• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * IO cost model based controller.
4  *
5  * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6  * Copyright (C) 2019 Andy Newell <newella@fb.com>
7  * Copyright (C) 2019 Facebook
8  *
9  * One challenge of controlling IO resources is the lack of trivially
10  * observable cost metric.  This is distinguished from CPU and memory where
11  * wallclock time and the number of bytes can serve as accurate enough
12  * approximations.
13  *
14  * Bandwidth and iops are the most commonly used metrics for IO devices but
15  * depending on the type and specifics of the device, different IO patterns
16  * easily lead to multiple orders of magnitude variations rendering them
17  * useless for the purpose of IO capacity distribution.  While on-device
18  * time, with a lot of clutches, could serve as a useful approximation for
19  * non-queued rotational devices, this is no longer viable with modern
20  * devices, even the rotational ones.
21  *
22  * While there is no cost metric we can trivially observe, it isn't a
23  * complete mystery.  For example, on a rotational device, seek cost
24  * dominates while a contiguous transfer contributes a smaller amount
25  * proportional to the size.  If we can characterize at least the relative
26  * costs of these different types of IOs, it should be possible to
27  * implement a reasonable work-conserving proportional IO resource
28  * distribution.
29  *
30  * 1. IO Cost Model
31  *
32  * IO cost model estimates the cost of an IO given its basic parameters and
33  * history (e.g. the end sector of the last IO).  The cost is measured in
34  * device time.  If a given IO is estimated to cost 10ms, the device should
35  * be able to process ~100 of those IOs in a second.
36  *
37  * Currently, there's only one builtin cost model - linear.  Each IO is
38  * classified as sequential or random and given a base cost accordingly.
39  * On top of that, a size cost proportional to the length of the IO is
40  * added.  While simple, this model captures the operational
41  * characteristics of a wide varienty of devices well enough.  Default
42  * paramters for several different classes of devices are provided and the
43  * parameters can be configured from userspace via
44  * /sys/fs/cgroup/io.cost.model.
45  *
46  * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47  * device-specific coefficients.
48  *
49  * 2. Control Strategy
50  *
51  * The device virtual time (vtime) is used as the primary control metric.
52  * The control strategy is composed of the following three parts.
53  *
54  * 2-1. Vtime Distribution
55  *
56  * When a cgroup becomes active in terms of IOs, its hierarchical share is
57  * calculated.  Please consider the following hierarchy where the numbers
58  * inside parentheses denote the configured weights.
59  *
60  *           root
61  *         /       \
62  *      A (w:100)  B (w:300)
63  *      /       \
64  *  A0 (w:100)  A1 (w:100)
65  *
66  * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67  * of equal weight, each gets 50% share.  If then B starts issuing IOs, B
68  * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69  * 12.5% each.  The distribution mechanism only cares about these flattened
70  * shares.  They're called hweights (hierarchical weights) and always add
71  * upto 1 (WEIGHT_ONE).
72  *
73  * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74  * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75  * against the device vtime - an IO which takes 10ms on the underlying
76  * device is considered to take 80ms on A0.
77  *
78  * This constitutes the basis of IO capacity distribution.  Each cgroup's
79  * vtime is running at a rate determined by its hweight.  A cgroup tracks
80  * the vtime consumed by past IOs and can issue a new IO iff doing so
81  * wouldn't outrun the current device vtime.  Otherwise, the IO is
82  * suspended until the vtime has progressed enough to cover it.
83  *
84  * 2-2. Vrate Adjustment
85  *
86  * It's unrealistic to expect the cost model to be perfect.  There are too
87  * many devices and even on the same device the overall performance
88  * fluctuates depending on numerous factors such as IO mixture and device
89  * internal garbage collection.  The controller needs to adapt dynamically.
90  *
91  * This is achieved by adjusting the overall IO rate according to how busy
92  * the device is.  If the device becomes overloaded, we're sending down too
93  * many IOs and should generally slow down.  If there are waiting issuers
94  * but the device isn't saturated, we're issuing too few and should
95  * generally speed up.
96  *
97  * To slow down, we lower the vrate - the rate at which the device vtime
98  * passes compared to the wall clock.  For example, if the vtime is running
99  * at the vrate of 75%, all cgroups added up would only be able to issue
100  * 750ms worth of IOs per second, and vice-versa for speeding up.
101  *
102  * Device business is determined using two criteria - rq wait and
103  * completion latencies.
104  *
105  * When a device gets saturated, the on-device and then the request queues
106  * fill up and a bio which is ready to be issued has to wait for a request
107  * to become available.  When this delay becomes noticeable, it's a clear
108  * indication that the device is saturated and we lower the vrate.  This
109  * saturation signal is fairly conservative as it only triggers when both
110  * hardware and software queues are filled up, and is used as the default
111  * busy signal.
112  *
113  * As devices can have deep queues and be unfair in how the queued commands
114  * are executed, soley depending on rq wait may not result in satisfactory
115  * control quality.  For a better control quality, completion latency QoS
116  * parameters can be configured so that the device is considered saturated
117  * if N'th percentile completion latency rises above the set point.
118  *
119  * The completion latency requirements are a function of both the
120  * underlying device characteristics and the desired IO latency quality of
121  * service.  There is an inherent trade-off - the tighter the latency QoS,
122  * the higher the bandwidth lossage.  Latency QoS is disabled by default
123  * and can be set through /sys/fs/cgroup/io.cost.qos.
124  *
125  * 2-3. Work Conservation
126  *
127  * Imagine two cgroups A and B with equal weights.  A is issuing a small IO
128  * periodically while B is sending out enough parallel IOs to saturate the
129  * device on its own.  Let's say A's usage amounts to 100ms worth of IO
130  * cost per second, i.e., 10% of the device capacity.  The naive
131  * distribution of half and half would lead to 60% utilization of the
132  * device, a significant reduction in the total amount of work done
133  * compared to free-for-all competition.  This is too high a cost to pay
134  * for IO control.
135  *
136  * To conserve the total amount of work done, we keep track of how much
137  * each active cgroup is actually using and yield part of its weight if
138  * there are other cgroups which can make use of it.  In the above case,
139  * A's weight will be lowered so that it hovers above the actual usage and
140  * B would be able to use the rest.
141  *
142  * As we don't want to penalize a cgroup for donating its weight, the
143  * surplus weight adjustment factors in a margin and has an immediate
144  * snapback mechanism in case the cgroup needs more IO vtime for itself.
145  *
146  * Note that adjusting down surplus weights has the same effects as
147  * accelerating vtime for other cgroups and work conservation can also be
148  * implemented by adjusting vrate dynamically.  However, squaring who can
149  * donate and should take back how much requires hweight propagations
150  * anyway making it easier to implement and understand as a separate
151  * mechanism.
152  *
153  * 3. Monitoring
154  *
155  * Instead of debugfs or other clumsy monitoring mechanisms, this
156  * controller uses a drgn based monitoring script -
157  * tools/cgroup/iocost_monitor.py.  For details on drgn, please see
158  * https://github.com/osandov/drgn.  The ouput looks like the following.
159  *
160  *  sdb RUN   per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161  *                 active      weight      hweight% inflt% dbt  delay usages%
162  *  test/a              *    50/   50  33.33/ 33.33  27.65   2  0*041 033:033:033
163  *  test/b              *   100/  100  66.67/ 66.67  17.56   0  0*000 066:079:077
164  *
165  * - per	: Timer period
166  * - cur_per	: Internal wall and device vtime clock
167  * - vrate	: Device virtual time rate against wall clock
168  * - weight	: Surplus-adjusted and configured weights
169  * - hweight	: Surplus-adjusted and configured hierarchical weights
170  * - inflt	: The percentage of in-flight IO cost at the end of last period
171  * - del_ms	: Deferred issuer delay induction level and duration
172  * - usages	: Usage history
173  */
174 
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <linux/blk-cgroup.h>
182 #include <asm/local.h>
183 #include <asm/local64.h>
184 #include "blk-rq-qos.h"
185 #include "blk-stat.h"
186 #include "blk-wbt.h"
187 
188 #ifdef CONFIG_TRACEPOINTS
189 
190 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
191 #define TRACE_IOCG_PATH_LEN 1024
192 static DEFINE_SPINLOCK(trace_iocg_path_lock);
193 static char trace_iocg_path[TRACE_IOCG_PATH_LEN];
194 
195 #define TRACE_IOCG_PATH(type, iocg, ...)					\
196 	do {									\
197 		unsigned long flags;						\
198 		if (trace_iocost_##type##_enabled()) {				\
199 			spin_lock_irqsave(&trace_iocg_path_lock, flags);	\
200 			cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup,	\
201 				    trace_iocg_path, TRACE_IOCG_PATH_LEN);	\
202 			trace_iocost_##type(iocg, trace_iocg_path,		\
203 					      ##__VA_ARGS__);			\
204 			spin_unlock_irqrestore(&trace_iocg_path_lock, flags);	\
205 		}								\
206 	} while (0)
207 
208 #else	/* CONFIG_TRACE_POINTS */
209 #define TRACE_IOCG_PATH(type, iocg, ...)	do { } while (0)
210 #endif	/* CONFIG_TRACE_POINTS */
211 
212 enum {
213 	MILLION			= 1000000,
214 
215 	/* timer period is calculated from latency requirements, bound it */
216 	MIN_PERIOD		= USEC_PER_MSEC,
217 	MAX_PERIOD		= USEC_PER_SEC,
218 
219 	/*
220 	 * iocg->vtime is targeted at 50% behind the device vtime, which
221 	 * serves as its IO credit buffer.  Surplus weight adjustment is
222 	 * immediately canceled if the vtime margin runs below 10%.
223 	 */
224 	MARGIN_MIN_PCT		= 10,
225 	MARGIN_LOW_PCT		= 20,
226 	MARGIN_TARGET_PCT	= 50,
227 
228 	INUSE_ADJ_STEP_PCT	= 25,
229 
230 	/* Have some play in timer operations */
231 	TIMER_SLACK_PCT		= 1,
232 
233 	/* 1/64k is granular enough and can easily be handled w/ u32 */
234 	WEIGHT_ONE		= 1 << 16,
235 };
236 
237 enum {
238 	/*
239 	 * As vtime is used to calculate the cost of each IO, it needs to
240 	 * be fairly high precision.  For example, it should be able to
241 	 * represent the cost of a single page worth of discard with
242 	 * suffificient accuracy.  At the same time, it should be able to
243 	 * represent reasonably long enough durations to be useful and
244 	 * convenient during operation.
245 	 *
246 	 * 1s worth of vtime is 2^37.  This gives us both sub-nanosecond
247 	 * granularity and days of wrap-around time even at extreme vrates.
248 	 */
249 	VTIME_PER_SEC_SHIFT	= 37,
250 	VTIME_PER_SEC		= 1LLU << VTIME_PER_SEC_SHIFT,
251 	VTIME_PER_USEC		= VTIME_PER_SEC / USEC_PER_SEC,
252 	VTIME_PER_NSEC		= VTIME_PER_SEC / NSEC_PER_SEC,
253 
254 	/* bound vrate adjustments within two orders of magnitude */
255 	VRATE_MIN_PPM		= 10000,	/* 1% */
256 	VRATE_MAX_PPM		= 100000000,	/* 10000% */
257 
258 	VRATE_MIN		= VTIME_PER_USEC * VRATE_MIN_PPM / MILLION,
259 	VRATE_CLAMP_ADJ_PCT	= 4,
260 
261 	/* switch iff the conditions are met for longer than this */
262 	AUTOP_CYCLE_NSEC	= 10LLU * NSEC_PER_SEC,
263 };
264 
265 enum {
266 	/* if IOs end up waiting for requests, issue less */
267 	RQ_WAIT_BUSY_PCT	= 5,
268 
269 	/* unbusy hysterisis */
270 	UNBUSY_THR_PCT		= 75,
271 
272 	/*
273 	 * The effect of delay is indirect and non-linear and a huge amount of
274 	 * future debt can accumulate abruptly while unthrottled. Linearly scale
275 	 * up delay as debt is going up and then let it decay exponentially.
276 	 * This gives us quick ramp ups while delay is accumulating and long
277 	 * tails which can help reducing the frequency of debt explosions on
278 	 * unthrottle. The parameters are experimentally determined.
279 	 *
280 	 * The delay mechanism provides adequate protection and behavior in many
281 	 * cases. However, this is far from ideal and falls shorts on both
282 	 * fronts. The debtors are often throttled too harshly costing a
283 	 * significant level of fairness and possibly total work while the
284 	 * protection against their impacts on the system can be choppy and
285 	 * unreliable.
286 	 *
287 	 * The shortcoming primarily stems from the fact that, unlike for page
288 	 * cache, the kernel doesn't have well-defined back-pressure propagation
289 	 * mechanism and policies for anonymous memory. Fully addressing this
290 	 * issue will likely require substantial improvements in the area.
291 	 */
292 	MIN_DELAY_THR_PCT	= 500,
293 	MAX_DELAY_THR_PCT	= 25000,
294 	MIN_DELAY		= 250,
295 	MAX_DELAY		= 250 * USEC_PER_MSEC,
296 
297 	/* halve debts if avg usage over 100ms is under 50% */
298 	DFGV_USAGE_PCT		= 50,
299 	DFGV_PERIOD		= 100 * USEC_PER_MSEC,
300 
301 	/* don't let cmds which take a very long time pin lagging for too long */
302 	MAX_LAGGING_PERIODS	= 10,
303 
304 	/*
305 	 * Count IO size in 4k pages.  The 12bit shift helps keeping
306 	 * size-proportional components of cost calculation in closer
307 	 * numbers of digits to per-IO cost components.
308 	 */
309 	IOC_PAGE_SHIFT		= 12,
310 	IOC_PAGE_SIZE		= 1 << IOC_PAGE_SHIFT,
311 	IOC_SECT_TO_PAGE_SHIFT	= IOC_PAGE_SHIFT - SECTOR_SHIFT,
312 
313 	/* if apart further than 16M, consider randio for linear model */
314 	LCOEF_RANDIO_PAGES	= 4096,
315 };
316 
317 enum ioc_running {
318 	IOC_IDLE,
319 	IOC_RUNNING,
320 	IOC_STOP,
321 };
322 
323 /* io.cost.qos controls including per-dev enable of the whole controller */
324 enum {
325 	QOS_ENABLE,
326 	QOS_CTRL,
327 	NR_QOS_CTRL_PARAMS,
328 };
329 
330 /* io.cost.qos params */
331 enum {
332 	QOS_RPPM,
333 	QOS_RLAT,
334 	QOS_WPPM,
335 	QOS_WLAT,
336 	QOS_MIN,
337 	QOS_MAX,
338 	NR_QOS_PARAMS,
339 };
340 
341 /* io.cost.model controls */
342 enum {
343 	COST_CTRL,
344 	COST_MODEL,
345 	NR_COST_CTRL_PARAMS,
346 };
347 
348 /* builtin linear cost model coefficients */
349 enum {
350 	I_LCOEF_RBPS,
351 	I_LCOEF_RSEQIOPS,
352 	I_LCOEF_RRANDIOPS,
353 	I_LCOEF_WBPS,
354 	I_LCOEF_WSEQIOPS,
355 	I_LCOEF_WRANDIOPS,
356 	NR_I_LCOEFS,
357 };
358 
359 enum {
360 	LCOEF_RPAGE,
361 	LCOEF_RSEQIO,
362 	LCOEF_RRANDIO,
363 	LCOEF_WPAGE,
364 	LCOEF_WSEQIO,
365 	LCOEF_WRANDIO,
366 	NR_LCOEFS,
367 };
368 
369 enum {
370 	AUTOP_INVALID,
371 	AUTOP_HDD,
372 	AUTOP_SSD_QD1,
373 	AUTOP_SSD_DFL,
374 	AUTOP_SSD_FAST,
375 };
376 
377 struct ioc_gq;
378 
379 struct ioc_params {
380 	u32				qos[NR_QOS_PARAMS];
381 	u64				i_lcoefs[NR_I_LCOEFS];
382 	u64				lcoefs[NR_LCOEFS];
383 	u32				too_fast_vrate_pct;
384 	u32				too_slow_vrate_pct;
385 };
386 
387 struct ioc_margins {
388 	s64				min;
389 	s64				low;
390 	s64				target;
391 };
392 
393 struct ioc_missed {
394 	local_t				nr_met;
395 	local_t				nr_missed;
396 	u32				last_met;
397 	u32				last_missed;
398 };
399 
400 struct ioc_pcpu_stat {
401 	struct ioc_missed		missed[2];
402 
403 	local64_t			rq_wait_ns;
404 	u64				last_rq_wait_ns;
405 };
406 
407 /* per device */
408 struct ioc {
409 	struct rq_qos			rqos;
410 
411 	bool				enabled;
412 
413 	struct ioc_params		params;
414 	struct ioc_margins		margins;
415 	u32				period_us;
416 	u32				timer_slack_ns;
417 	u64				vrate_min;
418 	u64				vrate_max;
419 
420 	spinlock_t			lock;
421 	struct timer_list		timer;
422 	struct list_head		active_iocgs;	/* active cgroups */
423 	struct ioc_pcpu_stat __percpu	*pcpu_stat;
424 
425 	enum ioc_running		running;
426 	atomic64_t			vtime_rate;
427 	u64				vtime_base_rate;
428 	s64				vtime_err;
429 
430 	seqcount_spinlock_t		period_seqcount;
431 	u64				period_at;	/* wallclock starttime */
432 	u64				period_at_vtime; /* vtime starttime */
433 
434 	atomic64_t			cur_period;	/* inc'd each period */
435 	int				busy_level;	/* saturation history */
436 
437 	bool				weights_updated;
438 	atomic_t			hweight_gen;	/* for lazy hweights */
439 
440 	/* debt forgivness */
441 	u64				dfgv_period_at;
442 	u64				dfgv_period_rem;
443 	u64				dfgv_usage_us_sum;
444 
445 	u64				autop_too_fast_at;
446 	u64				autop_too_slow_at;
447 	int				autop_idx;
448 	bool				user_qos_params:1;
449 	bool				user_cost_model:1;
450 };
451 
452 struct iocg_pcpu_stat {
453 	local64_t			abs_vusage;
454 };
455 
456 struct iocg_stat {
457 	u64				usage_us;
458 	u64				wait_us;
459 	u64				indebt_us;
460 	u64				indelay_us;
461 };
462 
463 /* per device-cgroup pair */
464 struct ioc_gq {
465 	struct blkg_policy_data		pd;
466 	struct ioc			*ioc;
467 
468 	/*
469 	 * A iocg can get its weight from two sources - an explicit
470 	 * per-device-cgroup configuration or the default weight of the
471 	 * cgroup.  `cfg_weight` is the explicit per-device-cgroup
472 	 * configuration.  `weight` is the effective considering both
473 	 * sources.
474 	 *
475 	 * When an idle cgroup becomes active its `active` goes from 0 to
476 	 * `weight`.  `inuse` is the surplus adjusted active weight.
477 	 * `active` and `inuse` are used to calculate `hweight_active` and
478 	 * `hweight_inuse`.
479 	 *
480 	 * `last_inuse` remembers `inuse` while an iocg is idle to persist
481 	 * surplus adjustments.
482 	 *
483 	 * `inuse` may be adjusted dynamically during period. `saved_*` are used
484 	 * to determine and track adjustments.
485 	 */
486 	u32				cfg_weight;
487 	u32				weight;
488 	u32				active;
489 	u32				inuse;
490 
491 	u32				last_inuse;
492 	s64				saved_margin;
493 
494 	sector_t			cursor;		/* to detect randio */
495 
496 	/*
497 	 * `vtime` is this iocg's vtime cursor which progresses as IOs are
498 	 * issued.  If lagging behind device vtime, the delta represents
499 	 * the currently available IO budget.  If runnning ahead, the
500 	 * overage.
501 	 *
502 	 * `vtime_done` is the same but progressed on completion rather
503 	 * than issue.  The delta behind `vtime` represents the cost of
504 	 * currently in-flight IOs.
505 	 */
506 	atomic64_t			vtime;
507 	atomic64_t			done_vtime;
508 	u64				abs_vdebt;
509 
510 	/* current delay in effect and when it started */
511 	u64				delay;
512 	u64				delay_at;
513 
514 	/*
515 	 * The period this iocg was last active in.  Used for deactivation
516 	 * and invalidating `vtime`.
517 	 */
518 	atomic64_t			active_period;
519 	struct list_head		active_list;
520 
521 	/* see __propagate_weights() and current_hweight() for details */
522 	u64				child_active_sum;
523 	u64				child_inuse_sum;
524 	u64				child_adjusted_sum;
525 	int				hweight_gen;
526 	u32				hweight_active;
527 	u32				hweight_inuse;
528 	u32				hweight_donating;
529 	u32				hweight_after_donation;
530 
531 	struct list_head		walk_list;
532 	struct list_head		surplus_list;
533 
534 	struct wait_queue_head		waitq;
535 	struct hrtimer			waitq_timer;
536 
537 	/* timestamp at the latest activation */
538 	u64				activated_at;
539 
540 	/* statistics */
541 	struct iocg_pcpu_stat __percpu	*pcpu_stat;
542 	struct iocg_stat		local_stat;
543 	struct iocg_stat		desc_stat;
544 	struct iocg_stat		last_stat;
545 	u64				last_stat_abs_vusage;
546 	u64				usage_delta_us;
547 	u64				wait_since;
548 	u64				indebt_since;
549 	u64				indelay_since;
550 
551 	/* this iocg's depth in the hierarchy and ancestors including self */
552 	int				level;
553 	struct ioc_gq			*ancestors[];
554 };
555 
556 /* per cgroup */
557 struct ioc_cgrp {
558 	struct blkcg_policy_data	cpd;
559 	unsigned int			dfl_weight;
560 };
561 
562 struct ioc_now {
563 	u64				now_ns;
564 	u64				now;
565 	u64				vnow;
566 	u64				vrate;
567 };
568 
569 struct iocg_wait {
570 	struct wait_queue_entry		wait;
571 	struct bio			*bio;
572 	u64				abs_cost;
573 	bool				committed;
574 };
575 
576 struct iocg_wake_ctx {
577 	struct ioc_gq			*iocg;
578 	u32				hw_inuse;
579 	s64				vbudget;
580 };
581 
582 static const struct ioc_params autop[] = {
583 	[AUTOP_HDD] = {
584 		.qos				= {
585 			[QOS_RLAT]		=        250000, /* 250ms */
586 			[QOS_WLAT]		=        250000,
587 			[QOS_MIN]		= VRATE_MIN_PPM,
588 			[QOS_MAX]		= VRATE_MAX_PPM,
589 		},
590 		.i_lcoefs			= {
591 			[I_LCOEF_RBPS]		=     174019176,
592 			[I_LCOEF_RSEQIOPS]	=         41708,
593 			[I_LCOEF_RRANDIOPS]	=           370,
594 			[I_LCOEF_WBPS]		=     178075866,
595 			[I_LCOEF_WSEQIOPS]	=         42705,
596 			[I_LCOEF_WRANDIOPS]	=           378,
597 		},
598 	},
599 	[AUTOP_SSD_QD1] = {
600 		.qos				= {
601 			[QOS_RLAT]		=         25000, /* 25ms */
602 			[QOS_WLAT]		=         25000,
603 			[QOS_MIN]		= VRATE_MIN_PPM,
604 			[QOS_MAX]		= VRATE_MAX_PPM,
605 		},
606 		.i_lcoefs			= {
607 			[I_LCOEF_RBPS]		=     245855193,
608 			[I_LCOEF_RSEQIOPS]	=         61575,
609 			[I_LCOEF_RRANDIOPS]	=          6946,
610 			[I_LCOEF_WBPS]		=     141365009,
611 			[I_LCOEF_WSEQIOPS]	=         33716,
612 			[I_LCOEF_WRANDIOPS]	=         26796,
613 		},
614 	},
615 	[AUTOP_SSD_DFL] = {
616 		.qos				= {
617 			[QOS_RLAT]		=         25000, /* 25ms */
618 			[QOS_WLAT]		=         25000,
619 			[QOS_MIN]		= VRATE_MIN_PPM,
620 			[QOS_MAX]		= VRATE_MAX_PPM,
621 		},
622 		.i_lcoefs			= {
623 			[I_LCOEF_RBPS]		=     488636629,
624 			[I_LCOEF_RSEQIOPS]	=          8932,
625 			[I_LCOEF_RRANDIOPS]	=          8518,
626 			[I_LCOEF_WBPS]		=     427891549,
627 			[I_LCOEF_WSEQIOPS]	=         28755,
628 			[I_LCOEF_WRANDIOPS]	=         21940,
629 		},
630 		.too_fast_vrate_pct		=           500,
631 	},
632 	[AUTOP_SSD_FAST] = {
633 		.qos				= {
634 			[QOS_RLAT]		=          5000, /* 5ms */
635 			[QOS_WLAT]		=          5000,
636 			[QOS_MIN]		= VRATE_MIN_PPM,
637 			[QOS_MAX]		= VRATE_MAX_PPM,
638 		},
639 		.i_lcoefs			= {
640 			[I_LCOEF_RBPS]		=    3102524156LLU,
641 			[I_LCOEF_RSEQIOPS]	=        724816,
642 			[I_LCOEF_RRANDIOPS]	=        778122,
643 			[I_LCOEF_WBPS]		=    1742780862LLU,
644 			[I_LCOEF_WSEQIOPS]	=        425702,
645 			[I_LCOEF_WRANDIOPS]	=	 443193,
646 		},
647 		.too_slow_vrate_pct		=            10,
648 	},
649 };
650 
651 /*
652  * vrate adjust percentages indexed by ioc->busy_level.  We adjust up on
653  * vtime credit shortage and down on device saturation.
654  */
655 static u32 vrate_adj_pct[] =
656 	{ 0, 0, 0, 0,
657 	  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
658 	  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
659 	  4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
660 
661 static struct blkcg_policy blkcg_policy_iocost;
662 
663 /* accessors and helpers */
rqos_to_ioc(struct rq_qos * rqos)664 static struct ioc *rqos_to_ioc(struct rq_qos *rqos)
665 {
666 	return container_of(rqos, struct ioc, rqos);
667 }
668 
q_to_ioc(struct request_queue * q)669 static struct ioc *q_to_ioc(struct request_queue *q)
670 {
671 	return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST));
672 }
673 
q_name(struct request_queue * q)674 static const char *q_name(struct request_queue *q)
675 {
676 	if (blk_queue_registered(q))
677 		return kobject_name(q->kobj.parent);
678 	else
679 		return "<unknown>";
680 }
681 
ioc_name(struct ioc * ioc)682 static const char __maybe_unused *ioc_name(struct ioc *ioc)
683 {
684 	return q_name(ioc->rqos.q);
685 }
686 
pd_to_iocg(struct blkg_policy_data * pd)687 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd)
688 {
689 	return pd ? container_of(pd, struct ioc_gq, pd) : NULL;
690 }
691 
blkg_to_iocg(struct blkcg_gq * blkg)692 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg)
693 {
694 	return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost));
695 }
696 
iocg_to_blkg(struct ioc_gq * iocg)697 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg)
698 {
699 	return pd_to_blkg(&iocg->pd);
700 }
701 
blkcg_to_iocc(struct blkcg * blkcg)702 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg)
703 {
704 	return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost),
705 			    struct ioc_cgrp, cpd);
706 }
707 
708 /*
709  * Scale @abs_cost to the inverse of @hw_inuse.  The lower the hierarchical
710  * weight, the more expensive each IO.  Must round up.
711  */
abs_cost_to_cost(u64 abs_cost,u32 hw_inuse)712 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse)
713 {
714 	return DIV64_U64_ROUND_UP(abs_cost * WEIGHT_ONE, hw_inuse);
715 }
716 
717 /*
718  * The inverse of abs_cost_to_cost().  Must round up.
719  */
cost_to_abs_cost(u64 cost,u32 hw_inuse)720 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse)
721 {
722 	return DIV64_U64_ROUND_UP(cost * hw_inuse, WEIGHT_ONE);
723 }
724 
iocg_commit_bio(struct ioc_gq * iocg,struct bio * bio,u64 abs_cost,u64 cost)725 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio,
726 			    u64 abs_cost, u64 cost)
727 {
728 	struct iocg_pcpu_stat *gcs;
729 
730 	bio->bi_iocost_cost = cost;
731 	atomic64_add(cost, &iocg->vtime);
732 
733 	gcs = get_cpu_ptr(iocg->pcpu_stat);
734 	local64_add(abs_cost, &gcs->abs_vusage);
735 	put_cpu_ptr(gcs);
736 }
737 
iocg_lock(struct ioc_gq * iocg,bool lock_ioc,unsigned long * flags)738 static void iocg_lock(struct ioc_gq *iocg, bool lock_ioc, unsigned long *flags)
739 {
740 	if (lock_ioc) {
741 		spin_lock_irqsave(&iocg->ioc->lock, *flags);
742 		spin_lock(&iocg->waitq.lock);
743 	} else {
744 		spin_lock_irqsave(&iocg->waitq.lock, *flags);
745 	}
746 }
747 
iocg_unlock(struct ioc_gq * iocg,bool unlock_ioc,unsigned long * flags)748 static void iocg_unlock(struct ioc_gq *iocg, bool unlock_ioc, unsigned long *flags)
749 {
750 	if (unlock_ioc) {
751 		spin_unlock(&iocg->waitq.lock);
752 		spin_unlock_irqrestore(&iocg->ioc->lock, *flags);
753 	} else {
754 		spin_unlock_irqrestore(&iocg->waitq.lock, *flags);
755 	}
756 }
757 
758 #define CREATE_TRACE_POINTS
759 #include <trace/events/iocost.h>
760 
ioc_refresh_margins(struct ioc * ioc)761 static void ioc_refresh_margins(struct ioc *ioc)
762 {
763 	struct ioc_margins *margins = &ioc->margins;
764 	u32 period_us = ioc->period_us;
765 	u64 vrate = ioc->vtime_base_rate;
766 
767 	margins->min = (period_us * MARGIN_MIN_PCT / 100) * vrate;
768 	margins->low = (period_us * MARGIN_LOW_PCT / 100) * vrate;
769 	margins->target = (period_us * MARGIN_TARGET_PCT / 100) * vrate;
770 }
771 
772 /* latency Qos params changed, update period_us and all the dependent params */
ioc_refresh_period_us(struct ioc * ioc)773 static void ioc_refresh_period_us(struct ioc *ioc)
774 {
775 	u32 ppm, lat, multi, period_us;
776 
777 	lockdep_assert_held(&ioc->lock);
778 
779 	/* pick the higher latency target */
780 	if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) {
781 		ppm = ioc->params.qos[QOS_RPPM];
782 		lat = ioc->params.qos[QOS_RLAT];
783 	} else {
784 		ppm = ioc->params.qos[QOS_WPPM];
785 		lat = ioc->params.qos[QOS_WLAT];
786 	}
787 
788 	/*
789 	 * We want the period to be long enough to contain a healthy number
790 	 * of IOs while short enough for granular control.  Define it as a
791 	 * multiple of the latency target.  Ideally, the multiplier should
792 	 * be scaled according to the percentile so that it would nominally
793 	 * contain a certain number of requests.  Let's be simpler and
794 	 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
795 	 */
796 	if (ppm)
797 		multi = max_t(u32, (MILLION - ppm) / 50000, 2);
798 	else
799 		multi = 2;
800 	period_us = multi * lat;
801 	period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD);
802 
803 	/* calculate dependent params */
804 	ioc->period_us = period_us;
805 	ioc->timer_slack_ns = div64_u64(
806 		(u64)period_us * NSEC_PER_USEC * TIMER_SLACK_PCT,
807 		100);
808 	ioc_refresh_margins(ioc);
809 }
810 
ioc_autop_idx(struct ioc * ioc)811 static int ioc_autop_idx(struct ioc *ioc)
812 {
813 	int idx = ioc->autop_idx;
814 	const struct ioc_params *p = &autop[idx];
815 	u32 vrate_pct;
816 	u64 now_ns;
817 
818 	/* rotational? */
819 	if (!blk_queue_nonrot(ioc->rqos.q))
820 		return AUTOP_HDD;
821 
822 	/* handle SATA SSDs w/ broken NCQ */
823 	if (blk_queue_depth(ioc->rqos.q) == 1)
824 		return AUTOP_SSD_QD1;
825 
826 	/* use one of the normal ssd sets */
827 	if (idx < AUTOP_SSD_DFL)
828 		return AUTOP_SSD_DFL;
829 
830 	/* if user is overriding anything, maintain what was there */
831 	if (ioc->user_qos_params || ioc->user_cost_model)
832 		return idx;
833 
834 	/* step up/down based on the vrate */
835 	vrate_pct = div64_u64(ioc->vtime_base_rate * 100, VTIME_PER_USEC);
836 	now_ns = ktime_get_ns();
837 
838 	if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) {
839 		if (!ioc->autop_too_fast_at)
840 			ioc->autop_too_fast_at = now_ns;
841 		if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC)
842 			return idx + 1;
843 	} else {
844 		ioc->autop_too_fast_at = 0;
845 	}
846 
847 	if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) {
848 		if (!ioc->autop_too_slow_at)
849 			ioc->autop_too_slow_at = now_ns;
850 		if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC)
851 			return idx - 1;
852 	} else {
853 		ioc->autop_too_slow_at = 0;
854 	}
855 
856 	return idx;
857 }
858 
859 /*
860  * Take the followings as input
861  *
862  *  @bps	maximum sequential throughput
863  *  @seqiops	maximum sequential 4k iops
864  *  @randiops	maximum random 4k iops
865  *
866  * and calculate the linear model cost coefficients.
867  *
868  *  *@page	per-page cost		1s / (@bps / 4096)
869  *  *@seqio	base cost of a seq IO	max((1s / @seqiops) - *@page, 0)
870  *  @randiops	base cost of a rand IO	max((1s / @randiops) - *@page, 0)
871  */
calc_lcoefs(u64 bps,u64 seqiops,u64 randiops,u64 * page,u64 * seqio,u64 * randio)872 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops,
873 			u64 *page, u64 *seqio, u64 *randio)
874 {
875 	u64 v;
876 
877 	*page = *seqio = *randio = 0;
878 
879 	if (bps) {
880 		u64 bps_pages = DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE);
881 
882 		if (bps_pages)
883 			*page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, bps_pages);
884 		else
885 			*page = 1;
886 	}
887 
888 	if (seqiops) {
889 		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops);
890 		if (v > *page)
891 			*seqio = v - *page;
892 	}
893 
894 	if (randiops) {
895 		v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops);
896 		if (v > *page)
897 			*randio = v - *page;
898 	}
899 }
900 
ioc_refresh_lcoefs(struct ioc * ioc)901 static void ioc_refresh_lcoefs(struct ioc *ioc)
902 {
903 	u64 *u = ioc->params.i_lcoefs;
904 	u64 *c = ioc->params.lcoefs;
905 
906 	calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
907 		    &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]);
908 	calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS],
909 		    &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]);
910 }
911 
ioc_refresh_params(struct ioc * ioc,bool force)912 static bool ioc_refresh_params(struct ioc *ioc, bool force)
913 {
914 	const struct ioc_params *p;
915 	int idx;
916 
917 	lockdep_assert_held(&ioc->lock);
918 
919 	idx = ioc_autop_idx(ioc);
920 	p = &autop[idx];
921 
922 	if (idx == ioc->autop_idx && !force)
923 		return false;
924 
925 	if (idx != ioc->autop_idx)
926 		atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
927 
928 	ioc->autop_idx = idx;
929 	ioc->autop_too_fast_at = 0;
930 	ioc->autop_too_slow_at = 0;
931 
932 	if (!ioc->user_qos_params)
933 		memcpy(ioc->params.qos, p->qos, sizeof(p->qos));
934 	if (!ioc->user_cost_model)
935 		memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs));
936 
937 	ioc_refresh_period_us(ioc);
938 	ioc_refresh_lcoefs(ioc);
939 
940 	ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] *
941 					    VTIME_PER_USEC, MILLION);
942 	ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] *
943 				   VTIME_PER_USEC, MILLION);
944 
945 	return true;
946 }
947 
948 /*
949  * When an iocg accumulates too much vtime or gets deactivated, we throw away
950  * some vtime, which lowers the overall device utilization. As the exact amount
951  * which is being thrown away is known, we can compensate by accelerating the
952  * vrate accordingly so that the extra vtime generated in the current period
953  * matches what got lost.
954  */
ioc_refresh_vrate(struct ioc * ioc,struct ioc_now * now)955 static void ioc_refresh_vrate(struct ioc *ioc, struct ioc_now *now)
956 {
957 	s64 pleft = ioc->period_at + ioc->period_us - now->now;
958 	s64 vperiod = ioc->period_us * ioc->vtime_base_rate;
959 	s64 vcomp, vcomp_min, vcomp_max;
960 
961 	lockdep_assert_held(&ioc->lock);
962 
963 	/* we need some time left in this period */
964 	if (pleft <= 0)
965 		goto done;
966 
967 	/*
968 	 * Calculate how much vrate should be adjusted to offset the error.
969 	 * Limit the amount of adjustment and deduct the adjusted amount from
970 	 * the error.
971 	 */
972 	vcomp = -div64_s64(ioc->vtime_err, pleft);
973 	vcomp_min = -(ioc->vtime_base_rate >> 1);
974 	vcomp_max = ioc->vtime_base_rate;
975 	vcomp = clamp(vcomp, vcomp_min, vcomp_max);
976 
977 	ioc->vtime_err += vcomp * pleft;
978 
979 	atomic64_set(&ioc->vtime_rate, ioc->vtime_base_rate + vcomp);
980 done:
981 	/* bound how much error can accumulate */
982 	ioc->vtime_err = clamp(ioc->vtime_err, -vperiod, vperiod);
983 }
984 
985 /* take a snapshot of the current [v]time and vrate */
ioc_now(struct ioc * ioc,struct ioc_now * now)986 static void ioc_now(struct ioc *ioc, struct ioc_now *now)
987 {
988 	unsigned seq;
989 
990 	now->now_ns = ktime_get();
991 	now->now = ktime_to_us(now->now_ns);
992 	now->vrate = atomic64_read(&ioc->vtime_rate);
993 
994 	/*
995 	 * The current vtime is
996 	 *
997 	 *   vtime at period start + (wallclock time since the start) * vrate
998 	 *
999 	 * As a consistent snapshot of `period_at_vtime` and `period_at` is
1000 	 * needed, they're seqcount protected.
1001 	 */
1002 	do {
1003 		seq = read_seqcount_begin(&ioc->period_seqcount);
1004 		now->vnow = ioc->period_at_vtime +
1005 			(now->now - ioc->period_at) * now->vrate;
1006 	} while (read_seqcount_retry(&ioc->period_seqcount, seq));
1007 }
1008 
ioc_start_period(struct ioc * ioc,struct ioc_now * now)1009 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now)
1010 {
1011 	WARN_ON_ONCE(ioc->running != IOC_RUNNING);
1012 
1013 	write_seqcount_begin(&ioc->period_seqcount);
1014 	ioc->period_at = now->now;
1015 	ioc->period_at_vtime = now->vnow;
1016 	write_seqcount_end(&ioc->period_seqcount);
1017 
1018 	ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us);
1019 	add_timer(&ioc->timer);
1020 }
1021 
1022 /*
1023  * Update @iocg's `active` and `inuse` to @active and @inuse, update level
1024  * weight sums and propagate upwards accordingly. If @save, the current margin
1025  * is saved to be used as reference for later inuse in-period adjustments.
1026  */
__propagate_weights(struct ioc_gq * iocg,u32 active,u32 inuse,bool save,struct ioc_now * now)1027 static void __propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1028 				bool save, struct ioc_now *now)
1029 {
1030 	struct ioc *ioc = iocg->ioc;
1031 	int lvl;
1032 
1033 	lockdep_assert_held(&ioc->lock);
1034 
1035 	/*
1036 	 * For an active leaf node, its inuse shouldn't be zero or exceed
1037 	 * @active. An active internal node's inuse is solely determined by the
1038 	 * inuse to active ratio of its children regardless of @inuse.
1039 	 */
1040 	if (list_empty(&iocg->active_list) && iocg->child_active_sum) {
1041 		inuse = DIV64_U64_ROUND_UP(active * iocg->child_inuse_sum,
1042 					   iocg->child_active_sum);
1043 	} else {
1044 		inuse = clamp_t(u32, inuse, 1, active);
1045 	}
1046 
1047 	iocg->last_inuse = iocg->inuse;
1048 	if (save)
1049 		iocg->saved_margin = now->vnow - atomic64_read(&iocg->vtime);
1050 
1051 	if (active == iocg->active && inuse == iocg->inuse)
1052 		return;
1053 
1054 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1055 		struct ioc_gq *parent = iocg->ancestors[lvl];
1056 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1057 		u32 parent_active = 0, parent_inuse = 0;
1058 
1059 		/* update the level sums */
1060 		parent->child_active_sum += (s32)(active - child->active);
1061 		parent->child_inuse_sum += (s32)(inuse - child->inuse);
1062 		/* apply the updates */
1063 		child->active = active;
1064 		child->inuse = inuse;
1065 
1066 		/*
1067 		 * The delta between inuse and active sums indicates that
1068 		 * that much of weight is being given away.  Parent's inuse
1069 		 * and active should reflect the ratio.
1070 		 */
1071 		if (parent->child_active_sum) {
1072 			parent_active = parent->weight;
1073 			parent_inuse = DIV64_U64_ROUND_UP(
1074 				parent_active * parent->child_inuse_sum,
1075 				parent->child_active_sum);
1076 		}
1077 
1078 		/* do we need to keep walking up? */
1079 		if (parent_active == parent->active &&
1080 		    parent_inuse == parent->inuse)
1081 			break;
1082 
1083 		active = parent_active;
1084 		inuse = parent_inuse;
1085 	}
1086 
1087 	ioc->weights_updated = true;
1088 }
1089 
commit_weights(struct ioc * ioc)1090 static void commit_weights(struct ioc *ioc)
1091 {
1092 	lockdep_assert_held(&ioc->lock);
1093 
1094 	if (ioc->weights_updated) {
1095 		/* paired with rmb in current_hweight(), see there */
1096 		smp_wmb();
1097 		atomic_inc(&ioc->hweight_gen);
1098 		ioc->weights_updated = false;
1099 	}
1100 }
1101 
propagate_weights(struct ioc_gq * iocg,u32 active,u32 inuse,bool save,struct ioc_now * now)1102 static void propagate_weights(struct ioc_gq *iocg, u32 active, u32 inuse,
1103 			      bool save, struct ioc_now *now)
1104 {
1105 	__propagate_weights(iocg, active, inuse, save, now);
1106 	commit_weights(iocg->ioc);
1107 }
1108 
current_hweight(struct ioc_gq * iocg,u32 * hw_activep,u32 * hw_inusep)1109 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep)
1110 {
1111 	struct ioc *ioc = iocg->ioc;
1112 	int lvl;
1113 	u32 hwa, hwi;
1114 	int ioc_gen;
1115 
1116 	/* hot path - if uptodate, use cached */
1117 	ioc_gen = atomic_read(&ioc->hweight_gen);
1118 	if (ioc_gen == iocg->hweight_gen)
1119 		goto out;
1120 
1121 	/*
1122 	 * Paired with wmb in commit_weights(). If we saw the updated
1123 	 * hweight_gen, all the weight updates from __propagate_weights() are
1124 	 * visible too.
1125 	 *
1126 	 * We can race with weight updates during calculation and get it
1127 	 * wrong.  However, hweight_gen would have changed and a future
1128 	 * reader will recalculate and we're guaranteed to discard the
1129 	 * wrong result soon.
1130 	 */
1131 	smp_rmb();
1132 
1133 	hwa = hwi = WEIGHT_ONE;
1134 	for (lvl = 0; lvl <= iocg->level - 1; lvl++) {
1135 		struct ioc_gq *parent = iocg->ancestors[lvl];
1136 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1137 		u64 active_sum = READ_ONCE(parent->child_active_sum);
1138 		u64 inuse_sum = READ_ONCE(parent->child_inuse_sum);
1139 		u32 active = READ_ONCE(child->active);
1140 		u32 inuse = READ_ONCE(child->inuse);
1141 
1142 		/* we can race with deactivations and either may read as zero */
1143 		if (!active_sum || !inuse_sum)
1144 			continue;
1145 
1146 		active_sum = max_t(u64, active, active_sum);
1147 		hwa = div64_u64((u64)hwa * active, active_sum);
1148 
1149 		inuse_sum = max_t(u64, inuse, inuse_sum);
1150 		hwi = div64_u64((u64)hwi * inuse, inuse_sum);
1151 	}
1152 
1153 	iocg->hweight_active = max_t(u32, hwa, 1);
1154 	iocg->hweight_inuse = max_t(u32, hwi, 1);
1155 	iocg->hweight_gen = ioc_gen;
1156 out:
1157 	if (hw_activep)
1158 		*hw_activep = iocg->hweight_active;
1159 	if (hw_inusep)
1160 		*hw_inusep = iocg->hweight_inuse;
1161 }
1162 
1163 /*
1164  * Calculate the hweight_inuse @iocg would get with max @inuse assuming all the
1165  * other weights stay unchanged.
1166  */
current_hweight_max(struct ioc_gq * iocg)1167 static u32 current_hweight_max(struct ioc_gq *iocg)
1168 {
1169 	u32 hwm = WEIGHT_ONE;
1170 	u32 inuse = iocg->active;
1171 	u64 child_inuse_sum;
1172 	int lvl;
1173 
1174 	lockdep_assert_held(&iocg->ioc->lock);
1175 
1176 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1177 		struct ioc_gq *parent = iocg->ancestors[lvl];
1178 		struct ioc_gq *child = iocg->ancestors[lvl + 1];
1179 
1180 		child_inuse_sum = parent->child_inuse_sum + inuse - child->inuse;
1181 		hwm = div64_u64((u64)hwm * inuse, child_inuse_sum);
1182 		inuse = DIV64_U64_ROUND_UP(parent->active * child_inuse_sum,
1183 					   parent->child_active_sum);
1184 	}
1185 
1186 	return max_t(u32, hwm, 1);
1187 }
1188 
weight_updated(struct ioc_gq * iocg,struct ioc_now * now)1189 static void weight_updated(struct ioc_gq *iocg, struct ioc_now *now)
1190 {
1191 	struct ioc *ioc = iocg->ioc;
1192 	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1193 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg);
1194 	u32 weight;
1195 
1196 	lockdep_assert_held(&ioc->lock);
1197 
1198 	weight = iocg->cfg_weight ?: iocc->dfl_weight;
1199 	if (weight != iocg->weight && iocg->active)
1200 		propagate_weights(iocg, weight, iocg->inuse, true, now);
1201 	iocg->weight = weight;
1202 }
1203 
iocg_activate(struct ioc_gq * iocg,struct ioc_now * now)1204 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now)
1205 {
1206 	struct ioc *ioc = iocg->ioc;
1207 	u64 last_period, cur_period;
1208 	u64 vtime, vtarget;
1209 	int i;
1210 
1211 	/*
1212 	 * If seem to be already active, just update the stamp to tell the
1213 	 * timer that we're still active.  We don't mind occassional races.
1214 	 */
1215 	if (!list_empty(&iocg->active_list)) {
1216 		ioc_now(ioc, now);
1217 		cur_period = atomic64_read(&ioc->cur_period);
1218 		if (atomic64_read(&iocg->active_period) != cur_period)
1219 			atomic64_set(&iocg->active_period, cur_period);
1220 		return true;
1221 	}
1222 
1223 	/* racy check on internal node IOs, treat as root level IOs */
1224 	if (iocg->child_active_sum)
1225 		return false;
1226 
1227 	spin_lock_irq(&ioc->lock);
1228 
1229 	ioc_now(ioc, now);
1230 
1231 	/* update period */
1232 	cur_period = atomic64_read(&ioc->cur_period);
1233 	last_period = atomic64_read(&iocg->active_period);
1234 	atomic64_set(&iocg->active_period, cur_period);
1235 
1236 	/* already activated or breaking leaf-only constraint? */
1237 	if (!list_empty(&iocg->active_list))
1238 		goto succeed_unlock;
1239 	for (i = iocg->level - 1; i > 0; i--)
1240 		if (!list_empty(&iocg->ancestors[i]->active_list))
1241 			goto fail_unlock;
1242 
1243 	if (iocg->child_active_sum)
1244 		goto fail_unlock;
1245 
1246 	/*
1247 	 * Always start with the target budget. On deactivation, we throw away
1248 	 * anything above it.
1249 	 */
1250 	vtarget = now->vnow - ioc->margins.target;
1251 	vtime = atomic64_read(&iocg->vtime);
1252 
1253 	atomic64_add(vtarget - vtime, &iocg->vtime);
1254 	atomic64_add(vtarget - vtime, &iocg->done_vtime);
1255 	vtime = vtarget;
1256 
1257 	/*
1258 	 * Activate, propagate weight and start period timer if not
1259 	 * running.  Reset hweight_gen to avoid accidental match from
1260 	 * wrapping.
1261 	 */
1262 	iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1;
1263 	list_add(&iocg->active_list, &ioc->active_iocgs);
1264 
1265 	propagate_weights(iocg, iocg->weight,
1266 			  iocg->last_inuse ?: iocg->weight, true, now);
1267 
1268 	TRACE_IOCG_PATH(iocg_activate, iocg, now,
1269 			last_period, cur_period, vtime);
1270 
1271 	iocg->activated_at = now->now;
1272 
1273 	if (ioc->running == IOC_IDLE) {
1274 		ioc->running = IOC_RUNNING;
1275 		ioc->dfgv_period_at = now->now;
1276 		ioc->dfgv_period_rem = 0;
1277 		ioc_start_period(ioc, now);
1278 	}
1279 
1280 succeed_unlock:
1281 	spin_unlock_irq(&ioc->lock);
1282 	return true;
1283 
1284 fail_unlock:
1285 	spin_unlock_irq(&ioc->lock);
1286 	return false;
1287 }
1288 
iocg_kick_delay(struct ioc_gq * iocg,struct ioc_now * now)1289 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now)
1290 {
1291 	struct ioc *ioc = iocg->ioc;
1292 	struct blkcg_gq *blkg = iocg_to_blkg(iocg);
1293 	u64 tdelta, delay, new_delay;
1294 	s64 vover, vover_pct;
1295 	u32 hwa;
1296 
1297 	lockdep_assert_held(&iocg->waitq.lock);
1298 
1299 	/* calculate the current delay in effect - 1/2 every second */
1300 	tdelta = now->now - iocg->delay_at;
1301 	if (iocg->delay)
1302 		delay = iocg->delay >> div64_u64(tdelta, USEC_PER_SEC);
1303 	else
1304 		delay = 0;
1305 
1306 	/* calculate the new delay from the debt amount */
1307 	current_hweight(iocg, &hwa, NULL);
1308 	vover = atomic64_read(&iocg->vtime) +
1309 		abs_cost_to_cost(iocg->abs_vdebt, hwa) - now->vnow;
1310 	vover_pct = div64_s64(100 * vover,
1311 			      ioc->period_us * ioc->vtime_base_rate);
1312 
1313 	if (vover_pct <= MIN_DELAY_THR_PCT)
1314 		new_delay = 0;
1315 	else if (vover_pct >= MAX_DELAY_THR_PCT)
1316 		new_delay = MAX_DELAY;
1317 	else
1318 		new_delay = MIN_DELAY +
1319 			div_u64((MAX_DELAY - MIN_DELAY) *
1320 				(vover_pct - MIN_DELAY_THR_PCT),
1321 				MAX_DELAY_THR_PCT - MIN_DELAY_THR_PCT);
1322 
1323 	/* pick the higher one and apply */
1324 	if (new_delay > delay) {
1325 		iocg->delay = new_delay;
1326 		iocg->delay_at = now->now;
1327 		delay = new_delay;
1328 	}
1329 
1330 	if (delay >= MIN_DELAY) {
1331 		if (!iocg->indelay_since)
1332 			iocg->indelay_since = now->now;
1333 		blkcg_set_delay(blkg, delay * NSEC_PER_USEC);
1334 		return true;
1335 	} else {
1336 		if (iocg->indelay_since) {
1337 			iocg->local_stat.indelay_us += now->now - iocg->indelay_since;
1338 			iocg->indelay_since = 0;
1339 		}
1340 		iocg->delay = 0;
1341 		blkcg_clear_delay(blkg);
1342 		return false;
1343 	}
1344 }
1345 
iocg_incur_debt(struct ioc_gq * iocg,u64 abs_cost,struct ioc_now * now)1346 static void iocg_incur_debt(struct ioc_gq *iocg, u64 abs_cost,
1347 			    struct ioc_now *now)
1348 {
1349 	struct iocg_pcpu_stat *gcs;
1350 
1351 	lockdep_assert_held(&iocg->ioc->lock);
1352 	lockdep_assert_held(&iocg->waitq.lock);
1353 	WARN_ON_ONCE(list_empty(&iocg->active_list));
1354 
1355 	/*
1356 	 * Once in debt, debt handling owns inuse. @iocg stays at the minimum
1357 	 * inuse donating all of it share to others until its debt is paid off.
1358 	 */
1359 	if (!iocg->abs_vdebt && abs_cost) {
1360 		iocg->indebt_since = now->now;
1361 		propagate_weights(iocg, iocg->active, 0, false, now);
1362 	}
1363 
1364 	iocg->abs_vdebt += abs_cost;
1365 
1366 	gcs = get_cpu_ptr(iocg->pcpu_stat);
1367 	local64_add(abs_cost, &gcs->abs_vusage);
1368 	put_cpu_ptr(gcs);
1369 }
1370 
iocg_pay_debt(struct ioc_gq * iocg,u64 abs_vpay,struct ioc_now * now)1371 static void iocg_pay_debt(struct ioc_gq *iocg, u64 abs_vpay,
1372 			  struct ioc_now *now)
1373 {
1374 	lockdep_assert_held(&iocg->ioc->lock);
1375 	lockdep_assert_held(&iocg->waitq.lock);
1376 
1377 	/* make sure that nobody messed with @iocg */
1378 	WARN_ON_ONCE(list_empty(&iocg->active_list));
1379 	WARN_ON_ONCE(iocg->inuse > 1);
1380 
1381 	iocg->abs_vdebt -= min(abs_vpay, iocg->abs_vdebt);
1382 
1383 	/* if debt is paid in full, restore inuse */
1384 	if (!iocg->abs_vdebt) {
1385 		iocg->local_stat.indebt_us += now->now - iocg->indebt_since;
1386 		iocg->indebt_since = 0;
1387 
1388 		propagate_weights(iocg, iocg->active, iocg->last_inuse,
1389 				  false, now);
1390 	}
1391 }
1392 
iocg_wake_fn(struct wait_queue_entry * wq_entry,unsigned mode,int flags,void * key)1393 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode,
1394 			int flags, void *key)
1395 {
1396 	struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait);
1397 	struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key;
1398 	u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse);
1399 
1400 	ctx->vbudget -= cost;
1401 
1402 	if (ctx->vbudget < 0)
1403 		return -1;
1404 
1405 	iocg_commit_bio(ctx->iocg, wait->bio, wait->abs_cost, cost);
1406 	wait->committed = true;
1407 
1408 	/*
1409 	 * autoremove_wake_function() removes the wait entry only when it
1410 	 * actually changed the task state. We want the wait always removed.
1411 	 * Remove explicitly and use default_wake_function(). Note that the
1412 	 * order of operations is important as finish_wait() tests whether
1413 	 * @wq_entry is removed without grabbing the lock.
1414 	 */
1415 	default_wake_function(wq_entry, mode, flags, key);
1416 	list_del_init_careful(&wq_entry->entry);
1417 	return 0;
1418 }
1419 
1420 /*
1421  * Calculate the accumulated budget, pay debt if @pay_debt and wake up waiters
1422  * accordingly. When @pay_debt is %true, the caller must be holding ioc->lock in
1423  * addition to iocg->waitq.lock.
1424  */
iocg_kick_waitq(struct ioc_gq * iocg,bool pay_debt,struct ioc_now * now)1425 static void iocg_kick_waitq(struct ioc_gq *iocg, bool pay_debt,
1426 			    struct ioc_now *now)
1427 {
1428 	struct ioc *ioc = iocg->ioc;
1429 	struct iocg_wake_ctx ctx = { .iocg = iocg };
1430 	u64 vshortage, expires, oexpires;
1431 	s64 vbudget;
1432 	u32 hwa;
1433 
1434 	lockdep_assert_held(&iocg->waitq.lock);
1435 
1436 	current_hweight(iocg, &hwa, NULL);
1437 	vbudget = now->vnow - atomic64_read(&iocg->vtime);
1438 
1439 	/* pay off debt */
1440 	if (pay_debt && iocg->abs_vdebt && vbudget > 0) {
1441 		u64 abs_vbudget = cost_to_abs_cost(vbudget, hwa);
1442 		u64 abs_vpay = min_t(u64, abs_vbudget, iocg->abs_vdebt);
1443 		u64 vpay = abs_cost_to_cost(abs_vpay, hwa);
1444 
1445 		lockdep_assert_held(&ioc->lock);
1446 
1447 		atomic64_add(vpay, &iocg->vtime);
1448 		atomic64_add(vpay, &iocg->done_vtime);
1449 		iocg_pay_debt(iocg, abs_vpay, now);
1450 		vbudget -= vpay;
1451 	}
1452 
1453 	if (iocg->abs_vdebt || iocg->delay)
1454 		iocg_kick_delay(iocg, now);
1455 
1456 	/*
1457 	 * Debt can still be outstanding if we haven't paid all yet or the
1458 	 * caller raced and called without @pay_debt. Shouldn't wake up waiters
1459 	 * under debt. Make sure @vbudget reflects the outstanding amount and is
1460 	 * not positive.
1461 	 */
1462 	if (iocg->abs_vdebt) {
1463 		s64 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hwa);
1464 		vbudget = min_t(s64, 0, vbudget - vdebt);
1465 	}
1466 
1467 	/*
1468 	 * Wake up the ones which are due and see how much vtime we'll need for
1469 	 * the next one. As paying off debt restores hw_inuse, it must be read
1470 	 * after the above debt payment.
1471 	 */
1472 	ctx.vbudget = vbudget;
1473 	current_hweight(iocg, NULL, &ctx.hw_inuse);
1474 
1475 	__wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx);
1476 
1477 	if (!waitqueue_active(&iocg->waitq)) {
1478 		if (iocg->wait_since) {
1479 			iocg->local_stat.wait_us += now->now - iocg->wait_since;
1480 			iocg->wait_since = 0;
1481 		}
1482 		return;
1483 	}
1484 
1485 	if (!iocg->wait_since)
1486 		iocg->wait_since = now->now;
1487 
1488 	if (WARN_ON_ONCE(ctx.vbudget >= 0))
1489 		return;
1490 
1491 	/* determine next wakeup, add a timer margin to guarantee chunking */
1492 	vshortage = -ctx.vbudget;
1493 	expires = now->now_ns +
1494 		DIV64_U64_ROUND_UP(vshortage, ioc->vtime_base_rate) *
1495 		NSEC_PER_USEC;
1496 	expires += ioc->timer_slack_ns;
1497 
1498 	/* if already active and close enough, don't bother */
1499 	oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer));
1500 	if (hrtimer_is_queued(&iocg->waitq_timer) &&
1501 	    abs(oexpires - expires) <= ioc->timer_slack_ns)
1502 		return;
1503 
1504 	hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires),
1505 			       ioc->timer_slack_ns, HRTIMER_MODE_ABS);
1506 }
1507 
iocg_waitq_timer_fn(struct hrtimer * timer)1508 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer)
1509 {
1510 	struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer);
1511 	bool pay_debt = READ_ONCE(iocg->abs_vdebt);
1512 	struct ioc_now now;
1513 	unsigned long flags;
1514 
1515 	ioc_now(iocg->ioc, &now);
1516 
1517 	iocg_lock(iocg, pay_debt, &flags);
1518 	iocg_kick_waitq(iocg, pay_debt, &now);
1519 	iocg_unlock(iocg, pay_debt, &flags);
1520 
1521 	return HRTIMER_NORESTART;
1522 }
1523 
ioc_lat_stat(struct ioc * ioc,u32 * missed_ppm_ar,u32 * rq_wait_pct_p)1524 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p)
1525 {
1526 	u32 nr_met[2] = { };
1527 	u32 nr_missed[2] = { };
1528 	u64 rq_wait_ns = 0;
1529 	int cpu, rw;
1530 
1531 	for_each_online_cpu(cpu) {
1532 		struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu);
1533 		u64 this_rq_wait_ns;
1534 
1535 		for (rw = READ; rw <= WRITE; rw++) {
1536 			u32 this_met = local_read(&stat->missed[rw].nr_met);
1537 			u32 this_missed = local_read(&stat->missed[rw].nr_missed);
1538 
1539 			nr_met[rw] += this_met - stat->missed[rw].last_met;
1540 			nr_missed[rw] += this_missed - stat->missed[rw].last_missed;
1541 			stat->missed[rw].last_met = this_met;
1542 			stat->missed[rw].last_missed = this_missed;
1543 		}
1544 
1545 		this_rq_wait_ns = local64_read(&stat->rq_wait_ns);
1546 		rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns;
1547 		stat->last_rq_wait_ns = this_rq_wait_ns;
1548 	}
1549 
1550 	for (rw = READ; rw <= WRITE; rw++) {
1551 		if (nr_met[rw] + nr_missed[rw])
1552 			missed_ppm_ar[rw] =
1553 				DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION,
1554 						   nr_met[rw] + nr_missed[rw]);
1555 		else
1556 			missed_ppm_ar[rw] = 0;
1557 	}
1558 
1559 	*rq_wait_pct_p = div64_u64(rq_wait_ns * 100,
1560 				   ioc->period_us * NSEC_PER_USEC);
1561 }
1562 
1563 /* was iocg idle this period? */
iocg_is_idle(struct ioc_gq * iocg)1564 static bool iocg_is_idle(struct ioc_gq *iocg)
1565 {
1566 	struct ioc *ioc = iocg->ioc;
1567 
1568 	/* did something get issued this period? */
1569 	if (atomic64_read(&iocg->active_period) ==
1570 	    atomic64_read(&ioc->cur_period))
1571 		return false;
1572 
1573 	/* is something in flight? */
1574 	if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime))
1575 		return false;
1576 
1577 	return true;
1578 }
1579 
1580 /*
1581  * Call this function on the target leaf @iocg's to build pre-order traversal
1582  * list of all the ancestors in @inner_walk. The inner nodes are linked through
1583  * ->walk_list and the caller is responsible for dissolving the list after use.
1584  */
iocg_build_inner_walk(struct ioc_gq * iocg,struct list_head * inner_walk)1585 static void iocg_build_inner_walk(struct ioc_gq *iocg,
1586 				  struct list_head *inner_walk)
1587 {
1588 	int lvl;
1589 
1590 	WARN_ON_ONCE(!list_empty(&iocg->walk_list));
1591 
1592 	/* find the first ancestor which hasn't been visited yet */
1593 	for (lvl = iocg->level - 1; lvl >= 0; lvl--) {
1594 		if (!list_empty(&iocg->ancestors[lvl]->walk_list))
1595 			break;
1596 	}
1597 
1598 	/* walk down and visit the inner nodes to get pre-order traversal */
1599 	while (++lvl <= iocg->level - 1) {
1600 		struct ioc_gq *inner = iocg->ancestors[lvl];
1601 
1602 		/* record traversal order */
1603 		list_add_tail(&inner->walk_list, inner_walk);
1604 	}
1605 }
1606 
1607 /* collect per-cpu counters and propagate the deltas to the parent */
iocg_flush_stat_one(struct ioc_gq * iocg,struct ioc_now * now)1608 static void iocg_flush_stat_one(struct ioc_gq *iocg, struct ioc_now *now)
1609 {
1610 	struct ioc *ioc = iocg->ioc;
1611 	struct iocg_stat new_stat;
1612 	u64 abs_vusage = 0;
1613 	u64 vusage_delta;
1614 	int cpu;
1615 
1616 	lockdep_assert_held(&iocg->ioc->lock);
1617 
1618 	/* collect per-cpu counters */
1619 	for_each_possible_cpu(cpu) {
1620 		abs_vusage += local64_read(
1621 				per_cpu_ptr(&iocg->pcpu_stat->abs_vusage, cpu));
1622 	}
1623 	vusage_delta = abs_vusage - iocg->last_stat_abs_vusage;
1624 	iocg->last_stat_abs_vusage = abs_vusage;
1625 
1626 	iocg->usage_delta_us = div64_u64(vusage_delta, ioc->vtime_base_rate);
1627 	iocg->local_stat.usage_us += iocg->usage_delta_us;
1628 
1629 	/* propagate upwards */
1630 	new_stat.usage_us =
1631 		iocg->local_stat.usage_us + iocg->desc_stat.usage_us;
1632 	new_stat.wait_us =
1633 		iocg->local_stat.wait_us + iocg->desc_stat.wait_us;
1634 	new_stat.indebt_us =
1635 		iocg->local_stat.indebt_us + iocg->desc_stat.indebt_us;
1636 	new_stat.indelay_us =
1637 		iocg->local_stat.indelay_us + iocg->desc_stat.indelay_us;
1638 
1639 	/* propagate the deltas to the parent */
1640 	if (iocg->level > 0) {
1641 		struct iocg_stat *parent_stat =
1642 			&iocg->ancestors[iocg->level - 1]->desc_stat;
1643 
1644 		parent_stat->usage_us +=
1645 			new_stat.usage_us - iocg->last_stat.usage_us;
1646 		parent_stat->wait_us +=
1647 			new_stat.wait_us - iocg->last_stat.wait_us;
1648 		parent_stat->indebt_us +=
1649 			new_stat.indebt_us - iocg->last_stat.indebt_us;
1650 		parent_stat->indelay_us +=
1651 			new_stat.indelay_us - iocg->last_stat.indelay_us;
1652 	}
1653 
1654 	iocg->last_stat = new_stat;
1655 }
1656 
1657 /* get stat counters ready for reading on all active iocgs */
iocg_flush_stat(struct list_head * target_iocgs,struct ioc_now * now)1658 static void iocg_flush_stat(struct list_head *target_iocgs, struct ioc_now *now)
1659 {
1660 	LIST_HEAD(inner_walk);
1661 	struct ioc_gq *iocg, *tiocg;
1662 
1663 	/* flush leaves and build inner node walk list */
1664 	list_for_each_entry(iocg, target_iocgs, active_list) {
1665 		iocg_flush_stat_one(iocg, now);
1666 		iocg_build_inner_walk(iocg, &inner_walk);
1667 	}
1668 
1669 	/* keep flushing upwards by walking the inner list backwards */
1670 	list_for_each_entry_safe_reverse(iocg, tiocg, &inner_walk, walk_list) {
1671 		iocg_flush_stat_one(iocg, now);
1672 		list_del_init(&iocg->walk_list);
1673 	}
1674 }
1675 
1676 /*
1677  * Determine what @iocg's hweight_inuse should be after donating unused
1678  * capacity. @hwm is the upper bound and used to signal no donation. This
1679  * function also throws away @iocg's excess budget.
1680  */
hweight_after_donation(struct ioc_gq * iocg,u32 old_hwi,u32 hwm,u32 usage,struct ioc_now * now)1681 static u32 hweight_after_donation(struct ioc_gq *iocg, u32 old_hwi, u32 hwm,
1682 				  u32 usage, struct ioc_now *now)
1683 {
1684 	struct ioc *ioc = iocg->ioc;
1685 	u64 vtime = atomic64_read(&iocg->vtime);
1686 	s64 excess, delta, target, new_hwi;
1687 
1688 	/* debt handling owns inuse for debtors */
1689 	if (iocg->abs_vdebt)
1690 		return 1;
1691 
1692 	/* see whether minimum margin requirement is met */
1693 	if (waitqueue_active(&iocg->waitq) ||
1694 	    time_after64(vtime, now->vnow - ioc->margins.min))
1695 		return hwm;
1696 
1697 	/* throw away excess above target */
1698 	excess = now->vnow - vtime - ioc->margins.target;
1699 	if (excess > 0) {
1700 		atomic64_add(excess, &iocg->vtime);
1701 		atomic64_add(excess, &iocg->done_vtime);
1702 		vtime += excess;
1703 		ioc->vtime_err -= div64_u64(excess * old_hwi, WEIGHT_ONE);
1704 	}
1705 
1706 	/*
1707 	 * Let's say the distance between iocg's and device's vtimes as a
1708 	 * fraction of period duration is delta. Assuming that the iocg will
1709 	 * consume the usage determined above, we want to determine new_hwi so
1710 	 * that delta equals MARGIN_TARGET at the end of the next period.
1711 	 *
1712 	 * We need to execute usage worth of IOs while spending the sum of the
1713 	 * new budget (1 - MARGIN_TARGET) and the leftover from the last period
1714 	 * (delta):
1715 	 *
1716 	 *   usage = (1 - MARGIN_TARGET + delta) * new_hwi
1717 	 *
1718 	 * Therefore, the new_hwi is:
1719 	 *
1720 	 *   new_hwi = usage / (1 - MARGIN_TARGET + delta)
1721 	 */
1722 	delta = div64_s64(WEIGHT_ONE * (now->vnow - vtime),
1723 			  now->vnow - ioc->period_at_vtime);
1724 	target = WEIGHT_ONE * MARGIN_TARGET_PCT / 100;
1725 	new_hwi = div64_s64(WEIGHT_ONE * usage, WEIGHT_ONE - target + delta);
1726 
1727 	return clamp_t(s64, new_hwi, 1, hwm);
1728 }
1729 
1730 /*
1731  * For work-conservation, an iocg which isn't using all of its share should
1732  * donate the leftover to other iocgs. There are two ways to achieve this - 1.
1733  * bumping up vrate accordingly 2. lowering the donating iocg's inuse weight.
1734  *
1735  * #1 is mathematically simpler but has the drawback of requiring synchronous
1736  * global hweight_inuse updates when idle iocg's get activated or inuse weights
1737  * change due to donation snapbacks as it has the possibility of grossly
1738  * overshooting what's allowed by the model and vrate.
1739  *
1740  * #2 is inherently safe with local operations. The donating iocg can easily
1741  * snap back to higher weights when needed without worrying about impacts on
1742  * other nodes as the impacts will be inherently correct. This also makes idle
1743  * iocg activations safe. The only effect activations have is decreasing
1744  * hweight_inuse of others, the right solution to which is for those iocgs to
1745  * snap back to higher weights.
1746  *
1747  * So, we go with #2. The challenge is calculating how each donating iocg's
1748  * inuse should be adjusted to achieve the target donation amounts. This is done
1749  * using Andy's method described in the following pdf.
1750  *
1751  *   https://drive.google.com/file/d/1PsJwxPFtjUnwOY1QJ5AeICCcsL7BM3bo
1752  *
1753  * Given the weights and target after-donation hweight_inuse values, Andy's
1754  * method determines how the proportional distribution should look like at each
1755  * sibling level to maintain the relative relationship between all non-donating
1756  * pairs. To roughly summarize, it divides the tree into donating and
1757  * non-donating parts, calculates global donation rate which is used to
1758  * determine the target hweight_inuse for each node, and then derives per-level
1759  * proportions.
1760  *
1761  * The following pdf shows that global distribution calculated this way can be
1762  * achieved by scaling inuse weights of donating leaves and propagating the
1763  * adjustments upwards proportionally.
1764  *
1765  *   https://drive.google.com/file/d/1vONz1-fzVO7oY5DXXsLjSxEtYYQbOvsE
1766  *
1767  * Combining the above two, we can determine how each leaf iocg's inuse should
1768  * be adjusted to achieve the target donation.
1769  *
1770  *   https://drive.google.com/file/d/1WcrltBOSPN0qXVdBgnKm4mdp9FhuEFQN
1771  *
1772  * The inline comments use symbols from the last pdf.
1773  *
1774  *   b is the sum of the absolute budgets in the subtree. 1 for the root node.
1775  *   f is the sum of the absolute budgets of non-donating nodes in the subtree.
1776  *   t is the sum of the absolute budgets of donating nodes in the subtree.
1777  *   w is the weight of the node. w = w_f + w_t
1778  *   w_f is the non-donating portion of w. w_f = w * f / b
1779  *   w_b is the donating portion of w. w_t = w * t / b
1780  *   s is the sum of all sibling weights. s = Sum(w) for siblings
1781  *   s_f and s_t are the non-donating and donating portions of s.
1782  *
1783  * Subscript p denotes the parent's counterpart and ' the adjusted value - e.g.
1784  * w_pt is the donating portion of the parent's weight and w'_pt the same value
1785  * after adjustments. Subscript r denotes the root node's values.
1786  */
transfer_surpluses(struct list_head * surpluses,struct ioc_now * now)1787 static void transfer_surpluses(struct list_head *surpluses, struct ioc_now *now)
1788 {
1789 	LIST_HEAD(over_hwa);
1790 	LIST_HEAD(inner_walk);
1791 	struct ioc_gq *iocg, *tiocg, *root_iocg;
1792 	u32 after_sum, over_sum, over_target, gamma;
1793 
1794 	/*
1795 	 * It's pretty unlikely but possible for the total sum of
1796 	 * hweight_after_donation's to be higher than WEIGHT_ONE, which will
1797 	 * confuse the following calculations. If such condition is detected,
1798 	 * scale down everyone over its full share equally to keep the sum below
1799 	 * WEIGHT_ONE.
1800 	 */
1801 	after_sum = 0;
1802 	over_sum = 0;
1803 	list_for_each_entry(iocg, surpluses, surplus_list) {
1804 		u32 hwa;
1805 
1806 		current_hweight(iocg, &hwa, NULL);
1807 		after_sum += iocg->hweight_after_donation;
1808 
1809 		if (iocg->hweight_after_donation > hwa) {
1810 			over_sum += iocg->hweight_after_donation;
1811 			list_add(&iocg->walk_list, &over_hwa);
1812 		}
1813 	}
1814 
1815 	if (after_sum >= WEIGHT_ONE) {
1816 		/*
1817 		 * The delta should be deducted from the over_sum, calculate
1818 		 * target over_sum value.
1819 		 */
1820 		u32 over_delta = after_sum - (WEIGHT_ONE - 1);
1821 		WARN_ON_ONCE(over_sum <= over_delta);
1822 		over_target = over_sum - over_delta;
1823 	} else {
1824 		over_target = 0;
1825 	}
1826 
1827 	list_for_each_entry_safe(iocg, tiocg, &over_hwa, walk_list) {
1828 		if (over_target)
1829 			iocg->hweight_after_donation =
1830 				div_u64((u64)iocg->hweight_after_donation *
1831 					over_target, over_sum);
1832 		list_del_init(&iocg->walk_list);
1833 	}
1834 
1835 	/*
1836 	 * Build pre-order inner node walk list and prepare for donation
1837 	 * adjustment calculations.
1838 	 */
1839 	list_for_each_entry(iocg, surpluses, surplus_list) {
1840 		iocg_build_inner_walk(iocg, &inner_walk);
1841 	}
1842 
1843 	root_iocg = list_first_entry(&inner_walk, struct ioc_gq, walk_list);
1844 	WARN_ON_ONCE(root_iocg->level > 0);
1845 
1846 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1847 		iocg->child_adjusted_sum = 0;
1848 		iocg->hweight_donating = 0;
1849 		iocg->hweight_after_donation = 0;
1850 	}
1851 
1852 	/*
1853 	 * Propagate the donating budget (b_t) and after donation budget (b'_t)
1854 	 * up the hierarchy.
1855 	 */
1856 	list_for_each_entry(iocg, surpluses, surplus_list) {
1857 		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1858 
1859 		parent->hweight_donating += iocg->hweight_donating;
1860 		parent->hweight_after_donation += iocg->hweight_after_donation;
1861 	}
1862 
1863 	list_for_each_entry_reverse(iocg, &inner_walk, walk_list) {
1864 		if (iocg->level > 0) {
1865 			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1866 
1867 			parent->hweight_donating += iocg->hweight_donating;
1868 			parent->hweight_after_donation += iocg->hweight_after_donation;
1869 		}
1870 	}
1871 
1872 	/*
1873 	 * Calculate inner hwa's (b) and make sure the donation values are
1874 	 * within the accepted ranges as we're doing low res calculations with
1875 	 * roundups.
1876 	 */
1877 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1878 		if (iocg->level) {
1879 			struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1880 
1881 			iocg->hweight_active = DIV64_U64_ROUND_UP(
1882 				(u64)parent->hweight_active * iocg->active,
1883 				parent->child_active_sum);
1884 
1885 		}
1886 
1887 		iocg->hweight_donating = min(iocg->hweight_donating,
1888 					     iocg->hweight_active);
1889 		iocg->hweight_after_donation = min(iocg->hweight_after_donation,
1890 						   iocg->hweight_donating - 1);
1891 		if (WARN_ON_ONCE(iocg->hweight_active <= 1 ||
1892 				 iocg->hweight_donating <= 1 ||
1893 				 iocg->hweight_after_donation == 0)) {
1894 			pr_warn("iocg: invalid donation weights in ");
1895 			pr_cont_cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup);
1896 			pr_cont(": active=%u donating=%u after=%u\n",
1897 				iocg->hweight_active, iocg->hweight_donating,
1898 				iocg->hweight_after_donation);
1899 		}
1900 	}
1901 
1902 	/*
1903 	 * Calculate the global donation rate (gamma) - the rate to adjust
1904 	 * non-donating budgets by.
1905 	 *
1906 	 * No need to use 64bit multiplication here as the first operand is
1907 	 * guaranteed to be smaller than WEIGHT_ONE (1<<16).
1908 	 *
1909 	 * We know that there are beneficiary nodes and the sum of the donating
1910 	 * hweights can't be whole; however, due to the round-ups during hweight
1911 	 * calculations, root_iocg->hweight_donating might still end up equal to
1912 	 * or greater than whole. Limit the range when calculating the divider.
1913 	 *
1914 	 * gamma = (1 - t_r') / (1 - t_r)
1915 	 */
1916 	gamma = DIV_ROUND_UP(
1917 		(WEIGHT_ONE - root_iocg->hweight_after_donation) * WEIGHT_ONE,
1918 		WEIGHT_ONE - min_t(u32, root_iocg->hweight_donating, WEIGHT_ONE - 1));
1919 
1920 	/*
1921 	 * Calculate adjusted hwi, child_adjusted_sum and inuse for the inner
1922 	 * nodes.
1923 	 */
1924 	list_for_each_entry(iocg, &inner_walk, walk_list) {
1925 		struct ioc_gq *parent;
1926 		u32 inuse, wpt, wptp;
1927 		u64 st, sf;
1928 
1929 		if (iocg->level == 0) {
1930 			/* adjusted weight sum for 1st level: s' = s * b_pf / b'_pf */
1931 			iocg->child_adjusted_sum = DIV64_U64_ROUND_UP(
1932 				iocg->child_active_sum * (WEIGHT_ONE - iocg->hweight_donating),
1933 				WEIGHT_ONE - iocg->hweight_after_donation);
1934 			continue;
1935 		}
1936 
1937 		parent = iocg->ancestors[iocg->level - 1];
1938 
1939 		/* b' = gamma * b_f + b_t' */
1940 		iocg->hweight_inuse = DIV64_U64_ROUND_UP(
1941 			(u64)gamma * (iocg->hweight_active - iocg->hweight_donating),
1942 			WEIGHT_ONE) + iocg->hweight_after_donation;
1943 
1944 		/* w' = s' * b' / b'_p */
1945 		inuse = DIV64_U64_ROUND_UP(
1946 			(u64)parent->child_adjusted_sum * iocg->hweight_inuse,
1947 			parent->hweight_inuse);
1948 
1949 		/* adjusted weight sum for children: s' = s_f + s_t * w'_pt / w_pt */
1950 		st = DIV64_U64_ROUND_UP(
1951 			iocg->child_active_sum * iocg->hweight_donating,
1952 			iocg->hweight_active);
1953 		sf = iocg->child_active_sum - st;
1954 		wpt = DIV64_U64_ROUND_UP(
1955 			(u64)iocg->active * iocg->hweight_donating,
1956 			iocg->hweight_active);
1957 		wptp = DIV64_U64_ROUND_UP(
1958 			(u64)inuse * iocg->hweight_after_donation,
1959 			iocg->hweight_inuse);
1960 
1961 		iocg->child_adjusted_sum = sf + DIV64_U64_ROUND_UP(st * wptp, wpt);
1962 	}
1963 
1964 	/*
1965 	 * All inner nodes now have ->hweight_inuse and ->child_adjusted_sum and
1966 	 * we can finally determine leaf adjustments.
1967 	 */
1968 	list_for_each_entry(iocg, surpluses, surplus_list) {
1969 		struct ioc_gq *parent = iocg->ancestors[iocg->level - 1];
1970 		u32 inuse;
1971 
1972 		/*
1973 		 * In-debt iocgs participated in the donation calculation with
1974 		 * the minimum target hweight_inuse. Configuring inuse
1975 		 * accordingly would work fine but debt handling expects
1976 		 * @iocg->inuse stay at the minimum and we don't wanna
1977 		 * interfere.
1978 		 */
1979 		if (iocg->abs_vdebt) {
1980 			WARN_ON_ONCE(iocg->inuse > 1);
1981 			continue;
1982 		}
1983 
1984 		/* w' = s' * b' / b'_p, note that b' == b'_t for donating leaves */
1985 		inuse = DIV64_U64_ROUND_UP(
1986 			parent->child_adjusted_sum * iocg->hweight_after_donation,
1987 			parent->hweight_inuse);
1988 
1989 		TRACE_IOCG_PATH(inuse_transfer, iocg, now,
1990 				iocg->inuse, inuse,
1991 				iocg->hweight_inuse,
1992 				iocg->hweight_after_donation);
1993 
1994 		__propagate_weights(iocg, iocg->active, inuse, true, now);
1995 	}
1996 
1997 	/* walk list should be dissolved after use */
1998 	list_for_each_entry_safe(iocg, tiocg, &inner_walk, walk_list)
1999 		list_del_init(&iocg->walk_list);
2000 }
2001 
2002 /*
2003  * A low weight iocg can amass a large amount of debt, for example, when
2004  * anonymous memory gets reclaimed aggressively. If the system has a lot of
2005  * memory paired with a slow IO device, the debt can span multiple seconds or
2006  * more. If there are no other subsequent IO issuers, the in-debt iocg may end
2007  * up blocked paying its debt while the IO device is idle.
2008  *
2009  * The following protects against such cases. If the device has been
2010  * sufficiently idle for a while, the debts are halved and delays are
2011  * recalculated.
2012  */
ioc_forgive_debts(struct ioc * ioc,u64 usage_us_sum,int nr_debtors,struct ioc_now * now)2013 static void ioc_forgive_debts(struct ioc *ioc, u64 usage_us_sum, int nr_debtors,
2014 			      struct ioc_now *now)
2015 {
2016 	struct ioc_gq *iocg;
2017 	u64 dur, usage_pct, nr_cycles;
2018 
2019 	/* if no debtor, reset the cycle */
2020 	if (!nr_debtors) {
2021 		ioc->dfgv_period_at = now->now;
2022 		ioc->dfgv_period_rem = 0;
2023 		ioc->dfgv_usage_us_sum = 0;
2024 		return;
2025 	}
2026 
2027 	/*
2028 	 * Debtors can pass through a lot of writes choking the device and we
2029 	 * don't want to be forgiving debts while the device is struggling from
2030 	 * write bursts. If we're missing latency targets, consider the device
2031 	 * fully utilized.
2032 	 */
2033 	if (ioc->busy_level > 0)
2034 		usage_us_sum = max_t(u64, usage_us_sum, ioc->period_us);
2035 
2036 	ioc->dfgv_usage_us_sum += usage_us_sum;
2037 	if (time_before64(now->now, ioc->dfgv_period_at + DFGV_PERIOD))
2038 		return;
2039 
2040 	/*
2041 	 * At least DFGV_PERIOD has passed since the last period. Calculate the
2042 	 * average usage and reset the period counters.
2043 	 */
2044 	dur = now->now - ioc->dfgv_period_at;
2045 	usage_pct = div64_u64(100 * ioc->dfgv_usage_us_sum, dur);
2046 
2047 	ioc->dfgv_period_at = now->now;
2048 	ioc->dfgv_usage_us_sum = 0;
2049 
2050 	/* if was too busy, reset everything */
2051 	if (usage_pct > DFGV_USAGE_PCT) {
2052 		ioc->dfgv_period_rem = 0;
2053 		return;
2054 	}
2055 
2056 	/*
2057 	 * Usage is lower than threshold. Let's forgive some debts. Debt
2058 	 * forgiveness runs off of the usual ioc timer but its period usually
2059 	 * doesn't match ioc's. Compensate the difference by performing the
2060 	 * reduction as many times as would fit in the duration since the last
2061 	 * run and carrying over the left-over duration in @ioc->dfgv_period_rem
2062 	 * - if ioc period is 75% of DFGV_PERIOD, one out of three consecutive
2063 	 * reductions is doubled.
2064 	 */
2065 	nr_cycles = dur + ioc->dfgv_period_rem;
2066 	ioc->dfgv_period_rem = do_div(nr_cycles, DFGV_PERIOD);
2067 
2068 	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2069 		u64 __maybe_unused old_debt, __maybe_unused old_delay;
2070 
2071 		if (!iocg->abs_vdebt && !iocg->delay)
2072 			continue;
2073 
2074 		spin_lock(&iocg->waitq.lock);
2075 
2076 		old_debt = iocg->abs_vdebt;
2077 		old_delay = iocg->delay;
2078 
2079 		if (iocg->abs_vdebt)
2080 			iocg->abs_vdebt = iocg->abs_vdebt >> nr_cycles ?: 1;
2081 		if (iocg->delay)
2082 			iocg->delay = iocg->delay >> nr_cycles ?: 1;
2083 
2084 		iocg_kick_waitq(iocg, true, now);
2085 
2086 		TRACE_IOCG_PATH(iocg_forgive_debt, iocg, now, usage_pct,
2087 				old_debt, iocg->abs_vdebt,
2088 				old_delay, iocg->delay);
2089 
2090 		spin_unlock(&iocg->waitq.lock);
2091 	}
2092 }
2093 
ioc_timer_fn(struct timer_list * timer)2094 static void ioc_timer_fn(struct timer_list *timer)
2095 {
2096 	struct ioc *ioc = container_of(timer, struct ioc, timer);
2097 	struct ioc_gq *iocg, *tiocg;
2098 	struct ioc_now now;
2099 	LIST_HEAD(surpluses);
2100 	int nr_debtors = 0, nr_shortages = 0, nr_lagging = 0;
2101 	u64 usage_us_sum = 0;
2102 	u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM];
2103 	u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM];
2104 	u32 missed_ppm[2], rq_wait_pct;
2105 	u64 period_vtime;
2106 	int prev_busy_level;
2107 
2108 	/* how were the latencies during the period? */
2109 	ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct);
2110 
2111 	/* take care of active iocgs */
2112 	spin_lock_irq(&ioc->lock);
2113 
2114 	ioc_now(ioc, &now);
2115 
2116 	period_vtime = now.vnow - ioc->period_at_vtime;
2117 	if (WARN_ON_ONCE(!period_vtime)) {
2118 		spin_unlock_irq(&ioc->lock);
2119 		return;
2120 	}
2121 
2122 	/*
2123 	 * Waiters determine the sleep durations based on the vrate they
2124 	 * saw at the time of sleep.  If vrate has increased, some waiters
2125 	 * could be sleeping for too long.  Wake up tardy waiters which
2126 	 * should have woken up in the last period and expire idle iocgs.
2127 	 */
2128 	list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) {
2129 		if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2130 		    !iocg->delay && !iocg_is_idle(iocg))
2131 			continue;
2132 
2133 		spin_lock(&iocg->waitq.lock);
2134 
2135 		/* flush wait and indebt stat deltas */
2136 		if (iocg->wait_since) {
2137 			iocg->local_stat.wait_us += now.now - iocg->wait_since;
2138 			iocg->wait_since = now.now;
2139 		}
2140 		if (iocg->indebt_since) {
2141 			iocg->local_stat.indebt_us +=
2142 				now.now - iocg->indebt_since;
2143 			iocg->indebt_since = now.now;
2144 		}
2145 		if (iocg->indelay_since) {
2146 			iocg->local_stat.indelay_us +=
2147 				now.now - iocg->indelay_since;
2148 			iocg->indelay_since = now.now;
2149 		}
2150 
2151 		if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt ||
2152 		    iocg->delay) {
2153 			/* might be oversleeping vtime / hweight changes, kick */
2154 			iocg_kick_waitq(iocg, true, &now);
2155 			if (iocg->abs_vdebt || iocg->delay)
2156 				nr_debtors++;
2157 		} else if (iocg_is_idle(iocg)) {
2158 			/* no waiter and idle, deactivate */
2159 			u64 vtime = atomic64_read(&iocg->vtime);
2160 			s64 excess;
2161 
2162 			/*
2163 			 * @iocg has been inactive for a full duration and will
2164 			 * have a high budget. Account anything above target as
2165 			 * error and throw away. On reactivation, it'll start
2166 			 * with the target budget.
2167 			 */
2168 			excess = now.vnow - vtime - ioc->margins.target;
2169 			if (excess > 0) {
2170 				u32 old_hwi;
2171 
2172 				current_hweight(iocg, NULL, &old_hwi);
2173 				ioc->vtime_err -= div64_u64(excess * old_hwi,
2174 							    WEIGHT_ONE);
2175 			}
2176 
2177 			__propagate_weights(iocg, 0, 0, false, &now);
2178 			list_del_init(&iocg->active_list);
2179 		}
2180 
2181 		spin_unlock(&iocg->waitq.lock);
2182 	}
2183 	commit_weights(ioc);
2184 
2185 	/*
2186 	 * Wait and indebt stat are flushed above and the donation calculation
2187 	 * below needs updated usage stat. Let's bring stat up-to-date.
2188 	 */
2189 	iocg_flush_stat(&ioc->active_iocgs, &now);
2190 
2191 	/* calc usage and see whether some weights need to be moved around */
2192 	list_for_each_entry(iocg, &ioc->active_iocgs, active_list) {
2193 		u64 vdone, vtime, usage_us, usage_dur;
2194 		u32 usage, hw_active, hw_inuse;
2195 
2196 		/*
2197 		 * Collect unused and wind vtime closer to vnow to prevent
2198 		 * iocgs from accumulating a large amount of budget.
2199 		 */
2200 		vdone = atomic64_read(&iocg->done_vtime);
2201 		vtime = atomic64_read(&iocg->vtime);
2202 		current_hweight(iocg, &hw_active, &hw_inuse);
2203 
2204 		/*
2205 		 * Latency QoS detection doesn't account for IOs which are
2206 		 * in-flight for longer than a period.  Detect them by
2207 		 * comparing vdone against period start.  If lagging behind
2208 		 * IOs from past periods, don't increase vrate.
2209 		 */
2210 		if ((ppm_rthr != MILLION || ppm_wthr != MILLION) &&
2211 		    !atomic_read(&iocg_to_blkg(iocg)->use_delay) &&
2212 		    time_after64(vtime, vdone) &&
2213 		    time_after64(vtime, now.vnow -
2214 				 MAX_LAGGING_PERIODS * period_vtime) &&
2215 		    time_before64(vdone, now.vnow - period_vtime))
2216 			nr_lagging++;
2217 
2218 		/*
2219 		 * Determine absolute usage factoring in in-flight IOs to avoid
2220 		 * high-latency completions appearing as idle.
2221 		 */
2222 		usage_us = iocg->usage_delta_us;
2223 		usage_us_sum += usage_us;
2224 
2225 		if (vdone != vtime) {
2226 			u64 inflight_us = DIV64_U64_ROUND_UP(
2227 				cost_to_abs_cost(vtime - vdone, hw_inuse),
2228 				ioc->vtime_base_rate);
2229 			usage_us = max(usage_us, inflight_us);
2230 		}
2231 
2232 		/* convert to hweight based usage ratio */
2233 		if (time_after64(iocg->activated_at, ioc->period_at))
2234 			usage_dur = max_t(u64, now.now - iocg->activated_at, 1);
2235 		else
2236 			usage_dur = max_t(u64, now.now - ioc->period_at, 1);
2237 
2238 		usage = clamp_t(u32,
2239 				DIV64_U64_ROUND_UP(usage_us * WEIGHT_ONE,
2240 						   usage_dur),
2241 				1, WEIGHT_ONE);
2242 
2243 		/* see whether there's surplus vtime */
2244 		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2245 		if (hw_inuse < hw_active ||
2246 		    (!waitqueue_active(&iocg->waitq) &&
2247 		     time_before64(vtime, now.vnow - ioc->margins.low))) {
2248 			u32 hwa, old_hwi, hwm, new_hwi;
2249 
2250 			/*
2251 			 * Already donating or accumulated enough to start.
2252 			 * Determine the donation amount.
2253 			 */
2254 			current_hweight(iocg, &hwa, &old_hwi);
2255 			hwm = current_hweight_max(iocg);
2256 			new_hwi = hweight_after_donation(iocg, old_hwi, hwm,
2257 							 usage, &now);
2258 			/*
2259 			 * Donation calculation assumes hweight_after_donation
2260 			 * to be positive, a condition that a donor w/ hwa < 2
2261 			 * can't meet. Don't bother with donation if hwa is
2262 			 * below 2. It's not gonna make a meaningful difference
2263 			 * anyway.
2264 			 */
2265 			if (new_hwi < hwm && hwa >= 2) {
2266 				iocg->hweight_donating = hwa;
2267 				iocg->hweight_after_donation = new_hwi;
2268 				list_add(&iocg->surplus_list, &surpluses);
2269 			} else if (!iocg->abs_vdebt) {
2270 				/*
2271 				 * @iocg doesn't have enough to donate. Reset
2272 				 * its inuse to active.
2273 				 *
2274 				 * Don't reset debtors as their inuse's are
2275 				 * owned by debt handling. This shouldn't affect
2276 				 * donation calculuation in any meaningful way
2277 				 * as @iocg doesn't have a meaningful amount of
2278 				 * share anyway.
2279 				 */
2280 				TRACE_IOCG_PATH(inuse_shortage, iocg, &now,
2281 						iocg->inuse, iocg->active,
2282 						iocg->hweight_inuse, new_hwi);
2283 
2284 				__propagate_weights(iocg, iocg->active,
2285 						    iocg->active, true, &now);
2286 				nr_shortages++;
2287 			}
2288 		} else {
2289 			/* genuinely short on vtime */
2290 			nr_shortages++;
2291 		}
2292 	}
2293 
2294 	if (!list_empty(&surpluses) && nr_shortages)
2295 		transfer_surpluses(&surpluses, &now);
2296 
2297 	commit_weights(ioc);
2298 
2299 	/* surplus list should be dissolved after use */
2300 	list_for_each_entry_safe(iocg, tiocg, &surpluses, surplus_list)
2301 		list_del_init(&iocg->surplus_list);
2302 
2303 	/*
2304 	 * If q is getting clogged or we're missing too much, we're issuing
2305 	 * too much IO and should lower vtime rate.  If we're not missing
2306 	 * and experiencing shortages but not surpluses, we're too stingy
2307 	 * and should increase vtime rate.
2308 	 */
2309 	prev_busy_level = ioc->busy_level;
2310 	if (rq_wait_pct > RQ_WAIT_BUSY_PCT ||
2311 	    missed_ppm[READ] > ppm_rthr ||
2312 	    missed_ppm[WRITE] > ppm_wthr) {
2313 		/* clearly missing QoS targets, slow down vrate */
2314 		ioc->busy_level = max(ioc->busy_level, 0);
2315 		ioc->busy_level++;
2316 	} else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 &&
2317 		   missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 &&
2318 		   missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) {
2319 		/* QoS targets are being met with >25% margin */
2320 		if (nr_shortages) {
2321 			/*
2322 			 * We're throttling while the device has spare
2323 			 * capacity.  If vrate was being slowed down, stop.
2324 			 */
2325 			ioc->busy_level = min(ioc->busy_level, 0);
2326 
2327 			/*
2328 			 * If there are IOs spanning multiple periods, wait
2329 			 * them out before pushing the device harder.
2330 			 */
2331 			if (!nr_lagging)
2332 				ioc->busy_level--;
2333 		} else {
2334 			/*
2335 			 * Nobody is being throttled and the users aren't
2336 			 * issuing enough IOs to saturate the device.  We
2337 			 * simply don't know how close the device is to
2338 			 * saturation.  Coast.
2339 			 */
2340 			ioc->busy_level = 0;
2341 		}
2342 	} else {
2343 		/* inside the hysterisis margin, we're good */
2344 		ioc->busy_level = 0;
2345 	}
2346 
2347 	ioc->busy_level = clamp(ioc->busy_level, -1000, 1000);
2348 
2349 	if (ioc->busy_level > 0 || (ioc->busy_level < 0 && !nr_lagging)) {
2350 		u64 vrate = ioc->vtime_base_rate;
2351 		u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max;
2352 
2353 		/* rq_wait signal is always reliable, ignore user vrate_min */
2354 		if (rq_wait_pct > RQ_WAIT_BUSY_PCT)
2355 			vrate_min = VRATE_MIN;
2356 
2357 		/*
2358 		 * If vrate is out of bounds, apply clamp gradually as the
2359 		 * bounds can change abruptly.  Otherwise, apply busy_level
2360 		 * based adjustment.
2361 		 */
2362 		if (vrate < vrate_min) {
2363 			vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT),
2364 					  100);
2365 			vrate = min(vrate, vrate_min);
2366 		} else if (vrate > vrate_max) {
2367 			vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT),
2368 					  100);
2369 			vrate = max(vrate, vrate_max);
2370 		} else {
2371 			int idx = min_t(int, abs(ioc->busy_level),
2372 					ARRAY_SIZE(vrate_adj_pct) - 1);
2373 			u32 adj_pct = vrate_adj_pct[idx];
2374 
2375 			if (ioc->busy_level > 0)
2376 				adj_pct = 100 - adj_pct;
2377 			else
2378 				adj_pct = 100 + adj_pct;
2379 
2380 			vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100),
2381 				      vrate_min, vrate_max);
2382 		}
2383 
2384 		trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct,
2385 					   nr_lagging, nr_shortages);
2386 
2387 		ioc->vtime_base_rate = vrate;
2388 		ioc_refresh_margins(ioc);
2389 	} else if (ioc->busy_level != prev_busy_level || nr_lagging) {
2390 		trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate),
2391 					   missed_ppm, rq_wait_pct, nr_lagging,
2392 					   nr_shortages);
2393 	}
2394 
2395 	ioc_refresh_params(ioc, false);
2396 
2397 	ioc_forgive_debts(ioc, usage_us_sum, nr_debtors, &now);
2398 
2399 	/*
2400 	 * This period is done.  Move onto the next one.  If nothing's
2401 	 * going on with the device, stop the timer.
2402 	 */
2403 	atomic64_inc(&ioc->cur_period);
2404 
2405 	if (ioc->running != IOC_STOP) {
2406 		if (!list_empty(&ioc->active_iocgs)) {
2407 			ioc_start_period(ioc, &now);
2408 		} else {
2409 			ioc->busy_level = 0;
2410 			ioc->vtime_err = 0;
2411 			ioc->running = IOC_IDLE;
2412 		}
2413 
2414 		ioc_refresh_vrate(ioc, &now);
2415 	}
2416 
2417 	spin_unlock_irq(&ioc->lock);
2418 }
2419 
adjust_inuse_and_calc_cost(struct ioc_gq * iocg,u64 vtime,u64 abs_cost,struct ioc_now * now)2420 static u64 adjust_inuse_and_calc_cost(struct ioc_gq *iocg, u64 vtime,
2421 				      u64 abs_cost, struct ioc_now *now)
2422 {
2423 	struct ioc *ioc = iocg->ioc;
2424 	struct ioc_margins *margins = &ioc->margins;
2425 	u32 __maybe_unused old_inuse = iocg->inuse, __maybe_unused old_hwi;
2426 	u32 hwi, adj_step;
2427 	s64 margin;
2428 	u64 cost, new_inuse;
2429 	unsigned long flags;
2430 
2431 	current_hweight(iocg, NULL, &hwi);
2432 	old_hwi = hwi;
2433 	cost = abs_cost_to_cost(abs_cost, hwi);
2434 	margin = now->vnow - vtime - cost;
2435 
2436 	/* debt handling owns inuse for debtors */
2437 	if (iocg->abs_vdebt)
2438 		return cost;
2439 
2440 	/*
2441 	 * We only increase inuse during period and do so iff the margin has
2442 	 * deteriorated since the previous adjustment.
2443 	 */
2444 	if (margin >= iocg->saved_margin || margin >= margins->low ||
2445 	    iocg->inuse == iocg->active)
2446 		return cost;
2447 
2448 	spin_lock_irqsave(&ioc->lock, flags);
2449 
2450 	/* we own inuse only when @iocg is in the normal active state */
2451 	if (iocg->abs_vdebt || list_empty(&iocg->active_list)) {
2452 		spin_unlock_irqrestore(&ioc->lock, flags);
2453 		return cost;
2454 	}
2455 
2456 	/*
2457 	 * Bump up inuse till @abs_cost fits in the existing budget.
2458 	 * adj_step must be determined after acquiring ioc->lock - we might
2459 	 * have raced and lost to another thread for activation and could
2460 	 * be reading 0 iocg->active before ioc->lock which will lead to
2461 	 * infinite loop.
2462 	 */
2463 	new_inuse = iocg->inuse;
2464 	adj_step = DIV_ROUND_UP(iocg->active * INUSE_ADJ_STEP_PCT, 100);
2465 	do {
2466 		new_inuse = new_inuse + adj_step;
2467 		propagate_weights(iocg, iocg->active, new_inuse, true, now);
2468 		current_hweight(iocg, NULL, &hwi);
2469 		cost = abs_cost_to_cost(abs_cost, hwi);
2470 	} while (time_after64(vtime + cost, now->vnow) &&
2471 		 iocg->inuse != iocg->active);
2472 
2473 	spin_unlock_irqrestore(&ioc->lock, flags);
2474 
2475 	TRACE_IOCG_PATH(inuse_adjust, iocg, now,
2476 			old_inuse, iocg->inuse, old_hwi, hwi);
2477 
2478 	return cost;
2479 }
2480 
calc_vtime_cost_builtin(struct bio * bio,struct ioc_gq * iocg,bool is_merge,u64 * costp)2481 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg,
2482 				    bool is_merge, u64 *costp)
2483 {
2484 	struct ioc *ioc = iocg->ioc;
2485 	u64 coef_seqio, coef_randio, coef_page;
2486 	u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1);
2487 	u64 seek_pages = 0;
2488 	u64 cost = 0;
2489 
2490 	switch (bio_op(bio)) {
2491 	case REQ_OP_READ:
2492 		coef_seqio	= ioc->params.lcoefs[LCOEF_RSEQIO];
2493 		coef_randio	= ioc->params.lcoefs[LCOEF_RRANDIO];
2494 		coef_page	= ioc->params.lcoefs[LCOEF_RPAGE];
2495 		break;
2496 	case REQ_OP_WRITE:
2497 		coef_seqio	= ioc->params.lcoefs[LCOEF_WSEQIO];
2498 		coef_randio	= ioc->params.lcoefs[LCOEF_WRANDIO];
2499 		coef_page	= ioc->params.lcoefs[LCOEF_WPAGE];
2500 		break;
2501 	default:
2502 		goto out;
2503 	}
2504 
2505 	if (iocg->cursor) {
2506 		seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor);
2507 		seek_pages >>= IOC_SECT_TO_PAGE_SHIFT;
2508 	}
2509 
2510 	if (!is_merge) {
2511 		if (seek_pages > LCOEF_RANDIO_PAGES) {
2512 			cost += coef_randio;
2513 		} else {
2514 			cost += coef_seqio;
2515 		}
2516 	}
2517 	cost += pages * coef_page;
2518 out:
2519 	*costp = cost;
2520 }
2521 
calc_vtime_cost(struct bio * bio,struct ioc_gq * iocg,bool is_merge)2522 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge)
2523 {
2524 	u64 cost;
2525 
2526 	calc_vtime_cost_builtin(bio, iocg, is_merge, &cost);
2527 	return cost;
2528 }
2529 
calc_size_vtime_cost_builtin(struct request * rq,struct ioc * ioc,u64 * costp)2530 static void calc_size_vtime_cost_builtin(struct request *rq, struct ioc *ioc,
2531 					 u64 *costp)
2532 {
2533 	unsigned int pages = blk_rq_stats_sectors(rq) >> IOC_SECT_TO_PAGE_SHIFT;
2534 
2535 	switch (req_op(rq)) {
2536 	case REQ_OP_READ:
2537 		*costp = pages * ioc->params.lcoefs[LCOEF_RPAGE];
2538 		break;
2539 	case REQ_OP_WRITE:
2540 		*costp = pages * ioc->params.lcoefs[LCOEF_WPAGE];
2541 		break;
2542 	default:
2543 		*costp = 0;
2544 	}
2545 }
2546 
calc_size_vtime_cost(struct request * rq,struct ioc * ioc)2547 static u64 calc_size_vtime_cost(struct request *rq, struct ioc *ioc)
2548 {
2549 	u64 cost;
2550 
2551 	calc_size_vtime_cost_builtin(rq, ioc, &cost);
2552 	return cost;
2553 }
2554 
ioc_rqos_throttle(struct rq_qos * rqos,struct bio * bio)2555 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio)
2556 {
2557 	struct blkcg_gq *blkg = bio->bi_blkg;
2558 	struct ioc *ioc = rqos_to_ioc(rqos);
2559 	struct ioc_gq *iocg = blkg_to_iocg(blkg);
2560 	struct ioc_now now;
2561 	struct iocg_wait wait;
2562 	u64 abs_cost, cost, vtime;
2563 	bool use_debt, ioc_locked;
2564 	unsigned long flags;
2565 
2566 	/* bypass IOs if disabled, still initializing, or for root cgroup */
2567 	if (!ioc->enabled || !iocg || !iocg->level)
2568 		return;
2569 
2570 	/* calculate the absolute vtime cost */
2571 	abs_cost = calc_vtime_cost(bio, iocg, false);
2572 	if (!abs_cost)
2573 		return;
2574 
2575 	if (!iocg_activate(iocg, &now))
2576 		return;
2577 
2578 	iocg->cursor = bio_end_sector(bio);
2579 	vtime = atomic64_read(&iocg->vtime);
2580 	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2581 
2582 	/*
2583 	 * If no one's waiting and within budget, issue right away.  The
2584 	 * tests are racy but the races aren't systemic - we only miss once
2585 	 * in a while which is fine.
2586 	 */
2587 	if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt &&
2588 	    time_before_eq64(vtime + cost, now.vnow)) {
2589 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2590 		return;
2591 	}
2592 
2593 	/*
2594 	 * We're over budget. This can be handled in two ways. IOs which may
2595 	 * cause priority inversions are punted to @ioc->aux_iocg and charged as
2596 	 * debt. Otherwise, the issuer is blocked on @iocg->waitq. Debt handling
2597 	 * requires @ioc->lock, waitq handling @iocg->waitq.lock. Determine
2598 	 * whether debt handling is needed and acquire locks accordingly.
2599 	 */
2600 	use_debt = bio_issue_as_root_blkg(bio) || fatal_signal_pending(current);
2601 	ioc_locked = use_debt || READ_ONCE(iocg->abs_vdebt);
2602 retry_lock:
2603 	iocg_lock(iocg, ioc_locked, &flags);
2604 
2605 	/*
2606 	 * @iocg must stay activated for debt and waitq handling. Deactivation
2607 	 * is synchronized against both ioc->lock and waitq.lock and we won't
2608 	 * get deactivated as long as we're waiting or has debt, so we're good
2609 	 * if we're activated here. In the unlikely cases that we aren't, just
2610 	 * issue the IO.
2611 	 */
2612 	if (unlikely(list_empty(&iocg->active_list))) {
2613 		iocg_unlock(iocg, ioc_locked, &flags);
2614 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2615 		return;
2616 	}
2617 
2618 	/*
2619 	 * We're over budget. If @bio has to be issued regardless, remember
2620 	 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
2621 	 * off the debt before waking more IOs.
2622 	 *
2623 	 * This way, the debt is continuously paid off each period with the
2624 	 * actual budget available to the cgroup. If we just wound vtime, we
2625 	 * would incorrectly use the current hw_inuse for the entire amount
2626 	 * which, for example, can lead to the cgroup staying blocked for a
2627 	 * long time even with substantially raised hw_inuse.
2628 	 *
2629 	 * An iocg with vdebt should stay online so that the timer can keep
2630 	 * deducting its vdebt and [de]activate use_delay mechanism
2631 	 * accordingly. We don't want to race against the timer trying to
2632 	 * clear them and leave @iocg inactive w/ dangling use_delay heavily
2633 	 * penalizing the cgroup and its descendants.
2634 	 */
2635 	if (use_debt) {
2636 		iocg_incur_debt(iocg, abs_cost, &now);
2637 		if (iocg_kick_delay(iocg, &now))
2638 			blkcg_schedule_throttle(rqos->q,
2639 					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2640 		iocg_unlock(iocg, ioc_locked, &flags);
2641 		return;
2642 	}
2643 
2644 	/* guarantee that iocgs w/ waiters have maximum inuse */
2645 	if (!iocg->abs_vdebt && iocg->inuse != iocg->active) {
2646 		if (!ioc_locked) {
2647 			iocg_unlock(iocg, false, &flags);
2648 			ioc_locked = true;
2649 			goto retry_lock;
2650 		}
2651 		propagate_weights(iocg, iocg->active, iocg->active, true,
2652 				  &now);
2653 	}
2654 
2655 	/*
2656 	 * Append self to the waitq and schedule the wakeup timer if we're
2657 	 * the first waiter.  The timer duration is calculated based on the
2658 	 * current vrate.  vtime and hweight changes can make it too short
2659 	 * or too long.  Each wait entry records the absolute cost it's
2660 	 * waiting for to allow re-evaluation using a custom wait entry.
2661 	 *
2662 	 * If too short, the timer simply reschedules itself.  If too long,
2663 	 * the period timer will notice and trigger wakeups.
2664 	 *
2665 	 * All waiters are on iocg->waitq and the wait states are
2666 	 * synchronized using waitq.lock.
2667 	 */
2668 	init_waitqueue_func_entry(&wait.wait, iocg_wake_fn);
2669 	wait.wait.private = current;
2670 	wait.bio = bio;
2671 	wait.abs_cost = abs_cost;
2672 	wait.committed = false;	/* will be set true by waker */
2673 
2674 	__add_wait_queue_entry_tail(&iocg->waitq, &wait.wait);
2675 	iocg_kick_waitq(iocg, ioc_locked, &now);
2676 
2677 	iocg_unlock(iocg, ioc_locked, &flags);
2678 
2679 	while (true) {
2680 		set_current_state(TASK_UNINTERRUPTIBLE);
2681 		if (wait.committed)
2682 			break;
2683 		io_schedule();
2684 	}
2685 
2686 	/* waker already committed us, proceed */
2687 	finish_wait(&iocg->waitq, &wait.wait);
2688 }
2689 
ioc_rqos_merge(struct rq_qos * rqos,struct request * rq,struct bio * bio)2690 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq,
2691 			   struct bio *bio)
2692 {
2693 	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2694 	struct ioc *ioc = rqos_to_ioc(rqos);
2695 	sector_t bio_end = bio_end_sector(bio);
2696 	struct ioc_now now;
2697 	u64 vtime, abs_cost, cost;
2698 	unsigned long flags;
2699 
2700 	/* bypass if disabled, still initializing, or for root cgroup */
2701 	if (!ioc->enabled || !iocg || !iocg->level)
2702 		return;
2703 
2704 	abs_cost = calc_vtime_cost(bio, iocg, true);
2705 	if (!abs_cost)
2706 		return;
2707 
2708 	ioc_now(ioc, &now);
2709 
2710 	vtime = atomic64_read(&iocg->vtime);
2711 	cost = adjust_inuse_and_calc_cost(iocg, vtime, abs_cost, &now);
2712 
2713 	/* update cursor if backmerging into the request at the cursor */
2714 	if (blk_rq_pos(rq) < bio_end &&
2715 	    blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor)
2716 		iocg->cursor = bio_end;
2717 
2718 	/*
2719 	 * Charge if there's enough vtime budget and the existing request has
2720 	 * cost assigned.
2721 	 */
2722 	if (rq->bio && rq->bio->bi_iocost_cost &&
2723 	    time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) {
2724 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2725 		return;
2726 	}
2727 
2728 	/*
2729 	 * Otherwise, account it as debt if @iocg is online, which it should
2730 	 * be for the vast majority of cases. See debt handling in
2731 	 * ioc_rqos_throttle() for details.
2732 	 */
2733 	spin_lock_irqsave(&ioc->lock, flags);
2734 	spin_lock(&iocg->waitq.lock);
2735 
2736 	if (likely(!list_empty(&iocg->active_list))) {
2737 		iocg_incur_debt(iocg, abs_cost, &now);
2738 		if (iocg_kick_delay(iocg, &now))
2739 			blkcg_schedule_throttle(rqos->q,
2740 					(bio->bi_opf & REQ_SWAP) == REQ_SWAP);
2741 	} else {
2742 		iocg_commit_bio(iocg, bio, abs_cost, cost);
2743 	}
2744 
2745 	spin_unlock(&iocg->waitq.lock);
2746 	spin_unlock_irqrestore(&ioc->lock, flags);
2747 }
2748 
ioc_rqos_done_bio(struct rq_qos * rqos,struct bio * bio)2749 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio)
2750 {
2751 	struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg);
2752 
2753 	if (iocg && bio->bi_iocost_cost)
2754 		atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime);
2755 }
2756 
ioc_rqos_done(struct rq_qos * rqos,struct request * rq)2757 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq)
2758 {
2759 	struct ioc *ioc = rqos_to_ioc(rqos);
2760 	struct ioc_pcpu_stat *ccs;
2761 	u64 on_q_ns, rq_wait_ns, size_nsec;
2762 	int pidx, rw;
2763 
2764 	if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns)
2765 		return;
2766 
2767 	switch (req_op(rq) & REQ_OP_MASK) {
2768 	case REQ_OP_READ:
2769 		pidx = QOS_RLAT;
2770 		rw = READ;
2771 		break;
2772 	case REQ_OP_WRITE:
2773 		pidx = QOS_WLAT;
2774 		rw = WRITE;
2775 		break;
2776 	default:
2777 		return;
2778 	}
2779 
2780 	on_q_ns = ktime_get_ns() - rq->alloc_time_ns;
2781 	rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns;
2782 	size_nsec = div64_u64(calc_size_vtime_cost(rq, ioc), VTIME_PER_NSEC);
2783 
2784 	ccs = get_cpu_ptr(ioc->pcpu_stat);
2785 
2786 	if (on_q_ns <= size_nsec ||
2787 	    on_q_ns - size_nsec <= ioc->params.qos[pidx] * NSEC_PER_USEC)
2788 		local_inc(&ccs->missed[rw].nr_met);
2789 	else
2790 		local_inc(&ccs->missed[rw].nr_missed);
2791 
2792 	local64_add(rq_wait_ns, &ccs->rq_wait_ns);
2793 
2794 	put_cpu_ptr(ccs);
2795 }
2796 
ioc_rqos_queue_depth_changed(struct rq_qos * rqos)2797 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos)
2798 {
2799 	struct ioc *ioc = rqos_to_ioc(rqos);
2800 
2801 	spin_lock_irq(&ioc->lock);
2802 	ioc_refresh_params(ioc, false);
2803 	spin_unlock_irq(&ioc->lock);
2804 }
2805 
ioc_rqos_exit(struct rq_qos * rqos)2806 static void ioc_rqos_exit(struct rq_qos *rqos)
2807 {
2808 	struct ioc *ioc = rqos_to_ioc(rqos);
2809 
2810 	blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost);
2811 
2812 	spin_lock_irq(&ioc->lock);
2813 	ioc->running = IOC_STOP;
2814 	spin_unlock_irq(&ioc->lock);
2815 
2816 	del_timer_sync(&ioc->timer);
2817 	free_percpu(ioc->pcpu_stat);
2818 	kfree(ioc);
2819 }
2820 
2821 static struct rq_qos_ops ioc_rqos_ops = {
2822 	.throttle = ioc_rqos_throttle,
2823 	.merge = ioc_rqos_merge,
2824 	.done_bio = ioc_rqos_done_bio,
2825 	.done = ioc_rqos_done,
2826 	.queue_depth_changed = ioc_rqos_queue_depth_changed,
2827 	.exit = ioc_rqos_exit,
2828 };
2829 
blk_iocost_init(struct request_queue * q)2830 static int blk_iocost_init(struct request_queue *q)
2831 {
2832 	struct ioc *ioc;
2833 	struct rq_qos *rqos;
2834 	int i, cpu, ret;
2835 
2836 	ioc = kzalloc(sizeof(*ioc), GFP_KERNEL);
2837 	if (!ioc)
2838 		return -ENOMEM;
2839 
2840 	ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat);
2841 	if (!ioc->pcpu_stat) {
2842 		kfree(ioc);
2843 		return -ENOMEM;
2844 	}
2845 
2846 	for_each_possible_cpu(cpu) {
2847 		struct ioc_pcpu_stat *ccs = per_cpu_ptr(ioc->pcpu_stat, cpu);
2848 
2849 		for (i = 0; i < ARRAY_SIZE(ccs->missed); i++) {
2850 			local_set(&ccs->missed[i].nr_met, 0);
2851 			local_set(&ccs->missed[i].nr_missed, 0);
2852 		}
2853 		local64_set(&ccs->rq_wait_ns, 0);
2854 	}
2855 
2856 	rqos = &ioc->rqos;
2857 	rqos->id = RQ_QOS_COST;
2858 	rqos->ops = &ioc_rqos_ops;
2859 	rqos->q = q;
2860 
2861 	spin_lock_init(&ioc->lock);
2862 	timer_setup(&ioc->timer, ioc_timer_fn, 0);
2863 	INIT_LIST_HEAD(&ioc->active_iocgs);
2864 
2865 	ioc->running = IOC_IDLE;
2866 	ioc->vtime_base_rate = VTIME_PER_USEC;
2867 	atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC);
2868 	seqcount_spinlock_init(&ioc->period_seqcount, &ioc->lock);
2869 	ioc->period_at = ktime_to_us(ktime_get());
2870 	atomic64_set(&ioc->cur_period, 0);
2871 	atomic_set(&ioc->hweight_gen, 0);
2872 
2873 	spin_lock_irq(&ioc->lock);
2874 	ioc->autop_idx = AUTOP_INVALID;
2875 	ioc_refresh_params(ioc, true);
2876 	spin_unlock_irq(&ioc->lock);
2877 
2878 	/*
2879 	 * rqos must be added before activation to allow iocg_pd_init() to
2880 	 * lookup the ioc from q. This means that the rqos methods may get
2881 	 * called before policy activation completion, can't assume that the
2882 	 * target bio has an iocg associated and need to test for NULL iocg.
2883 	 */
2884 	rq_qos_add(q, rqos);
2885 	ret = blkcg_activate_policy(q, &blkcg_policy_iocost);
2886 	if (ret) {
2887 		rq_qos_del(q, rqos);
2888 		free_percpu(ioc->pcpu_stat);
2889 		kfree(ioc);
2890 		return ret;
2891 	}
2892 	return 0;
2893 }
2894 
ioc_cpd_alloc(gfp_t gfp)2895 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp)
2896 {
2897 	struct ioc_cgrp *iocc;
2898 
2899 	iocc = kzalloc(sizeof(struct ioc_cgrp), gfp);
2900 	if (!iocc)
2901 		return NULL;
2902 
2903 	iocc->dfl_weight = CGROUP_WEIGHT_DFL * WEIGHT_ONE;
2904 	return &iocc->cpd;
2905 }
2906 
ioc_cpd_free(struct blkcg_policy_data * cpd)2907 static void ioc_cpd_free(struct blkcg_policy_data *cpd)
2908 {
2909 	kfree(container_of(cpd, struct ioc_cgrp, cpd));
2910 }
2911 
ioc_pd_alloc(gfp_t gfp,struct request_queue * q,struct blkcg * blkcg)2912 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q,
2913 					     struct blkcg *blkcg)
2914 {
2915 	int levels = blkcg->css.cgroup->level + 1;
2916 	struct ioc_gq *iocg;
2917 
2918 	iocg = kzalloc_node(struct_size(iocg, ancestors, levels), gfp, q->node);
2919 	if (!iocg)
2920 		return NULL;
2921 
2922 	iocg->pcpu_stat = alloc_percpu_gfp(struct iocg_pcpu_stat, gfp);
2923 	if (!iocg->pcpu_stat) {
2924 		kfree(iocg);
2925 		return NULL;
2926 	}
2927 
2928 	return &iocg->pd;
2929 }
2930 
ioc_pd_init(struct blkg_policy_data * pd)2931 static void ioc_pd_init(struct blkg_policy_data *pd)
2932 {
2933 	struct ioc_gq *iocg = pd_to_iocg(pd);
2934 	struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd);
2935 	struct ioc *ioc = q_to_ioc(blkg->q);
2936 	struct ioc_now now;
2937 	struct blkcg_gq *tblkg;
2938 	unsigned long flags;
2939 
2940 	ioc_now(ioc, &now);
2941 
2942 	iocg->ioc = ioc;
2943 	atomic64_set(&iocg->vtime, now.vnow);
2944 	atomic64_set(&iocg->done_vtime, now.vnow);
2945 	atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period));
2946 	INIT_LIST_HEAD(&iocg->active_list);
2947 	INIT_LIST_HEAD(&iocg->walk_list);
2948 	INIT_LIST_HEAD(&iocg->surplus_list);
2949 	iocg->hweight_active = WEIGHT_ONE;
2950 	iocg->hweight_inuse = WEIGHT_ONE;
2951 
2952 	init_waitqueue_head(&iocg->waitq);
2953 	hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2954 	iocg->waitq_timer.function = iocg_waitq_timer_fn;
2955 
2956 	iocg->level = blkg->blkcg->css.cgroup->level;
2957 
2958 	for (tblkg = blkg; tblkg; tblkg = tblkg->parent) {
2959 		struct ioc_gq *tiocg = blkg_to_iocg(tblkg);
2960 		iocg->ancestors[tiocg->level] = tiocg;
2961 	}
2962 
2963 	spin_lock_irqsave(&ioc->lock, flags);
2964 	weight_updated(iocg, &now);
2965 	spin_unlock_irqrestore(&ioc->lock, flags);
2966 }
2967 
ioc_pd_free(struct blkg_policy_data * pd)2968 static void ioc_pd_free(struct blkg_policy_data *pd)
2969 {
2970 	struct ioc_gq *iocg = pd_to_iocg(pd);
2971 	struct ioc *ioc = iocg->ioc;
2972 	unsigned long flags;
2973 
2974 	if (ioc) {
2975 		spin_lock_irqsave(&ioc->lock, flags);
2976 
2977 		if (!list_empty(&iocg->active_list)) {
2978 			struct ioc_now now;
2979 
2980 			ioc_now(ioc, &now);
2981 			propagate_weights(iocg, 0, 0, false, &now);
2982 			list_del_init(&iocg->active_list);
2983 		}
2984 
2985 		WARN_ON_ONCE(!list_empty(&iocg->walk_list));
2986 		WARN_ON_ONCE(!list_empty(&iocg->surplus_list));
2987 
2988 		spin_unlock_irqrestore(&ioc->lock, flags);
2989 
2990 		hrtimer_cancel(&iocg->waitq_timer);
2991 	}
2992 	free_percpu(iocg->pcpu_stat);
2993 	kfree(iocg);
2994 }
2995 
ioc_pd_stat(struct blkg_policy_data * pd,char * buf,size_t size)2996 static size_t ioc_pd_stat(struct blkg_policy_data *pd, char *buf, size_t size)
2997 {
2998 	struct ioc_gq *iocg = pd_to_iocg(pd);
2999 	struct ioc *ioc = iocg->ioc;
3000 	size_t pos = 0;
3001 
3002 	if (!ioc->enabled)
3003 		return 0;
3004 
3005 	if (iocg->level == 0) {
3006 		unsigned vp10k = DIV64_U64_ROUND_CLOSEST(
3007 			ioc->vtime_base_rate * 10000,
3008 			VTIME_PER_USEC);
3009 		pos += scnprintf(buf + pos, size - pos, " cost.vrate=%u.%02u",
3010 				  vp10k / 100, vp10k % 100);
3011 	}
3012 
3013 	pos += scnprintf(buf + pos, size - pos, " cost.usage=%llu",
3014 			 iocg->last_stat.usage_us);
3015 
3016 	if (blkcg_debug_stats)
3017 		pos += scnprintf(buf + pos, size - pos,
3018 				 " cost.wait=%llu cost.indebt=%llu cost.indelay=%llu",
3019 				 iocg->last_stat.wait_us,
3020 				 iocg->last_stat.indebt_us,
3021 				 iocg->last_stat.indelay_us);
3022 
3023 	return pos;
3024 }
3025 
ioc_weight_prfill(struct seq_file * sf,struct blkg_policy_data * pd,int off)3026 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3027 			     int off)
3028 {
3029 	const char *dname = blkg_dev_name(pd->blkg);
3030 	struct ioc_gq *iocg = pd_to_iocg(pd);
3031 
3032 	if (dname && iocg->cfg_weight)
3033 		seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight / WEIGHT_ONE);
3034 	return 0;
3035 }
3036 
3037 
ioc_weight_show(struct seq_file * sf,void * v)3038 static int ioc_weight_show(struct seq_file *sf, void *v)
3039 {
3040 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3041 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3042 
3043 	seq_printf(sf, "default %u\n", iocc->dfl_weight / WEIGHT_ONE);
3044 	blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill,
3045 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3046 	return 0;
3047 }
3048 
ioc_weight_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3049 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf,
3050 				size_t nbytes, loff_t off)
3051 {
3052 	struct blkcg *blkcg = css_to_blkcg(of_css(of));
3053 	struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg);
3054 	struct blkg_conf_ctx ctx;
3055 	struct ioc_now now;
3056 	struct ioc_gq *iocg;
3057 	u32 v;
3058 	int ret;
3059 
3060 	if (!strchr(buf, ':')) {
3061 		struct blkcg_gq *blkg;
3062 
3063 		if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v))
3064 			return -EINVAL;
3065 
3066 		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3067 			return -EINVAL;
3068 
3069 		spin_lock_irq(&blkcg->lock);
3070 		iocc->dfl_weight = v * WEIGHT_ONE;
3071 		hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
3072 			struct ioc_gq *iocg = blkg_to_iocg(blkg);
3073 
3074 			if (iocg) {
3075 				spin_lock(&iocg->ioc->lock);
3076 				ioc_now(iocg->ioc, &now);
3077 				weight_updated(iocg, &now);
3078 				spin_unlock(&iocg->ioc->lock);
3079 			}
3080 		}
3081 		spin_unlock_irq(&blkcg->lock);
3082 
3083 		return nbytes;
3084 	}
3085 
3086 	ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx);
3087 	if (ret)
3088 		return ret;
3089 
3090 	iocg = blkg_to_iocg(ctx.blkg);
3091 
3092 	if (!strncmp(ctx.body, "default", 7)) {
3093 		v = 0;
3094 	} else {
3095 		if (!sscanf(ctx.body, "%u", &v))
3096 			goto einval;
3097 		if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX)
3098 			goto einval;
3099 	}
3100 
3101 	spin_lock(&iocg->ioc->lock);
3102 	iocg->cfg_weight = v * WEIGHT_ONE;
3103 	ioc_now(iocg->ioc, &now);
3104 	weight_updated(iocg, &now);
3105 	spin_unlock(&iocg->ioc->lock);
3106 
3107 	blkg_conf_finish(&ctx);
3108 	return nbytes;
3109 
3110 einval:
3111 	blkg_conf_finish(&ctx);
3112 	return -EINVAL;
3113 }
3114 
ioc_qos_prfill(struct seq_file * sf,struct blkg_policy_data * pd,int off)3115 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd,
3116 			  int off)
3117 {
3118 	const char *dname = blkg_dev_name(pd->blkg);
3119 	struct ioc *ioc = pd_to_iocg(pd)->ioc;
3120 
3121 	if (!dname)
3122 		return 0;
3123 
3124 	seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
3125 		   dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto",
3126 		   ioc->params.qos[QOS_RPPM] / 10000,
3127 		   ioc->params.qos[QOS_RPPM] % 10000 / 100,
3128 		   ioc->params.qos[QOS_RLAT],
3129 		   ioc->params.qos[QOS_WPPM] / 10000,
3130 		   ioc->params.qos[QOS_WPPM] % 10000 / 100,
3131 		   ioc->params.qos[QOS_WLAT],
3132 		   ioc->params.qos[QOS_MIN] / 10000,
3133 		   ioc->params.qos[QOS_MIN] % 10000 / 100,
3134 		   ioc->params.qos[QOS_MAX] / 10000,
3135 		   ioc->params.qos[QOS_MAX] % 10000 / 100);
3136 	return 0;
3137 }
3138 
ioc_qos_show(struct seq_file * sf,void * v)3139 static int ioc_qos_show(struct seq_file *sf, void *v)
3140 {
3141 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3142 
3143 	blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill,
3144 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3145 	return 0;
3146 }
3147 
3148 static const match_table_t qos_ctrl_tokens = {
3149 	{ QOS_ENABLE,		"enable=%u"	},
3150 	{ QOS_CTRL,		"ctrl=%s"	},
3151 	{ NR_QOS_CTRL_PARAMS,	NULL		},
3152 };
3153 
3154 static const match_table_t qos_tokens = {
3155 	{ QOS_RPPM,		"rpct=%s"	},
3156 	{ QOS_RLAT,		"rlat=%u"	},
3157 	{ QOS_WPPM,		"wpct=%s"	},
3158 	{ QOS_WLAT,		"wlat=%u"	},
3159 	{ QOS_MIN,		"min=%s"	},
3160 	{ QOS_MAX,		"max=%s"	},
3161 	{ NR_QOS_PARAMS,	NULL		},
3162 };
3163 
ioc_qos_write(struct kernfs_open_file * of,char * input,size_t nbytes,loff_t off)3164 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input,
3165 			     size_t nbytes, loff_t off)
3166 {
3167 	struct gendisk *disk;
3168 	struct ioc *ioc;
3169 	u32 qos[NR_QOS_PARAMS];
3170 	bool enable, user;
3171 	char *p;
3172 	int ret;
3173 
3174 	disk = blkcg_conf_get_disk(&input);
3175 	if (IS_ERR(disk))
3176 		return PTR_ERR(disk);
3177 
3178 	ioc = q_to_ioc(disk->queue);
3179 	if (!ioc) {
3180 		ret = blk_iocost_init(disk->queue);
3181 		if (ret)
3182 			goto err;
3183 		ioc = q_to_ioc(disk->queue);
3184 	}
3185 
3186 	spin_lock_irq(&ioc->lock);
3187 	memcpy(qos, ioc->params.qos, sizeof(qos));
3188 	enable = ioc->enabled;
3189 	user = ioc->user_qos_params;
3190 	spin_unlock_irq(&ioc->lock);
3191 
3192 	while ((p = strsep(&input, " \t\n"))) {
3193 		substring_t args[MAX_OPT_ARGS];
3194 		char buf[32];
3195 		int tok;
3196 		s64 v;
3197 
3198 		if (!*p)
3199 			continue;
3200 
3201 		switch (match_token(p, qos_ctrl_tokens, args)) {
3202 		case QOS_ENABLE:
3203 			match_u64(&args[0], &v);
3204 			enable = v;
3205 			continue;
3206 		case QOS_CTRL:
3207 			match_strlcpy(buf, &args[0], sizeof(buf));
3208 			if (!strcmp(buf, "auto"))
3209 				user = false;
3210 			else if (!strcmp(buf, "user"))
3211 				user = true;
3212 			else
3213 				goto einval;
3214 			continue;
3215 		}
3216 
3217 		tok = match_token(p, qos_tokens, args);
3218 		switch (tok) {
3219 		case QOS_RPPM:
3220 		case QOS_WPPM:
3221 			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3222 			    sizeof(buf))
3223 				goto einval;
3224 			if (cgroup_parse_float(buf, 2, &v))
3225 				goto einval;
3226 			if (v < 0 || v > 10000)
3227 				goto einval;
3228 			qos[tok] = v * 100;
3229 			break;
3230 		case QOS_RLAT:
3231 		case QOS_WLAT:
3232 			if (match_u64(&args[0], &v))
3233 				goto einval;
3234 			qos[tok] = v;
3235 			break;
3236 		case QOS_MIN:
3237 		case QOS_MAX:
3238 			if (match_strlcpy(buf, &args[0], sizeof(buf)) >=
3239 			    sizeof(buf))
3240 				goto einval;
3241 			if (cgroup_parse_float(buf, 2, &v))
3242 				goto einval;
3243 			if (v < 0)
3244 				goto einval;
3245 			qos[tok] = clamp_t(s64, v * 100,
3246 					   VRATE_MIN_PPM, VRATE_MAX_PPM);
3247 			break;
3248 		default:
3249 			goto einval;
3250 		}
3251 		user = true;
3252 	}
3253 
3254 	if (qos[QOS_MIN] > qos[QOS_MAX])
3255 		goto einval;
3256 
3257 	spin_lock_irq(&ioc->lock);
3258 
3259 	if (enable) {
3260 		blk_stat_enable_accounting(ioc->rqos.q);
3261 		blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3262 		ioc->enabled = true;
3263 	} else {
3264 		blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q);
3265 		ioc->enabled = false;
3266 	}
3267 
3268 	if (user) {
3269 		memcpy(ioc->params.qos, qos, sizeof(qos));
3270 		ioc->user_qos_params = true;
3271 	} else {
3272 		ioc->user_qos_params = false;
3273 	}
3274 
3275 	ioc_refresh_params(ioc, true);
3276 	spin_unlock_irq(&ioc->lock);
3277 
3278 	put_disk_and_module(disk);
3279 	return nbytes;
3280 einval:
3281 	ret = -EINVAL;
3282 err:
3283 	put_disk_and_module(disk);
3284 	return ret;
3285 }
3286 
ioc_cost_model_prfill(struct seq_file * sf,struct blkg_policy_data * pd,int off)3287 static u64 ioc_cost_model_prfill(struct seq_file *sf,
3288 				 struct blkg_policy_data *pd, int off)
3289 {
3290 	const char *dname = blkg_dev_name(pd->blkg);
3291 	struct ioc *ioc = pd_to_iocg(pd)->ioc;
3292 	u64 *u = ioc->params.i_lcoefs;
3293 
3294 	if (!dname)
3295 		return 0;
3296 
3297 	seq_printf(sf, "%s ctrl=%s model=linear "
3298 		   "rbps=%llu rseqiops=%llu rrandiops=%llu "
3299 		   "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
3300 		   dname, ioc->user_cost_model ? "user" : "auto",
3301 		   u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS],
3302 		   u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]);
3303 	return 0;
3304 }
3305 
ioc_cost_model_show(struct seq_file * sf,void * v)3306 static int ioc_cost_model_show(struct seq_file *sf, void *v)
3307 {
3308 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
3309 
3310 	blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill,
3311 			  &blkcg_policy_iocost, seq_cft(sf)->private, false);
3312 	return 0;
3313 }
3314 
3315 static const match_table_t cost_ctrl_tokens = {
3316 	{ COST_CTRL,		"ctrl=%s"	},
3317 	{ COST_MODEL,		"model=%s"	},
3318 	{ NR_COST_CTRL_PARAMS,	NULL		},
3319 };
3320 
3321 static const match_table_t i_lcoef_tokens = {
3322 	{ I_LCOEF_RBPS,		"rbps=%u"	},
3323 	{ I_LCOEF_RSEQIOPS,	"rseqiops=%u"	},
3324 	{ I_LCOEF_RRANDIOPS,	"rrandiops=%u"	},
3325 	{ I_LCOEF_WBPS,		"wbps=%u"	},
3326 	{ I_LCOEF_WSEQIOPS,	"wseqiops=%u"	},
3327 	{ I_LCOEF_WRANDIOPS,	"wrandiops=%u"	},
3328 	{ NR_I_LCOEFS,		NULL		},
3329 };
3330 
ioc_cost_model_write(struct kernfs_open_file * of,char * input,size_t nbytes,loff_t off)3331 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input,
3332 				    size_t nbytes, loff_t off)
3333 {
3334 	struct gendisk *disk;
3335 	struct ioc *ioc;
3336 	u64 u[NR_I_LCOEFS];
3337 	bool user;
3338 	char *p;
3339 	int ret;
3340 
3341 	disk = blkcg_conf_get_disk(&input);
3342 	if (IS_ERR(disk))
3343 		return PTR_ERR(disk);
3344 
3345 	ioc = q_to_ioc(disk->queue);
3346 	if (!ioc) {
3347 		ret = blk_iocost_init(disk->queue);
3348 		if (ret)
3349 			goto err;
3350 		ioc = q_to_ioc(disk->queue);
3351 	}
3352 
3353 	spin_lock_irq(&ioc->lock);
3354 	memcpy(u, ioc->params.i_lcoefs, sizeof(u));
3355 	user = ioc->user_cost_model;
3356 	spin_unlock_irq(&ioc->lock);
3357 
3358 	while ((p = strsep(&input, " \t\n"))) {
3359 		substring_t args[MAX_OPT_ARGS];
3360 		char buf[32];
3361 		int tok;
3362 		u64 v;
3363 
3364 		if (!*p)
3365 			continue;
3366 
3367 		switch (match_token(p, cost_ctrl_tokens, args)) {
3368 		case COST_CTRL:
3369 			match_strlcpy(buf, &args[0], sizeof(buf));
3370 			if (!strcmp(buf, "auto"))
3371 				user = false;
3372 			else if (!strcmp(buf, "user"))
3373 				user = true;
3374 			else
3375 				goto einval;
3376 			continue;
3377 		case COST_MODEL:
3378 			match_strlcpy(buf, &args[0], sizeof(buf));
3379 			if (strcmp(buf, "linear"))
3380 				goto einval;
3381 			continue;
3382 		}
3383 
3384 		tok = match_token(p, i_lcoef_tokens, args);
3385 		if (tok == NR_I_LCOEFS)
3386 			goto einval;
3387 		if (match_u64(&args[0], &v))
3388 			goto einval;
3389 		u[tok] = v;
3390 		user = true;
3391 	}
3392 
3393 	spin_lock_irq(&ioc->lock);
3394 	if (user) {
3395 		memcpy(ioc->params.i_lcoefs, u, sizeof(u));
3396 		ioc->user_cost_model = true;
3397 	} else {
3398 		ioc->user_cost_model = false;
3399 	}
3400 	ioc_refresh_params(ioc, true);
3401 	spin_unlock_irq(&ioc->lock);
3402 
3403 	put_disk_and_module(disk);
3404 	return nbytes;
3405 
3406 einval:
3407 	ret = -EINVAL;
3408 err:
3409 	put_disk_and_module(disk);
3410 	return ret;
3411 }
3412 
3413 static struct cftype ioc_files[] = {
3414 	{
3415 		.name = "weight",
3416 		.flags = CFTYPE_NOT_ON_ROOT,
3417 		.seq_show = ioc_weight_show,
3418 		.write = ioc_weight_write,
3419 	},
3420 	{
3421 		.name = "cost.qos",
3422 		.flags = CFTYPE_ONLY_ON_ROOT,
3423 		.seq_show = ioc_qos_show,
3424 		.write = ioc_qos_write,
3425 	},
3426 	{
3427 		.name = "cost.model",
3428 		.flags = CFTYPE_ONLY_ON_ROOT,
3429 		.seq_show = ioc_cost_model_show,
3430 		.write = ioc_cost_model_write,
3431 	},
3432 	{}
3433 };
3434 
3435 static struct blkcg_policy blkcg_policy_iocost = {
3436 	.dfl_cftypes	= ioc_files,
3437 	.cpd_alloc_fn	= ioc_cpd_alloc,
3438 	.cpd_free_fn	= ioc_cpd_free,
3439 	.pd_alloc_fn	= ioc_pd_alloc,
3440 	.pd_init_fn	= ioc_pd_init,
3441 	.pd_free_fn	= ioc_pd_free,
3442 	.pd_stat_fn	= ioc_pd_stat,
3443 };
3444 
ioc_init(void)3445 static int __init ioc_init(void)
3446 {
3447 	return blkcg_policy_register(&blkcg_policy_iocost);
3448 }
3449 
ioc_exit(void)3450 static void __exit ioc_exit(void)
3451 {
3452 	blkcg_policy_unregister(&blkcg_policy_iocost);
3453 }
3454 
3455 module_init(ioc_init);
3456 module_exit(ioc_exit);
3457