*
1909 * Must be called with sighand->lock held, which is common to
1910 * all threads in the group. Holding cred_guard_mutex is not
1911 * needed because this new task is not yet running and cannot
1912 * be racing exec.
1913 */
1914 assert_spin_locked(¤t->sighand->siglock);
1915
1916 /* Ref-count the new filter user, and assign it. */
1917 get_seccomp_filter(current);
1918 p->seccomp = current->seccomp;
1919
1920 /*
1921 * Explicitly enable no_new_privs here in case it got set
1922 * between the task_struct being duplicated and holding the
1923 * sighand lock. The seccomp state and nnp must be in sync.
1924 */
1925 if (task_no_new_privs(current))
1926 task_set_no_new_privs(p);
1927
1928 /*
1929 * If the parent gained a seccomp mode after copying thread
1930 * flags and between before we held the sighand lock, we have
1931 * to manually enable the seccomp thread flag here.
1932 */
1933 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1934 set_task_syscall_work(p, SECCOMP);
1935 #endif
1936 }
1937
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1938 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1939 {
1940 current->clear_child_tid = tidptr;
1941
1942 return task_pid_vnr(current);
1943 }
1944
rt_mutex_init_task(struct task_struct * p)1945 static void rt_mutex_init_task(struct task_struct *p)
1946 {
1947 raw_spin_lock_init(&p->pi_lock);
1948 #ifdef CONFIG_RT_MUTEXES
1949 p->pi_waiters = RB_ROOT_CACHED;
1950 p->pi_top_task = NULL;
1951 p->pi_blocked_on = NULL;
1952 #endif
1953 }
1954
init_task_pid_links(struct task_struct * task)1955 static inline void init_task_pid_links(struct task_struct *task)
1956 {
1957 enum pid_type type;
1958
1959 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1960 INIT_HLIST_NODE(&task->pid_links[type]);
1961 }
1962
1963 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1964 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1965 {
1966 if (type == PIDTYPE_PID)
1967 task->thread_pid = pid;
1968 else
1969 task->signal->pids[type] = pid;
1970 }
1971
rcu_copy_process(struct task_struct * p)1972 static inline void rcu_copy_process(struct task_struct *p)
1973 {
1974 #ifdef CONFIG_PREEMPT_RCU
1975 p->rcu_read_lock_nesting = 0;
1976 p->rcu_read_unlock_special.s = 0;
1977 p->rcu_blocked_node = NULL;
1978 INIT_LIST_HEAD(&p->rcu_node_entry);
1979 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1980 #ifdef CONFIG_TASKS_RCU
1981 p->rcu_tasks_holdout = false;
1982 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1983 p->rcu_tasks_idle_cpu = -1;
1984 #endif /* #ifdef CONFIG_TASKS_RCU */
1985 #ifdef CONFIG_TASKS_TRACE_RCU
1986 p->trc_reader_nesting = 0;
1987 p->trc_reader_special.s = 0;
1988 INIT_LIST_HEAD(&p->trc_holdout_list);
1989 INIT_LIST_HEAD(&p->trc_blkd_node);
1990 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1991 }
1992
pidfd_pid(const struct file * file)1993 struct pid *pidfd_pid(const struct file *file)
1994 {
1995 if (file->f_op == &pidfd_fops)
1996 return file->private_data;
1997
1998 return ERR_PTR(-EBADF);
1999 }
2000
pidfd_release(struct inode * inode,struct file * file)2001 static int pidfd_release(struct inode *inode, struct file *file)
2002 {
2003 struct pid *pid = file->private_data;
2004
2005 file->private_data = NULL;
2006 put_pid(pid);
2007 return 0;
2008 }
2009
2010 #ifdef CONFIG_PROC_FS
2011 /**
2012 * pidfd_show_fdinfo - print information about a pidfd
2013 * @m: proc fdinfo file
2014 * @f: file referencing a pidfd
2015 *
2016 * Pid:
2017 * This function will print the pid that a given pidfd refers to in the
2018 * pid namespace of the procfs instance.
2019 * If the pid namespace of the process is not a descendant of the pid
2020 * namespace of the procfs instance 0 will be shown as its pid. This is
2021 * similar to calling getppid() on a process whose parent is outside of
2022 * its pid namespace.
2023 *
2024 * NSpid:
2025 * If pid namespaces are supported then this function will also print
2026 * the pid of a given pidfd refers to for all descendant pid namespaces
2027 * starting from the current pid namespace of the instance, i.e. the
2028 * Pid field and the first entry in the NSpid field will be identical.
2029 * If the pid namespace of the process is not a descendant of the pid
2030 * namespace of the procfs instance 0 will be shown as its first NSpid
2031 * entry and no others will be shown.
2032 * Note that this differs from the Pid and NSpid fields in
2033 * /proc/<pid>/status where Pid and NSpid are always shown relative to
2034 * the pid namespace of the procfs instance. The difference becomes
2035 * obvious when sending around a pidfd between pid namespaces from a
2036 * different branch of the tree, i.e. where no ancestral relation is
2037 * present between the pid namespaces:
2038 * - create two new pid namespaces ns1 and ns2 in the initial pid
2039 * namespace (also take care to create new mount namespaces in the
2040 * new pid namespace and mount procfs)
2041 * - create a process with a pidfd in ns1
2042 * - send pidfd from ns1 to ns2
2043 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
2044 * have exactly one entry, which is 0
2045 */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)2046 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
2047 {
2048 struct pid *pid = f->private_data;
2049 struct pid_namespace *ns;
2050 pid_t nr = -1;
2051
2052 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
2053 ns = proc_pid_ns(file_inode(m->file)->i_sb);
2054 nr = pid_nr_ns(pid, ns);
2055 }
2056
2057 seq_put_decimal_ll(m, "Pid:\t", nr);
2058
2059 #ifdef CONFIG_PID_NS
2060 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
2061 if (nr > 0) {
2062 int i;
2063
2064 /* If nr is non-zero it means that 'pid' is valid and that
2065 * ns, i.e. the pid namespace associated with the procfs
2066 * instance, is in the pid namespace hierarchy of pid.
2067 * Start at one below the already printed level.
2068 */
2069 for (i = ns->level + 1; i <= pid->level; i++)
2070 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
2071 }
2072 #endif
2073 seq_putc(m, '\n');
2074 }
2075 #endif
2076
2077 /*
2078 * Poll support for process exit notification.
2079 */
pidfd_poll(struct file * file,struct poll_table_struct * pts)2080 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
2081 {
2082 struct pid *pid = file->private_data;
2083 __poll_t poll_flags = 0;
2084
2085 poll_wait(file, &pid->wait_pidfd, pts);
2086
2087 /*
2088 * Inform pollers only when the whole thread group exits.
2089 * If the thread group leader exits before all other threads in the
2090 * group, then poll(2) should block, similar to the wait(2) family.
2091 */
2092 if (thread_group_exited(pid))
2093 poll_flags = EPOLLIN | EPOLLRDNORM;
2094
2095 return poll_flags;
2096 }
2097
2098 const struct file_operations pidfd_fops = {
2099 .release = pidfd_release,
2100 .poll = pidfd_poll,
2101 #ifdef CONFIG_PROC_FS
2102 .show_fdinfo = pidfd_show_fdinfo,
2103 #endif
2104 };
2105
2106 /**
2107 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2108 * @pid: the struct pid for which to create a pidfd
2109 * @flags: flags of the new @pidfd
2110 * @pidfd: the pidfd to return
2111 *
2112 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2113 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2114
2115 * The helper doesn't perform checks on @pid which makes it useful for pidfds
2116 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2117 * pidfd file are prepared.
2118 *
2119 * If this function returns successfully the caller is responsible to either
2120 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2121 * order to install the pidfd into its file descriptor table or they must use
2122 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2123 * respectively.
2124 *
2125 * This function is useful when a pidfd must already be reserved but there
2126 * might still be points of failure afterwards and the caller wants to ensure
2127 * that no pidfd is leaked into its file descriptor table.
2128 *
2129 * Return: On success, a reserved pidfd is returned from the function and a new
2130 * pidfd file is returned in the last argument to the function. On
2131 * error, a negative error code is returned from the function and the
2132 * last argument remains unchanged.
2133 */
__pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2134 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2135 {
2136 int pidfd;
2137 struct file *pidfd_file;
2138
2139 if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
2140 return -EINVAL;
2141
2142 pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2143 if (pidfd < 0)
2144 return pidfd;
2145
2146 pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2147 flags | O_RDWR | O_CLOEXEC);
2148 if (IS_ERR(pidfd_file)) {
2149 put_unused_fd(pidfd);
2150 return PTR_ERR(pidfd_file);
2151 }
2152 get_pid(pid); /* held by pidfd_file now */
2153 *ret = pidfd_file;
2154 return pidfd;
2155 }
2156
2157 /**
2158 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2159 * @pid: the struct pid for which to create a pidfd
2160 * @flags: flags of the new @pidfd
2161 * @pidfd: the pidfd to return
2162 *
2163 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2164 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2165 *
2166 * The helper verifies that @pid is used as a thread group leader.
2167 *
2168 * If this function returns successfully the caller is responsible to either
2169 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2170 * order to install the pidfd into its file descriptor table or they must use
2171 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2172 * respectively.
2173 *
2174 * This function is useful when a pidfd must already be reserved but there
2175 * might still be points of failure afterwards and the caller wants to ensure
2176 * that no pidfd is leaked into its file descriptor table.
2177 *
2178 * Return: On success, a reserved pidfd is returned from the function and a new
2179 * pidfd file is returned in the last argument to the function. On
2180 * error, a negative error code is returned from the function and the
2181 * last argument remains unchanged.
2182 */
pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2183 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2184 {
2185 if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
2186 return -EINVAL;
2187
2188 return __pidfd_prepare(pid, flags, ret);
2189 }
2190
__delayed_free_task(struct rcu_head * rhp)2191 static void __delayed_free_task(struct rcu_head *rhp)
2192 {
2193 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2194
2195 free_task(tsk);
2196 }
2197
delayed_free_task(struct task_struct * tsk)2198 static __always_inline void delayed_free_task(struct task_struct *tsk)
2199 {
2200 if (IS_ENABLED(CONFIG_MEMCG))
2201 call_rcu(&tsk->rcu, __delayed_free_task);
2202 else
2203 free_task(tsk);
2204 }
2205
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)2206 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2207 {
2208 /* Skip if kernel thread */
2209 if (!tsk->mm)
2210 return;
2211
2212 /* Skip if spawning a thread or using vfork */
2213 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2214 return;
2215
2216 /* We need to synchronize with __set_oom_adj */
2217 mutex_lock(&oom_adj_mutex);
2218 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2219 /* Update the values in case they were changed after copy_signal */
2220 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2221 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2222 mutex_unlock(&oom_adj_mutex);
2223 }
2224
2225 #ifdef CONFIG_RV
rv_task_fork(struct task_struct * p)2226 static void rv_task_fork(struct task_struct *p)
2227 {
2228 int i;
2229
2230 for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2231 p->rv[i].da_mon.monitoring = false;
2232 }
2233 #else
2234 #define rv_task_fork(p) do {} while (0)
2235 #endif
2236
2237 /*
2238 * This creates a new process as a copy of the old one,
2239 * but does not actually start it yet.
2240 *
2241 * It copies the registers, and all the appropriate
2242 * parts of the process environment (as per the clone
2243 * flags). The actual kick-off is left to the caller.
2244 */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)2245 __latent_entropy struct task_struct *copy_process(
2246 struct pid *pid,
2247 int trace,
2248 int node,
2249 struct kernel_clone_args *args)
2250 {
2251 int pidfd = -1, retval;
2252 struct task_struct *p;
2253 struct multiprocess_signals delayed;
2254 struct file *pidfile = NULL;
2255 const u64 clone_flags = args->flags;
2256 struct nsproxy *nsp = current->nsproxy;
2257
2258 /*
2259 * Don't allow sharing the root directory with processes in a different
2260 * namespace
2261 */
2262 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2263 return ERR_PTR(-EINVAL);
2264
2265 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2266 return ERR_PTR(-EINVAL);
2267
2268 /*
2269 * Thread groups must share signals as well, and detached threads
2270 * can only be started up within the thread group.
2271 */
2272 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2273 return ERR_PTR(-EINVAL);
2274
2275 /*
2276 * Shared signal handlers imply shared VM. By way of the above,
2277 * thread groups also imply shared VM. Blocking this case allows
2278 * for various simplifications in other code.
2279 */
2280 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2281 return ERR_PTR(-EINVAL);
2282
2283 /*
2284 * Siblings of global init remain as zombies on exit since they are
2285 * not reaped by their parent (swapper). To solve this and to avoid
2286 * multi-rooted process trees, prevent global and container-inits
2287 * from creating siblings.
2288 */
2289 if ((clone_flags & CLONE_PARENT) &&
2290 current->signal->flags & SIGNAL_UNKILLABLE)
2291 return ERR_PTR(-EINVAL);
2292
2293 /*
2294 * If the new process will be in a different pid or user namespace
2295 * do not allow it to share a thread group with the forking task.
2296 */
2297 if (clone_flags & CLONE_THREAD) {
2298 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2299 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2300 return ERR_PTR(-EINVAL);
2301 }
2302
2303 if (clone_flags & CLONE_PIDFD) {
2304 /*
2305 * - CLONE_DETACHED is blocked so that we can potentially
2306 * reuse it later for CLONE_PIDFD.
2307 * - CLONE_THREAD is blocked until someone really needs it.
2308 */
2309 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2310 return ERR_PTR(-EINVAL);
2311 }
2312
2313 /*
2314 * Force any signals received before this point to be delivered
2315 * before the fork happens. Collect up signals sent to multiple
2316 * processes that happen during the fork and delay them so that
2317 * they appear to happen after the fork.
2318 */
2319 sigemptyset(&delayed.signal);
2320 INIT_HLIST_NODE(&delayed.node);
2321
2322 spin_lock_irq(¤t->sighand->siglock);
2323 if (!(clone_flags & CLONE_THREAD))
2324 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
2325 recalc_sigpending();
2326 spin_unlock_irq(¤t->sighand->siglock);
2327 retval = -ERESTARTNOINTR;
2328 if (task_sigpending(current))
2329 goto fork_out;
2330
2331 retval = -ENOMEM;
2332 p = dup_task_struct(current, node);
2333 if (!p)
2334 goto fork_out;
2335 p->flags &= ~PF_KTHREAD;
2336 if (args->kthread)
2337 p->flags |= PF_KTHREAD;
2338 if (args->user_worker) {
2339 /*
2340 * Mark us a user worker, and block any signal that isn't
2341 * fatal or STOP
2342 */
2343 p->flags |= PF_USER_WORKER;
2344 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2345 }
2346 if (args->io_thread)
2347 p->flags |= PF_IO_WORKER;
2348
2349 if (args->name)
2350 strscpy_pad(p->comm, args->name, sizeof(p->comm));
2351
2352 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2353 /*
2354 * Clear TID on mm_release()?
2355 */
2356 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2357
2358 ftrace_graph_init_task(p);
2359
2360 rt_mutex_init_task(p);
2361
2362 lockdep_assert_irqs_enabled();
2363 #ifdef CONFIG_PROVE_LOCKING
2364 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2365 #endif
2366 retval = copy_creds(p, clone_flags);
2367 if (retval < 0)
2368 goto bad_fork_free;
2369
2370 retval = -EAGAIN;
2371 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2372 if (p->real_cred->user != INIT_USER &&
2373 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2374 goto bad_fork_cleanup_count;
2375 }
2376 current->flags &= ~PF_NPROC_EXCEEDED;
2377
2378 /*
2379 * If multiple threads are within copy_process(), then this check
2380 * triggers too late. This doesn't hurt, the check is only there
2381 * to stop root fork bombs.
2382 */
2383 retval = -EAGAIN;
2384 if (data_race(nr_threads >= max_threads))
2385 goto bad_fork_cleanup_count;
2386
2387 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2388 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2389 p->flags |= PF_FORKNOEXEC;
2390 INIT_LIST_HEAD(&p->children);
2391 INIT_LIST_HEAD(&p->sibling);
2392 rcu_copy_process(p);
2393 p->vfork_done = NULL;
2394 spin_lock_init(&p->alloc_lock);
2395
2396 init_sigpending(&p->pending);
2397
2398 p->utime = p->stime = p->gtime = 0;
2399 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2400 p->utimescaled = p->stimescaled = 0;
2401 #endif
2402 prev_cputime_init(&p->prev_cputime);
2403
2404 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2405 seqcount_init(&p->vtime.seqcount);
2406 p->vtime.starttime = 0;
2407 p->vtime.state = VTIME_INACTIVE;
2408 #endif
2409
2410 #ifdef CONFIG_IO_URING
2411 p->io_uring = NULL;
2412 #endif
2413
2414 #if defined(SPLIT_RSS_COUNTING)
2415 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2416 #endif
2417
2418 p->default_timer_slack_ns = current->timer_slack_ns;
2419
2420 #ifdef CONFIG_PSI
2421 p->psi_flags = 0;
2422 #endif
2423
2424 task_io_accounting_init(&p->ioac);
2425 acct_clear_integrals(p);
2426
2427 posix_cputimers_init(&p->posix_cputimers);
2428
2429 p->io_context = NULL;
2430 audit_set_context(p, NULL);
2431 cgroup_fork(p);
2432 if (args->kthread) {
2433 if (!set_kthread_struct(p))
2434 goto bad_fork_cleanup_delayacct;
2435 }
2436 #ifdef CONFIG_NUMA
2437 p->mempolicy = mpol_dup(p->mempolicy);
2438 if (IS_ERR(p->mempolicy)) {
2439 retval = PTR_ERR(p->mempolicy);
2440 p->mempolicy = NULL;
2441 goto bad_fork_cleanup_delayacct;
2442 }
2443 #endif
2444 #ifdef CONFIG_CPUSETS
2445 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2446 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2447 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2448 #endif
2449 #ifdef CONFIG_TRACE_IRQFLAGS
2450 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2451 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2452 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2453 p->softirqs_enabled = 1;
2454 p->softirq_context = 0;
2455 #endif
2456
2457 p->pagefault_disabled = 0;
2458
2459 #ifdef CONFIG_LOCKDEP
2460 lockdep_init_task(p);
2461 #endif
2462
2463 #ifdef CONFIG_DEBUG_MUTEXES
2464 p->blocked_on = NULL; /* not blocked yet */
2465 #endif
2466 #ifdef CONFIG_BCACHE
2467 p->sequential_io = 0;
2468 p->sequential_io_avg = 0;
2469 #endif
2470 #ifdef CONFIG_BPF_SYSCALL
2471 RCU_INIT_POINTER(p->bpf_storage, NULL);
2472 p->bpf_ctx = NULL;
2473 #endif
2474
2475 /* Perform scheduler related setup. Assign this task to a CPU. */
2476 retval = sched_fork(clone_flags, p);
2477 if (retval)
2478 goto bad_fork_cleanup_policy;
2479
2480 retval = perf_event_init_task(p, clone_flags);
2481 if (retval)
2482 goto bad_fork_cleanup_policy;
2483 retval = audit_alloc(p);
2484 if (retval)
2485 goto bad_fork_cleanup_perf;
2486 /* copy all the process information */
2487 shm_init_task(p);
2488 retval = security_task_alloc(p, clone_flags);
2489 if (retval)
2490 goto bad_fork_cleanup_audit;
2491 retval = copy_semundo(clone_flags, p);
2492 if (retval)
2493 goto bad_fork_cleanup_security;
2494 retval = copy_files(clone_flags, p, args->no_files);
2495 if (retval)
2496 goto bad_fork_cleanup_semundo;
2497 retval = copy_fs(clone_flags, p);
2498 if (retval)
2499 goto bad_fork_cleanup_files;
2500 retval = copy_sighand(clone_flags, p);
2501 if (retval)
2502 goto bad_fork_cleanup_fs;
2503 retval = copy_signal(clone_flags, p);
2504 if (retval)
2505 goto bad_fork_cleanup_sighand;
2506 retval = copy_mm(clone_flags, p);
2507 if (retval)
2508 goto bad_fork_cleanup_signal;
2509 retval = copy_namespaces(clone_flags, p);
2510 if (retval)
2511 goto bad_fork_cleanup_mm;
2512 retval = copy_io(clone_flags, p);
2513 if (retval)
2514 goto bad_fork_cleanup_namespaces;
2515 retval = copy_thread(p, args);
2516 if (retval)
2517 goto bad_fork_cleanup_io;
2518
2519 stackleak_task_init(p);
2520
2521 if (pid != &init_struct_pid) {
2522 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2523 args->set_tid_size);
2524 if (IS_ERR(pid)) {
2525 retval = PTR_ERR(pid);
2526 goto bad_fork_cleanup_thread;
2527 }
2528 }
2529
2530 /*
2531 * This has to happen after we've potentially unshared the file
2532 * descriptor table (so that the pidfd doesn't leak into the child
2533 * if the fd table isn't shared).
2534 */
2535 if (clone_flags & CLONE_PIDFD) {
2536 /* Note that no task has been attached to @pid yet. */
2537 retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
2538 if (retval < 0)
2539 goto bad_fork_free_pid;
2540 pidfd = retval;
2541
2542 retval = put_user(pidfd, args->pidfd);
2543 if (retval)
2544 goto bad_fork_put_pidfd;
2545 }
2546
2547 #ifdef CONFIG_BLOCK
2548 p->plug = NULL;
2549 #endif
2550 futex_init_task(p);
2551
2552 /*
2553 * sigaltstack should be cleared when sharing the same VM
2554 */
2555 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2556 sas_ss_reset(p);
2557
2558 /*
2559 * Syscall tracing and stepping should be turned off in the
2560 * child regardless of CLONE_PTRACE.
2561 */
2562 user_disable_single_step(p);
2563 clear_task_syscall_work(p, SYSCALL_TRACE);
2564 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2565 clear_task_syscall_work(p, SYSCALL_EMU);
2566 #endif
2567 clear_tsk_latency_tracing(p);
2568
2569 /* ok, now we should be set up.. */
2570 p->pid = pid_nr(pid);
2571 if (clone_flags & CLONE_THREAD) {
2572 p->group_leader = current->group_leader;
2573 p->tgid = current->tgid;
2574 } else {
2575 p->group_leader = p;
2576 p->tgid = p->pid;
2577 }
2578
2579 p->nr_dirtied = 0;
2580 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2581 p->dirty_paused_when = 0;
2582
2583 p->pdeath_signal = 0;
2584 INIT_LIST_HEAD(&p->thread_group);
2585 p->task_works = NULL;
2586 clear_posix_cputimers_work(p);
2587
2588 #ifdef CONFIG_KRETPROBES
2589 p->kretprobe_instances.first = NULL;
2590 #endif
2591 #ifdef CONFIG_RETHOOK
2592 p->rethooks.first = NULL;
2593 #endif
2594
2595 /*
2596 * Ensure that the cgroup subsystem policies allow the new process to be
2597 * forked. It should be noted that the new process's css_set can be changed
2598 * between here and cgroup_post_fork() if an organisation operation is in
2599 * progress.
2600 */
2601 retval = cgroup_can_fork(p, args);
2602 if (retval)
2603 goto bad_fork_put_pidfd;
2604
2605 /*
2606 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2607 * the new task on the correct runqueue. All this *before* the task
2608 * becomes visible.
2609 *
2610 * This isn't part of ->can_fork() because while the re-cloning is
2611 * cgroup specific, it unconditionally needs to place the task on a
2612 * runqueue.
2613 */
2614 sched_cgroup_fork(p, args);
2615
2616 /*
2617 * From this point on we must avoid any synchronous user-space
2618 * communication until we take the tasklist-lock. In particular, we do
2619 * not want user-space to be able to predict the process start-time by
2620 * stalling fork(2) after we recorded the start_time but before it is
2621 * visible to the system.
2622 */
2623
2624 p->start_time = ktime_get_ns();
2625 p->start_boottime = ktime_get_boottime_ns();
2626
2627 /*
2628 * Make it visible to the rest of the system, but dont wake it up yet.
2629 * Need tasklist lock for parent etc handling!
2630 */
2631 write_lock_irq(&tasklist_lock);
2632
2633 /* CLONE_PARENT re-uses the old parent */
2634 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2635 p->real_parent = current->real_parent;
2636 p->parent_exec_id = current->parent_exec_id;
2637 if (clone_flags & CLONE_THREAD)
2638 p->exit_signal = -1;
2639 else
2640 p->exit_signal = current->group_leader->exit_signal;
2641 } else {
2642 p->real_parent = current;
2643 p->parent_exec_id = current->self_exec_id;
2644 p->exit_signal = args->exit_signal;
2645 }
2646
2647 klp_copy_process(p);
2648
2649 sched_core_fork(p);
2650
2651 spin_lock(¤t->sighand->siglock);
2652
2653 rv_task_fork(p);
2654
2655 rseq_fork(p, clone_flags);
2656
2657 /* Don't start children in a dying pid namespace */
2658 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2659 retval = -ENOMEM;
2660 goto bad_fork_cancel_cgroup;
2661 }
2662
2663 /* Let kill terminate clone/fork in the middle */
2664 if (fatal_signal_pending(current)) {
2665 retval = -EINTR;
2666 goto bad_fork_cancel_cgroup;
2667 }
2668
2669 /* No more failure paths after this point. */
2670
2671 /*
2672 * Copy seccomp details explicitly here, in case they were changed
2673 * before holding sighand lock.
2674 */
2675 copy_seccomp(p);
2676
2677 init_task_pid_links(p);
2678 if (likely(p->pid)) {
2679 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2680
2681 init_task_pid(p, PIDTYPE_PID, pid);
2682 if (thread_group_leader(p)) {
2683 init_task_pid(p, PIDTYPE_TGID, pid);
2684 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2685 init_task_pid(p, PIDTYPE_SID, task_session(current));
2686
2687 if (is_child_reaper(pid)) {
2688 ns_of_pid(pid)->child_reaper = p;
2689 p->signal->flags |= SIGNAL_UNKILLABLE;
2690 }
2691 p->signal->shared_pending.signal = delayed.signal;
2692 p->signal->tty = tty_kref_get(current->signal->tty);
2693 /*
2694 * Inherit has_child_subreaper flag under the same
2695 * tasklist_lock with adding child to the process tree
2696 * for propagate_has_child_subreaper optimization.
2697 */
2698 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2699 p->real_parent->signal->is_child_subreaper;
2700 list_add_tail(&p->sibling, &p->real_parent->children);
2701 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2702 attach_pid(p, PIDTYPE_TGID);
2703 attach_pid(p, PIDTYPE_PGID);
2704 attach_pid(p, PIDTYPE_SID);
2705 __this_cpu_inc(process_counts);
2706 } else {
2707 current->signal->nr_threads++;
2708 current->signal->quick_threads++;
2709 atomic_inc(¤t->signal->live);
2710 refcount_inc(¤t->signal->sigcnt);
2711 task_join_group_stop(p);
2712 list_add_tail_rcu(&p->thread_group,
2713 &p->group_leader->thread_group);
2714 list_add_tail_rcu(&p->thread_node,
2715 &p->signal->thread_head);
2716 }
2717 attach_pid(p, PIDTYPE_PID);
2718 nr_threads++;
2719 }
2720 total_forks++;
2721 hlist_del_init(&delayed.node);
2722 spin_unlock(¤t->sighand->siglock);
2723 syscall_tracepoint_update(p);
2724 write_unlock_irq(&tasklist_lock);
2725
2726 if (pidfile)
2727 fd_install(pidfd, pidfile);
2728
2729 proc_fork_connector(p);
2730 sched_post_fork(p);
2731 cgroup_post_fork(p, args);
2732 perf_event_fork(p);
2733
2734 trace_task_newtask(p, clone_flags);
2735 uprobe_copy_process(p, clone_flags);
2736 user_events_fork(p, clone_flags);
2737
2738 copy_oom_score_adj(clone_flags, p);
2739
2740 return p;
2741
2742 bad_fork_cancel_cgroup:
2743 sched_core_free(p);
2744 spin_unlock(¤t->sighand->siglock);
2745 write_unlock_irq(&tasklist_lock);
2746 cgroup_cancel_fork(p, args);
2747 bad_fork_put_pidfd:
2748 if (clone_flags & CLONE_PIDFD) {
2749 fput(pidfile);
2750 put_unused_fd(pidfd);
2751 }
2752 bad_fork_free_pid:
2753 if (pid != &init_struct_pid)
2754 free_pid(pid);
2755 bad_fork_cleanup_thread:
2756 exit_thread(p);
2757 bad_fork_cleanup_io:
2758 if (p->io_context)
2759 exit_io_context(p);
2760 bad_fork_cleanup_namespaces:
2761 exit_task_namespaces(p);
2762 bad_fork_cleanup_mm:
2763 if (p->mm) {
2764 mm_clear_owner(p->mm, p);
2765 mmput(p->mm);
2766 }
2767 bad_fork_cleanup_signal:
2768 if (!(clone_flags & CLONE_THREAD))
2769 free_signal_struct(p->signal);
2770 bad_fork_cleanup_sighand:
2771 __cleanup_sighand(p->sighand);
2772 bad_fork_cleanup_fs:
2773 exit_fs(p); /* blocking */
2774 bad_fork_cleanup_files:
2775 exit_files(p); /* blocking */
2776 bad_fork_cleanup_semundo:
2777 exit_sem(p);
2778 bad_fork_cleanup_security:
2779 security_task_free(p);
2780 bad_fork_cleanup_audit:
2781 audit_free(p);
2782 bad_fork_cleanup_perf:
2783 perf_event_free_task(p);
2784 bad_fork_cleanup_policy:
2785 lockdep_free_task(p);
2786 #ifdef CONFIG_NUMA
2787 mpol_put(p->mempolicy);
2788 #endif
2789 bad_fork_cleanup_delayacct:
2790 delayacct_tsk_free(p);
2791 bad_fork_cleanup_count:
2792 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2793 exit_creds(p);
2794 bad_fork_free:
2795 WRITE_ONCE(p->__state, TASK_DEAD);
2796 exit_task_stack_account(p);
2797 put_task_stack(p);
2798 delayed_free_task(p);
2799 fork_out:
2800 spin_lock_irq(¤t->sighand->siglock);
2801 hlist_del_init(&delayed.node);
2802 spin_unlock_irq(¤t->sighand->siglock);
2803 return ERR_PTR(retval);
2804 }
2805
init_idle_pids(struct task_struct * idle)2806 static inline void init_idle_pids(struct task_struct *idle)
2807 {
2808 enum pid_type type;
2809
2810 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2811 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2812 init_task_pid(idle, type, &init_struct_pid);
2813 }
2814 }
2815
idle_dummy(void * dummy)2816 static int idle_dummy(void *dummy)
2817 {
2818 /* This function is never called */
2819 return 0;
2820 }
2821
fork_idle(int cpu)2822 struct task_struct * __init fork_idle(int cpu)
2823 {
2824 struct task_struct *task;
2825 struct kernel_clone_args args = {
2826 .flags = CLONE_VM,
2827 .fn = &idle_dummy,
2828 .fn_arg = NULL,
2829 .kthread = 1,
2830 .idle = 1,
2831 };
2832
2833 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2834 if (!IS_ERR(task)) {
2835 init_idle_pids(task);
2836 init_idle(task, cpu);
2837 }
2838
2839 return task;
2840 }
2841
2842 /*
2843 * This is like kernel_clone(), but shaved down and tailored to just
2844 * creating io_uring workers. It returns a created task, or an error pointer.
2845 * The returned task is inactive, and the caller must fire it up through
2846 * wake_up_new_task(p). All signals are blocked in the created task.
2847 */
create_io_thread(int (* fn)(void *),void * arg,int node)2848 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2849 {
2850 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2851 CLONE_IO;
2852 struct kernel_clone_args args = {
2853 .flags = ((lower_32_bits(flags) | CLONE_VM |
2854 CLONE_UNTRACED) & ~CSIGNAL),
2855 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2856 .fn = fn,
2857 .fn_arg = arg,
2858 .io_thread = 1,
2859 .user_worker = 1,
2860 };
2861
2862 return copy_process(NULL, 0, node, &args);
2863 }
2864
2865 /*
2866 * Ok, this is the main fork-routine.
2867 *
2868 * It copies the process, and if successful kick-starts
2869 * it and waits for it to finish using the VM if required.
2870 *
2871 * args->exit_signal is expected to be checked for sanity by the caller.
2872 */
kernel_clone(struct kernel_clone_args * args)2873 pid_t kernel_clone(struct kernel_clone_args *args)
2874 {
2875 u64 clone_flags = args->flags;
2876 struct completion vfork;
2877 struct pid *pid;
2878 struct task_struct *p;
2879 int trace = 0;
2880 pid_t nr;
2881
2882 /*
2883 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2884 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2885 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2886 * field in struct clone_args and it still doesn't make sense to have
2887 * them both point at the same memory location. Performing this check
2888 * here has the advantage that we don't need to have a separate helper
2889 * to check for legacy clone().
2890 */
2891 if ((args->flags & CLONE_PIDFD) &&
2892 (args->flags & CLONE_PARENT_SETTID) &&
2893 (args->pidfd == args->parent_tid))
2894 return -EINVAL;
2895
2896 /*
2897 * Determine whether and which event to report to ptracer. When
2898 * called from kernel_thread or CLONE_UNTRACED is explicitly
2899 * requested, no event is reported; otherwise, report if the event
2900 * for the type of forking is enabled.
2901 */
2902 if (!(clone_flags & CLONE_UNTRACED)) {
2903 if (clone_flags & CLONE_VFORK)
2904 trace = PTRACE_EVENT_VFORK;
2905 else if (args->exit_signal != SIGCHLD)
2906 trace = PTRACE_EVENT_CLONE;
2907 else
2908 trace = PTRACE_EVENT_FORK;
2909
2910 if (likely(!ptrace_event_enabled(current, trace)))
2911 trace = 0;
2912 }
2913
2914 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2915 add_latent_entropy();
2916
2917 if (IS_ERR(p))
2918 return PTR_ERR(p);
2919
2920 /*
2921 * Do this prior waking up the new thread - the thread pointer
2922 * might get invalid after that point, if the thread exits quickly.
2923 */
2924 trace_sched_process_fork(current, p);
2925
2926 pid = get_task_pid(p, PIDTYPE_PID);
2927 nr = pid_vnr(pid);
2928
2929 if (clone_flags & CLONE_PARENT_SETTID)
2930 put_user(nr, args->parent_tid);
2931
2932 if (clone_flags & CLONE_VFORK) {
2933 p->vfork_done = &vfork;
2934 init_completion(&vfork);
2935 get_task_struct(p);
2936 }
2937
2938 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2939 /* lock the task to synchronize with memcg migration */
2940 task_lock(p);
2941 lru_gen_add_mm(p->mm);
2942 task_unlock(p);
2943 }
2944
2945 wake_up_new_task(p);
2946
2947 /* forking complete and child started to run, tell ptracer */
2948 if (unlikely(trace))
2949 ptrace_event_pid(trace, pid);
2950
2951 if (clone_flags & CLONE_VFORK) {
2952 if (!wait_for_vfork_done(p, &vfork))
2953 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2954 }
2955
2956 put_pid(pid);
2957 return nr;
2958 }
2959
2960 /*
2961 * Create a kernel thread.
2962 */
kernel_thread(int (* fn)(void *),void * arg,const char * name,unsigned long flags)2963 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2964 unsigned long flags)
2965 {
2966 struct kernel_clone_args args = {
2967 .flags = ((lower_32_bits(flags) | CLONE_VM |
2968 CLONE_UNTRACED) & ~CSIGNAL),
2969 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2970 .fn = fn,
2971 .fn_arg = arg,
2972 .name = name,
2973 .kthread = 1,
2974 };
2975
2976 return kernel_clone(&args);
2977 }
2978
2979 /*
2980 * Create a user mode thread.
2981 */
user_mode_thread(int (* fn)(void *),void * arg,unsigned long flags)2982 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2983 {
2984 struct kernel_clone_args args = {
2985 .flags = ((lower_32_bits(flags) | CLONE_VM |
2986 CLONE_UNTRACED) & ~CSIGNAL),
2987 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2988 .fn = fn,
2989 .fn_arg = arg,
2990 };
2991
2992 return kernel_clone(&args);
2993 }
2994
2995 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2996 SYSCALL_DEFINE0(fork)
2997 {
2998 #ifdef CONFIG_MMU
2999 struct kernel_clone_args args = {
3000 .exit_signal = SIGCHLD,
3001 };
3002
3003 return kernel_clone(&args);
3004 #else
3005 /* can not support in nommu mode */
3006 return -EINVAL;
3007 #endif
3008 }
3009 #endif
3010
3011 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)3012 SYSCALL_DEFINE0(vfork)
3013 {
3014 struct kernel_clone_args args = {
3015 .flags = CLONE_VFORK | CLONE_VM,
3016 .exit_signal = SIGCHLD,
3017 };
3018
3019 return kernel_clone(&args);
3020 }
3021 #endif
3022
3023 #ifdef __ARCH_WANT_SYS_CLONE
3024 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)3025 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3026 int __user *, parent_tidptr,
3027 unsigned long, tls,
3028 int __user *, child_tidptr)
3029 #elif defined(CONFIG_CLONE_BACKWARDS2)
3030 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
3031 int __user *, parent_tidptr,
3032 int __user *, child_tidptr,
3033 unsigned long, tls)
3034 #elif defined(CONFIG_CLONE_BACKWARDS3)
3035 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
3036 int, stack_size,
3037 int __user *, parent_tidptr,
3038 int __user *, child_tidptr,
3039 unsigned long, tls)
3040 #else
3041 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3042 int __user *, parent_tidptr,
3043 int __user *, child_tidptr,
3044 unsigned long, tls)
3045 #endif
3046 {
3047 struct kernel_clone_args args = {
3048 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
3049 .pidfd = parent_tidptr,
3050 .child_tid = child_tidptr,
3051 .parent_tid = parent_tidptr,
3052 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
3053 .stack = newsp,
3054 .tls = tls,
3055 };
3056
3057 return kernel_clone(&args);
3058 }
3059 #endif
3060
3061 #ifdef __ARCH_WANT_SYS_CLONE3
3062
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)3063 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
3064 struct clone_args __user *uargs,
3065 size_t usize)
3066 {
3067 int err;
3068 struct clone_args args;
3069 pid_t *kset_tid = kargs->set_tid;
3070
3071 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
3072 CLONE_ARGS_SIZE_VER0);
3073 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
3074 CLONE_ARGS_SIZE_VER1);
3075 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
3076 CLONE_ARGS_SIZE_VER2);
3077 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
3078
3079 if (unlikely(usize > PAGE_SIZE))
3080 return -E2BIG;
3081 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
3082 return -EINVAL;
3083
3084 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
3085 if (err)
3086 return err;
3087
3088 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
3089 return -EINVAL;
3090
3091 if (unlikely(!args.set_tid && args.set_tid_size > 0))
3092 return -EINVAL;
3093
3094 if (unlikely(args.set_tid && args.set_tid_size == 0))
3095 return -EINVAL;
3096
3097 /*
3098 * Verify that higher 32bits of exit_signal are unset and that
3099 * it is a valid signal
3100 */
3101 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3102 !valid_signal(args.exit_signal)))
3103 return -EINVAL;
3104
3105 if ((args.flags & CLONE_INTO_CGROUP) &&
3106 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3107 return -EINVAL;
3108
3109 *kargs = (struct kernel_clone_args){
3110 .flags = args.flags,
3111 .pidfd = u64_to_user_ptr(args.pidfd),
3112 .child_tid = u64_to_user_ptr(args.child_tid),
3113 .parent_tid = u64_to_user_ptr(args.parent_tid),
3114 .exit_signal = args.exit_signal,
3115 .stack = args.stack,
3116 .stack_size = args.stack_size,
3117 .tls = args.tls,
3118 .set_tid_size = args.set_tid_size,
3119 .cgroup = args.cgroup,
3120 };
3121
3122 if (args.set_tid &&
3123 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3124 (kargs->set_tid_size * sizeof(pid_t))))
3125 return -EFAULT;
3126
3127 kargs->set_tid = kset_tid;
3128
3129 return 0;
3130 }
3131
3132 /**
3133 * clone3_stack_valid - check and prepare stack
3134 * @kargs: kernel clone args
3135 *
3136 * Verify that the stack arguments userspace gave us are sane.
3137 * In addition, set the stack direction for userspace since it's easy for us to
3138 * determine.
3139 */
clone3_stack_valid(struct kernel_clone_args * kargs)3140 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3141 {
3142 if (kargs->stack == 0) {
3143 if (kargs->stack_size > 0)
3144 return false;
3145 } else {
3146 if (kargs->stack_size == 0)
3147 return false;
3148
3149 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3150 return false;
3151
3152 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
3153 kargs->stack += kargs->stack_size;
3154 #endif
3155 }
3156
3157 return true;
3158 }
3159
clone3_args_valid(struct kernel_clone_args * kargs)3160 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3161 {
3162 /* Verify that no unknown flags are passed along. */
3163 if (kargs->flags &
3164 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3165 return false;
3166
3167 /*
3168 * - make the CLONE_DETACHED bit reusable for clone3
3169 * - make the CSIGNAL bits reusable for clone3
3170 */
3171 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3172 return false;
3173
3174 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3175 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3176 return false;
3177
3178 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3179 kargs->exit_signal)
3180 return false;
3181
3182 if (!clone3_stack_valid(kargs))
3183 return false;
3184
3185 return true;
3186 }
3187
3188 /**
3189 * clone3 - create a new process with specific properties
3190 * @uargs: argument structure
3191 * @size: size of @uargs
3192 *
3193 * clone3() is the extensible successor to clone()/clone2().
3194 * It takes a struct as argument that is versioned by its size.
3195 *
3196 * Return: On success, a positive PID for the child process.
3197 * On error, a negative errno number.
3198 */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)3199 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3200 {
3201 int err;
3202
3203 struct kernel_clone_args kargs;
3204 pid_t set_tid[MAX_PID_NS_LEVEL];
3205
3206 kargs.set_tid = set_tid;
3207
3208 err = copy_clone_args_from_user(&kargs, uargs, size);
3209 if (err)
3210 return err;
3211
3212 if (!clone3_args_valid(&kargs))
3213 return -EINVAL;
3214
3215 return kernel_clone(&kargs);
3216 }
3217 #endif
3218
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)3219 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3220 {
3221 struct task_struct *leader, *parent, *child;
3222 int res;
3223
3224 read_lock(&tasklist_lock);
3225 leader = top = top->group_leader;
3226 down:
3227 for_each_thread(leader, parent) {
3228 list_for_each_entry(child, &parent->children, sibling) {
3229 res = visitor(child, data);
3230 if (res) {
3231 if (res < 0)
3232 goto out;
3233 leader = child;
3234 goto down;
3235 }
3236 up:
3237 ;
3238 }
3239 }
3240
3241 if (leader != top) {
3242 child = leader;
3243 parent = child->real_parent;
3244 leader = parent->group_leader;
3245 goto up;
3246 }
3247 out:
3248 read_unlock(&tasklist_lock);
3249 }
3250
3251 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3252 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3253 #endif
3254
sighand_ctor(void * data)3255 static void sighand_ctor(void *data)
3256 {
3257 struct sighand_struct *sighand = data;
3258
3259 spin_lock_init(&sighand->siglock);
3260 init_waitqueue_head(&sighand->signalfd_wqh);
3261 }
3262
mm_cache_init(void)3263 void __init mm_cache_init(void)
3264 {
3265 unsigned int mm_size;
3266
3267 /*
3268 * The mm_cpumask is located at the end of mm_struct, and is
3269 * dynamically sized based on the maximum CPU number this system
3270 * can have, taking hotplug into account (nr_cpu_ids).
3271 */
3272 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3273
3274 mm_cachep = kmem_cache_create_usercopy("mm_struct",
3275 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3276 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3277 offsetof(struct mm_struct, saved_auxv),
3278 sizeof_field(struct mm_struct, saved_auxv),
3279 NULL);
3280 }
3281
proc_caches_init(void)3282 void __init proc_caches_init(void)
3283 {
3284 sighand_cachep = kmem_cache_create("sighand_cache",
3285 sizeof(struct sighand_struct), 0,
3286 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3287 SLAB_ACCOUNT, sighand_ctor);
3288 signal_cachep = kmem_cache_create("signal_cache",
3289 sizeof(struct signal_struct), 0,
3290 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3291 NULL);
3292 files_cachep = kmem_cache_create("files_cache",
3293 sizeof(struct files_struct), 0,
3294 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3295 NULL);
3296 fs_cachep = kmem_cache_create("fs_cache",
3297 sizeof(struct fs_struct), 0,
3298 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3299 NULL);
3300
3301 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3302 #ifdef CONFIG_PER_VMA_LOCK
3303 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3304 #endif
3305 mmap_init();
3306 nsproxy_cache_init();
3307 }
3308
3309 /*
3310 * Check constraints on flags passed to the unshare system call.
3311 */
check_unshare_flags(unsigned long unshare_flags)3312 static int check_unshare_flags(unsigned long unshare_flags)
3313 {
3314 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3315 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3316 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3317 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3318 CLONE_NEWTIME))
3319 return -EINVAL;
3320 /*
3321 * Not implemented, but pretend it works if there is nothing
3322 * to unshare. Note that unsharing the address space or the
3323 * signal handlers also need to unshare the signal queues (aka
3324 * CLONE_THREAD).
3325 */
3326 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3327 if (!thread_group_empty(current))
3328 return -EINVAL;
3329 }
3330 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3331 if (refcount_read(¤t->sighand->count) > 1)
3332 return -EINVAL;
3333 }
3334 if (unshare_flags & CLONE_VM) {
3335 if (!current_is_single_threaded())
3336 return -EINVAL;
3337 }
3338
3339 return 0;
3340 }
3341
3342 /*
3343 * Unshare the filesystem structure if it is being shared
3344 */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3345 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3346 {
3347 struct fs_struct *fs = current->fs;
3348
3349 if (!(unshare_flags & CLONE_FS) || !fs)
3350 return 0;
3351
3352 /* don't need lock here; in the worst case we'll do useless copy */
3353 if (fs->users == 1)
3354 return 0;
3355
3356 *new_fsp = copy_fs_struct(fs);
3357 if (!*new_fsp)
3358 return -ENOMEM;
3359
3360 return 0;
3361 }
3362
3363 /*
3364 * Unshare file descriptor table if it is being shared
3365 */
unshare_fd(unsigned long unshare_flags,unsigned int max_fds,struct files_struct ** new_fdp)3366 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3367 struct files_struct **new_fdp)
3368 {
3369 struct files_struct *fd = current->files;
3370 int error = 0;
3371
3372 if ((unshare_flags & CLONE_FILES) &&
3373 (fd && atomic_read(&fd->count) > 1)) {
3374 *new_fdp = dup_fd(fd, max_fds, &error);
3375 if (!*new_fdp)
3376 return error;
3377 }
3378
3379 return 0;
3380 }
3381
3382 /*
3383 * unshare allows a process to 'unshare' part of the process
3384 * context which was originally shared using clone. copy_*
3385 * functions used by kernel_clone() cannot be used here directly
3386 * because they modify an inactive task_struct that is being
3387 * constructed. Here we are modifying the current, active,
3388 * task_struct.
3389 */
ksys_unshare(unsigned long unshare_flags)3390 int ksys_unshare(unsigned long unshare_flags)
3391 {
3392 struct fs_struct *fs, *new_fs = NULL;
3393 struct files_struct *new_fd = NULL;
3394 struct cred *new_cred = NULL;
3395 struct nsproxy *new_nsproxy = NULL;
3396 int do_sysvsem = 0;
3397 int err;
3398
3399 /*
3400 * If unsharing a user namespace must also unshare the thread group
3401 * and unshare the filesystem root and working directories.
3402 */
3403 if (unshare_flags & CLONE_NEWUSER)
3404 unshare_flags |= CLONE_THREAD | CLONE_FS;
3405 /*
3406 * If unsharing vm, must also unshare signal handlers.
3407 */
3408 if (unshare_flags & CLONE_VM)
3409 unshare_flags |= CLONE_SIGHAND;
3410 /*
3411 * If unsharing a signal handlers, must also unshare the signal queues.
3412 */
3413 if (unshare_flags & CLONE_SIGHAND)
3414 unshare_flags |= CLONE_THREAD;
3415 /*
3416 * If unsharing namespace, must also unshare filesystem information.
3417 */
3418 if (unshare_flags & CLONE_NEWNS)
3419 unshare_flags |= CLONE_FS;
3420
3421 err = check_unshare_flags(unshare_flags);
3422 if (err)
3423 goto bad_unshare_out;
3424 /*
3425 * CLONE_NEWIPC must also detach from the undolist: after switching
3426 * to a new ipc namespace, the semaphore arrays from the old
3427 * namespace are unreachable.
3428 */
3429 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3430 do_sysvsem = 1;
3431 err = unshare_fs(unshare_flags, &new_fs);
3432 if (err)
3433 goto bad_unshare_out;
3434 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3435 if (err)
3436 goto bad_unshare_cleanup_fs;
3437 err = unshare_userns(unshare_flags, &new_cred);
3438 if (err)
3439 goto bad_unshare_cleanup_fd;
3440 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3441 new_cred, new_fs);
3442 if (err)
3443 goto bad_unshare_cleanup_cred;
3444
3445 if (new_cred) {
3446 err = set_cred_ucounts(new_cred);
3447 if (err)
3448 goto bad_unshare_cleanup_cred;
3449 }
3450
3451 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3452 if (do_sysvsem) {
3453 /*
3454 * CLONE_SYSVSEM is equivalent to sys_exit().
3455 */
3456 exit_sem(current);
3457 }
3458 if (unshare_flags & CLONE_NEWIPC) {
3459 /* Orphan segments in old ns (see sem above). */
3460 exit_shm(current);
3461 shm_init_task(current);
3462 }
3463
3464 if (new_nsproxy)
3465 switch_task_namespaces(current, new_nsproxy);
3466
3467 task_lock(current);
3468
3469 if (new_fs) {
3470 fs = current->fs;
3471 spin_lock(&fs->lock);
3472 current->fs = new_fs;
3473 if (--fs->users)
3474 new_fs = NULL;
3475 else
3476 new_fs = fs;
3477 spin_unlock(&fs->lock);
3478 }
3479
3480 if (new_fd)
3481 swap(current->files, new_fd);
3482
3483 task_unlock(current);
3484
3485 if (new_cred) {
3486 /* Install the new user namespace */
3487 commit_creds(new_cred);
3488 new_cred = NULL;
3489 }
3490 }
3491
3492 perf_event_namespaces(current);
3493
3494 bad_unshare_cleanup_cred:
3495 if (new_cred)
3496 put_cred(new_cred);
3497 bad_unshare_cleanup_fd:
3498 if (new_fd)
3499 put_files_struct(new_fd);
3500
3501 bad_unshare_cleanup_fs:
3502 if (new_fs)
3503 free_fs_struct(new_fs);
3504
3505 bad_unshare_out:
3506 return err;
3507 }
3508
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3509 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3510 {
3511 return ksys_unshare(unshare_flags);
3512 }
3513
3514 /*
3515 * Helper to unshare the files of the current task.
3516 * We don't want to expose copy_files internals to
3517 * the exec layer of the kernel.
3518 */
3519
unshare_files(void)3520 int unshare_files(void)
3521 {
3522 struct task_struct *task = current;
3523 struct files_struct *old, *copy = NULL;
3524 int error;
3525
3526 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©);
3527 if (error || !copy)
3528 return error;
3529
3530 old = task->files;
3531 task_lock(task);
3532 task->files = copy;
3533 task_unlock(task);
3534 put_files_struct(old);
3535 return 0;
3536 }
3537
sysctl_max_threads(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3538 int sysctl_max_threads(struct ctl_table *table, int write,
3539 void *buffer, size_t *lenp, loff_t *ppos)
3540 {
3541 struct ctl_table t;
3542 int ret;
3543 int threads = max_threads;
3544 int min = 1;
3545 int max = MAX_THREADS;
3546
3547 t = *table;
3548 t.data = &threads;
3549 t.extra1 = &min;
3550 t.extra2 = &max;
3551
3552 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3553 if (ret || !write)
3554 return ret;
3555
3556 max_threads = threads;
3557
3558 return 0;
3559 }
3560