1# libuv 2 3## Introduction 4 5[libuv](http://libuv.org/) is a cross-platform library that implements asynchronous I/O based on event loops. It applies to network programming and file system operations. It is one of the core libraries of Node.js and has been widely used by other software projects. 6 7## Supported Capabilities 8 9- Event-driven asynchronous I/O across platforms. 10 11- Support for standard library interfaces. 12 13 14## Available APIs 15 16For details, see [API documentation](http://docs.libuv.org/en/v1.x/api.html). 17 18## Background of Introducing libuv to OpenHarmony 19 20OpenHarmony introduced Node-API of Node.js in its earlier versions to facilitate Node.js developers to extend their JavaScript APIs with OpenHarmony. It also introduced libuv of Node.js to implement event loops. 21 22### Evolution Trend 23 24To address the scheduling issues caused when the application main thread has an event loop that contains **uvloop**, we plan to normalize the event loops in the application model to allow only one task queue in the application main loop with task priorities controlled. 25 26Avoid using the NDK of libuv to perform operations on the application main loop obtained by **napi_get_uv_event_loop** (deprecated in API version 12). This may cause various problems and large amount of workload to address compatibility issues. 27 28If you want to implement interaction with the main thread cyclically, for example, inserting a task, use [APIs provided by Node-API](../../napi/napi-data-types-interfaces.md). 29 30OpenHarmony will continue to provide capabilities of interacting with the main thread and extending JS APIs through Node-API for a long period of time, but shields the event loops used in the implementation layer. Although **napi_get_uv_event_loop** is deprecated in API version 12, the main functional APIs of Node-API will be maintained for a long time and provide the same native behavior of Node-API, so that the developers who are familiar with the node.js extension mechanism can easily expand their code to OpenHarmony. 31 32If you are familiar with libuv and can handle memory management and multithreading problems, you can use libuv to develop your services on OpenHarmony. Unless otherwise required, you do not need to import the libuv library to your application project. 33 34### Current Problems and Solutions 35 36According to the existing mechanism, only one event loop can exist in a thread. To ensure proper running of the main event loop of the system application, the main event loop listens for the FD events in the JS environment and executes `uv_run` only when an FD event is reported. As a result, certain functions that depend on **uvloop** cannot take effect. 37 38Common scenarios and solutions are as follows: 39 40#### Scenario 1: The JS main thread throws an async task to a worker thread for execution, and executes the result returned by the JS code. 41 42**Example (incorrect)** 43 44Call **napi_get_uv_event_loop()** to obtain the system loop, and use libuv NDK APIs to implement related functions. 45 46```cpp 47#include "napi/native_api.h" 48#include "uv.h" 49#define LOG_DOMAIN 0X0202 50#define LOG_TAG "MyTag" 51#include <hilog/log.h> 52#include <thread> 53#include <sys/eventfd.h> 54#include <unistd.h> 55 56static void execute(uv_work_t *work) { 57 OH_LOG_INFO(LOG_APP, "ohos in execute"); 58} 59 60static void complete(uv_work_t *work, int status) { 61 OH_LOG_INFO(LOG_APP, "ohos in complete"); 62 delete work; 63} 64static napi_value Add(napi_env env, napi_callback_info info) 65{ 66 napi_value work_name; 67 uv_loop_s *loop = nullptr; 68 /* Obtain the uv_loop of the application JS main thread. */ 69 napi_get_uv_event_loop(env, &loop); 70 uv_work_t *work = new uv_work_t; 71 int ret = uv_queue_work(loop, work, execute, complete); 72 if (ret != 0) { 73 OH_LOG_INFO(LOG_APP, "delete work"); 74 delete work; 75 } 76 return 0; 77} 78 79EXTERN_C_START 80static napi_value Init(napi_env env, napi_value exports){ 81 napi_property_descriptor desc[] = {{"add", nullptr, Add, nullptr, nullptr, nullptr, napi_default, nullptr}}; 82 napi_define_properties(env, exports, sizeof(desc) / sizeof(desc[0]), desc); 83 return exports; 84EXTERN_C_END 85 86static napi_module demoModule = { 87 .nm_version = 1, 88 .nm_flags = 0, 89 .nm_filename = nullptr, 90 .nm_register_func = Init, 91 .nm_modname = "entry", 92 .nm_priv = ((void *)0), 93 .reserved = {0}, 94}; 95 96extern "C" __attribute__((constructor)) void RegisterEntryModule(void){ 97 napi_module_register(&demoModule); 98} 99``` 100 101**Example (correct)**: 102 103Use **napi_create_async_work** and **napi_queue_async_work** together. 104 105```cpp 106#include "napi/native_api.h" 107#include "uv.h" 108#define LOG_DOMAIN 0X0202 109#define LOG_TAG "MyTag" 110#include <hilog/log.h> 111#include <thread> 112#include <sys/eventfd.h> 113#include <unistd.h> 114uv_loop_t *loop; 115napi_value jsCb; 116int fd = -1; 117 118static napi_value Add(napi_env env, napi_callback_info info) 119{ 120 napi_value work_name; 121 napi_async_work work; 122 napi_create_string_utf8(env, "ohos", NAPI_AUTO_LENGTH, &work_name); 123 /* The fourth parameter specifies the work task of the asynchronous thread, and the fifth parameter is the callback of the main thread. */ 124 napi_create_async_work(env, nullptr, work_name, [](napi_env env, void* data){ 125 OH_LOG_INFO(LOG_APP, "ohos in execute"); 126 }, [](napi_env env, napi_status status, void *data){ 127 /* The specific implementation is skipped. */ 128 OH_LOG_INFO(LOG_APP, "ohos in complete"); 129 napi_delete_async_work(env, (napi_async_work)data); 130 }, nullptr, &work); 131 /* Call napi_queue_async_work to trigger an async task. */ 132 napi_queue_async_work(env, work); 133 return 0; 134} 135 136EXTERN_C_START 137static napi_value Init(napi_env env, napi_value exports){ 138 napi_property_descriptor desc[] = {{"add", nullptr, Add, nullptr, nullptr, nullptr, napi_default, nullptr}}; 139 napi_define_properties(env, exports, sizeof(desc) / sizeof(desc[0]), desc); 140 return exports; 141EXTERN_C_END 142 143static napi_module demoModule = { 144 .nm_version = 1, 145 .nm_flags = 0, 146 .nm_filename = nullptr, 147 .nm_register_func = Init, 148 .nm_modname = "entry", 149 .nm_priv = ((void *)0), 150 .reserved = {0}, 151}; 152 153extern "C" __attribute__((constructor)) void RegisterEntryModule(void){ 154 napi_module_register(&demoModule); 155} 156``` 157 158#### Scenario 2: The API does not work when the native side throws an FD event to the main loop of the application. 159 160The main loop of the application receives only FD events, and executes **uv_run** only after **backend_fd** in **uvloop** is triggered. That means **uv_run** will never be executed if no FD event is triggered when **uv** APIs are called in the main loop of the application. As a result, calling libuv APIs does not take effect. 161 162**Example (incorrect)** 163 164In the following example, calling **uv_poll_start** in OpenHarmony in the same way as in native libuv does not take effect. 165 166```cpp 167#include "napi/native_api.h" 168#include "uv.h" 169#define LOG_DOMAIN 0X0202 170#define LOG_TAG "MyTag" 171#include <hilog/log.h> 172#include <thread> 173#include <sys/eventfd.h> 174#include <unistd.h> 175uv_loop_t *loop; 176napi_value jsCb; 177int fd = -1; 178void poll_handler(uv_poll_t* handle,int status, int events){ 179 OH_LOG_INFO(LOG_APP, "ohos poll print"); 180} 181static napi_value TestClose(napi_env env, napi_callback_info info){ 182 std::thread::id this_id = std::this_thread::get_id(); 183 OH_LOG_INFO(LOG_APP, "ohos thread id : %{public}ld\n", this_id); 184 size_t argc = 1; 185 napi_value workBname; 186 187 napi_create_string_utf8(env, "test", NAPI_AUTO_LENGTH, &workBname); 188 189 napi_get_cb_info(env, info, &argc, &jsCb, nullptr, nullptr); 190 // Obtain the event loop. 191 napi_get_uv_event_loop(env, &loop); 192 // Create an eventfd. 193 fd = eventfd(0, 0); 194 OH_LOG_INFO(LOG_APP, "fd is %{public}d\n",fd); 195 uv_poll_t* poll_handle = new uv_poll_t; 196 // Initialize a poll handle and associate it with eventfd. 197 uv_poll_init(loop, poll_handle, fd); 198 // Start to listen for the poll event. 199 uv_poll_start(poll_handle, UV_READABLE, poll_handler); 200 // Create a new thread and write data to eventfd. 201 std::thread mythread([](){ 202 for (int i = 0; i < 8; i++){ 203 int value = 10; 204 int ret = eventfd_write(fd, value); 205 if (ret == -1){ 206 OH_LOG_INFO(LOG_APP, "write failed!\n"); 207 continue; 208 } 209 } 210 }); 211 mythread.detach(); 212 return 0; 213} 214EXTERN_C_START 215static napi_value Init(napi_env env, napi_value exports){ 216 napi_property_descriptor desc[] = {{"testClose", nullptr, TestClose, nullptr, nullptr, nullptr, napi_default, nullptr}}; 217 napi_define_properties(env, exports, sizeof(desc) / sizeof(desc[0]), desc); 218 return exports; 219} 220EXTERN_C_END 221 222static napi_module demoModule = { 223 .nm_version = 1, 224 .nm_flags = 0, 225 .nm_filename = nullptr, 226 .nm_register_func = Init, 227 .nm_modname = "entry", 228 .nm_priv = ((void *)0), 229 .reserved = {0}, 230}; 231 232extern "C" __attribute__((constructor)) void RegisterEntryModule(void){ 233 napi_module_register(&demoModule); 234} 235``` 236 237The process is as follows: 238 2391. Use **napi_get_uv_event_loop** to obtain **uvloop** of the application main thread. 2402. Create an **eventfd** instance. 2413. Initialize **uv_poll_t**, and start the handle for it to take effect. Trigger the callback **poll_handler** when the **eventfd** instance is readable. 2424. Create a thread and write data to **eventfd**. 243 244After the preceding code is executed, data cannot be properly printed for **poll_handler**. This is because the main thread of the application executes **uv_run** based on the FD rather than in UV_RUN_DEFAULT mode. Although **event_handler** listens for **backend_fd** in **uvloop**, the FD is not added to **backend_fd** through **epoll_ctl** when **uv_poll_start** is executed. The **epoll_ctl** function is executed only when **uv__io_poll** in **uv_run** is executed the next time. Therefore, if no **backend_fd** event is triggered in the application process, the libuv APIs may not work as expected. 245 246**Workaround** 247 248In the current system version, avoid using **napi_get_uv_event_loop** directly to obtain **uvloop** of the application main thread to develop service logic. If libuv must be used to implement service functions, after **uv_xxx_start** is called, use **uv_async_send** to trigger the main thread of the application to execute **uv_run**. In this way, **uv_xxx_start** can be properly executed. 249 250Modify the code as follows: 251 252```cpp 253#include "napi/native_api.h" 254#include "uv.h" 255#define LOG_DOMAIN 0x0202 256#define LOG_TAG "MyTag" 257#include <hilog/log.h> 258#include <thread> 259#include <sys/eventfd.h> 260#include <unistd.h> 261uv_loop_t *loop; 262napi_value jsCb; 263int fd = -1; 264void poll_handler(uv_poll_t* handle,int status, int events){ 265 OH_LOG_INFO(LOG_APP, "ohos poll print"); 266} 267static napi_value TestClose(napi_env env, napi_callback_info info){ 268 std::thread::id this_id = std::this_thread::get_id(); 269 OH_LOG_INFO(LOG_APP, "ohos thread id : %{public}ld\n", this_id); 270 size_t argc = 1; 271 napi_value workBName; 272 273 napi_create_string_utf8(env, "test", NAPI_AUTO_LENGTH, &workBName); 274 275 napi_get_cb_info(env, info, &argc, &jsCb, nullptr, nullptr); 276 277 napi_get_uv_event_loop(env, &loop); 278 279 fd = eventfd(0, 0); 280 OH_LOG_INFO(LOG_APP, "fd is %{public}d\n",fd); 281 uv_poll_t* poll_handle = new uv_poll_t; 282 uv_poll_init(loop, poll_handle, fd); 283 uv_poll_start(poll_handle, UV_READABLE, poll_handler); 284 285 // Trigger an FD event to enable the main thread to execute uv_run. 286 uv_async_send(&loop->wq_async); 287 288 std::thread mythread([](){ 289 for (int i = 0; i < 8; i++){ 290 int value = 10; 291 int ret = eventfd_write(fd, value); 292 if (ret == -1){ 293 OH_LOG_INFO(LOG_APP, "write failed!\n"); 294 continue; 295 } 296 } 297 }); 298 mythread.detach(); 299 return 0; 300} 301 302EXTERN_C_START 303static napi_value Init(napi_env env, napi_value exports){ 304 napi_property_descriptor desc[] = {{"testClose", nullptr, TestClose, nullptr, nullptr, nullptr, napi_default, nullptr}}; 305 napi_define_properties(env, exports, sizeof(desc) / sizeof(desc[0]), desc); 306 return exports; 307} 308EXTERN_C_END 309 310static napi_module demoModule = { 311 .nm_version = 1, 312 .nm_flags = 0, 313 .nm_filename = nullptr, 314 .nm_register_func = Init, 315 .nm_modname = "entry", 316 .nm_priv = ((void *)0), 317 .reserved = {0}, 318}; 319 320extern "C" __attribute__((constructor)) void RegisterEntryModule(void){ 321 napi_module_register(&demoModule); 322} 323``` 324 325## Using libuv 326 327All the APIs that depend on **uv_run** in the libuv NDK do not work as expected in the application main loop of the current system, and may cause freezing or loss of frames. You are advised not to directly use libuv NDK APIs in the JS main thread. You can use Node-API to implement async task execution and communication with the main thread using thread-safe functions. 328 329### Mappings Between libuv APIs and Node-API APIs 330 331Instead of using libuv APIs, you can use the equivalent Node-API provided by OpenHarmony, which includes async work APIs and thread-safe APIs. 332 333#### Asynchronous Work APIs 334 335libuv provides the **uv_queue_work** API to perform a time-consuming operation in an async thread and return the result to the main thread for processing through a callback. 336 337You can use [napi_async_work](../../napi/use-napi-asynchronous-task.md) APIs of Node-API to implement async operations. 338 339The related APIs are as follows: 340 341```cpp 342// Create a work object that executes logic asynchronously. 343// env: pointer to the current execution environment. 344// async_resource: (optional) resource object used to trace async operations. 345// async_resource_name: (optional) name of the resource object. The value is a string. 346// execute: callback invoked to perform an async operation in another thread. 347// complete: callback to be invoked when the async operation is complete. 348// data: pointer to the customized data to be passed to the execute and complete callbacks. 349// result: pointer to the async work object created. 350napi_status napi_create_async_work(napi_env env, 351 napi_value async_resource, 352 napi_value async_resource_name, 353 napi_async_execute_callback execute, 354 napi_async_complete_callback complete, 355 void* data, 356 napi_async_work* result); 357 358// Add an async work object to the queue so that it can be scheduled for execution. 359// env: pointer to the current execution environment. 360// work: pointer to the async work object to add. 361napi_status napi_queue_async_work(napi_env env, napi_async_work work); 362 363// Delete an async work object. 364// env: pointer to the current execution environment. 365// work: pointer to the async work object to delete. 366napi_status napi_delete_async_work(napi_env env, napi_async_work work); 367``` 368 369#### Thread-safe APIs for Cross-Thread Sharing and Invocation 370 371When you want to pass a callback to the application main thread, you can use the libuv **uv_async_t** handle, which is used for inter-thread communication, and the following functions: 372 373- uv_async_init() 374- uv_async_send() 375 376The equivalent Node-API APIs are [napi_threadsafe_function](../../napi/use-napi-thread-safety.md) APIs. 377 378 379 380```cpp 381// Create a thread-safe function. 382// env: pointer to the current execution environment. 383// func: pointer to the JavaScript function to create. 384// resource_name: pointer to the resource name. 385// max_queue_size: maximum size of the queue. 386// initial_thread_count: number of initial threads. 387// callback: callback. 388// result: pointer to the operation result. 389napi_status napi_create_threadsafe_function(napi_env env, 390 napi_value func, 391 const char* resource_name, 392 size_t max_queue_size, 393 size_t initial_thread_count, 394 void* context, 395 napi_threadsafe_function_call_js call_js_func, 396 napi_threadsafe_function_finalize finalize, 397 napi_threadsafe_function* result); 398 399// Acquire a thread-safe function. 400// function: pointer to the thread-safe function to acquire. 401napi_status napi_acquire_threadsafe_function(napi_threadsafe_function function); 402 403// Call a thread-safe function. 404// function: pointer to the thread-safe function to call. 405// data: pointer to the user data. 406napi_status napi_call_threadsafe_function(napi_threadsafe_function function, void* data); 407 408// Release a thread-safe function. 409// function: pointer to the thread-safe function to release. 410napi_status napi_release_threadsafe_function(napi_threadsafe_function function); 411 412``` 413 414If you need to use other libuv APIs to implement service functions, read on to discover basic libuv concepts and common APIs to be used in OpenHarmony, which are helpful to prevent application crashes when using libuv APIs. You can also learn about the APIs that can be used in the application main thread and those cannot. 415 416### Available APIs 417 418| API Type | API | 419| ---- | ---- | 420| [Loop](#event-loops-in-libuv) | uv_loop_init | 421| [Loop](#event-loops-in-libuv) | uv_loop_close | 422| [Loop](#event-loops-in-libuv) | uv_default_loop | 423| [Loop](#event-loops-in-libuv) | uv_run | 424| [Loop](#event-loops-in-libuv) | uv_loop_alive | 425| [Loop](#event-loops-in-libuv) | uv_stop | 426| [Handle](#handles-and-requests-in-libuv) | uv_poll\_\* | 427| [Handle](#handles-and-requests-in-libuv) | uv_timer\_\* | 428| [Handle](#handles-and-requests-in-libuv) | uv_async\_\* | 429| [Handle](#handles-and-requests-in-libuv) | uv_signal\_\* | 430| [Handle](#handles-and-requests-in-libuv) | uv_fs\_\* | 431| [Request](#handles-and-requests-in-libuv) | uv_random | 432| [Request](#handles-and-requests-in-libuv) | uv_getaddrinfo | 433| [Request](#handles-and-requests-in-libuv) | uv_getnameinfo | 434| [Request](#handles-and-requests-in-libuv) | uv_queue_work | 435| [Inter-Thread communication](#inter-thread-communication) | uv_async_init | 436| [Inter-Thread communication](#inter-thread-communication) | uv_async_send | 437| [Thread pool](#thread-pool) | uv_queue_work | 438 439### Thread-Safe Functions 440 441A large number of async works are involved in libuv. Improper use of libuv APIs may cause multithreading issues. The following lists the common thread-safe and non-thread-safe functions in libuv. If a non-thread-safe function is called in multithreading programming, you need to add a lock or ensure correct execution timing of the code. Otherwise, the application may crash. 442 443Thread-safe functions include the following: 444 445- **uv_async_init()**: initializes an async handle, which is used to wake up the main event loop thread from another thread and trigger a callback. 446- **uv_async_send()**: sends a signal to an async handle. This API can be called in any thread. 447- **uv_thread_create()**: creates a thread and executes the specified function. This API can be called in any thread. 448- **uv_fs\_\*()**: performs file system operations (*\** indicates the specific function name.) 449- **uv_poll\_\*()**: performs operations on polling events (*\** indicates the specific function name.) 450- Lock-related APIs, such as **uv\_mutex\_lock()** and **uv\_mutex\_unlock()**. 451 452> **NOTE** 453> 454> - Even if the function like **uv_xxx_init** is implemented in a thread-safe manner, avoid calling it by multiple threads at the same time. Otherwise, resource contention may occur. The best way is to call the function in an event loop thread. 455> - The callback invoked after **uv_async_send()** is triggered asynchronously. If **uv_async_send()** is called multiple times, libuv ensures that at least one callback is executed. As a result, if **uv_async_send()** is called for the same handle for multiple times, the callback processing may be different from your expectations. 456 457 458 459Non-thread-safe functions include the following: 460 461- **uv\_os\_unsetenv()**: deletes an environment variable. 462- **uv\_os\_setenv()**: sets an environment variable. 463- **uv\_os\_getenv()**: obtains an environment variable. 464- **uv\_os\_environ(**): retrieves all environment variables. 465- **uv\_os\_tmpdir()**: obtains the temporary directory. 466- **uv\_os\_homedir()**: obtains the home directory. 467 468### Event Loops in libuv 469 470As a core concept in libuv, an event loop manages all resources of the entire event loop and runs through the lifecycle of the entire event loop. Generally, the thread where **uv_run** is located is the main thread of the event loop. 471 472#### Event Loop Running Modes 473 474- **UV_RUN_DEFAULT**: runs the event loop until there are no active handles or requests. This is the default mode. 475- **UV_RUN_ONCE**: polls for I/O once. If there is a callback in **pending_queue**, execute the callback and then skip **uv__io_poll**. In this mode, there is an event to occur in the loop by default. 476 477- **UV_RUN_NOWAIT**: polls for I/O once but do not block if there are no pending callbacks. In this mode, **uv__io_poll** is executed once and **pending_queue** is not executed. 478 479#### Common APIs 480 481```cpp 482int uv_loop_init(uv_loop_t* loop); 483``` 484 485 Initializes a loop. 486 487```cpp 488int uv_loop_close(uv_loop_t* loop); 489``` 490 491 Closes a loop. The operation is successful only after all handles and requests in the loop are closed. Otherwise, **UV_EBUSY** is returned. 492 493```cpp 494uv_loop_t* uv_default_loop(void); 495``` 496 497 Creates a process-level loop. In OpenHarmony, libuv loops still exist in the application main loop and other JS worker threads. You are not advised to use this API to create loops and implement service functions. When the loop mechanism normalization is complete, you can use this API to create loops. 498 499```cpp 500int uv_run(uv_loop_t* loop, uv_run_mode mode); 501``` 502 503 Runs an event loop. For details about the running mode, see [Event Loop Running Modes](#event-loop-running-modes). 504 505```cpp 506int uv_loop_alive(uv_loop_t loop); 507``` 508 509 Checks whether a loop is active. 510 511```cpp 512void uv_stop(uv_loop_t* loop); 513``` 514 515 Stops an event loop. The event loop stops only in the next iteration of the loop. If this API is called before an I/O operation, **uv__io_poll** will be skipped instead of being blocked. 516 517> **Tips** 518> 519> Pay special attention to the use of **uv_stop**. Before **uv_stop** is called, ensure that the handles of all threads related to the loop are closed. 520 521The sample code is as follows: 522 523```cpp 524int stop_loop(uv_loop_t* loop) 525{ 526 uv_stop(loop); 527 auto const ensure_close = [](uv_handle_t* handle, void*) { 528 if (uv_is_closing(handle)) { 529 return; 530 } else { 531 uv_close(handle, nullptr); 532 } 533 }; 534 // Traverse all handles. Call ensure_close to close the active handle. 535 uv_walk(loop, ensure_close, nullptr); 536 537 // Continue to run uv_run until there is no active handle or request in the loop. 538 while(true) { 539 if (uv_run(loop, UV_RUN_DEFAULT) == 0) { 540 break; 541 } 542 } 543 544 // Check the loop status. 545 if (uv_loop_alive(loop) != 0) { 546 return -1; 547 } 548 return 0; 549} 550``` 551 552### Handles and Requests in libuv 553 554A handle indicates a persistent object, which is usually mounted to the corresponding **handle_queue** in a loop. If a handle is active, **uv_run** will process the callback in the handle each time. 555 556A request indicates a temporary request. A request triggers only one callback. 557 558The commonly used handles and requests in OpenHarmony include the following: 559 560```cpp 561/* Handle types. */ 562typedef struct uv_handle_s uv_handle_t; 563typedef struct uv_timer_s uv_timer_t; 564typedef struct uv_async_s uv_async_t; 565typedef struct uv_signal_s uv_signal_t; 566 567/* Request types. */ 568typedef struct uv_req_s uv_req_t; 569typedef struct uv_work_s uv_work_t; 570typedef struct uv_fs_s uv_fs_t; 571``` 572 573> **NOTE** 574> 575> In handles, **uv_xxx_t** inherits from **uv_handle_t**. In requests, **uv_work_t** inherits from **uv_req_t**. 576 577It is critical to understand the handles in libuv and manage its lifecycle. Observe the following when using a handle: 578 5791. Perform the handle initialization in the event loop thread. 5802. If the handle needs to be initialized in a worker thread due to service requirements, use an atomic variable to check whether the initialization is complete before the handle is used. 5813. For the handle that is no longer used, call **uv_close** to remove it from the loop. 582 583Note that **uv_close** is used to close a handle asynchronously. Its prototype is as follows: 584 585```cpp 586void uv_close(uv_handle_t* handle, uv_close_cb close_cb) 587``` 588 589 **handle**: pointer to the handle to close. 590 591 **close_cb**: function used to process the handle. This function is used to perform operations such as memory management. 592 593After **uv_close** is called, the handle to be closed is added to the **closing_handles** queue in the loop, and waits for the loop thread to run **uv__run_closing_handles**. Finally, the **close_cb** callback is executed in the next iteration of the loop. Therefore, operations such as memory release should be performed in **close_cb**. Improper use of the **close** API that is executed asynchronously may cause multithreading issues. You need to ensure correct timing of **uv_close** and ensure that all the handles are closed before **close_cb** is executed. 594 595> **Tips** 596> 597> The following rule of thumb in the official libuv documentation (http://libuv.org/) needs to be observed: 598> 599> If a handle of type **uv_foo_t** has a **uv_foo_start()** function, then it's active from the moment that function is called. Likewise, **uv_foo_stop()** deactivates the handle again. 600 601For the libuv request that is dynamically requested, release it in the callback of the loop thread. The following uses **uv_work_t** as an example. 602 603```cpp 604uv_work_t* work = new uv_work_t; 605uv_queue_work(loop, work, [](uv_work_t* req) { 606 // Asynchronous operation 607}, [](uv_work_t* req, int status) { 608 // Callback 609 delete req; 610}); 611``` 612 613### Inter-Thread Communication 614 615So far, you have learn about the basic concepts of libuv. Now let's dive into the inter-thread communication in libuv. 616 617The inter-thread communication of libuv is implemented based on the **uv_async_t** handle. The related APIs are as follows: 618 619```cpp 620int uv_async_init(uv_loop_t* loop, uv_async_t* handle, uv_async_cb async_cb) 621``` 622 623Initializes a handle. 624 625- **loop**: pointer to the event loop. 626- **handle**: pointer to the handle for inter-thread communication. 627- **async_cb**: callback to be invoked. 628 629 The API returns **0** if the operation is successful; returns an error code if the operation fails. 630 631```cpp 632int uv_async_send(uv_async_t* handle) 633``` 634 635 Wakes up the event loop and calls the async handle's callback. 636 637 **handle**: pointer to the handle for inter-thread communication. 638 639 The API returns **0** if the operation is successful; returns an error code if the operation fails. 640 641> **NOTE** 642> 643> **uv_async_t** remains active after **uv_async_init** is called till it is closed by **uv_close**. 644> **uv_async_t** is executed in the sequence defined by **uv_async_init** instead of **uv_async_send**. Therefore, it is necessary to manage the timing according to the initialization sequence. 645 646 647 648 649 650Example: 651 652```cpp 653#include <bits/stdc++.h> 654#include "uv.h" 655 656uv_loop_t* loop = nullptr; 657uv_async_t* async = nullptr; 658void async_handler(uv_async_t* handle) 659{ 660 printf("ohos async print\n"); 661} 662 663int main() 664{ 665 loop = uv_default_loop(); 666 async = new uv_async_t; 667 uv_async_init(loop, async, async_handler); 668 std::thread subThread([]() { 669 for (int i = 0; i < 10; i++) { 670 usleep(100); 671 printf("%dth: subThread triggered\n", i); 672 uv_async_send(async); 673 } 674 // Call uv_close to close the async handle and release the memory in the main loop. 675 uv_close((uv_handle_t*)async, [](uv_handle_t* handle) { 676 printf("delete async\n"); 677 delete (uv_async_t*)handle; 678 }); 679 uv_stop(loop); 680 }); 681 subThread.detach(); 682 return uv_run(loop, UV_RUN_DEFAULT); 683} 684``` 685 686The sample code describes only a simple scenario. The procedure is as follows: 687 6881. Initialize the async handle in the main thread. 6892. Create a worker thread and trigger **uv_async_send** every 100 milliseconds. After **uv_async_send** is called 10 times, call **uv_close** to close the async handle. 6903. Run the event loop on the main thread. 691 692As indicated by the following information, each time **uv_async_send** is called, the main thread executes the callback. 693 694``` 6950th:subThread triggered 696ohos async print 6971th:subThread triggered 698ohos async print 6992th:subThread triggered 700ohos async print 7013th:subThread triggered 702ohos async print 7034th:subThread triggered 704ohos async print 7055th:subThread triggered 706ohos async print 7076th:subThread triggered 708ohos async print 7097th:subThread triggered 710ohos async print 7118th:subThread triggered 712ohos async print 7139th:subThread triggered 714delete async 715``` 716 717### Thread Pool 718 719The thread pool in libuv uses the member variable **wq_async** in **uv_loop_t** to control the communication between the main thread and worker threads. The core API is as follows: 720 721```cpp 722int uv_queue_work(uv_loop_t* loop, 723 uv_work_t* req, 724 uv_work_cb work_cb, 725 uv_after_work_cb after_work_cb) 726``` 727 728Initializes a work request which will run the given **work_cb** in a thread from the thread pool. 729 730**work_cb**: task submitted to the worker thread. 731 732**after_work_cb**: callback to be executed by the loop thread. 733 734> **NOTE** 735> 736> **after work_cb** is called after **work_cb** is complete. It is triggered by an FD event triggered by **uv_async_send(loop->wq_async)** and executed in the next iteration of the loop thread. The **uv_work_t** lifecycle ends only when **after_work_cb** is executed. 737 738The following figure illustrates a simplified workflow of the libuv thread pool. The default pending flag of the handle is 1. The number of worker threads is an example only. 739 740 741 742### Use of libuv in OpenHarmony 743 744Currently, libuv threads are used in the main thread, JS Worker thread, TaskWorker thread in the Taskpool, and IPC thread of OpenHarmony. Except the main thread, which uses **eventhandler** as the main loop, other threads use the **UV_RUN_DEFAULT** mode in libuv as the event main loop of the calling thread to execute tasks. In the main thread, **eventhandler** triggers task execution by an FD event. **eventhandler** listens for **backend_fd** in **uv_loop**. Once an FD event is triggered in the loop, **eventhandler** calls **uv_run** to execute tasks in libuv. 745 746As a result, all the uv APIs that are not triggered by an FD event in the main thread are not responded in a timely manner. The uv APIs on the JS worker threads work as expected. 747 748In addition, in the application main thread, all async tasks are eventually executed through libuv. However, in the current system, [the libuv thread pool has been incorporated to the FFRT](https://gitee.com/openharmony/third_party_libuv/wikis/06-Wiki-%E6%8A%80%E6%9C%AF%E8%B5%84%E6%BA%90/%20libuv%E5%B7%A5%E4%BD%9C%E7%BA%BF%E7%A8%8B%E6%8E%A5%E5%85%A5FFRT%E6%96%B9%E6%A1%88%E5%88%86%E6%9E%90). Any async task thrown to the libuv thread will be scheduled by the FFRT thread. The callbacks of the application main thread are also inserted into the **eventhandler** queue by **PostTask()**. This means that after the async task in an FFRT thread is complete, the callback of the main thread is not triggered by **uv_async_send**. 749 750The following figure shows the process. 751 752 753 754The following types of requests can be processed as expected in the application main loop: 755 756- uv_random_t 757 758 Function prototype: 759 760 ```cpp 761 /** 762 * Add a work request to an event loop queue. 763 * 764 * @param loop indicates the pointer to the event loop. 765 * @param req indicates the pointer to the request. 766 * @param buf indicates the buffer for storing the random number. 767 * @param buflen indicates the length of the buffer. 768 * @param flags indicates the options for generating the random number. 769 * @param cb indicates the callback used to return the random number generated. 770 * 771 * @return Returns 0 if the operation is successful; returns an error code otherwise. 772 */ 773 int uv_random(uv_loop_t* loop, 774 uv_random_t* req, 775 void* buf, 776 size_t buflen, 777 unsigned flags, 778 uv_random_cb cb); 779 ``` 780 781- uv_work_t 782 783 Function prototype: 784 785 ```cpp 786 /** 787 * Add a work request to an event loop queue. 788 * 789 * work_cb will be called by a new thread in the next iteration of the event loop. 790 * When work_cb is complete, after_work_cb will be called on the event loop thread. 791 * 792 * @param loop indicates the pointer to the event loop. 793 * @param req indicates the pointer to the work request. 794 * @param work_cb indicates the callback to be executed on a new thread. 795 * @param after_work_cb indicates the callback to be invoked on the event loop thread. 796 * 797 * @return Returns 0 if the operation is successful; returns -1 otherwise. 798 */ 799 int uv_queue_work(uv_loop_t* loop, 800 uv_work_t* req, 801 uv_work_cb work_cb, 802 uv_after_work_cb after_work_cb); 803 ``` 804 805- uv_fs_t 806 807 All async APIs provided by the file class can work as expected in the application main thread. Common APIs include the following: 808 809 ```cpp 810 /** 811 * Read a file asynchronously. 812 * 813 * @param loop indicates the pointer to the event loop. 814 * @param req indicates the pointer to the file operation request. 815 * @param file indicates the file descriptor. 816 * @param bufs indicates an array of buffers for storing the data read. 817 * @param nbufs indicates the number of buffers. 818 * @param off indicates the offset in the file from which data is read. 819 * @param cb indicates the callback to be invoked when the read operation is complete. 820 * @return Returns 0 if the operation is successful; returns -1 otherwise. 821 */ 822 int uv_fs_read(uv_loop_t* loop, uv_fs_t* req, 823 uv_file file, 824 const uv_buf_t bufs[], 825 unsigned int nbufs, 826 int64_t off, 827 uv_fs_cb cb); 828 829 /** 830 * Open a file asynchronously. 831 * 832 * @param loop indicates the pointer to the event loop. 833 * @param req indicates the pointer to the file operation request. 834 * * @param path indicates the pointer to the path of the file to open. 835 * @param flags indicates the modes for opening the file. 836 * * @param mode indicates the permission on the file. 837 * @param cb indicates the callback to be invoked when the file is opened. 838 * 839 * @return Returns 0 if the operation is successful; returns -1 otherwise. 840 */ 841 int uv_fs_open(uv_loop_t* loop, 842 uv_fs_t* req, 843 const char* path, 844 int flags, 845 int mode, 846 uv_fs_cb cb); 847 848 /** 849 * Sends data from a file to another asynchronously. 850 * 851 * @param loop indicates the pointer to the event loop. 852 * @param req indicates the pointer to the file operation request. 853 * @param out_fd indicates the file descriptor of the destination file. 854 * @param in_fd indicates the file descriptor of the source file. 855 * @param off indicates the offset in the source file from which data is sent. 856 * @param len indicates the length of the data to be sent. 857 * @param cb indicates the callback to be invoked when the data is sent. 858 * 859 * @return Returns 0 if the operation is successful; returns -1 otherwise. 860 */ 861 int uv_fs_sendfile(uv_loop_t* loop, 862 uv_fs_t* req, 863 uv_file out_fd, 864 uv_file in_fd, 865 int64_t off, 866 size_t len, 867 uv_fs_cb cb); 868 869 /** 870 * Write data to a file asynchronously. 871 * 872 * @param loop indicates the pointer to the event loop. 873 * @param req indicates the pointer to the file operation request. 874 * @param file indicates the file descriptor. 875 * * @param data indicates an array of buffers for storing the data to be written. 876 * @param nbufs indicates the number of buffers. 877 * @param off indicates the offset in the file from which data is written. 878 * @param cb indicates the callback to be invoked when the write operation is complete. 879 * 880 * @return Returns 0 if the operation is successful; returns -1 otherwise. 881 */ 882 int uv_fs_write(uv_loop_t* loop, 883 uv_fs_t* req, 884 uv_file file, 885 const uv_buf_t bufs[], 886 unsigned int nbufs, 887 int64_t off, 888 uv_fs_cb cb); 889 890 /** 891 * Copy a file asynchronously. 892 * 893 * @param loop indicates the pointer to the event loop. 894 * @param req indicates the pointer to the file operation request. 895 * @param path indicates the pointer to the path of the file to copy. 896 * @param new_path indicates the pointer to the destination path. 897 * @param flags indicates the options for the copy operation. 898 * @param cb indicates the callback to be invoked when the copy operation is complete. 899 * 900 * @return Returns 0 if the operation is successful; returns -1 otherwise. 901 */ 902 int uv_fs_copyfile(uv_loop_t* loop, 903 uv_fs_t* req, 904 const char* path, 905 const char* new_path 906 int flags, 907 uv_fs_cb cb); 908 ``` 909 910- uv_getaddrinfo_t 911 912 Function prototype: 913 914 ```cpp 915 /** 916 * Obtain address information asynchronously. 917 * 918 * @param loop indicates the pointer to the event loop. 919 * @param req indicates the pointer to the request for obtaining address information. 920 * @param cb indicates the callback to be invoked when the address information is obtained. 921 * @param hostname indicates the pointer to the host name to resolve. 922 * @param service indicates the pointer to the service name. 923 * @param hints indicates the pointer to the address information with additional address type constraints. 924 * 925 * @return Returns 0 if the operation is successful; returns -1 otherwise. 926 */ 927 int uv_getaddrinfo(uv_loop_t* loop, 928 uv_getaddrinfo_t* req, 929 uv_getaddrinfo_cb cb, 930 const char* hostname, 931 const char* service, 932 const struct addrinfo* hints); 933 ``` 934 935- uv_getnameinfo_t 936 937 Function prototype: 938 939 ```cpp 940 /** 941 * Obtain name information asynchronously. 942 * 943 * @param loop indicates the pointer to the event loop. 944 * @param req indicates the pointer to the request. 945 * @param cb indicates the callback to be invoked when the name information is obtained. 946 * @param addr indicates the pointer to the address information to resolve. 947 * @param flags indicates the flags for controlling the behavior of the lookup. 948 * 949 * @return Returns 0 if the operation is successful; returns -1 otherwise. 950 */ 951 int uv_getnameinfo(uv_loop_t* loop, 952 uv_getnameinfo_t* req, 953 uv_getnameinfo_cb getnameinfo_cb, 954 const struct sockaddr* addr, 955 int flags); 956 ``` 957 958The following APIs do not work as expected in the application main thread: 959 960- **Idle** handle 961- **prepare** handle 962- **check** handle 963- signal-related functions 964- Functions related to TCP and UDP 965 966## Case Study 967 968[Cause of Incorrect Triggering Time of the Timer Callback in the Main Thread of libuv](https://gitee.com/openharmony/third_party_libuv/wikis/06-Wiki-%E6%8A%80%E6%9C%AF%E8%B5%84%E6%BA%90/libuv%E4%B8%AD%E4%B8%BB%E7%BA%BF%E7%A8%8Btimer%E5%9B%9E%E8%B0%83%E4%BA%8B%E4%BB%B6%E8%A7%A6%E5%8F%91%E6%97%B6%E9%97%B4%E4%B8%8D%E6%AD%A3%E7%A1%AE%E5%8E%9F%E5%9B%A0) 969 970[Incorporating libuv Worker Threads to the FFRT](https://gitee.com/openharmony/third_party_libuv/wikis/06-Wiki-%E6%8A%80%E6%9C%AF%E8%B5%84%E6%BA%90/%20libuv%E5%B7%A5%E4%BD%9C%E7%BA%BF%E7%A8%8B%E6%8E%A5%E5%85%A5FFRT%E6%96%B9%E6%A1%88%E5%88%86%E6%9E%90) 971 972[FAQs for QoS-Aware libuv and Node-API Async API Improvements](https://gitee.com/openharmony/third_party_libuv/wikis/06-Wiki-%E6%8A%80%E6%9C%AF%E8%B5%84%E6%BA%90/QoS%E6%84%9F%E7%9F%A5%E7%9A%84libuv%E3%80%81napi%E5%BC%82%E6%AD%A5%E6%8E%A5%E5%8F%A3%E6%95%B4%E6%94%B9FAQ) 973