• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51 
52 #include <asm/switch_to.h>
53 
54 #include <linux/sched/cond_resched.h>
55 
56 #include "sched.h"
57 #include "stats.h"
58 #include "autogroup.h"
59 
60 /*
61  * Targeted preemption latency for CPU-bound tasks:
62  *
63  * NOTE: this latency value is not the same as the concept of
64  * 'timeslice length' - timeslices in CFS are of variable length
65  * and have no persistent notion like in traditional, time-slice
66  * based scheduling concepts.
67  *
68  * (to see the precise effective timeslice length of your workload,
69  *  run vmstat and monitor the context-switches (cs) field)
70  *
71  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
72  */
73 unsigned int sysctl_sched_latency			= 6000000ULL;
74 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
75 
76 /*
77  * The initial- and re-scaling of tunables is configurable
78  *
79  * Options are:
80  *
81  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
82  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
83  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
84  *
85  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
86  */
87 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
88 
89 /*
90  * Minimal preemption granularity for CPU-bound tasks:
91  *
92  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
93  */
94 unsigned int sysctl_sched_base_slice			= 750000ULL;
95 static unsigned int normalized_sysctl_sched_base_slice	= 750000ULL;
96 
97 /*
98  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
99  */
100 static unsigned int sched_nr_latency = 8;
101 
102 /*
103  * After fork, child runs first. If set to 0 (default) then
104  * parent will (try to) run first.
105  */
106 unsigned int sysctl_sched_child_runs_first __read_mostly;
107 
108 /*
109  * SCHED_OTHER wake-up granularity.
110  *
111  * This option delays the preemption effects of decoupled workloads
112  * and reduces their over-scheduling. Synchronous workloads will still
113  * have immediate wakeup/sleep latencies.
114  *
115  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
116  */
117 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
118 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
119 
120 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
121 
122 int sched_thermal_decay_shift;
setup_sched_thermal_decay_shift(char * str)123 static int __init setup_sched_thermal_decay_shift(char *str)
124 {
125 	int _shift = 0;
126 
127 	if (kstrtoint(str, 0, &_shift))
128 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
129 
130 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
131 	return 1;
132 }
133 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
134 
135 #ifdef CONFIG_SMP
136 /*
137  * For asym packing, by default the lower numbered CPU has higher priority.
138  */
arch_asym_cpu_priority(int cpu)139 int __weak arch_asym_cpu_priority(int cpu)
140 {
141 	return -cpu;
142 }
143 
144 /*
145  * The margin used when comparing utilization with CPU capacity.
146  *
147  * (default: ~20%)
148  */
149 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
150 
151 /*
152  * The margin used when comparing CPU capacities.
153  * is 'cap1' noticeably greater than 'cap2'
154  *
155  * (default: ~5%)
156  */
157 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
158 #endif
159 
160 #ifdef CONFIG_CFS_BANDWIDTH
161 /*
162  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
163  * each time a cfs_rq requests quota.
164  *
165  * Note: in the case that the slice exceeds the runtime remaining (either due
166  * to consumption or the quota being specified to be smaller than the slice)
167  * we will always only issue the remaining available time.
168  *
169  * (default: 5 msec, units: microseconds)
170  */
171 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
172 #endif
173 
174 #ifdef CONFIG_NUMA_BALANCING
175 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
176 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
177 #endif
178 
179 #ifdef CONFIG_SYSCTL
180 static struct ctl_table sched_fair_sysctls[] = {
181 	{
182 		.procname       = "sched_child_runs_first",
183 		.data           = &sysctl_sched_child_runs_first,
184 		.maxlen         = sizeof(unsigned int),
185 		.mode           = 0644,
186 		.proc_handler   = proc_dointvec,
187 	},
188 #ifdef CONFIG_CFS_BANDWIDTH
189 	{
190 		.procname       = "sched_cfs_bandwidth_slice_us",
191 		.data           = &sysctl_sched_cfs_bandwidth_slice,
192 		.maxlen         = sizeof(unsigned int),
193 		.mode           = 0644,
194 		.proc_handler   = proc_dointvec_minmax,
195 		.extra1         = SYSCTL_ONE,
196 	},
197 #endif
198 #ifdef CONFIG_NUMA_BALANCING
199 	{
200 		.procname	= "numa_balancing_promote_rate_limit_MBps",
201 		.data		= &sysctl_numa_balancing_promote_rate_limit,
202 		.maxlen		= sizeof(unsigned int),
203 		.mode		= 0644,
204 		.proc_handler	= proc_dointvec_minmax,
205 		.extra1		= SYSCTL_ZERO,
206 	},
207 #endif /* CONFIG_NUMA_BALANCING */
208 	{}
209 };
210 
sched_fair_sysctl_init(void)211 static int __init sched_fair_sysctl_init(void)
212 {
213 	register_sysctl_init("kernel", sched_fair_sysctls);
214 	return 0;
215 }
216 late_initcall(sched_fair_sysctl_init);
217 #endif
218 
update_load_add(struct load_weight * lw,unsigned long inc)219 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
220 {
221 	lw->weight += inc;
222 	lw->inv_weight = 0;
223 }
224 
update_load_sub(struct load_weight * lw,unsigned long dec)225 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
226 {
227 	lw->weight -= dec;
228 	lw->inv_weight = 0;
229 }
230 
update_load_set(struct load_weight * lw,unsigned long w)231 static inline void update_load_set(struct load_weight *lw, unsigned long w)
232 {
233 	lw->weight = w;
234 	lw->inv_weight = 0;
235 }
236 
237 /*
238  * Increase the granularity value when there are more CPUs,
239  * because with more CPUs the 'effective latency' as visible
240  * to users decreases. But the relationship is not linear,
241  * so pick a second-best guess by going with the log2 of the
242  * number of CPUs.
243  *
244  * This idea comes from the SD scheduler of Con Kolivas:
245  */
get_update_sysctl_factor(void)246 static unsigned int get_update_sysctl_factor(void)
247 {
248 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
249 	unsigned int factor;
250 
251 	switch (sysctl_sched_tunable_scaling) {
252 	case SCHED_TUNABLESCALING_NONE:
253 		factor = 1;
254 		break;
255 	case SCHED_TUNABLESCALING_LINEAR:
256 		factor = cpus;
257 		break;
258 	case SCHED_TUNABLESCALING_LOG:
259 	default:
260 		factor = 1 + ilog2(cpus);
261 		break;
262 	}
263 
264 	return factor;
265 }
266 
update_sysctl(void)267 static void update_sysctl(void)
268 {
269 	unsigned int factor = get_update_sysctl_factor();
270 
271 #define SET_SYSCTL(name) \
272 	(sysctl_##name = (factor) * normalized_sysctl_##name)
273 	SET_SYSCTL(sched_base_slice);
274 	SET_SYSCTL(sched_latency);
275 	SET_SYSCTL(sched_wakeup_granularity);
276 #undef SET_SYSCTL
277 }
278 
sched_init_granularity(void)279 void __init sched_init_granularity(void)
280 {
281 	update_sysctl();
282 }
283 
284 #define WMULT_CONST	(~0U)
285 #define WMULT_SHIFT	32
286 
__update_inv_weight(struct load_weight * lw)287 static void __update_inv_weight(struct load_weight *lw)
288 {
289 	unsigned long w;
290 
291 	if (likely(lw->inv_weight))
292 		return;
293 
294 	w = scale_load_down(lw->weight);
295 
296 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
297 		lw->inv_weight = 1;
298 	else if (unlikely(!w))
299 		lw->inv_weight = WMULT_CONST;
300 	else
301 		lw->inv_weight = WMULT_CONST / w;
302 }
303 
304 /*
305  * delta_exec * weight / lw.weight
306  *   OR
307  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
308  *
309  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
310  * we're guaranteed shift stays positive because inv_weight is guaranteed to
311  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
312  *
313  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
314  * weight/lw.weight <= 1, and therefore our shift will also be positive.
315  */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)316 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
317 {
318 	u64 fact = scale_load_down(weight);
319 	u32 fact_hi = (u32)(fact >> 32);
320 	int shift = WMULT_SHIFT;
321 	int fs;
322 
323 	__update_inv_weight(lw);
324 
325 	if (unlikely(fact_hi)) {
326 		fs = fls(fact_hi);
327 		shift -= fs;
328 		fact >>= fs;
329 	}
330 
331 	fact = mul_u32_u32(fact, lw->inv_weight);
332 
333 	fact_hi = (u32)(fact >> 32);
334 	if (fact_hi) {
335 		fs = fls(fact_hi);
336 		shift -= fs;
337 		fact >>= fs;
338 	}
339 
340 	return mul_u64_u32_shr(delta_exec, fact, shift);
341 }
342 
343 /*
344  * delta /= w
345  */
calc_delta_fair(u64 delta,struct sched_entity * se)346 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
347 {
348 	if (unlikely(se->load.weight != NICE_0_LOAD))
349 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
350 
351 	return delta;
352 }
353 
354 const struct sched_class fair_sched_class;
355 
356 /**************************************************************
357  * CFS operations on generic schedulable entities:
358  */
359 
360 #ifdef CONFIG_FAIR_GROUP_SCHED
361 
362 /* Walk up scheduling entities hierarchy */
363 #define for_each_sched_entity(se) \
364 		for (; se; se = se->parent)
365 
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)366 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
367 {
368 	struct rq *rq = rq_of(cfs_rq);
369 	int cpu = cpu_of(rq);
370 
371 	if (cfs_rq->on_list)
372 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
373 
374 	cfs_rq->on_list = 1;
375 
376 	/*
377 	 * Ensure we either appear before our parent (if already
378 	 * enqueued) or force our parent to appear after us when it is
379 	 * enqueued. The fact that we always enqueue bottom-up
380 	 * reduces this to two cases and a special case for the root
381 	 * cfs_rq. Furthermore, it also means that we will always reset
382 	 * tmp_alone_branch either when the branch is connected
383 	 * to a tree or when we reach the top of the tree
384 	 */
385 	if (cfs_rq->tg->parent &&
386 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
387 		/*
388 		 * If parent is already on the list, we add the child
389 		 * just before. Thanks to circular linked property of
390 		 * the list, this means to put the child at the tail
391 		 * of the list that starts by parent.
392 		 */
393 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
394 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
395 		/*
396 		 * The branch is now connected to its tree so we can
397 		 * reset tmp_alone_branch to the beginning of the
398 		 * list.
399 		 */
400 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
401 		return true;
402 	}
403 
404 	if (!cfs_rq->tg->parent) {
405 		/*
406 		 * cfs rq without parent should be put
407 		 * at the tail of the list.
408 		 */
409 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
410 			&rq->leaf_cfs_rq_list);
411 		/*
412 		 * We have reach the top of a tree so we can reset
413 		 * tmp_alone_branch to the beginning of the list.
414 		 */
415 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
416 		return true;
417 	}
418 
419 	/*
420 	 * The parent has not already been added so we want to
421 	 * make sure that it will be put after us.
422 	 * tmp_alone_branch points to the begin of the branch
423 	 * where we will add parent.
424 	 */
425 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
426 	/*
427 	 * update tmp_alone_branch to points to the new begin
428 	 * of the branch
429 	 */
430 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
431 	return false;
432 }
433 
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)434 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
435 {
436 	if (cfs_rq->on_list) {
437 		struct rq *rq = rq_of(cfs_rq);
438 
439 		/*
440 		 * With cfs_rq being unthrottled/throttled during an enqueue,
441 		 * it can happen the tmp_alone_branch points the a leaf that
442 		 * we finally want to del. In this case, tmp_alone_branch moves
443 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
444 		 * at the end of the enqueue.
445 		 */
446 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
447 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
448 
449 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
450 		cfs_rq->on_list = 0;
451 	}
452 }
453 
assert_list_leaf_cfs_rq(struct rq * rq)454 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
455 {
456 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
457 }
458 
459 /* Iterate thr' all leaf cfs_rq's on a runqueue */
460 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
461 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
462 				 leaf_cfs_rq_list)
463 
464 /* Do the two (enqueued) entities belong to the same group ? */
465 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)466 is_same_group(struct sched_entity *se, struct sched_entity *pse)
467 {
468 	if (se->cfs_rq == pse->cfs_rq)
469 		return se->cfs_rq;
470 
471 	return NULL;
472 }
473 
parent_entity(const struct sched_entity * se)474 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
475 {
476 	return se->parent;
477 }
478 
479 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)480 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
481 {
482 	int se_depth, pse_depth;
483 
484 	/*
485 	 * preemption test can be made between sibling entities who are in the
486 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
487 	 * both tasks until we find their ancestors who are siblings of common
488 	 * parent.
489 	 */
490 
491 	/* First walk up until both entities are at same depth */
492 	se_depth = (*se)->depth;
493 	pse_depth = (*pse)->depth;
494 
495 	while (se_depth > pse_depth) {
496 		se_depth--;
497 		*se = parent_entity(*se);
498 	}
499 
500 	while (pse_depth > se_depth) {
501 		pse_depth--;
502 		*pse = parent_entity(*pse);
503 	}
504 
505 	while (!is_same_group(*se, *pse)) {
506 		*se = parent_entity(*se);
507 		*pse = parent_entity(*pse);
508 	}
509 }
510 
tg_is_idle(struct task_group * tg)511 static int tg_is_idle(struct task_group *tg)
512 {
513 	return tg->idle > 0;
514 }
515 
cfs_rq_is_idle(struct cfs_rq * cfs_rq)516 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
517 {
518 	return cfs_rq->idle > 0;
519 }
520 
se_is_idle(struct sched_entity * se)521 static int se_is_idle(struct sched_entity *se)
522 {
523 	if (entity_is_task(se))
524 		return task_has_idle_policy(task_of(se));
525 	return cfs_rq_is_idle(group_cfs_rq(se));
526 }
527 
528 #else	/* !CONFIG_FAIR_GROUP_SCHED */
529 
530 #define for_each_sched_entity(se) \
531 		for (; se; se = NULL)
532 
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)533 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
534 {
535 	return true;
536 }
537 
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)538 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
539 {
540 }
541 
assert_list_leaf_cfs_rq(struct rq * rq)542 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
543 {
544 }
545 
546 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
547 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
548 
parent_entity(struct sched_entity * se)549 static inline struct sched_entity *parent_entity(struct sched_entity *se)
550 {
551 	return NULL;
552 }
553 
554 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)555 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
556 {
557 }
558 
tg_is_idle(struct task_group * tg)559 static inline int tg_is_idle(struct task_group *tg)
560 {
561 	return 0;
562 }
563 
cfs_rq_is_idle(struct cfs_rq * cfs_rq)564 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
565 {
566 	return 0;
567 }
568 
se_is_idle(struct sched_entity * se)569 static int se_is_idle(struct sched_entity *se)
570 {
571 	return 0;
572 }
573 
574 #endif	/* CONFIG_FAIR_GROUP_SCHED */
575 
576 static __always_inline
577 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
578 
579 /**************************************************************
580  * Scheduling class tree data structure manipulation methods:
581  */
582 
max_vruntime(u64 max_vruntime,u64 vruntime)583 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
584 {
585 	s64 delta = (s64)(vruntime - max_vruntime);
586 	if (delta > 0)
587 		max_vruntime = vruntime;
588 
589 	return max_vruntime;
590 }
591 
min_vruntime(u64 min_vruntime,u64 vruntime)592 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
593 {
594 	s64 delta = (s64)(vruntime - min_vruntime);
595 	if (delta < 0)
596 		min_vruntime = vruntime;
597 
598 	return min_vruntime;
599 }
600 
entity_before(const struct sched_entity * a,const struct sched_entity * b)601 static inline bool entity_before(const struct sched_entity *a,
602 				 const struct sched_entity *b)
603 {
604 	return (s64)(a->vruntime - b->vruntime) < 0;
605 }
606 
entity_key(struct cfs_rq * cfs_rq,struct sched_entity * se)607 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
608 {
609 	return (s64)(se->vruntime - cfs_rq->min_vruntime);
610 }
611 
612 #define __node_2_se(node) \
613 	rb_entry((node), struct sched_entity, run_node)
614 
615 /*
616  * Compute virtual time from the per-task service numbers:
617  *
618  * Fair schedulers conserve lag:
619  *
620  *   \Sum lag_i = 0
621  *
622  * Where lag_i is given by:
623  *
624  *   lag_i = S - s_i = w_i * (V - v_i)
625  *
626  * Where S is the ideal service time and V is it's virtual time counterpart.
627  * Therefore:
628  *
629  *   \Sum lag_i = 0
630  *   \Sum w_i * (V - v_i) = 0
631  *   \Sum w_i * V - w_i * v_i = 0
632  *
633  * From which we can solve an expression for V in v_i (which we have in
634  * se->vruntime):
635  *
636  *       \Sum v_i * w_i   \Sum v_i * w_i
637  *   V = -------------- = --------------
638  *          \Sum w_i            W
639  *
640  * Specifically, this is the weighted average of all entity virtual runtimes.
641  *
642  * [[ NOTE: this is only equal to the ideal scheduler under the condition
643  *          that join/leave operations happen at lag_i = 0, otherwise the
644  *          virtual time has non-continguous motion equivalent to:
645  *
646  *	      V +-= lag_i / W
647  *
648  *	    Also see the comment in place_entity() that deals with this. ]]
649  *
650  * However, since v_i is u64, and the multiplcation could easily overflow
651  * transform it into a relative form that uses smaller quantities:
652  *
653  * Substitute: v_i == (v_i - v0) + v0
654  *
655  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
656  * V = ---------------------------- = --------------------- + v0
657  *                  W                            W
658  *
659  * Which we track using:
660  *
661  *                    v0 := cfs_rq->min_vruntime
662  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
663  *              \Sum w_i := cfs_rq->avg_load
664  *
665  * Since min_vruntime is a monotonic increasing variable that closely tracks
666  * the per-task service, these deltas: (v_i - v), will be in the order of the
667  * maximal (virtual) lag induced in the system due to quantisation.
668  *
669  * Also, we use scale_load_down() to reduce the size.
670  *
671  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
672  */
673 static void
avg_vruntime_add(struct cfs_rq * cfs_rq,struct sched_entity * se)674 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
675 {
676 	unsigned long weight = scale_load_down(se->load.weight);
677 	s64 key = entity_key(cfs_rq, se);
678 
679 	cfs_rq->avg_vruntime += key * weight;
680 	cfs_rq->avg_load += weight;
681 }
682 
683 static void
avg_vruntime_sub(struct cfs_rq * cfs_rq,struct sched_entity * se)684 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
685 {
686 	unsigned long weight = scale_load_down(se->load.weight);
687 	s64 key = entity_key(cfs_rq, se);
688 
689 	cfs_rq->avg_vruntime -= key * weight;
690 	cfs_rq->avg_load -= weight;
691 }
692 
693 static inline
avg_vruntime_update(struct cfs_rq * cfs_rq,s64 delta)694 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
695 {
696 	/*
697 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
698 	 */
699 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
700 }
701 
702 /*
703  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
704  * For this to be so, the result of this function must have a left bias.
705  */
avg_vruntime(struct cfs_rq * cfs_rq)706 u64 avg_vruntime(struct cfs_rq *cfs_rq)
707 {
708 	struct sched_entity *curr = cfs_rq->curr;
709 	s64 avg = cfs_rq->avg_vruntime;
710 	long load = cfs_rq->avg_load;
711 
712 	if (curr && curr->on_rq) {
713 		unsigned long weight = scale_load_down(curr->load.weight);
714 
715 		avg += entity_key(cfs_rq, curr) * weight;
716 		load += weight;
717 	}
718 
719 	if (load) {
720 		/* sign flips effective floor / ceil */
721 		if (avg < 0)
722 			avg -= (load - 1);
723 		avg = div_s64(avg, load);
724 	}
725 
726 	return cfs_rq->min_vruntime + avg;
727 }
728 
729 /*
730  * lag_i = S - s_i = w_i * (V - v_i)
731  *
732  * However, since V is approximated by the weighted average of all entities it
733  * is possible -- by addition/removal/reweight to the tree -- to move V around
734  * and end up with a larger lag than we started with.
735  *
736  * Limit this to either double the slice length with a minimum of TICK_NSEC
737  * since that is the timing granularity.
738  *
739  * EEVDF gives the following limit for a steady state system:
740  *
741  *   -r_max < lag < max(r_max, q)
742  *
743  * XXX could add max_slice to the augmented data to track this.
744  */
update_entity_lag(struct cfs_rq * cfs_rq,struct sched_entity * se)745 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
746 {
747 	s64 lag, limit;
748 
749 	SCHED_WARN_ON(!se->on_rq);
750 	lag = avg_vruntime(cfs_rq) - se->vruntime;
751 
752 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
753 	se->vlag = clamp(lag, -limit, limit);
754 }
755 
756 /*
757  * Entity is eligible once it received less service than it ought to have,
758  * eg. lag >= 0.
759  *
760  * lag_i = S - s_i = w_i*(V - v_i)
761  *
762  * lag_i >= 0 -> V >= v_i
763  *
764  *     \Sum (v_i - v)*w_i
765  * V = ------------------ + v
766  *          \Sum w_i
767  *
768  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
769  *
770  * Note: using 'avg_vruntime() > se->vruntime' is inacurate due
771  *       to the loss in precision caused by the division.
772  */
entity_eligible(struct cfs_rq * cfs_rq,struct sched_entity * se)773 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
774 {
775 	struct sched_entity *curr = cfs_rq->curr;
776 	s64 avg = cfs_rq->avg_vruntime;
777 	long load = cfs_rq->avg_load;
778 
779 	if (curr && curr->on_rq) {
780 		unsigned long weight = scale_load_down(curr->load.weight);
781 
782 		avg += entity_key(cfs_rq, curr) * weight;
783 		load += weight;
784 	}
785 
786 	return avg >= entity_key(cfs_rq, se) * load;
787 }
788 
__update_min_vruntime(struct cfs_rq * cfs_rq,u64 vruntime)789 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
790 {
791 	u64 min_vruntime = cfs_rq->min_vruntime;
792 	/*
793 	 * open coded max_vruntime() to allow updating avg_vruntime
794 	 */
795 	s64 delta = (s64)(vruntime - min_vruntime);
796 	if (delta > 0) {
797 		avg_vruntime_update(cfs_rq, delta);
798 		min_vruntime = vruntime;
799 	}
800 	return min_vruntime;
801 }
802 
update_min_vruntime(struct cfs_rq * cfs_rq)803 static void update_min_vruntime(struct cfs_rq *cfs_rq)
804 {
805 	struct sched_entity *se = __pick_first_entity(cfs_rq);
806 	struct sched_entity *curr = cfs_rq->curr;
807 
808 	u64 vruntime = cfs_rq->min_vruntime;
809 
810 	if (curr) {
811 		if (curr->on_rq)
812 			vruntime = curr->vruntime;
813 		else
814 			curr = NULL;
815 	}
816 
817 	if (se) {
818 		if (!curr)
819 			vruntime = se->vruntime;
820 		else
821 			vruntime = min_vruntime(vruntime, se->vruntime);
822 	}
823 
824 	/* ensure we never gain time by being placed backwards. */
825 	u64_u32_store(cfs_rq->min_vruntime,
826 		      __update_min_vruntime(cfs_rq, vruntime));
827 }
828 
__entity_less(struct rb_node * a,const struct rb_node * b)829 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
830 {
831 	return entity_before(__node_2_se(a), __node_2_se(b));
832 }
833 
834 #define deadline_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
835 
__update_min_deadline(struct sched_entity * se,struct rb_node * node)836 static inline void __update_min_deadline(struct sched_entity *se, struct rb_node *node)
837 {
838 	if (node) {
839 		struct sched_entity *rse = __node_2_se(node);
840 		if (deadline_gt(min_deadline, se, rse))
841 			se->min_deadline = rse->min_deadline;
842 	}
843 }
844 
845 /*
846  * se->min_deadline = min(se->deadline, left->min_deadline, right->min_deadline)
847  */
min_deadline_update(struct sched_entity * se,bool exit)848 static inline bool min_deadline_update(struct sched_entity *se, bool exit)
849 {
850 	u64 old_min_deadline = se->min_deadline;
851 	struct rb_node *node = &se->run_node;
852 
853 	se->min_deadline = se->deadline;
854 	__update_min_deadline(se, node->rb_right);
855 	__update_min_deadline(se, node->rb_left);
856 
857 	return se->min_deadline == old_min_deadline;
858 }
859 
860 RB_DECLARE_CALLBACKS(static, min_deadline_cb, struct sched_entity,
861 		     run_node, min_deadline, min_deadline_update);
862 
863 /*
864  * Enqueue an entity into the rb-tree:
865  */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)866 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
867 {
868 	avg_vruntime_add(cfs_rq, se);
869 	se->min_deadline = se->deadline;
870 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
871 				__entity_less, &min_deadline_cb);
872 }
873 
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)874 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
875 {
876 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
877 				  &min_deadline_cb);
878 	avg_vruntime_sub(cfs_rq, se);
879 }
880 
__pick_first_entity(struct cfs_rq * cfs_rq)881 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
882 {
883 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
884 
885 	if (!left)
886 		return NULL;
887 
888 	return __node_2_se(left);
889 }
890 
891 /*
892  * Earliest Eligible Virtual Deadline First
893  *
894  * In order to provide latency guarantees for different request sizes
895  * EEVDF selects the best runnable task from two criteria:
896  *
897  *  1) the task must be eligible (must be owed service)
898  *
899  *  2) from those tasks that meet 1), we select the one
900  *     with the earliest virtual deadline.
901  *
902  * We can do this in O(log n) time due to an augmented RB-tree. The
903  * tree keeps the entries sorted on service, but also functions as a
904  * heap based on the deadline by keeping:
905  *
906  *  se->min_deadline = min(se->deadline, se->{left,right}->min_deadline)
907  *
908  * Which allows an EDF like search on (sub)trees.
909  */
__pick_eevdf(struct cfs_rq * cfs_rq)910 static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq)
911 {
912 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
913 	struct sched_entity *curr = cfs_rq->curr;
914 	struct sched_entity *best = NULL;
915 	struct sched_entity *best_left = NULL;
916 
917 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
918 		curr = NULL;
919 	best = curr;
920 
921 	/*
922 	 * Once selected, run a task until it either becomes non-eligible or
923 	 * until it gets a new slice. See the HACK in set_next_entity().
924 	 */
925 	if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
926 		return curr;
927 
928 	while (node) {
929 		struct sched_entity *se = __node_2_se(node);
930 
931 		/*
932 		 * If this entity is not eligible, try the left subtree.
933 		 */
934 		if (!entity_eligible(cfs_rq, se)) {
935 			node = node->rb_left;
936 			continue;
937 		}
938 
939 		/*
940 		 * Now we heap search eligible trees for the best (min_)deadline
941 		 */
942 		if (!best || deadline_gt(deadline, best, se))
943 			best = se;
944 
945 		/*
946 		 * Every se in a left branch is eligible, keep track of the
947 		 * branch with the best min_deadline
948 		 */
949 		if (node->rb_left) {
950 			struct sched_entity *left = __node_2_se(node->rb_left);
951 
952 			if (!best_left || deadline_gt(min_deadline, best_left, left))
953 				best_left = left;
954 
955 			/*
956 			 * min_deadline is in the left branch. rb_left and all
957 			 * descendants are eligible, so immediately switch to the second
958 			 * loop.
959 			 */
960 			if (left->min_deadline == se->min_deadline)
961 				break;
962 		}
963 
964 		/* min_deadline is at this node, no need to look right */
965 		if (se->deadline == se->min_deadline)
966 			break;
967 
968 		/* else min_deadline is in the right branch. */
969 		node = node->rb_right;
970 	}
971 
972 	/*
973 	 * We ran into an eligible node which is itself the best.
974 	 * (Or nr_running == 0 and both are NULL)
975 	 */
976 	if (!best_left || (s64)(best_left->min_deadline - best->deadline) > 0)
977 		return best;
978 
979 	/*
980 	 * Now best_left and all of its children are eligible, and we are just
981 	 * looking for deadline == min_deadline
982 	 */
983 	node = &best_left->run_node;
984 	while (node) {
985 		struct sched_entity *se = __node_2_se(node);
986 
987 		/* min_deadline is the current node */
988 		if (se->deadline == se->min_deadline)
989 			return se;
990 
991 		/* min_deadline is in the left branch */
992 		if (node->rb_left &&
993 		    __node_2_se(node->rb_left)->min_deadline == se->min_deadline) {
994 			node = node->rb_left;
995 			continue;
996 		}
997 
998 		/* else min_deadline is in the right branch */
999 		node = node->rb_right;
1000 	}
1001 	return NULL;
1002 }
1003 
pick_eevdf(struct cfs_rq * cfs_rq)1004 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
1005 {
1006 	struct sched_entity *se = __pick_eevdf(cfs_rq);
1007 
1008 	if (!se) {
1009 		struct sched_entity *left = __pick_first_entity(cfs_rq);
1010 		if (left) {
1011 			pr_err("EEVDF scheduling fail, picking leftmost\n");
1012 			return left;
1013 		}
1014 	}
1015 
1016 	return se;
1017 }
1018 
1019 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)1020 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
1021 {
1022 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
1023 
1024 	if (!last)
1025 		return NULL;
1026 
1027 	return __node_2_se(last);
1028 }
1029 
1030 /**************************************************************
1031  * Scheduling class statistics methods:
1032  */
1033 #ifdef CONFIG_SMP
sched_update_scaling(void)1034 int sched_update_scaling(void)
1035 {
1036 	unsigned int factor = get_update_sysctl_factor();
1037 
1038 #define WRT_SYSCTL(name) \
1039 	(normalized_sysctl_##name = sysctl_##name / (factor))
1040 	WRT_SYSCTL(sched_base_slice);
1041 	WRT_SYSCTL(sched_latency);
1042 	WRT_SYSCTL(sched_wakeup_granularity);
1043 #undef WRT_SYSCTL
1044 
1045 	return 0;
1046 }
1047 #endif
1048 #endif
1049 
1050 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1051 
1052 /*
1053  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1054  * this is probably good enough.
1055  */
update_deadline(struct cfs_rq * cfs_rq,struct sched_entity * se)1056 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1057 {
1058 	if ((s64)(se->vruntime - se->deadline) < 0)
1059 		return;
1060 
1061 	/*
1062 	 * For EEVDF the virtual time slope is determined by w_i (iow.
1063 	 * nice) while the request time r_i is determined by
1064 	 * sysctl_sched_base_slice.
1065 	 */
1066 	se->slice = sysctl_sched_base_slice;
1067 
1068 	/*
1069 	 * EEVDF: vd_i = ve_i + r_i / w_i
1070 	 */
1071 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1072 
1073 	/*
1074 	 * The task has consumed its request, reschedule.
1075 	 */
1076 	if (cfs_rq->nr_running > 1) {
1077 		resched_curr(rq_of(cfs_rq));
1078 		clear_buddies(cfs_rq, se);
1079 	}
1080 }
1081 
1082 #include "pelt.h"
1083 #ifdef CONFIG_SMP
1084 
1085 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1086 static unsigned long task_h_load(struct task_struct *p);
1087 static unsigned long capacity_of(int cpu);
1088 
1089 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)1090 void init_entity_runnable_average(struct sched_entity *se)
1091 {
1092 	struct sched_avg *sa = &se->avg;
1093 
1094 	memset(sa, 0, sizeof(*sa));
1095 
1096 	/*
1097 	 * Tasks are initialized with full load to be seen as heavy tasks until
1098 	 * they get a chance to stabilize to their real load level.
1099 	 * Group entities are initialized with zero load to reflect the fact that
1100 	 * nothing has been attached to the task group yet.
1101 	 */
1102 	if (entity_is_task(se))
1103 		sa->load_avg = scale_load_down(se->load.weight);
1104 
1105 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
1106 }
1107 
1108 /*
1109  * With new tasks being created, their initial util_avgs are extrapolated
1110  * based on the cfs_rq's current util_avg:
1111  *
1112  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
1113  *
1114  * However, in many cases, the above util_avg does not give a desired
1115  * value. Moreover, the sum of the util_avgs may be divergent, such
1116  * as when the series is a harmonic series.
1117  *
1118  * To solve this problem, we also cap the util_avg of successive tasks to
1119  * only 1/2 of the left utilization budget:
1120  *
1121  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1122  *
1123  * where n denotes the nth task and cpu_scale the CPU capacity.
1124  *
1125  * For example, for a CPU with 1024 of capacity, a simplest series from
1126  * the beginning would be like:
1127  *
1128  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1129  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1130  *
1131  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1132  * if util_avg > util_avg_cap.
1133  */
post_init_entity_util_avg(struct task_struct * p)1134 void post_init_entity_util_avg(struct task_struct *p)
1135 {
1136 	struct sched_entity *se = &p->se;
1137 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1138 	struct sched_avg *sa = &se->avg;
1139 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1140 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1141 
1142 	if (p->sched_class != &fair_sched_class) {
1143 		/*
1144 		 * For !fair tasks do:
1145 		 *
1146 		update_cfs_rq_load_avg(now, cfs_rq);
1147 		attach_entity_load_avg(cfs_rq, se);
1148 		switched_from_fair(rq, p);
1149 		 *
1150 		 * such that the next switched_to_fair() has the
1151 		 * expected state.
1152 		 */
1153 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1154 		return;
1155 	}
1156 
1157 	if (cap > 0) {
1158 		if (cfs_rq->avg.util_avg != 0) {
1159 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
1160 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1161 
1162 			if (sa->util_avg > cap)
1163 				sa->util_avg = cap;
1164 		} else {
1165 			sa->util_avg = cap;
1166 		}
1167 	}
1168 
1169 	sa->runnable_avg = sa->util_avg;
1170 }
1171 
1172 #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)1173 void init_entity_runnable_average(struct sched_entity *se)
1174 {
1175 }
post_init_entity_util_avg(struct task_struct * p)1176 void post_init_entity_util_avg(struct task_struct *p)
1177 {
1178 }
update_tg_load_avg(struct cfs_rq * cfs_rq)1179 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1180 {
1181 }
1182 #endif /* CONFIG_SMP */
1183 
1184 /*
1185  * Update the current task's runtime statistics.
1186  */
update_curr(struct cfs_rq * cfs_rq)1187 static void update_curr(struct cfs_rq *cfs_rq)
1188 {
1189 	struct sched_entity *curr = cfs_rq->curr;
1190 	u64 now = rq_clock_task(rq_of(cfs_rq));
1191 	u64 delta_exec;
1192 
1193 	if (unlikely(!curr))
1194 		return;
1195 
1196 	delta_exec = now - curr->exec_start;
1197 	if (unlikely((s64)delta_exec <= 0))
1198 		return;
1199 
1200 	curr->exec_start = now;
1201 
1202 	if (schedstat_enabled()) {
1203 		struct sched_statistics *stats;
1204 
1205 		stats = __schedstats_from_se(curr);
1206 		__schedstat_set(stats->exec_max,
1207 				max(delta_exec, stats->exec_max));
1208 	}
1209 
1210 	curr->sum_exec_runtime += delta_exec;
1211 	schedstat_add(cfs_rq->exec_clock, delta_exec);
1212 
1213 	curr->vruntime += calc_delta_fair(delta_exec, curr);
1214 	update_deadline(cfs_rq, curr);
1215 	update_min_vruntime(cfs_rq);
1216 
1217 	if (entity_is_task(curr)) {
1218 		struct task_struct *curtask = task_of(curr);
1219 
1220 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
1221 		cgroup_account_cputime(curtask, delta_exec);
1222 		account_group_exec_runtime(curtask, delta_exec);
1223 	}
1224 
1225 	account_cfs_rq_runtime(cfs_rq, delta_exec);
1226 }
1227 
update_curr_fair(struct rq * rq)1228 static void update_curr_fair(struct rq *rq)
1229 {
1230 	update_curr(cfs_rq_of(&rq->curr->se));
1231 }
1232 
1233 static inline void
update_stats_wait_start_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1234 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1235 {
1236 	struct sched_statistics *stats;
1237 	struct task_struct *p = NULL;
1238 
1239 	if (!schedstat_enabled())
1240 		return;
1241 
1242 	stats = __schedstats_from_se(se);
1243 
1244 	if (entity_is_task(se))
1245 		p = task_of(se);
1246 
1247 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1248 }
1249 
1250 static inline void
update_stats_wait_end_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1251 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1252 {
1253 	struct sched_statistics *stats;
1254 	struct task_struct *p = NULL;
1255 
1256 	if (!schedstat_enabled())
1257 		return;
1258 
1259 	stats = __schedstats_from_se(se);
1260 
1261 	/*
1262 	 * When the sched_schedstat changes from 0 to 1, some sched se
1263 	 * maybe already in the runqueue, the se->statistics.wait_start
1264 	 * will be 0.So it will let the delta wrong. We need to avoid this
1265 	 * scenario.
1266 	 */
1267 	if (unlikely(!schedstat_val(stats->wait_start)))
1268 		return;
1269 
1270 	if (entity_is_task(se))
1271 		p = task_of(se);
1272 
1273 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1274 }
1275 
1276 static inline void
update_stats_enqueue_sleeper_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1277 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1278 {
1279 	struct sched_statistics *stats;
1280 	struct task_struct *tsk = NULL;
1281 
1282 	if (!schedstat_enabled())
1283 		return;
1284 
1285 	stats = __schedstats_from_se(se);
1286 
1287 	if (entity_is_task(se))
1288 		tsk = task_of(se);
1289 
1290 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1291 }
1292 
1293 /*
1294  * Task is being enqueued - update stats:
1295  */
1296 static inline void
update_stats_enqueue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1297 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1298 {
1299 	if (!schedstat_enabled())
1300 		return;
1301 
1302 	/*
1303 	 * Are we enqueueing a waiting task? (for current tasks
1304 	 * a dequeue/enqueue event is a NOP)
1305 	 */
1306 	if (se != cfs_rq->curr)
1307 		update_stats_wait_start_fair(cfs_rq, se);
1308 
1309 	if (flags & ENQUEUE_WAKEUP)
1310 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1311 }
1312 
1313 static inline void
update_stats_dequeue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1314 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1315 {
1316 
1317 	if (!schedstat_enabled())
1318 		return;
1319 
1320 	/*
1321 	 * Mark the end of the wait period if dequeueing a
1322 	 * waiting task:
1323 	 */
1324 	if (se != cfs_rq->curr)
1325 		update_stats_wait_end_fair(cfs_rq, se);
1326 
1327 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1328 		struct task_struct *tsk = task_of(se);
1329 		unsigned int state;
1330 
1331 		/* XXX racy against TTWU */
1332 		state = READ_ONCE(tsk->__state);
1333 		if (state & TASK_INTERRUPTIBLE)
1334 			__schedstat_set(tsk->stats.sleep_start,
1335 				      rq_clock(rq_of(cfs_rq)));
1336 		if (state & TASK_UNINTERRUPTIBLE)
1337 			__schedstat_set(tsk->stats.block_start,
1338 				      rq_clock(rq_of(cfs_rq)));
1339 	}
1340 }
1341 
1342 /*
1343  * We are picking a new current task - update its stats:
1344  */
1345 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1346 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1347 {
1348 	/*
1349 	 * We are starting a new run period:
1350 	 */
1351 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1352 }
1353 
1354 /**************************************************
1355  * Scheduling class queueing methods:
1356  */
1357 
is_core_idle(int cpu)1358 static inline bool is_core_idle(int cpu)
1359 {
1360 #ifdef CONFIG_SCHED_SMT
1361 	int sibling;
1362 
1363 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1364 		if (cpu == sibling)
1365 			continue;
1366 
1367 		if (!idle_cpu(sibling))
1368 			return false;
1369 	}
1370 #endif
1371 
1372 	return true;
1373 }
1374 
1375 #ifdef CONFIG_NUMA
1376 #define NUMA_IMBALANCE_MIN 2
1377 
1378 static inline long
adjust_numa_imbalance(int imbalance,int dst_running,int imb_numa_nr)1379 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1380 {
1381 	/*
1382 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1383 	 * threshold. Above this threshold, individual tasks may be contending
1384 	 * for both memory bandwidth and any shared HT resources.  This is an
1385 	 * approximation as the number of running tasks may not be related to
1386 	 * the number of busy CPUs due to sched_setaffinity.
1387 	 */
1388 	if (dst_running > imb_numa_nr)
1389 		return imbalance;
1390 
1391 	/*
1392 	 * Allow a small imbalance based on a simple pair of communicating
1393 	 * tasks that remain local when the destination is lightly loaded.
1394 	 */
1395 	if (imbalance <= NUMA_IMBALANCE_MIN)
1396 		return 0;
1397 
1398 	return imbalance;
1399 }
1400 #endif /* CONFIG_NUMA */
1401 
1402 #ifdef CONFIG_NUMA_BALANCING
1403 /*
1404  * Approximate time to scan a full NUMA task in ms. The task scan period is
1405  * calculated based on the tasks virtual memory size and
1406  * numa_balancing_scan_size.
1407  */
1408 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1409 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1410 
1411 /* Portion of address space to scan in MB */
1412 unsigned int sysctl_numa_balancing_scan_size = 256;
1413 
1414 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1415 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1416 
1417 /* The page with hint page fault latency < threshold in ms is considered hot */
1418 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1419 
1420 struct numa_group {
1421 	refcount_t refcount;
1422 
1423 	spinlock_t lock; /* nr_tasks, tasks */
1424 	int nr_tasks;
1425 	pid_t gid;
1426 	int active_nodes;
1427 
1428 	struct rcu_head rcu;
1429 	unsigned long total_faults;
1430 	unsigned long max_faults_cpu;
1431 	/*
1432 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1433 	 *
1434 	 * Faults_cpu is used to decide whether memory should move
1435 	 * towards the CPU. As a consequence, these stats are weighted
1436 	 * more by CPU use than by memory faults.
1437 	 */
1438 	unsigned long faults[];
1439 };
1440 
1441 /*
1442  * For functions that can be called in multiple contexts that permit reading
1443  * ->numa_group (see struct task_struct for locking rules).
1444  */
deref_task_numa_group(struct task_struct * p)1445 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1446 {
1447 	return rcu_dereference_check(p->numa_group, p == current ||
1448 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1449 }
1450 
deref_curr_numa_group(struct task_struct * p)1451 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1452 {
1453 	return rcu_dereference_protected(p->numa_group, p == current);
1454 }
1455 
1456 static inline unsigned long group_faults_priv(struct numa_group *ng);
1457 static inline unsigned long group_faults_shared(struct numa_group *ng);
1458 
task_nr_scan_windows(struct task_struct * p)1459 static unsigned int task_nr_scan_windows(struct task_struct *p)
1460 {
1461 	unsigned long rss = 0;
1462 	unsigned long nr_scan_pages;
1463 
1464 	/*
1465 	 * Calculations based on RSS as non-present and empty pages are skipped
1466 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1467 	 * on resident pages
1468 	 */
1469 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1470 	rss = get_mm_rss(p->mm);
1471 	if (!rss)
1472 		rss = nr_scan_pages;
1473 
1474 	rss = round_up(rss, nr_scan_pages);
1475 	return rss / nr_scan_pages;
1476 }
1477 
1478 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1479 #define MAX_SCAN_WINDOW 2560
1480 
task_scan_min(struct task_struct * p)1481 static unsigned int task_scan_min(struct task_struct *p)
1482 {
1483 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1484 	unsigned int scan, floor;
1485 	unsigned int windows = 1;
1486 
1487 	if (scan_size < MAX_SCAN_WINDOW)
1488 		windows = MAX_SCAN_WINDOW / scan_size;
1489 	floor = 1000 / windows;
1490 
1491 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1492 	return max_t(unsigned int, floor, scan);
1493 }
1494 
task_scan_start(struct task_struct * p)1495 static unsigned int task_scan_start(struct task_struct *p)
1496 {
1497 	unsigned long smin = task_scan_min(p);
1498 	unsigned long period = smin;
1499 	struct numa_group *ng;
1500 
1501 	/* Scale the maximum scan period with the amount of shared memory. */
1502 	rcu_read_lock();
1503 	ng = rcu_dereference(p->numa_group);
1504 	if (ng) {
1505 		unsigned long shared = group_faults_shared(ng);
1506 		unsigned long private = group_faults_priv(ng);
1507 
1508 		period *= refcount_read(&ng->refcount);
1509 		period *= shared + 1;
1510 		period /= private + shared + 1;
1511 	}
1512 	rcu_read_unlock();
1513 
1514 	return max(smin, period);
1515 }
1516 
task_scan_max(struct task_struct * p)1517 static unsigned int task_scan_max(struct task_struct *p)
1518 {
1519 	unsigned long smin = task_scan_min(p);
1520 	unsigned long smax;
1521 	struct numa_group *ng;
1522 
1523 	/* Watch for min being lower than max due to floor calculations */
1524 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1525 
1526 	/* Scale the maximum scan period with the amount of shared memory. */
1527 	ng = deref_curr_numa_group(p);
1528 	if (ng) {
1529 		unsigned long shared = group_faults_shared(ng);
1530 		unsigned long private = group_faults_priv(ng);
1531 		unsigned long period = smax;
1532 
1533 		period *= refcount_read(&ng->refcount);
1534 		period *= shared + 1;
1535 		period /= private + shared + 1;
1536 
1537 		smax = max(smax, period);
1538 	}
1539 
1540 	return max(smin, smax);
1541 }
1542 
account_numa_enqueue(struct rq * rq,struct task_struct * p)1543 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1544 {
1545 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1546 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1547 }
1548 
account_numa_dequeue(struct rq * rq,struct task_struct * p)1549 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1550 {
1551 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1552 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1553 }
1554 
1555 /* Shared or private faults. */
1556 #define NR_NUMA_HINT_FAULT_TYPES 2
1557 
1558 /* Memory and CPU locality */
1559 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1560 
1561 /* Averaged statistics, and temporary buffers. */
1562 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1563 
task_numa_group_id(struct task_struct * p)1564 pid_t task_numa_group_id(struct task_struct *p)
1565 {
1566 	struct numa_group *ng;
1567 	pid_t gid = 0;
1568 
1569 	rcu_read_lock();
1570 	ng = rcu_dereference(p->numa_group);
1571 	if (ng)
1572 		gid = ng->gid;
1573 	rcu_read_unlock();
1574 
1575 	return gid;
1576 }
1577 
1578 /*
1579  * The averaged statistics, shared & private, memory & CPU,
1580  * occupy the first half of the array. The second half of the
1581  * array is for current counters, which are averaged into the
1582  * first set by task_numa_placement.
1583  */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1584 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1585 {
1586 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1587 }
1588 
task_faults(struct task_struct * p,int nid)1589 static inline unsigned long task_faults(struct task_struct *p, int nid)
1590 {
1591 	if (!p->numa_faults)
1592 		return 0;
1593 
1594 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1595 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1596 }
1597 
group_faults(struct task_struct * p,int nid)1598 static inline unsigned long group_faults(struct task_struct *p, int nid)
1599 {
1600 	struct numa_group *ng = deref_task_numa_group(p);
1601 
1602 	if (!ng)
1603 		return 0;
1604 
1605 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1606 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1607 }
1608 
group_faults_cpu(struct numa_group * group,int nid)1609 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1610 {
1611 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1612 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1613 }
1614 
group_faults_priv(struct numa_group * ng)1615 static inline unsigned long group_faults_priv(struct numa_group *ng)
1616 {
1617 	unsigned long faults = 0;
1618 	int node;
1619 
1620 	for_each_online_node(node) {
1621 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1622 	}
1623 
1624 	return faults;
1625 }
1626 
group_faults_shared(struct numa_group * ng)1627 static inline unsigned long group_faults_shared(struct numa_group *ng)
1628 {
1629 	unsigned long faults = 0;
1630 	int node;
1631 
1632 	for_each_online_node(node) {
1633 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1634 	}
1635 
1636 	return faults;
1637 }
1638 
1639 /*
1640  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1641  * considered part of a numa group's pseudo-interleaving set. Migrations
1642  * between these nodes are slowed down, to allow things to settle down.
1643  */
1644 #define ACTIVE_NODE_FRACTION 3
1645 
numa_is_active_node(int nid,struct numa_group * ng)1646 static bool numa_is_active_node(int nid, struct numa_group *ng)
1647 {
1648 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1649 }
1650 
1651 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int lim_dist,bool task)1652 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1653 					int lim_dist, bool task)
1654 {
1655 	unsigned long score = 0;
1656 	int node, max_dist;
1657 
1658 	/*
1659 	 * All nodes are directly connected, and the same distance
1660 	 * from each other. No need for fancy placement algorithms.
1661 	 */
1662 	if (sched_numa_topology_type == NUMA_DIRECT)
1663 		return 0;
1664 
1665 	/* sched_max_numa_distance may be changed in parallel. */
1666 	max_dist = READ_ONCE(sched_max_numa_distance);
1667 	/*
1668 	 * This code is called for each node, introducing N^2 complexity,
1669 	 * which should be ok given the number of nodes rarely exceeds 8.
1670 	 */
1671 	for_each_online_node(node) {
1672 		unsigned long faults;
1673 		int dist = node_distance(nid, node);
1674 
1675 		/*
1676 		 * The furthest away nodes in the system are not interesting
1677 		 * for placement; nid was already counted.
1678 		 */
1679 		if (dist >= max_dist || node == nid)
1680 			continue;
1681 
1682 		/*
1683 		 * On systems with a backplane NUMA topology, compare groups
1684 		 * of nodes, and move tasks towards the group with the most
1685 		 * memory accesses. When comparing two nodes at distance
1686 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1687 		 * of each group. Skip other nodes.
1688 		 */
1689 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1690 			continue;
1691 
1692 		/* Add up the faults from nearby nodes. */
1693 		if (task)
1694 			faults = task_faults(p, node);
1695 		else
1696 			faults = group_faults(p, node);
1697 
1698 		/*
1699 		 * On systems with a glueless mesh NUMA topology, there are
1700 		 * no fixed "groups of nodes". Instead, nodes that are not
1701 		 * directly connected bounce traffic through intermediate
1702 		 * nodes; a numa_group can occupy any set of nodes.
1703 		 * The further away a node is, the less the faults count.
1704 		 * This seems to result in good task placement.
1705 		 */
1706 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1707 			faults *= (max_dist - dist);
1708 			faults /= (max_dist - LOCAL_DISTANCE);
1709 		}
1710 
1711 		score += faults;
1712 	}
1713 
1714 	return score;
1715 }
1716 
1717 /*
1718  * These return the fraction of accesses done by a particular task, or
1719  * task group, on a particular numa node.  The group weight is given a
1720  * larger multiplier, in order to group tasks together that are almost
1721  * evenly spread out between numa nodes.
1722  */
task_weight(struct task_struct * p,int nid,int dist)1723 static inline unsigned long task_weight(struct task_struct *p, int nid,
1724 					int dist)
1725 {
1726 	unsigned long faults, total_faults;
1727 
1728 	if (!p->numa_faults)
1729 		return 0;
1730 
1731 	total_faults = p->total_numa_faults;
1732 
1733 	if (!total_faults)
1734 		return 0;
1735 
1736 	faults = task_faults(p, nid);
1737 	faults += score_nearby_nodes(p, nid, dist, true);
1738 
1739 	return 1000 * faults / total_faults;
1740 }
1741 
group_weight(struct task_struct * p,int nid,int dist)1742 static inline unsigned long group_weight(struct task_struct *p, int nid,
1743 					 int dist)
1744 {
1745 	struct numa_group *ng = deref_task_numa_group(p);
1746 	unsigned long faults, total_faults;
1747 
1748 	if (!ng)
1749 		return 0;
1750 
1751 	total_faults = ng->total_faults;
1752 
1753 	if (!total_faults)
1754 		return 0;
1755 
1756 	faults = group_faults(p, nid);
1757 	faults += score_nearby_nodes(p, nid, dist, false);
1758 
1759 	return 1000 * faults / total_faults;
1760 }
1761 
1762 /*
1763  * If memory tiering mode is enabled, cpupid of slow memory page is
1764  * used to record scan time instead of CPU and PID.  When tiering mode
1765  * is disabled at run time, the scan time (in cpupid) will be
1766  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1767  * access out of array bound.
1768  */
cpupid_valid(int cpupid)1769 static inline bool cpupid_valid(int cpupid)
1770 {
1771 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1772 }
1773 
1774 /*
1775  * For memory tiering mode, if there are enough free pages (more than
1776  * enough watermark defined here) in fast memory node, to take full
1777  * advantage of fast memory capacity, all recently accessed slow
1778  * memory pages will be migrated to fast memory node without
1779  * considering hot threshold.
1780  */
pgdat_free_space_enough(struct pglist_data * pgdat)1781 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1782 {
1783 	int z;
1784 	unsigned long enough_wmark;
1785 
1786 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1787 			   pgdat->node_present_pages >> 4);
1788 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1789 		struct zone *zone = pgdat->node_zones + z;
1790 
1791 		if (!populated_zone(zone))
1792 			continue;
1793 
1794 		if (zone_watermark_ok(zone, 0,
1795 				      wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1796 				      ZONE_MOVABLE, 0))
1797 			return true;
1798 	}
1799 	return false;
1800 }
1801 
1802 /*
1803  * For memory tiering mode, when page tables are scanned, the scan
1804  * time will be recorded in struct page in addition to make page
1805  * PROT_NONE for slow memory page.  So when the page is accessed, in
1806  * hint page fault handler, the hint page fault latency is calculated
1807  * via,
1808  *
1809  *	hint page fault latency = hint page fault time - scan time
1810  *
1811  * The smaller the hint page fault latency, the higher the possibility
1812  * for the page to be hot.
1813  */
numa_hint_fault_latency(struct page * page)1814 static int numa_hint_fault_latency(struct page *page)
1815 {
1816 	int last_time, time;
1817 
1818 	time = jiffies_to_msecs(jiffies);
1819 	last_time = xchg_page_access_time(page, time);
1820 
1821 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1822 }
1823 
1824 /*
1825  * For memory tiering mode, too high promotion/demotion throughput may
1826  * hurt application latency.  So we provide a mechanism to rate limit
1827  * the number of pages that are tried to be promoted.
1828  */
numa_promotion_rate_limit(struct pglist_data * pgdat,unsigned long rate_limit,int nr)1829 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1830 				      unsigned long rate_limit, int nr)
1831 {
1832 	unsigned long nr_cand;
1833 	unsigned int now, start;
1834 
1835 	now = jiffies_to_msecs(jiffies);
1836 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1837 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1838 	start = pgdat->nbp_rl_start;
1839 	if (now - start > MSEC_PER_SEC &&
1840 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1841 		pgdat->nbp_rl_nr_cand = nr_cand;
1842 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1843 		return true;
1844 	return false;
1845 }
1846 
1847 #define NUMA_MIGRATION_ADJUST_STEPS	16
1848 
numa_promotion_adjust_threshold(struct pglist_data * pgdat,unsigned long rate_limit,unsigned int ref_th)1849 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1850 					    unsigned long rate_limit,
1851 					    unsigned int ref_th)
1852 {
1853 	unsigned int now, start, th_period, unit_th, th;
1854 	unsigned long nr_cand, ref_cand, diff_cand;
1855 
1856 	now = jiffies_to_msecs(jiffies);
1857 	th_period = sysctl_numa_balancing_scan_period_max;
1858 	start = pgdat->nbp_th_start;
1859 	if (now - start > th_period &&
1860 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1861 		ref_cand = rate_limit *
1862 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1863 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1864 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1865 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1866 		th = pgdat->nbp_threshold ? : ref_th;
1867 		if (diff_cand > ref_cand * 11 / 10)
1868 			th = max(th - unit_th, unit_th);
1869 		else if (diff_cand < ref_cand * 9 / 10)
1870 			th = min(th + unit_th, ref_th * 2);
1871 		pgdat->nbp_th_nr_cand = nr_cand;
1872 		pgdat->nbp_threshold = th;
1873 	}
1874 }
1875 
should_numa_migrate_memory(struct task_struct * p,struct page * page,int src_nid,int dst_cpu)1876 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1877 				int src_nid, int dst_cpu)
1878 {
1879 	struct numa_group *ng = deref_curr_numa_group(p);
1880 	int dst_nid = cpu_to_node(dst_cpu);
1881 	int last_cpupid, this_cpupid;
1882 
1883 	/*
1884 	 * The pages in slow memory node should be migrated according
1885 	 * to hot/cold instead of private/shared.
1886 	 */
1887 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1888 	    !node_is_toptier(src_nid)) {
1889 		struct pglist_data *pgdat;
1890 		unsigned long rate_limit;
1891 		unsigned int latency, th, def_th;
1892 
1893 		pgdat = NODE_DATA(dst_nid);
1894 		if (pgdat_free_space_enough(pgdat)) {
1895 			/* workload changed, reset hot threshold */
1896 			pgdat->nbp_threshold = 0;
1897 			return true;
1898 		}
1899 
1900 		def_th = sysctl_numa_balancing_hot_threshold;
1901 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1902 			(20 - PAGE_SHIFT);
1903 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1904 
1905 		th = pgdat->nbp_threshold ? : def_th;
1906 		latency = numa_hint_fault_latency(page);
1907 		if (latency >= th)
1908 			return false;
1909 
1910 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1911 						  thp_nr_pages(page));
1912 	}
1913 
1914 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1915 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1916 
1917 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1918 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1919 		return false;
1920 
1921 	/*
1922 	 * Allow first faults or private faults to migrate immediately early in
1923 	 * the lifetime of a task. The magic number 4 is based on waiting for
1924 	 * two full passes of the "multi-stage node selection" test that is
1925 	 * executed below.
1926 	 */
1927 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1928 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1929 		return true;
1930 
1931 	/*
1932 	 * Multi-stage node selection is used in conjunction with a periodic
1933 	 * migration fault to build a temporal task<->page relation. By using
1934 	 * a two-stage filter we remove short/unlikely relations.
1935 	 *
1936 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1937 	 * a task's usage of a particular page (n_p) per total usage of this
1938 	 * page (n_t) (in a given time-span) to a probability.
1939 	 *
1940 	 * Our periodic faults will sample this probability and getting the
1941 	 * same result twice in a row, given these samples are fully
1942 	 * independent, is then given by P(n)^2, provided our sample period
1943 	 * is sufficiently short compared to the usage pattern.
1944 	 *
1945 	 * This quadric squishes small probabilities, making it less likely we
1946 	 * act on an unlikely task<->page relation.
1947 	 */
1948 	if (!cpupid_pid_unset(last_cpupid) &&
1949 				cpupid_to_nid(last_cpupid) != dst_nid)
1950 		return false;
1951 
1952 	/* Always allow migrate on private faults */
1953 	if (cpupid_match_pid(p, last_cpupid))
1954 		return true;
1955 
1956 	/* A shared fault, but p->numa_group has not been set up yet. */
1957 	if (!ng)
1958 		return true;
1959 
1960 	/*
1961 	 * Destination node is much more heavily used than the source
1962 	 * node? Allow migration.
1963 	 */
1964 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1965 					ACTIVE_NODE_FRACTION)
1966 		return true;
1967 
1968 	/*
1969 	 * Distribute memory according to CPU & memory use on each node,
1970 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1971 	 *
1972 	 * faults_cpu(dst)   3   faults_cpu(src)
1973 	 * --------------- * - > ---------------
1974 	 * faults_mem(dst)   4   faults_mem(src)
1975 	 */
1976 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1977 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1978 }
1979 
1980 /*
1981  * 'numa_type' describes the node at the moment of load balancing.
1982  */
1983 enum numa_type {
1984 	/* The node has spare capacity that can be used to run more tasks.  */
1985 	node_has_spare = 0,
1986 	/*
1987 	 * The node is fully used and the tasks don't compete for more CPU
1988 	 * cycles. Nevertheless, some tasks might wait before running.
1989 	 */
1990 	node_fully_busy,
1991 	/*
1992 	 * The node is overloaded and can't provide expected CPU cycles to all
1993 	 * tasks.
1994 	 */
1995 	node_overloaded
1996 };
1997 
1998 /* Cached statistics for all CPUs within a node */
1999 struct numa_stats {
2000 	unsigned long load;
2001 	unsigned long runnable;
2002 	unsigned long util;
2003 	/* Total compute capacity of CPUs on a node */
2004 	unsigned long compute_capacity;
2005 	unsigned int nr_running;
2006 	unsigned int weight;
2007 	enum numa_type node_type;
2008 	int idle_cpu;
2009 };
2010 
2011 struct task_numa_env {
2012 	struct task_struct *p;
2013 
2014 	int src_cpu, src_nid;
2015 	int dst_cpu, dst_nid;
2016 	int imb_numa_nr;
2017 
2018 	struct numa_stats src_stats, dst_stats;
2019 
2020 	int imbalance_pct;
2021 	int dist;
2022 
2023 	struct task_struct *best_task;
2024 	long best_imp;
2025 	int best_cpu;
2026 };
2027 
2028 static unsigned long cpu_load(struct rq *rq);
2029 static unsigned long cpu_runnable(struct rq *rq);
2030 
2031 static inline enum
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)2032 numa_type numa_classify(unsigned int imbalance_pct,
2033 			 struct numa_stats *ns)
2034 {
2035 	if ((ns->nr_running > ns->weight) &&
2036 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2037 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2038 		return node_overloaded;
2039 
2040 	if ((ns->nr_running < ns->weight) ||
2041 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2042 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2043 		return node_has_spare;
2044 
2045 	return node_fully_busy;
2046 }
2047 
2048 #ifdef CONFIG_SCHED_SMT
2049 /* Forward declarations of select_idle_sibling helpers */
2050 static inline bool test_idle_cores(int cpu);
numa_idle_core(int idle_core,int cpu)2051 static inline int numa_idle_core(int idle_core, int cpu)
2052 {
2053 	if (!static_branch_likely(&sched_smt_present) ||
2054 	    idle_core >= 0 || !test_idle_cores(cpu))
2055 		return idle_core;
2056 
2057 	/*
2058 	 * Prefer cores instead of packing HT siblings
2059 	 * and triggering future load balancing.
2060 	 */
2061 	if (is_core_idle(cpu))
2062 		idle_core = cpu;
2063 
2064 	return idle_core;
2065 }
2066 #else
numa_idle_core(int idle_core,int cpu)2067 static inline int numa_idle_core(int idle_core, int cpu)
2068 {
2069 	return idle_core;
2070 }
2071 #endif
2072 
2073 /*
2074  * Gather all necessary information to make NUMA balancing placement
2075  * decisions that are compatible with standard load balancer. This
2076  * borrows code and logic from update_sg_lb_stats but sharing a
2077  * common implementation is impractical.
2078  */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)2079 static void update_numa_stats(struct task_numa_env *env,
2080 			      struct numa_stats *ns, int nid,
2081 			      bool find_idle)
2082 {
2083 	int cpu, idle_core = -1;
2084 
2085 	memset(ns, 0, sizeof(*ns));
2086 	ns->idle_cpu = -1;
2087 
2088 	rcu_read_lock();
2089 	for_each_cpu(cpu, cpumask_of_node(nid)) {
2090 		struct rq *rq = cpu_rq(cpu);
2091 
2092 		ns->load += cpu_load(rq);
2093 		ns->runnable += cpu_runnable(rq);
2094 		ns->util += cpu_util_cfs(cpu);
2095 		ns->nr_running += rq->cfs.h_nr_running;
2096 		ns->compute_capacity += capacity_of(cpu);
2097 
2098 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2099 			if (READ_ONCE(rq->numa_migrate_on) ||
2100 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2101 				continue;
2102 
2103 			if (ns->idle_cpu == -1)
2104 				ns->idle_cpu = cpu;
2105 
2106 			idle_core = numa_idle_core(idle_core, cpu);
2107 		}
2108 	}
2109 	rcu_read_unlock();
2110 
2111 	ns->weight = cpumask_weight(cpumask_of_node(nid));
2112 
2113 	ns->node_type = numa_classify(env->imbalance_pct, ns);
2114 
2115 	if (idle_core >= 0)
2116 		ns->idle_cpu = idle_core;
2117 }
2118 
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)2119 static void task_numa_assign(struct task_numa_env *env,
2120 			     struct task_struct *p, long imp)
2121 {
2122 	struct rq *rq = cpu_rq(env->dst_cpu);
2123 
2124 	/* Check if run-queue part of active NUMA balance. */
2125 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2126 		int cpu;
2127 		int start = env->dst_cpu;
2128 
2129 		/* Find alternative idle CPU. */
2130 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2131 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2132 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2133 				continue;
2134 			}
2135 
2136 			env->dst_cpu = cpu;
2137 			rq = cpu_rq(env->dst_cpu);
2138 			if (!xchg(&rq->numa_migrate_on, 1))
2139 				goto assign;
2140 		}
2141 
2142 		/* Failed to find an alternative idle CPU */
2143 		return;
2144 	}
2145 
2146 assign:
2147 	/*
2148 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2149 	 * found a better CPU to move/swap.
2150 	 */
2151 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2152 		rq = cpu_rq(env->best_cpu);
2153 		WRITE_ONCE(rq->numa_migrate_on, 0);
2154 	}
2155 
2156 	if (env->best_task)
2157 		put_task_struct(env->best_task);
2158 	if (p)
2159 		get_task_struct(p);
2160 
2161 	env->best_task = p;
2162 	env->best_imp = imp;
2163 	env->best_cpu = env->dst_cpu;
2164 }
2165 
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)2166 static bool load_too_imbalanced(long src_load, long dst_load,
2167 				struct task_numa_env *env)
2168 {
2169 	long imb, old_imb;
2170 	long orig_src_load, orig_dst_load;
2171 	long src_capacity, dst_capacity;
2172 
2173 	/*
2174 	 * The load is corrected for the CPU capacity available on each node.
2175 	 *
2176 	 * src_load        dst_load
2177 	 * ------------ vs ---------
2178 	 * src_capacity    dst_capacity
2179 	 */
2180 	src_capacity = env->src_stats.compute_capacity;
2181 	dst_capacity = env->dst_stats.compute_capacity;
2182 
2183 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2184 
2185 	orig_src_load = env->src_stats.load;
2186 	orig_dst_load = env->dst_stats.load;
2187 
2188 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2189 
2190 	/* Would this change make things worse? */
2191 	return (imb > old_imb);
2192 }
2193 
2194 /*
2195  * Maximum NUMA importance can be 1998 (2*999);
2196  * SMALLIMP @ 30 would be close to 1998/64.
2197  * Used to deter task migration.
2198  */
2199 #define SMALLIMP	30
2200 
2201 /*
2202  * This checks if the overall compute and NUMA accesses of the system would
2203  * be improved if the source tasks was migrated to the target dst_cpu taking
2204  * into account that it might be best if task running on the dst_cpu should
2205  * be exchanged with the source task
2206  */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)2207 static bool task_numa_compare(struct task_numa_env *env,
2208 			      long taskimp, long groupimp, bool maymove)
2209 {
2210 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2211 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2212 	long imp = p_ng ? groupimp : taskimp;
2213 	struct task_struct *cur;
2214 	long src_load, dst_load;
2215 	int dist = env->dist;
2216 	long moveimp = imp;
2217 	long load;
2218 	bool stopsearch = false;
2219 
2220 	if (READ_ONCE(dst_rq->numa_migrate_on))
2221 		return false;
2222 
2223 	rcu_read_lock();
2224 	cur = rcu_dereference(dst_rq->curr);
2225 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2226 		cur = NULL;
2227 
2228 	/*
2229 	 * Because we have preemption enabled we can get migrated around and
2230 	 * end try selecting ourselves (current == env->p) as a swap candidate.
2231 	 */
2232 	if (cur == env->p) {
2233 		stopsearch = true;
2234 		goto unlock;
2235 	}
2236 
2237 	if (!cur) {
2238 		if (maymove && moveimp >= env->best_imp)
2239 			goto assign;
2240 		else
2241 			goto unlock;
2242 	}
2243 
2244 	/* Skip this swap candidate if cannot move to the source cpu. */
2245 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2246 		goto unlock;
2247 
2248 	/*
2249 	 * Skip this swap candidate if it is not moving to its preferred
2250 	 * node and the best task is.
2251 	 */
2252 	if (env->best_task &&
2253 	    env->best_task->numa_preferred_nid == env->src_nid &&
2254 	    cur->numa_preferred_nid != env->src_nid) {
2255 		goto unlock;
2256 	}
2257 
2258 	/*
2259 	 * "imp" is the fault differential for the source task between the
2260 	 * source and destination node. Calculate the total differential for
2261 	 * the source task and potential destination task. The more negative
2262 	 * the value is, the more remote accesses that would be expected to
2263 	 * be incurred if the tasks were swapped.
2264 	 *
2265 	 * If dst and source tasks are in the same NUMA group, or not
2266 	 * in any group then look only at task weights.
2267 	 */
2268 	cur_ng = rcu_dereference(cur->numa_group);
2269 	if (cur_ng == p_ng) {
2270 		/*
2271 		 * Do not swap within a group or between tasks that have
2272 		 * no group if there is spare capacity. Swapping does
2273 		 * not address the load imbalance and helps one task at
2274 		 * the cost of punishing another.
2275 		 */
2276 		if (env->dst_stats.node_type == node_has_spare)
2277 			goto unlock;
2278 
2279 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2280 		      task_weight(cur, env->dst_nid, dist);
2281 		/*
2282 		 * Add some hysteresis to prevent swapping the
2283 		 * tasks within a group over tiny differences.
2284 		 */
2285 		if (cur_ng)
2286 			imp -= imp / 16;
2287 	} else {
2288 		/*
2289 		 * Compare the group weights. If a task is all by itself
2290 		 * (not part of a group), use the task weight instead.
2291 		 */
2292 		if (cur_ng && p_ng)
2293 			imp += group_weight(cur, env->src_nid, dist) -
2294 			       group_weight(cur, env->dst_nid, dist);
2295 		else
2296 			imp += task_weight(cur, env->src_nid, dist) -
2297 			       task_weight(cur, env->dst_nid, dist);
2298 	}
2299 
2300 	/* Discourage picking a task already on its preferred node */
2301 	if (cur->numa_preferred_nid == env->dst_nid)
2302 		imp -= imp / 16;
2303 
2304 	/*
2305 	 * Encourage picking a task that moves to its preferred node.
2306 	 * This potentially makes imp larger than it's maximum of
2307 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2308 	 * case, it does not matter.
2309 	 */
2310 	if (cur->numa_preferred_nid == env->src_nid)
2311 		imp += imp / 8;
2312 
2313 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2314 		imp = moveimp;
2315 		cur = NULL;
2316 		goto assign;
2317 	}
2318 
2319 	/*
2320 	 * Prefer swapping with a task moving to its preferred node over a
2321 	 * task that is not.
2322 	 */
2323 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2324 	    env->best_task->numa_preferred_nid != env->src_nid) {
2325 		goto assign;
2326 	}
2327 
2328 	/*
2329 	 * If the NUMA importance is less than SMALLIMP,
2330 	 * task migration might only result in ping pong
2331 	 * of tasks and also hurt performance due to cache
2332 	 * misses.
2333 	 */
2334 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2335 		goto unlock;
2336 
2337 	/*
2338 	 * In the overloaded case, try and keep the load balanced.
2339 	 */
2340 	load = task_h_load(env->p) - task_h_load(cur);
2341 	if (!load)
2342 		goto assign;
2343 
2344 	dst_load = env->dst_stats.load + load;
2345 	src_load = env->src_stats.load - load;
2346 
2347 	if (load_too_imbalanced(src_load, dst_load, env))
2348 		goto unlock;
2349 
2350 assign:
2351 	/* Evaluate an idle CPU for a task numa move. */
2352 	if (!cur) {
2353 		int cpu = env->dst_stats.idle_cpu;
2354 
2355 		/* Nothing cached so current CPU went idle since the search. */
2356 		if (cpu < 0)
2357 			cpu = env->dst_cpu;
2358 
2359 		/*
2360 		 * If the CPU is no longer truly idle and the previous best CPU
2361 		 * is, keep using it.
2362 		 */
2363 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2364 		    idle_cpu(env->best_cpu)) {
2365 			cpu = env->best_cpu;
2366 		}
2367 
2368 		env->dst_cpu = cpu;
2369 	}
2370 
2371 	task_numa_assign(env, cur, imp);
2372 
2373 	/*
2374 	 * If a move to idle is allowed because there is capacity or load
2375 	 * balance improves then stop the search. While a better swap
2376 	 * candidate may exist, a search is not free.
2377 	 */
2378 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2379 		stopsearch = true;
2380 
2381 	/*
2382 	 * If a swap candidate must be identified and the current best task
2383 	 * moves its preferred node then stop the search.
2384 	 */
2385 	if (!maymove && env->best_task &&
2386 	    env->best_task->numa_preferred_nid == env->src_nid) {
2387 		stopsearch = true;
2388 	}
2389 unlock:
2390 	rcu_read_unlock();
2391 
2392 	return stopsearch;
2393 }
2394 
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)2395 static void task_numa_find_cpu(struct task_numa_env *env,
2396 				long taskimp, long groupimp)
2397 {
2398 	bool maymove = false;
2399 	int cpu;
2400 
2401 	/*
2402 	 * If dst node has spare capacity, then check if there is an
2403 	 * imbalance that would be overruled by the load balancer.
2404 	 */
2405 	if (env->dst_stats.node_type == node_has_spare) {
2406 		unsigned int imbalance;
2407 		int src_running, dst_running;
2408 
2409 		/*
2410 		 * Would movement cause an imbalance? Note that if src has
2411 		 * more running tasks that the imbalance is ignored as the
2412 		 * move improves the imbalance from the perspective of the
2413 		 * CPU load balancer.
2414 		 * */
2415 		src_running = env->src_stats.nr_running - 1;
2416 		dst_running = env->dst_stats.nr_running + 1;
2417 		imbalance = max(0, dst_running - src_running);
2418 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2419 						  env->imb_numa_nr);
2420 
2421 		/* Use idle CPU if there is no imbalance */
2422 		if (!imbalance) {
2423 			maymove = true;
2424 			if (env->dst_stats.idle_cpu >= 0) {
2425 				env->dst_cpu = env->dst_stats.idle_cpu;
2426 				task_numa_assign(env, NULL, 0);
2427 				return;
2428 			}
2429 		}
2430 	} else {
2431 		long src_load, dst_load, load;
2432 		/*
2433 		 * If the improvement from just moving env->p direction is better
2434 		 * than swapping tasks around, check if a move is possible.
2435 		 */
2436 		load = task_h_load(env->p);
2437 		dst_load = env->dst_stats.load + load;
2438 		src_load = env->src_stats.load - load;
2439 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2440 	}
2441 
2442 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2443 		/* Skip this CPU if the source task cannot migrate */
2444 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2445 			continue;
2446 
2447 		env->dst_cpu = cpu;
2448 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2449 			break;
2450 	}
2451 }
2452 
task_numa_migrate(struct task_struct * p)2453 static int task_numa_migrate(struct task_struct *p)
2454 {
2455 	struct task_numa_env env = {
2456 		.p = p,
2457 
2458 		.src_cpu = task_cpu(p),
2459 		.src_nid = task_node(p),
2460 
2461 		.imbalance_pct = 112,
2462 
2463 		.best_task = NULL,
2464 		.best_imp = 0,
2465 		.best_cpu = -1,
2466 	};
2467 	unsigned long taskweight, groupweight;
2468 	struct sched_domain *sd;
2469 	long taskimp, groupimp;
2470 	struct numa_group *ng;
2471 	struct rq *best_rq;
2472 	int nid, ret, dist;
2473 
2474 	/*
2475 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2476 	 * imbalance and would be the first to start moving tasks about.
2477 	 *
2478 	 * And we want to avoid any moving of tasks about, as that would create
2479 	 * random movement of tasks -- counter the numa conditions we're trying
2480 	 * to satisfy here.
2481 	 */
2482 	rcu_read_lock();
2483 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2484 	if (sd) {
2485 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2486 		env.imb_numa_nr = sd->imb_numa_nr;
2487 	}
2488 	rcu_read_unlock();
2489 
2490 	/*
2491 	 * Cpusets can break the scheduler domain tree into smaller
2492 	 * balance domains, some of which do not cross NUMA boundaries.
2493 	 * Tasks that are "trapped" in such domains cannot be migrated
2494 	 * elsewhere, so there is no point in (re)trying.
2495 	 */
2496 	if (unlikely(!sd)) {
2497 		sched_setnuma(p, task_node(p));
2498 		return -EINVAL;
2499 	}
2500 
2501 	env.dst_nid = p->numa_preferred_nid;
2502 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2503 	taskweight = task_weight(p, env.src_nid, dist);
2504 	groupweight = group_weight(p, env.src_nid, dist);
2505 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2506 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2507 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2508 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2509 
2510 	/* Try to find a spot on the preferred nid. */
2511 	task_numa_find_cpu(&env, taskimp, groupimp);
2512 
2513 	/*
2514 	 * Look at other nodes in these cases:
2515 	 * - there is no space available on the preferred_nid
2516 	 * - the task is part of a numa_group that is interleaved across
2517 	 *   multiple NUMA nodes; in order to better consolidate the group,
2518 	 *   we need to check other locations.
2519 	 */
2520 	ng = deref_curr_numa_group(p);
2521 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2522 		for_each_node_state(nid, N_CPU) {
2523 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2524 				continue;
2525 
2526 			dist = node_distance(env.src_nid, env.dst_nid);
2527 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2528 						dist != env.dist) {
2529 				taskweight = task_weight(p, env.src_nid, dist);
2530 				groupweight = group_weight(p, env.src_nid, dist);
2531 			}
2532 
2533 			/* Only consider nodes where both task and groups benefit */
2534 			taskimp = task_weight(p, nid, dist) - taskweight;
2535 			groupimp = group_weight(p, nid, dist) - groupweight;
2536 			if (taskimp < 0 && groupimp < 0)
2537 				continue;
2538 
2539 			env.dist = dist;
2540 			env.dst_nid = nid;
2541 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2542 			task_numa_find_cpu(&env, taskimp, groupimp);
2543 		}
2544 	}
2545 
2546 	/*
2547 	 * If the task is part of a workload that spans multiple NUMA nodes,
2548 	 * and is migrating into one of the workload's active nodes, remember
2549 	 * this node as the task's preferred numa node, so the workload can
2550 	 * settle down.
2551 	 * A task that migrated to a second choice node will be better off
2552 	 * trying for a better one later. Do not set the preferred node here.
2553 	 */
2554 	if (ng) {
2555 		if (env.best_cpu == -1)
2556 			nid = env.src_nid;
2557 		else
2558 			nid = cpu_to_node(env.best_cpu);
2559 
2560 		if (nid != p->numa_preferred_nid)
2561 			sched_setnuma(p, nid);
2562 	}
2563 
2564 	/* No better CPU than the current one was found. */
2565 	if (env.best_cpu == -1) {
2566 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2567 		return -EAGAIN;
2568 	}
2569 
2570 	best_rq = cpu_rq(env.best_cpu);
2571 	if (env.best_task == NULL) {
2572 		ret = migrate_task_to(p, env.best_cpu);
2573 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2574 		if (ret != 0)
2575 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2576 		return ret;
2577 	}
2578 
2579 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2580 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2581 
2582 	if (ret != 0)
2583 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2584 	put_task_struct(env.best_task);
2585 	return ret;
2586 }
2587 
2588 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2589 static void numa_migrate_preferred(struct task_struct *p)
2590 {
2591 	unsigned long interval = HZ;
2592 
2593 	/* This task has no NUMA fault statistics yet */
2594 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2595 		return;
2596 
2597 	/* Periodically retry migrating the task to the preferred node */
2598 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2599 	p->numa_migrate_retry = jiffies + interval;
2600 
2601 	/* Success if task is already running on preferred CPU */
2602 	if (task_node(p) == p->numa_preferred_nid)
2603 		return;
2604 
2605 	/* Otherwise, try migrate to a CPU on the preferred node */
2606 	task_numa_migrate(p);
2607 }
2608 
2609 /*
2610  * Find out how many nodes the workload is actively running on. Do this by
2611  * tracking the nodes from which NUMA hinting faults are triggered. This can
2612  * be different from the set of nodes where the workload's memory is currently
2613  * located.
2614  */
numa_group_count_active_nodes(struct numa_group * numa_group)2615 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2616 {
2617 	unsigned long faults, max_faults = 0;
2618 	int nid, active_nodes = 0;
2619 
2620 	for_each_node_state(nid, N_CPU) {
2621 		faults = group_faults_cpu(numa_group, nid);
2622 		if (faults > max_faults)
2623 			max_faults = faults;
2624 	}
2625 
2626 	for_each_node_state(nid, N_CPU) {
2627 		faults = group_faults_cpu(numa_group, nid);
2628 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2629 			active_nodes++;
2630 	}
2631 
2632 	numa_group->max_faults_cpu = max_faults;
2633 	numa_group->active_nodes = active_nodes;
2634 }
2635 
2636 /*
2637  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2638  * increments. The more local the fault statistics are, the higher the scan
2639  * period will be for the next scan window. If local/(local+remote) ratio is
2640  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2641  * the scan period will decrease. Aim for 70% local accesses.
2642  */
2643 #define NUMA_PERIOD_SLOTS 10
2644 #define NUMA_PERIOD_THRESHOLD 7
2645 
2646 /*
2647  * Increase the scan period (slow down scanning) if the majority of
2648  * our memory is already on our local node, or if the majority of
2649  * the page accesses are shared with other processes.
2650  * Otherwise, decrease the scan period.
2651  */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2652 static void update_task_scan_period(struct task_struct *p,
2653 			unsigned long shared, unsigned long private)
2654 {
2655 	unsigned int period_slot;
2656 	int lr_ratio, ps_ratio;
2657 	int diff;
2658 
2659 	unsigned long remote = p->numa_faults_locality[0];
2660 	unsigned long local = p->numa_faults_locality[1];
2661 
2662 	/*
2663 	 * If there were no record hinting faults then either the task is
2664 	 * completely idle or all activity is in areas that are not of interest
2665 	 * to automatic numa balancing. Related to that, if there were failed
2666 	 * migration then it implies we are migrating too quickly or the local
2667 	 * node is overloaded. In either case, scan slower
2668 	 */
2669 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2670 		p->numa_scan_period = min(p->numa_scan_period_max,
2671 			p->numa_scan_period << 1);
2672 
2673 		p->mm->numa_next_scan = jiffies +
2674 			msecs_to_jiffies(p->numa_scan_period);
2675 
2676 		return;
2677 	}
2678 
2679 	/*
2680 	 * Prepare to scale scan period relative to the current period.
2681 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2682 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2683 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2684 	 */
2685 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2686 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2687 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2688 
2689 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2690 		/*
2691 		 * Most memory accesses are local. There is no need to
2692 		 * do fast NUMA scanning, since memory is already local.
2693 		 */
2694 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2695 		if (!slot)
2696 			slot = 1;
2697 		diff = slot * period_slot;
2698 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2699 		/*
2700 		 * Most memory accesses are shared with other tasks.
2701 		 * There is no point in continuing fast NUMA scanning,
2702 		 * since other tasks may just move the memory elsewhere.
2703 		 */
2704 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2705 		if (!slot)
2706 			slot = 1;
2707 		diff = slot * period_slot;
2708 	} else {
2709 		/*
2710 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2711 		 * yet they are not on the local NUMA node. Speed up
2712 		 * NUMA scanning to get the memory moved over.
2713 		 */
2714 		int ratio = max(lr_ratio, ps_ratio);
2715 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2716 	}
2717 
2718 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2719 			task_scan_min(p), task_scan_max(p));
2720 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2721 }
2722 
2723 /*
2724  * Get the fraction of time the task has been running since the last
2725  * NUMA placement cycle. The scheduler keeps similar statistics, but
2726  * decays those on a 32ms period, which is orders of magnitude off
2727  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2728  * stats only if the task is so new there are no NUMA statistics yet.
2729  */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2730 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2731 {
2732 	u64 runtime, delta, now;
2733 	/* Use the start of this time slice to avoid calculations. */
2734 	now = p->se.exec_start;
2735 	runtime = p->se.sum_exec_runtime;
2736 
2737 	if (p->last_task_numa_placement) {
2738 		delta = runtime - p->last_sum_exec_runtime;
2739 		*period = now - p->last_task_numa_placement;
2740 
2741 		/* Avoid time going backwards, prevent potential divide error: */
2742 		if (unlikely((s64)*period < 0))
2743 			*period = 0;
2744 	} else {
2745 		delta = p->se.avg.load_sum;
2746 		*period = LOAD_AVG_MAX;
2747 	}
2748 
2749 	p->last_sum_exec_runtime = runtime;
2750 	p->last_task_numa_placement = now;
2751 
2752 	return delta;
2753 }
2754 
2755 /*
2756  * Determine the preferred nid for a task in a numa_group. This needs to
2757  * be done in a way that produces consistent results with group_weight,
2758  * otherwise workloads might not converge.
2759  */
preferred_group_nid(struct task_struct * p,int nid)2760 static int preferred_group_nid(struct task_struct *p, int nid)
2761 {
2762 	nodemask_t nodes;
2763 	int dist;
2764 
2765 	/* Direct connections between all NUMA nodes. */
2766 	if (sched_numa_topology_type == NUMA_DIRECT)
2767 		return nid;
2768 
2769 	/*
2770 	 * On a system with glueless mesh NUMA topology, group_weight
2771 	 * scores nodes according to the number of NUMA hinting faults on
2772 	 * both the node itself, and on nearby nodes.
2773 	 */
2774 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2775 		unsigned long score, max_score = 0;
2776 		int node, max_node = nid;
2777 
2778 		dist = sched_max_numa_distance;
2779 
2780 		for_each_node_state(node, N_CPU) {
2781 			score = group_weight(p, node, dist);
2782 			if (score > max_score) {
2783 				max_score = score;
2784 				max_node = node;
2785 			}
2786 		}
2787 		return max_node;
2788 	}
2789 
2790 	/*
2791 	 * Finding the preferred nid in a system with NUMA backplane
2792 	 * interconnect topology is more involved. The goal is to locate
2793 	 * tasks from numa_groups near each other in the system, and
2794 	 * untangle workloads from different sides of the system. This requires
2795 	 * searching down the hierarchy of node groups, recursively searching
2796 	 * inside the highest scoring group of nodes. The nodemask tricks
2797 	 * keep the complexity of the search down.
2798 	 */
2799 	nodes = node_states[N_CPU];
2800 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2801 		unsigned long max_faults = 0;
2802 		nodemask_t max_group = NODE_MASK_NONE;
2803 		int a, b;
2804 
2805 		/* Are there nodes at this distance from each other? */
2806 		if (!find_numa_distance(dist))
2807 			continue;
2808 
2809 		for_each_node_mask(a, nodes) {
2810 			unsigned long faults = 0;
2811 			nodemask_t this_group;
2812 			nodes_clear(this_group);
2813 
2814 			/* Sum group's NUMA faults; includes a==b case. */
2815 			for_each_node_mask(b, nodes) {
2816 				if (node_distance(a, b) < dist) {
2817 					faults += group_faults(p, b);
2818 					node_set(b, this_group);
2819 					node_clear(b, nodes);
2820 				}
2821 			}
2822 
2823 			/* Remember the top group. */
2824 			if (faults > max_faults) {
2825 				max_faults = faults;
2826 				max_group = this_group;
2827 				/*
2828 				 * subtle: at the smallest distance there is
2829 				 * just one node left in each "group", the
2830 				 * winner is the preferred nid.
2831 				 */
2832 				nid = a;
2833 			}
2834 		}
2835 		/* Next round, evaluate the nodes within max_group. */
2836 		if (!max_faults)
2837 			break;
2838 		nodes = max_group;
2839 	}
2840 	return nid;
2841 }
2842 
task_numa_placement(struct task_struct * p)2843 static void task_numa_placement(struct task_struct *p)
2844 {
2845 	int seq, nid, max_nid = NUMA_NO_NODE;
2846 	unsigned long max_faults = 0;
2847 	unsigned long fault_types[2] = { 0, 0 };
2848 	unsigned long total_faults;
2849 	u64 runtime, period;
2850 	spinlock_t *group_lock = NULL;
2851 	struct numa_group *ng;
2852 
2853 	/*
2854 	 * The p->mm->numa_scan_seq field gets updated without
2855 	 * exclusive access. Use READ_ONCE() here to ensure
2856 	 * that the field is read in a single access:
2857 	 */
2858 	seq = READ_ONCE(p->mm->numa_scan_seq);
2859 	if (p->numa_scan_seq == seq)
2860 		return;
2861 	p->numa_scan_seq = seq;
2862 	p->numa_scan_period_max = task_scan_max(p);
2863 
2864 	total_faults = p->numa_faults_locality[0] +
2865 		       p->numa_faults_locality[1];
2866 	runtime = numa_get_avg_runtime(p, &period);
2867 
2868 	/* If the task is part of a group prevent parallel updates to group stats */
2869 	ng = deref_curr_numa_group(p);
2870 	if (ng) {
2871 		group_lock = &ng->lock;
2872 		spin_lock_irq(group_lock);
2873 	}
2874 
2875 	/* Find the node with the highest number of faults */
2876 	for_each_online_node(nid) {
2877 		/* Keep track of the offsets in numa_faults array */
2878 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2879 		unsigned long faults = 0, group_faults = 0;
2880 		int priv;
2881 
2882 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2883 			long diff, f_diff, f_weight;
2884 
2885 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2886 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2887 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2888 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2889 
2890 			/* Decay existing window, copy faults since last scan */
2891 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2892 			fault_types[priv] += p->numa_faults[membuf_idx];
2893 			p->numa_faults[membuf_idx] = 0;
2894 
2895 			/*
2896 			 * Normalize the faults_from, so all tasks in a group
2897 			 * count according to CPU use, instead of by the raw
2898 			 * number of faults. Tasks with little runtime have
2899 			 * little over-all impact on throughput, and thus their
2900 			 * faults are less important.
2901 			 */
2902 			f_weight = div64_u64(runtime << 16, period + 1);
2903 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2904 				   (total_faults + 1);
2905 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2906 			p->numa_faults[cpubuf_idx] = 0;
2907 
2908 			p->numa_faults[mem_idx] += diff;
2909 			p->numa_faults[cpu_idx] += f_diff;
2910 			faults += p->numa_faults[mem_idx];
2911 			p->total_numa_faults += diff;
2912 			if (ng) {
2913 				/*
2914 				 * safe because we can only change our own group
2915 				 *
2916 				 * mem_idx represents the offset for a given
2917 				 * nid and priv in a specific region because it
2918 				 * is at the beginning of the numa_faults array.
2919 				 */
2920 				ng->faults[mem_idx] += diff;
2921 				ng->faults[cpu_idx] += f_diff;
2922 				ng->total_faults += diff;
2923 				group_faults += ng->faults[mem_idx];
2924 			}
2925 		}
2926 
2927 		if (!ng) {
2928 			if (faults > max_faults) {
2929 				max_faults = faults;
2930 				max_nid = nid;
2931 			}
2932 		} else if (group_faults > max_faults) {
2933 			max_faults = group_faults;
2934 			max_nid = nid;
2935 		}
2936 	}
2937 
2938 	/* Cannot migrate task to CPU-less node */
2939 	if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
2940 		int near_nid = max_nid;
2941 		int distance, near_distance = INT_MAX;
2942 
2943 		for_each_node_state(nid, N_CPU) {
2944 			distance = node_distance(max_nid, nid);
2945 			if (distance < near_distance) {
2946 				near_nid = nid;
2947 				near_distance = distance;
2948 			}
2949 		}
2950 		max_nid = near_nid;
2951 	}
2952 
2953 	if (ng) {
2954 		numa_group_count_active_nodes(ng);
2955 		spin_unlock_irq(group_lock);
2956 		max_nid = preferred_group_nid(p, max_nid);
2957 	}
2958 
2959 	if (max_faults) {
2960 		/* Set the new preferred node */
2961 		if (max_nid != p->numa_preferred_nid)
2962 			sched_setnuma(p, max_nid);
2963 	}
2964 
2965 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2966 }
2967 
get_numa_group(struct numa_group * grp)2968 static inline int get_numa_group(struct numa_group *grp)
2969 {
2970 	return refcount_inc_not_zero(&grp->refcount);
2971 }
2972 
put_numa_group(struct numa_group * grp)2973 static inline void put_numa_group(struct numa_group *grp)
2974 {
2975 	if (refcount_dec_and_test(&grp->refcount))
2976 		kfree_rcu(grp, rcu);
2977 }
2978 
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)2979 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2980 			int *priv)
2981 {
2982 	struct numa_group *grp, *my_grp;
2983 	struct task_struct *tsk;
2984 	bool join = false;
2985 	int cpu = cpupid_to_cpu(cpupid);
2986 	int i;
2987 
2988 	if (unlikely(!deref_curr_numa_group(p))) {
2989 		unsigned int size = sizeof(struct numa_group) +
2990 				    NR_NUMA_HINT_FAULT_STATS *
2991 				    nr_node_ids * sizeof(unsigned long);
2992 
2993 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2994 		if (!grp)
2995 			return;
2996 
2997 		refcount_set(&grp->refcount, 1);
2998 		grp->active_nodes = 1;
2999 		grp->max_faults_cpu = 0;
3000 		spin_lock_init(&grp->lock);
3001 		grp->gid = p->pid;
3002 
3003 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3004 			grp->faults[i] = p->numa_faults[i];
3005 
3006 		grp->total_faults = p->total_numa_faults;
3007 
3008 		grp->nr_tasks++;
3009 		rcu_assign_pointer(p->numa_group, grp);
3010 	}
3011 
3012 	rcu_read_lock();
3013 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
3014 
3015 	if (!cpupid_match_pid(tsk, cpupid))
3016 		goto no_join;
3017 
3018 	grp = rcu_dereference(tsk->numa_group);
3019 	if (!grp)
3020 		goto no_join;
3021 
3022 	my_grp = deref_curr_numa_group(p);
3023 	if (grp == my_grp)
3024 		goto no_join;
3025 
3026 	/*
3027 	 * Only join the other group if its bigger; if we're the bigger group,
3028 	 * the other task will join us.
3029 	 */
3030 	if (my_grp->nr_tasks > grp->nr_tasks)
3031 		goto no_join;
3032 
3033 	/*
3034 	 * Tie-break on the grp address.
3035 	 */
3036 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3037 		goto no_join;
3038 
3039 	/* Always join threads in the same process. */
3040 	if (tsk->mm == current->mm)
3041 		join = true;
3042 
3043 	/* Simple filter to avoid false positives due to PID collisions */
3044 	if (flags & TNF_SHARED)
3045 		join = true;
3046 
3047 	/* Update priv based on whether false sharing was detected */
3048 	*priv = !join;
3049 
3050 	if (join && !get_numa_group(grp))
3051 		goto no_join;
3052 
3053 	rcu_read_unlock();
3054 
3055 	if (!join)
3056 		return;
3057 
3058 	WARN_ON_ONCE(irqs_disabled());
3059 	double_lock_irq(&my_grp->lock, &grp->lock);
3060 
3061 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3062 		my_grp->faults[i] -= p->numa_faults[i];
3063 		grp->faults[i] += p->numa_faults[i];
3064 	}
3065 	my_grp->total_faults -= p->total_numa_faults;
3066 	grp->total_faults += p->total_numa_faults;
3067 
3068 	my_grp->nr_tasks--;
3069 	grp->nr_tasks++;
3070 
3071 	spin_unlock(&my_grp->lock);
3072 	spin_unlock_irq(&grp->lock);
3073 
3074 	rcu_assign_pointer(p->numa_group, grp);
3075 
3076 	put_numa_group(my_grp);
3077 	return;
3078 
3079 no_join:
3080 	rcu_read_unlock();
3081 	return;
3082 }
3083 
3084 /*
3085  * Get rid of NUMA statistics associated with a task (either current or dead).
3086  * If @final is set, the task is dead and has reached refcount zero, so we can
3087  * safely free all relevant data structures. Otherwise, there might be
3088  * concurrent reads from places like load balancing and procfs, and we should
3089  * reset the data back to default state without freeing ->numa_faults.
3090  */
task_numa_free(struct task_struct * p,bool final)3091 void task_numa_free(struct task_struct *p, bool final)
3092 {
3093 	/* safe: p either is current or is being freed by current */
3094 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3095 	unsigned long *numa_faults = p->numa_faults;
3096 	unsigned long flags;
3097 	int i;
3098 
3099 	if (!numa_faults)
3100 		return;
3101 
3102 	if (grp) {
3103 		spin_lock_irqsave(&grp->lock, flags);
3104 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3105 			grp->faults[i] -= p->numa_faults[i];
3106 		grp->total_faults -= p->total_numa_faults;
3107 
3108 		grp->nr_tasks--;
3109 		spin_unlock_irqrestore(&grp->lock, flags);
3110 		RCU_INIT_POINTER(p->numa_group, NULL);
3111 		put_numa_group(grp);
3112 	}
3113 
3114 	if (final) {
3115 		p->numa_faults = NULL;
3116 		kfree(numa_faults);
3117 	} else {
3118 		p->total_numa_faults = 0;
3119 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3120 			numa_faults[i] = 0;
3121 	}
3122 }
3123 
3124 /*
3125  * Got a PROT_NONE fault for a page on @node.
3126  */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)3127 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3128 {
3129 	struct task_struct *p = current;
3130 	bool migrated = flags & TNF_MIGRATED;
3131 	int cpu_node = task_node(current);
3132 	int local = !!(flags & TNF_FAULT_LOCAL);
3133 	struct numa_group *ng;
3134 	int priv;
3135 
3136 	if (!static_branch_likely(&sched_numa_balancing))
3137 		return;
3138 
3139 	/* for example, ksmd faulting in a user's mm */
3140 	if (!p->mm)
3141 		return;
3142 
3143 	/*
3144 	 * NUMA faults statistics are unnecessary for the slow memory
3145 	 * node for memory tiering mode.
3146 	 */
3147 	if (!node_is_toptier(mem_node) &&
3148 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3149 	     !cpupid_valid(last_cpupid)))
3150 		return;
3151 
3152 	/* Allocate buffer to track faults on a per-node basis */
3153 	if (unlikely(!p->numa_faults)) {
3154 		int size = sizeof(*p->numa_faults) *
3155 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3156 
3157 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3158 		if (!p->numa_faults)
3159 			return;
3160 
3161 		p->total_numa_faults = 0;
3162 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3163 	}
3164 
3165 	/*
3166 	 * First accesses are treated as private, otherwise consider accesses
3167 	 * to be private if the accessing pid has not changed
3168 	 */
3169 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3170 		priv = 1;
3171 	} else {
3172 		priv = cpupid_match_pid(p, last_cpupid);
3173 		if (!priv && !(flags & TNF_NO_GROUP))
3174 			task_numa_group(p, last_cpupid, flags, &priv);
3175 	}
3176 
3177 	/*
3178 	 * If a workload spans multiple NUMA nodes, a shared fault that
3179 	 * occurs wholly within the set of nodes that the workload is
3180 	 * actively using should be counted as local. This allows the
3181 	 * scan rate to slow down when a workload has settled down.
3182 	 */
3183 	ng = deref_curr_numa_group(p);
3184 	if (!priv && !local && ng && ng->active_nodes > 1 &&
3185 				numa_is_active_node(cpu_node, ng) &&
3186 				numa_is_active_node(mem_node, ng))
3187 		local = 1;
3188 
3189 	/*
3190 	 * Retry to migrate task to preferred node periodically, in case it
3191 	 * previously failed, or the scheduler moved us.
3192 	 */
3193 	if (time_after(jiffies, p->numa_migrate_retry)) {
3194 		task_numa_placement(p);
3195 		numa_migrate_preferred(p);
3196 	}
3197 
3198 	if (migrated)
3199 		p->numa_pages_migrated += pages;
3200 	if (flags & TNF_MIGRATE_FAIL)
3201 		p->numa_faults_locality[2] += pages;
3202 
3203 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3204 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3205 	p->numa_faults_locality[local] += pages;
3206 }
3207 
reset_ptenuma_scan(struct task_struct * p)3208 static void reset_ptenuma_scan(struct task_struct *p)
3209 {
3210 	/*
3211 	 * We only did a read acquisition of the mmap sem, so
3212 	 * p->mm->numa_scan_seq is written to without exclusive access
3213 	 * and the update is not guaranteed to be atomic. That's not
3214 	 * much of an issue though, since this is just used for
3215 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3216 	 * expensive, to avoid any form of compiler optimizations:
3217 	 */
3218 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3219 	p->mm->numa_scan_offset = 0;
3220 }
3221 
vma_is_accessed(struct vm_area_struct * vma)3222 static bool vma_is_accessed(struct vm_area_struct *vma)
3223 {
3224 	unsigned long pids;
3225 	/*
3226 	 * Allow unconditional access first two times, so that all the (pages)
3227 	 * of VMAs get prot_none fault introduced irrespective of accesses.
3228 	 * This is also done to avoid any side effect of task scanning
3229 	 * amplifying the unfairness of disjoint set of VMAs' access.
3230 	 */
3231 	if (READ_ONCE(current->mm->numa_scan_seq) < 2)
3232 		return true;
3233 
3234 	pids = vma->numab_state->access_pids[0] | vma->numab_state->access_pids[1];
3235 	return test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids);
3236 }
3237 
3238 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3239 
3240 /*
3241  * The expensive part of numa migration is done from task_work context.
3242  * Triggered from task_tick_numa().
3243  */
task_numa_work(struct callback_head * work)3244 static void task_numa_work(struct callback_head *work)
3245 {
3246 	unsigned long migrate, next_scan, now = jiffies;
3247 	struct task_struct *p = current;
3248 	struct mm_struct *mm = p->mm;
3249 	u64 runtime = p->se.sum_exec_runtime;
3250 	struct vm_area_struct *vma;
3251 	unsigned long start, end;
3252 	unsigned long nr_pte_updates = 0;
3253 	long pages, virtpages;
3254 	struct vma_iterator vmi;
3255 
3256 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3257 
3258 	work->next = work;
3259 	/*
3260 	 * Who cares about NUMA placement when they're dying.
3261 	 *
3262 	 * NOTE: make sure not to dereference p->mm before this check,
3263 	 * exit_task_work() happens _after_ exit_mm() so we could be called
3264 	 * without p->mm even though we still had it when we enqueued this
3265 	 * work.
3266 	 */
3267 	if (p->flags & PF_EXITING)
3268 		return;
3269 
3270 	if (!mm->numa_next_scan) {
3271 		mm->numa_next_scan = now +
3272 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3273 	}
3274 
3275 	/*
3276 	 * Enforce maximal scan/migration frequency..
3277 	 */
3278 	migrate = mm->numa_next_scan;
3279 	if (time_before(now, migrate))
3280 		return;
3281 
3282 	if (p->numa_scan_period == 0) {
3283 		p->numa_scan_period_max = task_scan_max(p);
3284 		p->numa_scan_period = task_scan_start(p);
3285 	}
3286 
3287 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3288 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3289 		return;
3290 
3291 	/*
3292 	 * Delay this task enough that another task of this mm will likely win
3293 	 * the next time around.
3294 	 */
3295 	p->node_stamp += 2 * TICK_NSEC;
3296 
3297 	start = mm->numa_scan_offset;
3298 	pages = sysctl_numa_balancing_scan_size;
3299 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3300 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3301 	if (!pages)
3302 		return;
3303 
3304 
3305 	if (!mmap_read_trylock(mm))
3306 		return;
3307 	vma_iter_init(&vmi, mm, start);
3308 	vma = vma_next(&vmi);
3309 	if (!vma) {
3310 		reset_ptenuma_scan(p);
3311 		start = 0;
3312 		vma_iter_set(&vmi, start);
3313 		vma = vma_next(&vmi);
3314 	}
3315 
3316 	do {
3317 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3318 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3319 			continue;
3320 		}
3321 
3322 		/*
3323 		 * Shared library pages mapped by multiple processes are not
3324 		 * migrated as it is expected they are cache replicated. Avoid
3325 		 * hinting faults in read-only file-backed mappings or the vdso
3326 		 * as migrating the pages will be of marginal benefit.
3327 		 */
3328 		if (!vma->vm_mm ||
3329 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
3330 			continue;
3331 
3332 		/*
3333 		 * Skip inaccessible VMAs to avoid any confusion between
3334 		 * PROT_NONE and NUMA hinting ptes
3335 		 */
3336 		if (!vma_is_accessible(vma))
3337 			continue;
3338 
3339 		/* Initialise new per-VMA NUMAB state. */
3340 		if (!vma->numab_state) {
3341 			vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
3342 				GFP_KERNEL);
3343 			if (!vma->numab_state)
3344 				continue;
3345 
3346 			vma->numab_state->next_scan = now +
3347 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3348 
3349 			/* Reset happens after 4 times scan delay of scan start */
3350 			vma->numab_state->next_pid_reset =  vma->numab_state->next_scan +
3351 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3352 		}
3353 
3354 		/*
3355 		 * Scanning the VMA's of short lived tasks add more overhead. So
3356 		 * delay the scan for new VMAs.
3357 		 */
3358 		if (mm->numa_scan_seq && time_before(jiffies,
3359 						vma->numab_state->next_scan))
3360 			continue;
3361 
3362 		/* Do not scan the VMA if task has not accessed */
3363 		if (!vma_is_accessed(vma))
3364 			continue;
3365 
3366 		/*
3367 		 * RESET access PIDs regularly for old VMAs. Resetting after checking
3368 		 * vma for recent access to avoid clearing PID info before access..
3369 		 */
3370 		if (mm->numa_scan_seq &&
3371 				time_after(jiffies, vma->numab_state->next_pid_reset)) {
3372 			vma->numab_state->next_pid_reset = vma->numab_state->next_pid_reset +
3373 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3374 			vma->numab_state->access_pids[0] = READ_ONCE(vma->numab_state->access_pids[1]);
3375 			vma->numab_state->access_pids[1] = 0;
3376 		}
3377 
3378 		do {
3379 			start = max(start, vma->vm_start);
3380 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3381 			end = min(end, vma->vm_end);
3382 			nr_pte_updates = change_prot_numa(vma, start, end);
3383 
3384 			/*
3385 			 * Try to scan sysctl_numa_balancing_size worth of
3386 			 * hpages that have at least one present PTE that
3387 			 * is not already pte-numa. If the VMA contains
3388 			 * areas that are unused or already full of prot_numa
3389 			 * PTEs, scan up to virtpages, to skip through those
3390 			 * areas faster.
3391 			 */
3392 			if (nr_pte_updates)
3393 				pages -= (end - start) >> PAGE_SHIFT;
3394 			virtpages -= (end - start) >> PAGE_SHIFT;
3395 
3396 			start = end;
3397 			if (pages <= 0 || virtpages <= 0)
3398 				goto out;
3399 
3400 			cond_resched();
3401 		} while (end != vma->vm_end);
3402 	} for_each_vma(vmi, vma);
3403 
3404 out:
3405 	/*
3406 	 * It is possible to reach the end of the VMA list but the last few
3407 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3408 	 * would find the !migratable VMA on the next scan but not reset the
3409 	 * scanner to the start so check it now.
3410 	 */
3411 	if (vma)
3412 		mm->numa_scan_offset = start;
3413 	else
3414 		reset_ptenuma_scan(p);
3415 	mmap_read_unlock(mm);
3416 
3417 	/*
3418 	 * Make sure tasks use at least 32x as much time to run other code
3419 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3420 	 * Usually update_task_scan_period slows down scanning enough; on an
3421 	 * overloaded system we need to limit overhead on a per task basis.
3422 	 */
3423 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3424 		u64 diff = p->se.sum_exec_runtime - runtime;
3425 		p->node_stamp += 32 * diff;
3426 	}
3427 }
3428 
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)3429 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3430 {
3431 	int mm_users = 0;
3432 	struct mm_struct *mm = p->mm;
3433 
3434 	if (mm) {
3435 		mm_users = atomic_read(&mm->mm_users);
3436 		if (mm_users == 1) {
3437 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3438 			mm->numa_scan_seq = 0;
3439 		}
3440 	}
3441 	p->node_stamp			= 0;
3442 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3443 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3444 	p->numa_migrate_retry		= 0;
3445 	/* Protect against double add, see task_tick_numa and task_numa_work */
3446 	p->numa_work.next		= &p->numa_work;
3447 	p->numa_faults			= NULL;
3448 	p->numa_pages_migrated		= 0;
3449 	p->total_numa_faults		= 0;
3450 	RCU_INIT_POINTER(p->numa_group, NULL);
3451 	p->last_task_numa_placement	= 0;
3452 	p->last_sum_exec_runtime	= 0;
3453 
3454 	init_task_work(&p->numa_work, task_numa_work);
3455 
3456 	/* New address space, reset the preferred nid */
3457 	if (!(clone_flags & CLONE_VM)) {
3458 		p->numa_preferred_nid = NUMA_NO_NODE;
3459 		return;
3460 	}
3461 
3462 	/*
3463 	 * New thread, keep existing numa_preferred_nid which should be copied
3464 	 * already by arch_dup_task_struct but stagger when scans start.
3465 	 */
3466 	if (mm) {
3467 		unsigned int delay;
3468 
3469 		delay = min_t(unsigned int, task_scan_max(current),
3470 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3471 		delay += 2 * TICK_NSEC;
3472 		p->node_stamp = delay;
3473 	}
3474 }
3475 
3476 /*
3477  * Drive the periodic memory faults..
3478  */
task_tick_numa(struct rq * rq,struct task_struct * curr)3479 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3480 {
3481 	struct callback_head *work = &curr->numa_work;
3482 	u64 period, now;
3483 
3484 	/*
3485 	 * We don't care about NUMA placement if we don't have memory.
3486 	 */
3487 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3488 		return;
3489 
3490 	/*
3491 	 * Using runtime rather than walltime has the dual advantage that
3492 	 * we (mostly) drive the selection from busy threads and that the
3493 	 * task needs to have done some actual work before we bother with
3494 	 * NUMA placement.
3495 	 */
3496 	now = curr->se.sum_exec_runtime;
3497 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3498 
3499 	if (now > curr->node_stamp + period) {
3500 		if (!curr->node_stamp)
3501 			curr->numa_scan_period = task_scan_start(curr);
3502 		curr->node_stamp += period;
3503 
3504 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3505 			task_work_add(curr, work, TWA_RESUME);
3506 	}
3507 }
3508 
update_scan_period(struct task_struct * p,int new_cpu)3509 static void update_scan_period(struct task_struct *p, int new_cpu)
3510 {
3511 	int src_nid = cpu_to_node(task_cpu(p));
3512 	int dst_nid = cpu_to_node(new_cpu);
3513 
3514 	if (!static_branch_likely(&sched_numa_balancing))
3515 		return;
3516 
3517 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3518 		return;
3519 
3520 	if (src_nid == dst_nid)
3521 		return;
3522 
3523 	/*
3524 	 * Allow resets if faults have been trapped before one scan
3525 	 * has completed. This is most likely due to a new task that
3526 	 * is pulled cross-node due to wakeups or load balancing.
3527 	 */
3528 	if (p->numa_scan_seq) {
3529 		/*
3530 		 * Avoid scan adjustments if moving to the preferred
3531 		 * node or if the task was not previously running on
3532 		 * the preferred node.
3533 		 */
3534 		if (dst_nid == p->numa_preferred_nid ||
3535 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3536 			src_nid != p->numa_preferred_nid))
3537 			return;
3538 	}
3539 
3540 	p->numa_scan_period = task_scan_start(p);
3541 }
3542 
3543 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)3544 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3545 {
3546 }
3547 
account_numa_enqueue(struct rq * rq,struct task_struct * p)3548 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3549 {
3550 }
3551 
account_numa_dequeue(struct rq * rq,struct task_struct * p)3552 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3553 {
3554 }
3555 
update_scan_period(struct task_struct * p,int new_cpu)3556 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3557 {
3558 }
3559 
3560 #endif /* CONFIG_NUMA_BALANCING */
3561 
3562 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)3563 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3564 {
3565 	update_load_add(&cfs_rq->load, se->load.weight);
3566 #ifdef CONFIG_SMP
3567 	if (entity_is_task(se)) {
3568 		struct rq *rq = rq_of(cfs_rq);
3569 
3570 		account_numa_enqueue(rq, task_of(se));
3571 		list_add(&se->group_node, &rq->cfs_tasks);
3572 	}
3573 #endif
3574 	cfs_rq->nr_running++;
3575 	if (se_is_idle(se))
3576 		cfs_rq->idle_nr_running++;
3577 }
3578 
3579 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3580 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3581 {
3582 	update_load_sub(&cfs_rq->load, se->load.weight);
3583 #ifdef CONFIG_SMP
3584 	if (entity_is_task(se)) {
3585 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3586 		list_del_init(&se->group_node);
3587 	}
3588 #endif
3589 	cfs_rq->nr_running--;
3590 	if (se_is_idle(se))
3591 		cfs_rq->idle_nr_running--;
3592 }
3593 
3594 /*
3595  * Signed add and clamp on underflow.
3596  *
3597  * Explicitly do a load-store to ensure the intermediate value never hits
3598  * memory. This allows lockless observations without ever seeing the negative
3599  * values.
3600  */
3601 #define add_positive(_ptr, _val) do {                           \
3602 	typeof(_ptr) ptr = (_ptr);                              \
3603 	typeof(_val) val = (_val);                              \
3604 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3605 								\
3606 	res = var + val;                                        \
3607 								\
3608 	if (val < 0 && res > var)                               \
3609 		res = 0;                                        \
3610 								\
3611 	WRITE_ONCE(*ptr, res);                                  \
3612 } while (0)
3613 
3614 /*
3615  * Unsigned subtract and clamp on underflow.
3616  *
3617  * Explicitly do a load-store to ensure the intermediate value never hits
3618  * memory. This allows lockless observations without ever seeing the negative
3619  * values.
3620  */
3621 #define sub_positive(_ptr, _val) do {				\
3622 	typeof(_ptr) ptr = (_ptr);				\
3623 	typeof(*ptr) val = (_val);				\
3624 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3625 	res = var - val;					\
3626 	if (res > var)						\
3627 		res = 0;					\
3628 	WRITE_ONCE(*ptr, res);					\
3629 } while (0)
3630 
3631 /*
3632  * Remove and clamp on negative, from a local variable.
3633  *
3634  * A variant of sub_positive(), which does not use explicit load-store
3635  * and is thus optimized for local variable updates.
3636  */
3637 #define lsub_positive(_ptr, _val) do {				\
3638 	typeof(_ptr) ptr = (_ptr);				\
3639 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3640 } while (0)
3641 
3642 #ifdef CONFIG_SMP
3643 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3644 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3645 {
3646 	cfs_rq->avg.load_avg += se->avg.load_avg;
3647 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3648 }
3649 
3650 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3651 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3652 {
3653 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3654 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3655 	/* See update_cfs_rq_load_avg() */
3656 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3657 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3658 }
3659 #else
3660 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3661 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3662 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3663 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3664 #endif
3665 
reweight_eevdf(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3666 static void reweight_eevdf(struct cfs_rq *cfs_rq, struct sched_entity *se,
3667 			   unsigned long weight)
3668 {
3669 	unsigned long old_weight = se->load.weight;
3670 	u64 avruntime = avg_vruntime(cfs_rq);
3671 	s64 vlag, vslice;
3672 
3673 	/*
3674 	 * VRUNTIME
3675 	 * ========
3676 	 *
3677 	 * COROLLARY #1: The virtual runtime of the entity needs to be
3678 	 * adjusted if re-weight at !0-lag point.
3679 	 *
3680 	 * Proof: For contradiction assume this is not true, so we can
3681 	 * re-weight without changing vruntime at !0-lag point.
3682 	 *
3683 	 *             Weight	VRuntime   Avg-VRuntime
3684 	 *     before    w          v            V
3685 	 *      after    w'         v'           V'
3686 	 *
3687 	 * Since lag needs to be preserved through re-weight:
3688 	 *
3689 	 *	lag = (V - v)*w = (V'- v')*w', where v = v'
3690 	 *	==>	V' = (V - v)*w/w' + v		(1)
3691 	 *
3692 	 * Let W be the total weight of the entities before reweight,
3693 	 * since V' is the new weighted average of entities:
3694 	 *
3695 	 *	V' = (WV + w'v - wv) / (W + w' - w)	(2)
3696 	 *
3697 	 * by using (1) & (2) we obtain:
3698 	 *
3699 	 *	(WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3700 	 *	==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3701 	 *	==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3702 	 *	==>	(V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3703 	 *
3704 	 * Since we are doing at !0-lag point which means V != v, we
3705 	 * can simplify (3):
3706 	 *
3707 	 *	==>	W / (W + w' - w) = w / w'
3708 	 *	==>	Ww' = Ww + ww' - ww
3709 	 *	==>	W * (w' - w) = w * (w' - w)
3710 	 *	==>	W = w	(re-weight indicates w' != w)
3711 	 *
3712 	 * So the cfs_rq contains only one entity, hence vruntime of
3713 	 * the entity @v should always equal to the cfs_rq's weighted
3714 	 * average vruntime @V, which means we will always re-weight
3715 	 * at 0-lag point, thus breach assumption. Proof completed.
3716 	 *
3717 	 *
3718 	 * COROLLARY #2: Re-weight does NOT affect weighted average
3719 	 * vruntime of all the entities.
3720 	 *
3721 	 * Proof: According to corollary #1, Eq. (1) should be:
3722 	 *
3723 	 *	(V - v)*w = (V' - v')*w'
3724 	 *	==>    v' = V' - (V - v)*w/w'		(4)
3725 	 *
3726 	 * According to the weighted average formula, we have:
3727 	 *
3728 	 *	V' = (WV - wv + w'v') / (W - w + w')
3729 	 *	   = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3730 	 *	   = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3731 	 *	   = (WV + w'V' - Vw) / (W - w + w')
3732 	 *
3733 	 *	==>  V'*(W - w + w') = WV + w'V' - Vw
3734 	 *	==>	V' * (W - w) = (W - w) * V	(5)
3735 	 *
3736 	 * If the entity is the only one in the cfs_rq, then reweight
3737 	 * always occurs at 0-lag point, so V won't change. Or else
3738 	 * there are other entities, hence W != w, then Eq. (5) turns
3739 	 * into V' = V. So V won't change in either case, proof done.
3740 	 *
3741 	 *
3742 	 * So according to corollary #1 & #2, the effect of re-weight
3743 	 * on vruntime should be:
3744 	 *
3745 	 *	v' = V' - (V - v) * w / w'		(4)
3746 	 *	   = V  - (V - v) * w / w'
3747 	 *	   = V  - vl * w / w'
3748 	 *	   = V  - vl'
3749 	 */
3750 	if (avruntime != se->vruntime) {
3751 		vlag = (s64)(avruntime - se->vruntime);
3752 		vlag = div_s64(vlag * old_weight, weight);
3753 		se->vruntime = avruntime - vlag;
3754 	}
3755 
3756 	/*
3757 	 * DEADLINE
3758 	 * ========
3759 	 *
3760 	 * When the weight changes, the virtual time slope changes and
3761 	 * we should adjust the relative virtual deadline accordingly.
3762 	 *
3763 	 *	d' = v' + (d - v)*w/w'
3764 	 *	   = V' - (V - v)*w/w' + (d - v)*w/w'
3765 	 *	   = V  - (V - v)*w/w' + (d - v)*w/w'
3766 	 *	   = V  + (d - V)*w/w'
3767 	 */
3768 	vslice = (s64)(se->deadline - avruntime);
3769 	vslice = div_s64(vslice * old_weight, weight);
3770 	se->deadline = avruntime + vslice;
3771 }
3772 
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3773 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3774 			    unsigned long weight)
3775 {
3776 	bool curr = cfs_rq->curr == se;
3777 
3778 	if (se->on_rq) {
3779 		/* commit outstanding execution time */
3780 		if (curr)
3781 			update_curr(cfs_rq);
3782 		else
3783 			__dequeue_entity(cfs_rq, se);
3784 		update_load_sub(&cfs_rq->load, se->load.weight);
3785 	}
3786 	dequeue_load_avg(cfs_rq, se);
3787 
3788 	if (!se->on_rq) {
3789 		/*
3790 		 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3791 		 * we need to scale se->vlag when w_i changes.
3792 		 */
3793 		se->vlag = div_s64(se->vlag * se->load.weight, weight);
3794 	} else {
3795 		reweight_eevdf(cfs_rq, se, weight);
3796 	}
3797 
3798 	update_load_set(&se->load, weight);
3799 
3800 #ifdef CONFIG_SMP
3801 	do {
3802 		u32 divider = get_pelt_divider(&se->avg);
3803 
3804 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3805 	} while (0);
3806 #endif
3807 
3808 	enqueue_load_avg(cfs_rq, se);
3809 	if (se->on_rq) {
3810 		update_load_add(&cfs_rq->load, se->load.weight);
3811 		if (!curr)
3812 			__enqueue_entity(cfs_rq, se);
3813 
3814 		/*
3815 		 * The entity's vruntime has been adjusted, so let's check
3816 		 * whether the rq-wide min_vruntime needs updated too. Since
3817 		 * the calculations above require stable min_vruntime rather
3818 		 * than up-to-date one, we do the update at the end of the
3819 		 * reweight process.
3820 		 */
3821 		update_min_vruntime(cfs_rq);
3822 	}
3823 }
3824 
reweight_task(struct task_struct * p,int prio)3825 void reweight_task(struct task_struct *p, int prio)
3826 {
3827 	struct sched_entity *se = &p->se;
3828 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3829 	struct load_weight *load = &se->load;
3830 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3831 
3832 	reweight_entity(cfs_rq, se, weight);
3833 	load->inv_weight = sched_prio_to_wmult[prio];
3834 }
3835 
3836 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3837 
3838 #ifdef CONFIG_FAIR_GROUP_SCHED
3839 #ifdef CONFIG_SMP
3840 /*
3841  * All this does is approximate the hierarchical proportion which includes that
3842  * global sum we all love to hate.
3843  *
3844  * That is, the weight of a group entity, is the proportional share of the
3845  * group weight based on the group runqueue weights. That is:
3846  *
3847  *                     tg->weight * grq->load.weight
3848  *   ge->load.weight = -----------------------------               (1)
3849  *                       \Sum grq->load.weight
3850  *
3851  * Now, because computing that sum is prohibitively expensive to compute (been
3852  * there, done that) we approximate it with this average stuff. The average
3853  * moves slower and therefore the approximation is cheaper and more stable.
3854  *
3855  * So instead of the above, we substitute:
3856  *
3857  *   grq->load.weight -> grq->avg.load_avg                         (2)
3858  *
3859  * which yields the following:
3860  *
3861  *                     tg->weight * grq->avg.load_avg
3862  *   ge->load.weight = ------------------------------              (3)
3863  *                             tg->load_avg
3864  *
3865  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3866  *
3867  * That is shares_avg, and it is right (given the approximation (2)).
3868  *
3869  * The problem with it is that because the average is slow -- it was designed
3870  * to be exactly that of course -- this leads to transients in boundary
3871  * conditions. In specific, the case where the group was idle and we start the
3872  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3873  * yielding bad latency etc..
3874  *
3875  * Now, in that special case (1) reduces to:
3876  *
3877  *                     tg->weight * grq->load.weight
3878  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3879  *                         grp->load.weight
3880  *
3881  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3882  *
3883  * So what we do is modify our approximation (3) to approach (4) in the (near)
3884  * UP case, like:
3885  *
3886  *   ge->load.weight =
3887  *
3888  *              tg->weight * grq->load.weight
3889  *     ---------------------------------------------------         (5)
3890  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3891  *
3892  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3893  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3894  *
3895  *
3896  *                     tg->weight * grq->load.weight
3897  *   ge->load.weight = -----------------------------		   (6)
3898  *                             tg_load_avg'
3899  *
3900  * Where:
3901  *
3902  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3903  *                  max(grq->load.weight, grq->avg.load_avg)
3904  *
3905  * And that is shares_weight and is icky. In the (near) UP case it approaches
3906  * (4) while in the normal case it approaches (3). It consistently
3907  * overestimates the ge->load.weight and therefore:
3908  *
3909  *   \Sum ge->load.weight >= tg->weight
3910  *
3911  * hence icky!
3912  */
calc_group_shares(struct cfs_rq * cfs_rq)3913 static long calc_group_shares(struct cfs_rq *cfs_rq)
3914 {
3915 	long tg_weight, tg_shares, load, shares;
3916 	struct task_group *tg = cfs_rq->tg;
3917 
3918 	tg_shares = READ_ONCE(tg->shares);
3919 
3920 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3921 
3922 	tg_weight = atomic_long_read(&tg->load_avg);
3923 
3924 	/* Ensure tg_weight >= load */
3925 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3926 	tg_weight += load;
3927 
3928 	shares = (tg_shares * load);
3929 	if (tg_weight)
3930 		shares /= tg_weight;
3931 
3932 	/*
3933 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3934 	 * of a group with small tg->shares value. It is a floor value which is
3935 	 * assigned as a minimum load.weight to the sched_entity representing
3936 	 * the group on a CPU.
3937 	 *
3938 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3939 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3940 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3941 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3942 	 * instead of 0.
3943 	 */
3944 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3945 }
3946 #endif /* CONFIG_SMP */
3947 
3948 /*
3949  * Recomputes the group entity based on the current state of its group
3950  * runqueue.
3951  */
update_cfs_group(struct sched_entity * se)3952 static void update_cfs_group(struct sched_entity *se)
3953 {
3954 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3955 	long shares;
3956 
3957 	if (!gcfs_rq)
3958 		return;
3959 
3960 	if (throttled_hierarchy(gcfs_rq))
3961 		return;
3962 
3963 #ifndef CONFIG_SMP
3964 	shares = READ_ONCE(gcfs_rq->tg->shares);
3965 #else
3966 	shares = calc_group_shares(gcfs_rq);
3967 #endif
3968 	if (unlikely(se->load.weight != shares))
3969 		reweight_entity(cfs_rq_of(se), se, shares);
3970 }
3971 
3972 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_group(struct sched_entity * se)3973 static inline void update_cfs_group(struct sched_entity *se)
3974 {
3975 }
3976 #endif /* CONFIG_FAIR_GROUP_SCHED */
3977 
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)3978 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3979 {
3980 	struct rq *rq = rq_of(cfs_rq);
3981 
3982 	if (&rq->cfs == cfs_rq) {
3983 		/*
3984 		 * There are a few boundary cases this might miss but it should
3985 		 * get called often enough that that should (hopefully) not be
3986 		 * a real problem.
3987 		 *
3988 		 * It will not get called when we go idle, because the idle
3989 		 * thread is a different class (!fair), nor will the utilization
3990 		 * number include things like RT tasks.
3991 		 *
3992 		 * As is, the util number is not freq-invariant (we'd have to
3993 		 * implement arch_scale_freq_capacity() for that).
3994 		 *
3995 		 * See cpu_util_cfs().
3996 		 */
3997 		cpufreq_update_util(rq, flags);
3998 	}
3999 }
4000 
4001 #ifdef CONFIG_SMP
load_avg_is_decayed(struct sched_avg * sa)4002 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4003 {
4004 	if (sa->load_sum)
4005 		return false;
4006 
4007 	if (sa->util_sum)
4008 		return false;
4009 
4010 	if (sa->runnable_sum)
4011 		return false;
4012 
4013 	/*
4014 	 * _avg must be null when _sum are null because _avg = _sum / divider
4015 	 * Make sure that rounding and/or propagation of PELT values never
4016 	 * break this.
4017 	 */
4018 	SCHED_WARN_ON(sa->load_avg ||
4019 		      sa->util_avg ||
4020 		      sa->runnable_avg);
4021 
4022 	return true;
4023 }
4024 
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)4025 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4026 {
4027 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4028 				 cfs_rq->last_update_time_copy);
4029 }
4030 #ifdef CONFIG_FAIR_GROUP_SCHED
4031 /*
4032  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4033  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4034  * bottom-up, we only have to test whether the cfs_rq before us on the list
4035  * is our child.
4036  * If cfs_rq is not on the list, test whether a child needs its to be added to
4037  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
4038  */
child_cfs_rq_on_list(struct cfs_rq * cfs_rq)4039 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4040 {
4041 	struct cfs_rq *prev_cfs_rq;
4042 	struct list_head *prev;
4043 
4044 	if (cfs_rq->on_list) {
4045 		prev = cfs_rq->leaf_cfs_rq_list.prev;
4046 	} else {
4047 		struct rq *rq = rq_of(cfs_rq);
4048 
4049 		prev = rq->tmp_alone_branch;
4050 	}
4051 
4052 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4053 
4054 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4055 }
4056 
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)4057 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4058 {
4059 	if (cfs_rq->load.weight)
4060 		return false;
4061 
4062 	if (!load_avg_is_decayed(&cfs_rq->avg))
4063 		return false;
4064 
4065 	if (child_cfs_rq_on_list(cfs_rq))
4066 		return false;
4067 
4068 	return true;
4069 }
4070 
4071 /**
4072  * update_tg_load_avg - update the tg's load avg
4073  * @cfs_rq: the cfs_rq whose avg changed
4074  *
4075  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4076  * However, because tg->load_avg is a global value there are performance
4077  * considerations.
4078  *
4079  * In order to avoid having to look at the other cfs_rq's, we use a
4080  * differential update where we store the last value we propagated. This in
4081  * turn allows skipping updates if the differential is 'small'.
4082  *
4083  * Updating tg's load_avg is necessary before update_cfs_share().
4084  */
update_tg_load_avg(struct cfs_rq * cfs_rq)4085 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4086 {
4087 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4088 
4089 	/*
4090 	 * No need to update load_avg for root_task_group as it is not used.
4091 	 */
4092 	if (cfs_rq->tg == &root_task_group)
4093 		return;
4094 
4095 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4096 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
4097 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4098 	}
4099 }
4100 
4101 /*
4102  * Called within set_task_rq() right before setting a task's CPU. The
4103  * caller only guarantees p->pi_lock is held; no other assumptions,
4104  * including the state of rq->lock, should be made.
4105  */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)4106 void set_task_rq_fair(struct sched_entity *se,
4107 		      struct cfs_rq *prev, struct cfs_rq *next)
4108 {
4109 	u64 p_last_update_time;
4110 	u64 n_last_update_time;
4111 
4112 	if (!sched_feat(ATTACH_AGE_LOAD))
4113 		return;
4114 
4115 	/*
4116 	 * We are supposed to update the task to "current" time, then its up to
4117 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4118 	 * getting what current time is, so simply throw away the out-of-date
4119 	 * time. This will result in the wakee task is less decayed, but giving
4120 	 * the wakee more load sounds not bad.
4121 	 */
4122 	if (!(se->avg.last_update_time && prev))
4123 		return;
4124 
4125 	p_last_update_time = cfs_rq_last_update_time(prev);
4126 	n_last_update_time = cfs_rq_last_update_time(next);
4127 
4128 	__update_load_avg_blocked_se(p_last_update_time, se);
4129 	se->avg.last_update_time = n_last_update_time;
4130 }
4131 
4132 /*
4133  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4134  * propagate its contribution. The key to this propagation is the invariant
4135  * that for each group:
4136  *
4137  *   ge->avg == grq->avg						(1)
4138  *
4139  * _IFF_ we look at the pure running and runnable sums. Because they
4140  * represent the very same entity, just at different points in the hierarchy.
4141  *
4142  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4143  * and simply copies the running/runnable sum over (but still wrong, because
4144  * the group entity and group rq do not have their PELT windows aligned).
4145  *
4146  * However, update_tg_cfs_load() is more complex. So we have:
4147  *
4148  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4149  *
4150  * And since, like util, the runnable part should be directly transferable,
4151  * the following would _appear_ to be the straight forward approach:
4152  *
4153  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4154  *
4155  * And per (1) we have:
4156  *
4157  *   ge->avg.runnable_avg == grq->avg.runnable_avg
4158  *
4159  * Which gives:
4160  *
4161  *                      ge->load.weight * grq->avg.load_avg
4162  *   ge->avg.load_avg = -----------------------------------		(4)
4163  *                               grq->load.weight
4164  *
4165  * Except that is wrong!
4166  *
4167  * Because while for entities historical weight is not important and we
4168  * really only care about our future and therefore can consider a pure
4169  * runnable sum, runqueues can NOT do this.
4170  *
4171  * We specifically want runqueues to have a load_avg that includes
4172  * historical weights. Those represent the blocked load, the load we expect
4173  * to (shortly) return to us. This only works by keeping the weights as
4174  * integral part of the sum. We therefore cannot decompose as per (3).
4175  *
4176  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4177  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4178  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4179  * runnable section of these tasks overlap (or not). If they were to perfectly
4180  * align the rq as a whole would be runnable 2/3 of the time. If however we
4181  * always have at least 1 runnable task, the rq as a whole is always runnable.
4182  *
4183  * So we'll have to approximate.. :/
4184  *
4185  * Given the constraint:
4186  *
4187  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4188  *
4189  * We can construct a rule that adds runnable to a rq by assuming minimal
4190  * overlap.
4191  *
4192  * On removal, we'll assume each task is equally runnable; which yields:
4193  *
4194  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4195  *
4196  * XXX: only do this for the part of runnable > running ?
4197  *
4198  */
4199 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4200 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4201 {
4202 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4203 	u32 new_sum, divider;
4204 
4205 	/* Nothing to update */
4206 	if (!delta_avg)
4207 		return;
4208 
4209 	/*
4210 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4211 	 * See ___update_load_avg() for details.
4212 	 */
4213 	divider = get_pelt_divider(&cfs_rq->avg);
4214 
4215 
4216 	/* Set new sched_entity's utilization */
4217 	se->avg.util_avg = gcfs_rq->avg.util_avg;
4218 	new_sum = se->avg.util_avg * divider;
4219 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4220 	se->avg.util_sum = new_sum;
4221 
4222 	/* Update parent cfs_rq utilization */
4223 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4224 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4225 
4226 	/* See update_cfs_rq_load_avg() */
4227 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4228 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4229 }
4230 
4231 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4232 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4233 {
4234 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4235 	u32 new_sum, divider;
4236 
4237 	/* Nothing to update */
4238 	if (!delta_avg)
4239 		return;
4240 
4241 	/*
4242 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4243 	 * See ___update_load_avg() for details.
4244 	 */
4245 	divider = get_pelt_divider(&cfs_rq->avg);
4246 
4247 	/* Set new sched_entity's runnable */
4248 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4249 	new_sum = se->avg.runnable_avg * divider;
4250 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4251 	se->avg.runnable_sum = new_sum;
4252 
4253 	/* Update parent cfs_rq runnable */
4254 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4255 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4256 	/* See update_cfs_rq_load_avg() */
4257 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4258 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4259 }
4260 
4261 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4262 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4263 {
4264 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4265 	unsigned long load_avg;
4266 	u64 load_sum = 0;
4267 	s64 delta_sum;
4268 	u32 divider;
4269 
4270 	if (!runnable_sum)
4271 		return;
4272 
4273 	gcfs_rq->prop_runnable_sum = 0;
4274 
4275 	/*
4276 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4277 	 * See ___update_load_avg() for details.
4278 	 */
4279 	divider = get_pelt_divider(&cfs_rq->avg);
4280 
4281 	if (runnable_sum >= 0) {
4282 		/*
4283 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4284 		 * the CPU is saturated running == runnable.
4285 		 */
4286 		runnable_sum += se->avg.load_sum;
4287 		runnable_sum = min_t(long, runnable_sum, divider);
4288 	} else {
4289 		/*
4290 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4291 		 * assuming all tasks are equally runnable.
4292 		 */
4293 		if (scale_load_down(gcfs_rq->load.weight)) {
4294 			load_sum = div_u64(gcfs_rq->avg.load_sum,
4295 				scale_load_down(gcfs_rq->load.weight));
4296 		}
4297 
4298 		/* But make sure to not inflate se's runnable */
4299 		runnable_sum = min(se->avg.load_sum, load_sum);
4300 	}
4301 
4302 	/*
4303 	 * runnable_sum can't be lower than running_sum
4304 	 * Rescale running sum to be in the same range as runnable sum
4305 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4306 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4307 	 */
4308 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4309 	runnable_sum = max(runnable_sum, running_sum);
4310 
4311 	load_sum = se_weight(se) * runnable_sum;
4312 	load_avg = div_u64(load_sum, divider);
4313 
4314 	delta_avg = load_avg - se->avg.load_avg;
4315 	if (!delta_avg)
4316 		return;
4317 
4318 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4319 
4320 	se->avg.load_sum = runnable_sum;
4321 	se->avg.load_avg = load_avg;
4322 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4323 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4324 	/* See update_cfs_rq_load_avg() */
4325 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4326 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4327 }
4328 
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4329 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4330 {
4331 	cfs_rq->propagate = 1;
4332 	cfs_rq->prop_runnable_sum += runnable_sum;
4333 }
4334 
4335 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)4336 static inline int propagate_entity_load_avg(struct sched_entity *se)
4337 {
4338 	struct cfs_rq *cfs_rq, *gcfs_rq;
4339 
4340 	if (entity_is_task(se))
4341 		return 0;
4342 
4343 	gcfs_rq = group_cfs_rq(se);
4344 	if (!gcfs_rq->propagate)
4345 		return 0;
4346 
4347 	gcfs_rq->propagate = 0;
4348 
4349 	cfs_rq = cfs_rq_of(se);
4350 
4351 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4352 
4353 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4354 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4355 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4356 
4357 	trace_pelt_cfs_tp(cfs_rq);
4358 	trace_pelt_se_tp(se);
4359 
4360 	return 1;
4361 }
4362 
4363 /*
4364  * Check if we need to update the load and the utilization of a blocked
4365  * group_entity:
4366  */
skip_blocked_update(struct sched_entity * se)4367 static inline bool skip_blocked_update(struct sched_entity *se)
4368 {
4369 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4370 
4371 	/*
4372 	 * If sched_entity still have not zero load or utilization, we have to
4373 	 * decay it:
4374 	 */
4375 	if (se->avg.load_avg || se->avg.util_avg)
4376 		return false;
4377 
4378 	/*
4379 	 * If there is a pending propagation, we have to update the load and
4380 	 * the utilization of the sched_entity:
4381 	 */
4382 	if (gcfs_rq->propagate)
4383 		return false;
4384 
4385 	/*
4386 	 * Otherwise, the load and the utilization of the sched_entity is
4387 	 * already zero and there is no pending propagation, so it will be a
4388 	 * waste of time to try to decay it:
4389 	 */
4390 	return true;
4391 }
4392 
4393 #else /* CONFIG_FAIR_GROUP_SCHED */
4394 
update_tg_load_avg(struct cfs_rq * cfs_rq)4395 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4396 
propagate_entity_load_avg(struct sched_entity * se)4397 static inline int propagate_entity_load_avg(struct sched_entity *se)
4398 {
4399 	return 0;
4400 }
4401 
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4402 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4403 
4404 #endif /* CONFIG_FAIR_GROUP_SCHED */
4405 
4406 #ifdef CONFIG_NO_HZ_COMMON
migrate_se_pelt_lag(struct sched_entity * se)4407 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4408 {
4409 	u64 throttled = 0, now, lut;
4410 	struct cfs_rq *cfs_rq;
4411 	struct rq *rq;
4412 	bool is_idle;
4413 
4414 	if (load_avg_is_decayed(&se->avg))
4415 		return;
4416 
4417 	cfs_rq = cfs_rq_of(se);
4418 	rq = rq_of(cfs_rq);
4419 
4420 	rcu_read_lock();
4421 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4422 	rcu_read_unlock();
4423 
4424 	/*
4425 	 * The lag estimation comes with a cost we don't want to pay all the
4426 	 * time. Hence, limiting to the case where the source CPU is idle and
4427 	 * we know we are at the greatest risk to have an outdated clock.
4428 	 */
4429 	if (!is_idle)
4430 		return;
4431 
4432 	/*
4433 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4434 	 *
4435 	 *   last_update_time (the cfs_rq's last_update_time)
4436 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4437 	 *      = rq_clock_pelt()@cfs_rq_idle
4438 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4439 	 *
4440 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4441 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4442 	 *
4443 	 *   rq_idle_lag (delta between now and rq's update)
4444 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4445 	 *
4446 	 * We can then write:
4447 	 *
4448 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4449 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4450 	 * Where:
4451 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4452 	 *      rq_clock()@rq_idle      is rq->clock_idle
4453 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4454 	 *                              is cfs_rq->throttled_pelt_idle
4455 	 */
4456 
4457 #ifdef CONFIG_CFS_BANDWIDTH
4458 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4459 	/* The clock has been stopped for throttling */
4460 	if (throttled == U64_MAX)
4461 		return;
4462 #endif
4463 	now = u64_u32_load(rq->clock_pelt_idle);
4464 	/*
4465 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4466 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4467 	 * which lead to an underestimation. The opposite would lead to an
4468 	 * overestimation.
4469 	 */
4470 	smp_rmb();
4471 	lut = cfs_rq_last_update_time(cfs_rq);
4472 
4473 	now -= throttled;
4474 	if (now < lut)
4475 		/*
4476 		 * cfs_rq->avg.last_update_time is more recent than our
4477 		 * estimation, let's use it.
4478 		 */
4479 		now = lut;
4480 	else
4481 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4482 
4483 	__update_load_avg_blocked_se(now, se);
4484 }
4485 #else
migrate_se_pelt_lag(struct sched_entity * se)4486 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4487 #endif
4488 
4489 /**
4490  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4491  * @now: current time, as per cfs_rq_clock_pelt()
4492  * @cfs_rq: cfs_rq to update
4493  *
4494  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4495  * avg. The immediate corollary is that all (fair) tasks must be attached.
4496  *
4497  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4498  *
4499  * Return: true if the load decayed or we removed load.
4500  *
4501  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4502  * call update_tg_load_avg() when this function returns true.
4503  */
4504 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)4505 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4506 {
4507 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4508 	struct sched_avg *sa = &cfs_rq->avg;
4509 	int decayed = 0;
4510 
4511 	if (cfs_rq->removed.nr) {
4512 		unsigned long r;
4513 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4514 
4515 		raw_spin_lock(&cfs_rq->removed.lock);
4516 		swap(cfs_rq->removed.util_avg, removed_util);
4517 		swap(cfs_rq->removed.load_avg, removed_load);
4518 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4519 		cfs_rq->removed.nr = 0;
4520 		raw_spin_unlock(&cfs_rq->removed.lock);
4521 
4522 		r = removed_load;
4523 		sub_positive(&sa->load_avg, r);
4524 		sub_positive(&sa->load_sum, r * divider);
4525 		/* See sa->util_sum below */
4526 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4527 
4528 		r = removed_util;
4529 		sub_positive(&sa->util_avg, r);
4530 		sub_positive(&sa->util_sum, r * divider);
4531 		/*
4532 		 * Because of rounding, se->util_sum might ends up being +1 more than
4533 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4534 		 * a lot of tasks with the rounding problem between 2 updates of
4535 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4536 		 * cfs_util_avg is not.
4537 		 * Check that util_sum is still above its lower bound for the new
4538 		 * util_avg. Given that period_contrib might have moved since the last
4539 		 * sync, we are only sure that util_sum must be above or equal to
4540 		 *    util_avg * minimum possible divider
4541 		 */
4542 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4543 
4544 		r = removed_runnable;
4545 		sub_positive(&sa->runnable_avg, r);
4546 		sub_positive(&sa->runnable_sum, r * divider);
4547 		/* See sa->util_sum above */
4548 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4549 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4550 
4551 		/*
4552 		 * removed_runnable is the unweighted version of removed_load so we
4553 		 * can use it to estimate removed_load_sum.
4554 		 */
4555 		add_tg_cfs_propagate(cfs_rq,
4556 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4557 
4558 		decayed = 1;
4559 	}
4560 
4561 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4562 	u64_u32_store_copy(sa->last_update_time,
4563 			   cfs_rq->last_update_time_copy,
4564 			   sa->last_update_time);
4565 	return decayed;
4566 }
4567 
4568 /**
4569  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4570  * @cfs_rq: cfs_rq to attach to
4571  * @se: sched_entity to attach
4572  *
4573  * Must call update_cfs_rq_load_avg() before this, since we rely on
4574  * cfs_rq->avg.last_update_time being current.
4575  */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4576 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4577 {
4578 	/*
4579 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4580 	 * See ___update_load_avg() for details.
4581 	 */
4582 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4583 
4584 	/*
4585 	 * When we attach the @se to the @cfs_rq, we must align the decay
4586 	 * window because without that, really weird and wonderful things can
4587 	 * happen.
4588 	 *
4589 	 * XXX illustrate
4590 	 */
4591 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4592 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4593 
4594 	/*
4595 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4596 	 * period_contrib. This isn't strictly correct, but since we're
4597 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4598 	 * _sum a little.
4599 	 */
4600 	se->avg.util_sum = se->avg.util_avg * divider;
4601 
4602 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4603 
4604 	se->avg.load_sum = se->avg.load_avg * divider;
4605 	if (se_weight(se) < se->avg.load_sum)
4606 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4607 	else
4608 		se->avg.load_sum = 1;
4609 
4610 	enqueue_load_avg(cfs_rq, se);
4611 	cfs_rq->avg.util_avg += se->avg.util_avg;
4612 	cfs_rq->avg.util_sum += se->avg.util_sum;
4613 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4614 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4615 
4616 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4617 
4618 	cfs_rq_util_change(cfs_rq, 0);
4619 
4620 	trace_pelt_cfs_tp(cfs_rq);
4621 }
4622 
4623 /**
4624  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4625  * @cfs_rq: cfs_rq to detach from
4626  * @se: sched_entity to detach
4627  *
4628  * Must call update_cfs_rq_load_avg() before this, since we rely on
4629  * cfs_rq->avg.last_update_time being current.
4630  */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4631 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4632 {
4633 	dequeue_load_avg(cfs_rq, se);
4634 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4635 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4636 	/* See update_cfs_rq_load_avg() */
4637 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4638 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4639 
4640 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4641 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4642 	/* See update_cfs_rq_load_avg() */
4643 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4644 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4645 
4646 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4647 
4648 	cfs_rq_util_change(cfs_rq, 0);
4649 
4650 	trace_pelt_cfs_tp(cfs_rq);
4651 }
4652 
4653 /*
4654  * Optional action to be done while updating the load average
4655  */
4656 #define UPDATE_TG	0x1
4657 #define SKIP_AGE_LOAD	0x2
4658 #define DO_ATTACH	0x4
4659 #define DO_DETACH	0x8
4660 
4661 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4662 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4663 {
4664 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4665 	int decayed;
4666 
4667 	/*
4668 	 * Track task load average for carrying it to new CPU after migrated, and
4669 	 * track group sched_entity load average for task_h_load calc in migration
4670 	 */
4671 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4672 		__update_load_avg_se(now, cfs_rq, se);
4673 
4674 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4675 	decayed |= propagate_entity_load_avg(se);
4676 
4677 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4678 
4679 		/*
4680 		 * DO_ATTACH means we're here from enqueue_entity().
4681 		 * !last_update_time means we've passed through
4682 		 * migrate_task_rq_fair() indicating we migrated.
4683 		 *
4684 		 * IOW we're enqueueing a task on a new CPU.
4685 		 */
4686 		attach_entity_load_avg(cfs_rq, se);
4687 		update_tg_load_avg(cfs_rq);
4688 
4689 	} else if (flags & DO_DETACH) {
4690 		/*
4691 		 * DO_DETACH means we're here from dequeue_entity()
4692 		 * and we are migrating task out of the CPU.
4693 		 */
4694 		detach_entity_load_avg(cfs_rq, se);
4695 		update_tg_load_avg(cfs_rq);
4696 	} else if (decayed) {
4697 		cfs_rq_util_change(cfs_rq, 0);
4698 
4699 		if (flags & UPDATE_TG)
4700 			update_tg_load_avg(cfs_rq);
4701 	}
4702 }
4703 
4704 /*
4705  * Synchronize entity load avg of dequeued entity without locking
4706  * the previous rq.
4707  */
sync_entity_load_avg(struct sched_entity * se)4708 static void sync_entity_load_avg(struct sched_entity *se)
4709 {
4710 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4711 	u64 last_update_time;
4712 
4713 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4714 	__update_load_avg_blocked_se(last_update_time, se);
4715 }
4716 
4717 /*
4718  * Task first catches up with cfs_rq, and then subtract
4719  * itself from the cfs_rq (task must be off the queue now).
4720  */
remove_entity_load_avg(struct sched_entity * se)4721 static void remove_entity_load_avg(struct sched_entity *se)
4722 {
4723 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4724 	unsigned long flags;
4725 
4726 	/*
4727 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4728 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4729 	 * so we can remove unconditionally.
4730 	 */
4731 
4732 	sync_entity_load_avg(se);
4733 
4734 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4735 	++cfs_rq->removed.nr;
4736 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4737 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4738 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4739 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4740 }
4741 
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)4742 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4743 {
4744 	return cfs_rq->avg.runnable_avg;
4745 }
4746 
cfs_rq_load_avg(struct cfs_rq * cfs_rq)4747 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4748 {
4749 	return cfs_rq->avg.load_avg;
4750 }
4751 
4752 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4753 
task_util(struct task_struct * p)4754 static inline unsigned long task_util(struct task_struct *p)
4755 {
4756 	return READ_ONCE(p->se.avg.util_avg);
4757 }
4758 
_task_util_est(struct task_struct * p)4759 static inline unsigned long _task_util_est(struct task_struct *p)
4760 {
4761 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
4762 
4763 	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4764 }
4765 
task_util_est(struct task_struct * p)4766 static inline unsigned long task_util_est(struct task_struct *p)
4767 {
4768 	return max(task_util(p), _task_util_est(p));
4769 }
4770 
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4771 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4772 				    struct task_struct *p)
4773 {
4774 	unsigned int enqueued;
4775 
4776 	if (!sched_feat(UTIL_EST))
4777 		return;
4778 
4779 	/* Update root cfs_rq's estimated utilization */
4780 	enqueued  = cfs_rq->avg.util_est.enqueued;
4781 	enqueued += _task_util_est(p);
4782 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4783 
4784 	trace_sched_util_est_cfs_tp(cfs_rq);
4785 }
4786 
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4787 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4788 				    struct task_struct *p)
4789 {
4790 	unsigned int enqueued;
4791 
4792 	if (!sched_feat(UTIL_EST))
4793 		return;
4794 
4795 	/* Update root cfs_rq's estimated utilization */
4796 	enqueued  = cfs_rq->avg.util_est.enqueued;
4797 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4798 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4799 
4800 	trace_sched_util_est_cfs_tp(cfs_rq);
4801 }
4802 
4803 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4804 
4805 /*
4806  * Check if a (signed) value is within a specified (unsigned) margin,
4807  * based on the observation that:
4808  *
4809  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4810  *
4811  * NOTE: this only works when value + margin < INT_MAX.
4812  */
within_margin(int value,int margin)4813 static inline bool within_margin(int value, int margin)
4814 {
4815 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4816 }
4817 
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4818 static inline void util_est_update(struct cfs_rq *cfs_rq,
4819 				   struct task_struct *p,
4820 				   bool task_sleep)
4821 {
4822 	long last_ewma_diff, last_enqueued_diff;
4823 	struct util_est ue;
4824 
4825 	if (!sched_feat(UTIL_EST))
4826 		return;
4827 
4828 	/*
4829 	 * Skip update of task's estimated utilization when the task has not
4830 	 * yet completed an activation, e.g. being migrated.
4831 	 */
4832 	if (!task_sleep)
4833 		return;
4834 
4835 	/*
4836 	 * If the PELT values haven't changed since enqueue time,
4837 	 * skip the util_est update.
4838 	 */
4839 	ue = p->se.avg.util_est;
4840 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4841 		return;
4842 
4843 	last_enqueued_diff = ue.enqueued;
4844 
4845 	/*
4846 	 * Reset EWMA on utilization increases, the moving average is used only
4847 	 * to smooth utilization decreases.
4848 	 */
4849 	ue.enqueued = task_util(p);
4850 	if (sched_feat(UTIL_EST_FASTUP)) {
4851 		if (ue.ewma < ue.enqueued) {
4852 			ue.ewma = ue.enqueued;
4853 			goto done;
4854 		}
4855 	}
4856 
4857 	/*
4858 	 * Skip update of task's estimated utilization when its members are
4859 	 * already ~1% close to its last activation value.
4860 	 */
4861 	last_ewma_diff = ue.enqueued - ue.ewma;
4862 	last_enqueued_diff -= ue.enqueued;
4863 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4864 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4865 			goto done;
4866 
4867 		return;
4868 	}
4869 
4870 	/*
4871 	 * To avoid overestimation of actual task utilization, skip updates if
4872 	 * we cannot grant there is idle time in this CPU.
4873 	 */
4874 	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4875 		return;
4876 
4877 	/*
4878 	 * Update Task's estimated utilization
4879 	 *
4880 	 * When *p completes an activation we can consolidate another sample
4881 	 * of the task size. This is done by storing the current PELT value
4882 	 * as ue.enqueued and by using this value to update the Exponential
4883 	 * Weighted Moving Average (EWMA):
4884 	 *
4885 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4886 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4887 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4888 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4889 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4890 	 *
4891 	 * Where 'w' is the weight of new samples, which is configured to be
4892 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4893 	 */
4894 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4895 	ue.ewma  += last_ewma_diff;
4896 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4897 done:
4898 	ue.enqueued |= UTIL_AVG_UNCHANGED;
4899 	WRITE_ONCE(p->se.avg.util_est, ue);
4900 
4901 	trace_sched_util_est_se_tp(&p->se);
4902 }
4903 
util_fits_cpu(unsigned long util,unsigned long uclamp_min,unsigned long uclamp_max,int cpu)4904 static inline int util_fits_cpu(unsigned long util,
4905 				unsigned long uclamp_min,
4906 				unsigned long uclamp_max,
4907 				int cpu)
4908 {
4909 	unsigned long capacity_orig, capacity_orig_thermal;
4910 	unsigned long capacity = capacity_of(cpu);
4911 	bool fits, uclamp_max_fits;
4912 
4913 	/*
4914 	 * Check if the real util fits without any uclamp boost/cap applied.
4915 	 */
4916 	fits = fits_capacity(util, capacity);
4917 
4918 	if (!uclamp_is_used())
4919 		return fits;
4920 
4921 	/*
4922 	 * We must use capacity_orig_of() for comparing against uclamp_min and
4923 	 * uclamp_max. We only care about capacity pressure (by using
4924 	 * capacity_of()) for comparing against the real util.
4925 	 *
4926 	 * If a task is boosted to 1024 for example, we don't want a tiny
4927 	 * pressure to skew the check whether it fits a CPU or not.
4928 	 *
4929 	 * Similarly if a task is capped to capacity_orig_of(little_cpu), it
4930 	 * should fit a little cpu even if there's some pressure.
4931 	 *
4932 	 * Only exception is for thermal pressure since it has a direct impact
4933 	 * on available OPP of the system.
4934 	 *
4935 	 * We honour it for uclamp_min only as a drop in performance level
4936 	 * could result in not getting the requested minimum performance level.
4937 	 *
4938 	 * For uclamp_max, we can tolerate a drop in performance level as the
4939 	 * goal is to cap the task. So it's okay if it's getting less.
4940 	 */
4941 	capacity_orig = capacity_orig_of(cpu);
4942 	capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
4943 
4944 	/*
4945 	 * We want to force a task to fit a cpu as implied by uclamp_max.
4946 	 * But we do have some corner cases to cater for..
4947 	 *
4948 	 *
4949 	 *                                 C=z
4950 	 *   |                             ___
4951 	 *   |                  C=y       |   |
4952 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
4953 	 *   |      C=x        |   |      |   |
4954 	 *   |      ___        |   |      |   |
4955 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
4956 	 *   |     |   |       |   |      |   |
4957 	 *   |     |   |       |   |      |   |
4958 	 *   +----------------------------------------
4959 	 *         cpu0        cpu1       cpu2
4960 	 *
4961 	 *   In the above example if a task is capped to a specific performance
4962 	 *   point, y, then when:
4963 	 *
4964 	 *   * util = 80% of x then it does not fit on cpu0 and should migrate
4965 	 *     to cpu1
4966 	 *   * util = 80% of y then it is forced to fit on cpu1 to honour
4967 	 *     uclamp_max request.
4968 	 *
4969 	 *   which is what we're enforcing here. A task always fits if
4970 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
4971 	 *   the normal upmigration rules should withhold still.
4972 	 *
4973 	 *   Only exception is when we are on max capacity, then we need to be
4974 	 *   careful not to block overutilized state. This is so because:
4975 	 *
4976 	 *     1. There's no concept of capping at max_capacity! We can't go
4977 	 *        beyond this performance level anyway.
4978 	 *     2. The system is being saturated when we're operating near
4979 	 *        max capacity, it doesn't make sense to block overutilized.
4980 	 */
4981 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
4982 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
4983 	fits = fits || uclamp_max_fits;
4984 
4985 	/*
4986 	 *
4987 	 *                                 C=z
4988 	 *   |                             ___       (region a, capped, util >= uclamp_max)
4989 	 *   |                  C=y       |   |
4990 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
4991 	 *   |      C=x        |   |      |   |
4992 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
4993 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
4994 	 *   |     |   |       |   |      |   |
4995 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
4996 	 *   +----------------------------------------
4997 	 *         cpu0        cpu1       cpu2
4998 	 *
4999 	 * a) If util > uclamp_max, then we're capped, we don't care about
5000 	 *    actual fitness value here. We only care if uclamp_max fits
5001 	 *    capacity without taking margin/pressure into account.
5002 	 *    See comment above.
5003 	 *
5004 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
5005 	 *    fits_capacity() rules apply. Except we need to ensure that we
5006 	 *    enforce we remain within uclamp_max, see comment above.
5007 	 *
5008 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5009 	 *    need to take into account the boosted value fits the CPU without
5010 	 *    taking margin/pressure into account.
5011 	 *
5012 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
5013 	 * just need to consider an extra check for case (c) after ensuring we
5014 	 * handle the case uclamp_min > uclamp_max.
5015 	 */
5016 	uclamp_min = min(uclamp_min, uclamp_max);
5017 	if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
5018 		return -1;
5019 
5020 	return fits;
5021 }
5022 
task_fits_cpu(struct task_struct * p,int cpu)5023 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5024 {
5025 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5026 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5027 	unsigned long util = task_util_est(p);
5028 	/*
5029 	 * Return true only if the cpu fully fits the task requirements, which
5030 	 * include the utilization but also the performance hints.
5031 	 */
5032 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5033 }
5034 
update_misfit_status(struct task_struct * p,struct rq * rq)5035 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5036 {
5037 	if (!sched_asym_cpucap_active())
5038 		return;
5039 
5040 	if (!p || p->nr_cpus_allowed == 1) {
5041 		rq->misfit_task_load = 0;
5042 		return;
5043 	}
5044 
5045 	if (task_fits_cpu(p, cpu_of(rq))) {
5046 		rq->misfit_task_load = 0;
5047 		return;
5048 	}
5049 
5050 	/*
5051 	 * Make sure that misfit_task_load will not be null even if
5052 	 * task_h_load() returns 0.
5053 	 */
5054 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5055 }
5056 
5057 #else /* CONFIG_SMP */
5058 
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)5059 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5060 {
5061 	return !cfs_rq->nr_running;
5062 }
5063 
5064 #define UPDATE_TG	0x0
5065 #define SKIP_AGE_LOAD	0x0
5066 #define DO_ATTACH	0x0
5067 #define DO_DETACH	0x0
5068 
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int not_used1)5069 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5070 {
5071 	cfs_rq_util_change(cfs_rq, 0);
5072 }
5073 
remove_entity_load_avg(struct sched_entity * se)5074 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5075 
5076 static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5077 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5078 static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5079 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5080 
newidle_balance(struct rq * rq,struct rq_flags * rf)5081 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
5082 {
5083 	return 0;
5084 }
5085 
5086 static inline void
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)5087 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5088 
5089 static inline void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)5090 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5091 
5092 static inline void
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)5093 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5094 		bool task_sleep) {}
update_misfit_status(struct task_struct * p,struct rq * rq)5095 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5096 
5097 #endif /* CONFIG_SMP */
5098 
5099 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5100 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5101 {
5102 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
5103 	s64 lag = 0;
5104 
5105 	se->slice = sysctl_sched_base_slice;
5106 	vslice = calc_delta_fair(se->slice, se);
5107 
5108 	/*
5109 	 * Due to how V is constructed as the weighted average of entities,
5110 	 * adding tasks with positive lag, or removing tasks with negative lag
5111 	 * will move 'time' backwards, this can screw around with the lag of
5112 	 * other tasks.
5113 	 *
5114 	 * EEVDF: placement strategy #1 / #2
5115 	 */
5116 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
5117 		struct sched_entity *curr = cfs_rq->curr;
5118 		unsigned long load;
5119 
5120 		lag = se->vlag;
5121 
5122 		/*
5123 		 * If we want to place a task and preserve lag, we have to
5124 		 * consider the effect of the new entity on the weighted
5125 		 * average and compensate for this, otherwise lag can quickly
5126 		 * evaporate.
5127 		 *
5128 		 * Lag is defined as:
5129 		 *
5130 		 *   lag_i = S - s_i = w_i * (V - v_i)
5131 		 *
5132 		 * To avoid the 'w_i' term all over the place, we only track
5133 		 * the virtual lag:
5134 		 *
5135 		 *   vl_i = V - v_i <=> v_i = V - vl_i
5136 		 *
5137 		 * And we take V to be the weighted average of all v:
5138 		 *
5139 		 *   V = (\Sum w_j*v_j) / W
5140 		 *
5141 		 * Where W is: \Sum w_j
5142 		 *
5143 		 * Then, the weighted average after adding an entity with lag
5144 		 * vl_i is given by:
5145 		 *
5146 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5147 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5148 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5149 		 *      = (V*(W + w_i) - w_i*l) / (W + w_i)
5150 		 *      = V - w_i*vl_i / (W + w_i)
5151 		 *
5152 		 * And the actual lag after adding an entity with vl_i is:
5153 		 *
5154 		 *   vl'_i = V' - v_i
5155 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5156 		 *         = vl_i - w_i*vl_i / (W + w_i)
5157 		 *
5158 		 * Which is strictly less than vl_i. So in order to preserve lag
5159 		 * we should inflate the lag before placement such that the
5160 		 * effective lag after placement comes out right.
5161 		 *
5162 		 * As such, invert the above relation for vl'_i to get the vl_i
5163 		 * we need to use such that the lag after placement is the lag
5164 		 * we computed before dequeue.
5165 		 *
5166 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5167 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5168 		 *
5169 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5170 		 *                   = W*vl_i
5171 		 *
5172 		 *   vl_i = (W + w_i)*vl'_i / W
5173 		 */
5174 		load = cfs_rq->avg_load;
5175 		if (curr && curr->on_rq)
5176 			load += scale_load_down(curr->load.weight);
5177 
5178 		lag *= load + scale_load_down(se->load.weight);
5179 		if (WARN_ON_ONCE(!load))
5180 			load = 1;
5181 		lag = div_s64(lag, load);
5182 	}
5183 
5184 	se->vruntime = vruntime - lag;
5185 
5186 	/*
5187 	 * When joining the competition; the exisiting tasks will be,
5188 	 * on average, halfway through their slice, as such start tasks
5189 	 * off with half a slice to ease into the competition.
5190 	 */
5191 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5192 		vslice /= 2;
5193 
5194 	/*
5195 	 * EEVDF: vd_i = ve_i + r_i/w_i
5196 	 */
5197 	se->deadline = se->vruntime + vslice;
5198 }
5199 
5200 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5201 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5202 
5203 static inline bool cfs_bandwidth_used(void);
5204 
5205 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5206 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5207 {
5208 	bool curr = cfs_rq->curr == se;
5209 
5210 	/*
5211 	 * If we're the current task, we must renormalise before calling
5212 	 * update_curr().
5213 	 */
5214 	if (curr)
5215 		place_entity(cfs_rq, se, flags);
5216 
5217 	update_curr(cfs_rq);
5218 
5219 	/*
5220 	 * When enqueuing a sched_entity, we must:
5221 	 *   - Update loads to have both entity and cfs_rq synced with now.
5222 	 *   - For group_entity, update its runnable_weight to reflect the new
5223 	 *     h_nr_running of its group cfs_rq.
5224 	 *   - For group_entity, update its weight to reflect the new share of
5225 	 *     its group cfs_rq
5226 	 *   - Add its new weight to cfs_rq->load.weight
5227 	 */
5228 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5229 	se_update_runnable(se);
5230 	/*
5231 	 * XXX update_load_avg() above will have attached us to the pelt sum;
5232 	 * but update_cfs_group() here will re-adjust the weight and have to
5233 	 * undo/redo all that. Seems wasteful.
5234 	 */
5235 	update_cfs_group(se);
5236 
5237 	/*
5238 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5239 	 * we can place the entity.
5240 	 */
5241 	if (!curr)
5242 		place_entity(cfs_rq, se, flags);
5243 
5244 	account_entity_enqueue(cfs_rq, se);
5245 
5246 	/* Entity has migrated, no longer consider this task hot */
5247 	if (flags & ENQUEUE_MIGRATED)
5248 		se->exec_start = 0;
5249 
5250 	check_schedstat_required();
5251 	update_stats_enqueue_fair(cfs_rq, se, flags);
5252 	if (!curr)
5253 		__enqueue_entity(cfs_rq, se);
5254 	se->on_rq = 1;
5255 
5256 	if (cfs_rq->nr_running == 1) {
5257 		check_enqueue_throttle(cfs_rq);
5258 		if (!throttled_hierarchy(cfs_rq)) {
5259 			list_add_leaf_cfs_rq(cfs_rq);
5260 		} else {
5261 #ifdef CONFIG_CFS_BANDWIDTH
5262 			struct rq *rq = rq_of(cfs_rq);
5263 
5264 			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5265 				cfs_rq->throttled_clock = rq_clock(rq);
5266 			if (!cfs_rq->throttled_clock_self)
5267 				cfs_rq->throttled_clock_self = rq_clock(rq);
5268 #endif
5269 		}
5270 	}
5271 }
5272 
__clear_buddies_next(struct sched_entity * se)5273 static void __clear_buddies_next(struct sched_entity *se)
5274 {
5275 	for_each_sched_entity(se) {
5276 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5277 		if (cfs_rq->next != se)
5278 			break;
5279 
5280 		cfs_rq->next = NULL;
5281 	}
5282 }
5283 
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)5284 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5285 {
5286 	if (cfs_rq->next == se)
5287 		__clear_buddies_next(se);
5288 }
5289 
5290 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5291 
5292 static void
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5293 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5294 {
5295 	int action = UPDATE_TG;
5296 
5297 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5298 		action |= DO_DETACH;
5299 
5300 	/*
5301 	 * Update run-time statistics of the 'current'.
5302 	 */
5303 	update_curr(cfs_rq);
5304 
5305 	/*
5306 	 * When dequeuing a sched_entity, we must:
5307 	 *   - Update loads to have both entity and cfs_rq synced with now.
5308 	 *   - For group_entity, update its runnable_weight to reflect the new
5309 	 *     h_nr_running of its group cfs_rq.
5310 	 *   - Subtract its previous weight from cfs_rq->load.weight.
5311 	 *   - For group entity, update its weight to reflect the new share
5312 	 *     of its group cfs_rq.
5313 	 */
5314 	update_load_avg(cfs_rq, se, action);
5315 	se_update_runnable(se);
5316 
5317 	update_stats_dequeue_fair(cfs_rq, se, flags);
5318 
5319 	clear_buddies(cfs_rq, se);
5320 
5321 	update_entity_lag(cfs_rq, se);
5322 	if (se != cfs_rq->curr)
5323 		__dequeue_entity(cfs_rq, se);
5324 	se->on_rq = 0;
5325 	account_entity_dequeue(cfs_rq, se);
5326 
5327 	/* return excess runtime on last dequeue */
5328 	return_cfs_rq_runtime(cfs_rq);
5329 
5330 	update_cfs_group(se);
5331 
5332 	/*
5333 	 * Now advance min_vruntime if @se was the entity holding it back,
5334 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5335 	 * put back on, and if we advance min_vruntime, we'll be placed back
5336 	 * further than we started -- ie. we'll be penalized.
5337 	 */
5338 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5339 		update_min_vruntime(cfs_rq);
5340 
5341 	if (cfs_rq->nr_running == 0)
5342 		update_idle_cfs_rq_clock_pelt(cfs_rq);
5343 }
5344 
5345 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)5346 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5347 {
5348 	clear_buddies(cfs_rq, se);
5349 
5350 	/* 'current' is not kept within the tree. */
5351 	if (se->on_rq) {
5352 		/*
5353 		 * Any task has to be enqueued before it get to execute on
5354 		 * a CPU. So account for the time it spent waiting on the
5355 		 * runqueue.
5356 		 */
5357 		update_stats_wait_end_fair(cfs_rq, se);
5358 		__dequeue_entity(cfs_rq, se);
5359 		update_load_avg(cfs_rq, se, UPDATE_TG);
5360 		/*
5361 		 * HACK, stash a copy of deadline at the point of pick in vlag,
5362 		 * which isn't used until dequeue.
5363 		 */
5364 		se->vlag = se->deadline;
5365 	}
5366 
5367 	update_stats_curr_start(cfs_rq, se);
5368 	cfs_rq->curr = se;
5369 
5370 	/*
5371 	 * Track our maximum slice length, if the CPU's load is at
5372 	 * least twice that of our own weight (i.e. dont track it
5373 	 * when there are only lesser-weight tasks around):
5374 	 */
5375 	if (schedstat_enabled() &&
5376 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5377 		struct sched_statistics *stats;
5378 
5379 		stats = __schedstats_from_se(se);
5380 		__schedstat_set(stats->slice_max,
5381 				max((u64)stats->slice_max,
5382 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5383 	}
5384 
5385 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5386 }
5387 
5388 static int
5389 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
5390 
5391 /*
5392  * Pick the next process, keeping these things in mind, in this order:
5393  * 1) keep things fair between processes/task groups
5394  * 2) pick the "next" process, since someone really wants that to run
5395  * 3) pick the "last" process, for cache locality
5396  * 4) do not run the "skip" process, if something else is available
5397  */
5398 static struct sched_entity *
pick_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * curr)5399 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
5400 {
5401 	/*
5402 	 * Enabling NEXT_BUDDY will affect latency but not fairness.
5403 	 */
5404 	if (sched_feat(NEXT_BUDDY) &&
5405 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
5406 		return cfs_rq->next;
5407 
5408 	return pick_eevdf(cfs_rq);
5409 }
5410 
5411 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5412 
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)5413 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5414 {
5415 	/*
5416 	 * If still on the runqueue then deactivate_task()
5417 	 * was not called and update_curr() has to be done:
5418 	 */
5419 	if (prev->on_rq)
5420 		update_curr(cfs_rq);
5421 
5422 	/* throttle cfs_rqs exceeding runtime */
5423 	check_cfs_rq_runtime(cfs_rq);
5424 
5425 	if (prev->on_rq) {
5426 		update_stats_wait_start_fair(cfs_rq, prev);
5427 		/* Put 'current' back into the tree. */
5428 		__enqueue_entity(cfs_rq, prev);
5429 		/* in !on_rq case, update occurred at dequeue */
5430 		update_load_avg(cfs_rq, prev, 0);
5431 	}
5432 	cfs_rq->curr = NULL;
5433 }
5434 
5435 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)5436 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5437 {
5438 	/*
5439 	 * Update run-time statistics of the 'current'.
5440 	 */
5441 	update_curr(cfs_rq);
5442 
5443 	/*
5444 	 * Ensure that runnable average is periodically updated.
5445 	 */
5446 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5447 	update_cfs_group(curr);
5448 
5449 #ifdef CONFIG_SCHED_HRTICK
5450 	/*
5451 	 * queued ticks are scheduled to match the slice, so don't bother
5452 	 * validating it and just reschedule.
5453 	 */
5454 	if (queued) {
5455 		resched_curr(rq_of(cfs_rq));
5456 		return;
5457 	}
5458 	/*
5459 	 * don't let the period tick interfere with the hrtick preemption
5460 	 */
5461 	if (!sched_feat(DOUBLE_TICK) &&
5462 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5463 		return;
5464 #endif
5465 }
5466 
5467 
5468 /**************************************************
5469  * CFS bandwidth control machinery
5470  */
5471 
5472 #ifdef CONFIG_CFS_BANDWIDTH
5473 
5474 #ifdef CONFIG_JUMP_LABEL
5475 static struct static_key __cfs_bandwidth_used;
5476 
cfs_bandwidth_used(void)5477 static inline bool cfs_bandwidth_used(void)
5478 {
5479 	return static_key_false(&__cfs_bandwidth_used);
5480 }
5481 
cfs_bandwidth_usage_inc(void)5482 void cfs_bandwidth_usage_inc(void)
5483 {
5484 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5485 }
5486 
cfs_bandwidth_usage_dec(void)5487 void cfs_bandwidth_usage_dec(void)
5488 {
5489 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5490 }
5491 #else /* CONFIG_JUMP_LABEL */
cfs_bandwidth_used(void)5492 static bool cfs_bandwidth_used(void)
5493 {
5494 	return true;
5495 }
5496 
cfs_bandwidth_usage_inc(void)5497 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)5498 void cfs_bandwidth_usage_dec(void) {}
5499 #endif /* CONFIG_JUMP_LABEL */
5500 
5501 /*
5502  * default period for cfs group bandwidth.
5503  * default: 0.1s, units: nanoseconds
5504  */
default_cfs_period(void)5505 static inline u64 default_cfs_period(void)
5506 {
5507 	return 100000000ULL;
5508 }
5509 
sched_cfs_bandwidth_slice(void)5510 static inline u64 sched_cfs_bandwidth_slice(void)
5511 {
5512 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5513 }
5514 
5515 /*
5516  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5517  * directly instead of rq->clock to avoid adding additional synchronization
5518  * around rq->lock.
5519  *
5520  * requires cfs_b->lock
5521  */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)5522 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5523 {
5524 	s64 runtime;
5525 
5526 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5527 		return;
5528 
5529 	cfs_b->runtime += cfs_b->quota;
5530 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5531 	if (runtime > 0) {
5532 		cfs_b->burst_time += runtime;
5533 		cfs_b->nr_burst++;
5534 	}
5535 
5536 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5537 	cfs_b->runtime_snap = cfs_b->runtime;
5538 }
5539 
tg_cfs_bandwidth(struct task_group * tg)5540 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5541 {
5542 	return &tg->cfs_bandwidth;
5543 }
5544 
5545 /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)5546 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5547 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5548 {
5549 	u64 min_amount, amount = 0;
5550 
5551 	lockdep_assert_held(&cfs_b->lock);
5552 
5553 	/* note: this is a positive sum as runtime_remaining <= 0 */
5554 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5555 
5556 	if (cfs_b->quota == RUNTIME_INF)
5557 		amount = min_amount;
5558 	else {
5559 		start_cfs_bandwidth(cfs_b);
5560 
5561 		if (cfs_b->runtime > 0) {
5562 			amount = min(cfs_b->runtime, min_amount);
5563 			cfs_b->runtime -= amount;
5564 			cfs_b->idle = 0;
5565 		}
5566 	}
5567 
5568 	cfs_rq->runtime_remaining += amount;
5569 
5570 	return cfs_rq->runtime_remaining > 0;
5571 }
5572 
5573 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)5574 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5575 {
5576 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5577 	int ret;
5578 
5579 	raw_spin_lock(&cfs_b->lock);
5580 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5581 	raw_spin_unlock(&cfs_b->lock);
5582 
5583 	return ret;
5584 }
5585 
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5586 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5587 {
5588 	/* dock delta_exec before expiring quota (as it could span periods) */
5589 	cfs_rq->runtime_remaining -= delta_exec;
5590 
5591 	if (likely(cfs_rq->runtime_remaining > 0))
5592 		return;
5593 
5594 	if (cfs_rq->throttled)
5595 		return;
5596 	/*
5597 	 * if we're unable to extend our runtime we resched so that the active
5598 	 * hierarchy can be throttled
5599 	 */
5600 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5601 		resched_curr(rq_of(cfs_rq));
5602 }
5603 
5604 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5605 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5606 {
5607 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5608 		return;
5609 
5610 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5611 }
5612 
cfs_rq_throttled(struct cfs_rq * cfs_rq)5613 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5614 {
5615 	return cfs_bandwidth_used() && cfs_rq->throttled;
5616 }
5617 
5618 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)5619 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5620 {
5621 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5622 }
5623 
5624 /*
5625  * Ensure that neither of the group entities corresponding to src_cpu or
5626  * dest_cpu are members of a throttled hierarchy when performing group
5627  * load-balance operations.
5628  */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5629 static inline int throttled_lb_pair(struct task_group *tg,
5630 				    int src_cpu, int dest_cpu)
5631 {
5632 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5633 
5634 	src_cfs_rq = tg->cfs_rq[src_cpu];
5635 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5636 
5637 	return throttled_hierarchy(src_cfs_rq) ||
5638 	       throttled_hierarchy(dest_cfs_rq);
5639 }
5640 
tg_unthrottle_up(struct task_group * tg,void * data)5641 static int tg_unthrottle_up(struct task_group *tg, void *data)
5642 {
5643 	struct rq *rq = data;
5644 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5645 
5646 	cfs_rq->throttle_count--;
5647 	if (!cfs_rq->throttle_count) {
5648 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5649 					     cfs_rq->throttled_clock_pelt;
5650 
5651 		/* Add cfs_rq with load or one or more already running entities to the list */
5652 		if (!cfs_rq_is_decayed(cfs_rq))
5653 			list_add_leaf_cfs_rq(cfs_rq);
5654 
5655 		if (cfs_rq->throttled_clock_self) {
5656 			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5657 
5658 			cfs_rq->throttled_clock_self = 0;
5659 
5660 			if (SCHED_WARN_ON((s64)delta < 0))
5661 				delta = 0;
5662 
5663 			cfs_rq->throttled_clock_self_time += delta;
5664 		}
5665 	}
5666 
5667 	return 0;
5668 }
5669 
tg_throttle_down(struct task_group * tg,void * data)5670 static int tg_throttle_down(struct task_group *tg, void *data)
5671 {
5672 	struct rq *rq = data;
5673 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5674 
5675 	/* group is entering throttled state, stop time */
5676 	if (!cfs_rq->throttle_count) {
5677 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5678 		list_del_leaf_cfs_rq(cfs_rq);
5679 
5680 		SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5681 		if (cfs_rq->nr_running)
5682 			cfs_rq->throttled_clock_self = rq_clock(rq);
5683 	}
5684 	cfs_rq->throttle_count++;
5685 
5686 	return 0;
5687 }
5688 
throttle_cfs_rq(struct cfs_rq * cfs_rq)5689 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5690 {
5691 	struct rq *rq = rq_of(cfs_rq);
5692 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5693 	struct sched_entity *se;
5694 	long task_delta, idle_task_delta, dequeue = 1;
5695 
5696 	raw_spin_lock(&cfs_b->lock);
5697 	/* This will start the period timer if necessary */
5698 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5699 		/*
5700 		 * We have raced with bandwidth becoming available, and if we
5701 		 * actually throttled the timer might not unthrottle us for an
5702 		 * entire period. We additionally needed to make sure that any
5703 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5704 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5705 		 * for 1ns of runtime rather than just check cfs_b.
5706 		 */
5707 		dequeue = 0;
5708 	} else {
5709 		list_add_tail_rcu(&cfs_rq->throttled_list,
5710 				  &cfs_b->throttled_cfs_rq);
5711 	}
5712 	raw_spin_unlock(&cfs_b->lock);
5713 
5714 	if (!dequeue)
5715 		return false;  /* Throttle no longer required. */
5716 
5717 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5718 
5719 	/* freeze hierarchy runnable averages while throttled */
5720 	rcu_read_lock();
5721 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5722 	rcu_read_unlock();
5723 
5724 	task_delta = cfs_rq->h_nr_running;
5725 	idle_task_delta = cfs_rq->idle_h_nr_running;
5726 	for_each_sched_entity(se) {
5727 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5728 		/* throttled entity or throttle-on-deactivate */
5729 		if (!se->on_rq)
5730 			goto done;
5731 
5732 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5733 
5734 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5735 			idle_task_delta = cfs_rq->h_nr_running;
5736 
5737 		qcfs_rq->h_nr_running -= task_delta;
5738 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5739 
5740 		if (qcfs_rq->load.weight) {
5741 			/* Avoid re-evaluating load for this entity: */
5742 			se = parent_entity(se);
5743 			break;
5744 		}
5745 	}
5746 
5747 	for_each_sched_entity(se) {
5748 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5749 		/* throttled entity or throttle-on-deactivate */
5750 		if (!se->on_rq)
5751 			goto done;
5752 
5753 		update_load_avg(qcfs_rq, se, 0);
5754 		se_update_runnable(se);
5755 
5756 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5757 			idle_task_delta = cfs_rq->h_nr_running;
5758 
5759 		qcfs_rq->h_nr_running -= task_delta;
5760 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5761 	}
5762 
5763 	/* At this point se is NULL and we are at root level*/
5764 	sub_nr_running(rq, task_delta);
5765 
5766 done:
5767 	/*
5768 	 * Note: distribution will already see us throttled via the
5769 	 * throttled-list.  rq->lock protects completion.
5770 	 */
5771 	cfs_rq->throttled = 1;
5772 	SCHED_WARN_ON(cfs_rq->throttled_clock);
5773 	if (cfs_rq->nr_running)
5774 		cfs_rq->throttled_clock = rq_clock(rq);
5775 	return true;
5776 }
5777 
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)5778 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5779 {
5780 	struct rq *rq = rq_of(cfs_rq);
5781 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5782 	struct sched_entity *se;
5783 	long task_delta, idle_task_delta;
5784 
5785 	se = cfs_rq->tg->se[cpu_of(rq)];
5786 
5787 	cfs_rq->throttled = 0;
5788 
5789 	update_rq_clock(rq);
5790 
5791 	raw_spin_lock(&cfs_b->lock);
5792 	if (cfs_rq->throttled_clock) {
5793 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5794 		cfs_rq->throttled_clock = 0;
5795 	}
5796 	list_del_rcu(&cfs_rq->throttled_list);
5797 	raw_spin_unlock(&cfs_b->lock);
5798 
5799 	/* update hierarchical throttle state */
5800 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5801 
5802 	if (!cfs_rq->load.weight) {
5803 		if (!cfs_rq->on_list)
5804 			return;
5805 		/*
5806 		 * Nothing to run but something to decay (on_list)?
5807 		 * Complete the branch.
5808 		 */
5809 		for_each_sched_entity(se) {
5810 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5811 				break;
5812 		}
5813 		goto unthrottle_throttle;
5814 	}
5815 
5816 	task_delta = cfs_rq->h_nr_running;
5817 	idle_task_delta = cfs_rq->idle_h_nr_running;
5818 	for_each_sched_entity(se) {
5819 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5820 
5821 		if (se->on_rq)
5822 			break;
5823 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5824 
5825 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5826 			idle_task_delta = cfs_rq->h_nr_running;
5827 
5828 		qcfs_rq->h_nr_running += task_delta;
5829 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5830 
5831 		/* end evaluation on encountering a throttled cfs_rq */
5832 		if (cfs_rq_throttled(qcfs_rq))
5833 			goto unthrottle_throttle;
5834 	}
5835 
5836 	for_each_sched_entity(se) {
5837 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5838 
5839 		update_load_avg(qcfs_rq, se, UPDATE_TG);
5840 		se_update_runnable(se);
5841 
5842 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5843 			idle_task_delta = cfs_rq->h_nr_running;
5844 
5845 		qcfs_rq->h_nr_running += task_delta;
5846 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5847 
5848 		/* end evaluation on encountering a throttled cfs_rq */
5849 		if (cfs_rq_throttled(qcfs_rq))
5850 			goto unthrottle_throttle;
5851 	}
5852 
5853 	/* At this point se is NULL and we are at root level*/
5854 	add_nr_running(rq, task_delta);
5855 
5856 unthrottle_throttle:
5857 	assert_list_leaf_cfs_rq(rq);
5858 
5859 	/* Determine whether we need to wake up potentially idle CPU: */
5860 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5861 		resched_curr(rq);
5862 }
5863 
5864 #ifdef CONFIG_SMP
__cfsb_csd_unthrottle(void * arg)5865 static void __cfsb_csd_unthrottle(void *arg)
5866 {
5867 	struct cfs_rq *cursor, *tmp;
5868 	struct rq *rq = arg;
5869 	struct rq_flags rf;
5870 
5871 	rq_lock(rq, &rf);
5872 
5873 	/*
5874 	 * Iterating over the list can trigger several call to
5875 	 * update_rq_clock() in unthrottle_cfs_rq().
5876 	 * Do it once and skip the potential next ones.
5877 	 */
5878 	update_rq_clock(rq);
5879 	rq_clock_start_loop_update(rq);
5880 
5881 	/*
5882 	 * Since we hold rq lock we're safe from concurrent manipulation of
5883 	 * the CSD list. However, this RCU critical section annotates the
5884 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
5885 	 * race with group being freed in the window between removing it
5886 	 * from the list and advancing to the next entry in the list.
5887 	 */
5888 	rcu_read_lock();
5889 
5890 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
5891 				 throttled_csd_list) {
5892 		list_del_init(&cursor->throttled_csd_list);
5893 
5894 		if (cfs_rq_throttled(cursor))
5895 			unthrottle_cfs_rq(cursor);
5896 	}
5897 
5898 	rcu_read_unlock();
5899 
5900 	rq_clock_stop_loop_update(rq);
5901 	rq_unlock(rq, &rf);
5902 }
5903 
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)5904 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5905 {
5906 	struct rq *rq = rq_of(cfs_rq);
5907 	bool first;
5908 
5909 	if (rq == this_rq()) {
5910 		unthrottle_cfs_rq(cfs_rq);
5911 		return;
5912 	}
5913 
5914 	/* Already enqueued */
5915 	if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
5916 		return;
5917 
5918 	first = list_empty(&rq->cfsb_csd_list);
5919 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
5920 	if (first)
5921 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
5922 }
5923 #else
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)5924 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5925 {
5926 	unthrottle_cfs_rq(cfs_rq);
5927 }
5928 #endif
5929 
unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)5930 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5931 {
5932 	lockdep_assert_rq_held(rq_of(cfs_rq));
5933 
5934 	if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
5935 	    cfs_rq->runtime_remaining <= 0))
5936 		return;
5937 
5938 	__unthrottle_cfs_rq_async(cfs_rq);
5939 }
5940 
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)5941 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5942 {
5943 	struct cfs_rq *local_unthrottle = NULL;
5944 	int this_cpu = smp_processor_id();
5945 	u64 runtime, remaining = 1;
5946 	bool throttled = false;
5947 	struct cfs_rq *cfs_rq;
5948 	struct rq_flags rf;
5949 	struct rq *rq;
5950 
5951 	rcu_read_lock();
5952 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5953 				throttled_list) {
5954 		rq = rq_of(cfs_rq);
5955 
5956 		if (!remaining) {
5957 			throttled = true;
5958 			break;
5959 		}
5960 
5961 		rq_lock_irqsave(rq, &rf);
5962 		if (!cfs_rq_throttled(cfs_rq))
5963 			goto next;
5964 
5965 #ifdef CONFIG_SMP
5966 		/* Already queued for async unthrottle */
5967 		if (!list_empty(&cfs_rq->throttled_csd_list))
5968 			goto next;
5969 #endif
5970 
5971 		/* By the above checks, this should never be true */
5972 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5973 
5974 		raw_spin_lock(&cfs_b->lock);
5975 		runtime = -cfs_rq->runtime_remaining + 1;
5976 		if (runtime > cfs_b->runtime)
5977 			runtime = cfs_b->runtime;
5978 		cfs_b->runtime -= runtime;
5979 		remaining = cfs_b->runtime;
5980 		raw_spin_unlock(&cfs_b->lock);
5981 
5982 		cfs_rq->runtime_remaining += runtime;
5983 
5984 		/* we check whether we're throttled above */
5985 		if (cfs_rq->runtime_remaining > 0) {
5986 			if (cpu_of(rq) != this_cpu ||
5987 			    SCHED_WARN_ON(local_unthrottle))
5988 				unthrottle_cfs_rq_async(cfs_rq);
5989 			else
5990 				local_unthrottle = cfs_rq;
5991 		} else {
5992 			throttled = true;
5993 		}
5994 
5995 next:
5996 		rq_unlock_irqrestore(rq, &rf);
5997 	}
5998 	rcu_read_unlock();
5999 
6000 	if (local_unthrottle) {
6001 		rq = cpu_rq(this_cpu);
6002 		rq_lock_irqsave(rq, &rf);
6003 		if (cfs_rq_throttled(local_unthrottle))
6004 			unthrottle_cfs_rq(local_unthrottle);
6005 		rq_unlock_irqrestore(rq, &rf);
6006 	}
6007 
6008 	return throttled;
6009 }
6010 
6011 /*
6012  * Responsible for refilling a task_group's bandwidth and unthrottling its
6013  * cfs_rqs as appropriate. If there has been no activity within the last
6014  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6015  * used to track this state.
6016  */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)6017 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6018 {
6019 	int throttled;
6020 
6021 	/* no need to continue the timer with no bandwidth constraint */
6022 	if (cfs_b->quota == RUNTIME_INF)
6023 		goto out_deactivate;
6024 
6025 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6026 	cfs_b->nr_periods += overrun;
6027 
6028 	/* Refill extra burst quota even if cfs_b->idle */
6029 	__refill_cfs_bandwidth_runtime(cfs_b);
6030 
6031 	/*
6032 	 * idle depends on !throttled (for the case of a large deficit), and if
6033 	 * we're going inactive then everything else can be deferred
6034 	 */
6035 	if (cfs_b->idle && !throttled)
6036 		goto out_deactivate;
6037 
6038 	if (!throttled) {
6039 		/* mark as potentially idle for the upcoming period */
6040 		cfs_b->idle = 1;
6041 		return 0;
6042 	}
6043 
6044 	/* account preceding periods in which throttling occurred */
6045 	cfs_b->nr_throttled += overrun;
6046 
6047 	/*
6048 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
6049 	 */
6050 	while (throttled && cfs_b->runtime > 0) {
6051 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6052 		/* we can't nest cfs_b->lock while distributing bandwidth */
6053 		throttled = distribute_cfs_runtime(cfs_b);
6054 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
6055 	}
6056 
6057 	/*
6058 	 * While we are ensured activity in the period following an
6059 	 * unthrottle, this also covers the case in which the new bandwidth is
6060 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
6061 	 * timer to remain active while there are any throttled entities.)
6062 	 */
6063 	cfs_b->idle = 0;
6064 
6065 	return 0;
6066 
6067 out_deactivate:
6068 	return 1;
6069 }
6070 
6071 /* a cfs_rq won't donate quota below this amount */
6072 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6073 /* minimum remaining period time to redistribute slack quota */
6074 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6075 /* how long we wait to gather additional slack before distributing */
6076 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6077 
6078 /*
6079  * Are we near the end of the current quota period?
6080  *
6081  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6082  * hrtimer base being cleared by hrtimer_start. In the case of
6083  * migrate_hrtimers, base is never cleared, so we are fine.
6084  */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)6085 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6086 {
6087 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
6088 	s64 remaining;
6089 
6090 	/* if the call-back is running a quota refresh is already occurring */
6091 	if (hrtimer_callback_running(refresh_timer))
6092 		return 1;
6093 
6094 	/* is a quota refresh about to occur? */
6095 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6096 	if (remaining < (s64)min_expire)
6097 		return 1;
6098 
6099 	return 0;
6100 }
6101 
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)6102 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6103 {
6104 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6105 
6106 	/* if there's a quota refresh soon don't bother with slack */
6107 	if (runtime_refresh_within(cfs_b, min_left))
6108 		return;
6109 
6110 	/* don't push forwards an existing deferred unthrottle */
6111 	if (cfs_b->slack_started)
6112 		return;
6113 	cfs_b->slack_started = true;
6114 
6115 	hrtimer_start(&cfs_b->slack_timer,
6116 			ns_to_ktime(cfs_bandwidth_slack_period),
6117 			HRTIMER_MODE_REL);
6118 }
6119 
6120 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6121 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6122 {
6123 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6124 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6125 
6126 	if (slack_runtime <= 0)
6127 		return;
6128 
6129 	raw_spin_lock(&cfs_b->lock);
6130 	if (cfs_b->quota != RUNTIME_INF) {
6131 		cfs_b->runtime += slack_runtime;
6132 
6133 		/* we are under rq->lock, defer unthrottling using a timer */
6134 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6135 		    !list_empty(&cfs_b->throttled_cfs_rq))
6136 			start_cfs_slack_bandwidth(cfs_b);
6137 	}
6138 	raw_spin_unlock(&cfs_b->lock);
6139 
6140 	/* even if it's not valid for return we don't want to try again */
6141 	cfs_rq->runtime_remaining -= slack_runtime;
6142 }
6143 
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6144 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6145 {
6146 	if (!cfs_bandwidth_used())
6147 		return;
6148 
6149 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6150 		return;
6151 
6152 	__return_cfs_rq_runtime(cfs_rq);
6153 }
6154 
6155 /*
6156  * This is done with a timer (instead of inline with bandwidth return) since
6157  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6158  */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)6159 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6160 {
6161 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6162 	unsigned long flags;
6163 
6164 	/* confirm we're still not at a refresh boundary */
6165 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6166 	cfs_b->slack_started = false;
6167 
6168 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6169 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6170 		return;
6171 	}
6172 
6173 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6174 		runtime = cfs_b->runtime;
6175 
6176 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6177 
6178 	if (!runtime)
6179 		return;
6180 
6181 	distribute_cfs_runtime(cfs_b);
6182 }
6183 
6184 /*
6185  * When a group wakes up we want to make sure that its quota is not already
6186  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6187  * runtime as update_curr() throttling can not trigger until it's on-rq.
6188  */
check_enqueue_throttle(struct cfs_rq * cfs_rq)6189 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6190 {
6191 	if (!cfs_bandwidth_used())
6192 		return;
6193 
6194 	/* an active group must be handled by the update_curr()->put() path */
6195 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6196 		return;
6197 
6198 	/* ensure the group is not already throttled */
6199 	if (cfs_rq_throttled(cfs_rq))
6200 		return;
6201 
6202 	/* update runtime allocation */
6203 	account_cfs_rq_runtime(cfs_rq, 0);
6204 	if (cfs_rq->runtime_remaining <= 0)
6205 		throttle_cfs_rq(cfs_rq);
6206 }
6207 
sync_throttle(struct task_group * tg,int cpu)6208 static void sync_throttle(struct task_group *tg, int cpu)
6209 {
6210 	struct cfs_rq *pcfs_rq, *cfs_rq;
6211 
6212 	if (!cfs_bandwidth_used())
6213 		return;
6214 
6215 	if (!tg->parent)
6216 		return;
6217 
6218 	cfs_rq = tg->cfs_rq[cpu];
6219 	pcfs_rq = tg->parent->cfs_rq[cpu];
6220 
6221 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6222 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6223 }
6224 
6225 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6226 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6227 {
6228 	if (!cfs_bandwidth_used())
6229 		return false;
6230 
6231 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6232 		return false;
6233 
6234 	/*
6235 	 * it's possible for a throttled entity to be forced into a running
6236 	 * state (e.g. set_curr_task), in this case we're finished.
6237 	 */
6238 	if (cfs_rq_throttled(cfs_rq))
6239 		return true;
6240 
6241 	return throttle_cfs_rq(cfs_rq);
6242 }
6243 
sched_cfs_slack_timer(struct hrtimer * timer)6244 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6245 {
6246 	struct cfs_bandwidth *cfs_b =
6247 		container_of(timer, struct cfs_bandwidth, slack_timer);
6248 
6249 	do_sched_cfs_slack_timer(cfs_b);
6250 
6251 	return HRTIMER_NORESTART;
6252 }
6253 
6254 extern const u64 max_cfs_quota_period;
6255 
sched_cfs_period_timer(struct hrtimer * timer)6256 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6257 {
6258 	struct cfs_bandwidth *cfs_b =
6259 		container_of(timer, struct cfs_bandwidth, period_timer);
6260 	unsigned long flags;
6261 	int overrun;
6262 	int idle = 0;
6263 	int count = 0;
6264 
6265 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6266 	for (;;) {
6267 		overrun = hrtimer_forward_now(timer, cfs_b->period);
6268 		if (!overrun)
6269 			break;
6270 
6271 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6272 
6273 		if (++count > 3) {
6274 			u64 new, old = ktime_to_ns(cfs_b->period);
6275 
6276 			/*
6277 			 * Grow period by a factor of 2 to avoid losing precision.
6278 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6279 			 * to fail.
6280 			 */
6281 			new = old * 2;
6282 			if (new < max_cfs_quota_period) {
6283 				cfs_b->period = ns_to_ktime(new);
6284 				cfs_b->quota *= 2;
6285 				cfs_b->burst *= 2;
6286 
6287 				pr_warn_ratelimited(
6288 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6289 					smp_processor_id(),
6290 					div_u64(new, NSEC_PER_USEC),
6291 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6292 			} else {
6293 				pr_warn_ratelimited(
6294 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6295 					smp_processor_id(),
6296 					div_u64(old, NSEC_PER_USEC),
6297 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6298 			}
6299 
6300 			/* reset count so we don't come right back in here */
6301 			count = 0;
6302 		}
6303 	}
6304 	if (idle)
6305 		cfs_b->period_active = 0;
6306 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6307 
6308 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6309 }
6310 
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6311 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6312 {
6313 	raw_spin_lock_init(&cfs_b->lock);
6314 	cfs_b->runtime = 0;
6315 	cfs_b->quota = RUNTIME_INF;
6316 	cfs_b->period = ns_to_ktime(default_cfs_period());
6317 	cfs_b->burst = 0;
6318 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6319 
6320 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6321 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6322 	cfs_b->period_timer.function = sched_cfs_period_timer;
6323 
6324 	/* Add a random offset so that timers interleave */
6325 	hrtimer_set_expires(&cfs_b->period_timer,
6326 			    get_random_u32_below(cfs_b->period));
6327 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6328 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
6329 	cfs_b->slack_started = false;
6330 }
6331 
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6332 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6333 {
6334 	cfs_rq->runtime_enabled = 0;
6335 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6336 #ifdef CONFIG_SMP
6337 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6338 #endif
6339 }
6340 
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6341 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6342 {
6343 	lockdep_assert_held(&cfs_b->lock);
6344 
6345 	if (cfs_b->period_active)
6346 		return;
6347 
6348 	cfs_b->period_active = 1;
6349 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6350 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6351 }
6352 
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6353 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6354 {
6355 	int __maybe_unused i;
6356 
6357 	/* init_cfs_bandwidth() was not called */
6358 	if (!cfs_b->throttled_cfs_rq.next)
6359 		return;
6360 
6361 	hrtimer_cancel(&cfs_b->period_timer);
6362 	hrtimer_cancel(&cfs_b->slack_timer);
6363 
6364 	/*
6365 	 * It is possible that we still have some cfs_rq's pending on a CSD
6366 	 * list, though this race is very rare. In order for this to occur, we
6367 	 * must have raced with the last task leaving the group while there
6368 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6369 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6370 	 * we can simply flush all pending CSD work inline here. We're
6371 	 * guaranteed at this point that no additional cfs_rq of this group can
6372 	 * join a CSD list.
6373 	 */
6374 #ifdef CONFIG_SMP
6375 	for_each_possible_cpu(i) {
6376 		struct rq *rq = cpu_rq(i);
6377 		unsigned long flags;
6378 
6379 		if (list_empty(&rq->cfsb_csd_list))
6380 			continue;
6381 
6382 		local_irq_save(flags);
6383 		__cfsb_csd_unthrottle(rq);
6384 		local_irq_restore(flags);
6385 	}
6386 #endif
6387 }
6388 
6389 /*
6390  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6391  *
6392  * The race is harmless, since modifying bandwidth settings of unhooked group
6393  * bits doesn't do much.
6394  */
6395 
6396 /* cpu online callback */
update_runtime_enabled(struct rq * rq)6397 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6398 {
6399 	struct task_group *tg;
6400 
6401 	lockdep_assert_rq_held(rq);
6402 
6403 	rcu_read_lock();
6404 	list_for_each_entry_rcu(tg, &task_groups, list) {
6405 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6406 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6407 
6408 		raw_spin_lock(&cfs_b->lock);
6409 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6410 		raw_spin_unlock(&cfs_b->lock);
6411 	}
6412 	rcu_read_unlock();
6413 }
6414 
6415 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)6416 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6417 {
6418 	struct task_group *tg;
6419 
6420 	lockdep_assert_rq_held(rq);
6421 
6422 	/*
6423 	 * The rq clock has already been updated in the
6424 	 * set_rq_offline(), so we should skip updating
6425 	 * the rq clock again in unthrottle_cfs_rq().
6426 	 */
6427 	rq_clock_start_loop_update(rq);
6428 
6429 	rcu_read_lock();
6430 	list_for_each_entry_rcu(tg, &task_groups, list) {
6431 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6432 
6433 		if (!cfs_rq->runtime_enabled)
6434 			continue;
6435 
6436 		/*
6437 		 * clock_task is not advancing so we just need to make sure
6438 		 * there's some valid quota amount
6439 		 */
6440 		cfs_rq->runtime_remaining = 1;
6441 		/*
6442 		 * Offline rq is schedulable till CPU is completely disabled
6443 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6444 		 */
6445 		cfs_rq->runtime_enabled = 0;
6446 
6447 		if (cfs_rq_throttled(cfs_rq))
6448 			unthrottle_cfs_rq(cfs_rq);
6449 	}
6450 	rcu_read_unlock();
6451 
6452 	rq_clock_stop_loop_update(rq);
6453 }
6454 
cfs_task_bw_constrained(struct task_struct * p)6455 bool cfs_task_bw_constrained(struct task_struct *p)
6456 {
6457 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6458 
6459 	if (!cfs_bandwidth_used())
6460 		return false;
6461 
6462 	if (cfs_rq->runtime_enabled ||
6463 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6464 		return true;
6465 
6466 	return false;
6467 }
6468 
6469 #ifdef CONFIG_NO_HZ_FULL
6470 /* called from pick_next_task_fair() */
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6471 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6472 {
6473 	int cpu = cpu_of(rq);
6474 
6475 	if (!sched_feat(HZ_BW) || !cfs_bandwidth_used())
6476 		return;
6477 
6478 	if (!tick_nohz_full_cpu(cpu))
6479 		return;
6480 
6481 	if (rq->nr_running != 1)
6482 		return;
6483 
6484 	/*
6485 	 *  We know there is only one task runnable and we've just picked it. The
6486 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6487 	 *  be otherwise able to stop the tick. Just need to check if we are using
6488 	 *  bandwidth control.
6489 	 */
6490 	if (cfs_task_bw_constrained(p))
6491 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6492 }
6493 #endif
6494 
6495 #else /* CONFIG_CFS_BANDWIDTH */
6496 
cfs_bandwidth_used(void)6497 static inline bool cfs_bandwidth_used(void)
6498 {
6499 	return false;
6500 }
6501 
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)6502 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6503 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)6504 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)6505 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6506 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6507 
cfs_rq_throttled(struct cfs_rq * cfs_rq)6508 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6509 {
6510 	return 0;
6511 }
6512 
throttled_hierarchy(struct cfs_rq * cfs_rq)6513 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6514 {
6515 	return 0;
6516 }
6517 
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)6518 static inline int throttled_lb_pair(struct task_group *tg,
6519 				    int src_cpu, int dest_cpu)
6520 {
6521 	return 0;
6522 }
6523 
6524 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6525 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6526 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6527 #endif
6528 
tg_cfs_bandwidth(struct task_group * tg)6529 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6530 {
6531 	return NULL;
6532 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6533 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)6534 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)6535 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6536 #ifdef CONFIG_CGROUP_SCHED
cfs_task_bw_constrained(struct task_struct * p)6537 bool cfs_task_bw_constrained(struct task_struct *p)
6538 {
6539 	return false;
6540 }
6541 #endif
6542 #endif /* CONFIG_CFS_BANDWIDTH */
6543 
6544 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6545 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6546 #endif
6547 
6548 /**************************************************
6549  * CFS operations on tasks:
6550  */
6551 
6552 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)6553 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6554 {
6555 	struct sched_entity *se = &p->se;
6556 
6557 	SCHED_WARN_ON(task_rq(p) != rq);
6558 
6559 	if (rq->cfs.h_nr_running > 1) {
6560 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6561 		u64 slice = se->slice;
6562 		s64 delta = slice - ran;
6563 
6564 		if (delta < 0) {
6565 			if (task_current(rq, p))
6566 				resched_curr(rq);
6567 			return;
6568 		}
6569 		hrtick_start(rq, delta);
6570 	}
6571 }
6572 
6573 /*
6574  * called from enqueue/dequeue and updates the hrtick when the
6575  * current task is from our class and nr_running is low enough
6576  * to matter.
6577  */
hrtick_update(struct rq * rq)6578 static void hrtick_update(struct rq *rq)
6579 {
6580 	struct task_struct *curr = rq->curr;
6581 
6582 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6583 		return;
6584 
6585 	hrtick_start_fair(rq, curr);
6586 }
6587 #else /* !CONFIG_SCHED_HRTICK */
6588 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)6589 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6590 {
6591 }
6592 
hrtick_update(struct rq * rq)6593 static inline void hrtick_update(struct rq *rq)
6594 {
6595 }
6596 #endif
6597 
6598 #ifdef CONFIG_SMP
cpu_overutilized(int cpu)6599 static inline bool cpu_overutilized(int cpu)
6600 {
6601 	unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6602 	unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6603 
6604 	/* Return true only if the utilization doesn't fit CPU's capacity */
6605 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6606 }
6607 
update_overutilized_status(struct rq * rq)6608 static inline void update_overutilized_status(struct rq *rq)
6609 {
6610 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
6611 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
6612 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
6613 	}
6614 }
6615 #else
update_overutilized_status(struct rq * rq)6616 static inline void update_overutilized_status(struct rq *rq) { }
6617 #endif
6618 
6619 /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)6620 static int sched_idle_rq(struct rq *rq)
6621 {
6622 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6623 			rq->nr_running);
6624 }
6625 
6626 #ifdef CONFIG_SMP
sched_idle_cpu(int cpu)6627 static int sched_idle_cpu(int cpu)
6628 {
6629 	return sched_idle_rq(cpu_rq(cpu));
6630 }
6631 #endif
6632 
6633 static void set_next_buddy(struct sched_entity *se);
6634 
6635 #ifdef CONFIG_SCHED_LATENCY_NICE
check_preempt_from_idle(struct cfs_rq * cfs,struct sched_entity * se)6636 static void check_preempt_from_idle(struct cfs_rq *cfs, struct sched_entity *se)
6637 {
6638 	struct sched_entity *next;
6639 
6640 	if (se->latency_weight <= 0)
6641 		return;
6642 
6643 	if (cfs->nr_running <= 1)
6644 		return;
6645 	/*
6646 	 * When waking from idle, we don't need to check to preempt at wakeup
6647 	 * the idle thread and don't set next buddy as a candidate for being
6648 	 * picked in priority.
6649 	 * In case of simultaneous wakeup from idle, the latency sensitive tasks
6650 	 * lost opportunity to preempt non sensitive tasks which woke up
6651 	 * simultaneously.
6652 	 */
6653 
6654 	if (cfs->next)
6655 		next = cfs->next;
6656 	else
6657 		next = __pick_first_entity(cfs);
6658 
6659 	if (next && wakeup_preempt_entity(next, se) == 1)
6660 		set_next_buddy(se);
6661 }
6662 #endif
6663 
6664 /*
6665  * The enqueue_task method is called before nr_running is
6666  * increased. Here we update the fair scheduling stats and
6667  * then put the task into the rbtree:
6668  */
6669 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)6670 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6671 {
6672 	struct cfs_rq *cfs_rq;
6673 	struct sched_entity *se = &p->se;
6674 	int idle_h_nr_running = task_has_idle_policy(p);
6675 	int task_new = !(flags & ENQUEUE_WAKEUP);
6676 
6677 	/*
6678 	 * The code below (indirectly) updates schedutil which looks at
6679 	 * the cfs_rq utilization to select a frequency.
6680 	 * Let's add the task's estimated utilization to the cfs_rq's
6681 	 * estimated utilization, before we update schedutil.
6682 	 */
6683 	util_est_enqueue(&rq->cfs, p);
6684 
6685 	/*
6686 	 * If in_iowait is set, the code below may not trigger any cpufreq
6687 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6688 	 * passed.
6689 	 */
6690 	if (p->in_iowait)
6691 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6692 
6693 	for_each_sched_entity(se) {
6694 		if (se->on_rq)
6695 			break;
6696 		cfs_rq = cfs_rq_of(se);
6697 		enqueue_entity(cfs_rq, se, flags);
6698 
6699 		cfs_rq->h_nr_running++;
6700 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6701 
6702 		if (cfs_rq_is_idle(cfs_rq))
6703 			idle_h_nr_running = 1;
6704 
6705 		/* end evaluation on encountering a throttled cfs_rq */
6706 		if (cfs_rq_throttled(cfs_rq))
6707 			goto enqueue_throttle;
6708 
6709 		flags = ENQUEUE_WAKEUP;
6710 	}
6711 
6712 	for_each_sched_entity(se) {
6713 		cfs_rq = cfs_rq_of(se);
6714 
6715 		update_load_avg(cfs_rq, se, UPDATE_TG);
6716 		se_update_runnable(se);
6717 		update_cfs_group(se);
6718 
6719 		cfs_rq->h_nr_running++;
6720 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6721 
6722 		if (cfs_rq_is_idle(cfs_rq))
6723 			idle_h_nr_running = 1;
6724 
6725 		/* end evaluation on encountering a throttled cfs_rq */
6726 		if (cfs_rq_throttled(cfs_rq))
6727 			goto enqueue_throttle;
6728 	}
6729 
6730 	/* At this point se is NULL and we are at root level*/
6731 	add_nr_running(rq, 1);
6732 
6733 	/*
6734 	 * Since new tasks are assigned an initial util_avg equal to
6735 	 * half of the spare capacity of their CPU, tiny tasks have the
6736 	 * ability to cross the overutilized threshold, which will
6737 	 * result in the load balancer ruining all the task placement
6738 	 * done by EAS. As a way to mitigate that effect, do not account
6739 	 * for the first enqueue operation of new tasks during the
6740 	 * overutilized flag detection.
6741 	 *
6742 	 * A better way of solving this problem would be to wait for
6743 	 * the PELT signals of tasks to converge before taking them
6744 	 * into account, but that is not straightforward to implement,
6745 	 * and the following generally works well enough in practice.
6746 	 */
6747 	if (!task_new)
6748 		update_overutilized_status(rq);
6749 
6750 #ifdef CONFIG_SCHED_LATENCY_NICE
6751 	if (rq->curr == rq->idle)
6752 		check_preempt_from_idle(cfs_rq_of(&p->se), &p->se);
6753 #endif
6754 
6755 enqueue_throttle:
6756 	assert_list_leaf_cfs_rq(rq);
6757 
6758 	hrtick_update(rq);
6759 }
6760 
6761 static void set_next_buddy(struct sched_entity *se);
6762 
6763 /*
6764  * The dequeue_task method is called before nr_running is
6765  * decreased. We remove the task from the rbtree and
6766  * update the fair scheduling stats:
6767  */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)6768 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6769 {
6770 	struct cfs_rq *cfs_rq;
6771 	struct sched_entity *se = &p->se;
6772 	int task_sleep = flags & DEQUEUE_SLEEP;
6773 	int idle_h_nr_running = task_has_idle_policy(p);
6774 	bool was_sched_idle = sched_idle_rq(rq);
6775 
6776 	util_est_dequeue(&rq->cfs, p);
6777 
6778 	for_each_sched_entity(se) {
6779 		cfs_rq = cfs_rq_of(se);
6780 		dequeue_entity(cfs_rq, se, flags);
6781 
6782 		cfs_rq->h_nr_running--;
6783 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6784 
6785 		if (cfs_rq_is_idle(cfs_rq))
6786 			idle_h_nr_running = 1;
6787 
6788 		/* end evaluation on encountering a throttled cfs_rq */
6789 		if (cfs_rq_throttled(cfs_rq))
6790 			goto dequeue_throttle;
6791 
6792 		/* Don't dequeue parent if it has other entities besides us */
6793 		if (cfs_rq->load.weight) {
6794 			/* Avoid re-evaluating load for this entity: */
6795 			se = parent_entity(se);
6796 			/*
6797 			 * Bias pick_next to pick a task from this cfs_rq, as
6798 			 * p is sleeping when it is within its sched_slice.
6799 			 */
6800 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6801 				set_next_buddy(se);
6802 			break;
6803 		}
6804 		flags |= DEQUEUE_SLEEP;
6805 	}
6806 
6807 	for_each_sched_entity(se) {
6808 		cfs_rq = cfs_rq_of(se);
6809 
6810 		update_load_avg(cfs_rq, se, UPDATE_TG);
6811 		se_update_runnable(se);
6812 		update_cfs_group(se);
6813 
6814 		cfs_rq->h_nr_running--;
6815 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6816 
6817 		if (cfs_rq_is_idle(cfs_rq))
6818 			idle_h_nr_running = 1;
6819 
6820 		/* end evaluation on encountering a throttled cfs_rq */
6821 		if (cfs_rq_throttled(cfs_rq))
6822 			goto dequeue_throttle;
6823 
6824 	}
6825 
6826 	/* At this point se is NULL and we are at root level*/
6827 	sub_nr_running(rq, 1);
6828 
6829 	/* balance early to pull high priority tasks */
6830 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6831 		rq->next_balance = jiffies;
6832 
6833 dequeue_throttle:
6834 	util_est_update(&rq->cfs, p, task_sleep);
6835 	hrtick_update(rq);
6836 }
6837 
6838 #ifdef CONFIG_SMP
6839 
6840 /* Working cpumask for: load_balance, load_balance_newidle. */
6841 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6842 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6843 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
6844 
6845 #ifdef CONFIG_NO_HZ_COMMON
6846 
6847 static struct {
6848 	cpumask_var_t idle_cpus_mask;
6849 	atomic_t nr_cpus;
6850 	int has_blocked;		/* Idle CPUS has blocked load */
6851 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
6852 	unsigned long next_balance;     /* in jiffy units */
6853 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
6854 } nohz ____cacheline_aligned;
6855 
6856 #endif /* CONFIG_NO_HZ_COMMON */
6857 
cpu_load(struct rq * rq)6858 static unsigned long cpu_load(struct rq *rq)
6859 {
6860 	return cfs_rq_load_avg(&rq->cfs);
6861 }
6862 
6863 /*
6864  * cpu_load_without - compute CPU load without any contributions from *p
6865  * @cpu: the CPU which load is requested
6866  * @p: the task which load should be discounted
6867  *
6868  * The load of a CPU is defined by the load of tasks currently enqueued on that
6869  * CPU as well as tasks which are currently sleeping after an execution on that
6870  * CPU.
6871  *
6872  * This method returns the load of the specified CPU by discounting the load of
6873  * the specified task, whenever the task is currently contributing to the CPU
6874  * load.
6875  */
cpu_load_without(struct rq * rq,struct task_struct * p)6876 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6877 {
6878 	struct cfs_rq *cfs_rq;
6879 	unsigned int load;
6880 
6881 	/* Task has no contribution or is new */
6882 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6883 		return cpu_load(rq);
6884 
6885 	cfs_rq = &rq->cfs;
6886 	load = READ_ONCE(cfs_rq->avg.load_avg);
6887 
6888 	/* Discount task's util from CPU's util */
6889 	lsub_positive(&load, task_h_load(p));
6890 
6891 	return load;
6892 }
6893 
cpu_runnable(struct rq * rq)6894 static unsigned long cpu_runnable(struct rq *rq)
6895 {
6896 	return cfs_rq_runnable_avg(&rq->cfs);
6897 }
6898 
cpu_runnable_without(struct rq * rq,struct task_struct * p)6899 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6900 {
6901 	struct cfs_rq *cfs_rq;
6902 	unsigned int runnable;
6903 
6904 	/* Task has no contribution or is new */
6905 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6906 		return cpu_runnable(rq);
6907 
6908 	cfs_rq = &rq->cfs;
6909 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6910 
6911 	/* Discount task's runnable from CPU's runnable */
6912 	lsub_positive(&runnable, p->se.avg.runnable_avg);
6913 
6914 	return runnable;
6915 }
6916 
capacity_of(int cpu)6917 static unsigned long capacity_of(int cpu)
6918 {
6919 	return cpu_rq(cpu)->cpu_capacity;
6920 }
6921 
record_wakee(struct task_struct * p)6922 static void record_wakee(struct task_struct *p)
6923 {
6924 	/*
6925 	 * Only decay a single time; tasks that have less then 1 wakeup per
6926 	 * jiffy will not have built up many flips.
6927 	 */
6928 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6929 		current->wakee_flips >>= 1;
6930 		current->wakee_flip_decay_ts = jiffies;
6931 	}
6932 
6933 	if (current->last_wakee != p) {
6934 		current->last_wakee = p;
6935 		current->wakee_flips++;
6936 	}
6937 }
6938 
6939 /*
6940  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6941  *
6942  * A waker of many should wake a different task than the one last awakened
6943  * at a frequency roughly N times higher than one of its wakees.
6944  *
6945  * In order to determine whether we should let the load spread vs consolidating
6946  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6947  * partner, and a factor of lls_size higher frequency in the other.
6948  *
6949  * With both conditions met, we can be relatively sure that the relationship is
6950  * non-monogamous, with partner count exceeding socket size.
6951  *
6952  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6953  * whatever is irrelevant, spread criteria is apparent partner count exceeds
6954  * socket size.
6955  */
wake_wide(struct task_struct * p)6956 static int wake_wide(struct task_struct *p)
6957 {
6958 	unsigned int master = current->wakee_flips;
6959 	unsigned int slave = p->wakee_flips;
6960 	int factor = __this_cpu_read(sd_llc_size);
6961 
6962 	if (master < slave)
6963 		swap(master, slave);
6964 	if (slave < factor || master < slave * factor)
6965 		return 0;
6966 	return 1;
6967 }
6968 
6969 /*
6970  * The purpose of wake_affine() is to quickly determine on which CPU we can run
6971  * soonest. For the purpose of speed we only consider the waking and previous
6972  * CPU.
6973  *
6974  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
6975  *			cache-affine and is (or	will be) idle.
6976  *
6977  * wake_affine_weight() - considers the weight to reflect the average
6978  *			  scheduling latency of the CPUs. This seems to work
6979  *			  for the overloaded case.
6980  */
6981 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)6982 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
6983 {
6984 	/*
6985 	 * If this_cpu is idle, it implies the wakeup is from interrupt
6986 	 * context. Only allow the move if cache is shared. Otherwise an
6987 	 * interrupt intensive workload could force all tasks onto one
6988 	 * node depending on the IO topology or IRQ affinity settings.
6989 	 *
6990 	 * If the prev_cpu is idle and cache affine then avoid a migration.
6991 	 * There is no guarantee that the cache hot data from an interrupt
6992 	 * is more important than cache hot data on the prev_cpu and from
6993 	 * a cpufreq perspective, it's better to have higher utilisation
6994 	 * on one CPU.
6995 	 */
6996 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
6997 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
6998 
6999 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
7000 		return this_cpu;
7001 
7002 	if (available_idle_cpu(prev_cpu))
7003 		return prev_cpu;
7004 
7005 	return nr_cpumask_bits;
7006 }
7007 
7008 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7009 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7010 		   int this_cpu, int prev_cpu, int sync)
7011 {
7012 	s64 this_eff_load, prev_eff_load;
7013 	unsigned long task_load;
7014 
7015 	this_eff_load = cpu_load(cpu_rq(this_cpu));
7016 
7017 	if (sync) {
7018 		unsigned long current_load = task_h_load(current);
7019 
7020 		if (current_load > this_eff_load)
7021 			return this_cpu;
7022 
7023 		this_eff_load -= current_load;
7024 	}
7025 
7026 	task_load = task_h_load(p);
7027 
7028 	this_eff_load += task_load;
7029 	if (sched_feat(WA_BIAS))
7030 		this_eff_load *= 100;
7031 	this_eff_load *= capacity_of(prev_cpu);
7032 
7033 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7034 	prev_eff_load -= task_load;
7035 	if (sched_feat(WA_BIAS))
7036 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7037 	prev_eff_load *= capacity_of(this_cpu);
7038 
7039 	/*
7040 	 * If sync, adjust the weight of prev_eff_load such that if
7041 	 * prev_eff == this_eff that select_idle_sibling() will consider
7042 	 * stacking the wakee on top of the waker if no other CPU is
7043 	 * idle.
7044 	 */
7045 	if (sync)
7046 		prev_eff_load += 1;
7047 
7048 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7049 }
7050 
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7051 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7052 		       int this_cpu, int prev_cpu, int sync)
7053 {
7054 	int target = nr_cpumask_bits;
7055 
7056 	if (sched_feat(WA_IDLE))
7057 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
7058 
7059 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7060 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7061 
7062 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7063 	if (target != this_cpu)
7064 		return prev_cpu;
7065 
7066 	schedstat_inc(sd->ttwu_move_affine);
7067 	schedstat_inc(p->stats.nr_wakeups_affine);
7068 	return target;
7069 }
7070 
7071 static struct sched_group *
7072 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7073 
7074 /*
7075  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
7076  */
7077 static int
find_idlest_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)7078 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7079 {
7080 	unsigned long load, min_load = ULONG_MAX;
7081 	unsigned int min_exit_latency = UINT_MAX;
7082 	u64 latest_idle_timestamp = 0;
7083 	int least_loaded_cpu = this_cpu;
7084 	int shallowest_idle_cpu = -1;
7085 	int i;
7086 
7087 	/* Check if we have any choice: */
7088 	if (group->group_weight == 1)
7089 		return cpumask_first(sched_group_span(group));
7090 
7091 	/* Traverse only the allowed CPUs */
7092 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7093 		struct rq *rq = cpu_rq(i);
7094 
7095 		if (!sched_core_cookie_match(rq, p))
7096 			continue;
7097 
7098 		if (sched_idle_cpu(i))
7099 			return i;
7100 
7101 		if (available_idle_cpu(i)) {
7102 			struct cpuidle_state *idle = idle_get_state(rq);
7103 			if (idle && idle->exit_latency < min_exit_latency) {
7104 				/*
7105 				 * We give priority to a CPU whose idle state
7106 				 * has the smallest exit latency irrespective
7107 				 * of any idle timestamp.
7108 				 */
7109 				min_exit_latency = idle->exit_latency;
7110 				latest_idle_timestamp = rq->idle_stamp;
7111 				shallowest_idle_cpu = i;
7112 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
7113 				   rq->idle_stamp > latest_idle_timestamp) {
7114 				/*
7115 				 * If equal or no active idle state, then
7116 				 * the most recently idled CPU might have
7117 				 * a warmer cache.
7118 				 */
7119 				latest_idle_timestamp = rq->idle_stamp;
7120 				shallowest_idle_cpu = i;
7121 			}
7122 		} else if (shallowest_idle_cpu == -1) {
7123 			load = cpu_load(cpu_rq(i));
7124 			if (load < min_load) {
7125 				min_load = load;
7126 				least_loaded_cpu = i;
7127 			}
7128 		}
7129 	}
7130 
7131 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7132 }
7133 
find_idlest_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)7134 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
7135 				  int cpu, int prev_cpu, int sd_flag)
7136 {
7137 	int new_cpu = cpu;
7138 
7139 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7140 		return prev_cpu;
7141 
7142 	/*
7143 	 * We need task's util for cpu_util_without, sync it up to
7144 	 * prev_cpu's last_update_time.
7145 	 */
7146 	if (!(sd_flag & SD_BALANCE_FORK))
7147 		sync_entity_load_avg(&p->se);
7148 
7149 	while (sd) {
7150 		struct sched_group *group;
7151 		struct sched_domain *tmp;
7152 		int weight;
7153 
7154 		if (!(sd->flags & sd_flag)) {
7155 			sd = sd->child;
7156 			continue;
7157 		}
7158 
7159 		group = find_idlest_group(sd, p, cpu);
7160 		if (!group) {
7161 			sd = sd->child;
7162 			continue;
7163 		}
7164 
7165 		new_cpu = find_idlest_group_cpu(group, p, cpu);
7166 		if (new_cpu == cpu) {
7167 			/* Now try balancing at a lower domain level of 'cpu': */
7168 			sd = sd->child;
7169 			continue;
7170 		}
7171 
7172 		/* Now try balancing at a lower domain level of 'new_cpu': */
7173 		cpu = new_cpu;
7174 		weight = sd->span_weight;
7175 		sd = NULL;
7176 		for_each_domain(cpu, tmp) {
7177 			if (weight <= tmp->span_weight)
7178 				break;
7179 			if (tmp->flags & sd_flag)
7180 				sd = tmp;
7181 		}
7182 	}
7183 
7184 	return new_cpu;
7185 }
7186 
__select_idle_cpu(int cpu,struct task_struct * p)7187 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7188 {
7189 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7190 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7191 		return cpu;
7192 
7193 	return -1;
7194 }
7195 
7196 #ifdef CONFIG_SCHED_SMT
7197 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7198 EXPORT_SYMBOL_GPL(sched_smt_present);
7199 
set_idle_cores(int cpu,int val)7200 static inline void set_idle_cores(int cpu, int val)
7201 {
7202 	struct sched_domain_shared *sds;
7203 
7204 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7205 	if (sds)
7206 		WRITE_ONCE(sds->has_idle_cores, val);
7207 }
7208 
test_idle_cores(int cpu)7209 static inline bool test_idle_cores(int cpu)
7210 {
7211 	struct sched_domain_shared *sds;
7212 
7213 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7214 	if (sds)
7215 		return READ_ONCE(sds->has_idle_cores);
7216 
7217 	return false;
7218 }
7219 
7220 /*
7221  * Scans the local SMT mask to see if the entire core is idle, and records this
7222  * information in sd_llc_shared->has_idle_cores.
7223  *
7224  * Since SMT siblings share all cache levels, inspecting this limited remote
7225  * state should be fairly cheap.
7226  */
__update_idle_core(struct rq * rq)7227 void __update_idle_core(struct rq *rq)
7228 {
7229 	int core = cpu_of(rq);
7230 	int cpu;
7231 
7232 	rcu_read_lock();
7233 	if (test_idle_cores(core))
7234 		goto unlock;
7235 
7236 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7237 		if (cpu == core)
7238 			continue;
7239 
7240 		if (!available_idle_cpu(cpu))
7241 			goto unlock;
7242 	}
7243 
7244 	set_idle_cores(core, 1);
7245 unlock:
7246 	rcu_read_unlock();
7247 }
7248 
7249 /*
7250  * Scan the entire LLC domain for idle cores; this dynamically switches off if
7251  * there are no idle cores left in the system; tracked through
7252  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7253  */
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7254 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7255 {
7256 	bool idle = true;
7257 	int cpu;
7258 
7259 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7260 		if (!available_idle_cpu(cpu)) {
7261 			idle = false;
7262 			if (*idle_cpu == -1) {
7263 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7264 					*idle_cpu = cpu;
7265 					break;
7266 				}
7267 				continue;
7268 			}
7269 			break;
7270 		}
7271 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7272 			*idle_cpu = cpu;
7273 	}
7274 
7275 	if (idle)
7276 		return core;
7277 
7278 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7279 	return -1;
7280 }
7281 
7282 /*
7283  * Scan the local SMT mask for idle CPUs.
7284  */
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7285 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7286 {
7287 	int cpu;
7288 
7289 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7290 		if (cpu == target)
7291 			continue;
7292 		/*
7293 		 * Check if the CPU is in the LLC scheduling domain of @target.
7294 		 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7295 		 */
7296 		if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7297 			continue;
7298 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7299 			return cpu;
7300 	}
7301 
7302 	return -1;
7303 }
7304 
7305 #else /* CONFIG_SCHED_SMT */
7306 
set_idle_cores(int cpu,int val)7307 static inline void set_idle_cores(int cpu, int val)
7308 {
7309 }
7310 
test_idle_cores(int cpu)7311 static inline bool test_idle_cores(int cpu)
7312 {
7313 	return false;
7314 }
7315 
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7316 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7317 {
7318 	return __select_idle_cpu(core, p);
7319 }
7320 
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7321 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7322 {
7323 	return -1;
7324 }
7325 
7326 #endif /* CONFIG_SCHED_SMT */
7327 
7328 /*
7329  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7330  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7331  * average idle time for this rq (as found in rq->avg_idle).
7332  */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,bool has_idle_core,int target)7333 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7334 {
7335 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7336 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7337 	struct sched_domain_shared *sd_share;
7338 	struct rq *this_rq = this_rq();
7339 	int this = smp_processor_id();
7340 	struct sched_domain *this_sd = NULL;
7341 	u64 time = 0;
7342 
7343 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7344 
7345 	if (sched_feat(SIS_PROP) && !has_idle_core) {
7346 		u64 avg_cost, avg_idle, span_avg;
7347 		unsigned long now = jiffies;
7348 
7349 		this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
7350 		if (!this_sd)
7351 			return -1;
7352 
7353 		/*
7354 		 * If we're busy, the assumption that the last idle period
7355 		 * predicts the future is flawed; age away the remaining
7356 		 * predicted idle time.
7357 		 */
7358 		if (unlikely(this_rq->wake_stamp < now)) {
7359 			while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
7360 				this_rq->wake_stamp++;
7361 				this_rq->wake_avg_idle >>= 1;
7362 			}
7363 		}
7364 
7365 		avg_idle = this_rq->wake_avg_idle;
7366 		avg_cost = this_sd->avg_scan_cost + 1;
7367 
7368 		span_avg = sd->span_weight * avg_idle;
7369 		if (span_avg > 4*avg_cost)
7370 			nr = div_u64(span_avg, avg_cost);
7371 		else
7372 			nr = 4;
7373 
7374 		time = cpu_clock(this);
7375 	}
7376 
7377 	if (sched_feat(SIS_UTIL)) {
7378 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7379 		if (sd_share) {
7380 			/* because !--nr is the condition to stop scan */
7381 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7382 			/* overloaded LLC is unlikely to have idle cpu/core */
7383 			if (nr == 1)
7384 				return -1;
7385 		}
7386 	}
7387 
7388 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7389 		if (has_idle_core) {
7390 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7391 			if ((unsigned int)i < nr_cpumask_bits)
7392 				return i;
7393 
7394 		} else {
7395 			if (!--nr)
7396 				return -1;
7397 			idle_cpu = __select_idle_cpu(cpu, p);
7398 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7399 				break;
7400 		}
7401 	}
7402 
7403 	if (has_idle_core)
7404 		set_idle_cores(target, false);
7405 
7406 	if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) {
7407 		time = cpu_clock(this) - time;
7408 
7409 		/*
7410 		 * Account for the scan cost of wakeups against the average
7411 		 * idle time.
7412 		 */
7413 		this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
7414 
7415 		update_avg(&this_sd->avg_scan_cost, time);
7416 	}
7417 
7418 	return idle_cpu;
7419 }
7420 
7421 /*
7422  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7423  * the task fits. If no CPU is big enough, but there are idle ones, try to
7424  * maximize capacity.
7425  */
7426 static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)7427 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7428 {
7429 	unsigned long task_util, util_min, util_max, best_cap = 0;
7430 	int fits, best_fits = 0;
7431 	int cpu, best_cpu = -1;
7432 	struct cpumask *cpus;
7433 
7434 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7435 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7436 
7437 	task_util = task_util_est(p);
7438 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7439 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7440 
7441 	for_each_cpu_wrap(cpu, cpus, target) {
7442 		unsigned long cpu_cap = capacity_of(cpu);
7443 
7444 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7445 			continue;
7446 
7447 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7448 
7449 		/* This CPU fits with all requirements */
7450 		if (fits > 0)
7451 			return cpu;
7452 		/*
7453 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7454 		 * Look for the CPU with best capacity.
7455 		 */
7456 		else if (fits < 0)
7457 			cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu));
7458 
7459 		/*
7460 		 * First, select CPU which fits better (-1 being better than 0).
7461 		 * Then, select the one with best capacity at same level.
7462 		 */
7463 		if ((fits < best_fits) ||
7464 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7465 			best_cap = cpu_cap;
7466 			best_cpu = cpu;
7467 			best_fits = fits;
7468 		}
7469 	}
7470 
7471 	return best_cpu;
7472 }
7473 
asym_fits_cpu(unsigned long util,unsigned long util_min,unsigned long util_max,int cpu)7474 static inline bool asym_fits_cpu(unsigned long util,
7475 				 unsigned long util_min,
7476 				 unsigned long util_max,
7477 				 int cpu)
7478 {
7479 	if (sched_asym_cpucap_active())
7480 		/*
7481 		 * Return true only if the cpu fully fits the task requirements
7482 		 * which include the utilization and the performance hints.
7483 		 */
7484 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7485 
7486 	return true;
7487 }
7488 
7489 /*
7490  * Try and locate an idle core/thread in the LLC cache domain.
7491  */
select_idle_sibling(struct task_struct * p,int prev,int target)7492 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7493 {
7494 	bool has_idle_core = false;
7495 	struct sched_domain *sd;
7496 	unsigned long task_util, util_min, util_max;
7497 	int i, recent_used_cpu;
7498 
7499 	/*
7500 	 * On asymmetric system, update task utilization because we will check
7501 	 * that the task fits with cpu's capacity.
7502 	 */
7503 	if (sched_asym_cpucap_active()) {
7504 		sync_entity_load_avg(&p->se);
7505 		task_util = task_util_est(p);
7506 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7507 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7508 	}
7509 
7510 	/*
7511 	 * per-cpu select_rq_mask usage
7512 	 */
7513 	lockdep_assert_irqs_disabled();
7514 
7515 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7516 	    asym_fits_cpu(task_util, util_min, util_max, target))
7517 		return target;
7518 
7519 	/*
7520 	 * If the previous CPU is cache affine and idle, don't be stupid:
7521 	 */
7522 	if (prev != target && cpus_share_cache(prev, target) &&
7523 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7524 	    asym_fits_cpu(task_util, util_min, util_max, prev))
7525 		return prev;
7526 
7527 	/*
7528 	 * Allow a per-cpu kthread to stack with the wakee if the
7529 	 * kworker thread and the tasks previous CPUs are the same.
7530 	 * The assumption is that the wakee queued work for the
7531 	 * per-cpu kthread that is now complete and the wakeup is
7532 	 * essentially a sync wakeup. An obvious example of this
7533 	 * pattern is IO completions.
7534 	 */
7535 	if (is_per_cpu_kthread(current) &&
7536 	    in_task() &&
7537 	    prev == smp_processor_id() &&
7538 	    this_rq()->nr_running <= 1 &&
7539 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7540 		return prev;
7541 	}
7542 
7543 	/* Check a recently used CPU as a potential idle candidate: */
7544 	recent_used_cpu = p->recent_used_cpu;
7545 	p->recent_used_cpu = prev;
7546 	if (recent_used_cpu != prev &&
7547 	    recent_used_cpu != target &&
7548 	    cpus_share_cache(recent_used_cpu, target) &&
7549 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7550 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7551 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7552 		return recent_used_cpu;
7553 	}
7554 
7555 	/*
7556 	 * For asymmetric CPU capacity systems, our domain of interest is
7557 	 * sd_asym_cpucapacity rather than sd_llc.
7558 	 */
7559 	if (sched_asym_cpucap_active()) {
7560 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7561 		/*
7562 		 * On an asymmetric CPU capacity system where an exclusive
7563 		 * cpuset defines a symmetric island (i.e. one unique
7564 		 * capacity_orig value through the cpuset), the key will be set
7565 		 * but the CPUs within that cpuset will not have a domain with
7566 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7567 		 * capacity path.
7568 		 */
7569 		if (sd) {
7570 			i = select_idle_capacity(p, sd, target);
7571 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7572 		}
7573 	}
7574 
7575 	sd = rcu_dereference(per_cpu(sd_llc, target));
7576 	if (!sd)
7577 		return target;
7578 
7579 	if (sched_smt_active()) {
7580 		has_idle_core = test_idle_cores(target);
7581 
7582 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7583 			i = select_idle_smt(p, sd, prev);
7584 			if ((unsigned int)i < nr_cpumask_bits)
7585 				return i;
7586 		}
7587 	}
7588 
7589 	i = select_idle_cpu(p, sd, has_idle_core, target);
7590 	if ((unsigned)i < nr_cpumask_bits)
7591 		return i;
7592 
7593 	return target;
7594 }
7595 
7596 /**
7597  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7598  * @cpu: the CPU to get the utilization for
7599  * @p: task for which the CPU utilization should be predicted or NULL
7600  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7601  * @boost: 1 to enable boosting, otherwise 0
7602  *
7603  * The unit of the return value must be the same as the one of CPU capacity
7604  * so that CPU utilization can be compared with CPU capacity.
7605  *
7606  * CPU utilization is the sum of running time of runnable tasks plus the
7607  * recent utilization of currently non-runnable tasks on that CPU.
7608  * It represents the amount of CPU capacity currently used by CFS tasks in
7609  * the range [0..max CPU capacity] with max CPU capacity being the CPU
7610  * capacity at f_max.
7611  *
7612  * The estimated CPU utilization is defined as the maximum between CPU
7613  * utilization and sum of the estimated utilization of the currently
7614  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7615  * previously-executed tasks, which helps better deduce how busy a CPU will
7616  * be when a long-sleeping task wakes up. The contribution to CPU utilization
7617  * of such a task would be significantly decayed at this point of time.
7618  *
7619  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7620  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7621  * utilization. Boosting is implemented in cpu_util() so that internal
7622  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7623  * latter via cpu_util_cfs_boost().
7624  *
7625  * CPU utilization can be higher than the current CPU capacity
7626  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7627  * of rounding errors as well as task migrations or wakeups of new tasks.
7628  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7629  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7630  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7631  * capacity. CPU utilization is allowed to overshoot current CPU capacity
7632  * though since this is useful for predicting the CPU capacity required
7633  * after task migrations (scheduler-driven DVFS).
7634  *
7635  * Return: (Boosted) (estimated) utilization for the specified CPU.
7636  */
7637 static unsigned long
cpu_util(int cpu,struct task_struct * p,int dst_cpu,int boost)7638 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7639 {
7640 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7641 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7642 	unsigned long runnable;
7643 
7644 	if (boost) {
7645 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7646 		util = max(util, runnable);
7647 	}
7648 
7649 	/*
7650 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7651 	 * contribution. If @p migrates from another CPU to @cpu add its
7652 	 * contribution. In all the other cases @cpu is not impacted by the
7653 	 * migration so its util_avg is already correct.
7654 	 */
7655 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
7656 		lsub_positive(&util, task_util(p));
7657 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
7658 		util += task_util(p);
7659 
7660 	if (sched_feat(UTIL_EST)) {
7661 		unsigned long util_est;
7662 
7663 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
7664 
7665 		/*
7666 		 * During wake-up @p isn't enqueued yet and doesn't contribute
7667 		 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
7668 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7669 		 * has been enqueued.
7670 		 *
7671 		 * During exec (@dst_cpu = -1) @p is enqueued and does
7672 		 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
7673 		 * Remove it to "simulate" cpu_util without @p's contribution.
7674 		 *
7675 		 * Despite the task_on_rq_queued(@p) check there is still a
7676 		 * small window for a possible race when an exec
7677 		 * select_task_rq_fair() races with LB's detach_task().
7678 		 *
7679 		 *   detach_task()
7680 		 *     deactivate_task()
7681 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
7682 		 *       -------------------------------- A
7683 		 *       dequeue_task()                    \
7684 		 *         dequeue_task_fair()              + Race Time
7685 		 *           util_est_dequeue()            /
7686 		 *       -------------------------------- B
7687 		 *
7688 		 * The additional check "current == p" is required to further
7689 		 * reduce the race window.
7690 		 */
7691 		if (dst_cpu == cpu)
7692 			util_est += _task_util_est(p);
7693 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
7694 			lsub_positive(&util_est, _task_util_est(p));
7695 
7696 		util = max(util, util_est);
7697 	}
7698 
7699 	return min(util, capacity_orig_of(cpu));
7700 }
7701 
cpu_util_cfs(int cpu)7702 unsigned long cpu_util_cfs(int cpu)
7703 {
7704 	return cpu_util(cpu, NULL, -1, 0);
7705 }
7706 
cpu_util_cfs_boost(int cpu)7707 unsigned long cpu_util_cfs_boost(int cpu)
7708 {
7709 	return cpu_util(cpu, NULL, -1, 1);
7710 }
7711 
7712 /*
7713  * cpu_util_without: compute cpu utilization without any contributions from *p
7714  * @cpu: the CPU which utilization is requested
7715  * @p: the task which utilization should be discounted
7716  *
7717  * The utilization of a CPU is defined by the utilization of tasks currently
7718  * enqueued on that CPU as well as tasks which are currently sleeping after an
7719  * execution on that CPU.
7720  *
7721  * This method returns the utilization of the specified CPU by discounting the
7722  * utilization of the specified task, whenever the task is currently
7723  * contributing to the CPU utilization.
7724  */
cpu_util_without(int cpu,struct task_struct * p)7725 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7726 {
7727 	/* Task has no contribution or is new */
7728 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7729 		p = NULL;
7730 
7731 	return cpu_util(cpu, p, -1, 0);
7732 }
7733 
7734 /*
7735  * energy_env - Utilization landscape for energy estimation.
7736  * @task_busy_time: Utilization contribution by the task for which we test the
7737  *                  placement. Given by eenv_task_busy_time().
7738  * @pd_busy_time:   Utilization of the whole perf domain without the task
7739  *                  contribution. Given by eenv_pd_busy_time().
7740  * @cpu_cap:        Maximum CPU capacity for the perf domain.
7741  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
7742  */
7743 struct energy_env {
7744 	unsigned long task_busy_time;
7745 	unsigned long pd_busy_time;
7746 	unsigned long cpu_cap;
7747 	unsigned long pd_cap;
7748 };
7749 
7750 /*
7751  * Compute the task busy time for compute_energy(). This time cannot be
7752  * injected directly into effective_cpu_util() because of the IRQ scaling.
7753  * The latter only makes sense with the most recent CPUs where the task has
7754  * run.
7755  */
eenv_task_busy_time(struct energy_env * eenv,struct task_struct * p,int prev_cpu)7756 static inline void eenv_task_busy_time(struct energy_env *eenv,
7757 				       struct task_struct *p, int prev_cpu)
7758 {
7759 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
7760 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
7761 
7762 	if (unlikely(irq >= max_cap))
7763 		busy_time = max_cap;
7764 	else
7765 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
7766 
7767 	eenv->task_busy_time = busy_time;
7768 }
7769 
7770 /*
7771  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
7772  * utilization for each @pd_cpus, it however doesn't take into account
7773  * clamping since the ratio (utilization / cpu_capacity) is already enough to
7774  * scale the EM reported power consumption at the (eventually clamped)
7775  * cpu_capacity.
7776  *
7777  * The contribution of the task @p for which we want to estimate the
7778  * energy cost is removed (by cpu_util()) and must be calculated
7779  * separately (see eenv_task_busy_time). This ensures:
7780  *
7781  *   - A stable PD utilization, no matter which CPU of that PD we want to place
7782  *     the task on.
7783  *
7784  *   - A fair comparison between CPUs as the task contribution (task_util())
7785  *     will always be the same no matter which CPU utilization we rely on
7786  *     (util_avg or util_est).
7787  *
7788  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
7789  * exceed @eenv->pd_cap.
7790  */
eenv_pd_busy_time(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p)7791 static inline void eenv_pd_busy_time(struct energy_env *eenv,
7792 				     struct cpumask *pd_cpus,
7793 				     struct task_struct *p)
7794 {
7795 	unsigned long busy_time = 0;
7796 	int cpu;
7797 
7798 	for_each_cpu(cpu, pd_cpus) {
7799 		unsigned long util = cpu_util(cpu, p, -1, 0);
7800 
7801 		busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
7802 	}
7803 
7804 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
7805 }
7806 
7807 /*
7808  * Compute the maximum utilization for compute_energy() when the task @p
7809  * is placed on the cpu @dst_cpu.
7810  *
7811  * Returns the maximum utilization among @eenv->cpus. This utilization can't
7812  * exceed @eenv->cpu_cap.
7813  */
7814 static inline unsigned long
eenv_pd_max_util(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)7815 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
7816 		 struct task_struct *p, int dst_cpu)
7817 {
7818 	unsigned long max_util = 0;
7819 	int cpu;
7820 
7821 	for_each_cpu(cpu, pd_cpus) {
7822 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
7823 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
7824 		unsigned long eff_util;
7825 
7826 		/*
7827 		 * Performance domain frequency: utilization clamping
7828 		 * must be considered since it affects the selection
7829 		 * of the performance domain frequency.
7830 		 * NOTE: in case RT tasks are running, by default the
7831 		 * FREQUENCY_UTIL's utilization can be max OPP.
7832 		 */
7833 		eff_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
7834 		max_util = max(max_util, eff_util);
7835 	}
7836 
7837 	return min(max_util, eenv->cpu_cap);
7838 }
7839 
7840 /*
7841  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
7842  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
7843  * contribution is ignored.
7844  */
7845 static inline unsigned long
compute_energy(struct energy_env * eenv,struct perf_domain * pd,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)7846 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
7847 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
7848 {
7849 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
7850 	unsigned long busy_time = eenv->pd_busy_time;
7851 
7852 	if (dst_cpu >= 0)
7853 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7854 
7855 	return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7856 }
7857 
7858 /*
7859  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7860  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7861  * spare capacity in each performance domain and uses it as a potential
7862  * candidate to execute the task. Then, it uses the Energy Model to figure
7863  * out which of the CPU candidates is the most energy-efficient.
7864  *
7865  * The rationale for this heuristic is as follows. In a performance domain,
7866  * all the most energy efficient CPU candidates (according to the Energy
7867  * Model) are those for which we'll request a low frequency. When there are
7868  * several CPUs for which the frequency request will be the same, we don't
7869  * have enough data to break the tie between them, because the Energy Model
7870  * only includes active power costs. With this model, if we assume that
7871  * frequency requests follow utilization (e.g. using schedutil), the CPU with
7872  * the maximum spare capacity in a performance domain is guaranteed to be among
7873  * the best candidates of the performance domain.
7874  *
7875  * In practice, it could be preferable from an energy standpoint to pack
7876  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7877  * but that could also hurt our chances to go cluster idle, and we have no
7878  * ways to tell with the current Energy Model if this is actually a good
7879  * idea or not. So, find_energy_efficient_cpu() basically favors
7880  * cluster-packing, and spreading inside a cluster. That should at least be
7881  * a good thing for latency, and this is consistent with the idea that most
7882  * of the energy savings of EAS come from the asymmetry of the system, and
7883  * not so much from breaking the tie between identical CPUs. That's also the
7884  * reason why EAS is enabled in the topology code only for systems where
7885  * SD_ASYM_CPUCAPACITY is set.
7886  *
7887  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7888  * they don't have any useful utilization data yet and it's not possible to
7889  * forecast their impact on energy consumption. Consequently, they will be
7890  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7891  * to be energy-inefficient in some use-cases. The alternative would be to
7892  * bias new tasks towards specific types of CPUs first, or to try to infer
7893  * their util_avg from the parent task, but those heuristics could hurt
7894  * other use-cases too. So, until someone finds a better way to solve this,
7895  * let's keep things simple by re-using the existing slow path.
7896  */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu)7897 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
7898 {
7899 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7900 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7901 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7902 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
7903 	struct root_domain *rd = this_rq()->rd;
7904 	int cpu, best_energy_cpu, target = -1;
7905 	int prev_fits = -1, best_fits = -1;
7906 	unsigned long best_thermal_cap = 0;
7907 	unsigned long prev_thermal_cap = 0;
7908 	struct sched_domain *sd;
7909 	struct perf_domain *pd;
7910 	struct energy_env eenv;
7911 
7912 	rcu_read_lock();
7913 	pd = rcu_dereference(rd->pd);
7914 	if (!pd || READ_ONCE(rd->overutilized))
7915 		goto unlock;
7916 
7917 	/*
7918 	 * Energy-aware wake-up happens on the lowest sched_domain starting
7919 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7920 	 */
7921 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7922 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7923 		sd = sd->parent;
7924 	if (!sd)
7925 		goto unlock;
7926 
7927 	target = prev_cpu;
7928 
7929 	sync_entity_load_avg(&p->se);
7930 	if (!task_util_est(p) && p_util_min == 0)
7931 		goto unlock;
7932 
7933 	eenv_task_busy_time(&eenv, p, prev_cpu);
7934 
7935 	for (; pd; pd = pd->next) {
7936 		unsigned long util_min = p_util_min, util_max = p_util_max;
7937 		unsigned long cpu_cap, cpu_thermal_cap, util;
7938 		long prev_spare_cap = -1, max_spare_cap = -1;
7939 		unsigned long rq_util_min, rq_util_max;
7940 		unsigned long cur_delta, base_energy;
7941 		int max_spare_cap_cpu = -1;
7942 		int fits, max_fits = -1;
7943 
7944 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
7945 
7946 		if (cpumask_empty(cpus))
7947 			continue;
7948 
7949 		/* Account thermal pressure for the energy estimation */
7950 		cpu = cpumask_first(cpus);
7951 		cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
7952 		cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
7953 
7954 		eenv.cpu_cap = cpu_thermal_cap;
7955 		eenv.pd_cap = 0;
7956 
7957 		for_each_cpu(cpu, cpus) {
7958 			struct rq *rq = cpu_rq(cpu);
7959 
7960 			eenv.pd_cap += cpu_thermal_cap;
7961 
7962 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7963 				continue;
7964 
7965 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
7966 				continue;
7967 
7968 			util = cpu_util(cpu, p, cpu, 0);
7969 			cpu_cap = capacity_of(cpu);
7970 
7971 			/*
7972 			 * Skip CPUs that cannot satisfy the capacity request.
7973 			 * IOW, placing the task there would make the CPU
7974 			 * overutilized. Take uclamp into account to see how
7975 			 * much capacity we can get out of the CPU; this is
7976 			 * aligned with sched_cpu_util().
7977 			 */
7978 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
7979 				/*
7980 				 * Open code uclamp_rq_util_with() except for
7981 				 * the clamp() part. Ie: apply max aggregation
7982 				 * only. util_fits_cpu() logic requires to
7983 				 * operate on non clamped util but must use the
7984 				 * max-aggregated uclamp_{min, max}.
7985 				 */
7986 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
7987 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
7988 
7989 				util_min = max(rq_util_min, p_util_min);
7990 				util_max = max(rq_util_max, p_util_max);
7991 			}
7992 
7993 			fits = util_fits_cpu(util, util_min, util_max, cpu);
7994 			if (!fits)
7995 				continue;
7996 
7997 			lsub_positive(&cpu_cap, util);
7998 
7999 			if (cpu == prev_cpu) {
8000 				/* Always use prev_cpu as a candidate. */
8001 				prev_spare_cap = cpu_cap;
8002 				prev_fits = fits;
8003 			} else if ((fits > max_fits) ||
8004 				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8005 				/*
8006 				 * Find the CPU with the maximum spare capacity
8007 				 * among the remaining CPUs in the performance
8008 				 * domain.
8009 				 */
8010 				max_spare_cap = cpu_cap;
8011 				max_spare_cap_cpu = cpu;
8012 				max_fits = fits;
8013 			}
8014 		}
8015 
8016 		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8017 			continue;
8018 
8019 		eenv_pd_busy_time(&eenv, cpus, p);
8020 		/* Compute the 'base' energy of the pd, without @p */
8021 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8022 
8023 		/* Evaluate the energy impact of using prev_cpu. */
8024 		if (prev_spare_cap > -1) {
8025 			prev_delta = compute_energy(&eenv, pd, cpus, p,
8026 						    prev_cpu);
8027 			/* CPU utilization has changed */
8028 			if (prev_delta < base_energy)
8029 				goto unlock;
8030 			prev_delta -= base_energy;
8031 			prev_thermal_cap = cpu_thermal_cap;
8032 			best_delta = min(best_delta, prev_delta);
8033 		}
8034 
8035 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
8036 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8037 			/* Current best energy cpu fits better */
8038 			if (max_fits < best_fits)
8039 				continue;
8040 
8041 			/*
8042 			 * Both don't fit performance hint (i.e. uclamp_min)
8043 			 * but best energy cpu has better capacity.
8044 			 */
8045 			if ((max_fits < 0) &&
8046 			    (cpu_thermal_cap <= best_thermal_cap))
8047 				continue;
8048 
8049 			cur_delta = compute_energy(&eenv, pd, cpus, p,
8050 						   max_spare_cap_cpu);
8051 			/* CPU utilization has changed */
8052 			if (cur_delta < base_energy)
8053 				goto unlock;
8054 			cur_delta -= base_energy;
8055 
8056 			/*
8057 			 * Both fit for the task but best energy cpu has lower
8058 			 * energy impact.
8059 			 */
8060 			if ((max_fits > 0) && (best_fits > 0) &&
8061 			    (cur_delta >= best_delta))
8062 				continue;
8063 
8064 			best_delta = cur_delta;
8065 			best_energy_cpu = max_spare_cap_cpu;
8066 			best_fits = max_fits;
8067 			best_thermal_cap = cpu_thermal_cap;
8068 		}
8069 	}
8070 	rcu_read_unlock();
8071 
8072 	if ((best_fits > prev_fits) ||
8073 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
8074 	    ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
8075 		target = best_energy_cpu;
8076 
8077 	return target;
8078 
8079 unlock:
8080 	rcu_read_unlock();
8081 
8082 	return target;
8083 }
8084 
8085 /*
8086  * select_task_rq_fair: Select target runqueue for the waking task in domains
8087  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8088  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8089  *
8090  * Balances load by selecting the idlest CPU in the idlest group, or under
8091  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8092  *
8093  * Returns the target CPU number.
8094  */
8095 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int wake_flags)8096 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8097 {
8098 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8099 	struct sched_domain *tmp, *sd = NULL;
8100 	int cpu = smp_processor_id();
8101 	int new_cpu = prev_cpu;
8102 	int want_affine = 0;
8103 	/* SD_flags and WF_flags share the first nibble */
8104 	int sd_flag = wake_flags & 0xF;
8105 
8106 	/*
8107 	 * required for stable ->cpus_allowed
8108 	 */
8109 	lockdep_assert_held(&p->pi_lock);
8110 	if (wake_flags & WF_TTWU) {
8111 		record_wakee(p);
8112 
8113 		if ((wake_flags & WF_CURRENT_CPU) &&
8114 		    cpumask_test_cpu(cpu, p->cpus_ptr))
8115 			return cpu;
8116 
8117 		if (sched_energy_enabled()) {
8118 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8119 			if (new_cpu >= 0)
8120 				return new_cpu;
8121 			new_cpu = prev_cpu;
8122 		}
8123 
8124 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8125 	}
8126 
8127 	rcu_read_lock();
8128 	for_each_domain(cpu, tmp) {
8129 		/*
8130 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
8131 		 * cpu is a valid SD_WAKE_AFFINE target.
8132 		 */
8133 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8134 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8135 			if (cpu != prev_cpu)
8136 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8137 
8138 			sd = NULL; /* Prefer wake_affine over balance flags */
8139 			break;
8140 		}
8141 
8142 		/*
8143 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8144 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8145 		 * will usually go to the fast path.
8146 		 */
8147 		if (tmp->flags & sd_flag)
8148 			sd = tmp;
8149 		else if (!want_affine)
8150 			break;
8151 	}
8152 
8153 	if (unlikely(sd)) {
8154 		/* Slow path */
8155 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
8156 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
8157 		/* Fast path */
8158 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8159 	}
8160 	rcu_read_unlock();
8161 
8162 	return new_cpu;
8163 }
8164 
8165 /*
8166  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8167  * cfs_rq_of(p) references at time of call are still valid and identify the
8168  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8169  */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)8170 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8171 {
8172 	struct sched_entity *se = &p->se;
8173 
8174 	if (!task_on_rq_migrating(p)) {
8175 		remove_entity_load_avg(se);
8176 
8177 		/*
8178 		 * Here, the task's PELT values have been updated according to
8179 		 * the current rq's clock. But if that clock hasn't been
8180 		 * updated in a while, a substantial idle time will be missed,
8181 		 * leading to an inflation after wake-up on the new rq.
8182 		 *
8183 		 * Estimate the missing time from the cfs_rq last_update_time
8184 		 * and update sched_avg to improve the PELT continuity after
8185 		 * migration.
8186 		 */
8187 		migrate_se_pelt_lag(se);
8188 	}
8189 
8190 	/* Tell new CPU we are migrated */
8191 	se->avg.last_update_time = 0;
8192 
8193 	update_scan_period(p, new_cpu);
8194 }
8195 
task_dead_fair(struct task_struct * p)8196 static void task_dead_fair(struct task_struct *p)
8197 {
8198 	remove_entity_load_avg(&p->se);
8199 }
8200 
8201 static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8202 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8203 {
8204 	if (rq->nr_running)
8205 		return 1;
8206 
8207 	return newidle_balance(rq, rf) != 0;
8208 }
8209 #endif /* CONFIG_SMP */
8210 
8211 #ifdef CONFIG_SCHED_LATENCY_NICE
wakeup_latency_gran(struct sched_entity * curr,struct sched_entity * se)8212 static long wakeup_latency_gran(struct sched_entity *curr, struct sched_entity *se)
8213 {
8214 	int latency_weight = se->latency_weight;
8215 	long thresh = sysctl_sched_latency;
8216 
8217 	/*
8218 	 * A positive latency weigth means that the sched_entity has latency
8219 	 * requirement that needs to be evaluated versus other entity.
8220 	 * Otherwise, use the latency weight to evaluate how much scheduling
8221 	 * delay is acceptable by se.
8222 	 */
8223 	if ((se->latency_weight > 0) || (curr->latency_weight > 0))
8224 		latency_weight -= curr->latency_weight;
8225 
8226 	if (!latency_weight)
8227 		return 0;
8228 
8229 	if (sched_feat(GENTLE_FAIR_SLEEPERS))
8230 		thresh >>= 1;
8231 
8232 	/*
8233 	 * Clamp the delta to stay in the scheduler period range
8234 	 * [-sysctl_sched_latency:sysctl_sched_latency]
8235 	 */
8236 	latency_weight = clamp_t(long, latency_weight,
8237 				-1 * NICE_LATENCY_WEIGHT_MAX,
8238 				NICE_LATENCY_WEIGHT_MAX);
8239 
8240 	return (thresh * latency_weight) >> NICE_LATENCY_SHIFT;
8241 }
8242 #endif
8243 
wakeup_gran(struct sched_entity * se)8244 static unsigned long wakeup_gran(struct sched_entity *se)
8245 {
8246 	unsigned long gran = sysctl_sched_wakeup_granularity;
8247 
8248 	/*
8249 	 * Since its curr running now, convert the gran from real-time
8250 	 * to virtual-time in his units.
8251 	 *
8252 	 * By using 'se' instead of 'curr' we penalize light tasks, so
8253 	 * they get preempted easier. That is, if 'se' < 'curr' then
8254 	 * the resulting gran will be larger, therefore penalizing the
8255 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
8256 	 * be smaller, again penalizing the lighter task.
8257 	 *
8258 	 * This is especially important for buddies when the leftmost
8259 	 * task is higher priority than the buddy.
8260 	 */
8261 	return calc_delta_fair(gran, se);
8262 }
8263 
8264 /*
8265  * Should 'se' preempt 'curr'.
8266  *
8267  *             |s1
8268  *        |s2
8269  *   |s3
8270  *         g
8271  *      |<--->|c
8272  *
8273  *  w(c, s1) = -1
8274  *  w(c, s2) =  0
8275  *  w(c, s3) =  1
8276  *
8277  */
8278 static int
wakeup_preempt_entity(struct sched_entity * curr,struct sched_entity * se)8279 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
8280 {
8281 	s64 gran, vdiff = curr->vruntime - se->vruntime;
8282 
8283 #ifdef CONFIG_SCHED_LATENCY_NICE
8284 	/* Take into account latency priority */
8285 	vdiff += wakeup_latency_gran(curr, se);
8286 #endif
8287 
8288 	if (vdiff <= 0)
8289 		return -1;
8290 
8291 	gran = wakeup_gran(se);
8292 	if (vdiff > gran)
8293 		return 1;
8294 
8295 	return 0;
8296 }
8297 
set_next_buddy(struct sched_entity * se)8298 static void set_next_buddy(struct sched_entity *se)
8299 {
8300 	for_each_sched_entity(se) {
8301 		if (SCHED_WARN_ON(!se->on_rq))
8302 			return;
8303 		if (se_is_idle(se))
8304 			return;
8305 		cfs_rq_of(se)->next = se;
8306 	}
8307 }
8308 
8309 /*
8310  * Preempt the current task with a newly woken task if needed:
8311  */
check_preempt_wakeup(struct rq * rq,struct task_struct * p,int wake_flags)8312 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
8313 {
8314 	struct task_struct *curr = rq->curr;
8315 	struct sched_entity *se = &curr->se, *pse = &p->se;
8316 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8317 	int next_buddy_marked = 0;
8318 	int cse_is_idle, pse_is_idle;
8319 
8320 	if (unlikely(se == pse))
8321 		return;
8322 
8323 	/*
8324 	 * This is possible from callers such as attach_tasks(), in which we
8325 	 * unconditionally check_preempt_curr() after an enqueue (which may have
8326 	 * lead to a throttle).  This both saves work and prevents false
8327 	 * next-buddy nomination below.
8328 	 */
8329 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8330 		return;
8331 
8332 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8333 		set_next_buddy(pse);
8334 		next_buddy_marked = 1;
8335 	}
8336 
8337 	/*
8338 	 * We can come here with TIF_NEED_RESCHED already set from new task
8339 	 * wake up path.
8340 	 *
8341 	 * Note: this also catches the edge-case of curr being in a throttled
8342 	 * group (e.g. via set_curr_task), since update_curr() (in the
8343 	 * enqueue of curr) will have resulted in resched being set.  This
8344 	 * prevents us from potentially nominating it as a false LAST_BUDDY
8345 	 * below.
8346 	 */
8347 	if (test_tsk_need_resched(curr))
8348 		return;
8349 
8350 	/* Idle tasks are by definition preempted by non-idle tasks. */
8351 	if (unlikely(task_has_idle_policy(curr)) &&
8352 	    likely(!task_has_idle_policy(p)))
8353 		goto preempt;
8354 
8355 	/*
8356 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
8357 	 * is driven by the tick):
8358 	 */
8359 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
8360 		return;
8361 
8362 	find_matching_se(&se, &pse);
8363 	WARN_ON_ONCE(!pse);
8364 
8365 	cse_is_idle = se_is_idle(se);
8366 	pse_is_idle = se_is_idle(pse);
8367 
8368 	/*
8369 	 * Preempt an idle group in favor of a non-idle group (and don't preempt
8370 	 * in the inverse case).
8371 	 */
8372 	if (cse_is_idle && !pse_is_idle)
8373 		goto preempt;
8374 	if (cse_is_idle != pse_is_idle)
8375 		return;
8376 
8377 	cfs_rq = cfs_rq_of(se);
8378 	update_curr(cfs_rq);
8379 
8380 	/*
8381 	 * XXX pick_eevdf(cfs_rq) != se ?
8382 	 */
8383 	if (pick_eevdf(cfs_rq) == pse)
8384 		goto preempt;
8385 
8386 	return;
8387 
8388 preempt:
8389 	resched_curr(rq);
8390 }
8391 
8392 #ifdef CONFIG_SMP
pick_task_fair(struct rq * rq)8393 static struct task_struct *pick_task_fair(struct rq *rq)
8394 {
8395 	struct sched_entity *se;
8396 	struct cfs_rq *cfs_rq;
8397 
8398 again:
8399 	cfs_rq = &rq->cfs;
8400 	if (!cfs_rq->nr_running)
8401 		return NULL;
8402 
8403 	do {
8404 		struct sched_entity *curr = cfs_rq->curr;
8405 
8406 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
8407 		if (curr) {
8408 			if (curr->on_rq)
8409 				update_curr(cfs_rq);
8410 			else
8411 				curr = NULL;
8412 
8413 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8414 				goto again;
8415 		}
8416 
8417 		se = pick_next_entity(cfs_rq, curr);
8418 		cfs_rq = group_cfs_rq(se);
8419 	} while (cfs_rq);
8420 
8421 	return task_of(se);
8422 }
8423 #endif
8424 
8425 struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8426 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8427 {
8428 	struct cfs_rq *cfs_rq = &rq->cfs;
8429 	struct sched_entity *se;
8430 	struct task_struct *p;
8431 	int new_tasks;
8432 
8433 again:
8434 	if (!sched_fair_runnable(rq))
8435 		goto idle;
8436 
8437 #ifdef CONFIG_FAIR_GROUP_SCHED
8438 	if (!prev || prev->sched_class != &fair_sched_class)
8439 		goto simple;
8440 
8441 	/*
8442 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8443 	 * likely that a next task is from the same cgroup as the current.
8444 	 *
8445 	 * Therefore attempt to avoid putting and setting the entire cgroup
8446 	 * hierarchy, only change the part that actually changes.
8447 	 */
8448 
8449 	do {
8450 		struct sched_entity *curr = cfs_rq->curr;
8451 
8452 		/*
8453 		 * Since we got here without doing put_prev_entity() we also
8454 		 * have to consider cfs_rq->curr. If it is still a runnable
8455 		 * entity, update_curr() will update its vruntime, otherwise
8456 		 * forget we've ever seen it.
8457 		 */
8458 		if (curr) {
8459 			if (curr->on_rq)
8460 				update_curr(cfs_rq);
8461 			else
8462 				curr = NULL;
8463 
8464 			/*
8465 			 * This call to check_cfs_rq_runtime() will do the
8466 			 * throttle and dequeue its entity in the parent(s).
8467 			 * Therefore the nr_running test will indeed
8468 			 * be correct.
8469 			 */
8470 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
8471 				cfs_rq = &rq->cfs;
8472 
8473 				if (!cfs_rq->nr_running)
8474 					goto idle;
8475 
8476 				goto simple;
8477 			}
8478 		}
8479 
8480 		se = pick_next_entity(cfs_rq, curr);
8481 		cfs_rq = group_cfs_rq(se);
8482 	} while (cfs_rq);
8483 
8484 	p = task_of(se);
8485 
8486 	/*
8487 	 * Since we haven't yet done put_prev_entity and if the selected task
8488 	 * is a different task than we started out with, try and touch the
8489 	 * least amount of cfs_rqs.
8490 	 */
8491 	if (prev != p) {
8492 		struct sched_entity *pse = &prev->se;
8493 
8494 		while (!(cfs_rq = is_same_group(se, pse))) {
8495 			int se_depth = se->depth;
8496 			int pse_depth = pse->depth;
8497 
8498 			if (se_depth <= pse_depth) {
8499 				put_prev_entity(cfs_rq_of(pse), pse);
8500 				pse = parent_entity(pse);
8501 			}
8502 			if (se_depth >= pse_depth) {
8503 				set_next_entity(cfs_rq_of(se), se);
8504 				se = parent_entity(se);
8505 			}
8506 		}
8507 
8508 		put_prev_entity(cfs_rq, pse);
8509 		set_next_entity(cfs_rq, se);
8510 	}
8511 
8512 	goto done;
8513 simple:
8514 #endif
8515 	if (prev)
8516 		put_prev_task(rq, prev);
8517 
8518 	do {
8519 		se = pick_next_entity(cfs_rq, NULL);
8520 		set_next_entity(cfs_rq, se);
8521 		cfs_rq = group_cfs_rq(se);
8522 	} while (cfs_rq);
8523 
8524 	p = task_of(se);
8525 
8526 done: __maybe_unused;
8527 #ifdef CONFIG_SMP
8528 	/*
8529 	 * Move the next running task to the front of
8530 	 * the list, so our cfs_tasks list becomes MRU
8531 	 * one.
8532 	 */
8533 	list_move(&p->se.group_node, &rq->cfs_tasks);
8534 #endif
8535 
8536 	if (hrtick_enabled_fair(rq))
8537 		hrtick_start_fair(rq, p);
8538 
8539 	update_misfit_status(p, rq);
8540 	sched_fair_update_stop_tick(rq, p);
8541 
8542 	return p;
8543 
8544 idle:
8545 	if (!rf)
8546 		return NULL;
8547 
8548 	new_tasks = newidle_balance(rq, rf);
8549 
8550 	/*
8551 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
8552 	 * possible for any higher priority task to appear. In that case we
8553 	 * must re-start the pick_next_entity() loop.
8554 	 */
8555 	if (new_tasks < 0)
8556 		return RETRY_TASK;
8557 
8558 	if (new_tasks > 0)
8559 		goto again;
8560 
8561 	/*
8562 	 * rq is about to be idle, check if we need to update the
8563 	 * lost_idle_time of clock_pelt
8564 	 */
8565 	update_idle_rq_clock_pelt(rq);
8566 
8567 	return NULL;
8568 }
8569 
__pick_next_task_fair(struct rq * rq)8570 static struct task_struct *__pick_next_task_fair(struct rq *rq)
8571 {
8572 	return pick_next_task_fair(rq, NULL, NULL);
8573 }
8574 
8575 /*
8576  * Account for a descheduled task:
8577  */
put_prev_task_fair(struct rq * rq,struct task_struct * prev)8578 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
8579 {
8580 	struct sched_entity *se = &prev->se;
8581 	struct cfs_rq *cfs_rq;
8582 
8583 	for_each_sched_entity(se) {
8584 		cfs_rq = cfs_rq_of(se);
8585 		put_prev_entity(cfs_rq, se);
8586 	}
8587 }
8588 
8589 /*
8590  * sched_yield() is very simple
8591  */
yield_task_fair(struct rq * rq)8592 static void yield_task_fair(struct rq *rq)
8593 {
8594 	struct task_struct *curr = rq->curr;
8595 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8596 	struct sched_entity *se = &curr->se;
8597 
8598 	/*
8599 	 * Are we the only task in the tree?
8600 	 */
8601 	if (unlikely(rq->nr_running == 1))
8602 		return;
8603 
8604 	clear_buddies(cfs_rq, se);
8605 
8606 	update_rq_clock(rq);
8607 	/*
8608 	 * Update run-time statistics of the 'current'.
8609 	 */
8610 	update_curr(cfs_rq);
8611 	/*
8612 	 * Tell update_rq_clock() that we've just updated,
8613 	 * so we don't do microscopic update in schedule()
8614 	 * and double the fastpath cost.
8615 	 */
8616 	rq_clock_skip_update(rq);
8617 
8618 	se->deadline += calc_delta_fair(se->slice, se);
8619 }
8620 
yield_to_task_fair(struct rq * rq,struct task_struct * p)8621 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8622 {
8623 	struct sched_entity *se = &p->se;
8624 
8625 	/* throttled hierarchies are not runnable */
8626 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8627 		return false;
8628 
8629 	/* Tell the scheduler that we'd really like pse to run next. */
8630 	set_next_buddy(se);
8631 
8632 	yield_task_fair(rq);
8633 
8634 	return true;
8635 }
8636 
8637 #ifdef CONFIG_SMP
8638 /**************************************************
8639  * Fair scheduling class load-balancing methods.
8640  *
8641  * BASICS
8642  *
8643  * The purpose of load-balancing is to achieve the same basic fairness the
8644  * per-CPU scheduler provides, namely provide a proportional amount of compute
8645  * time to each task. This is expressed in the following equation:
8646  *
8647  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
8648  *
8649  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8650  * W_i,0 is defined as:
8651  *
8652  *   W_i,0 = \Sum_j w_i,j                                             (2)
8653  *
8654  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8655  * is derived from the nice value as per sched_prio_to_weight[].
8656  *
8657  * The weight average is an exponential decay average of the instantaneous
8658  * weight:
8659  *
8660  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
8661  *
8662  * C_i is the compute capacity of CPU i, typically it is the
8663  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8664  * can also include other factors [XXX].
8665  *
8666  * To achieve this balance we define a measure of imbalance which follows
8667  * directly from (1):
8668  *
8669  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
8670  *
8671  * We them move tasks around to minimize the imbalance. In the continuous
8672  * function space it is obvious this converges, in the discrete case we get
8673  * a few fun cases generally called infeasible weight scenarios.
8674  *
8675  * [XXX expand on:
8676  *     - infeasible weights;
8677  *     - local vs global optima in the discrete case. ]
8678  *
8679  *
8680  * SCHED DOMAINS
8681  *
8682  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8683  * for all i,j solution, we create a tree of CPUs that follows the hardware
8684  * topology where each level pairs two lower groups (or better). This results
8685  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8686  * tree to only the first of the previous level and we decrease the frequency
8687  * of load-balance at each level inv. proportional to the number of CPUs in
8688  * the groups.
8689  *
8690  * This yields:
8691  *
8692  *     log_2 n     1     n
8693  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
8694  *     i = 0      2^i   2^i
8695  *                               `- size of each group
8696  *         |         |     `- number of CPUs doing load-balance
8697  *         |         `- freq
8698  *         `- sum over all levels
8699  *
8700  * Coupled with a limit on how many tasks we can migrate every balance pass,
8701  * this makes (5) the runtime complexity of the balancer.
8702  *
8703  * An important property here is that each CPU is still (indirectly) connected
8704  * to every other CPU in at most O(log n) steps:
8705  *
8706  * The adjacency matrix of the resulting graph is given by:
8707  *
8708  *             log_2 n
8709  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
8710  *             k = 0
8711  *
8712  * And you'll find that:
8713  *
8714  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
8715  *
8716  * Showing there's indeed a path between every CPU in at most O(log n) steps.
8717  * The task movement gives a factor of O(m), giving a convergence complexity
8718  * of:
8719  *
8720  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
8721  *
8722  *
8723  * WORK CONSERVING
8724  *
8725  * In order to avoid CPUs going idle while there's still work to do, new idle
8726  * balancing is more aggressive and has the newly idle CPU iterate up the domain
8727  * tree itself instead of relying on other CPUs to bring it work.
8728  *
8729  * This adds some complexity to both (5) and (8) but it reduces the total idle
8730  * time.
8731  *
8732  * [XXX more?]
8733  *
8734  *
8735  * CGROUPS
8736  *
8737  * Cgroups make a horror show out of (2), instead of a simple sum we get:
8738  *
8739  *                                s_k,i
8740  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
8741  *                                 S_k
8742  *
8743  * Where
8744  *
8745  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
8746  *
8747  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
8748  *
8749  * The big problem is S_k, its a global sum needed to compute a local (W_i)
8750  * property.
8751  *
8752  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8753  *      rewrite all of this once again.]
8754  */
8755 
8756 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
8757 
8758 enum fbq_type { regular, remote, all };
8759 
8760 /*
8761  * 'group_type' describes the group of CPUs at the moment of load balancing.
8762  *
8763  * The enum is ordered by pulling priority, with the group with lowest priority
8764  * first so the group_type can simply be compared when selecting the busiest
8765  * group. See update_sd_pick_busiest().
8766  */
8767 enum group_type {
8768 	/* The group has spare capacity that can be used to run more tasks.  */
8769 	group_has_spare = 0,
8770 	/*
8771 	 * The group is fully used and the tasks don't compete for more CPU
8772 	 * cycles. Nevertheless, some tasks might wait before running.
8773 	 */
8774 	group_fully_busy,
8775 	/*
8776 	 * One task doesn't fit with CPU's capacity and must be migrated to a
8777 	 * more powerful CPU.
8778 	 */
8779 	group_misfit_task,
8780 	/*
8781 	 * Balance SMT group that's fully busy. Can benefit from migration
8782 	 * a task on SMT with busy sibling to another CPU on idle core.
8783 	 */
8784 	group_smt_balance,
8785 	/*
8786 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
8787 	 * and the task should be migrated to it instead of running on the
8788 	 * current CPU.
8789 	 */
8790 	group_asym_packing,
8791 	/*
8792 	 * The tasks' affinity constraints previously prevented the scheduler
8793 	 * from balancing the load across the system.
8794 	 */
8795 	group_imbalanced,
8796 	/*
8797 	 * The CPU is overloaded and can't provide expected CPU cycles to all
8798 	 * tasks.
8799 	 */
8800 	group_overloaded
8801 };
8802 
8803 enum migration_type {
8804 	migrate_load = 0,
8805 	migrate_util,
8806 	migrate_task,
8807 	migrate_misfit
8808 };
8809 
8810 #define LBF_ALL_PINNED	0x01
8811 #define LBF_NEED_BREAK	0x02
8812 #define LBF_DST_PINNED  0x04
8813 #define LBF_SOME_PINNED	0x08
8814 #define LBF_ACTIVE_LB	0x10
8815 
8816 struct lb_env {
8817 	struct sched_domain	*sd;
8818 
8819 	struct rq		*src_rq;
8820 	int			src_cpu;
8821 
8822 	int			dst_cpu;
8823 	struct rq		*dst_rq;
8824 
8825 	struct cpumask		*dst_grpmask;
8826 	int			new_dst_cpu;
8827 	enum cpu_idle_type	idle;
8828 	long			imbalance;
8829 	/* The set of CPUs under consideration for load-balancing */
8830 	struct cpumask		*cpus;
8831 
8832 	unsigned int		flags;
8833 
8834 	unsigned int		loop;
8835 	unsigned int		loop_break;
8836 	unsigned int		loop_max;
8837 
8838 	enum fbq_type		fbq_type;
8839 	enum migration_type	migration_type;
8840 	struct list_head	tasks;
8841 };
8842 
8843 /*
8844  * Is this task likely cache-hot:
8845  */
task_hot(struct task_struct * p,struct lb_env * env)8846 static int task_hot(struct task_struct *p, struct lb_env *env)
8847 {
8848 	s64 delta;
8849 
8850 	lockdep_assert_rq_held(env->src_rq);
8851 
8852 	if (p->sched_class != &fair_sched_class)
8853 		return 0;
8854 
8855 	if (unlikely(task_has_idle_policy(p)))
8856 		return 0;
8857 
8858 	/* SMT siblings share cache */
8859 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8860 		return 0;
8861 
8862 	/*
8863 	 * Buddy candidates are cache hot:
8864 	 */
8865 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8866 	    (&p->se == cfs_rq_of(&p->se)->next))
8867 		return 1;
8868 
8869 	if (sysctl_sched_migration_cost == -1)
8870 		return 1;
8871 
8872 	/*
8873 	 * Don't migrate task if the task's cookie does not match
8874 	 * with the destination CPU's core cookie.
8875 	 */
8876 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8877 		return 1;
8878 
8879 	if (sysctl_sched_migration_cost == 0)
8880 		return 0;
8881 
8882 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8883 
8884 	return delta < (s64)sysctl_sched_migration_cost;
8885 }
8886 
8887 #ifdef CONFIG_NUMA_BALANCING
8888 /*
8889  * Returns 1, if task migration degrades locality
8890  * Returns 0, if task migration improves locality i.e migration preferred.
8891  * Returns -1, if task migration is not affected by locality.
8892  */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)8893 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8894 {
8895 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
8896 	unsigned long src_weight, dst_weight;
8897 	int src_nid, dst_nid, dist;
8898 
8899 	if (!static_branch_likely(&sched_numa_balancing))
8900 		return -1;
8901 
8902 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8903 		return -1;
8904 
8905 	src_nid = cpu_to_node(env->src_cpu);
8906 	dst_nid = cpu_to_node(env->dst_cpu);
8907 
8908 	if (src_nid == dst_nid)
8909 		return -1;
8910 
8911 	/* Migrating away from the preferred node is always bad. */
8912 	if (src_nid == p->numa_preferred_nid) {
8913 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8914 			return 1;
8915 		else
8916 			return -1;
8917 	}
8918 
8919 	/* Encourage migration to the preferred node. */
8920 	if (dst_nid == p->numa_preferred_nid)
8921 		return 0;
8922 
8923 	/* Leaving a core idle is often worse than degrading locality. */
8924 	if (env->idle == CPU_IDLE)
8925 		return -1;
8926 
8927 	dist = node_distance(src_nid, dst_nid);
8928 	if (numa_group) {
8929 		src_weight = group_weight(p, src_nid, dist);
8930 		dst_weight = group_weight(p, dst_nid, dist);
8931 	} else {
8932 		src_weight = task_weight(p, src_nid, dist);
8933 		dst_weight = task_weight(p, dst_nid, dist);
8934 	}
8935 
8936 	return dst_weight < src_weight;
8937 }
8938 
8939 #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)8940 static inline int migrate_degrades_locality(struct task_struct *p,
8941 					     struct lb_env *env)
8942 {
8943 	return -1;
8944 }
8945 #endif
8946 
8947 /*
8948  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8949  */
8950 static
can_migrate_task(struct task_struct * p,struct lb_env * env)8951 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8952 {
8953 	int tsk_cache_hot;
8954 
8955 	lockdep_assert_rq_held(env->src_rq);
8956 
8957 	/*
8958 	 * We do not migrate tasks that are:
8959 	 * 1) throttled_lb_pair, or
8960 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8961 	 * 3) running (obviously), or
8962 	 * 4) are cache-hot on their current CPU.
8963 	 */
8964 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8965 		return 0;
8966 
8967 	/* Disregard pcpu kthreads; they are where they need to be. */
8968 	if (kthread_is_per_cpu(p))
8969 		return 0;
8970 
8971 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8972 		int cpu;
8973 
8974 		schedstat_inc(p->stats.nr_failed_migrations_affine);
8975 
8976 		env->flags |= LBF_SOME_PINNED;
8977 
8978 		/*
8979 		 * Remember if this task can be migrated to any other CPU in
8980 		 * our sched_group. We may want to revisit it if we couldn't
8981 		 * meet load balance goals by pulling other tasks on src_cpu.
8982 		 *
8983 		 * Avoid computing new_dst_cpu
8984 		 * - for NEWLY_IDLE
8985 		 * - if we have already computed one in current iteration
8986 		 * - if it's an active balance
8987 		 */
8988 		if (env->idle == CPU_NEWLY_IDLE ||
8989 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
8990 			return 0;
8991 
8992 		/* Prevent to re-select dst_cpu via env's CPUs: */
8993 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8994 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8995 				env->flags |= LBF_DST_PINNED;
8996 				env->new_dst_cpu = cpu;
8997 				break;
8998 			}
8999 		}
9000 
9001 		return 0;
9002 	}
9003 
9004 	/* Record that we found at least one task that could run on dst_cpu */
9005 	env->flags &= ~LBF_ALL_PINNED;
9006 
9007 	if (task_on_cpu(env->src_rq, p)) {
9008 		schedstat_inc(p->stats.nr_failed_migrations_running);
9009 		return 0;
9010 	}
9011 
9012 	/*
9013 	 * Aggressive migration if:
9014 	 * 1) active balance
9015 	 * 2) destination numa is preferred
9016 	 * 3) task is cache cold, or
9017 	 * 4) too many balance attempts have failed.
9018 	 */
9019 	if (env->flags & LBF_ACTIVE_LB)
9020 		return 1;
9021 
9022 	tsk_cache_hot = migrate_degrades_locality(p, env);
9023 	if (tsk_cache_hot == -1)
9024 		tsk_cache_hot = task_hot(p, env);
9025 
9026 	if (tsk_cache_hot <= 0 ||
9027 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9028 		if (tsk_cache_hot == 1) {
9029 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9030 			schedstat_inc(p->stats.nr_forced_migrations);
9031 		}
9032 		return 1;
9033 	}
9034 
9035 	schedstat_inc(p->stats.nr_failed_migrations_hot);
9036 	return 0;
9037 }
9038 
9039 /*
9040  * detach_task() -- detach the task for the migration specified in env
9041  */
detach_task(struct task_struct * p,struct lb_env * env)9042 static void detach_task(struct task_struct *p, struct lb_env *env)
9043 {
9044 	lockdep_assert_rq_held(env->src_rq);
9045 
9046 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9047 	set_task_cpu(p, env->dst_cpu);
9048 }
9049 
9050 /*
9051  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9052  * part of active balancing operations within "domain".
9053  *
9054  * Returns a task if successful and NULL otherwise.
9055  */
detach_one_task(struct lb_env * env)9056 static struct task_struct *detach_one_task(struct lb_env *env)
9057 {
9058 	struct task_struct *p;
9059 
9060 	lockdep_assert_rq_held(env->src_rq);
9061 
9062 	list_for_each_entry_reverse(p,
9063 			&env->src_rq->cfs_tasks, se.group_node) {
9064 		if (!can_migrate_task(p, env))
9065 			continue;
9066 
9067 		detach_task(p, env);
9068 
9069 		/*
9070 		 * Right now, this is only the second place where
9071 		 * lb_gained[env->idle] is updated (other is detach_tasks)
9072 		 * so we can safely collect stats here rather than
9073 		 * inside detach_tasks().
9074 		 */
9075 		schedstat_inc(env->sd->lb_gained[env->idle]);
9076 		return p;
9077 	}
9078 	return NULL;
9079 }
9080 
9081 /*
9082  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9083  * busiest_rq, as part of a balancing operation within domain "sd".
9084  *
9085  * Returns number of detached tasks if successful and 0 otherwise.
9086  */
detach_tasks(struct lb_env * env)9087 static int detach_tasks(struct lb_env *env)
9088 {
9089 	struct list_head *tasks = &env->src_rq->cfs_tasks;
9090 	unsigned long util, load;
9091 	struct task_struct *p;
9092 	int detached = 0;
9093 
9094 	lockdep_assert_rq_held(env->src_rq);
9095 
9096 	/*
9097 	 * Source run queue has been emptied by another CPU, clear
9098 	 * LBF_ALL_PINNED flag as we will not test any task.
9099 	 */
9100 	if (env->src_rq->nr_running <= 1) {
9101 		env->flags &= ~LBF_ALL_PINNED;
9102 		return 0;
9103 	}
9104 
9105 	if (env->imbalance <= 0)
9106 		return 0;
9107 
9108 	while (!list_empty(tasks)) {
9109 		/*
9110 		 * We don't want to steal all, otherwise we may be treated likewise,
9111 		 * which could at worst lead to a livelock crash.
9112 		 */
9113 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
9114 			break;
9115 
9116 		env->loop++;
9117 		/*
9118 		 * We've more or less seen every task there is, call it quits
9119 		 * unless we haven't found any movable task yet.
9120 		 */
9121 		if (env->loop > env->loop_max &&
9122 		    !(env->flags & LBF_ALL_PINNED))
9123 			break;
9124 
9125 		/* take a breather every nr_migrate tasks */
9126 		if (env->loop > env->loop_break) {
9127 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
9128 			env->flags |= LBF_NEED_BREAK;
9129 			break;
9130 		}
9131 
9132 		p = list_last_entry(tasks, struct task_struct, se.group_node);
9133 
9134 		if (!can_migrate_task(p, env))
9135 			goto next;
9136 
9137 		switch (env->migration_type) {
9138 		case migrate_load:
9139 			/*
9140 			 * Depending of the number of CPUs and tasks and the
9141 			 * cgroup hierarchy, task_h_load() can return a null
9142 			 * value. Make sure that env->imbalance decreases
9143 			 * otherwise detach_tasks() will stop only after
9144 			 * detaching up to loop_max tasks.
9145 			 */
9146 			load = max_t(unsigned long, task_h_load(p), 1);
9147 
9148 			if (sched_feat(LB_MIN) &&
9149 			    load < 16 && !env->sd->nr_balance_failed)
9150 				goto next;
9151 
9152 			/*
9153 			 * Make sure that we don't migrate too much load.
9154 			 * Nevertheless, let relax the constraint if
9155 			 * scheduler fails to find a good waiting task to
9156 			 * migrate.
9157 			 */
9158 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9159 				goto next;
9160 
9161 			env->imbalance -= load;
9162 			break;
9163 
9164 		case migrate_util:
9165 			util = task_util_est(p);
9166 
9167 			if (util > env->imbalance)
9168 				goto next;
9169 
9170 			env->imbalance -= util;
9171 			break;
9172 
9173 		case migrate_task:
9174 			env->imbalance--;
9175 			break;
9176 
9177 		case migrate_misfit:
9178 			/* This is not a misfit task */
9179 			if (task_fits_cpu(p, env->src_cpu))
9180 				goto next;
9181 
9182 			env->imbalance = 0;
9183 			break;
9184 		}
9185 
9186 		detach_task(p, env);
9187 		list_add(&p->se.group_node, &env->tasks);
9188 
9189 		detached++;
9190 
9191 #ifdef CONFIG_PREEMPTION
9192 		/*
9193 		 * NEWIDLE balancing is a source of latency, so preemptible
9194 		 * kernels will stop after the first task is detached to minimize
9195 		 * the critical section.
9196 		 */
9197 		if (env->idle == CPU_NEWLY_IDLE)
9198 			break;
9199 #endif
9200 
9201 		/*
9202 		 * We only want to steal up to the prescribed amount of
9203 		 * load/util/tasks.
9204 		 */
9205 		if (env->imbalance <= 0)
9206 			break;
9207 
9208 		continue;
9209 next:
9210 		list_move(&p->se.group_node, tasks);
9211 	}
9212 
9213 	/*
9214 	 * Right now, this is one of only two places we collect this stat
9215 	 * so we can safely collect detach_one_task() stats here rather
9216 	 * than inside detach_one_task().
9217 	 */
9218 	schedstat_add(env->sd->lb_gained[env->idle], detached);
9219 
9220 	return detached;
9221 }
9222 
9223 /*
9224  * attach_task() -- attach the task detached by detach_task() to its new rq.
9225  */
attach_task(struct rq * rq,struct task_struct * p)9226 static void attach_task(struct rq *rq, struct task_struct *p)
9227 {
9228 	lockdep_assert_rq_held(rq);
9229 
9230 	WARN_ON_ONCE(task_rq(p) != rq);
9231 	activate_task(rq, p, ENQUEUE_NOCLOCK);
9232 	check_preempt_curr(rq, p, 0);
9233 }
9234 
9235 /*
9236  * attach_one_task() -- attaches the task returned from detach_one_task() to
9237  * its new rq.
9238  */
attach_one_task(struct rq * rq,struct task_struct * p)9239 static void attach_one_task(struct rq *rq, struct task_struct *p)
9240 {
9241 	struct rq_flags rf;
9242 
9243 	rq_lock(rq, &rf);
9244 	update_rq_clock(rq);
9245 	attach_task(rq, p);
9246 	rq_unlock(rq, &rf);
9247 }
9248 
9249 /*
9250  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9251  * new rq.
9252  */
attach_tasks(struct lb_env * env)9253 static void attach_tasks(struct lb_env *env)
9254 {
9255 	struct list_head *tasks = &env->tasks;
9256 	struct task_struct *p;
9257 	struct rq_flags rf;
9258 
9259 	rq_lock(env->dst_rq, &rf);
9260 	update_rq_clock(env->dst_rq);
9261 
9262 	while (!list_empty(tasks)) {
9263 		p = list_first_entry(tasks, struct task_struct, se.group_node);
9264 		list_del_init(&p->se.group_node);
9265 
9266 		attach_task(env->dst_rq, p);
9267 	}
9268 
9269 	rq_unlock(env->dst_rq, &rf);
9270 }
9271 
9272 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9273 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9274 {
9275 	if (cfs_rq->avg.load_avg)
9276 		return true;
9277 
9278 	if (cfs_rq->avg.util_avg)
9279 		return true;
9280 
9281 	return false;
9282 }
9283 
others_have_blocked(struct rq * rq)9284 static inline bool others_have_blocked(struct rq *rq)
9285 {
9286 	if (READ_ONCE(rq->avg_rt.util_avg))
9287 		return true;
9288 
9289 	if (READ_ONCE(rq->avg_dl.util_avg))
9290 		return true;
9291 
9292 	if (thermal_load_avg(rq))
9293 		return true;
9294 
9295 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
9296 	if (READ_ONCE(rq->avg_irq.util_avg))
9297 		return true;
9298 #endif
9299 
9300 	return false;
9301 }
9302 
update_blocked_load_tick(struct rq * rq)9303 static inline void update_blocked_load_tick(struct rq *rq)
9304 {
9305 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9306 }
9307 
update_blocked_load_status(struct rq * rq,bool has_blocked)9308 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9309 {
9310 	if (!has_blocked)
9311 		rq->has_blocked_load = 0;
9312 }
9313 #else
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9314 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)9315 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_tick(struct rq * rq)9316 static inline void update_blocked_load_tick(struct rq *rq) {}
update_blocked_load_status(struct rq * rq,bool has_blocked)9317 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9318 #endif
9319 
__update_blocked_others(struct rq * rq,bool * done)9320 static bool __update_blocked_others(struct rq *rq, bool *done)
9321 {
9322 	const struct sched_class *curr_class;
9323 	u64 now = rq_clock_pelt(rq);
9324 	unsigned long thermal_pressure;
9325 	bool decayed;
9326 
9327 	/*
9328 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9329 	 * DL and IRQ signals have been updated before updating CFS.
9330 	 */
9331 	curr_class = rq->curr->sched_class;
9332 
9333 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
9334 
9335 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
9336 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
9337 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
9338 		  update_irq_load_avg(rq, 0);
9339 
9340 	if (others_have_blocked(rq))
9341 		*done = false;
9342 
9343 	return decayed;
9344 }
9345 
9346 #ifdef CONFIG_FAIR_GROUP_SCHED
9347 
__update_blocked_fair(struct rq * rq,bool * done)9348 static bool __update_blocked_fair(struct rq *rq, bool *done)
9349 {
9350 	struct cfs_rq *cfs_rq, *pos;
9351 	bool decayed = false;
9352 	int cpu = cpu_of(rq);
9353 
9354 	/*
9355 	 * Iterates the task_group tree in a bottom up fashion, see
9356 	 * list_add_leaf_cfs_rq() for details.
9357 	 */
9358 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9359 		struct sched_entity *se;
9360 
9361 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9362 			update_tg_load_avg(cfs_rq);
9363 
9364 			if (cfs_rq->nr_running == 0)
9365 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9366 
9367 			if (cfs_rq == &rq->cfs)
9368 				decayed = true;
9369 		}
9370 
9371 		/* Propagate pending load changes to the parent, if any: */
9372 		se = cfs_rq->tg->se[cpu];
9373 		if (se && !skip_blocked_update(se))
9374 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9375 
9376 		/*
9377 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9378 		 * decayed cfs_rqs linger on the list.
9379 		 */
9380 		if (cfs_rq_is_decayed(cfs_rq))
9381 			list_del_leaf_cfs_rq(cfs_rq);
9382 
9383 		/* Don't need periodic decay once load/util_avg are null */
9384 		if (cfs_rq_has_blocked(cfs_rq))
9385 			*done = false;
9386 	}
9387 
9388 	return decayed;
9389 }
9390 
9391 /*
9392  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9393  * This needs to be done in a top-down fashion because the load of a child
9394  * group is a fraction of its parents load.
9395  */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)9396 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9397 {
9398 	struct rq *rq = rq_of(cfs_rq);
9399 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9400 	unsigned long now = jiffies;
9401 	unsigned long load;
9402 
9403 	if (cfs_rq->last_h_load_update == now)
9404 		return;
9405 
9406 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9407 	for_each_sched_entity(se) {
9408 		cfs_rq = cfs_rq_of(se);
9409 		WRITE_ONCE(cfs_rq->h_load_next, se);
9410 		if (cfs_rq->last_h_load_update == now)
9411 			break;
9412 	}
9413 
9414 	if (!se) {
9415 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9416 		cfs_rq->last_h_load_update = now;
9417 	}
9418 
9419 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9420 		load = cfs_rq->h_load;
9421 		load = div64_ul(load * se->avg.load_avg,
9422 			cfs_rq_load_avg(cfs_rq) + 1);
9423 		cfs_rq = group_cfs_rq(se);
9424 		cfs_rq->h_load = load;
9425 		cfs_rq->last_h_load_update = now;
9426 	}
9427 }
9428 
task_h_load(struct task_struct * p)9429 static unsigned long task_h_load(struct task_struct *p)
9430 {
9431 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9432 
9433 	update_cfs_rq_h_load(cfs_rq);
9434 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9435 			cfs_rq_load_avg(cfs_rq) + 1);
9436 }
9437 #else
__update_blocked_fair(struct rq * rq,bool * done)9438 static bool __update_blocked_fair(struct rq *rq, bool *done)
9439 {
9440 	struct cfs_rq *cfs_rq = &rq->cfs;
9441 	bool decayed;
9442 
9443 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9444 	if (cfs_rq_has_blocked(cfs_rq))
9445 		*done = false;
9446 
9447 	return decayed;
9448 }
9449 
task_h_load(struct task_struct * p)9450 static unsigned long task_h_load(struct task_struct *p)
9451 {
9452 	return p->se.avg.load_avg;
9453 }
9454 #endif
9455 
update_blocked_averages(int cpu)9456 static void update_blocked_averages(int cpu)
9457 {
9458 	bool decayed = false, done = true;
9459 	struct rq *rq = cpu_rq(cpu);
9460 	struct rq_flags rf;
9461 
9462 	rq_lock_irqsave(rq, &rf);
9463 	update_blocked_load_tick(rq);
9464 	update_rq_clock(rq);
9465 
9466 	decayed |= __update_blocked_others(rq, &done);
9467 	decayed |= __update_blocked_fair(rq, &done);
9468 
9469 	update_blocked_load_status(rq, !done);
9470 	if (decayed)
9471 		cpufreq_update_util(rq, 0);
9472 	rq_unlock_irqrestore(rq, &rf);
9473 }
9474 
9475 /********** Helpers for find_busiest_group ************************/
9476 
9477 /*
9478  * sg_lb_stats - stats of a sched_group required for load_balancing
9479  */
9480 struct sg_lb_stats {
9481 	unsigned long avg_load; /*Avg load across the CPUs of the group */
9482 	unsigned long group_load; /* Total load over the CPUs of the group */
9483 	unsigned long group_capacity;
9484 	unsigned long group_util; /* Total utilization over the CPUs of the group */
9485 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9486 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
9487 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9488 	unsigned int idle_cpus;
9489 	unsigned int group_weight;
9490 	enum group_type group_type;
9491 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9492 	unsigned int group_smt_balance;  /* Task on busy SMT be moved */
9493 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9494 #ifdef CONFIG_NUMA_BALANCING
9495 	unsigned int nr_numa_running;
9496 	unsigned int nr_preferred_running;
9497 #endif
9498 };
9499 
9500 /*
9501  * sd_lb_stats - Structure to store the statistics of a sched_domain
9502  *		 during load balancing.
9503  */
9504 struct sd_lb_stats {
9505 	struct sched_group *busiest;	/* Busiest group in this sd */
9506 	struct sched_group *local;	/* Local group in this sd */
9507 	unsigned long total_load;	/* Total load of all groups in sd */
9508 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
9509 	unsigned long avg_load;	/* Average load across all groups in sd */
9510 	unsigned int prefer_sibling; /* tasks should go to sibling first */
9511 
9512 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
9513 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
9514 };
9515 
init_sd_lb_stats(struct sd_lb_stats * sds)9516 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9517 {
9518 	/*
9519 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9520 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9521 	 * We must however set busiest_stat::group_type and
9522 	 * busiest_stat::idle_cpus to the worst busiest group because
9523 	 * update_sd_pick_busiest() reads these before assignment.
9524 	 */
9525 	*sds = (struct sd_lb_stats){
9526 		.busiest = NULL,
9527 		.local = NULL,
9528 		.total_load = 0UL,
9529 		.total_capacity = 0UL,
9530 		.busiest_stat = {
9531 			.idle_cpus = UINT_MAX,
9532 			.group_type = group_has_spare,
9533 		},
9534 	};
9535 }
9536 
scale_rt_capacity(int cpu)9537 static unsigned long scale_rt_capacity(int cpu)
9538 {
9539 	struct rq *rq = cpu_rq(cpu);
9540 	unsigned long max = arch_scale_cpu_capacity(cpu);
9541 	unsigned long used, free;
9542 	unsigned long irq;
9543 
9544 	irq = cpu_util_irq(rq);
9545 
9546 	if (unlikely(irq >= max))
9547 		return 1;
9548 
9549 	/*
9550 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9551 	 * (running and not running) with weights 0 and 1024 respectively.
9552 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
9553 	 * average uses the actual delta max capacity(load).
9554 	 */
9555 	used = READ_ONCE(rq->avg_rt.util_avg);
9556 	used += READ_ONCE(rq->avg_dl.util_avg);
9557 	used += thermal_load_avg(rq);
9558 
9559 	if (unlikely(used >= max))
9560 		return 1;
9561 
9562 	free = max - used;
9563 
9564 	return scale_irq_capacity(free, irq, max);
9565 }
9566 
update_cpu_capacity(struct sched_domain * sd,int cpu)9567 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9568 {
9569 	unsigned long capacity = scale_rt_capacity(cpu);
9570 	struct sched_group *sdg = sd->groups;
9571 
9572 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
9573 
9574 	if (!capacity)
9575 		capacity = 1;
9576 
9577 	cpu_rq(cpu)->cpu_capacity = capacity;
9578 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9579 
9580 	sdg->sgc->capacity = capacity;
9581 	sdg->sgc->min_capacity = capacity;
9582 	sdg->sgc->max_capacity = capacity;
9583 }
9584 
update_group_capacity(struct sched_domain * sd,int cpu)9585 void update_group_capacity(struct sched_domain *sd, int cpu)
9586 {
9587 	struct sched_domain *child = sd->child;
9588 	struct sched_group *group, *sdg = sd->groups;
9589 	unsigned long capacity, min_capacity, max_capacity;
9590 	unsigned long interval;
9591 
9592 	interval = msecs_to_jiffies(sd->balance_interval);
9593 	interval = clamp(interval, 1UL, max_load_balance_interval);
9594 	sdg->sgc->next_update = jiffies + interval;
9595 
9596 	if (!child) {
9597 		update_cpu_capacity(sd, cpu);
9598 		return;
9599 	}
9600 
9601 	capacity = 0;
9602 	min_capacity = ULONG_MAX;
9603 	max_capacity = 0;
9604 
9605 	if (child->flags & SD_OVERLAP) {
9606 		/*
9607 		 * SD_OVERLAP domains cannot assume that child groups
9608 		 * span the current group.
9609 		 */
9610 
9611 		for_each_cpu(cpu, sched_group_span(sdg)) {
9612 			unsigned long cpu_cap = capacity_of(cpu);
9613 
9614 			capacity += cpu_cap;
9615 			min_capacity = min(cpu_cap, min_capacity);
9616 			max_capacity = max(cpu_cap, max_capacity);
9617 		}
9618 	} else  {
9619 		/*
9620 		 * !SD_OVERLAP domains can assume that child groups
9621 		 * span the current group.
9622 		 */
9623 
9624 		group = child->groups;
9625 		do {
9626 			struct sched_group_capacity *sgc = group->sgc;
9627 
9628 			capacity += sgc->capacity;
9629 			min_capacity = min(sgc->min_capacity, min_capacity);
9630 			max_capacity = max(sgc->max_capacity, max_capacity);
9631 			group = group->next;
9632 		} while (group != child->groups);
9633 	}
9634 
9635 	sdg->sgc->capacity = capacity;
9636 	sdg->sgc->min_capacity = min_capacity;
9637 	sdg->sgc->max_capacity = max_capacity;
9638 }
9639 
9640 /*
9641  * Check whether the capacity of the rq has been noticeably reduced by side
9642  * activity. The imbalance_pct is used for the threshold.
9643  * Return true is the capacity is reduced
9644  */
9645 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)9646 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9647 {
9648 	return ((rq->cpu_capacity * sd->imbalance_pct) <
9649 				(rq->cpu_capacity_orig * 100));
9650 }
9651 
9652 /*
9653  * Check whether a rq has a misfit task and if it looks like we can actually
9654  * help that task: we can migrate the task to a CPU of higher capacity, or
9655  * the task's current CPU is heavily pressured.
9656  */
check_misfit_status(struct rq * rq,struct sched_domain * sd)9657 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
9658 {
9659 	return rq->misfit_task_load &&
9660 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
9661 		 check_cpu_capacity(rq, sd));
9662 }
9663 
9664 /*
9665  * Group imbalance indicates (and tries to solve) the problem where balancing
9666  * groups is inadequate due to ->cpus_ptr constraints.
9667  *
9668  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9669  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
9670  * Something like:
9671  *
9672  *	{ 0 1 2 3 } { 4 5 6 7 }
9673  *	        *     * * *
9674  *
9675  * If we were to balance group-wise we'd place two tasks in the first group and
9676  * two tasks in the second group. Clearly this is undesired as it will overload
9677  * cpu 3 and leave one of the CPUs in the second group unused.
9678  *
9679  * The current solution to this issue is detecting the skew in the first group
9680  * by noticing the lower domain failed to reach balance and had difficulty
9681  * moving tasks due to affinity constraints.
9682  *
9683  * When this is so detected; this group becomes a candidate for busiest; see
9684  * update_sd_pick_busiest(). And calculate_imbalance() and
9685  * find_busiest_group() avoid some of the usual balance conditions to allow it
9686  * to create an effective group imbalance.
9687  *
9688  * This is a somewhat tricky proposition since the next run might not find the
9689  * group imbalance and decide the groups need to be balanced again. A most
9690  * subtle and fragile situation.
9691  */
9692 
sg_imbalanced(struct sched_group * group)9693 static inline int sg_imbalanced(struct sched_group *group)
9694 {
9695 	return group->sgc->imbalance;
9696 }
9697 
9698 /*
9699  * group_has_capacity returns true if the group has spare capacity that could
9700  * be used by some tasks.
9701  * We consider that a group has spare capacity if the number of task is
9702  * smaller than the number of CPUs or if the utilization is lower than the
9703  * available capacity for CFS tasks.
9704  * For the latter, we use a threshold to stabilize the state, to take into
9705  * account the variance of the tasks' load and to return true if the available
9706  * capacity in meaningful for the load balancer.
9707  * As an example, an available capacity of 1% can appear but it doesn't make
9708  * any benefit for the load balance.
9709  */
9710 static inline bool
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)9711 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9712 {
9713 	if (sgs->sum_nr_running < sgs->group_weight)
9714 		return true;
9715 
9716 	if ((sgs->group_capacity * imbalance_pct) <
9717 			(sgs->group_runnable * 100))
9718 		return false;
9719 
9720 	if ((sgs->group_capacity * 100) >
9721 			(sgs->group_util * imbalance_pct))
9722 		return true;
9723 
9724 	return false;
9725 }
9726 
9727 /*
9728  *  group_is_overloaded returns true if the group has more tasks than it can
9729  *  handle.
9730  *  group_is_overloaded is not equals to !group_has_capacity because a group
9731  *  with the exact right number of tasks, has no more spare capacity but is not
9732  *  overloaded so both group_has_capacity and group_is_overloaded return
9733  *  false.
9734  */
9735 static inline bool
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)9736 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9737 {
9738 	if (sgs->sum_nr_running <= sgs->group_weight)
9739 		return false;
9740 
9741 	if ((sgs->group_capacity * 100) <
9742 			(sgs->group_util * imbalance_pct))
9743 		return true;
9744 
9745 	if ((sgs->group_capacity * imbalance_pct) <
9746 			(sgs->group_runnable * 100))
9747 		return true;
9748 
9749 	return false;
9750 }
9751 
9752 static inline enum
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)9753 group_type group_classify(unsigned int imbalance_pct,
9754 			  struct sched_group *group,
9755 			  struct sg_lb_stats *sgs)
9756 {
9757 	if (group_is_overloaded(imbalance_pct, sgs))
9758 		return group_overloaded;
9759 
9760 	if (sg_imbalanced(group))
9761 		return group_imbalanced;
9762 
9763 	if (sgs->group_asym_packing)
9764 		return group_asym_packing;
9765 
9766 	if (sgs->group_smt_balance)
9767 		return group_smt_balance;
9768 
9769 	if (sgs->group_misfit_task_load)
9770 		return group_misfit_task;
9771 
9772 	if (!group_has_capacity(imbalance_pct, sgs))
9773 		return group_fully_busy;
9774 
9775 	return group_has_spare;
9776 }
9777 
9778 /**
9779  * sched_use_asym_prio - Check whether asym_packing priority must be used
9780  * @sd:		The scheduling domain of the load balancing
9781  * @cpu:	A CPU
9782  *
9783  * Always use CPU priority when balancing load between SMT siblings. When
9784  * balancing load between cores, it is not sufficient that @cpu is idle. Only
9785  * use CPU priority if the whole core is idle.
9786  *
9787  * Returns: True if the priority of @cpu must be followed. False otherwise.
9788  */
sched_use_asym_prio(struct sched_domain * sd,int cpu)9789 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
9790 {
9791 	if (!sched_smt_active())
9792 		return true;
9793 
9794 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
9795 }
9796 
9797 /**
9798  * sched_asym - Check if the destination CPU can do asym_packing load balance
9799  * @env:	The load balancing environment
9800  * @sds:	Load-balancing data with statistics of the local group
9801  * @sgs:	Load-balancing statistics of the candidate busiest group
9802  * @group:	The candidate busiest group
9803  *
9804  * @env::dst_cpu can do asym_packing if it has higher priority than the
9805  * preferred CPU of @group.
9806  *
9807  * SMT is a special case. If we are balancing load between cores, @env::dst_cpu
9808  * can do asym_packing balance only if all its SMT siblings are idle. Also, it
9809  * can only do it if @group is an SMT group and has exactly on busy CPU. Larger
9810  * imbalances in the number of CPUS are dealt with in find_busiest_group().
9811  *
9812  * If we are balancing load within an SMT core, or at DIE domain level, always
9813  * proceed.
9814  *
9815  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
9816  * otherwise.
9817  */
9818 static inline bool
sched_asym(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * sgs,struct sched_group * group)9819 sched_asym(struct lb_env *env, struct sd_lb_stats *sds,  struct sg_lb_stats *sgs,
9820 	   struct sched_group *group)
9821 {
9822 	/* Ensure that the whole local core is idle, if applicable. */
9823 	if (!sched_use_asym_prio(env->sd, env->dst_cpu))
9824 		return false;
9825 
9826 	/*
9827 	 * CPU priorities does not make sense for SMT cores with more than one
9828 	 * busy sibling.
9829 	 */
9830 	if (group->flags & SD_SHARE_CPUCAPACITY) {
9831 		if (sgs->group_weight - sgs->idle_cpus != 1)
9832 			return false;
9833 	}
9834 
9835 	return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
9836 }
9837 
9838 /* One group has more than one SMT CPU while the other group does not */
smt_vs_nonsmt_groups(struct sched_group * sg1,struct sched_group * sg2)9839 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
9840 				    struct sched_group *sg2)
9841 {
9842 	if (!sg1 || !sg2)
9843 		return false;
9844 
9845 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
9846 		(sg2->flags & SD_SHARE_CPUCAPACITY);
9847 }
9848 
smt_balance(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)9849 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
9850 			       struct sched_group *group)
9851 {
9852 	if (env->idle == CPU_NOT_IDLE)
9853 		return false;
9854 
9855 	/*
9856 	 * For SMT source group, it is better to move a task
9857 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
9858 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
9859 	 * will not be on.
9860 	 */
9861 	if (group->flags & SD_SHARE_CPUCAPACITY &&
9862 	    sgs->sum_h_nr_running > 1)
9863 		return true;
9864 
9865 	return false;
9866 }
9867 
sibling_imbalance(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * busiest,struct sg_lb_stats * local)9868 static inline long sibling_imbalance(struct lb_env *env,
9869 				    struct sd_lb_stats *sds,
9870 				    struct sg_lb_stats *busiest,
9871 				    struct sg_lb_stats *local)
9872 {
9873 	int ncores_busiest, ncores_local;
9874 	long imbalance;
9875 
9876 	if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running)
9877 		return 0;
9878 
9879 	ncores_busiest = sds->busiest->cores;
9880 	ncores_local = sds->local->cores;
9881 
9882 	if (ncores_busiest == ncores_local) {
9883 		imbalance = busiest->sum_nr_running;
9884 		lsub_positive(&imbalance, local->sum_nr_running);
9885 		return imbalance;
9886 	}
9887 
9888 	/* Balance such that nr_running/ncores ratio are same on both groups */
9889 	imbalance = ncores_local * busiest->sum_nr_running;
9890 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
9891 	/* Normalize imbalance and do rounding on normalization */
9892 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
9893 	imbalance /= ncores_local + ncores_busiest;
9894 
9895 	/* Take advantage of resource in an empty sched group */
9896 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
9897 	    busiest->sum_nr_running > 1)
9898 		imbalance = 2;
9899 
9900 	return imbalance;
9901 }
9902 
9903 static inline bool
sched_reduced_capacity(struct rq * rq,struct sched_domain * sd)9904 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
9905 {
9906 	/*
9907 	 * When there is more than 1 task, the group_overloaded case already
9908 	 * takes care of cpu with reduced capacity
9909 	 */
9910 	if (rq->cfs.h_nr_running != 1)
9911 		return false;
9912 
9913 	return check_cpu_capacity(rq, sd);
9914 }
9915 
9916 /**
9917  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9918  * @env: The load balancing environment.
9919  * @sds: Load-balancing data with statistics of the local group.
9920  * @group: sched_group whose statistics are to be updated.
9921  * @sgs: variable to hold the statistics for this group.
9922  * @sg_status: Holds flag indicating the status of the sched_group
9923  */
update_sg_lb_stats(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * group,struct sg_lb_stats * sgs,int * sg_status)9924 static inline void update_sg_lb_stats(struct lb_env *env,
9925 				      struct sd_lb_stats *sds,
9926 				      struct sched_group *group,
9927 				      struct sg_lb_stats *sgs,
9928 				      int *sg_status)
9929 {
9930 	int i, nr_running, local_group;
9931 
9932 	memset(sgs, 0, sizeof(*sgs));
9933 
9934 	local_group = group == sds->local;
9935 
9936 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9937 		struct rq *rq = cpu_rq(i);
9938 		unsigned long load = cpu_load(rq);
9939 
9940 		sgs->group_load += load;
9941 		sgs->group_util += cpu_util_cfs(i);
9942 		sgs->group_runnable += cpu_runnable(rq);
9943 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9944 
9945 		nr_running = rq->nr_running;
9946 		sgs->sum_nr_running += nr_running;
9947 
9948 		if (nr_running > 1)
9949 			*sg_status |= SG_OVERLOAD;
9950 
9951 		if (cpu_overutilized(i))
9952 			*sg_status |= SG_OVERUTILIZED;
9953 
9954 #ifdef CONFIG_NUMA_BALANCING
9955 		sgs->nr_numa_running += rq->nr_numa_running;
9956 		sgs->nr_preferred_running += rq->nr_preferred_running;
9957 #endif
9958 		/*
9959 		 * No need to call idle_cpu() if nr_running is not 0
9960 		 */
9961 		if (!nr_running && idle_cpu(i)) {
9962 			sgs->idle_cpus++;
9963 			/* Idle cpu can't have misfit task */
9964 			continue;
9965 		}
9966 
9967 		if (local_group)
9968 			continue;
9969 
9970 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9971 			/* Check for a misfit task on the cpu */
9972 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9973 				sgs->group_misfit_task_load = rq->misfit_task_load;
9974 				*sg_status |= SG_OVERLOAD;
9975 			}
9976 		} else if ((env->idle != CPU_NOT_IDLE) &&
9977 			   sched_reduced_capacity(rq, env->sd)) {
9978 			/* Check for a task running on a CPU with reduced capacity */
9979 			if (sgs->group_misfit_task_load < load)
9980 				sgs->group_misfit_task_load = load;
9981 		}
9982 	}
9983 
9984 	sgs->group_capacity = group->sgc->capacity;
9985 
9986 	sgs->group_weight = group->group_weight;
9987 
9988 	/* Check if dst CPU is idle and preferred to this group */
9989 	if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
9990 	    env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
9991 	    sched_asym(env, sds, sgs, group)) {
9992 		sgs->group_asym_packing = 1;
9993 	}
9994 
9995 	/* Check for loaded SMT group to be balanced to dst CPU */
9996 	if (!local_group && smt_balance(env, sgs, group))
9997 		sgs->group_smt_balance = 1;
9998 
9999 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
10000 
10001 	/* Computing avg_load makes sense only when group is overloaded */
10002 	if (sgs->group_type == group_overloaded)
10003 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10004 				sgs->group_capacity;
10005 }
10006 
10007 /**
10008  * update_sd_pick_busiest - return 1 on busiest group
10009  * @env: The load balancing environment.
10010  * @sds: sched_domain statistics
10011  * @sg: sched_group candidate to be checked for being the busiest
10012  * @sgs: sched_group statistics
10013  *
10014  * Determine if @sg is a busier group than the previously selected
10015  * busiest group.
10016  *
10017  * Return: %true if @sg is a busier group than the previously selected
10018  * busiest group. %false otherwise.
10019  */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)10020 static bool update_sd_pick_busiest(struct lb_env *env,
10021 				   struct sd_lb_stats *sds,
10022 				   struct sched_group *sg,
10023 				   struct sg_lb_stats *sgs)
10024 {
10025 	struct sg_lb_stats *busiest = &sds->busiest_stat;
10026 
10027 	/* Make sure that there is at least one task to pull */
10028 	if (!sgs->sum_h_nr_running)
10029 		return false;
10030 
10031 	/*
10032 	 * Don't try to pull misfit tasks we can't help.
10033 	 * We can use max_capacity here as reduction in capacity on some
10034 	 * CPUs in the group should either be possible to resolve
10035 	 * internally or be covered by avg_load imbalance (eventually).
10036 	 */
10037 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10038 	    (sgs->group_type == group_misfit_task) &&
10039 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10040 	     sds->local_stat.group_type != group_has_spare))
10041 		return false;
10042 
10043 	if (sgs->group_type > busiest->group_type)
10044 		return true;
10045 
10046 	if (sgs->group_type < busiest->group_type)
10047 		return false;
10048 
10049 	/*
10050 	 * The candidate and the current busiest group are the same type of
10051 	 * group. Let check which one is the busiest according to the type.
10052 	 */
10053 
10054 	switch (sgs->group_type) {
10055 	case group_overloaded:
10056 		/* Select the overloaded group with highest avg_load. */
10057 		if (sgs->avg_load <= busiest->avg_load)
10058 			return false;
10059 		break;
10060 
10061 	case group_imbalanced:
10062 		/*
10063 		 * Select the 1st imbalanced group as we don't have any way to
10064 		 * choose one more than another.
10065 		 */
10066 		return false;
10067 
10068 	case group_asym_packing:
10069 		/* Prefer to move from lowest priority CPU's work */
10070 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
10071 			return false;
10072 		break;
10073 
10074 	case group_misfit_task:
10075 		/*
10076 		 * If we have more than one misfit sg go with the biggest
10077 		 * misfit.
10078 		 */
10079 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
10080 			return false;
10081 		break;
10082 
10083 	case group_smt_balance:
10084 		/*
10085 		 * Check if we have spare CPUs on either SMT group to
10086 		 * choose has spare or fully busy handling.
10087 		 */
10088 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10089 			goto has_spare;
10090 
10091 		fallthrough;
10092 
10093 	case group_fully_busy:
10094 		/*
10095 		 * Select the fully busy group with highest avg_load. In
10096 		 * theory, there is no need to pull task from such kind of
10097 		 * group because tasks have all compute capacity that they need
10098 		 * but we can still improve the overall throughput by reducing
10099 		 * contention when accessing shared HW resources.
10100 		 *
10101 		 * XXX for now avg_load is not computed and always 0 so we
10102 		 * select the 1st one, except if @sg is composed of SMT
10103 		 * siblings.
10104 		 */
10105 
10106 		if (sgs->avg_load < busiest->avg_load)
10107 			return false;
10108 
10109 		if (sgs->avg_load == busiest->avg_load) {
10110 			/*
10111 			 * SMT sched groups need more help than non-SMT groups.
10112 			 * If @sg happens to also be SMT, either choice is good.
10113 			 */
10114 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10115 				return false;
10116 		}
10117 
10118 		break;
10119 
10120 	case group_has_spare:
10121 		/*
10122 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10123 		 * as we do not want to pull task off SMT core with one task
10124 		 * and make the core idle.
10125 		 */
10126 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10127 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10128 				return false;
10129 			else
10130 				return true;
10131 		}
10132 has_spare:
10133 
10134 		/*
10135 		 * Select not overloaded group with lowest number of idle cpus
10136 		 * and highest number of running tasks. We could also compare
10137 		 * the spare capacity which is more stable but it can end up
10138 		 * that the group has less spare capacity but finally more idle
10139 		 * CPUs which means less opportunity to pull tasks.
10140 		 */
10141 		if (sgs->idle_cpus > busiest->idle_cpus)
10142 			return false;
10143 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10144 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
10145 			return false;
10146 
10147 		break;
10148 	}
10149 
10150 	/*
10151 	 * Candidate sg has no more than one task per CPU and has higher
10152 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10153 	 * throughput. Maximize throughput, power/energy consequences are not
10154 	 * considered.
10155 	 */
10156 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10157 	    (sgs->group_type <= group_fully_busy) &&
10158 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10159 		return false;
10160 
10161 	return true;
10162 }
10163 
10164 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)10165 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10166 {
10167 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10168 		return regular;
10169 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10170 		return remote;
10171 	return all;
10172 }
10173 
fbq_classify_rq(struct rq * rq)10174 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10175 {
10176 	if (rq->nr_running > rq->nr_numa_running)
10177 		return regular;
10178 	if (rq->nr_running > rq->nr_preferred_running)
10179 		return remote;
10180 	return all;
10181 }
10182 #else
fbq_classify_group(struct sg_lb_stats * sgs)10183 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10184 {
10185 	return all;
10186 }
10187 
fbq_classify_rq(struct rq * rq)10188 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10189 {
10190 	return regular;
10191 }
10192 #endif /* CONFIG_NUMA_BALANCING */
10193 
10194 
10195 struct sg_lb_stats;
10196 
10197 /*
10198  * task_running_on_cpu - return 1 if @p is running on @cpu.
10199  */
10200 
task_running_on_cpu(int cpu,struct task_struct * p)10201 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10202 {
10203 	/* Task has no contribution or is new */
10204 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10205 		return 0;
10206 
10207 	if (task_on_rq_queued(p))
10208 		return 1;
10209 
10210 	return 0;
10211 }
10212 
10213 /**
10214  * idle_cpu_without - would a given CPU be idle without p ?
10215  * @cpu: the processor on which idleness is tested.
10216  * @p: task which should be ignored.
10217  *
10218  * Return: 1 if the CPU would be idle. 0 otherwise.
10219  */
idle_cpu_without(int cpu,struct task_struct * p)10220 static int idle_cpu_without(int cpu, struct task_struct *p)
10221 {
10222 	struct rq *rq = cpu_rq(cpu);
10223 
10224 	if (rq->curr != rq->idle && rq->curr != p)
10225 		return 0;
10226 
10227 	/*
10228 	 * rq->nr_running can't be used but an updated version without the
10229 	 * impact of p on cpu must be used instead. The updated nr_running
10230 	 * be computed and tested before calling idle_cpu_without().
10231 	 */
10232 
10233 #ifdef CONFIG_SMP
10234 	if (rq->ttwu_pending)
10235 		return 0;
10236 #endif
10237 
10238 	return 1;
10239 }
10240 
10241 /*
10242  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10243  * @sd: The sched_domain level to look for idlest group.
10244  * @group: sched_group whose statistics are to be updated.
10245  * @sgs: variable to hold the statistics for this group.
10246  * @p: The task for which we look for the idlest group/CPU.
10247  */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)10248 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10249 					  struct sched_group *group,
10250 					  struct sg_lb_stats *sgs,
10251 					  struct task_struct *p)
10252 {
10253 	int i, nr_running;
10254 
10255 	memset(sgs, 0, sizeof(*sgs));
10256 
10257 	/* Assume that task can't fit any CPU of the group */
10258 	if (sd->flags & SD_ASYM_CPUCAPACITY)
10259 		sgs->group_misfit_task_load = 1;
10260 
10261 	for_each_cpu(i, sched_group_span(group)) {
10262 		struct rq *rq = cpu_rq(i);
10263 		unsigned int local;
10264 
10265 		sgs->group_load += cpu_load_without(rq, p);
10266 		sgs->group_util += cpu_util_without(i, p);
10267 		sgs->group_runnable += cpu_runnable_without(rq, p);
10268 		local = task_running_on_cpu(i, p);
10269 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10270 
10271 		nr_running = rq->nr_running - local;
10272 		sgs->sum_nr_running += nr_running;
10273 
10274 		/*
10275 		 * No need to call idle_cpu_without() if nr_running is not 0
10276 		 */
10277 		if (!nr_running && idle_cpu_without(i, p))
10278 			sgs->idle_cpus++;
10279 
10280 		/* Check if task fits in the CPU */
10281 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10282 		    sgs->group_misfit_task_load &&
10283 		    task_fits_cpu(p, i))
10284 			sgs->group_misfit_task_load = 0;
10285 
10286 	}
10287 
10288 	sgs->group_capacity = group->sgc->capacity;
10289 
10290 	sgs->group_weight = group->group_weight;
10291 
10292 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10293 
10294 	/*
10295 	 * Computing avg_load makes sense only when group is fully busy or
10296 	 * overloaded
10297 	 */
10298 	if (sgs->group_type == group_fully_busy ||
10299 		sgs->group_type == group_overloaded)
10300 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10301 				sgs->group_capacity;
10302 }
10303 
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)10304 static bool update_pick_idlest(struct sched_group *idlest,
10305 			       struct sg_lb_stats *idlest_sgs,
10306 			       struct sched_group *group,
10307 			       struct sg_lb_stats *sgs)
10308 {
10309 	if (sgs->group_type < idlest_sgs->group_type)
10310 		return true;
10311 
10312 	if (sgs->group_type > idlest_sgs->group_type)
10313 		return false;
10314 
10315 	/*
10316 	 * The candidate and the current idlest group are the same type of
10317 	 * group. Let check which one is the idlest according to the type.
10318 	 */
10319 
10320 	switch (sgs->group_type) {
10321 	case group_overloaded:
10322 	case group_fully_busy:
10323 		/* Select the group with lowest avg_load. */
10324 		if (idlest_sgs->avg_load <= sgs->avg_load)
10325 			return false;
10326 		break;
10327 
10328 	case group_imbalanced:
10329 	case group_asym_packing:
10330 	case group_smt_balance:
10331 		/* Those types are not used in the slow wakeup path */
10332 		return false;
10333 
10334 	case group_misfit_task:
10335 		/* Select group with the highest max capacity */
10336 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10337 			return false;
10338 		break;
10339 
10340 	case group_has_spare:
10341 		/* Select group with most idle CPUs */
10342 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10343 			return false;
10344 
10345 		/* Select group with lowest group_util */
10346 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10347 			idlest_sgs->group_util <= sgs->group_util)
10348 			return false;
10349 
10350 		break;
10351 	}
10352 
10353 	return true;
10354 }
10355 
10356 /*
10357  * find_idlest_group() finds and returns the least busy CPU group within the
10358  * domain.
10359  *
10360  * Assumes p is allowed on at least one CPU in sd.
10361  */
10362 static struct sched_group *
find_idlest_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)10363 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10364 {
10365 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10366 	struct sg_lb_stats local_sgs, tmp_sgs;
10367 	struct sg_lb_stats *sgs;
10368 	unsigned long imbalance;
10369 	struct sg_lb_stats idlest_sgs = {
10370 			.avg_load = UINT_MAX,
10371 			.group_type = group_overloaded,
10372 	};
10373 
10374 	do {
10375 		int local_group;
10376 
10377 		/* Skip over this group if it has no CPUs allowed */
10378 		if (!cpumask_intersects(sched_group_span(group),
10379 					p->cpus_ptr))
10380 			continue;
10381 
10382 		/* Skip over this group if no cookie matched */
10383 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10384 			continue;
10385 
10386 		local_group = cpumask_test_cpu(this_cpu,
10387 					       sched_group_span(group));
10388 
10389 		if (local_group) {
10390 			sgs = &local_sgs;
10391 			local = group;
10392 		} else {
10393 			sgs = &tmp_sgs;
10394 		}
10395 
10396 		update_sg_wakeup_stats(sd, group, sgs, p);
10397 
10398 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10399 			idlest = group;
10400 			idlest_sgs = *sgs;
10401 		}
10402 
10403 	} while (group = group->next, group != sd->groups);
10404 
10405 
10406 	/* There is no idlest group to push tasks to */
10407 	if (!idlest)
10408 		return NULL;
10409 
10410 	/* The local group has been skipped because of CPU affinity */
10411 	if (!local)
10412 		return idlest;
10413 
10414 	/*
10415 	 * If the local group is idler than the selected idlest group
10416 	 * don't try and push the task.
10417 	 */
10418 	if (local_sgs.group_type < idlest_sgs.group_type)
10419 		return NULL;
10420 
10421 	/*
10422 	 * If the local group is busier than the selected idlest group
10423 	 * try and push the task.
10424 	 */
10425 	if (local_sgs.group_type > idlest_sgs.group_type)
10426 		return idlest;
10427 
10428 	switch (local_sgs.group_type) {
10429 	case group_overloaded:
10430 	case group_fully_busy:
10431 
10432 		/* Calculate allowed imbalance based on load */
10433 		imbalance = scale_load_down(NICE_0_LOAD) *
10434 				(sd->imbalance_pct-100) / 100;
10435 
10436 		/*
10437 		 * When comparing groups across NUMA domains, it's possible for
10438 		 * the local domain to be very lightly loaded relative to the
10439 		 * remote domains but "imbalance" skews the comparison making
10440 		 * remote CPUs look much more favourable. When considering
10441 		 * cross-domain, add imbalance to the load on the remote node
10442 		 * and consider staying local.
10443 		 */
10444 
10445 		if ((sd->flags & SD_NUMA) &&
10446 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10447 			return NULL;
10448 
10449 		/*
10450 		 * If the local group is less loaded than the selected
10451 		 * idlest group don't try and push any tasks.
10452 		 */
10453 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10454 			return NULL;
10455 
10456 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10457 			return NULL;
10458 		break;
10459 
10460 	case group_imbalanced:
10461 	case group_asym_packing:
10462 	case group_smt_balance:
10463 		/* Those type are not used in the slow wakeup path */
10464 		return NULL;
10465 
10466 	case group_misfit_task:
10467 		/* Select group with the highest max capacity */
10468 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10469 			return NULL;
10470 		break;
10471 
10472 	case group_has_spare:
10473 #ifdef CONFIG_NUMA
10474 		if (sd->flags & SD_NUMA) {
10475 			int imb_numa_nr = sd->imb_numa_nr;
10476 #ifdef CONFIG_NUMA_BALANCING
10477 			int idlest_cpu;
10478 			/*
10479 			 * If there is spare capacity at NUMA, try to select
10480 			 * the preferred node
10481 			 */
10482 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10483 				return NULL;
10484 
10485 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10486 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10487 				return idlest;
10488 #endif /* CONFIG_NUMA_BALANCING */
10489 			/*
10490 			 * Otherwise, keep the task close to the wakeup source
10491 			 * and improve locality if the number of running tasks
10492 			 * would remain below threshold where an imbalance is
10493 			 * allowed while accounting for the possibility the
10494 			 * task is pinned to a subset of CPUs. If there is a
10495 			 * real need of migration, periodic load balance will
10496 			 * take care of it.
10497 			 */
10498 			if (p->nr_cpus_allowed != NR_CPUS) {
10499 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10500 
10501 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10502 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10503 			}
10504 
10505 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10506 			if (!adjust_numa_imbalance(imbalance,
10507 						   local_sgs.sum_nr_running + 1,
10508 						   imb_numa_nr)) {
10509 				return NULL;
10510 			}
10511 		}
10512 #endif /* CONFIG_NUMA */
10513 
10514 		/*
10515 		 * Select group with highest number of idle CPUs. We could also
10516 		 * compare the utilization which is more stable but it can end
10517 		 * up that the group has less spare capacity but finally more
10518 		 * idle CPUs which means more opportunity to run task.
10519 		 */
10520 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10521 			return NULL;
10522 		break;
10523 	}
10524 
10525 	return idlest;
10526 }
10527 
update_idle_cpu_scan(struct lb_env * env,unsigned long sum_util)10528 static void update_idle_cpu_scan(struct lb_env *env,
10529 				 unsigned long sum_util)
10530 {
10531 	struct sched_domain_shared *sd_share;
10532 	int llc_weight, pct;
10533 	u64 x, y, tmp;
10534 	/*
10535 	 * Update the number of CPUs to scan in LLC domain, which could
10536 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10537 	 * could be expensive because it is within a shared cache line.
10538 	 * So the write of this hint only occurs during periodic load
10539 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10540 	 * can fire way more frequently than the former.
10541 	 */
10542 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10543 		return;
10544 
10545 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10546 	if (env->sd->span_weight != llc_weight)
10547 		return;
10548 
10549 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10550 	if (!sd_share)
10551 		return;
10552 
10553 	/*
10554 	 * The number of CPUs to search drops as sum_util increases, when
10555 	 * sum_util hits 85% or above, the scan stops.
10556 	 * The reason to choose 85% as the threshold is because this is the
10557 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10558 	 *
10559 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10560 	 * and y'= y / SCHED_CAPACITY_SCALE
10561 	 *
10562 	 * x is the ratio of sum_util compared to the CPU capacity:
10563 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10564 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10565 	 * and the number of CPUs to scan is calculated by:
10566 	 *
10567 	 * nr_scan = llc_weight * y'                                    [2]
10568 	 *
10569 	 * When x hits the threshold of overloaded, AKA, when
10570 	 * x = 100 / pct, y drops to 0. According to [1],
10571 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10572 	 *
10573 	 * Scale x by SCHED_CAPACITY_SCALE:
10574 	 * x' = sum_util / llc_weight;                                  [3]
10575 	 *
10576 	 * and finally [1] becomes:
10577 	 * y = SCHED_CAPACITY_SCALE -
10578 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
10579 	 *
10580 	 */
10581 	/* equation [3] */
10582 	x = sum_util;
10583 	do_div(x, llc_weight);
10584 
10585 	/* equation [4] */
10586 	pct = env->sd->imbalance_pct;
10587 	tmp = x * x * pct * pct;
10588 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10589 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10590 	y = SCHED_CAPACITY_SCALE - tmp;
10591 
10592 	/* equation [2] */
10593 	y *= llc_weight;
10594 	do_div(y, SCHED_CAPACITY_SCALE);
10595 	if ((int)y != sd_share->nr_idle_scan)
10596 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10597 }
10598 
10599 /**
10600  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10601  * @env: The load balancing environment.
10602  * @sds: variable to hold the statistics for this sched_domain.
10603  */
10604 
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)10605 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10606 {
10607 	struct sched_group *sg = env->sd->groups;
10608 	struct sg_lb_stats *local = &sds->local_stat;
10609 	struct sg_lb_stats tmp_sgs;
10610 	unsigned long sum_util = 0;
10611 	int sg_status = 0;
10612 
10613 	do {
10614 		struct sg_lb_stats *sgs = &tmp_sgs;
10615 		int local_group;
10616 
10617 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10618 		if (local_group) {
10619 			sds->local = sg;
10620 			sgs = local;
10621 
10622 			if (env->idle != CPU_NEWLY_IDLE ||
10623 			    time_after_eq(jiffies, sg->sgc->next_update))
10624 				update_group_capacity(env->sd, env->dst_cpu);
10625 		}
10626 
10627 		update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
10628 
10629 		if (local_group)
10630 			goto next_group;
10631 
10632 
10633 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
10634 			sds->busiest = sg;
10635 			sds->busiest_stat = *sgs;
10636 		}
10637 
10638 next_group:
10639 		/* Now, start updating sd_lb_stats */
10640 		sds->total_load += sgs->group_load;
10641 		sds->total_capacity += sgs->group_capacity;
10642 
10643 		sum_util += sgs->group_util;
10644 		sg = sg->next;
10645 	} while (sg != env->sd->groups);
10646 
10647 	/*
10648 	 * Indicate that the child domain of the busiest group prefers tasks
10649 	 * go to a child's sibling domains first. NB the flags of a sched group
10650 	 * are those of the child domain.
10651 	 */
10652 	if (sds->busiest)
10653 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
10654 
10655 
10656 	if (env->sd->flags & SD_NUMA)
10657 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10658 
10659 	if (!env->sd->parent) {
10660 		struct root_domain *rd = env->dst_rq->rd;
10661 
10662 		/* update overload indicator if we are at root domain */
10663 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
10664 
10665 		/* Update over-utilization (tipping point, U >= 0) indicator */
10666 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
10667 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
10668 	} else if (sg_status & SG_OVERUTILIZED) {
10669 		struct root_domain *rd = env->dst_rq->rd;
10670 
10671 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
10672 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
10673 	}
10674 
10675 	update_idle_cpu_scan(env, sum_util);
10676 }
10677 
10678 /**
10679  * calculate_imbalance - Calculate the amount of imbalance present within the
10680  *			 groups of a given sched_domain during load balance.
10681  * @env: load balance environment
10682  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10683  */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)10684 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10685 {
10686 	struct sg_lb_stats *local, *busiest;
10687 
10688 	local = &sds->local_stat;
10689 	busiest = &sds->busiest_stat;
10690 
10691 	if (busiest->group_type == group_misfit_task) {
10692 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10693 			/* Set imbalance to allow misfit tasks to be balanced. */
10694 			env->migration_type = migrate_misfit;
10695 			env->imbalance = 1;
10696 		} else {
10697 			/*
10698 			 * Set load imbalance to allow moving task from cpu
10699 			 * with reduced capacity.
10700 			 */
10701 			env->migration_type = migrate_load;
10702 			env->imbalance = busiest->group_misfit_task_load;
10703 		}
10704 		return;
10705 	}
10706 
10707 	if (busiest->group_type == group_asym_packing) {
10708 		/*
10709 		 * In case of asym capacity, we will try to migrate all load to
10710 		 * the preferred CPU.
10711 		 */
10712 		env->migration_type = migrate_task;
10713 		env->imbalance = busiest->sum_h_nr_running;
10714 		return;
10715 	}
10716 
10717 	if (busiest->group_type == group_smt_balance) {
10718 		/* Reduce number of tasks sharing CPU capacity */
10719 		env->migration_type = migrate_task;
10720 		env->imbalance = 1;
10721 		return;
10722 	}
10723 
10724 	if (busiest->group_type == group_imbalanced) {
10725 		/*
10726 		 * In the group_imb case we cannot rely on group-wide averages
10727 		 * to ensure CPU-load equilibrium, try to move any task to fix
10728 		 * the imbalance. The next load balance will take care of
10729 		 * balancing back the system.
10730 		 */
10731 		env->migration_type = migrate_task;
10732 		env->imbalance = 1;
10733 		return;
10734 	}
10735 
10736 	/*
10737 	 * Try to use spare capacity of local group without overloading it or
10738 	 * emptying busiest.
10739 	 */
10740 	if (local->group_type == group_has_spare) {
10741 		if ((busiest->group_type > group_fully_busy) &&
10742 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
10743 			/*
10744 			 * If busiest is overloaded, try to fill spare
10745 			 * capacity. This might end up creating spare capacity
10746 			 * in busiest or busiest still being overloaded but
10747 			 * there is no simple way to directly compute the
10748 			 * amount of load to migrate in order to balance the
10749 			 * system.
10750 			 */
10751 			env->migration_type = migrate_util;
10752 			env->imbalance = max(local->group_capacity, local->group_util) -
10753 					 local->group_util;
10754 
10755 			/*
10756 			 * In some cases, the group's utilization is max or even
10757 			 * higher than capacity because of migrations but the
10758 			 * local CPU is (newly) idle. There is at least one
10759 			 * waiting task in this overloaded busiest group. Let's
10760 			 * try to pull it.
10761 			 */
10762 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
10763 				env->migration_type = migrate_task;
10764 				env->imbalance = 1;
10765 			}
10766 
10767 			return;
10768 		}
10769 
10770 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
10771 			/*
10772 			 * When prefer sibling, evenly spread running tasks on
10773 			 * groups.
10774 			 */
10775 			env->migration_type = migrate_task;
10776 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
10777 		} else {
10778 
10779 			/*
10780 			 * If there is no overload, we just want to even the number of
10781 			 * idle cpus.
10782 			 */
10783 			env->migration_type = migrate_task;
10784 			env->imbalance = max_t(long, 0,
10785 					       (local->idle_cpus - busiest->idle_cpus));
10786 		}
10787 
10788 #ifdef CONFIG_NUMA
10789 		/* Consider allowing a small imbalance between NUMA groups */
10790 		if (env->sd->flags & SD_NUMA) {
10791 			env->imbalance = adjust_numa_imbalance(env->imbalance,
10792 							       local->sum_nr_running + 1,
10793 							       env->sd->imb_numa_nr);
10794 		}
10795 #endif
10796 
10797 		/* Number of tasks to move to restore balance */
10798 		env->imbalance >>= 1;
10799 
10800 		return;
10801 	}
10802 
10803 	/*
10804 	 * Local is fully busy but has to take more load to relieve the
10805 	 * busiest group
10806 	 */
10807 	if (local->group_type < group_overloaded) {
10808 		/*
10809 		 * Local will become overloaded so the avg_load metrics are
10810 		 * finally needed.
10811 		 */
10812 
10813 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
10814 				  local->group_capacity;
10815 
10816 		/*
10817 		 * If the local group is more loaded than the selected
10818 		 * busiest group don't try to pull any tasks.
10819 		 */
10820 		if (local->avg_load >= busiest->avg_load) {
10821 			env->imbalance = 0;
10822 			return;
10823 		}
10824 
10825 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
10826 				sds->total_capacity;
10827 
10828 		/*
10829 		 * If the local group is more loaded than the average system
10830 		 * load, don't try to pull any tasks.
10831 		 */
10832 		if (local->avg_load >= sds->avg_load) {
10833 			env->imbalance = 0;
10834 			return;
10835 		}
10836 
10837 	}
10838 
10839 	/*
10840 	 * Both group are or will become overloaded and we're trying to get all
10841 	 * the CPUs to the average_load, so we don't want to push ourselves
10842 	 * above the average load, nor do we wish to reduce the max loaded CPU
10843 	 * below the average load. At the same time, we also don't want to
10844 	 * reduce the group load below the group capacity. Thus we look for
10845 	 * the minimum possible imbalance.
10846 	 */
10847 	env->migration_type = migrate_load;
10848 	env->imbalance = min(
10849 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
10850 		(sds->avg_load - local->avg_load) * local->group_capacity
10851 	) / SCHED_CAPACITY_SCALE;
10852 }
10853 
10854 /******* find_busiest_group() helpers end here *********************/
10855 
10856 /*
10857  * Decision matrix according to the local and busiest group type:
10858  *
10859  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
10860  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
10861  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
10862  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
10863  * asym_packing     force     force      N/A    N/A  force      force
10864  * imbalanced       force     force      N/A    N/A  force      force
10865  * overloaded       force     force      N/A    N/A  force      avg_load
10866  *
10867  * N/A :      Not Applicable because already filtered while updating
10868  *            statistics.
10869  * balanced : The system is balanced for these 2 groups.
10870  * force :    Calculate the imbalance as load migration is probably needed.
10871  * avg_load : Only if imbalance is significant enough.
10872  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
10873  *            different in groups.
10874  */
10875 
10876 /**
10877  * find_busiest_group - Returns the busiest group within the sched_domain
10878  * if there is an imbalance.
10879  * @env: The load balancing environment.
10880  *
10881  * Also calculates the amount of runnable load which should be moved
10882  * to restore balance.
10883  *
10884  * Return:	- The busiest group if imbalance exists.
10885  */
find_busiest_group(struct lb_env * env)10886 static struct sched_group *find_busiest_group(struct lb_env *env)
10887 {
10888 	struct sg_lb_stats *local, *busiest;
10889 	struct sd_lb_stats sds;
10890 
10891 	init_sd_lb_stats(&sds);
10892 
10893 	/*
10894 	 * Compute the various statistics relevant for load balancing at
10895 	 * this level.
10896 	 */
10897 	update_sd_lb_stats(env, &sds);
10898 
10899 	/* There is no busy sibling group to pull tasks from */
10900 	if (!sds.busiest)
10901 		goto out_balanced;
10902 
10903 	busiest = &sds.busiest_stat;
10904 
10905 	/* Misfit tasks should be dealt with regardless of the avg load */
10906 	if (busiest->group_type == group_misfit_task)
10907 		goto force_balance;
10908 
10909 	if (sched_energy_enabled()) {
10910 		struct root_domain *rd = env->dst_rq->rd;
10911 
10912 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
10913 			goto out_balanced;
10914 	}
10915 
10916 	/* ASYM feature bypasses nice load balance check */
10917 	if (busiest->group_type == group_asym_packing)
10918 		goto force_balance;
10919 
10920 	/*
10921 	 * If the busiest group is imbalanced the below checks don't
10922 	 * work because they assume all things are equal, which typically
10923 	 * isn't true due to cpus_ptr constraints and the like.
10924 	 */
10925 	if (busiest->group_type == group_imbalanced)
10926 		goto force_balance;
10927 
10928 	local = &sds.local_stat;
10929 	/*
10930 	 * If the local group is busier than the selected busiest group
10931 	 * don't try and pull any tasks.
10932 	 */
10933 	if (local->group_type > busiest->group_type)
10934 		goto out_balanced;
10935 
10936 	/*
10937 	 * When groups are overloaded, use the avg_load to ensure fairness
10938 	 * between tasks.
10939 	 */
10940 	if (local->group_type == group_overloaded) {
10941 		/*
10942 		 * If the local group is more loaded than the selected
10943 		 * busiest group don't try to pull any tasks.
10944 		 */
10945 		if (local->avg_load >= busiest->avg_load)
10946 			goto out_balanced;
10947 
10948 		/* XXX broken for overlapping NUMA groups */
10949 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10950 				sds.total_capacity;
10951 
10952 		/*
10953 		 * Don't pull any tasks if this group is already above the
10954 		 * domain average load.
10955 		 */
10956 		if (local->avg_load >= sds.avg_load)
10957 			goto out_balanced;
10958 
10959 		/*
10960 		 * If the busiest group is more loaded, use imbalance_pct to be
10961 		 * conservative.
10962 		 */
10963 		if (100 * busiest->avg_load <=
10964 				env->sd->imbalance_pct * local->avg_load)
10965 			goto out_balanced;
10966 	}
10967 
10968 	/*
10969 	 * Try to move all excess tasks to a sibling domain of the busiest
10970 	 * group's child domain.
10971 	 */
10972 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
10973 	    sibling_imbalance(env, &sds, busiest, local) > 1)
10974 		goto force_balance;
10975 
10976 	if (busiest->group_type != group_overloaded) {
10977 		if (env->idle == CPU_NOT_IDLE) {
10978 			/*
10979 			 * If the busiest group is not overloaded (and as a
10980 			 * result the local one too) but this CPU is already
10981 			 * busy, let another idle CPU try to pull task.
10982 			 */
10983 			goto out_balanced;
10984 		}
10985 
10986 		if (busiest->group_type == group_smt_balance &&
10987 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
10988 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
10989 			goto force_balance;
10990 		}
10991 
10992 		if (busiest->group_weight > 1 &&
10993 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
10994 			/*
10995 			 * If the busiest group is not overloaded
10996 			 * and there is no imbalance between this and busiest
10997 			 * group wrt idle CPUs, it is balanced. The imbalance
10998 			 * becomes significant if the diff is greater than 1
10999 			 * otherwise we might end up to just move the imbalance
11000 			 * on another group. Of course this applies only if
11001 			 * there is more than 1 CPU per group.
11002 			 */
11003 			goto out_balanced;
11004 		}
11005 
11006 		if (busiest->sum_h_nr_running == 1) {
11007 			/*
11008 			 * busiest doesn't have any tasks waiting to run
11009 			 */
11010 			goto out_balanced;
11011 		}
11012 	}
11013 
11014 force_balance:
11015 	/* Looks like there is an imbalance. Compute it */
11016 	calculate_imbalance(env, &sds);
11017 	return env->imbalance ? sds.busiest : NULL;
11018 
11019 out_balanced:
11020 	env->imbalance = 0;
11021 	return NULL;
11022 }
11023 
11024 /*
11025  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
11026  */
find_busiest_queue(struct lb_env * env,struct sched_group * group)11027 static struct rq *find_busiest_queue(struct lb_env *env,
11028 				     struct sched_group *group)
11029 {
11030 	struct rq *busiest = NULL, *rq;
11031 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11032 	unsigned int busiest_nr = 0;
11033 	int i;
11034 
11035 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11036 		unsigned long capacity, load, util;
11037 		unsigned int nr_running;
11038 		enum fbq_type rt;
11039 
11040 		rq = cpu_rq(i);
11041 		rt = fbq_classify_rq(rq);
11042 
11043 		/*
11044 		 * We classify groups/runqueues into three groups:
11045 		 *  - regular: there are !numa tasks
11046 		 *  - remote:  there are numa tasks that run on the 'wrong' node
11047 		 *  - all:     there is no distinction
11048 		 *
11049 		 * In order to avoid migrating ideally placed numa tasks,
11050 		 * ignore those when there's better options.
11051 		 *
11052 		 * If we ignore the actual busiest queue to migrate another
11053 		 * task, the next balance pass can still reduce the busiest
11054 		 * queue by moving tasks around inside the node.
11055 		 *
11056 		 * If we cannot move enough load due to this classification
11057 		 * the next pass will adjust the group classification and
11058 		 * allow migration of more tasks.
11059 		 *
11060 		 * Both cases only affect the total convergence complexity.
11061 		 */
11062 		if (rt > env->fbq_type)
11063 			continue;
11064 
11065 		nr_running = rq->cfs.h_nr_running;
11066 		if (!nr_running)
11067 			continue;
11068 
11069 		capacity = capacity_of(i);
11070 
11071 		/*
11072 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11073 		 * eventually lead to active_balancing high->low capacity.
11074 		 * Higher per-CPU capacity is considered better than balancing
11075 		 * average load.
11076 		 */
11077 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11078 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11079 		    nr_running == 1)
11080 			continue;
11081 
11082 		/*
11083 		 * Make sure we only pull tasks from a CPU of lower priority
11084 		 * when balancing between SMT siblings.
11085 		 *
11086 		 * If balancing between cores, let lower priority CPUs help
11087 		 * SMT cores with more than one busy sibling.
11088 		 */
11089 		if ((env->sd->flags & SD_ASYM_PACKING) &&
11090 		    sched_use_asym_prio(env->sd, i) &&
11091 		    sched_asym_prefer(i, env->dst_cpu) &&
11092 		    nr_running == 1)
11093 			continue;
11094 
11095 		switch (env->migration_type) {
11096 		case migrate_load:
11097 			/*
11098 			 * When comparing with load imbalance, use cpu_load()
11099 			 * which is not scaled with the CPU capacity.
11100 			 */
11101 			load = cpu_load(rq);
11102 
11103 			if (nr_running == 1 && load > env->imbalance &&
11104 			    !check_cpu_capacity(rq, env->sd))
11105 				break;
11106 
11107 			/*
11108 			 * For the load comparisons with the other CPUs,
11109 			 * consider the cpu_load() scaled with the CPU
11110 			 * capacity, so that the load can be moved away
11111 			 * from the CPU that is potentially running at a
11112 			 * lower capacity.
11113 			 *
11114 			 * Thus we're looking for max(load_i / capacity_i),
11115 			 * crosswise multiplication to rid ourselves of the
11116 			 * division works out to:
11117 			 * load_i * capacity_j > load_j * capacity_i;
11118 			 * where j is our previous maximum.
11119 			 */
11120 			if (load * busiest_capacity > busiest_load * capacity) {
11121 				busiest_load = load;
11122 				busiest_capacity = capacity;
11123 				busiest = rq;
11124 			}
11125 			break;
11126 
11127 		case migrate_util:
11128 			util = cpu_util_cfs_boost(i);
11129 
11130 			/*
11131 			 * Don't try to pull utilization from a CPU with one
11132 			 * running task. Whatever its utilization, we will fail
11133 			 * detach the task.
11134 			 */
11135 			if (nr_running <= 1)
11136 				continue;
11137 
11138 			if (busiest_util < util) {
11139 				busiest_util = util;
11140 				busiest = rq;
11141 			}
11142 			break;
11143 
11144 		case migrate_task:
11145 			if (busiest_nr < nr_running) {
11146 				busiest_nr = nr_running;
11147 				busiest = rq;
11148 			}
11149 			break;
11150 
11151 		case migrate_misfit:
11152 			/*
11153 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
11154 			 * simply seek the "biggest" misfit task.
11155 			 */
11156 			if (rq->misfit_task_load > busiest_load) {
11157 				busiest_load = rq->misfit_task_load;
11158 				busiest = rq;
11159 			}
11160 
11161 			break;
11162 
11163 		}
11164 	}
11165 
11166 	return busiest;
11167 }
11168 
11169 /*
11170  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11171  * so long as it is large enough.
11172  */
11173 #define MAX_PINNED_INTERVAL	512
11174 
11175 static inline bool
asym_active_balance(struct lb_env * env)11176 asym_active_balance(struct lb_env *env)
11177 {
11178 	/*
11179 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
11180 	 * priority CPUs in order to pack all tasks in the highest priority
11181 	 * CPUs. When done between cores, do it only if the whole core if the
11182 	 * whole core is idle.
11183 	 *
11184 	 * If @env::src_cpu is an SMT core with busy siblings, let
11185 	 * the lower priority @env::dst_cpu help it. Do not follow
11186 	 * CPU priority.
11187 	 */
11188 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
11189 	       sched_use_asym_prio(env->sd, env->dst_cpu) &&
11190 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11191 		!sched_use_asym_prio(env->sd, env->src_cpu));
11192 }
11193 
11194 static inline bool
imbalanced_active_balance(struct lb_env * env)11195 imbalanced_active_balance(struct lb_env *env)
11196 {
11197 	struct sched_domain *sd = env->sd;
11198 
11199 	/*
11200 	 * The imbalanced case includes the case of pinned tasks preventing a fair
11201 	 * distribution of the load on the system but also the even distribution of the
11202 	 * threads on a system with spare capacity
11203 	 */
11204 	if ((env->migration_type == migrate_task) &&
11205 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
11206 		return 1;
11207 
11208 	return 0;
11209 }
11210 
need_active_balance(struct lb_env * env)11211 static int need_active_balance(struct lb_env *env)
11212 {
11213 	struct sched_domain *sd = env->sd;
11214 
11215 	if (asym_active_balance(env))
11216 		return 1;
11217 
11218 	if (imbalanced_active_balance(env))
11219 		return 1;
11220 
11221 	/*
11222 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11223 	 * It's worth migrating the task if the src_cpu's capacity is reduced
11224 	 * because of other sched_class or IRQs if more capacity stays
11225 	 * available on dst_cpu.
11226 	 */
11227 	if ((env->idle != CPU_NOT_IDLE) &&
11228 	    (env->src_rq->cfs.h_nr_running == 1)) {
11229 		if ((check_cpu_capacity(env->src_rq, sd)) &&
11230 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11231 			return 1;
11232 	}
11233 
11234 	if (env->migration_type == migrate_misfit)
11235 		return 1;
11236 
11237 	return 0;
11238 }
11239 
11240 static int active_load_balance_cpu_stop(void *data);
11241 
should_we_balance(struct lb_env * env)11242 static int should_we_balance(struct lb_env *env)
11243 {
11244 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11245 	struct sched_group *sg = env->sd->groups;
11246 	int cpu, idle_smt = -1;
11247 
11248 	/*
11249 	 * Ensure the balancing environment is consistent; can happen
11250 	 * when the softirq triggers 'during' hotplug.
11251 	 */
11252 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11253 		return 0;
11254 
11255 	/*
11256 	 * In the newly idle case, we will allow all the CPUs
11257 	 * to do the newly idle load balance.
11258 	 *
11259 	 * However, we bail out if we already have tasks or a wakeup pending,
11260 	 * to optimize wakeup latency.
11261 	 */
11262 	if (env->idle == CPU_NEWLY_IDLE) {
11263 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11264 			return 0;
11265 		return 1;
11266 	}
11267 
11268 	cpumask_copy(swb_cpus, group_balance_mask(sg));
11269 	/* Try to find first idle CPU */
11270 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11271 		if (!idle_cpu(cpu))
11272 			continue;
11273 
11274 		/*
11275 		 * Don't balance to idle SMT in busy core right away when
11276 		 * balancing cores, but remember the first idle SMT CPU for
11277 		 * later consideration.  Find CPU on an idle core first.
11278 		 */
11279 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11280 			if (idle_smt == -1)
11281 				idle_smt = cpu;
11282 			/*
11283 			 * If the core is not idle, and first SMT sibling which is
11284 			 * idle has been found, then its not needed to check other
11285 			 * SMT siblings for idleness:
11286 			 */
11287 #ifdef CONFIG_SCHED_SMT
11288 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11289 #endif
11290 			continue;
11291 		}
11292 
11293 		/*
11294 		 * Are we the first idle core in a non-SMT domain or higher,
11295 		 * or the first idle CPU in a SMT domain?
11296 		 */
11297 		return cpu == env->dst_cpu;
11298 	}
11299 
11300 	/* Are we the first idle CPU with busy siblings? */
11301 	if (idle_smt != -1)
11302 		return idle_smt == env->dst_cpu;
11303 
11304 	/* Are we the first CPU of this group ? */
11305 	return group_balance_cpu(sg) == env->dst_cpu;
11306 }
11307 
11308 /*
11309  * Check this_cpu to ensure it is balanced within domain. Attempt to move
11310  * tasks if there is an imbalance.
11311  */
load_balance(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)11312 static int load_balance(int this_cpu, struct rq *this_rq,
11313 			struct sched_domain *sd, enum cpu_idle_type idle,
11314 			int *continue_balancing)
11315 {
11316 	int ld_moved, cur_ld_moved, active_balance = 0;
11317 	struct sched_domain *sd_parent = sd->parent;
11318 	struct sched_group *group;
11319 	struct rq *busiest;
11320 	struct rq_flags rf;
11321 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11322 	struct lb_env env = {
11323 		.sd		= sd,
11324 		.dst_cpu	= this_cpu,
11325 		.dst_rq		= this_rq,
11326 		.dst_grpmask    = group_balance_mask(sd->groups),
11327 		.idle		= idle,
11328 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11329 		.cpus		= cpus,
11330 		.fbq_type	= all,
11331 		.tasks		= LIST_HEAD_INIT(env.tasks),
11332 	};
11333 
11334 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11335 
11336 	schedstat_inc(sd->lb_count[idle]);
11337 
11338 redo:
11339 	if (!should_we_balance(&env)) {
11340 		*continue_balancing = 0;
11341 		goto out_balanced;
11342 	}
11343 
11344 	group = find_busiest_group(&env);
11345 	if (!group) {
11346 		schedstat_inc(sd->lb_nobusyg[idle]);
11347 		goto out_balanced;
11348 	}
11349 
11350 	busiest = find_busiest_queue(&env, group);
11351 	if (!busiest) {
11352 		schedstat_inc(sd->lb_nobusyq[idle]);
11353 		goto out_balanced;
11354 	}
11355 
11356 	WARN_ON_ONCE(busiest == env.dst_rq);
11357 
11358 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11359 
11360 	env.src_cpu = busiest->cpu;
11361 	env.src_rq = busiest;
11362 
11363 	ld_moved = 0;
11364 	/* Clear this flag as soon as we find a pullable task */
11365 	env.flags |= LBF_ALL_PINNED;
11366 	if (busiest->nr_running > 1) {
11367 		/*
11368 		 * Attempt to move tasks. If find_busiest_group has found
11369 		 * an imbalance but busiest->nr_running <= 1, the group is
11370 		 * still unbalanced. ld_moved simply stays zero, so it is
11371 		 * correctly treated as an imbalance.
11372 		 */
11373 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11374 
11375 more_balance:
11376 		rq_lock_irqsave(busiest, &rf);
11377 		update_rq_clock(busiest);
11378 
11379 		/*
11380 		 * cur_ld_moved - load moved in current iteration
11381 		 * ld_moved     - cumulative load moved across iterations
11382 		 */
11383 		cur_ld_moved = detach_tasks(&env);
11384 
11385 		/*
11386 		 * We've detached some tasks from busiest_rq. Every
11387 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11388 		 * unlock busiest->lock, and we are able to be sure
11389 		 * that nobody can manipulate the tasks in parallel.
11390 		 * See task_rq_lock() family for the details.
11391 		 */
11392 
11393 		rq_unlock(busiest, &rf);
11394 
11395 		if (cur_ld_moved) {
11396 			attach_tasks(&env);
11397 			ld_moved += cur_ld_moved;
11398 		}
11399 
11400 		local_irq_restore(rf.flags);
11401 
11402 		if (env.flags & LBF_NEED_BREAK) {
11403 			env.flags &= ~LBF_NEED_BREAK;
11404 			/* Stop if we tried all running tasks */
11405 			if (env.loop < busiest->nr_running)
11406 				goto more_balance;
11407 		}
11408 
11409 		/*
11410 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11411 		 * us and move them to an alternate dst_cpu in our sched_group
11412 		 * where they can run. The upper limit on how many times we
11413 		 * iterate on same src_cpu is dependent on number of CPUs in our
11414 		 * sched_group.
11415 		 *
11416 		 * This changes load balance semantics a bit on who can move
11417 		 * load to a given_cpu. In addition to the given_cpu itself
11418 		 * (or a ilb_cpu acting on its behalf where given_cpu is
11419 		 * nohz-idle), we now have balance_cpu in a position to move
11420 		 * load to given_cpu. In rare situations, this may cause
11421 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11422 		 * _independently_ and at _same_ time to move some load to
11423 		 * given_cpu) causing excess load to be moved to given_cpu.
11424 		 * This however should not happen so much in practice and
11425 		 * moreover subsequent load balance cycles should correct the
11426 		 * excess load moved.
11427 		 */
11428 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11429 
11430 			/* Prevent to re-select dst_cpu via env's CPUs */
11431 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11432 
11433 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11434 			env.dst_cpu	 = env.new_dst_cpu;
11435 			env.flags	&= ~LBF_DST_PINNED;
11436 			env.loop	 = 0;
11437 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11438 
11439 			/*
11440 			 * Go back to "more_balance" rather than "redo" since we
11441 			 * need to continue with same src_cpu.
11442 			 */
11443 			goto more_balance;
11444 		}
11445 
11446 		/*
11447 		 * We failed to reach balance because of affinity.
11448 		 */
11449 		if (sd_parent) {
11450 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11451 
11452 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11453 				*group_imbalance = 1;
11454 		}
11455 
11456 		/* All tasks on this runqueue were pinned by CPU affinity */
11457 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11458 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11459 			/*
11460 			 * Attempting to continue load balancing at the current
11461 			 * sched_domain level only makes sense if there are
11462 			 * active CPUs remaining as possible busiest CPUs to
11463 			 * pull load from which are not contained within the
11464 			 * destination group that is receiving any migrated
11465 			 * load.
11466 			 */
11467 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11468 				env.loop = 0;
11469 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11470 				goto redo;
11471 			}
11472 			goto out_all_pinned;
11473 		}
11474 	}
11475 
11476 	if (!ld_moved) {
11477 		schedstat_inc(sd->lb_failed[idle]);
11478 		/*
11479 		 * Increment the failure counter only on periodic balance.
11480 		 * We do not want newidle balance, which can be very
11481 		 * frequent, pollute the failure counter causing
11482 		 * excessive cache_hot migrations and active balances.
11483 		 */
11484 		if (idle != CPU_NEWLY_IDLE)
11485 			sd->nr_balance_failed++;
11486 
11487 		if (need_active_balance(&env)) {
11488 			unsigned long flags;
11489 
11490 			raw_spin_rq_lock_irqsave(busiest, flags);
11491 
11492 			/*
11493 			 * Don't kick the active_load_balance_cpu_stop,
11494 			 * if the curr task on busiest CPU can't be
11495 			 * moved to this_cpu:
11496 			 */
11497 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11498 				raw_spin_rq_unlock_irqrestore(busiest, flags);
11499 				goto out_one_pinned;
11500 			}
11501 
11502 			/* Record that we found at least one task that could run on this_cpu */
11503 			env.flags &= ~LBF_ALL_PINNED;
11504 
11505 			/*
11506 			 * ->active_balance synchronizes accesses to
11507 			 * ->active_balance_work.  Once set, it's cleared
11508 			 * only after active load balance is finished.
11509 			 */
11510 			if (!busiest->active_balance) {
11511 				busiest->active_balance = 1;
11512 				busiest->push_cpu = this_cpu;
11513 				active_balance = 1;
11514 			}
11515 
11516 			preempt_disable();
11517 			raw_spin_rq_unlock_irqrestore(busiest, flags);
11518 			if (active_balance) {
11519 				stop_one_cpu_nowait(cpu_of(busiest),
11520 					active_load_balance_cpu_stop, busiest,
11521 					&busiest->active_balance_work);
11522 			}
11523 			preempt_enable();
11524 		}
11525 	} else {
11526 		sd->nr_balance_failed = 0;
11527 	}
11528 
11529 	if (likely(!active_balance) || need_active_balance(&env)) {
11530 		/* We were unbalanced, so reset the balancing interval */
11531 		sd->balance_interval = sd->min_interval;
11532 	}
11533 
11534 	goto out;
11535 
11536 out_balanced:
11537 	/*
11538 	 * We reach balance although we may have faced some affinity
11539 	 * constraints. Clear the imbalance flag only if other tasks got
11540 	 * a chance to move and fix the imbalance.
11541 	 */
11542 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11543 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11544 
11545 		if (*group_imbalance)
11546 			*group_imbalance = 0;
11547 	}
11548 
11549 out_all_pinned:
11550 	/*
11551 	 * We reach balance because all tasks are pinned at this level so
11552 	 * we can't migrate them. Let the imbalance flag set so parent level
11553 	 * can try to migrate them.
11554 	 */
11555 	schedstat_inc(sd->lb_balanced[idle]);
11556 
11557 	sd->nr_balance_failed = 0;
11558 
11559 out_one_pinned:
11560 	ld_moved = 0;
11561 
11562 	/*
11563 	 * newidle_balance() disregards balance intervals, so we could
11564 	 * repeatedly reach this code, which would lead to balance_interval
11565 	 * skyrocketing in a short amount of time. Skip the balance_interval
11566 	 * increase logic to avoid that.
11567 	 */
11568 	if (env.idle == CPU_NEWLY_IDLE)
11569 		goto out;
11570 
11571 	/* tune up the balancing interval */
11572 	if ((env.flags & LBF_ALL_PINNED &&
11573 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
11574 	    sd->balance_interval < sd->max_interval)
11575 		sd->balance_interval *= 2;
11576 out:
11577 	return ld_moved;
11578 }
11579 
11580 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)11581 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11582 {
11583 	unsigned long interval = sd->balance_interval;
11584 
11585 	if (cpu_busy)
11586 		interval *= sd->busy_factor;
11587 
11588 	/* scale ms to jiffies */
11589 	interval = msecs_to_jiffies(interval);
11590 
11591 	/*
11592 	 * Reduce likelihood of busy balancing at higher domains racing with
11593 	 * balancing at lower domains by preventing their balancing periods
11594 	 * from being multiples of each other.
11595 	 */
11596 	if (cpu_busy)
11597 		interval -= 1;
11598 
11599 	interval = clamp(interval, 1UL, max_load_balance_interval);
11600 
11601 	return interval;
11602 }
11603 
11604 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)11605 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11606 {
11607 	unsigned long interval, next;
11608 
11609 	/* used by idle balance, so cpu_busy = 0 */
11610 	interval = get_sd_balance_interval(sd, 0);
11611 	next = sd->last_balance + interval;
11612 
11613 	if (time_after(*next_balance, next))
11614 		*next_balance = next;
11615 }
11616 
11617 /*
11618  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11619  * running tasks off the busiest CPU onto idle CPUs. It requires at
11620  * least 1 task to be running on each physical CPU where possible, and
11621  * avoids physical / logical imbalances.
11622  */
active_load_balance_cpu_stop(void * data)11623 static int active_load_balance_cpu_stop(void *data)
11624 {
11625 	struct rq *busiest_rq = data;
11626 	int busiest_cpu = cpu_of(busiest_rq);
11627 	int target_cpu = busiest_rq->push_cpu;
11628 	struct rq *target_rq = cpu_rq(target_cpu);
11629 	struct sched_domain *sd;
11630 	struct task_struct *p = NULL;
11631 	struct rq_flags rf;
11632 
11633 	rq_lock_irq(busiest_rq, &rf);
11634 	/*
11635 	 * Between queueing the stop-work and running it is a hole in which
11636 	 * CPUs can become inactive. We should not move tasks from or to
11637 	 * inactive CPUs.
11638 	 */
11639 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11640 		goto out_unlock;
11641 
11642 	/* Make sure the requested CPU hasn't gone down in the meantime: */
11643 	if (unlikely(busiest_cpu != smp_processor_id() ||
11644 		     !busiest_rq->active_balance))
11645 		goto out_unlock;
11646 
11647 	/* Is there any task to move? */
11648 	if (busiest_rq->nr_running <= 1)
11649 		goto out_unlock;
11650 
11651 	/*
11652 	 * This condition is "impossible", if it occurs
11653 	 * we need to fix it. Originally reported by
11654 	 * Bjorn Helgaas on a 128-CPU setup.
11655 	 */
11656 	WARN_ON_ONCE(busiest_rq == target_rq);
11657 
11658 	/* Search for an sd spanning us and the target CPU. */
11659 	rcu_read_lock();
11660 	for_each_domain(target_cpu, sd) {
11661 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
11662 			break;
11663 	}
11664 
11665 	if (likely(sd)) {
11666 		struct lb_env env = {
11667 			.sd		= sd,
11668 			.dst_cpu	= target_cpu,
11669 			.dst_rq		= target_rq,
11670 			.src_cpu	= busiest_rq->cpu,
11671 			.src_rq		= busiest_rq,
11672 			.idle		= CPU_IDLE,
11673 			.flags		= LBF_ACTIVE_LB,
11674 		};
11675 
11676 		schedstat_inc(sd->alb_count);
11677 		update_rq_clock(busiest_rq);
11678 
11679 		p = detach_one_task(&env);
11680 		if (p) {
11681 			schedstat_inc(sd->alb_pushed);
11682 			/* Active balancing done, reset the failure counter. */
11683 			sd->nr_balance_failed = 0;
11684 		} else {
11685 			schedstat_inc(sd->alb_failed);
11686 		}
11687 	}
11688 	rcu_read_unlock();
11689 out_unlock:
11690 	busiest_rq->active_balance = 0;
11691 	rq_unlock(busiest_rq, &rf);
11692 
11693 	if (p)
11694 		attach_one_task(target_rq, p);
11695 
11696 	local_irq_enable();
11697 
11698 	return 0;
11699 }
11700 
11701 static DEFINE_SPINLOCK(balancing);
11702 
11703 /*
11704  * Scale the max load_balance interval with the number of CPUs in the system.
11705  * This trades load-balance latency on larger machines for less cross talk.
11706  */
update_max_interval(void)11707 void update_max_interval(void)
11708 {
11709 	max_load_balance_interval = HZ*num_online_cpus()/10;
11710 }
11711 
update_newidle_cost(struct sched_domain * sd,u64 cost)11712 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
11713 {
11714 	if (cost > sd->max_newidle_lb_cost) {
11715 		/*
11716 		 * Track max cost of a domain to make sure to not delay the
11717 		 * next wakeup on the CPU.
11718 		 */
11719 		sd->max_newidle_lb_cost = cost;
11720 		sd->last_decay_max_lb_cost = jiffies;
11721 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
11722 		/*
11723 		 * Decay the newidle max times by ~1% per second to ensure that
11724 		 * it is not outdated and the current max cost is actually
11725 		 * shorter.
11726 		 */
11727 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
11728 		sd->last_decay_max_lb_cost = jiffies;
11729 
11730 		return true;
11731 	}
11732 
11733 	return false;
11734 }
11735 
11736 /*
11737  * It checks each scheduling domain to see if it is due to be balanced,
11738  * and initiates a balancing operation if so.
11739  *
11740  * Balancing parameters are set up in init_sched_domains.
11741  */
rebalance_domains(struct rq * rq,enum cpu_idle_type idle)11742 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
11743 {
11744 	int continue_balancing = 1;
11745 	int cpu = rq->cpu;
11746 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11747 	unsigned long interval;
11748 	struct sched_domain *sd;
11749 	/* Earliest time when we have to do rebalance again */
11750 	unsigned long next_balance = jiffies + 60*HZ;
11751 	int update_next_balance = 0;
11752 	int need_serialize, need_decay = 0;
11753 	u64 max_cost = 0;
11754 
11755 	rcu_read_lock();
11756 	for_each_domain(cpu, sd) {
11757 		/*
11758 		 * Decay the newidle max times here because this is a regular
11759 		 * visit to all the domains.
11760 		 */
11761 		need_decay = update_newidle_cost(sd, 0);
11762 		max_cost += sd->max_newidle_lb_cost;
11763 
11764 		/*
11765 		 * Stop the load balance at this level. There is another
11766 		 * CPU in our sched group which is doing load balancing more
11767 		 * actively.
11768 		 */
11769 		if (!continue_balancing) {
11770 			if (need_decay)
11771 				continue;
11772 			break;
11773 		}
11774 
11775 		interval = get_sd_balance_interval(sd, busy);
11776 
11777 		need_serialize = sd->flags & SD_SERIALIZE;
11778 		if (need_serialize) {
11779 			if (!spin_trylock(&balancing))
11780 				goto out;
11781 		}
11782 
11783 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
11784 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
11785 				/*
11786 				 * The LBF_DST_PINNED logic could have changed
11787 				 * env->dst_cpu, so we can't know our idle
11788 				 * state even if we migrated tasks. Update it.
11789 				 */
11790 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
11791 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11792 			}
11793 			sd->last_balance = jiffies;
11794 			interval = get_sd_balance_interval(sd, busy);
11795 		}
11796 		if (need_serialize)
11797 			spin_unlock(&balancing);
11798 out:
11799 		if (time_after(next_balance, sd->last_balance + interval)) {
11800 			next_balance = sd->last_balance + interval;
11801 			update_next_balance = 1;
11802 		}
11803 	}
11804 	if (need_decay) {
11805 		/*
11806 		 * Ensure the rq-wide value also decays but keep it at a
11807 		 * reasonable floor to avoid funnies with rq->avg_idle.
11808 		 */
11809 		rq->max_idle_balance_cost =
11810 			max((u64)sysctl_sched_migration_cost, max_cost);
11811 	}
11812 	rcu_read_unlock();
11813 
11814 	/*
11815 	 * next_balance will be updated only when there is a need.
11816 	 * When the cpu is attached to null domain for ex, it will not be
11817 	 * updated.
11818 	 */
11819 	if (likely(update_next_balance))
11820 		rq->next_balance = next_balance;
11821 
11822 }
11823 
on_null_domain(struct rq * rq)11824 static inline int on_null_domain(struct rq *rq)
11825 {
11826 	return unlikely(!rcu_dereference_sched(rq->sd));
11827 }
11828 
11829 #ifdef CONFIG_NO_HZ_COMMON
11830 /*
11831  * idle load balancing details
11832  * - When one of the busy CPUs notice that there may be an idle rebalancing
11833  *   needed, they will kick the idle load balancer, which then does idle
11834  *   load balancing for all the idle CPUs.
11835  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
11836  *   anywhere yet.
11837  */
11838 
find_new_ilb(void)11839 static inline int find_new_ilb(void)
11840 {
11841 	int ilb;
11842 	const struct cpumask *hk_mask;
11843 
11844 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
11845 
11846 	for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
11847 
11848 		if (ilb == smp_processor_id())
11849 			continue;
11850 
11851 		if (idle_cpu(ilb))
11852 			return ilb;
11853 	}
11854 
11855 	return nr_cpu_ids;
11856 }
11857 
11858 /*
11859  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
11860  * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
11861  */
kick_ilb(unsigned int flags)11862 static void kick_ilb(unsigned int flags)
11863 {
11864 	int ilb_cpu;
11865 
11866 	/*
11867 	 * Increase nohz.next_balance only when if full ilb is triggered but
11868 	 * not if we only update stats.
11869 	 */
11870 	if (flags & NOHZ_BALANCE_KICK)
11871 		nohz.next_balance = jiffies+1;
11872 
11873 	ilb_cpu = find_new_ilb();
11874 
11875 	if (ilb_cpu >= nr_cpu_ids)
11876 		return;
11877 
11878 	/*
11879 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
11880 	 * the first flag owns it; cleared by nohz_csd_func().
11881 	 */
11882 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
11883 	if (flags & NOHZ_KICK_MASK)
11884 		return;
11885 
11886 	/*
11887 	 * This way we generate an IPI on the target CPU which
11888 	 * is idle. And the softirq performing nohz idle load balance
11889 	 * will be run before returning from the IPI.
11890 	 */
11891 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
11892 }
11893 
11894 /*
11895  * Current decision point for kicking the idle load balancer in the presence
11896  * of idle CPUs in the system.
11897  */
nohz_balancer_kick(struct rq * rq)11898 static void nohz_balancer_kick(struct rq *rq)
11899 {
11900 	unsigned long now = jiffies;
11901 	struct sched_domain_shared *sds;
11902 	struct sched_domain *sd;
11903 	int nr_busy, i, cpu = rq->cpu;
11904 	unsigned int flags = 0;
11905 
11906 	if (unlikely(rq->idle_balance))
11907 		return;
11908 
11909 	/*
11910 	 * We may be recently in ticked or tickless idle mode. At the first
11911 	 * busy tick after returning from idle, we will update the busy stats.
11912 	 */
11913 	nohz_balance_exit_idle(rq);
11914 
11915 	/*
11916 	 * None are in tickless mode and hence no need for NOHZ idle load
11917 	 * balancing.
11918 	 */
11919 	if (likely(!atomic_read(&nohz.nr_cpus)))
11920 		return;
11921 
11922 	if (READ_ONCE(nohz.has_blocked) &&
11923 	    time_after(now, READ_ONCE(nohz.next_blocked)))
11924 		flags = NOHZ_STATS_KICK;
11925 
11926 	if (time_before(now, nohz.next_balance))
11927 		goto out;
11928 
11929 	if (rq->nr_running >= 2) {
11930 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11931 		goto out;
11932 	}
11933 
11934 	rcu_read_lock();
11935 
11936 	sd = rcu_dereference(rq->sd);
11937 	if (sd) {
11938 		/*
11939 		 * If there's a CFS task and the current CPU has reduced
11940 		 * capacity; kick the ILB to see if there's a better CPU to run
11941 		 * on.
11942 		 */
11943 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
11944 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11945 			goto unlock;
11946 		}
11947 	}
11948 
11949 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
11950 	if (sd) {
11951 		/*
11952 		 * When ASYM_PACKING; see if there's a more preferred CPU
11953 		 * currently idle; in which case, kick the ILB to move tasks
11954 		 * around.
11955 		 *
11956 		 * When balancing betwen cores, all the SMT siblings of the
11957 		 * preferred CPU must be idle.
11958 		 */
11959 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
11960 			if (sched_use_asym_prio(sd, i) &&
11961 			    sched_asym_prefer(i, cpu)) {
11962 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11963 				goto unlock;
11964 			}
11965 		}
11966 	}
11967 
11968 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
11969 	if (sd) {
11970 		/*
11971 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
11972 		 * to run the misfit task on.
11973 		 */
11974 		if (check_misfit_status(rq, sd)) {
11975 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11976 			goto unlock;
11977 		}
11978 
11979 		/*
11980 		 * For asymmetric systems, we do not want to nicely balance
11981 		 * cache use, instead we want to embrace asymmetry and only
11982 		 * ensure tasks have enough CPU capacity.
11983 		 *
11984 		 * Skip the LLC logic because it's not relevant in that case.
11985 		 */
11986 		goto unlock;
11987 	}
11988 
11989 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
11990 	if (sds) {
11991 		/*
11992 		 * If there is an imbalance between LLC domains (IOW we could
11993 		 * increase the overall cache use), we need some less-loaded LLC
11994 		 * domain to pull some load. Likewise, we may need to spread
11995 		 * load within the current LLC domain (e.g. packed SMT cores but
11996 		 * other CPUs are idle). We can't really know from here how busy
11997 		 * the others are - so just get a nohz balance going if it looks
11998 		 * like this LLC domain has tasks we could move.
11999 		 */
12000 		nr_busy = atomic_read(&sds->nr_busy_cpus);
12001 		if (nr_busy > 1) {
12002 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12003 			goto unlock;
12004 		}
12005 	}
12006 unlock:
12007 	rcu_read_unlock();
12008 out:
12009 	if (READ_ONCE(nohz.needs_update))
12010 		flags |= NOHZ_NEXT_KICK;
12011 
12012 	if (flags)
12013 		kick_ilb(flags);
12014 }
12015 
set_cpu_sd_state_busy(int cpu)12016 static void set_cpu_sd_state_busy(int cpu)
12017 {
12018 	struct sched_domain *sd;
12019 
12020 	rcu_read_lock();
12021 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12022 
12023 	if (!sd || !sd->nohz_idle)
12024 		goto unlock;
12025 	sd->nohz_idle = 0;
12026 
12027 	atomic_inc(&sd->shared->nr_busy_cpus);
12028 unlock:
12029 	rcu_read_unlock();
12030 }
12031 
nohz_balance_exit_idle(struct rq * rq)12032 void nohz_balance_exit_idle(struct rq *rq)
12033 {
12034 	SCHED_WARN_ON(rq != this_rq());
12035 
12036 	if (likely(!rq->nohz_tick_stopped))
12037 		return;
12038 
12039 	rq->nohz_tick_stopped = 0;
12040 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12041 	atomic_dec(&nohz.nr_cpus);
12042 
12043 	set_cpu_sd_state_busy(rq->cpu);
12044 }
12045 
set_cpu_sd_state_idle(int cpu)12046 static void set_cpu_sd_state_idle(int cpu)
12047 {
12048 	struct sched_domain *sd;
12049 
12050 	rcu_read_lock();
12051 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12052 
12053 	if (!sd || sd->nohz_idle)
12054 		goto unlock;
12055 	sd->nohz_idle = 1;
12056 
12057 	atomic_dec(&sd->shared->nr_busy_cpus);
12058 unlock:
12059 	rcu_read_unlock();
12060 }
12061 
12062 /*
12063  * This routine will record that the CPU is going idle with tick stopped.
12064  * This info will be used in performing idle load balancing in the future.
12065  */
nohz_balance_enter_idle(int cpu)12066 void nohz_balance_enter_idle(int cpu)
12067 {
12068 	struct rq *rq = cpu_rq(cpu);
12069 
12070 	SCHED_WARN_ON(cpu != smp_processor_id());
12071 
12072 	/* If this CPU is going down, then nothing needs to be done: */
12073 	if (!cpu_active(cpu))
12074 		return;
12075 
12076 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
12077 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
12078 		return;
12079 
12080 	/*
12081 	 * Can be set safely without rq->lock held
12082 	 * If a clear happens, it will have evaluated last additions because
12083 	 * rq->lock is held during the check and the clear
12084 	 */
12085 	rq->has_blocked_load = 1;
12086 
12087 	/*
12088 	 * The tick is still stopped but load could have been added in the
12089 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
12090 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12091 	 * of nohz.has_blocked can only happen after checking the new load
12092 	 */
12093 	if (rq->nohz_tick_stopped)
12094 		goto out;
12095 
12096 	/* If we're a completely isolated CPU, we don't play: */
12097 	if (on_null_domain(rq))
12098 		return;
12099 
12100 	rq->nohz_tick_stopped = 1;
12101 
12102 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12103 	atomic_inc(&nohz.nr_cpus);
12104 
12105 	/*
12106 	 * Ensures that if nohz_idle_balance() fails to observe our
12107 	 * @idle_cpus_mask store, it must observe the @has_blocked
12108 	 * and @needs_update stores.
12109 	 */
12110 	smp_mb__after_atomic();
12111 
12112 	set_cpu_sd_state_idle(cpu);
12113 
12114 	WRITE_ONCE(nohz.needs_update, 1);
12115 out:
12116 	/*
12117 	 * Each time a cpu enter idle, we assume that it has blocked load and
12118 	 * enable the periodic update of the load of idle cpus
12119 	 */
12120 	WRITE_ONCE(nohz.has_blocked, 1);
12121 }
12122 
update_nohz_stats(struct rq * rq)12123 static bool update_nohz_stats(struct rq *rq)
12124 {
12125 	unsigned int cpu = rq->cpu;
12126 
12127 	if (!rq->has_blocked_load)
12128 		return false;
12129 
12130 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12131 		return false;
12132 
12133 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12134 		return true;
12135 
12136 	update_blocked_averages(cpu);
12137 
12138 	return rq->has_blocked_load;
12139 }
12140 
12141 /*
12142  * Internal function that runs load balance for all idle cpus. The load balance
12143  * can be a simple update of blocked load or a complete load balance with
12144  * tasks movement depending of flags.
12145  */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags)12146 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12147 {
12148 	/* Earliest time when we have to do rebalance again */
12149 	unsigned long now = jiffies;
12150 	unsigned long next_balance = now + 60*HZ;
12151 	bool has_blocked_load = false;
12152 	int update_next_balance = 0;
12153 	int this_cpu = this_rq->cpu;
12154 	int balance_cpu;
12155 	struct rq *rq;
12156 
12157 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12158 
12159 	/*
12160 	 * We assume there will be no idle load after this update and clear
12161 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12162 	 * set the has_blocked flag and trigger another update of idle load.
12163 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12164 	 * setting the flag, we are sure to not clear the state and not
12165 	 * check the load of an idle cpu.
12166 	 *
12167 	 * Same applies to idle_cpus_mask vs needs_update.
12168 	 */
12169 	if (flags & NOHZ_STATS_KICK)
12170 		WRITE_ONCE(nohz.has_blocked, 0);
12171 	if (flags & NOHZ_NEXT_KICK)
12172 		WRITE_ONCE(nohz.needs_update, 0);
12173 
12174 	/*
12175 	 * Ensures that if we miss the CPU, we must see the has_blocked
12176 	 * store from nohz_balance_enter_idle().
12177 	 */
12178 	smp_mb();
12179 
12180 	/*
12181 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12182 	 * chance for other idle cpu to pull load.
12183 	 */
12184 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
12185 		if (!idle_cpu(balance_cpu))
12186 			continue;
12187 
12188 		/*
12189 		 * If this CPU gets work to do, stop the load balancing
12190 		 * work being done for other CPUs. Next load
12191 		 * balancing owner will pick it up.
12192 		 */
12193 		if (need_resched()) {
12194 			if (flags & NOHZ_STATS_KICK)
12195 				has_blocked_load = true;
12196 			if (flags & NOHZ_NEXT_KICK)
12197 				WRITE_ONCE(nohz.needs_update, 1);
12198 			goto abort;
12199 		}
12200 
12201 		rq = cpu_rq(balance_cpu);
12202 
12203 		if (flags & NOHZ_STATS_KICK)
12204 			has_blocked_load |= update_nohz_stats(rq);
12205 
12206 		/*
12207 		 * If time for next balance is due,
12208 		 * do the balance.
12209 		 */
12210 		if (time_after_eq(jiffies, rq->next_balance)) {
12211 			struct rq_flags rf;
12212 
12213 			rq_lock_irqsave(rq, &rf);
12214 			update_rq_clock(rq);
12215 			rq_unlock_irqrestore(rq, &rf);
12216 
12217 			if (flags & NOHZ_BALANCE_KICK)
12218 				rebalance_domains(rq, CPU_IDLE);
12219 		}
12220 
12221 		if (time_after(next_balance, rq->next_balance)) {
12222 			next_balance = rq->next_balance;
12223 			update_next_balance = 1;
12224 		}
12225 	}
12226 
12227 	/*
12228 	 * next_balance will be updated only when there is a need.
12229 	 * When the CPU is attached to null domain for ex, it will not be
12230 	 * updated.
12231 	 */
12232 	if (likely(update_next_balance))
12233 		nohz.next_balance = next_balance;
12234 
12235 	if (flags & NOHZ_STATS_KICK)
12236 		WRITE_ONCE(nohz.next_blocked,
12237 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12238 
12239 abort:
12240 	/* There is still blocked load, enable periodic update */
12241 	if (has_blocked_load)
12242 		WRITE_ONCE(nohz.has_blocked, 1);
12243 }
12244 
12245 /*
12246  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12247  * rebalancing for all the cpus for whom scheduler ticks are stopped.
12248  */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12249 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12250 {
12251 	unsigned int flags = this_rq->nohz_idle_balance;
12252 
12253 	if (!flags)
12254 		return false;
12255 
12256 	this_rq->nohz_idle_balance = 0;
12257 
12258 	if (idle != CPU_IDLE)
12259 		return false;
12260 
12261 	_nohz_idle_balance(this_rq, flags);
12262 
12263 	return true;
12264 }
12265 
12266 /*
12267  * Check if we need to run the ILB for updating blocked load before entering
12268  * idle state.
12269  */
nohz_run_idle_balance(int cpu)12270 void nohz_run_idle_balance(int cpu)
12271 {
12272 	unsigned int flags;
12273 
12274 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12275 
12276 	/*
12277 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12278 	 * (ie NOHZ_STATS_KICK set) and will do the same.
12279 	 */
12280 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12281 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12282 }
12283 
nohz_newidle_balance(struct rq * this_rq)12284 static void nohz_newidle_balance(struct rq *this_rq)
12285 {
12286 	int this_cpu = this_rq->cpu;
12287 
12288 	/*
12289 	 * This CPU doesn't want to be disturbed by scheduler
12290 	 * housekeeping
12291 	 */
12292 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12293 		return;
12294 
12295 	/* Will wake up very soon. No time for doing anything else*/
12296 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12297 		return;
12298 
12299 	/* Don't need to update blocked load of idle CPUs*/
12300 	if (!READ_ONCE(nohz.has_blocked) ||
12301 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12302 		return;
12303 
12304 	/*
12305 	 * Set the need to trigger ILB in order to update blocked load
12306 	 * before entering idle state.
12307 	 */
12308 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12309 }
12310 
12311 #else /* !CONFIG_NO_HZ_COMMON */
nohz_balancer_kick(struct rq * rq)12312 static inline void nohz_balancer_kick(struct rq *rq) { }
12313 
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12314 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12315 {
12316 	return false;
12317 }
12318 
nohz_newidle_balance(struct rq * this_rq)12319 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12320 #endif /* CONFIG_NO_HZ_COMMON */
12321 
12322 /*
12323  * newidle_balance is called by schedule() if this_cpu is about to become
12324  * idle. Attempts to pull tasks from other CPUs.
12325  *
12326  * Returns:
12327  *   < 0 - we released the lock and there are !fair tasks present
12328  *     0 - failed, no new tasks
12329  *   > 0 - success, new (fair) tasks present
12330  */
newidle_balance(struct rq * this_rq,struct rq_flags * rf)12331 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
12332 {
12333 	unsigned long next_balance = jiffies + HZ;
12334 	int this_cpu = this_rq->cpu;
12335 	u64 t0, t1, curr_cost = 0;
12336 	struct sched_domain *sd;
12337 	int pulled_task = 0;
12338 
12339 	update_misfit_status(NULL, this_rq);
12340 
12341 	/*
12342 	 * There is a task waiting to run. No need to search for one.
12343 	 * Return 0; the task will be enqueued when switching to idle.
12344 	 */
12345 	if (this_rq->ttwu_pending)
12346 		return 0;
12347 
12348 	/*
12349 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
12350 	 * measure the duration of idle_balance() as idle time.
12351 	 */
12352 	this_rq->idle_stamp = rq_clock(this_rq);
12353 
12354 	/*
12355 	 * Do not pull tasks towards !active CPUs...
12356 	 */
12357 	if (!cpu_active(this_cpu))
12358 		return 0;
12359 
12360 	/*
12361 	 * This is OK, because current is on_cpu, which avoids it being picked
12362 	 * for load-balance and preemption/IRQs are still disabled avoiding
12363 	 * further scheduler activity on it and we're being very careful to
12364 	 * re-start the picking loop.
12365 	 */
12366 	rq_unpin_lock(this_rq, rf);
12367 
12368 	rcu_read_lock();
12369 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12370 
12371 	if (!READ_ONCE(this_rq->rd->overload) ||
12372 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12373 
12374 		if (sd)
12375 			update_next_balance(sd, &next_balance);
12376 		rcu_read_unlock();
12377 
12378 		goto out;
12379 	}
12380 	rcu_read_unlock();
12381 
12382 	raw_spin_rq_unlock(this_rq);
12383 
12384 	t0 = sched_clock_cpu(this_cpu);
12385 	update_blocked_averages(this_cpu);
12386 
12387 	rcu_read_lock();
12388 	for_each_domain(this_cpu, sd) {
12389 		int continue_balancing = 1;
12390 		u64 domain_cost;
12391 
12392 		update_next_balance(sd, &next_balance);
12393 
12394 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12395 			break;
12396 
12397 		if (sd->flags & SD_BALANCE_NEWIDLE) {
12398 
12399 			pulled_task = load_balance(this_cpu, this_rq,
12400 						   sd, CPU_NEWLY_IDLE,
12401 						   &continue_balancing);
12402 
12403 			t1 = sched_clock_cpu(this_cpu);
12404 			domain_cost = t1 - t0;
12405 			update_newidle_cost(sd, domain_cost);
12406 
12407 			curr_cost += domain_cost;
12408 			t0 = t1;
12409 		}
12410 
12411 		/*
12412 		 * Stop searching for tasks to pull if there are
12413 		 * now runnable tasks on this rq.
12414 		 */
12415 		if (pulled_task || this_rq->nr_running > 0 ||
12416 		    this_rq->ttwu_pending)
12417 			break;
12418 	}
12419 	rcu_read_unlock();
12420 
12421 	raw_spin_rq_lock(this_rq);
12422 
12423 	if (curr_cost > this_rq->max_idle_balance_cost)
12424 		this_rq->max_idle_balance_cost = curr_cost;
12425 
12426 	/*
12427 	 * While browsing the domains, we released the rq lock, a task could
12428 	 * have been enqueued in the meantime. Since we're not going idle,
12429 	 * pretend we pulled a task.
12430 	 */
12431 	if (this_rq->cfs.h_nr_running && !pulled_task)
12432 		pulled_task = 1;
12433 
12434 	/* Is there a task of a high priority class? */
12435 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12436 		pulled_task = -1;
12437 
12438 out:
12439 	/* Move the next balance forward */
12440 	if (time_after(this_rq->next_balance, next_balance))
12441 		this_rq->next_balance = next_balance;
12442 
12443 	if (pulled_task)
12444 		this_rq->idle_stamp = 0;
12445 	else
12446 		nohz_newidle_balance(this_rq);
12447 
12448 	rq_repin_lock(this_rq, rf);
12449 
12450 	return pulled_task;
12451 }
12452 
12453 /*
12454  * run_rebalance_domains is triggered when needed from the scheduler tick.
12455  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
12456  */
run_rebalance_domains(struct softirq_action * h)12457 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
12458 {
12459 	struct rq *this_rq = this_rq();
12460 	enum cpu_idle_type idle = this_rq->idle_balance ?
12461 						CPU_IDLE : CPU_NOT_IDLE;
12462 
12463 	/*
12464 	 * If this CPU has a pending nohz_balance_kick, then do the
12465 	 * balancing on behalf of the other idle CPUs whose ticks are
12466 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
12467 	 * give the idle CPUs a chance to load balance. Else we may
12468 	 * load balance only within the local sched_domain hierarchy
12469 	 * and abort nohz_idle_balance altogether if we pull some load.
12470 	 */
12471 	if (nohz_idle_balance(this_rq, idle))
12472 		return;
12473 
12474 	/* normal load balance */
12475 	update_blocked_averages(this_rq->cpu);
12476 	rebalance_domains(this_rq, idle);
12477 }
12478 
12479 /*
12480  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12481  */
trigger_load_balance(struct rq * rq)12482 void trigger_load_balance(struct rq *rq)
12483 {
12484 	/*
12485 	 * Don't need to rebalance while attached to NULL domain or
12486 	 * runqueue CPU is not active
12487 	 */
12488 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12489 		return;
12490 
12491 	if (time_after_eq(jiffies, rq->next_balance))
12492 		raise_softirq(SCHED_SOFTIRQ);
12493 
12494 	nohz_balancer_kick(rq);
12495 }
12496 
rq_online_fair(struct rq * rq)12497 static void rq_online_fair(struct rq *rq)
12498 {
12499 	update_sysctl();
12500 
12501 	update_runtime_enabled(rq);
12502 }
12503 
rq_offline_fair(struct rq * rq)12504 static void rq_offline_fair(struct rq *rq)
12505 {
12506 	update_sysctl();
12507 
12508 	/* Ensure any throttled groups are reachable by pick_next_task */
12509 	unthrottle_offline_cfs_rqs(rq);
12510 }
12511 
12512 #endif /* CONFIG_SMP */
12513 
12514 #ifdef CONFIG_SCHED_CORE
12515 static inline bool
__entity_slice_used(struct sched_entity * se,int min_nr_tasks)12516 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12517 {
12518 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12519 	u64 slice = se->slice;
12520 
12521 	return (rtime * min_nr_tasks > slice);
12522 }
12523 
12524 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
task_tick_core(struct rq * rq,struct task_struct * curr)12525 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12526 {
12527 	if (!sched_core_enabled(rq))
12528 		return;
12529 
12530 	/*
12531 	 * If runqueue has only one task which used up its slice and
12532 	 * if the sibling is forced idle, then trigger schedule to
12533 	 * give forced idle task a chance.
12534 	 *
12535 	 * sched_slice() considers only this active rq and it gets the
12536 	 * whole slice. But during force idle, we have siblings acting
12537 	 * like a single runqueue and hence we need to consider runnable
12538 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
12539 	 * go through the forced idle rq, but that would be a perf hit.
12540 	 * We can assume that the forced idle CPU has at least
12541 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12542 	 * if we need to give up the CPU.
12543 	 */
12544 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12545 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12546 		resched_curr(rq);
12547 }
12548 
12549 /*
12550  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12551  */
se_fi_update(const struct sched_entity * se,unsigned int fi_seq,bool forceidle)12552 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12553 			 bool forceidle)
12554 {
12555 	for_each_sched_entity(se) {
12556 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12557 
12558 		if (forceidle) {
12559 			if (cfs_rq->forceidle_seq == fi_seq)
12560 				break;
12561 			cfs_rq->forceidle_seq = fi_seq;
12562 		}
12563 
12564 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12565 	}
12566 }
12567 
task_vruntime_update(struct rq * rq,struct task_struct * p,bool in_fi)12568 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12569 {
12570 	struct sched_entity *se = &p->se;
12571 
12572 	if (p->sched_class != &fair_sched_class)
12573 		return;
12574 
12575 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12576 }
12577 
cfs_prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)12578 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12579 			bool in_fi)
12580 {
12581 	struct rq *rq = task_rq(a);
12582 	const struct sched_entity *sea = &a->se;
12583 	const struct sched_entity *seb = &b->se;
12584 	struct cfs_rq *cfs_rqa;
12585 	struct cfs_rq *cfs_rqb;
12586 	s64 delta;
12587 
12588 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
12589 
12590 #ifdef CONFIG_FAIR_GROUP_SCHED
12591 	/*
12592 	 * Find an se in the hierarchy for tasks a and b, such that the se's
12593 	 * are immediate siblings.
12594 	 */
12595 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12596 		int sea_depth = sea->depth;
12597 		int seb_depth = seb->depth;
12598 
12599 		if (sea_depth >= seb_depth)
12600 			sea = parent_entity(sea);
12601 		if (sea_depth <= seb_depth)
12602 			seb = parent_entity(seb);
12603 	}
12604 
12605 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12606 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12607 
12608 	cfs_rqa = sea->cfs_rq;
12609 	cfs_rqb = seb->cfs_rq;
12610 #else
12611 	cfs_rqa = &task_rq(a)->cfs;
12612 	cfs_rqb = &task_rq(b)->cfs;
12613 #endif
12614 
12615 	/*
12616 	 * Find delta after normalizing se's vruntime with its cfs_rq's
12617 	 * min_vruntime_fi, which would have been updated in prior calls
12618 	 * to se_fi_update().
12619 	 */
12620 	delta = (s64)(sea->vruntime - seb->vruntime) +
12621 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
12622 
12623 	return delta > 0;
12624 }
12625 
task_is_throttled_fair(struct task_struct * p,int cpu)12626 static int task_is_throttled_fair(struct task_struct *p, int cpu)
12627 {
12628 	struct cfs_rq *cfs_rq;
12629 
12630 #ifdef CONFIG_FAIR_GROUP_SCHED
12631 	cfs_rq = task_group(p)->cfs_rq[cpu];
12632 #else
12633 	cfs_rq = &cpu_rq(cpu)->cfs;
12634 #endif
12635 	return throttled_hierarchy(cfs_rq);
12636 }
12637 #else
task_tick_core(struct rq * rq,struct task_struct * curr)12638 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
12639 #endif
12640 
12641 /*
12642  * scheduler tick hitting a task of our scheduling class.
12643  *
12644  * NOTE: This function can be called remotely by the tick offload that
12645  * goes along full dynticks. Therefore no local assumption can be made
12646  * and everything must be accessed through the @rq and @curr passed in
12647  * parameters.
12648  */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)12649 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
12650 {
12651 	struct cfs_rq *cfs_rq;
12652 	struct sched_entity *se = &curr->se;
12653 
12654 	for_each_sched_entity(se) {
12655 		cfs_rq = cfs_rq_of(se);
12656 		entity_tick(cfs_rq, se, queued);
12657 	}
12658 
12659 	if (static_branch_unlikely(&sched_numa_balancing))
12660 		task_tick_numa(rq, curr);
12661 
12662 	update_misfit_status(curr, rq);
12663 	update_overutilized_status(task_rq(curr));
12664 
12665 	task_tick_core(rq, curr);
12666 }
12667 
12668 /*
12669  * called on fork with the child task as argument from the parent's context
12670  *  - child not yet on the tasklist
12671  *  - preemption disabled
12672  */
task_fork_fair(struct task_struct * p)12673 static void task_fork_fair(struct task_struct *p)
12674 {
12675 	struct sched_entity *se = &p->se, *curr;
12676 	struct cfs_rq *cfs_rq;
12677 	struct rq *rq = this_rq();
12678 	struct rq_flags rf;
12679 
12680 	rq_lock(rq, &rf);
12681 	update_rq_clock(rq);
12682 
12683 	cfs_rq = task_cfs_rq(current);
12684 	curr = cfs_rq->curr;
12685 	if (curr)
12686 		update_curr(cfs_rq);
12687 	place_entity(cfs_rq, se, ENQUEUE_INITIAL);
12688 	rq_unlock(rq, &rf);
12689 }
12690 
12691 /*
12692  * Priority of the task has changed. Check to see if we preempt
12693  * the current task.
12694  */
12695 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)12696 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
12697 {
12698 	if (!task_on_rq_queued(p))
12699 		return;
12700 
12701 	if (rq->cfs.nr_running == 1)
12702 		return;
12703 
12704 	/*
12705 	 * Reschedule if we are currently running on this runqueue and
12706 	 * our priority decreased, or if we are not currently running on
12707 	 * this runqueue and our priority is higher than the current's
12708 	 */
12709 	if (task_current(rq, p)) {
12710 		if (p->prio > oldprio)
12711 			resched_curr(rq);
12712 	} else
12713 		check_preempt_curr(rq, p, 0);
12714 }
12715 
12716 #ifdef CONFIG_FAIR_GROUP_SCHED
12717 /*
12718  * Propagate the changes of the sched_entity across the tg tree to make it
12719  * visible to the root
12720  */
propagate_entity_cfs_rq(struct sched_entity * se)12721 static void propagate_entity_cfs_rq(struct sched_entity *se)
12722 {
12723 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12724 
12725 	if (cfs_rq_throttled(cfs_rq))
12726 		return;
12727 
12728 	if (!throttled_hierarchy(cfs_rq))
12729 		list_add_leaf_cfs_rq(cfs_rq);
12730 
12731 	/* Start to propagate at parent */
12732 	se = se->parent;
12733 
12734 	for_each_sched_entity(se) {
12735 		cfs_rq = cfs_rq_of(se);
12736 
12737 		update_load_avg(cfs_rq, se, UPDATE_TG);
12738 
12739 		if (cfs_rq_throttled(cfs_rq))
12740 			break;
12741 
12742 		if (!throttled_hierarchy(cfs_rq))
12743 			list_add_leaf_cfs_rq(cfs_rq);
12744 	}
12745 }
12746 #else
propagate_entity_cfs_rq(struct sched_entity * se)12747 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
12748 #endif
12749 
detach_entity_cfs_rq(struct sched_entity * se)12750 static void detach_entity_cfs_rq(struct sched_entity *se)
12751 {
12752 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12753 
12754 #ifdef CONFIG_SMP
12755 	/*
12756 	 * In case the task sched_avg hasn't been attached:
12757 	 * - A forked task which hasn't been woken up by wake_up_new_task().
12758 	 * - A task which has been woken up by try_to_wake_up() but is
12759 	 *   waiting for actually being woken up by sched_ttwu_pending().
12760 	 */
12761 	if (!se->avg.last_update_time)
12762 		return;
12763 #endif
12764 
12765 	/* Catch up with the cfs_rq and remove our load when we leave */
12766 	update_load_avg(cfs_rq, se, 0);
12767 	detach_entity_load_avg(cfs_rq, se);
12768 	update_tg_load_avg(cfs_rq);
12769 	propagate_entity_cfs_rq(se);
12770 }
12771 
attach_entity_cfs_rq(struct sched_entity * se)12772 static void attach_entity_cfs_rq(struct sched_entity *se)
12773 {
12774 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12775 
12776 	/* Synchronize entity with its cfs_rq */
12777 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
12778 	attach_entity_load_avg(cfs_rq, se);
12779 	update_tg_load_avg(cfs_rq);
12780 	propagate_entity_cfs_rq(se);
12781 }
12782 
detach_task_cfs_rq(struct task_struct * p)12783 static void detach_task_cfs_rq(struct task_struct *p)
12784 {
12785 	struct sched_entity *se = &p->se;
12786 
12787 	detach_entity_cfs_rq(se);
12788 }
12789 
attach_task_cfs_rq(struct task_struct * p)12790 static void attach_task_cfs_rq(struct task_struct *p)
12791 {
12792 	struct sched_entity *se = &p->se;
12793 
12794 	attach_entity_cfs_rq(se);
12795 }
12796 
switched_from_fair(struct rq * rq,struct task_struct * p)12797 static void switched_from_fair(struct rq *rq, struct task_struct *p)
12798 {
12799 	detach_task_cfs_rq(p);
12800 }
12801 
switched_to_fair(struct rq * rq,struct task_struct * p)12802 static void switched_to_fair(struct rq *rq, struct task_struct *p)
12803 {
12804 	attach_task_cfs_rq(p);
12805 
12806 	if (task_on_rq_queued(p)) {
12807 		/*
12808 		 * We were most likely switched from sched_rt, so
12809 		 * kick off the schedule if running, otherwise just see
12810 		 * if we can still preempt the current task.
12811 		 */
12812 		if (task_current(rq, p))
12813 			resched_curr(rq);
12814 		else
12815 			check_preempt_curr(rq, p, 0);
12816 	}
12817 }
12818 
12819 /* Account for a task changing its policy or group.
12820  *
12821  * This routine is mostly called to set cfs_rq->curr field when a task
12822  * migrates between groups/classes.
12823  */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)12824 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
12825 {
12826 	struct sched_entity *se = &p->se;
12827 
12828 #ifdef CONFIG_SMP
12829 	if (task_on_rq_queued(p)) {
12830 		/*
12831 		 * Move the next running task to the front of the list, so our
12832 		 * cfs_tasks list becomes MRU one.
12833 		 */
12834 		list_move(&se->group_node, &rq->cfs_tasks);
12835 	}
12836 #endif
12837 
12838 	for_each_sched_entity(se) {
12839 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12840 
12841 		set_next_entity(cfs_rq, se);
12842 		/* ensure bandwidth has been allocated on our new cfs_rq */
12843 		account_cfs_rq_runtime(cfs_rq, 0);
12844 	}
12845 }
12846 
init_cfs_rq(struct cfs_rq * cfs_rq)12847 void init_cfs_rq(struct cfs_rq *cfs_rq)
12848 {
12849 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
12850 	u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
12851 #ifdef CONFIG_SMP
12852 	raw_spin_lock_init(&cfs_rq->removed.lock);
12853 #endif
12854 }
12855 
12856 #ifdef CONFIG_FAIR_GROUP_SCHED
task_change_group_fair(struct task_struct * p)12857 static void task_change_group_fair(struct task_struct *p)
12858 {
12859 	/*
12860 	 * We couldn't detach or attach a forked task which
12861 	 * hasn't been woken up by wake_up_new_task().
12862 	 */
12863 	if (READ_ONCE(p->__state) == TASK_NEW)
12864 		return;
12865 
12866 	detach_task_cfs_rq(p);
12867 
12868 #ifdef CONFIG_SMP
12869 	/* Tell se's cfs_rq has been changed -- migrated */
12870 	p->se.avg.last_update_time = 0;
12871 #endif
12872 	set_task_rq(p, task_cpu(p));
12873 	attach_task_cfs_rq(p);
12874 }
12875 
free_fair_sched_group(struct task_group * tg)12876 void free_fair_sched_group(struct task_group *tg)
12877 {
12878 	int i;
12879 
12880 	for_each_possible_cpu(i) {
12881 		if (tg->cfs_rq)
12882 			kfree(tg->cfs_rq[i]);
12883 		if (tg->se)
12884 			kfree(tg->se[i]);
12885 	}
12886 
12887 	kfree(tg->cfs_rq);
12888 	kfree(tg->se);
12889 }
12890 
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)12891 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12892 {
12893 	struct sched_entity *se;
12894 	struct cfs_rq *cfs_rq;
12895 	int i;
12896 
12897 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
12898 	if (!tg->cfs_rq)
12899 		goto err;
12900 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
12901 	if (!tg->se)
12902 		goto err;
12903 
12904 	tg->shares = NICE_0_LOAD;
12905 
12906 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
12907 
12908 	for_each_possible_cpu(i) {
12909 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
12910 				      GFP_KERNEL, cpu_to_node(i));
12911 		if (!cfs_rq)
12912 			goto err;
12913 
12914 		se = kzalloc_node(sizeof(struct sched_entity_stats),
12915 				  GFP_KERNEL, cpu_to_node(i));
12916 		if (!se)
12917 			goto err_free_rq;
12918 
12919 		init_cfs_rq(cfs_rq);
12920 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
12921 		init_entity_runnable_average(se);
12922 	}
12923 
12924 	return 1;
12925 
12926 err_free_rq:
12927 	kfree(cfs_rq);
12928 err:
12929 	return 0;
12930 }
12931 
online_fair_sched_group(struct task_group * tg)12932 void online_fair_sched_group(struct task_group *tg)
12933 {
12934 	struct sched_entity *se;
12935 	struct rq_flags rf;
12936 	struct rq *rq;
12937 	int i;
12938 
12939 	for_each_possible_cpu(i) {
12940 		rq = cpu_rq(i);
12941 		se = tg->se[i];
12942 		rq_lock_irq(rq, &rf);
12943 		update_rq_clock(rq);
12944 		attach_entity_cfs_rq(se);
12945 		sync_throttle(tg, i);
12946 		rq_unlock_irq(rq, &rf);
12947 	}
12948 }
12949 
unregister_fair_sched_group(struct task_group * tg)12950 void unregister_fair_sched_group(struct task_group *tg)
12951 {
12952 	unsigned long flags;
12953 	struct rq *rq;
12954 	int cpu;
12955 
12956 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12957 
12958 	for_each_possible_cpu(cpu) {
12959 		if (tg->se[cpu])
12960 			remove_entity_load_avg(tg->se[cpu]);
12961 
12962 		/*
12963 		 * Only empty task groups can be destroyed; so we can speculatively
12964 		 * check on_list without danger of it being re-added.
12965 		 */
12966 		if (!tg->cfs_rq[cpu]->on_list)
12967 			continue;
12968 
12969 		rq = cpu_rq(cpu);
12970 
12971 		raw_spin_rq_lock_irqsave(rq, flags);
12972 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
12973 		raw_spin_rq_unlock_irqrestore(rq, flags);
12974 	}
12975 }
12976 
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)12977 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
12978 			struct sched_entity *se, int cpu,
12979 			struct sched_entity *parent)
12980 {
12981 	struct rq *rq = cpu_rq(cpu);
12982 
12983 	cfs_rq->tg = tg;
12984 	cfs_rq->rq = rq;
12985 	init_cfs_rq_runtime(cfs_rq);
12986 
12987 	tg->cfs_rq[cpu] = cfs_rq;
12988 	tg->se[cpu] = se;
12989 
12990 	/* se could be NULL for root_task_group */
12991 	if (!se)
12992 		return;
12993 
12994 	if (!parent) {
12995 		se->cfs_rq = &rq->cfs;
12996 		se->depth = 0;
12997 	} else {
12998 		se->cfs_rq = parent->my_q;
12999 		se->depth = parent->depth + 1;
13000 	}
13001 
13002 	se->my_q = cfs_rq;
13003 	/* guarantee group entities always have weight */
13004 	update_load_set(&se->load, NICE_0_LOAD);
13005 	se->parent = parent;
13006 }
13007 
13008 static DEFINE_MUTEX(shares_mutex);
13009 
__sched_group_set_shares(struct task_group * tg,unsigned long shares)13010 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
13011 {
13012 	int i;
13013 
13014 	lockdep_assert_held(&shares_mutex);
13015 
13016 	/*
13017 	 * We can't change the weight of the root cgroup.
13018 	 */
13019 	if (!tg->se[0])
13020 		return -EINVAL;
13021 
13022 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
13023 
13024 	if (tg->shares == shares)
13025 		return 0;
13026 
13027 	tg->shares = shares;
13028 	for_each_possible_cpu(i) {
13029 		struct rq *rq = cpu_rq(i);
13030 		struct sched_entity *se = tg->se[i];
13031 		struct rq_flags rf;
13032 
13033 		/* Propagate contribution to hierarchy */
13034 		rq_lock_irqsave(rq, &rf);
13035 		update_rq_clock(rq);
13036 		for_each_sched_entity(se) {
13037 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13038 			update_cfs_group(se);
13039 		}
13040 		rq_unlock_irqrestore(rq, &rf);
13041 	}
13042 
13043 	return 0;
13044 }
13045 
sched_group_set_shares(struct task_group * tg,unsigned long shares)13046 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13047 {
13048 	int ret;
13049 
13050 	mutex_lock(&shares_mutex);
13051 	if (tg_is_idle(tg))
13052 		ret = -EINVAL;
13053 	else
13054 		ret = __sched_group_set_shares(tg, shares);
13055 	mutex_unlock(&shares_mutex);
13056 
13057 	return ret;
13058 }
13059 
sched_group_set_idle(struct task_group * tg,long idle)13060 int sched_group_set_idle(struct task_group *tg, long idle)
13061 {
13062 	int i;
13063 
13064 	if (tg == &root_task_group)
13065 		return -EINVAL;
13066 
13067 	if (idle < 0 || idle > 1)
13068 		return -EINVAL;
13069 
13070 	mutex_lock(&shares_mutex);
13071 
13072 	if (tg->idle == idle) {
13073 		mutex_unlock(&shares_mutex);
13074 		return 0;
13075 	}
13076 
13077 	tg->idle = idle;
13078 
13079 	for_each_possible_cpu(i) {
13080 		struct rq *rq = cpu_rq(i);
13081 		struct sched_entity *se = tg->se[i];
13082 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
13083 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13084 		long idle_task_delta;
13085 		struct rq_flags rf;
13086 
13087 		rq_lock_irqsave(rq, &rf);
13088 
13089 		grp_cfs_rq->idle = idle;
13090 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13091 			goto next_cpu;
13092 
13093 		if (se->on_rq) {
13094 			parent_cfs_rq = cfs_rq_of(se);
13095 			if (cfs_rq_is_idle(grp_cfs_rq))
13096 				parent_cfs_rq->idle_nr_running++;
13097 			else
13098 				parent_cfs_rq->idle_nr_running--;
13099 		}
13100 
13101 		idle_task_delta = grp_cfs_rq->h_nr_running -
13102 				  grp_cfs_rq->idle_h_nr_running;
13103 		if (!cfs_rq_is_idle(grp_cfs_rq))
13104 			idle_task_delta *= -1;
13105 
13106 		for_each_sched_entity(se) {
13107 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
13108 
13109 			if (!se->on_rq)
13110 				break;
13111 
13112 			cfs_rq->idle_h_nr_running += idle_task_delta;
13113 
13114 			/* Already accounted at parent level and above. */
13115 			if (cfs_rq_is_idle(cfs_rq))
13116 				break;
13117 		}
13118 
13119 next_cpu:
13120 		rq_unlock_irqrestore(rq, &rf);
13121 	}
13122 
13123 	/* Idle groups have minimum weight. */
13124 	if (tg_is_idle(tg))
13125 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13126 	else
13127 		__sched_group_set_shares(tg, NICE_0_LOAD);
13128 
13129 	mutex_unlock(&shares_mutex);
13130 	return 0;
13131 }
13132 
13133 #else /* CONFIG_FAIR_GROUP_SCHED */
13134 
free_fair_sched_group(struct task_group * tg)13135 void free_fair_sched_group(struct task_group *tg) { }
13136 
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)13137 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13138 {
13139 	return 1;
13140 }
13141 
online_fair_sched_group(struct task_group * tg)13142 void online_fair_sched_group(struct task_group *tg) { }
13143 
unregister_fair_sched_group(struct task_group * tg)13144 void unregister_fair_sched_group(struct task_group *tg) { }
13145 
13146 #endif /* CONFIG_FAIR_GROUP_SCHED */
13147 
13148 
get_rr_interval_fair(struct rq * rq,struct task_struct * task)13149 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13150 {
13151 	struct sched_entity *se = &task->se;
13152 	unsigned int rr_interval = 0;
13153 
13154 	/*
13155 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13156 	 * idle runqueue:
13157 	 */
13158 	if (rq->cfs.load.weight)
13159 		rr_interval = NS_TO_JIFFIES(se->slice);
13160 
13161 	return rr_interval;
13162 }
13163 
13164 /*
13165  * All the scheduling class methods:
13166  */
13167 DEFINE_SCHED_CLASS(fair) = {
13168 
13169 	.enqueue_task		= enqueue_task_fair,
13170 	.dequeue_task		= dequeue_task_fair,
13171 	.yield_task		= yield_task_fair,
13172 	.yield_to_task		= yield_to_task_fair,
13173 
13174 	.check_preempt_curr	= check_preempt_wakeup,
13175 
13176 	.pick_next_task		= __pick_next_task_fair,
13177 	.put_prev_task		= put_prev_task_fair,
13178 	.set_next_task          = set_next_task_fair,
13179 
13180 #ifdef CONFIG_SMP
13181 	.balance		= balance_fair,
13182 	.pick_task		= pick_task_fair,
13183 	.select_task_rq		= select_task_rq_fair,
13184 	.migrate_task_rq	= migrate_task_rq_fair,
13185 
13186 	.rq_online		= rq_online_fair,
13187 	.rq_offline		= rq_offline_fair,
13188 
13189 	.task_dead		= task_dead_fair,
13190 	.set_cpus_allowed	= set_cpus_allowed_common,
13191 #endif
13192 
13193 	.task_tick		= task_tick_fair,
13194 	.task_fork		= task_fork_fair,
13195 
13196 	.prio_changed		= prio_changed_fair,
13197 	.switched_from		= switched_from_fair,
13198 	.switched_to		= switched_to_fair,
13199 
13200 	.get_rr_interval	= get_rr_interval_fair,
13201 
13202 	.update_curr		= update_curr_fair,
13203 
13204 #ifdef CONFIG_FAIR_GROUP_SCHED
13205 	.task_change_group	= task_change_group_fair,
13206 #endif
13207 
13208 #ifdef CONFIG_SCHED_CORE
13209 	.task_is_throttled	= task_is_throttled_fair,
13210 #endif
13211 
13212 #ifdef CONFIG_UCLAMP_TASK
13213 	.uclamp_enabled		= 1,
13214 #endif
13215 };
13216 
13217 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)13218 void print_cfs_stats(struct seq_file *m, int cpu)
13219 {
13220 	struct cfs_rq *cfs_rq, *pos;
13221 
13222 	rcu_read_lock();
13223 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13224 		print_cfs_rq(m, cpu, cfs_rq);
13225 	rcu_read_unlock();
13226 }
13227 
13228 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)13229 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13230 {
13231 	int node;
13232 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13233 	struct numa_group *ng;
13234 
13235 	rcu_read_lock();
13236 	ng = rcu_dereference(p->numa_group);
13237 	for_each_online_node(node) {
13238 		if (p->numa_faults) {
13239 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13240 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13241 		}
13242 		if (ng) {
13243 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13244 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13245 		}
13246 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13247 	}
13248 	rcu_read_unlock();
13249 }
13250 #endif /* CONFIG_NUMA_BALANCING */
13251 #endif /* CONFIG_SCHED_DEBUG */
13252 
init_sched_fair_class(void)13253 __init void init_sched_fair_class(void)
13254 {
13255 #ifdef CONFIG_SMP
13256 	int i;
13257 
13258 	for_each_possible_cpu(i) {
13259 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13260 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
13261 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13262 					GFP_KERNEL, cpu_to_node(i));
13263 
13264 #ifdef CONFIG_CFS_BANDWIDTH
13265 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13266 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13267 #endif
13268 	}
13269 
13270 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
13271 
13272 #ifdef CONFIG_NO_HZ_COMMON
13273 	nohz.next_balance = jiffies;
13274 	nohz.next_blocked = jiffies;
13275 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13276 #endif
13277 #endif /* SMP */
13278 
13279 }
13280