1 /* SPDX-License-Identifier: GPL-2.0
2 *
3 * IO cost model based controller.
4 *
5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6 * Copyright (C) 2019 Andy Newell <newella@fb.com>
7 * Copyright (C) 2019 Facebook
8 *
9 * One challenge of controlling IO resources is the lack of trivially
10 * observable cost metric. This is distinguished from CPU and memory where
11 * wallclock time and the number of bytes can serve as accurate enough
12 * approximations.
13 *
14 * Bandwidth and iops are the most commonly used metrics for IO devices but
15 * depending on the type and specifics of the device, different IO patterns
16 * easily lead to multiple orders of magnitude variations rendering them
17 * useless for the purpose of IO capacity distribution. While on-device
18 * time, with a lot of clutches, could serve as a useful approximation for
19 * non-queued rotational devices, this is no longer viable with modern
20 * devices, even the rotational ones.
21 *
22 * While there is no cost metric we can trivially observe, it isn't a
23 * complete mystery. For example, on a rotational device, seek cost
24 * dominates while a contiguous transfer contributes a smaller amount
25 * proportional to the size. If we can characterize at least the relative
26 * costs of these different types of IOs, it should be possible to
27 * implement a reasonable work-conserving proportional IO resource
28 * distribution.
29 *
30 * 1. IO Cost Model
31 *
32 * IO cost model estimates the cost of an IO given its basic parameters and
33 * history (e.g. the end sector of the last IO). The cost is measured in
34 * device time. If a given IO is estimated to cost 10ms, the device should
35 * be able to process ~100 of those IOs in a second.
36 *
37 * Currently, there's only one builtin cost model - linear. Each IO is
38 * classified as sequential or random and given a base cost accordingly.
39 * On top of that, a size cost proportional to the length of the IO is
40 * added. While simple, this model captures the operational
41 * characteristics of a wide varienty of devices well enough. Default
42 * paramters for several different classes of devices are provided and the
43 * parameters can be configured from userspace via
44 * /sys/fs/cgroup/io.cost.model.
45 *
46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47 * device-specific coefficients.
48 *
49 * 2. Control Strategy
50 *
51 * The device virtual time (vtime) is used as the primary control metric.
52 * The control strategy is composed of the following three parts.
53 *
54 * 2-1. Vtime Distribution
55 *
56 * When a cgroup becomes active in terms of IOs, its hierarchical share is
57 * calculated. Please consider the following hierarchy where the numbers
58 * inside parentheses denote the configured weights.
59 *
60 * root
61 * / \
62 * A (w:100) B (w:300)
63 * / \
64 * A0 (w:100) A1 (w:100)
65 *
66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B
68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69 * 12.5% each. The distribution mechanism only cares about these flattened
70 * shares. They're called hweights (hierarchical weights) and always add
71 * upto 1 (WEIGHT_ONE).
72 *
73 * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75 * against the device vtime - an IO which takes 10ms on the underlying
76 * device is considered to take 80ms on A0.
77 *
78 * This constitutes the basis of IO capacity distribution. Each cgroup's
79 * vtime is running at a rate determined by its hweight. A cgroup tracks
80 * the vtime consumed by past IOs and can issue a new IO iff doing so
81 * wouldn't outrun the current device vtime. Otherwise, the IO is
82 * suspended until the vtime has progressed enough to cover it.
83 *
84 * 2-2. Vrate Adjustment
85 *
86 * It's unrealistic to expect the cost model to be perfect. There are too
87 * many devices and even on the same device the overall performance
88 * fluctuates depending on numerous factors such as IO mixture and device
89 * internal garbage collection. The controller needs to adapt dynamically.
90 *
91 * This is achieved by adjusting the overall IO rate according to how busy
92 * the device is. If the device becomes overloaded, we're sending down too
93 * many IOs and should generally slow down. If there are waiting issuers
94 * but the device isn't saturated, we're issuing too few and should
95 * generally speed up.
96 *
97 * To slow down, we lower the vrate - the rate at which the device vtime
98 * passes compared to the wall clock. For example, if the vtime is running
99 * at the vrate of 75%, all cgroups added up would only be able to issue
100 * 750ms worth of IOs per second, and vice-versa for speeding up.
101 *
102 * Device business is determined using two criteria - rq wait and
103 * completion latencies.
104 *
105 * When a device gets saturated, the on-device and then the request queues
106 * fill up and a bio which is ready to be issued has to wait for a request
107 * to become available. When this delay becomes noticeable, it's a clear
108 * indication that the device is saturated and we lower the vrate. This
109 * saturation signal is fairly conservative as it only triggers when both
110 * hardware and software queues are filled up, and is used as the default
111 * busy signal.
112 *
113 * As devices can have deep queues and be unfair in how the queued commands
114 * are executed, soley depending on rq wait may not result in satisfactory
115 * control quality. For a better control quality, completion latency QoS
116 * parameters can be configured so that the device is considered saturated
117 * if N'th percentile completion latency rises above the set point.
118 *
119 * The completion latency requirements are a function of both the
120 * underlying device characteristics and the desired IO latency quality of
121 * service. There is an inherent trade-off - the tighter the latency QoS,
122 * the higher the bandwidth lossage. Latency QoS is disabled by default
123 * and can be set through /sys/fs/cgroup/io.cost.qos.
124 *
125 * 2-3. Work Conservation
126 *
127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO
128 * periodically while B is sending out enough parallel IOs to saturate the
129 * device on its own. Let's say A's usage amounts to 100ms worth of IO
130 * cost per second, i.e., 10% of the device capacity. The naive
131 * distribution of half and half would lead to 60% utilization of the
132 * device, a significant reduction in the total amount of work done
133 * compared to free-for-all competition. This is too high a cost to pay
134 * for IO control.
135 *
136 * To conserve the total amount of work done, we keep track of how much
137 * each active cgroup is actually using and yield part of its weight if
138 * there are other cgroups which can make use of it. In the above case,
139 * A's weight will be lowered so that it hovers above the actual usage and
140 * B would be able to use the rest.
141 *
142 * As we don't want to penalize a cgroup for donating its weight, the
143 * surplus weight adjustment factors in a margin and has an immediate
144 * snapback mechanism in case the cgroup needs more IO vtime for itself.
145 *
146 * Note that adjusting down surplus weights has the same effects as
147 * accelerating vtime for other cgroups and work conservation can also be
148 * implemented by adjusting vrate dynamically. However, squaring who can
149 * donate and should take back how much requires hweight propagations
150 * anyway making it easier to implement and understand as a separate
151 * mechanism.
152 *
153 * 3. Monitoring
154 *
155 * Instead of debugfs or other clumsy monitoring mechanisms, this
156 * controller uses a drgn based monitoring script -
157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see
158 * https://github.com/osandov/drgn. The ouput looks like the following.
159 *
160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161 * active weight hweight% inflt% dbt delay usages%
162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033
163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077
164 *
165 * - per : Timer period
166 * - cur_per : Internal wall and device vtime clock
167 * - vrate : Device virtual time rate against wall clock
168 * - weight : Surplus-adjusted and configured weights
169 * - hweight : Surplus-adjusted and configured hierarchical weights
170 * - inflt : The percentage of in-flight IO cost at the end of last period
171 * - del_ms : Deferred issuer delay induction level and duration
172 * - usages : Usage history
173 */
174
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <linux/blk-cgroup.h>
182 #include <asm/local.h>
183 #include <asm/local64.h>
184 #include "blk-rq-qos.h"
185 #include "blk-stat.h"
186 #include "blk-wbt.h"
187
188 #ifdef CONFIG_TRACEPOINTS
189
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194
195 #define TRACE_IOCG_PATH(type, iocg, ...) \
196 do { \
197 unsigned long flags; \
198 if (trace_iocost_##type##_enabled()) { \
199 spin_lock_irqsave(&trace_iocg_path_lock, flags); \
200 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \
201 trace_iocg_path, TRACE_IOCG_PATH_LEN); \
202 trace_iocost_##type(iocg, trace_iocg_path, \
203 ##__VA_ARGS__); \
204 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \
205 } \
206 } while (0)
207
208 #else /* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0)
210 #endif /* CONFIG_TRACE_POINTS */
211
212 enum {
213 MILLION = 1000000,
214
215 /* timer period is calculated from latency requirements, bound it */
216 MIN_PERIOD = USEC_PER_MSEC,
217 MAX_PERIOD = USEC_PER_SEC,
218
219 /*
220 * iocg->vtime is targeted at 50% behind the device vtime, which
221 * serves as its IO credit buffer. Surplus weight adjustment is
222 * immediately canceled if the vtime margin runs below 10%.
223 */
224 MARGIN_MIN_PCT = 10,
225 MARGIN_LOW_PCT = 20,
226 MARGIN_TARGET_PCT = 50,
227
228 INUSE_ADJ_STEP_PCT = 25,
229
230 /* Have some play in timer operations */
231 TIMER_SLACK_PCT = 1,
232
233 /* 1/64k is granular enough and can easily be handled w/ u32 */
234 WEIGHT_ONE = 1 << 16,
235 };
236
237 enum {
238 /*
239 * As vtime is used to calculate the cost of each IO, it needs to
240 * be fairly high precision. For example, it should be able to
241 * represent the cost of a single page worth of discard with
242 * suffificient accuracy. At the same time, it should be able to
243 * represent reasonably long enough durations to be useful and
244 * convenient during operation.
245 *
246 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond
247 * granularity and days of wrap-around time even at extreme vrates.
248 */
249 VTIME_PER_SEC_SHIFT = 37,
250 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT,
251 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC,
252 VTIME_PER_NSEC = VTIME_PER_SEC / NSEC_PER_SEC,
253
254 /* bound vrate adjustments within two orders of magnitude */
255 VRATE_MIN_PPM = 10000, /* 1% */
256 VRATE_MAX_PPM = 100000000, /* 10000% */
257
258 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
259 VRATE_CLAMP_ADJ_PCT = 4,
260
261 /* switch iff the conditions are met for longer than this */
262 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC,
263 };
264
265 enum {
266 /* if IOs end up waiting for requests, issue less */
267 RQ_WAIT_BUSY_PCT = 5,
268
269 /* unbusy hysterisis */
270 UNBUSY_THR_PCT = 75,
271
272 /*
273 * The effect of delay is indirect and non-linear and a huge amount of
274 * future debt can accumulate abruptly while unthrottled. Linearly scale
275 * up delay as debt is going up and then let it decay exponentially.
276 * This gives us quick ramp ups while delay is accumulating and long
277 * tails which can help reducing the frequency of debt explosions on
278 * unthrottle. The parameters are experimentally determined.
279 *
280 * The delay mechanism provides adequate protection and behavior in many
281 * cases. However, this is far from ideal and falls shorts on both
282 * fronts. The debtors are often throttled too harshly costing a
283 * significant level of fairness and possibly total work while the
284 * protection against their impacts on the system can be choppy and
285 * unreliable.
286 *
287 * The shortcoming primarily stems from the fact that, unlike for page
288 * cache, the kernel doesn't have well-defined back-pressure propagation
289 * mechanism and policies for anonymous memory. Fully addressing this
290 * issue will likely require substantial improvements in the area.
291 */
292 MIN_DELAY_THR_PCT = 500,
293 MAX_DELAY_THR_PCT = 25000,
294 MIN_DELAY = 250,
295 MAX_DELAY = 250 * USEC_PER_MSEC,
296
297 /* halve debts if avg usage over 100ms is under 50% */
298 DFGV_USAGE_PCT = 50,
299 DFGV_PERIOD = 100 * USEC_PER_MSEC,
300
301 /* don't let cmds which take a very long time pin lagging for too long */
302 MAX_LAGGING_PERIODS = 10,
303
304 /*
305 * Count IO size in 4k pages. The 12bit shift helps keeping
306 * size-proportional components of cost calculation in closer
307 * numbers of digits to per-IO cost components.
308 */
309 IOC_PAGE_SHIFT = 12,
310 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT,
311 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT,
312
313 /* if apart further than 16M, consider randio for linear model */
314 LCOEF_RANDIO_PAGES = 4096,
315 };
316
317 enum ioc_running {
318 IOC_IDLE,
319 IOC_RUNNING,
320 IOC_STOP,
321 };
322
323 /* io.cost.qos controls including per-dev enable of the whole controller */
324 enum {
325 QOS_ENABLE,
326 QOS_CTRL,
327 NR_QOS_CTRL_PARAMS,
328 };
329
330 /* io.cost.qos params */
331 enum {
332 QOS_RPPM,
333 QOS_RLAT,
334 QOS_WPPM,
335 QOS_WLAT,
336 QOS_MIN,
337 QOS_MAX,
338 NR_QOS_PARAMS,
339 };
340
341 /* io.cost.model controls */
342 enum {
343 COST_CTRL,
344 COST_MODEL,
345 NR_COST_CTRL_PARAMS,
346 };
347
348 /* builtin linear cost model coefficients */
349 enum {
350 I_LCOEF_RBPS,
351 I_LCOEF_RSEQIOPS,
352 I_LCOEF_RRANDIOPS,
353 I_LCOEF_WBPS,
354 I_LCOEF_WSEQIOPS,
355 I_LCOEF_WRANDIOPS,
356 NR_I_LCOEFS,
357 };
358
359 enum {
360 LCOEF_RPAGE,
361 LCOEF_RSEQIO,
362 LCOEF_RRANDIO,
363 LCOEF_WPAGE,
364 LCOEF_WSEQIO,
365 LCOEF_WRANDIO,
366 NR_LCOEFS,
367 };
368
369 enum {
370 AUTOP_INVALID,
371 AUTOP_HDD,
372 AUTOP_SSD_QD1,
373 AUTOP_SSD_DFL,
374 AUTOP_SSD_FAST,
375 };
376
377 struct ioc_gq;
378
379 struct ioc_params {
380 u32 qos[NR_QOS_PARAMS];
381 u64 i_lcoefs[NR_I_LCOEFS];
382 u64 lcoefs[NR_LCOEFS];
383 u32 too_fast_vrate_pct;
384 u32 too_slow_vrate_pct;
385 };
386
387 struct ioc_margins {
388 s64 min;
389 s64 low;
390 s64 target;
391 };
392
393 struct ioc_missed {
394 local_t nr_met;
395 local_t nr_missed;
396 u32 last_met;
397 u32 last_missed;
398 };
399
400 struct ioc_pcpu_stat {
401 struct ioc_missed missed[2];
402
403 local64_t rq_wait_ns;
404 u64 last_rq_wait_ns;
405 };
406
407 /* per device */
408 struct ioc {
409 struct rq_qos rqos;
410
411 bool enabled;
412
413 struct ioc_params params;
414 struct ioc_margins margins;
415 u32 period_us;
416 u32 timer_slack_ns;
417 u64 vrate_min;
418 u64 vrate_max;
419
420 spinlock_t lock;
421 struct timer_list timer;
422 struct list_head active_iocgs; /* active cgroups */
423 struct ioc_pcpu_stat __percpu *pcpu_stat;
424
425 enum ioc_running running;
426 atomic64_t vtime_rate;
427 u64 vtime_base_rate;
428 s64 vtime_err;
429
430 seqcount_spinlock_t period_seqcount;
431 u64 period_at; /* wallclock starttime */
432 u64 period_at_vtime; /* vtime starttime */
433
434 atomic64_t cur_period; /* inc'd each period */
435 int busy_level; /* saturation history */
436
437 bool weights_updated;
438 atomic_t hweight_gen; /* for lazy hweights */
439
440 /* debt forgivness */
441 u64 dfgv_period_at;
442 u64 dfgv_period_rem;
443 u64 dfgv_usage_us_sum;
444
445 u64 autop_too_fast_at;
446 u64 autop_too_slow_at;
447 int autop_idx;
448 bool user_qos_params:1;
449 bool user_cost_model:1;
450 };
451
452 struct iocg_pcpu_stat {
453 local64_t abs_vusage;
454 };
455
456 struct iocg_stat {
457 u64 usage_us;
458 u64 wait_us;
459 u64 indebt_us;
460 u64 indelay_us;
461 };
462
463 /* per device-cgroup pair */
464 struct ioc_gq {
465 struct blkg_policy_data pd;
466 struct ioc *ioc;
467
468 /*
469 * A iocg can get its weight from two sources - an explicit
470 * per-device-cgroup configuration or the default weight of the
471 * cgroup. `cfg_weight` is the explicit per-device-cgroup
472 * configuration. `weight` is the effective considering both
473 * sources.
474 *
475 * When an idle cgroup becomes active its `active` goes from 0 to
476 * `weight`. `inuse` is the surplus adjusted active weight.
477 * `active` and `inuse` are used to calculate `hweight_active` and
478 * `hweight_inuse`.
479 *
480 * `last_inuse` remembers `inuse` while an iocg is idle to persist
481 * surplus adjustments.
482 *
483 * `inuse` may be adjusted dynamically during period. `saved_*` are used
484 * to determine and track adjustments.
485 */
486 u32 cfg_weight;
487 u32 weight;
488 u32 active;
489 u32 inuse;
490
491 u32 last_inuse;
492 s64 saved_margin;
493
494 sector_t cursor; /* to detect randio */
495
496 /*
497 * `vtime` is this iocg's vtime cursor which progresses as IOs are
498 * issued. If lagging behind device vtime, the delta represents
499 * the currently available IO budget. If runnning ahead, the
500 * overage.
501 *
502 * `vtime_done` is the same but progressed on completion rather
503 * than issue. The delta behind `vtime` represents the cost of
504 * currently in-flight IOs.
505 */
506 atomic64_t vtime;
507 atomic64_t done_vtime;
508 u64 abs_vdebt;
509
510 /* current delay in effect and when it started */
511 u64 delay;
512 u64 delay_at;
513
514 /*
515 * The period this iocg was last active in. Used for deactivation
516 * and invalidating `vtime`.
517 */
518 atomic64_t active_period;
519 struct list_head active_list;
520
521 /* see __propagate_weights() and current_hweight() for details */
522 u64 child_active_sum;
523 u64 child_inuse_sum;
524 u64 child_adjusted_sum;
525 int hweight_gen;
526 u32 hweight_active;
527 u32 hweight_inuse;
528 u32 hweight_donating;
529 u32 hweight_after_donation;
530
531 struct list_head walk_list;
532 struct list_head surplus_list;
533
534 struct wait_queue_head waitq;
535 struct hrtimer waitq_timer;
536
537 /* timestamp at the latest activation */
538 u64 activated_at;
539
540 /* statistics */
541 struct iocg_pcpu_stat __percpu *pcpu_stat;
542 struct iocg_stat local_stat;
543 struct iocg_stat desc_stat;
544 struct iocg_stat last_stat;
545 u64 last_stat_abs_vusage;
546 u64 usage_delta_us;
547 u64 wait_since;
548 u64 indebt_since;
549 u64 indelay_since;
550
551 /* this iocg's depth in the hierarchy and ancestors including self */
552 int level;
553 struct ioc_gq *ancestors[];
554 };
555
556 /* per cgroup */
557 struct ioc_cgrp {
558 struct blkcg_policy_data cpd;
559 unsigned int dfl_weight;
560 };
561
562 struct ioc_now {
563 u64 now_ns;
564 u64 now;
565 u64 vnow;
566 u64 vrate;
567 };
568
569 struct iocg_wait {
570 struct wait_queue_entry wait;
571 struct bio *bio;
572 u64 abs_cost;
573 bool committed;
574 };
575
576 struct iocg_wake_ctx {
577 struct ioc_gq *iocg;
578 u32 hw_inuse;
579 s64 vbudget;
580 };
581
582 static const struct ioc_params autop[] = {
583 [AUTOP_HDD] = {
584 .qos = {
585 [QOS_RLAT] = 250000, /* 250ms */
586 [QOS_WLAT] = 250000,
587 [QOS_MIN] = VRATE_MIN_PPM,
588 [QOS_MAX] = VRATE_MAX_PPM,
589 },
590 .i_lcoefs = {
591 [I_LCOEF_RBPS] = 174019176,
592 [I_LCOEF_RSEQIOPS] = 41708,
593 [I_LCOEF_RRANDIOPS] = 370,
594 [I_LCOEF_WBPS] = 178075866,
595 [I_LCOEF_WSEQIOPS] = 42705,
596 [I_LCOEF_WRANDIOPS] = 378,
597 },
598 },
599 [AUTOP_SSD_QD1] = {
600 .qos = {
601 [QOS_RLAT] = 25000, /* 25ms */
602 [QOS_WLAT] = 25000,
603 [QOS_MIN] = VRATE_MIN_PPM,
604 [QOS_MAX] = VRATE_MAX_PPM,
605 },
606 .i_lcoefs = {
607 [I_LCOEF_RBPS] = 245855193,
608 [I_LCOEF_RSEQIOPS] = 61575,
609 [I_LCOEF_RRANDIOPS] = 6946,
610 [I_LCOEF_WBPS] = 141365009,
611 [I_LCOEF_WSEQIOPS] = 33716,
612 [I_LCOEF_WRANDIOPS] = 26796,
613 },
614 },
615 [AUTOP_SSD_DFL] = {
616 .qos = {
617 [QOS_RLAT] = 25000, /* 25ms */
618 [QOS_WLAT] = 25000,
619 [QOS_MIN] = VRATE_MIN_PPM,
620 [QOS_MAX] = VRATE_MAX_PPM,
621 },
622 .i_lcoefs = {
623 [I_LCOEF_RBPS] = 488636629,
624 [I_LCOEF_RSEQIOPS] = 8932,
625 [I_LCOEF_RRANDIOPS] = 8518,
626 [I_LCOEF_WBPS] = 427891549,
627 [I_LCOEF_WSEQIOPS] = 28755,
628 [I_LCOEF_WRANDIOPS] = 21940,
629 },
630 .too_fast_vrate_pct = 500,
631 },
632 [AUTOP_SSD_FAST] = {
633 .qos = {
634 [QOS_RLAT] = 5000, /* 5ms */
635 [QOS_WLAT] = 5000,
636 [QOS_MIN] = VRATE_MIN_PPM,
637 [QOS_MAX] = VRATE_MAX_PPM,
638 },
639 .i_lcoefs = {
640 [I_LCOEF_RBPS] = 3102524156LLU,
641 [I_LCOEF_RSEQIOPS] = 724816,
642 [I_LCOEF_RRANDIOPS] = 778122,
643 [I_LCOEF_WBPS] = 1742780862LLU,
644 [I_LCOEF_WSEQIOPS] = 425702,
645 [I_LCOEF_WRANDIOPS] = 443193,
646 },
647 .too_slow_vrate_pct = 10,
648 },
649 };
650
651 /*
652 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on
653 * vtime credit shortage and down on device saturation.
654 */
655 static u32 vrate_adj_pct[] =
656 { 0, 0, 0, 0,
657 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
658 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
659 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
660
661 static struct blkcg_policy blkcg_policy_iocost;
662
663 /* accessors and helpers */
rqos_to_ioc(struct rq_qos * rqos)664 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
665 {
666 return container_of(rqos, struct ioc, rqos);
667 }
668
q_to_ioc(struct request_queue * q)669 static struct ioc *q_to_ioc(struct request_queue *q)
670 {
671 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
672 }
673
q_name(struct request_queue * q)674 static const char *q_name(struct request_queue *q)
675 {
676 if (blk_queue_registered(q))
677 return kobject_name(q->kobj.parent);
678 else
679 return "<unknown>";
680 }
681
ioc_name(struct ioc * ioc)682 static const char __maybe_unused *ioc_name(struct ioc *ioc)
683 {
684 return q_name(ioc->rqos.q);
685 }
686
pd_to_iocg(struct blkg_policy_data * pd)687 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
688 {
689 return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
690 }
691
blkg_to_iocg(struct blkcg_gq * blkg)692 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
693 {
694 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
695 }
696
iocg_to_blkg(struct ioc_gq * iocg)697 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
698 {
699 return pd_to_blkg(&iocg->pd);
700 }
701
blkcg_to_iocc(struct blkcg * blkcg)702 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
703 {
704 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
705 struct ioc_cgrp, cpd);
706 }
707
708 /*
709 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical
710 * weight, the more expensive each IO. Must round up.
711 */
abs_cost_to_cost(u64 abs_cost,u32 hw_inuse)712 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
713 {
714 return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
715 }
716
717 /*
718 * The inverse of abs_cost_to_cost(). Must round up.
719 */
cost_to_abs_cost(u64 cost,u32 hw_inuse)720 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
721 {
722 return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
723 }
724
iocg_commit_bio(struct ioc_gq * iocg,struct bio * bio,u64 abs_cost,u64 cost)725 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
726 u64 abs_cost, u64 cost)
727 {
728 struct iocg_pcpu_stat *gcs;
729
730 bio->bi_iocost_cost = cost;
731 atomic64_add(cost, &iocg->vtime);
732
733 gcs = get_cpu_ptr(iocg->pcpu_stat);
734 local64_add(abs_cost, &gcs->abs_vusage);
735 put_cpu_ptr(gcs);
736 }
737
iocg_lock(struct ioc_gq * iocg,bool lock_ioc,unsigned long * flags)738 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
739 {
740 if (lock_ioc) {
741 spin_lock_irqsave(&iocg->ioc->lock, *flags);
742 spin_lock(&iocg->waitq.lock);
743 } else {
744 spin_lock_irqsave(&iocg->waitq.lock, *flags);
745 }
746 }
747
iocg_unlock(struct ioc_gq * iocg,bool unlock_ioc,unsigned long * flags)748 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
749 {
750 if (unlock_ioc) {
751 spin_unlock(&iocg->waitq.lock);
752 spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
753 } else {
754 spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
755 }
756 }
757
758 #define CREATE_TRACE_POINTS
759 #include <trace/events/iocost.h>
760
ioc_refresh_margins(struct ioc * ioc)761 static void ioc_refresh_margins(struct ioc *ioc)
762 {
763 struct ioc_margins *margins = &ioc->margins;
764 u32 period_us = ioc->period_us;
765 u64 vrate = ioc->vtime_base_rate;
766
767 margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
768 margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
769 margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
770 }
771
772 /* latency Qos params changed, update period_us and all the dependent params */
ioc_refresh_period_us(struct ioc * ioc)773 static void ioc_refresh_period_us(struct ioc *ioc)
774 {
775 u32 ppm, lat, multi, period_us;
776
777 lockdep_assert_held(&ioc->lock);
778
779 /* pick the higher latency target */
780 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
781 ppm = ioc->params.qos[QOS_RPPM];
782 lat = ioc->params.qos[QOS_RLAT];
783 } else {
784 ppm = ioc->params.qos[QOS_WPPM];
785 lat = ioc->params.qos[QOS_WLAT];
786 }
787
788 /*
789 * We want the period to be long enough to contain a healthy number
790 * of IOs while short enough for granular control. Define it as a
791 * multiple of the latency target. Ideally, the multiplier should
792 * be scaled according to the percentile so that it would nominally
793 * contain a certain number of requests. Let's be simpler and
794 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
795 */
796 if (ppm)
797 multi = max_t(u32, (MILLION - ppm) / 50000, 2);
798 else
799 multi = 2;
800 period_us = multi * lat;
801 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
802
803 /* calculate dependent params */
804 ioc->period_us = period_us;
805 ioc->timer_slack_ns = div64_u64(
806 (u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
807 100);
808 ioc_refresh_margins(ioc);
809 }
810
ioc_autop_idx(struct ioc * ioc)811 static int ioc_autop_idx(struct ioc *ioc)
812 {
813 int idx = ioc->autop_idx;
814 const struct ioc_params *p = &autop[idx];
815 u32 vrate_pct;
816 u64 now_ns;
817
818 /* rotational? */
819 if (!blk_queue_nonrot(ioc->rqos.q))
820 return AUTOP_HDD;
821
822 /* handle SATA SSDs w/ broken NCQ */
823 if (blk_queue_depth(ioc->rqos.q) == 1)
824 return AUTOP_SSD_QD1;
825
826 /* use one of the normal ssd sets */
827 if (idx < AUTOP_SSD_DFL)
828 return AUTOP_SSD_DFL;
829
830 /* if user is overriding anything, maintain what was there */
831 if (ioc->user_qos_params || ioc->user_cost_model)
832 return idx;
833
834 /* step up/down based on the vrate */
835 vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
836 now_ns = ktime_get_ns();
837
838 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
839 if (!ioc->autop_too_fast_at)
840 ioc->autop_too_fast_at = now_ns;
841 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
842 return idx + 1;
843 } else {
844 ioc->autop_too_fast_at = 0;
845 }
846
847 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
848 if (!ioc->autop_too_slow_at)
849 ioc->autop_too_slow_at = now_ns;
850 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
851 return idx - 1;
852 } else {
853 ioc->autop_too_slow_at = 0;
854 }
855
856 return idx;
857 }
858
859 /*
860 * Take the followings as input
861 *
862 * @bps maximum sequential throughput
863 * @seqiops maximum sequential 4k iops
864 * @randiops maximum random 4k iops
865 *
866 * and calculate the linear model cost coefficients.
867 *
868 * *@page per-page cost 1s / (@bps / 4096)
869 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0)
870 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0)
871 */
calc_lcoefs(u64 bps,u64 seqiops,u64 randiops,u64 * page,u64 * seqio,u64 * randio)872 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
873 u64 *page, u64 *seqio, u64 *randio)
874 {
875 u64 v;
876
877 *page = *seqio = *randio = 0;
878
879 if (bps) {
880 u64 bps_pages = DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE);
881
882 if (bps_pages)
883 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, bps_pages);
884 else
885 *page = 1;
886 }
887
888 if (seqiops) {
889 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
890 if (v > *page)
891 *seqio = v - *page;
892 }
893
894 if (randiops) {
895 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
896 if (v > *page)
897 *randio = v - *page;
898 }
899 }
900
ioc_refresh_lcoefs(struct ioc * ioc)901 static void ioc_refresh_lcoefs(struct ioc *ioc)
902 {
903 u64 *u = ioc->params.i_lcoefs;
904 u64 *c = ioc->params.lcoefs;
905
906 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
907 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
908 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
909 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
910 }
911
ioc_refresh_params(struct ioc * ioc,bool force)912 static bool ioc_refresh_params(struct ioc *ioc, bool force)
913 {
914 const struct ioc_params *p;
915 int idx;
916
917 lockdep_assert_held(&ioc->lock);
918
919 idx = ioc_autop_idx(ioc);
920 p = &autop[idx];
921
922 if (idx == ioc->autop_idx && !force)
923 return false;
924
925 if (idx != ioc->autop_idx)
926 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
927
928 ioc->autop_idx = idx;
929 ioc->autop_too_fast_at = 0;
930 ioc->autop_too_slow_at = 0;
931
932 if (!ioc->user_qos_params)
933 memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
934 if (!ioc->user_cost_model)
935 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
936
937 ioc_refresh_period_us(ioc);
938 ioc_refresh_lcoefs(ioc);
939
940 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
941 VTIME_PER_USEC, MILLION);
942 ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
943 VTIME_PER_USEC, MILLION);
944
945 return true;
946 }
947
948 /*
949 * When an iocg accumulates too much vtime or gets deactivated, we throw away
950 * some vtime, which lowers the overall device utilization. As the exact amount
951 * which is being thrown away is known, we can compensate by accelerating the
952 * vrate accordingly so that the extra vtime generated in the current period
953 * matches what got lost.
954 */
ioc_refresh_vrate(struct ioc * ioc,struct ioc_now * now)955 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
956 {
957 s64 pleft = ioc->period_at + ioc->period_us - now->now;
958 s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
959 s64 vcomp, vcomp_min, vcomp_max;
960
961 lockdep_assert_held(&ioc->lock);
962
963 /* we need some time left in this period */
964 if (pleft <= 0)
965 goto done;
966
967 /*
968 * Calculate how much vrate should be adjusted to offset the error.
969 * Limit the amount of adjustment and deduct the adjusted amount from
970 * the error.
971 */
972 vcomp = -div64_s64(ioc->vtime_err, pleft);
973 vcomp_min = -(ioc->vtime_base_rate >> 1);
974 vcomp_max = ioc->vtime_base_rate;
975 vcomp = clamp(vcomp, vcomp_min, vcomp_max);
976
977 ioc->vtime_err += vcomp * pleft;
978
979 atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
980 done:
981 /* bound how much error can accumulate */
982 ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
983 }
984
985 /* take a snapshot of the current [v]time and vrate */
ioc_now(struct ioc * ioc,struct ioc_now * now)986 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
987 {
988 unsigned seq;
989
990 now->now_ns = ktime_get();
991 now->now = ktime_to_us(now->now_ns);
992 now->vrate = atomic64_read(&ioc->vtime_rate);
993
994 /*
995 * The current vtime is
996 *
997 * vtime at period start + (wallclock time since the start) * vrate
998 *
999 * As a consistent snapshot of `period_at_vtime` and `period_at` is
1000 * needed, they're seqcount protected.
1001 */
1002 do {
1003 seq = read_seqcount_begin(&ioc->period_seqcount);
1004 now->vnow = ioc->period_at_vtime +
1005 (now->now - ioc->period_at) * now->vrate;
1006 } while (read_seqcount_retry(&ioc->period_seqcount, seq));
1007 }
1008
ioc_start_period(struct ioc * ioc,struct ioc_now * now)1009 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1010 {
1011 WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1012
1013 write_seqcount_begin(&ioc->period_seqcount);
1014 ioc->period_at = now->now;
1015 ioc->period_at_vtime = now->vnow;
1016 write_seqcount_end(&ioc->period_seqcount);
1017
1018 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1019 add_timer(&ioc->timer);
1020 }
1021
1022 /*
1023 * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1024 * weight sums and propagate upwards accordingly. If @save, the current margin
1025 * is saved to be used as reference for later inuse in-period adjustments.
1026 */
__propagate_weights(struct ioc_gq * iocg,u32 active,u32 inuse,bool save,struct ioc_now * now)1027 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1028 bool save, struct ioc_now *now)
1029 {
1030 struct ioc *ioc = iocg->ioc;
1031 int lvl;
1032
1033 lockdep_assert_held(&ioc->lock);
1034
1035 /*
1036 * For an active leaf node, its inuse shouldn't be zero or exceed
1037 * @active. An active internal node's inuse is solely determined by the
1038 * inuse to active ratio of its children regardless of @inuse.
1039 */
1040 if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1041 inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1042 iocg->child_active_sum);
1043 } else {
1044 inuse = clamp_t(u32, inuse, 1, active);
1045 }
1046
1047 iocg->last_inuse = iocg->inuse;
1048 if (save)
1049 iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1050
1051 if (active == iocg->active && inuse == iocg->inuse)
1052 return;
1053
1054 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1055 struct ioc_gq *parent = iocg->ancestors[lvl];
1056 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1057 u32 parent_active = 0, parent_inuse = 0;
1058
1059 /* update the level sums */
1060 parent->child_active_sum += (s32)(active - child->active);
1061 parent->child_inuse_sum += (s32)(inuse - child->inuse);
1062 /* apply the updates */
1063 child->active = active;
1064 child->inuse = inuse;
1065
1066 /*
1067 * The delta between inuse and active sums indicates that
1068 * that much of weight is being given away. Parent's inuse
1069 * and active should reflect the ratio.
1070 */
1071 if (parent->child_active_sum) {
1072 parent_active = parent->weight;
1073 parent_inuse = DIV64_U64_ROUND_UP(
1074 parent_active * parent->child_inuse_sum,
1075 parent->child_active_sum);
1076 }
1077
1078 /* do we need to keep walking up? */
1079 if (parent_active == parent->active &&
1080 parent_inuse == parent->inuse)
1081 break;
1082
1083 active = parent_active;
1084 inuse = parent_inuse;
1085 }
1086
1087 ioc->weights_updated = true;
1088 }
1089
commit_weights(struct ioc * ioc)1090 static void commit_weights(struct ioc *ioc)
1091 {
1092 lockdep_assert_held(&ioc->lock);
1093
1094 if (ioc->weights_updated) {
1095 /* paired with rmb in current_hweight(), see there */
1096 smp_wmb();
1097 atomic_inc(&ioc->hweight_gen);
1098 ioc->weights_updated = false;
1099 }
1100 }
1101
propagate_weights(struct ioc_gq * iocg,u32 active,u32 inuse,bool save,struct ioc_now * now)1102 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1103 bool save, struct ioc_now *now)
1104 {
1105 __propagate_weights(iocg, active, inuse, save, now);
1106 commit_weights(iocg->ioc);
1107 }
1108
current_hweight(struct ioc_gq * iocg,u32 * hw_activep,u32 * hw_inusep)1109 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1110 {
1111 struct ioc *ioc = iocg->ioc;
1112 int lvl;
1113 u32 hwa, hwi;
1114 int ioc_gen;
1115
1116 /* hot path - if uptodate, use cached */
1117 ioc_gen = atomic_read(&ioc->hweight_gen);
1118 if (ioc_gen == iocg->hweight_gen)
1119 goto out;
1120
1121 /*
1122 * Paired with wmb in commit_weights(). If we saw the updated
1123 * hweight_gen, all the weight updates from __propagate_weights() are
1124 * visible too.
1125 *
1126 * We can race with weight updates during calculation and get it
1127 * wrong. However, hweight_gen would have changed and a future
1128 * reader will recalculate and we're guaranteed to discard the
1129 * wrong result soon.
1130 */
1131 smp_rmb();
1132
1133 hwa = hwi = WEIGHT_ONE;
1134 for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1135 struct ioc_gq *parent = iocg->ancestors[lvl];
1136 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1137 u64 active_sum = READ_ONCE(parent->child_active_sum);
1138 u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1139 u32 active = READ_ONCE(child->active);
1140 u32 inuse = READ_ONCE(child->inuse);
1141
1142 /* we can race with deactivations and either may read as zero */
1143 if (!active_sum || !inuse_sum)
1144 continue;
1145
1146 active_sum = max_t(u64, active, active_sum);
1147 hwa = div64_u64((u64)hwa * active, active_sum);
1148
1149 inuse_sum = max_t(u64, inuse, inuse_sum);
1150 hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1151 }
1152
1153 iocg->hweight_active = max_t(u32, hwa, 1);
1154 iocg->hweight_inuse = max_t(u32, hwi, 1);
1155 iocg->hweight_gen = ioc_gen;
1156 out:
1157 if (hw_activep)
1158 *hw_activep = iocg->hweight_active;
1159 if (hw_inusep)
1160 *hw_inusep = iocg->hweight_inuse;
1161 }
1162
1163 /*
1164 * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1165 * other weights stay unchanged.
1166 */
current_hweight_max(struct ioc_gq * iocg)1167 static u32 current_hweight_max(struct ioc_gq *iocg)
1168 {
1169 u32 hwm = WEIGHT_ONE;
1170 u32 inuse = iocg->active;
1171 u64 child_inuse_sum;
1172 int lvl;
1173
1174 lockdep_assert_held(&iocg->ioc->lock);
1175
1176 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1177 struct ioc_gq *parent = iocg->ancestors[lvl];
1178 struct ioc_gq *child = iocg->ancestors[lvl + 1];
1179
1180 child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1181 hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1182 inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1183 parent->child_active_sum);
1184 }
1185
1186 return max_t(u32, hwm, 1);
1187 }
1188
weight_updated(struct ioc_gq * iocg,struct ioc_now * now)1189 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1190 {
1191 struct ioc *ioc = iocg->ioc;
1192 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1193 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1194 u32 weight;
1195
1196 lockdep_assert_held(&ioc->lock);
1197
1198 weight = iocg->cfg_weight ?: iocc->dfl_weight;
1199 if (weight != iocg->weight && iocg->active)
1200 propagate_weights(iocg, weight, iocg->inuse, true, now);
1201 iocg->weight = weight;
1202 }
1203
iocg_activate(struct ioc_gq * iocg,struct ioc_now * now)1204 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1205 {
1206 struct ioc *ioc = iocg->ioc;
1207 u64 last_period, cur_period;
1208 u64 vtime, vtarget;
1209 int i;
1210
1211 /*
1212 * If seem to be already active, just update the stamp to tell the
1213 * timer that we're still active. We don't mind occassional races.
1214 */
1215 if (!list_empty(&iocg->active_list)) {
1216 ioc_now(ioc, now);
1217 cur_period = atomic64_read(&ioc->cur_period);
1218 if (atomic64_read(&iocg->active_period) != cur_period)
1219 atomic64_set(&iocg->active_period, cur_period);
1220 return true;
1221 }
1222
1223 /* racy check on internal node IOs, treat as root level IOs */
1224 if (iocg->child_active_sum)
1225 return false;
1226
1227 spin_lock_irq(&ioc->lock);
1228
1229 ioc_now(ioc, now);
1230
1231 /* update period */
1232 cur_period = atomic64_read(&ioc->cur_period);
1233 last_period = atomic64_read(&iocg->active_period);
1234 atomic64_set(&iocg->active_period, cur_period);
1235
1236 /* already activated or breaking leaf-only constraint? */
1237 if (!list_empty(&iocg->active_list))
1238 goto succeed_unlock;
1239 for (i = iocg->level - 1; i > 0; i--)
1240 if (!list_empty(&iocg->ancestors[i]->active_list))
1241 goto fail_unlock;
1242
1243 if (iocg->child_active_sum)
1244 goto fail_unlock;
1245
1246 /*
1247 * Always start with the target budget. On deactivation, we throw away
1248 * anything above it.
1249 */
1250 vtarget = now->vnow - ioc->margins.target;
1251 vtime = atomic64_read(&iocg->vtime);
1252
1253 atomic64_add(vtarget - vtime, &iocg->vtime);
1254 atomic64_add(vtarget - vtime, &iocg->done_vtime);
1255 vtime = vtarget;
1256
1257 /*
1258 * Activate, propagate weight and start period timer if not
1259 * running. Reset hweight_gen to avoid accidental match from
1260 * wrapping.
1261 */
1262 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1263 list_add(&iocg->active_list, &ioc->active_iocgs);
1264
1265 propagate_weights(iocg, iocg->weight,
1266 iocg->last_inuse ?: iocg->weight, true, now);
1267
1268 TRACE_IOCG_PATH(iocg_activate, iocg, now,
1269 last_period, cur_period, vtime);
1270
1271 iocg->activated_at = now->now;
1272
1273 if (ioc->running == IOC_IDLE) {
1274 ioc->running = IOC_RUNNING;
1275 ioc->dfgv_period_at = now->now;
1276 ioc->dfgv_period_rem = 0;
1277 ioc_start_period(ioc, now);
1278 }
1279
1280 succeed_unlock:
1281 spin_unlock_irq(&ioc->lock);
1282 return true;
1283
1284 fail_unlock:
1285 spin_unlock_irq(&ioc->lock);
1286 return false;
1287 }
1288
iocg_kick_delay(struct ioc_gq * iocg,struct ioc_now * now)1289 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1290 {
1291 struct ioc *ioc = iocg->ioc;
1292 struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1293 u64 tdelta, delay, new_delay;
1294 s64 vover, vover_pct;
1295 u32 hwa;
1296
1297 lockdep_assert_held(&iocg->waitq.lock);
1298
1299 /* calculate the current delay in effect - 1/2 every second */
1300 tdelta = now->now - iocg->delay_at;
1301 if (iocg->delay)
1302 delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1303 else
1304 delay = 0;
1305
1306 /* calculate the new delay from the debt amount */
1307 current_hweight(iocg, &hwa, NULL);
1308 vover = atomic64_read(&iocg->vtime) +
1309 abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1310 vover_pct = div64_s64(100 * vover,
1311 ioc->period_us * ioc->vtime_base_rate);
1312
1313 if (vover_pct <= MIN_DELAY_THR_PCT)
1314 new_delay = 0;
1315 else if (vover_pct >= MAX_DELAY_THR_PCT)
1316 new_delay = MAX_DELAY;
1317 else
1318 new_delay = MIN_DELAY +
1319 div_u64((MAX_DELAY - MIN_DELAY) *
1320 (vover_pct - MIN_DELAY_THR_PCT),
1321 MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1322
1323 /* pick the higher one and apply */
1324 if (new_delay > delay) {
1325 iocg->delay = new_delay;
1326 iocg->delay_at = now->now;
1327 delay = new_delay;
1328 }
1329
1330 if (delay >= MIN_DELAY) {
1331 if (!iocg->indelay_since)
1332 iocg->indelay_since = now->now;
1333 blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1334 return true;
1335 } else {
1336 if (iocg->indelay_since) {
1337 iocg->local_stat.indelay_us += now->now - iocg->indelay_since;
1338 iocg->indelay_since = 0;
1339 }
1340 iocg->delay = 0;
1341 blkcg_clear_delay(blkg);
1342 return false;
1343 }
1344 }
1345
iocg_incur_debt(struct ioc_gq * iocg,u64 abs_cost,struct ioc_now * now)1346 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1347 struct ioc_now *now)
1348 {
1349 struct iocg_pcpu_stat *gcs;
1350
1351 lockdep_assert_held(&iocg->ioc->lock);
1352 lockdep_assert_held(&iocg->waitq.lock);
1353 WARN_ON_ONCE(list_empty(&iocg->active_list));
1354
1355 /*
1356 * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1357 * inuse donating all of it share to others until its debt is paid off.
1358 */
1359 if (!iocg->abs_vdebt && abs_cost) {
1360 iocg->indebt_since = now->now;
1361 propagate_weights(iocg, iocg->active, 0, false, now);
1362 }
1363
1364 iocg->abs_vdebt += abs_cost;
1365
1366 gcs = get_cpu_ptr(iocg->pcpu_stat);
1367 local64_add(abs_cost, &gcs->abs_vusage);
1368 put_cpu_ptr(gcs);
1369 }
1370
iocg_pay_debt(struct ioc_gq * iocg,u64 abs_vpay,struct ioc_now * now)1371 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1372 struct ioc_now *now)
1373 {
1374 lockdep_assert_held(&iocg->ioc->lock);
1375 lockdep_assert_held(&iocg->waitq.lock);
1376
1377 /* make sure that nobody messed with @iocg */
1378 WARN_ON_ONCE(list_empty(&iocg->active_list));
1379 WARN_ON_ONCE(iocg->inuse > 1);
1380
1381 iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1382
1383 /* if debt is paid in full, restore inuse */
1384 if (!iocg->abs_vdebt) {
1385 iocg->local_stat.indebt_us += now->now - iocg->indebt_since;
1386 iocg->indebt_since = 0;
1387
1388 propagate_weights(iocg, iocg->active, iocg->last_inuse,
1389 false, now);
1390 }
1391 }
1392
iocg_wake_fn(struct wait_queue_entry * wq_entry,unsigned mode,int flags,void * key)1393 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1394 int flags, void *key)
1395 {
1396 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1397 struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1398 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1399
1400 ctx->vbudget -= cost;
1401
1402 if (ctx->vbudget < 0)
1403 return -1;
1404
1405 iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1406 wait->committed = true;
1407
1408 /*
1409 * autoremove_wake_function() removes the wait entry only when it
1410 * actually changed the task state. We want the wait always removed.
1411 * Remove explicitly and use default_wake_function(). Note that the
1412 * order of operations is important as finish_wait() tests whether
1413 * @wq_entry is removed without grabbing the lock.
1414 */
1415 default_wake_function(wq_entry, mode, flags, key);
1416 list_del_init_careful(&wq_entry->entry);
1417 return 0;
1418 }
1419
1420 /*
1421 * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1422 * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1423 * addition to iocg->waitq.lock.
1424 */
iocg_kick_waitq(struct ioc_gq * iocg,bool pay_debt,struct ioc_now * now)1425 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1426 struct ioc_now *now)
1427 {
1428 struct ioc *ioc = iocg->ioc;
1429 struct iocg_wake_ctx ctx = { .iocg = iocg };
1430 u64 vshortage, expires, oexpires;
1431 s64 vbudget;
1432 u32 hwa;
1433
1434 lockdep_assert_held(&iocg->waitq.lock);
1435
1436 current_hweight(iocg, &hwa, NULL);
1437 vbudget = now->vnow - atomic64_read(&iocg->vtime);
1438
1439 /* pay off debt */
1440 if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1441 u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1442 u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1443 u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1444
1445 lockdep_assert_held(&ioc->lock);
1446
1447 atomic64_add(vpay, &iocg->vtime);
1448 atomic64_add(vpay, &iocg->done_vtime);
1449 iocg_pay_debt(iocg, abs_vpay, now);
1450 vbudget -= vpay;
1451 }
1452
1453 if (iocg->abs_vdebt || iocg->delay)
1454 iocg_kick_delay(iocg, now);
1455
1456 /*
1457 * Debt can still be outstanding if we haven't paid all yet or the
1458 * caller raced and called without @pay_debt. Shouldn't wake up waiters
1459 * under debt. Make sure @vbudget reflects the outstanding amount and is
1460 * not positive.
1461 */
1462 if (iocg->abs_vdebt) {
1463 s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1464 vbudget = min_t(s64, 0, vbudget - vdebt);
1465 }
1466
1467 /*
1468 * Wake up the ones which are due and see how much vtime we'll need for
1469 * the next one. As paying off debt restores hw_inuse, it must be read
1470 * after the above debt payment.
1471 */
1472 ctx.vbudget = vbudget;
1473 current_hweight(iocg, NULL, &ctx.hw_inuse);
1474
1475 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1476
1477 if (!waitqueue_active(&iocg->waitq)) {
1478 if (iocg->wait_since) {
1479 iocg->local_stat.wait_us += now->now - iocg->wait_since;
1480 iocg->wait_since = 0;
1481 }
1482 return;
1483 }
1484
1485 if (!iocg->wait_since)
1486 iocg->wait_since = now->now;
1487
1488 if (WARN_ON_ONCE(ctx.vbudget >= 0))
1489 return;
1490
1491 /* determine next wakeup, add a timer margin to guarantee chunking */
1492 vshortage = -ctx.vbudget;
1493 expires = now->now_ns +
1494 DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1495 NSEC_PER_USEC;
1496 expires += ioc->timer_slack_ns;
1497
1498 /* if already active and close enough, don't bother */
1499 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1500 if (hrtimer_is_queued(&iocg->waitq_timer) &&
1501 abs(oexpires - expires) <= ioc->timer_slack_ns)
1502 return;
1503
1504 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1505 ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1506 }
1507
iocg_waitq_timer_fn(struct hrtimer * timer)1508 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1509 {
1510 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1511 bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1512 struct ioc_now now;
1513 unsigned long flags;
1514
1515 ioc_now(iocg->ioc, &now);
1516
1517 iocg_lock(iocg, pay_debt, &flags);
1518 iocg_kick_waitq(iocg, pay_debt, &now);
1519 iocg_unlock(iocg, pay_debt, &flags);
1520
1521 return HRTIMER_NORESTART;
1522 }
1523
ioc_lat_stat(struct ioc * ioc,u32 * missed_ppm_ar,u32 * rq_wait_pct_p)1524 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1525 {
1526 u32 nr_met[2] = { };
1527 u32 nr_missed[2] = { };
1528 u64 rq_wait_ns = 0;
1529 int cpu, rw;
1530
1531 for_each_online_cpu(cpu) {
1532 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1533 u64 this_rq_wait_ns;
1534
1535 for (rw = READ; rw <= WRITE; rw++) {
1536 u32 this_met = local_read(&stat->missed[rw].nr_met);
1537 u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1538
1539 nr_met[rw] += this_met - stat->missed[rw].last_met;
1540 nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1541 stat->missed[rw].last_met = this_met;
1542 stat->missed[rw].last_missed = this_missed;
1543 }
1544
1545 this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1546 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1547 stat->last_rq_wait_ns = this_rq_wait_ns;
1548 }
1549
1550 for (rw = READ; rw <= WRITE; rw++) {
1551 if (nr_met[rw] + nr_missed[rw])
1552 missed_ppm_ar[rw] =
1553 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1554 nr_met[rw] + nr_missed[rw]);
1555 else
1556 missed_ppm_ar[rw] = 0;
1557 }
1558
1559 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1560 ioc->period_us * NSEC_PER_USEC);
1561 }
1562
1563 /* was iocg idle this period? */
iocg_is_idle(struct ioc_gq * iocg)1564 static bool iocg_is_idle(struct ioc_gq *iocg)
1565 {
1566 struct ioc *ioc = iocg->ioc;
1567
1568 /* did something get issued this period? */
1569 if (atomic64_read(&iocg->active_period) ==
1570 atomic64_read(&ioc->cur_period))
1571 return false;
1572
1573 /* is something in flight? */
1574 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1575 return false;
1576
1577 return true;
1578 }
1579
1580 /*
1581 * Call this function on the target leaf @iocg's to build pre-order traversal
1582 * list of all the ancestors in @inner_walk. The inner nodes are linked through
1583 * ->walk_list and the caller is responsible for dissolving the list after use.
1584 */
iocg_build_inner_walk(struct ioc_gq * iocg,struct list_head * inner_walk)1585 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1586 struct list_head *inner_walk)
1587 {
1588 int lvl;
1589
1590 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1591
1592 /* find the first ancestor which hasn't been visited yet */
1593 for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1594 if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1595 break;
1596 }
1597
1598 /* walk down and visit the inner nodes to get pre-order traversal */
1599 while (++lvl <= iocg->level - 1) {
1600 struct ioc_gq *inner = iocg->ancestors[lvl];
1601
1602 /* record traversal order */
1603 list_add_tail(&inner->walk_list, inner_walk);
1604 }
1605 }
1606
1607 /* collect per-cpu counters and propagate the deltas to the parent */
iocg_flush_stat_one(struct ioc_gq * iocg,struct ioc_now * now)1608 static void iocg_flush_stat_one(struct ioc_gq *iocg, struct ioc_now *now)
1609 {
1610 struct ioc *ioc = iocg->ioc;
1611 struct iocg_stat new_stat;
1612 u64 abs_vusage = 0;
1613 u64 vusage_delta;
1614 int cpu;
1615
1616 lockdep_assert_held(&iocg->ioc->lock);
1617
1618 /* collect per-cpu counters */
1619 for_each_possible_cpu(cpu) {
1620 abs_vusage += local64_read(
1621 per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1622 }
1623 vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1624 iocg->last_stat_abs_vusage = abs_vusage;
1625
1626 iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1627 iocg->local_stat.usage_us += iocg->usage_delta_us;
1628
1629 /* propagate upwards */
1630 new_stat.usage_us =
1631 iocg->local_stat.usage_us + iocg->desc_stat.usage_us;
1632 new_stat.wait_us =
1633 iocg->local_stat.wait_us + iocg->desc_stat.wait_us;
1634 new_stat.indebt_us =
1635 iocg->local_stat.indebt_us + iocg->desc_stat.indebt_us;
1636 new_stat.indelay_us =
1637 iocg->local_stat.indelay_us + iocg->desc_stat.indelay_us;
1638
1639 /* propagate the deltas to the parent */
1640 if (iocg->level > 0) {
1641 struct iocg_stat *parent_stat =
1642 &iocg->ancestors[iocg->level - 1]->desc_stat;
1643
1644 parent_stat->usage_us +=
1645 new_stat.usage_us - iocg->last_stat.usage_us;
1646 parent_stat->wait_us +=
1647 new_stat.wait_us - iocg->last_stat.wait_us;
1648 parent_stat->indebt_us +=
1649 new_stat.indebt_us - iocg->last_stat.indebt_us;
1650 parent_stat->indelay_us +=
1651 new_stat.indelay_us - iocg->last_stat.indelay_us;
1652 }
1653
1654 iocg->last_stat = new_stat;
1655 }
1656
1657 /* get stat counters ready for reading on all active iocgs */
iocg_flush_stat(struct list_head * target_iocgs,struct ioc_now * now)1658 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1659 {
1660 LIST_HEAD(inner_walk);
1661 struct ioc_gq *iocg, *tiocg;
1662
1663 /* flush leaves and build inner node walk list */
1664 list_for_each_entry(iocg, target_iocgs, active_list) {
1665 iocg_flush_stat_one(iocg, now);
1666 iocg_build_inner_walk(iocg, &inner_walk);
1667 }
1668
1669 /* keep flushing upwards by walking the inner list backwards */
1670 list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1671 iocg_flush_stat_one(iocg, now);
1672 list_del_init(&iocg->walk_list);
1673 }
1674 }
1675
1676 /*
1677 * Determine what @iocg's hweight_inuse should be after donating unused
1678 * capacity. @hwm is the upper bound and used to signal no donation. This
1679 * function also throws away @iocg's excess budget.
1680 */
hweight_after_donation(struct ioc_gq * iocg,u32 old_hwi,u32 hwm,u32 usage,struct ioc_now * now)1681 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1682 u32 usage, struct ioc_now *now)
1683 {
1684 struct ioc *ioc = iocg->ioc;
1685 u64 vtime = atomic64_read(&iocg->vtime);
1686 s64 excess, delta, target, new_hwi;
1687
1688 /* debt handling owns inuse for debtors */
1689 if (iocg->abs_vdebt)
1690 return 1;
1691
1692 /* see whether minimum margin requirement is met */
1693 if (waitqueue_active(&iocg->waitq) ||
1694 time_after64(vtime, now->vnow - ioc->margins.min))
1695 return hwm;
1696
1697 /* throw away excess above target */
1698 excess = now->vnow - vtime - ioc->margins.target;
1699 if (excess > 0) {
1700 atomic64_add(excess, &iocg->vtime);
1701 atomic64_add(excess, &iocg->done_vtime);
1702 vtime += excess;
1703 ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1704 }
1705
1706 /*
1707 * Let's say the distance between iocg's and device's vtimes as a
1708 * fraction of period duration is delta. Assuming that the iocg will
1709 * consume the usage determined above, we want to determine new_hwi so
1710 * that delta equals MARGIN_TARGET at the end of the next period.
1711 *
1712 * We need to execute usage worth of IOs while spending the sum of the
1713 * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1714 * (delta):
1715 *
1716 * usage = (1 - MARGIN_TARGET + delta) * new_hwi
1717 *
1718 * Therefore, the new_hwi is:
1719 *
1720 * new_hwi = usage / (1 - MARGIN_TARGET + delta)
1721 */
1722 delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1723 now->vnow - ioc->period_at_vtime);
1724 target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1725 new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1726
1727 return clamp_t(s64, new_hwi, 1, hwm);
1728 }
1729
1730 /*
1731 * For work-conservation, an iocg which isn't using all of its share should
1732 * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1733 * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1734 *
1735 * #1 is mathematically simpler but has the drawback of requiring synchronous
1736 * global hweight_inuse updates when idle iocg's get activated or inuse weights
1737 * change due to donation snapbacks as it has the possibility of grossly
1738 * overshooting what's allowed by the model and vrate.
1739 *
1740 * #2 is inherently safe with local operations. The donating iocg can easily
1741 * snap back to higher weights when needed without worrying about impacts on
1742 * other nodes as the impacts will be inherently correct. This also makes idle
1743 * iocg activations safe. The only effect activations have is decreasing
1744 * hweight_inuse of others, the right solution to which is for those iocgs to
1745 * snap back to higher weights.
1746 *
1747 * So, we go with #2. The challenge is calculating how each donating iocg's
1748 * inuse should be adjusted to achieve the target donation amounts. This is done
1749 * using Andy's method described in the following pdf.
1750 *
1751 * https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1752 *
1753 * Given the weights and target after-donation hweight_inuse values, Andy's
1754 * method determines how the proportional distribution should look like at each
1755 * sibling level to maintain the relative relationship between all non-donating
1756 * pairs. To roughly summarize, it divides the tree into donating and
1757 * non-donating parts, calculates global donation rate which is used to
1758 * determine the target hweight_inuse for each node, and then derives per-level
1759 * proportions.
1760 *
1761 * The following pdf shows that global distribution calculated this way can be
1762 * achieved by scaling inuse weights of donating leaves and propagating the
1763 * adjustments upwards proportionally.
1764 *
1765 * https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1766 *
1767 * Combining the above two, we can determine how each leaf iocg's inuse should
1768 * be adjusted to achieve the target donation.
1769 *
1770 * https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1771 *
1772 * The inline comments use symbols from the last pdf.
1773 *
1774 * b is the sum of the absolute budgets in the subtree. 1 for the root node.
1775 * f is the sum of the absolute budgets of non-donating nodes in the subtree.
1776 * t is the sum of the absolute budgets of donating nodes in the subtree.
1777 * w is the weight of the node. w = w_f + w_t
1778 * w_f is the non-donating portion of w. w_f = w * f / b
1779 * w_b is the donating portion of w. w_t = w * t / b
1780 * s is the sum of all sibling weights. s = Sum(w) for siblings
1781 * s_f and s_t are the non-donating and donating portions of s.
1782 *
1783 * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1784 * w_pt is the donating portion of the parent's weight and w'_pt the same value
1785 * after adjustments. Subscript r denotes the root node's values.
1786 */
transfer_surpluses(struct list_head * surpluses,struct ioc_now * now)1787 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1788 {
1789 LIST_HEAD(over_hwa);
1790 LIST_HEAD(inner_walk);
1791 struct ioc_gq *iocg, *tiocg, *root_iocg;
1792 u32 after_sum, over_sum, over_target, gamma;
1793
1794 /*
1795 * It's pretty unlikely but possible for the total sum of
1796 * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1797 * confuse the following calculations. If such condition is detected,
1798 * scale down everyone over its full share equally to keep the sum below
1799 * WEIGHT_ONE.
1800 */
1801 after_sum = 0;
1802 over_sum = 0;
1803 list_for_each_entry(iocg, surpluses, surplus_list) {
1804 u32 hwa;
1805
1806 current_hweight(iocg, &hwa, NULL);
1807 after_sum += iocg->hweight_after_donation;
1808
1809 if (iocg->hweight_after_donation > hwa) {
1810 over_sum += iocg->hweight_after_donation;
1811 list_add(&iocg->walk_list, &over_hwa);
1812 }
1813 }
1814
1815 if (after_sum >= WEIGHT_ONE) {
1816 /*
1817 * The delta should be deducted from the over_sum, calculate
1818 * target over_sum value.
1819 */
1820 u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1821 WARN_ON_ONCE(over_sum <= over_delta);
1822 over_target = over_sum - over_delta;
1823 } else {
1824 over_target = 0;
1825 }
1826
1827 list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1828 if (over_target)
1829 iocg->hweight_after_donation =
1830 div_u64((u64)iocg->hweight_after_donation *
1831 over_target, over_sum);
1832 list_del_init(&iocg->walk_list);
1833 }
1834
1835 /*
1836 * Build pre-order inner node walk list and prepare for donation
1837 * adjustment calculations.
1838 */
1839 list_for_each_entry(iocg, surpluses, surplus_list) {
1840 iocg_build_inner_walk(iocg, &inner_walk);
1841 }
1842
1843 root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1844 WARN_ON_ONCE(root_iocg->level > 0);
1845
1846 list_for_each_entry(iocg, &inner_walk, walk_list) {
1847 iocg->child_adjusted_sum = 0;
1848 iocg->hweight_donating = 0;
1849 iocg->hweight_after_donation = 0;
1850 }
1851
1852 /*
1853 * Propagate the donating budget (b_t) and after donation budget (b'_t)
1854 * up the hierarchy.
1855 */
1856 list_for_each_entry(iocg, surpluses, surplus_list) {
1857 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1858
1859 parent->hweight_donating += iocg->hweight_donating;
1860 parent->hweight_after_donation += iocg->hweight_after_donation;
1861 }
1862
1863 list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1864 if (iocg->level > 0) {
1865 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1866
1867 parent->hweight_donating += iocg->hweight_donating;
1868 parent->hweight_after_donation += iocg->hweight_after_donation;
1869 }
1870 }
1871
1872 /*
1873 * Calculate inner hwa's (b) and make sure the donation values are
1874 * within the accepted ranges as we're doing low res calculations with
1875 * roundups.
1876 */
1877 list_for_each_entry(iocg, &inner_walk, walk_list) {
1878 if (iocg->level) {
1879 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1880
1881 iocg->hweight_active = DIV64_U64_ROUND_UP(
1882 (u64)parent->hweight_active * iocg->active,
1883 parent->child_active_sum);
1884
1885 }
1886
1887 iocg->hweight_donating = min(iocg->hweight_donating,
1888 iocg->hweight_active);
1889 iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1890 iocg->hweight_donating - 1);
1891 if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1892 iocg->hweight_donating <= 1 ||
1893 iocg->hweight_after_donation == 0)) {
1894 pr_warn("iocg: invalid donation weights in ");
1895 pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1896 pr_cont(": active=%u donating=%u after=%u\n",
1897 iocg->hweight_active, iocg->hweight_donating,
1898 iocg->hweight_after_donation);
1899 }
1900 }
1901
1902 /*
1903 * Calculate the global donation rate (gamma) - the rate to adjust
1904 * non-donating budgets by.
1905 *
1906 * No need to use 64bit multiplication here as the first operand is
1907 * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1908 *
1909 * We know that there are beneficiary nodes and the sum of the donating
1910 * hweights can't be whole; however, due to the round-ups during hweight
1911 * calculations, root_iocg->hweight_donating might still end up equal to
1912 * or greater than whole. Limit the range when calculating the divider.
1913 *
1914 * gamma = (1 - t_r') / (1 - t_r)
1915 */
1916 gamma = DIV_ROUND_UP(
1917 (WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1918 WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1919
1920 /*
1921 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1922 * nodes.
1923 */
1924 list_for_each_entry(iocg, &inner_walk, walk_list) {
1925 struct ioc_gq *parent;
1926 u32 inuse, wpt, wptp;
1927 u64 st, sf;
1928
1929 if (iocg->level == 0) {
1930 /* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1931 iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1932 iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1933 WEIGHT_ONE - iocg->hweight_after_donation);
1934 continue;
1935 }
1936
1937 parent = iocg->ancestors[iocg->level - 1];
1938
1939 /* b' = gamma * b_f + b_t' */
1940 iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1941 (u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1942 WEIGHT_ONE) + iocg->hweight_after_donation;
1943
1944 /* w' = s' * b' / b'_p */
1945 inuse = DIV64_U64_ROUND_UP(
1946 (u64)parent->child_adjusted_sum * iocg->hweight_inuse,
1947 parent->hweight_inuse);
1948
1949 /* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
1950 st = DIV64_U64_ROUND_UP(
1951 iocg->child_active_sum * iocg->hweight_donating,
1952 iocg->hweight_active);
1953 sf = iocg->child_active_sum - st;
1954 wpt = DIV64_U64_ROUND_UP(
1955 (u64)iocg->active * iocg->hweight_donating,
1956 iocg->hweight_active);
1957 wptp = DIV64_U64_ROUND_UP(
1958 (u64)inuse * iocg->hweight_after_donation,
1959 iocg->hweight_inuse);
1960
1961 iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
1962 }
1963
1964 /*
1965 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
1966 * we can finally determine leaf adjustments.
1967 */
1968 list_for_each_entry(iocg, surpluses, surplus_list) {
1969 struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1970 u32 inuse;
1971
1972 /*
1973 * In-debt iocgs participated in the donation calculation with
1974 * the minimum target hweight_inuse. Configuring inuse
1975 * accordingly would work fine but debt handling expects
1976 * @iocg->inuse stay at the minimum and we don't wanna
1977 * interfere.
1978 */
1979 if (iocg->abs_vdebt) {
1980 WARN_ON_ONCE(iocg->inuse > 1);
1981 continue;
1982 }
1983
1984 /* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
1985 inuse = DIV64_U64_ROUND_UP(
1986 parent->child_adjusted_sum * iocg->hweight_after_donation,
1987 parent->hweight_inuse);
1988
1989 TRACE_IOCG_PATH(inuse_transfer, iocg, now,
1990 iocg->inuse, inuse,
1991 iocg->hweight_inuse,
1992 iocg->hweight_after_donation);
1993
1994 __propagate_weights(iocg, iocg->active, inuse, true, now);
1995 }
1996
1997 /* walk list should be dissolved after use */
1998 list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
1999 list_del_init(&iocg->walk_list);
2000 }
2001
2002 /*
2003 * A low weight iocg can amass a large amount of debt, for example, when
2004 * anonymous memory gets reclaimed aggressively. If the system has a lot of
2005 * memory paired with a slow IO device, the debt can span multiple seconds or
2006 * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2007 * up blocked paying its debt while the IO device is idle.
2008 *
2009 * The following protects against such cases. If the device has been
2010 * sufficiently idle for a while, the debts are halved and delays are
2011 * recalculated.
2012 */
ioc_forgive_debts(struct ioc * ioc,u64 usage_us_sum,int nr_debtors,struct ioc_now * now)2013 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2014 struct ioc_now *now)
2015 {
2016 struct ioc_gq *iocg;
2017 u64 dur, usage_pct, nr_cycles;
2018
2019 /* if no debtor, reset the cycle */
2020 if (!nr_debtors) {
2021 ioc->dfgv_period_at = now->now;
2022 ioc->dfgv_period_rem = 0;
2023 ioc->dfgv_usage_us_sum = 0;
2024 return;
2025 }
2026
2027 /*
2028 * Debtors can pass through a lot of writes choking the device and we
2029 * don't want to be forgiving debts while the device is struggling from
2030 * write bursts. If we're missing latency targets, consider the device
2031 * fully utilized.
2032 */
2033 if (ioc->busy_level > 0)
2034 usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2035
2036 ioc->dfgv_usage_us_sum += usage_us_sum;
2037 if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2038 return;
2039
2040 /*
2041 * At least DFGV_PERIOD has passed since the last period. Calculate the
2042 * average usage and reset the period counters.
2043 */
2044 dur = now->now - ioc->dfgv_period_at;
2045 usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2046
2047 ioc->dfgv_period_at = now->now;
2048 ioc->dfgv_usage_us_sum = 0;
2049
2050 /* if was too busy, reset everything */
2051 if (usage_pct > DFGV_USAGE_PCT) {
2052 ioc->dfgv_period_rem = 0;
2053 return;
2054 }
2055
2056 /*
2057 * Usage is lower than threshold. Let's forgive some debts. Debt
2058 * forgiveness runs off of the usual ioc timer but its period usually
2059 * doesn't match ioc's. Compensate the difference by performing the
2060 * reduction as many times as would fit in the duration since the last
2061 * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2062 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2063 * reductions is doubled.
2064 */
2065 nr_cycles = dur + ioc->dfgv_period_rem;
2066 ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2067
2068 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2069 u64 __maybe_unused old_debt, __maybe_unused old_delay;
2070
2071 if (!iocg->abs_vdebt && !iocg->delay)
2072 continue;
2073
2074 spin_lock(&iocg->waitq.lock);
2075
2076 old_debt = iocg->abs_vdebt;
2077 old_delay = iocg->delay;
2078
2079 if (iocg->abs_vdebt)
2080 iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2081 if (iocg->delay)
2082 iocg->delay = iocg->delay >> nr_cycles ?: 1;
2083
2084 iocg_kick_waitq(iocg, true, now);
2085
2086 TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2087 old_debt, iocg->abs_vdebt,
2088 old_delay, iocg->delay);
2089
2090 spin_unlock(&iocg->waitq.lock);
2091 }
2092 }
2093
ioc_timer_fn(struct timer_list * timer)2094 static void ioc_timer_fn(struct timer_list *timer)
2095 {
2096 struct ioc *ioc = container_of(timer, struct ioc, timer);
2097 struct ioc_gq *iocg, *tiocg;
2098 struct ioc_now now;
2099 LIST_HEAD(surpluses);
2100 int nr_debtors = 0, nr_shortages = 0, nr_lagging = 0;
2101 u64 usage_us_sum = 0;
2102 u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2103 u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2104 u32 missed_ppm[2], rq_wait_pct;
2105 u64 period_vtime;
2106 int prev_busy_level;
2107
2108 /* how were the latencies during the period? */
2109 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2110
2111 /* take care of active iocgs */
2112 spin_lock_irq(&ioc->lock);
2113
2114 ioc_now(ioc, &now);
2115
2116 period_vtime = now.vnow - ioc->period_at_vtime;
2117 if (WARN_ON_ONCE(!period_vtime)) {
2118 spin_unlock_irq(&ioc->lock);
2119 return;
2120 }
2121
2122 /*
2123 * Waiters determine the sleep durations based on the vrate they
2124 * saw at the time of sleep. If vrate has increased, some waiters
2125 * could be sleeping for too long. Wake up tardy waiters which
2126 * should have woken up in the last period and expire idle iocgs.
2127 */
2128 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2129 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2130 !iocg->delay && !iocg_is_idle(iocg))
2131 continue;
2132
2133 spin_lock(&iocg->waitq.lock);
2134
2135 /* flush wait and indebt stat deltas */
2136 if (iocg->wait_since) {
2137 iocg->local_stat.wait_us += now.now - iocg->wait_since;
2138 iocg->wait_since = now.now;
2139 }
2140 if (iocg->indebt_since) {
2141 iocg->local_stat.indebt_us +=
2142 now.now - iocg->indebt_since;
2143 iocg->indebt_since = now.now;
2144 }
2145 if (iocg->indelay_since) {
2146 iocg->local_stat.indelay_us +=
2147 now.now - iocg->indelay_since;
2148 iocg->indelay_since = now.now;
2149 }
2150
2151 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2152 iocg->delay) {
2153 /* might be oversleeping vtime / hweight changes, kick */
2154 iocg_kick_waitq(iocg, true, &now);
2155 if (iocg->abs_vdebt || iocg->delay)
2156 nr_debtors++;
2157 } else if (iocg_is_idle(iocg)) {
2158 /* no waiter and idle, deactivate */
2159 u64 vtime = atomic64_read(&iocg->vtime);
2160 s64 excess;
2161
2162 /*
2163 * @iocg has been inactive for a full duration and will
2164 * have a high budget. Account anything above target as
2165 * error and throw away. On reactivation, it'll start
2166 * with the target budget.
2167 */
2168 excess = now.vnow - vtime - ioc->margins.target;
2169 if (excess > 0) {
2170 u32 old_hwi;
2171
2172 current_hweight(iocg, NULL, &old_hwi);
2173 ioc->vtime_err -= div64_u64(excess * old_hwi,
2174 WEIGHT_ONE);
2175 }
2176
2177 __propagate_weights(iocg, 0, 0, false, &now);
2178 list_del_init(&iocg->active_list);
2179 }
2180
2181 spin_unlock(&iocg->waitq.lock);
2182 }
2183 commit_weights(ioc);
2184
2185 /*
2186 * Wait and indebt stat are flushed above and the donation calculation
2187 * below needs updated usage stat. Let's bring stat up-to-date.
2188 */
2189 iocg_flush_stat(&ioc->active_iocgs, &now);
2190
2191 /* calc usage and see whether some weights need to be moved around */
2192 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2193 u64 vdone, vtime, usage_us, usage_dur;
2194 u32 usage, hw_active, hw_inuse;
2195
2196 /*
2197 * Collect unused and wind vtime closer to vnow to prevent
2198 * iocgs from accumulating a large amount of budget.
2199 */
2200 vdone = atomic64_read(&iocg->done_vtime);
2201 vtime = atomic64_read(&iocg->vtime);
2202 current_hweight(iocg, &hw_active, &hw_inuse);
2203
2204 /*
2205 * Latency QoS detection doesn't account for IOs which are
2206 * in-flight for longer than a period. Detect them by
2207 * comparing vdone against period start. If lagging behind
2208 * IOs from past periods, don't increase vrate.
2209 */
2210 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2211 !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2212 time_after64(vtime, vdone) &&
2213 time_after64(vtime, now.vnow -
2214 MAX_LAGGING_PERIODS * period_vtime) &&
2215 time_before64(vdone, now.vnow - period_vtime))
2216 nr_lagging++;
2217
2218 /*
2219 * Determine absolute usage factoring in in-flight IOs to avoid
2220 * high-latency completions appearing as idle.
2221 */
2222 usage_us = iocg->usage_delta_us;
2223 usage_us_sum += usage_us;
2224
2225 if (vdone != vtime) {
2226 u64 inflight_us = DIV64_U64_ROUND_UP(
2227 cost_to_abs_cost(vtime - vdone, hw_inuse),
2228 ioc->vtime_base_rate);
2229 usage_us = max(usage_us, inflight_us);
2230 }
2231
2232 /* convert to hweight based usage ratio */
2233 if (time_after64(iocg->activated_at, ioc->period_at))
2234 usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2235 else
2236 usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2237
2238 usage = clamp_t(u32,
2239 DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2240 usage_dur),
2241 1, WEIGHT_ONE);
2242
2243 /* see whether there's surplus vtime */
2244 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2245 if (hw_inuse < hw_active ||
2246 (!waitqueue_active(&iocg->waitq) &&
2247 time_before64(vtime, now.vnow - ioc->margins.low))) {
2248 u32 hwa, old_hwi, hwm, new_hwi;
2249
2250 /*
2251 * Already donating or accumulated enough to start.
2252 * Determine the donation amount.
2253 */
2254 current_hweight(iocg, &hwa, &old_hwi);
2255 hwm = current_hweight_max(iocg);
2256 new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2257 usage, &now);
2258 /*
2259 * Donation calculation assumes hweight_after_donation
2260 * to be positive, a condition that a donor w/ hwa < 2
2261 * can't meet. Don't bother with donation if hwa is
2262 * below 2. It's not gonna make a meaningful difference
2263 * anyway.
2264 */
2265 if (new_hwi < hwm && hwa >= 2) {
2266 iocg->hweight_donating = hwa;
2267 iocg->hweight_after_donation = new_hwi;
2268 list_add(&iocg->surplus_list, &surpluses);
2269 } else if (!iocg->abs_vdebt) {
2270 /*
2271 * @iocg doesn't have enough to donate. Reset
2272 * its inuse to active.
2273 *
2274 * Don't reset debtors as their inuse's are
2275 * owned by debt handling. This shouldn't affect
2276 * donation calculuation in any meaningful way
2277 * as @iocg doesn't have a meaningful amount of
2278 * share anyway.
2279 */
2280 TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2281 iocg->inuse, iocg->active,
2282 iocg->hweight_inuse, new_hwi);
2283
2284 __propagate_weights(iocg, iocg->active,
2285 iocg->active, true, &now);
2286 nr_shortages++;
2287 }
2288 } else {
2289 /* genuinely short on vtime */
2290 nr_shortages++;
2291 }
2292 }
2293
2294 if (!list_empty(&surpluses) && nr_shortages)
2295 transfer_surpluses(&surpluses, &now);
2296
2297 commit_weights(ioc);
2298
2299 /* surplus list should be dissolved after use */
2300 list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2301 list_del_init(&iocg->surplus_list);
2302
2303 /*
2304 * If q is getting clogged or we're missing too much, we're issuing
2305 * too much IO and should lower vtime rate. If we're not missing
2306 * and experiencing shortages but not surpluses, we're too stingy
2307 * and should increase vtime rate.
2308 */
2309 prev_busy_level = ioc->busy_level;
2310 if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2311 missed_ppm[READ] > ppm_rthr ||
2312 missed_ppm[WRITE] > ppm_wthr) {
2313 /* clearly missing QoS targets, slow down vrate */
2314 ioc->busy_level = max(ioc->busy_level, 0);
2315 ioc->busy_level++;
2316 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2317 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2318 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2319 /* QoS targets are being met with >25% margin */
2320 if (nr_shortages) {
2321 /*
2322 * We're throttling while the device has spare
2323 * capacity. If vrate was being slowed down, stop.
2324 */
2325 ioc->busy_level = min(ioc->busy_level, 0);
2326
2327 /*
2328 * If there are IOs spanning multiple periods, wait
2329 * them out before pushing the device harder.
2330 */
2331 if (!nr_lagging)
2332 ioc->busy_level--;
2333 } else {
2334 /*
2335 * Nobody is being throttled and the users aren't
2336 * issuing enough IOs to saturate the device. We
2337 * simply don't know how close the device is to
2338 * saturation. Coast.
2339 */
2340 ioc->busy_level = 0;
2341 }
2342 } else {
2343 /* inside the hysterisis margin, we're good */
2344 ioc->busy_level = 0;
2345 }
2346
2347 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2348
2349 if (ioc->busy_level > 0 || (ioc->busy_level < 0 && !nr_lagging)) {
2350 u64 vrate = ioc->vtime_base_rate;
2351 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
2352
2353 /* rq_wait signal is always reliable, ignore user vrate_min */
2354 if (rq_wait_pct > RQ_WAIT_BUSY_PCT)
2355 vrate_min = VRATE_MIN;
2356
2357 /*
2358 * If vrate is out of bounds, apply clamp gradually as the
2359 * bounds can change abruptly. Otherwise, apply busy_level
2360 * based adjustment.
2361 */
2362 if (vrate < vrate_min) {
2363 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT),
2364 100);
2365 vrate = min(vrate, vrate_min);
2366 } else if (vrate > vrate_max) {
2367 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT),
2368 100);
2369 vrate = max(vrate, vrate_max);
2370 } else {
2371 int idx = min_t(int, abs(ioc->busy_level),
2372 ARRAY_SIZE(vrate_adj_pct) - 1);
2373 u32 adj_pct = vrate_adj_pct[idx];
2374
2375 if (ioc->busy_level > 0)
2376 adj_pct = 100 - adj_pct;
2377 else
2378 adj_pct = 100 + adj_pct;
2379
2380 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
2381 vrate_min, vrate_max);
2382 }
2383
2384 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
2385 nr_lagging, nr_shortages);
2386
2387 ioc->vtime_base_rate = vrate;
2388 ioc_refresh_margins(ioc);
2389 } else if (ioc->busy_level != prev_busy_level || nr_lagging) {
2390 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
2391 missed_ppm, rq_wait_pct, nr_lagging,
2392 nr_shortages);
2393 }
2394
2395 ioc_refresh_params(ioc, false);
2396
2397 ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2398
2399 /*
2400 * This period is done. Move onto the next one. If nothing's
2401 * going on with the device, stop the timer.
2402 */
2403 atomic64_inc(&ioc->cur_period);
2404
2405 if (ioc->running != IOC_STOP) {
2406 if (!list_empty(&ioc->active_iocgs)) {
2407 ioc_start_period(ioc, &now);
2408 } else {
2409 ioc->busy_level = 0;
2410 ioc->vtime_err = 0;
2411 ioc->running = IOC_IDLE;
2412 }
2413
2414 ioc_refresh_vrate(ioc, &now);
2415 }
2416
2417 spin_unlock_irq(&ioc->lock);
2418 }
2419
adjust_inuse_and_calc_cost(struct ioc_gq * iocg,u64 vtime,u64 abs_cost,struct ioc_now * now)2420 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2421 u64 abs_cost, struct ioc_now *now)
2422 {
2423 struct ioc *ioc = iocg->ioc;
2424 struct ioc_margins *margins = &ioc->margins;
2425 u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2426 u32 hwi, adj_step;
2427 s64 margin;
2428 u64 cost, new_inuse;
2429 unsigned long flags;
2430
2431 current_hweight(iocg, NULL, &hwi);
2432 old_hwi = hwi;
2433 cost = abs_cost_to_cost(abs_cost, hwi);
2434 margin = now->vnow - vtime - cost;
2435
2436 /* debt handling owns inuse for debtors */
2437 if (iocg->abs_vdebt)
2438 return cost;
2439
2440 /*
2441 * We only increase inuse during period and do so iff the margin has
2442 * deteriorated since the previous adjustment.
2443 */
2444 if (margin >= iocg->saved_margin || margin >= margins->low ||
2445 iocg->inuse == iocg->active)
2446 return cost;
2447
2448 spin_lock_irqsave(&ioc->lock, flags);
2449
2450 /* we own inuse only when @iocg is in the normal active state */
2451 if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2452 spin_unlock_irqrestore(&ioc->lock, flags);
2453 return cost;
2454 }
2455
2456 /*
2457 * Bump up inuse till @abs_cost fits in the existing budget.
2458 * adj_step must be determined after acquiring ioc->lock - we might
2459 * have raced and lost to another thread for activation and could
2460 * be reading 0 iocg->active before ioc->lock which will lead to
2461 * infinite loop.
2462 */
2463 new_inuse = iocg->inuse;
2464 adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2465 do {
2466 new_inuse = new_inuse + adj_step;
2467 propagate_weights(iocg, iocg->active, new_inuse, true, now);
2468 current_hweight(iocg, NULL, &hwi);
2469 cost = abs_cost_to_cost(abs_cost, hwi);
2470 } while (time_after64(vtime + cost, now->vnow) &&
2471 iocg->inuse != iocg->active);
2472
2473 spin_unlock_irqrestore(&ioc->lock, flags);
2474
2475 TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2476 old_inuse, iocg->inuse, old_hwi, hwi);
2477
2478 return cost;
2479 }
2480
calc_vtime_cost_builtin(struct bio * bio,struct ioc_gq * iocg,bool is_merge,u64 * costp)2481 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2482 bool is_merge, u64 *costp)
2483 {
2484 struct ioc *ioc = iocg->ioc;
2485 u64 coef_seqio, coef_randio, coef_page;
2486 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2487 u64 seek_pages = 0;
2488 u64 cost = 0;
2489
2490 switch (bio_op(bio)) {
2491 case REQ_OP_READ:
2492 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO];
2493 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO];
2494 coef_page = ioc->params.lcoefs[LCOEF_RPAGE];
2495 break;
2496 case REQ_OP_WRITE:
2497 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO];
2498 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO];
2499 coef_page = ioc->params.lcoefs[LCOEF_WPAGE];
2500 break;
2501 default:
2502 goto out;
2503 }
2504
2505 if (iocg->cursor) {
2506 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2507 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2508 }
2509
2510 if (!is_merge) {
2511 if (seek_pages > LCOEF_RANDIO_PAGES) {
2512 cost += coef_randio;
2513 } else {
2514 cost += coef_seqio;
2515 }
2516 }
2517 cost += pages * coef_page;
2518 out:
2519 *costp = cost;
2520 }
2521
calc_vtime_cost(struct bio * bio,struct ioc_gq * iocg,bool is_merge)2522 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2523 {
2524 u64 cost;
2525
2526 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2527 return cost;
2528 }
2529
calc_size_vtime_cost_builtin(struct request * rq,struct ioc * ioc,u64 * costp)2530 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2531 u64 *costp)
2532 {
2533 unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2534
2535 switch (req_op(rq)) {
2536 case REQ_OP_READ:
2537 *costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2538 break;
2539 case REQ_OP_WRITE:
2540 *costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2541 break;
2542 default:
2543 *costp = 0;
2544 }
2545 }
2546
calc_size_vtime_cost(struct request * rq,struct ioc * ioc)2547 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2548 {
2549 u64 cost;
2550
2551 calc_size_vtime_cost_builtin(rq, ioc, &cost);
2552 return cost;
2553 }
2554
ioc_rqos_throttle(struct rq_qos * rqos,struct bio * bio)2555 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2556 {
2557 struct blkcg_gq *blkg = bio->bi_blkg;
2558 struct ioc *ioc = rqos_to_ioc(rqos);
2559 struct ioc_gq *iocg = blkg_to_iocg(blkg);
2560 struct ioc_now now;
2561 struct iocg_wait wait;
2562 u64 abs_cost, cost, vtime;
2563 bool use_debt, ioc_locked;
2564 unsigned long flags;
2565
2566 /* bypass IOs if disabled, still initializing, or for root cgroup */
2567 if (!ioc->enabled || !iocg || !iocg->level)
2568 return;
2569
2570 /* calculate the absolute vtime cost */
2571 abs_cost = calc_vtime_cost(bio, iocg, false);
2572 if (!abs_cost)
2573 return;
2574
2575 if (!iocg_activate(iocg, &now))
2576 return;
2577
2578 iocg->cursor = bio_end_sector(bio);
2579 vtime = atomic64_read(&iocg->vtime);
2580 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2581
2582 /*
2583 * If no one's waiting and within budget, issue right away. The
2584 * tests are racy but the races aren't systemic - we only miss once
2585 * in a while which is fine.
2586 */
2587 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2588 time_before_eq64(vtime + cost, now.vnow)) {
2589 iocg_commit_bio(iocg, bio, abs_cost, cost);
2590 return;
2591 }
2592
2593 /*
2594 * We're over budget. This can be handled in two ways. IOs which may
2595 * cause priority inversions are punted to @ioc->aux_iocg and charged as
2596 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2597 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2598 * whether debt handling is needed and acquire locks accordingly.
2599 */
2600 use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2601 ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2602 retry_lock:
2603 iocg_lock(iocg, ioc_locked, &flags);
2604
2605 /*
2606 * @iocg must stay activated for debt and waitq handling. Deactivation
2607 * is synchronized against both ioc->lock and waitq.lock and we won't
2608 * get deactivated as long as we're waiting or has debt, so we're good
2609 * if we're activated here. In the unlikely cases that we aren't, just
2610 * issue the IO.
2611 */
2612 if (unlikely(list_empty(&iocg->active_list))) {
2613 iocg_unlock(iocg, ioc_locked, &flags);
2614 iocg_commit_bio(iocg, bio, abs_cost, cost);
2615 return;
2616 }
2617
2618 /*
2619 * We're over budget. If @bio has to be issued regardless, remember
2620 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2621 * off the debt before waking more IOs.
2622 *
2623 * This way, the debt is continuously paid off each period with the
2624 * actual budget available to the cgroup. If we just wound vtime, we
2625 * would incorrectly use the current hw_inuse for the entire amount
2626 * which, for example, can lead to the cgroup staying blocked for a
2627 * long time even with substantially raised hw_inuse.
2628 *
2629 * An iocg with vdebt should stay online so that the timer can keep
2630 * deducting its vdebt and [de]activate use_delay mechanism
2631 * accordingly. We don't want to race against the timer trying to
2632 * clear them and leave @iocg inactive w/ dangling use_delay heavily
2633 * penalizing the cgroup and its descendants.
2634 */
2635 if (use_debt) {
2636 iocg_incur_debt(iocg, abs_cost, &now);
2637 if (iocg_kick_delay(iocg, &now))
2638 blkcg_schedule_throttle(rqos->q,
2639 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2640 iocg_unlock(iocg, ioc_locked, &flags);
2641 return;
2642 }
2643
2644 /* guarantee that iocgs w/ waiters have maximum inuse */
2645 if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2646 if (!ioc_locked) {
2647 iocg_unlock(iocg, false, &flags);
2648 ioc_locked = true;
2649 goto retry_lock;
2650 }
2651 propagate_weights(iocg, iocg->active, iocg->active, true,
2652 &now);
2653 }
2654
2655 /*
2656 * Append self to the waitq and schedule the wakeup timer if we're
2657 * the first waiter. The timer duration is calculated based on the
2658 * current vrate. vtime and hweight changes can make it too short
2659 * or too long. Each wait entry records the absolute cost it's
2660 * waiting for to allow re-evaluation using a custom wait entry.
2661 *
2662 * If too short, the timer simply reschedules itself. If too long,
2663 * the period timer will notice and trigger wakeups.
2664 *
2665 * All waiters are on iocg->waitq and the wait states are
2666 * synchronized using waitq.lock.
2667 */
2668 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2669 wait.wait.private = current;
2670 wait.bio = bio;
2671 wait.abs_cost = abs_cost;
2672 wait.committed = false; /* will be set true by waker */
2673
2674 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2675 iocg_kick_waitq(iocg, ioc_locked, &now);
2676
2677 iocg_unlock(iocg, ioc_locked, &flags);
2678
2679 while (true) {
2680 set_current_state(TASK_UNINTERRUPTIBLE);
2681 if (wait.committed)
2682 break;
2683 io_schedule();
2684 }
2685
2686 /* waker already committed us, proceed */
2687 finish_wait(&iocg->waitq, &wait.wait);
2688 }
2689
ioc_rqos_merge(struct rq_qos * rqos,struct request * rq,struct bio * bio)2690 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2691 struct bio *bio)
2692 {
2693 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2694 struct ioc *ioc = rqos_to_ioc(rqos);
2695 sector_t bio_end = bio_end_sector(bio);
2696 struct ioc_now now;
2697 u64 vtime, abs_cost, cost;
2698 unsigned long flags;
2699
2700 /* bypass if disabled, still initializing, or for root cgroup */
2701 if (!ioc->enabled || !iocg || !iocg->level)
2702 return;
2703
2704 abs_cost = calc_vtime_cost(bio, iocg, true);
2705 if (!abs_cost)
2706 return;
2707
2708 ioc_now(ioc, &now);
2709
2710 vtime = atomic64_read(&iocg->vtime);
2711 cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2712
2713 /* update cursor if backmerging into the request at the cursor */
2714 if (blk_rq_pos(rq) < bio_end &&
2715 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2716 iocg->cursor = bio_end;
2717
2718 /*
2719 * Charge if there's enough vtime budget and the existing request has
2720 * cost assigned.
2721 */
2722 if (rq->bio && rq->bio->bi_iocost_cost &&
2723 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2724 iocg_commit_bio(iocg, bio, abs_cost, cost);
2725 return;
2726 }
2727
2728 /*
2729 * Otherwise, account it as debt if @iocg is online, which it should
2730 * be for the vast majority of cases. See debt handling in
2731 * ioc_rqos_throttle() for details.
2732 */
2733 spin_lock_irqsave(&ioc->lock, flags);
2734 spin_lock(&iocg->waitq.lock);
2735
2736 if (likely(!list_empty(&iocg->active_list))) {
2737 iocg_incur_debt(iocg, abs_cost, &now);
2738 if (iocg_kick_delay(iocg, &now))
2739 blkcg_schedule_throttle(rqos->q,
2740 (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2741 } else {
2742 iocg_commit_bio(iocg, bio, abs_cost, cost);
2743 }
2744
2745 spin_unlock(&iocg->waitq.lock);
2746 spin_unlock_irqrestore(&ioc->lock, flags);
2747 }
2748
ioc_rqos_done_bio(struct rq_qos * rqos,struct bio * bio)2749 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2750 {
2751 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2752
2753 if (iocg && bio->bi_iocost_cost)
2754 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2755 }
2756
ioc_rqos_done(struct rq_qos * rqos,struct request * rq)2757 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2758 {
2759 struct ioc *ioc = rqos_to_ioc(rqos);
2760 struct ioc_pcpu_stat *ccs;
2761 u64 on_q_ns, rq_wait_ns, size_nsec;
2762 int pidx, rw;
2763
2764 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2765 return;
2766
2767 switch (req_op(rq) & REQ_OP_MASK) {
2768 case REQ_OP_READ:
2769 pidx = QOS_RLAT;
2770 rw = READ;
2771 break;
2772 case REQ_OP_WRITE:
2773 pidx = QOS_WLAT;
2774 rw = WRITE;
2775 break;
2776 default:
2777 return;
2778 }
2779
2780 on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2781 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2782 size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2783
2784 ccs = get_cpu_ptr(ioc->pcpu_stat);
2785
2786 if (on_q_ns <= size_nsec ||
2787 on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2788 local_inc(&ccs->missed[rw].nr_met);
2789 else
2790 local_inc(&ccs->missed[rw].nr_missed);
2791
2792 local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2793
2794 put_cpu_ptr(ccs);
2795 }
2796
ioc_rqos_queue_depth_changed(struct rq_qos * rqos)2797 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2798 {
2799 struct ioc *ioc = rqos_to_ioc(rqos);
2800
2801 spin_lock_irq(&ioc->lock);
2802 ioc_refresh_params(ioc, false);
2803 spin_unlock_irq(&ioc->lock);
2804 }
2805
ioc_rqos_exit(struct rq_qos * rqos)2806 static void ioc_rqos_exit(struct rq_qos *rqos)
2807 {
2808 struct ioc *ioc = rqos_to_ioc(rqos);
2809
2810 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
2811
2812 spin_lock_irq(&ioc->lock);
2813 ioc->running = IOC_STOP;
2814 spin_unlock_irq(&ioc->lock);
2815
2816 del_timer_sync(&ioc->timer);
2817 free_percpu(ioc->pcpu_stat);
2818 kfree(ioc);
2819 }
2820
2821 static struct rq_qos_ops ioc_rqos_ops = {
2822 .throttle = ioc_rqos_throttle,
2823 .merge = ioc_rqos_merge,
2824 .done_bio = ioc_rqos_done_bio,
2825 .done = ioc_rqos_done,
2826 .queue_depth_changed = ioc_rqos_queue_depth_changed,
2827 .exit = ioc_rqos_exit,
2828 };
2829
blk_iocost_init(struct request_queue * q)2830 static int blk_iocost_init(struct request_queue *q)
2831 {
2832 struct ioc *ioc;
2833 struct rq_qos *rqos;
2834 int i, cpu, ret;
2835
2836 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2837 if (!ioc)
2838 return -ENOMEM;
2839
2840 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2841 if (!ioc->pcpu_stat) {
2842 kfree(ioc);
2843 return -ENOMEM;
2844 }
2845
2846 for_each_possible_cpu(cpu) {
2847 struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2848
2849 for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2850 local_set(&ccs->missed[i].nr_met, 0);
2851 local_set(&ccs->missed[i].nr_missed, 0);
2852 }
2853 local64_set(&ccs->rq_wait_ns, 0);
2854 }
2855
2856 rqos = &ioc->rqos;
2857 rqos->id = RQ_QOS_COST;
2858 rqos->ops = &ioc_rqos_ops;
2859 rqos->q = q;
2860
2861 spin_lock_init(&ioc->lock);
2862 timer_setup(&ioc->timer, ioc_timer_fn, 0);
2863 INIT_LIST_HEAD(&ioc->active_iocgs);
2864
2865 ioc->running = IOC_IDLE;
2866 ioc->vtime_base_rate = VTIME_PER_USEC;
2867 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2868 seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2869 ioc->period_at = ktime_to_us(ktime_get());
2870 atomic64_set(&ioc->cur_period, 0);
2871 atomic_set(&ioc->hweight_gen, 0);
2872
2873 spin_lock_irq(&ioc->lock);
2874 ioc->autop_idx = AUTOP_INVALID;
2875 ioc_refresh_params(ioc, true);
2876 spin_unlock_irq(&ioc->lock);
2877
2878 /*
2879 * rqos must be added before activation to allow iocg_pd_init() to
2880 * lookup the ioc from q. This means that the rqos methods may get
2881 * called before policy activation completion, can't assume that the
2882 * target bio has an iocg associated and need to test for NULL iocg.
2883 */
2884 rq_qos_add(q, rqos);
2885 ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2886 if (ret) {
2887 rq_qos_del(q, rqos);
2888 free_percpu(ioc->pcpu_stat);
2889 kfree(ioc);
2890 return ret;
2891 }
2892 return 0;
2893 }
2894
ioc_cpd_alloc(gfp_t gfp)2895 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2896 {
2897 struct ioc_cgrp *iocc;
2898
2899 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2900 if (!iocc)
2901 return NULL;
2902
2903 iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2904 return &iocc->cpd;
2905 }
2906
ioc_cpd_free(struct blkcg_policy_data * cpd)2907 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2908 {
2909 kfree(container_of(cpd, struct ioc_cgrp, cpd));
2910 }
2911
ioc_pd_alloc(gfp_t gfp,struct request_queue * q,struct blkcg * blkcg)2912 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2913 struct blkcg *blkcg)
2914 {
2915 int levels = blkcg->css.cgroup->level + 1;
2916 struct ioc_gq *iocg;
2917
2918 iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
2919 if (!iocg)
2920 return NULL;
2921
2922 iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2923 if (!iocg->pcpu_stat) {
2924 kfree(iocg);
2925 return NULL;
2926 }
2927
2928 return &iocg->pd;
2929 }
2930
ioc_pd_init(struct blkg_policy_data * pd)2931 static void ioc_pd_init(struct blkg_policy_data *pd)
2932 {
2933 struct ioc_gq *iocg = pd_to_iocg(pd);
2934 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2935 struct ioc *ioc = q_to_ioc(blkg->q);
2936 struct ioc_now now;
2937 struct blkcg_gq *tblkg;
2938 unsigned long flags;
2939
2940 ioc_now(ioc, &now);
2941
2942 iocg->ioc = ioc;
2943 atomic64_set(&iocg->vtime, now.vnow);
2944 atomic64_set(&iocg->done_vtime, now.vnow);
2945 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2946 INIT_LIST_HEAD(&iocg->active_list);
2947 INIT_LIST_HEAD(&iocg->walk_list);
2948 INIT_LIST_HEAD(&iocg->surplus_list);
2949 iocg->hweight_active = WEIGHT_ONE;
2950 iocg->hweight_inuse = WEIGHT_ONE;
2951
2952 init_waitqueue_head(&iocg->waitq);
2953 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2954 iocg->waitq_timer.function = iocg_waitq_timer_fn;
2955
2956 iocg->level = blkg->blkcg->css.cgroup->level;
2957
2958 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2959 struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2960 iocg->ancestors[tiocg->level] = tiocg;
2961 }
2962
2963 spin_lock_irqsave(&ioc->lock, flags);
2964 weight_updated(iocg, &now);
2965 spin_unlock_irqrestore(&ioc->lock, flags);
2966 }
2967
ioc_pd_free(struct blkg_policy_data * pd)2968 static void ioc_pd_free(struct blkg_policy_data *pd)
2969 {
2970 struct ioc_gq *iocg = pd_to_iocg(pd);
2971 struct ioc *ioc = iocg->ioc;
2972 unsigned long flags;
2973
2974 if (ioc) {
2975 spin_lock_irqsave(&ioc->lock, flags);
2976
2977 if (!list_empty(&iocg->active_list)) {
2978 struct ioc_now now;
2979
2980 ioc_now(ioc, &now);
2981 propagate_weights(iocg, 0, 0, false, &now);
2982 list_del_init(&iocg->active_list);
2983 }
2984
2985 WARN_ON_ONCE(!list_empty(&iocg->walk_list));
2986 WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2987
2988 spin_unlock_irqrestore(&ioc->lock, flags);
2989
2990 hrtimer_cancel(&iocg->waitq_timer);
2991 }
2992 free_percpu(iocg->pcpu_stat);
2993 kfree(iocg);
2994 }
2995
ioc_pd_stat(struct blkg_policy_data * pd,char * buf,size_t size)2996 static size_t ioc_pd_stat(struct blkg_policy_data *pd, char *buf, size_t size)
2997 {
2998 struct ioc_gq *iocg = pd_to_iocg(pd);
2999 struct ioc *ioc = iocg->ioc;
3000 size_t pos = 0;
3001
3002 if (!ioc->enabled)
3003 return 0;
3004
3005 if (iocg->level == 0) {
3006 unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
3007 ioc->vtime_base_rate * 10000,
3008 VTIME_PER_USEC);
3009 pos += scnprintf(buf + pos, size - pos, " cost.vrate=%u.%02u",
3010 vp10k / 100, vp10k % 100);
3011 }
3012
3013 pos += scnprintf(buf + pos, size - pos, " cost.usage=%llu",
3014 iocg->last_stat.usage_us);
3015
3016 if (blkcg_debug_stats)
3017 pos += scnprintf(buf + pos, size - pos,
3018 " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3019 iocg->last_stat.wait_us,
3020 iocg->last_stat.indebt_us,
3021 iocg->last_stat.indelay_us);
3022
3023 return pos;
3024 }
3025
ioc_weight_prfill(struct seq_file * sf,struct blkg_policy_data * pd,int off)3026 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3027 int off)
3028 {
3029 const char *dname = blkg_dev_name(pd->blkg);
3030 struct ioc_gq *iocg = pd_to_iocg(pd);
3031
3032 if (dname && iocg->cfg_weight)
3033 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3034 return 0;
3035 }
3036
3037
ioc_weight_show(struct seq_file * sf,void * v)3038 static int ioc_weight_show(struct seq_file *sf, void *v)
3039 {
3040 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3041 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3042
3043 seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3044 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3045 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3046 return 0;
3047 }
3048
ioc_weight_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3049 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3050 size_t nbytes, loff_t off)
3051 {
3052 struct blkcg *blkcg = css_to_blkcg(of_css(of));
3053 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3054 struct blkg_conf_ctx ctx;
3055 struct ioc_now now;
3056 struct ioc_gq *iocg;
3057 u32 v;
3058 int ret;
3059
3060 if (!strchr(buf, ':')) {
3061 struct blkcg_gq *blkg;
3062
3063 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3064 return -EINVAL;
3065
3066 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3067 return -EINVAL;
3068
3069 spin_lock_irq(&blkcg->lock);
3070 iocc->dfl_weight = v * WEIGHT_ONE;
3071 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3072 struct ioc_gq *iocg = blkg_to_iocg(blkg);
3073
3074 if (iocg) {
3075 spin_lock(&iocg->ioc->lock);
3076 ioc_now(iocg->ioc, &now);
3077 weight_updated(iocg, &now);
3078 spin_unlock(&iocg->ioc->lock);
3079 }
3080 }
3081 spin_unlock_irq(&blkcg->lock);
3082
3083 return nbytes;
3084 }
3085
3086 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
3087 if (ret)
3088 return ret;
3089
3090 iocg = blkg_to_iocg(ctx.blkg);
3091
3092 if (!strncmp(ctx.body, "default", 7)) {
3093 v = 0;
3094 } else {
3095 if (!sscanf(ctx.body, "%u", &v))
3096 goto einval;
3097 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3098 goto einval;
3099 }
3100
3101 spin_lock(&iocg->ioc->lock);
3102 iocg->cfg_weight = v * WEIGHT_ONE;
3103 ioc_now(iocg->ioc, &now);
3104 weight_updated(iocg, &now);
3105 spin_unlock(&iocg->ioc->lock);
3106
3107 blkg_conf_finish(&ctx);
3108 return nbytes;
3109
3110 einval:
3111 blkg_conf_finish(&ctx);
3112 return -EINVAL;
3113 }
3114
ioc_qos_prfill(struct seq_file * sf,struct blkg_policy_data * pd,int off)3115 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3116 int off)
3117 {
3118 const char *dname = blkg_dev_name(pd->blkg);
3119 struct ioc *ioc = pd_to_iocg(pd)->ioc;
3120
3121 if (!dname)
3122 return 0;
3123
3124 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3125 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3126 ioc->params.qos[QOS_RPPM] / 10000,
3127 ioc->params.qos[QOS_RPPM] % 10000 / 100,
3128 ioc->params.qos[QOS_RLAT],
3129 ioc->params.qos[QOS_WPPM] / 10000,
3130 ioc->params.qos[QOS_WPPM] % 10000 / 100,
3131 ioc->params.qos[QOS_WLAT],
3132 ioc->params.qos[QOS_MIN] / 10000,
3133 ioc->params.qos[QOS_MIN] % 10000 / 100,
3134 ioc->params.qos[QOS_MAX] / 10000,
3135 ioc->params.qos[QOS_MAX] % 10000 / 100);
3136 return 0;
3137 }
3138
ioc_qos_show(struct seq_file * sf,void * v)3139 static int ioc_qos_show(struct seq_file *sf, void *v)
3140 {
3141 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3142
3143 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3144 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3145 return 0;
3146 }
3147
3148 static const match_table_t qos_ctrl_tokens = {
3149 { QOS_ENABLE, "enable=%u" },
3150 { QOS_CTRL, "ctrl=%s" },
3151 { NR_QOS_CTRL_PARAMS, NULL },
3152 };
3153
3154 static const match_table_t qos_tokens = {
3155 { QOS_RPPM, "rpct=%s" },
3156 { QOS_RLAT, "rlat=%u" },
3157 { QOS_WPPM, "wpct=%s" },
3158 { QOS_WLAT, "wlat=%u" },
3159 { QOS_MIN, "min=%s" },
3160 { QOS_MAX, "max=%s" },
3161 { NR_QOS_PARAMS, NULL },
3162 };
3163
ioc_qos_write(struct kernfs_open_file * of,char * input,size_t nbytes,loff_t off)3164 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3165 size_t nbytes, loff_t off)
3166 {
3167 struct gendisk *disk;
3168 struct ioc *ioc;
3169 u32 qos[NR_QOS_PARAMS];
3170 bool enable, user;
3171 char *p;
3172 int ret;
3173
3174 disk = blkcg_conf_get_disk(&input);
3175 if (IS_ERR(disk))
3176 return PTR_ERR(disk);
3177
3178 ioc = q_to_ioc(disk->queue);
3179 if (!ioc) {
3180 ret = blk_iocost_init(disk->queue);
3181 if (ret)
3182 goto err;
3183 ioc = q_to_ioc(disk->queue);
3184 }
3185
3186 spin_lock_irq(&ioc->lock);
3187 memcpy(qos, ioc->params.qos, sizeof(qos));
3188 enable = ioc->enabled;
3189 user = ioc->user_qos_params;
3190 spin_unlock_irq(&ioc->lock);
3191
3192 while ((p = strsep(&input, " \t\n"))) {
3193 substring_t args[MAX_OPT_ARGS];
3194 char buf[32];
3195 int tok;
3196 s64 v;
3197
3198 if (!*p)
3199 continue;
3200
3201 switch (match_token(p, qos_ctrl_tokens, args)) {
3202 case QOS_ENABLE:
3203 match_u64(&args[0], &v);
3204 enable = v;
3205 continue;
3206 case QOS_CTRL:
3207 match_strlcpy(buf, &args[0], sizeof(buf));
3208 if (!strcmp(buf, "auto"))
3209 user = false;
3210 else if (!strcmp(buf, "user"))
3211 user = true;
3212 else
3213 goto einval;
3214 continue;
3215 }
3216
3217 tok = match_token(p, qos_tokens, args);
3218 switch (tok) {
3219 case QOS_RPPM:
3220 case QOS_WPPM:
3221 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3222 sizeof(buf))
3223 goto einval;
3224 if (cgroup_parse_float(buf, 2, &v))
3225 goto einval;
3226 if (v < 0 || v > 10000)
3227 goto einval;
3228 qos[tok] = v * 100;
3229 break;
3230 case QOS_RLAT:
3231 case QOS_WLAT:
3232 if (match_u64(&args[0], &v))
3233 goto einval;
3234 qos[tok] = v;
3235 break;
3236 case QOS_MIN:
3237 case QOS_MAX:
3238 if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3239 sizeof(buf))
3240 goto einval;
3241 if (cgroup_parse_float(buf, 2, &v))
3242 goto einval;
3243 if (v < 0)
3244 goto einval;
3245 qos[tok] = clamp_t(s64, v * 100,
3246 VRATE_MIN_PPM, VRATE_MAX_PPM);
3247 break;
3248 default:
3249 goto einval;
3250 }
3251 user = true;
3252 }
3253
3254 if (qos[QOS_MIN] > qos[QOS_MAX])
3255 goto einval;
3256
3257 spin_lock_irq(&ioc->lock);
3258
3259 if (enable) {
3260 blk_stat_enable_accounting(ioc->rqos.q);
3261 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3262 ioc->enabled = true;
3263 } else {
3264 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3265 ioc->enabled = false;
3266 }
3267
3268 if (user) {
3269 memcpy(ioc->params.qos, qos, sizeof(qos));
3270 ioc->user_qos_params = true;
3271 } else {
3272 ioc->user_qos_params = false;
3273 }
3274
3275 ioc_refresh_params(ioc, true);
3276 spin_unlock_irq(&ioc->lock);
3277
3278 put_disk_and_module(disk);
3279 return nbytes;
3280 einval:
3281 ret = -EINVAL;
3282 err:
3283 put_disk_and_module(disk);
3284 return ret;
3285 }
3286
ioc_cost_model_prfill(struct seq_file * sf,struct blkg_policy_data * pd,int off)3287 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3288 struct blkg_policy_data *pd, int off)
3289 {
3290 const char *dname = blkg_dev_name(pd->blkg);
3291 struct ioc *ioc = pd_to_iocg(pd)->ioc;
3292 u64 *u = ioc->params.i_lcoefs;
3293
3294 if (!dname)
3295 return 0;
3296
3297 seq_printf(sf, "%s ctrl=%s model=linear "
3298 "rbps=%llu rseqiops=%llu rrandiops=%llu "
3299 "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3300 dname, ioc->user_cost_model ? "user" : "auto",
3301 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3302 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3303 return 0;
3304 }
3305
ioc_cost_model_show(struct seq_file * sf,void * v)3306 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3307 {
3308 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3309
3310 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3311 &blkcg_policy_iocost, seq_cft(sf)->private, false);
3312 return 0;
3313 }
3314
3315 static const match_table_t cost_ctrl_tokens = {
3316 { COST_CTRL, "ctrl=%s" },
3317 { COST_MODEL, "model=%s" },
3318 { NR_COST_CTRL_PARAMS, NULL },
3319 };
3320
3321 static const match_table_t i_lcoef_tokens = {
3322 { I_LCOEF_RBPS, "rbps=%u" },
3323 { I_LCOEF_RSEQIOPS, "rseqiops=%u" },
3324 { I_LCOEF_RRANDIOPS, "rrandiops=%u" },
3325 { I_LCOEF_WBPS, "wbps=%u" },
3326 { I_LCOEF_WSEQIOPS, "wseqiops=%u" },
3327 { I_LCOEF_WRANDIOPS, "wrandiops=%u" },
3328 { NR_I_LCOEFS, NULL },
3329 };
3330
ioc_cost_model_write(struct kernfs_open_file * of,char * input,size_t nbytes,loff_t off)3331 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3332 size_t nbytes, loff_t off)
3333 {
3334 struct gendisk *disk;
3335 struct ioc *ioc;
3336 u64 u[NR_I_LCOEFS];
3337 bool user;
3338 char *p;
3339 int ret;
3340
3341 disk = blkcg_conf_get_disk(&input);
3342 if (IS_ERR(disk))
3343 return PTR_ERR(disk);
3344
3345 ioc = q_to_ioc(disk->queue);
3346 if (!ioc) {
3347 ret = blk_iocost_init(disk->queue);
3348 if (ret)
3349 goto err;
3350 ioc = q_to_ioc(disk->queue);
3351 }
3352
3353 spin_lock_irq(&ioc->lock);
3354 memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3355 user = ioc->user_cost_model;
3356 spin_unlock_irq(&ioc->lock);
3357
3358 while ((p = strsep(&input, " \t\n"))) {
3359 substring_t args[MAX_OPT_ARGS];
3360 char buf[32];
3361 int tok;
3362 u64 v;
3363
3364 if (!*p)
3365 continue;
3366
3367 switch (match_token(p, cost_ctrl_tokens, args)) {
3368 case COST_CTRL:
3369 match_strlcpy(buf, &args[0], sizeof(buf));
3370 if (!strcmp(buf, "auto"))
3371 user = false;
3372 else if (!strcmp(buf, "user"))
3373 user = true;
3374 else
3375 goto einval;
3376 continue;
3377 case COST_MODEL:
3378 match_strlcpy(buf, &args[0], sizeof(buf));
3379 if (strcmp(buf, "linear"))
3380 goto einval;
3381 continue;
3382 }
3383
3384 tok = match_token(p, i_lcoef_tokens, args);
3385 if (tok == NR_I_LCOEFS)
3386 goto einval;
3387 if (match_u64(&args[0], &v))
3388 goto einval;
3389 u[tok] = v;
3390 user = true;
3391 }
3392
3393 spin_lock_irq(&ioc->lock);
3394 if (user) {
3395 memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3396 ioc->user_cost_model = true;
3397 } else {
3398 ioc->user_cost_model = false;
3399 }
3400 ioc_refresh_params(ioc, true);
3401 spin_unlock_irq(&ioc->lock);
3402
3403 put_disk_and_module(disk);
3404 return nbytes;
3405
3406 einval:
3407 ret = -EINVAL;
3408 err:
3409 put_disk_and_module(disk);
3410 return ret;
3411 }
3412
3413 static struct cftype ioc_files[] = {
3414 {
3415 .name = "weight",
3416 .flags = CFTYPE_NOT_ON_ROOT,
3417 .seq_show = ioc_weight_show,
3418 .write = ioc_weight_write,
3419 },
3420 {
3421 .name = "cost.qos",
3422 .flags = CFTYPE_ONLY_ON_ROOT,
3423 .seq_show = ioc_qos_show,
3424 .write = ioc_qos_write,
3425 },
3426 {
3427 .name = "cost.model",
3428 .flags = CFTYPE_ONLY_ON_ROOT,
3429 .seq_show = ioc_cost_model_show,
3430 .write = ioc_cost_model_write,
3431 },
3432 {}
3433 };
3434
3435 static struct blkcg_policy blkcg_policy_iocost = {
3436 .dfl_cftypes = ioc_files,
3437 .cpd_alloc_fn = ioc_cpd_alloc,
3438 .cpd_free_fn = ioc_cpd_free,
3439 .pd_alloc_fn = ioc_pd_alloc,
3440 .pd_init_fn = ioc_pd_init,
3441 .pd_free_fn = ioc_pd_free,
3442 .pd_stat_fn = ioc_pd_stat,
3443 };
3444
ioc_init(void)3445 static int __init ioc_init(void)
3446 {
3447 return blkcg_policy_register(&blkcg_policy_iocost);
3448 }
3449
ioc_exit(void)3450 static void __exit ioc_exit(void)
3451 {
3452 blkcg_policy_unregister(&blkcg_policy_iocost);
3453 }
3454
3455 module_init(ioc_init);
3456 module_exit(ioc_exit);
3457