• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39 
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49 
50 #include "rbd_types.h"
51 
52 #define RBD_DEBUG	/* Activate rbd_assert() calls */
53 
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
atomic_inc_return_safe(atomic_t * v)60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62 	unsigned int counter;
63 
64 	counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 	if (counter <= (unsigned int)INT_MAX)
66 		return (int)counter;
67 
68 	atomic_dec(v);
69 
70 	return -EINVAL;
71 }
72 
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
atomic_dec_return_safe(atomic_t * v)74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76 	int counter;
77 
78 	counter = atomic_dec_return(v);
79 	if (counter >= 0)
80 		return counter;
81 
82 	atomic_inc(v);
83 
84 	return -EINVAL;
85 }
86 
87 #define RBD_DRV_NAME "rbd"
88 
89 #define RBD_MINORS_PER_MAJOR		256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
91 
92 #define RBD_MAX_PARENT_CHAIN_LEN	16
93 
94 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
95 #define RBD_MAX_SNAP_NAME_LEN	\
96 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97 
98 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
99 
100 #define RBD_SNAP_HEAD_NAME	"-"
101 
102 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
103 
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX	64
107 
108 #define RBD_OBJ_PREFIX_LEN_MAX	64
109 
110 #define RBD_NOTIFY_TIMEOUT	5	/* seconds */
111 #define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
112 
113 /* Feature bits */
114 
115 #define RBD_FEATURE_LAYERING		(1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2		(1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK	(1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP		(1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF		(1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN	(1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL		(1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS		(1ULL<<8)
123 
124 #define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
125 				 RBD_FEATURE_STRIPINGV2 |	\
126 				 RBD_FEATURE_EXCLUSIVE_LOCK |	\
127 				 RBD_FEATURE_OBJECT_MAP |	\
128 				 RBD_FEATURE_FAST_DIFF |	\
129 				 RBD_FEATURE_DEEP_FLATTEN |	\
130 				 RBD_FEATURE_DATA_POOL |	\
131 				 RBD_FEATURE_OPERATIONS)
132 
133 /* Features supported by this (client software) implementation. */
134 
135 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
136 
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN		32
142 
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147 	/* These six fields never change for a given rbd image */
148 	char *object_prefix;
149 	__u8 obj_order;
150 	u64 stripe_unit;
151 	u64 stripe_count;
152 	s64 data_pool_id;
153 	u64 features;		/* Might be changeable someday? */
154 
155 	/* The remaining fields need to be updated occasionally */
156 	u64 image_size;
157 	struct ceph_snap_context *snapc;
158 	char *snap_names;	/* format 1 only */
159 	u64 *snap_sizes;	/* format 1 only */
160 };
161 
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188 	u64		pool_id;
189 	const char	*pool_name;
190 	const char	*pool_ns;	/* NULL if default, never "" */
191 
192 	const char	*image_id;
193 	const char	*image_name;
194 
195 	u64		snap_id;
196 	const char	*snap_name;
197 
198 	struct kref	kref;
199 };
200 
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205 	struct ceph_client	*client;
206 	struct kref		kref;
207 	struct list_head	node;
208 };
209 
210 struct pending_result {
211 	int			result;		/* first nonzero result */
212 	int			num_pending;
213 };
214 
215 struct rbd_img_request;
216 
217 enum obj_request_type {
218 	OBJ_REQUEST_NODATA = 1,
219 	OBJ_REQUEST_BIO,	/* pointer into provided bio (list) */
220 	OBJ_REQUEST_BVECS,	/* pointer into provided bio_vec array */
221 	OBJ_REQUEST_OWN_BVECS,	/* private bio_vec array, doesn't own pages */
222 };
223 
224 enum obj_operation_type {
225 	OBJ_OP_READ = 1,
226 	OBJ_OP_WRITE,
227 	OBJ_OP_DISCARD,
228 	OBJ_OP_ZEROOUT,
229 };
230 
231 #define RBD_OBJ_FLAG_DELETION			(1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED		(1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS		(1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST			(1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT	(1U << 4)
236 
237 enum rbd_obj_read_state {
238 	RBD_OBJ_READ_START = 1,
239 	RBD_OBJ_READ_OBJECT,
240 	RBD_OBJ_READ_PARENT,
241 };
242 
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269 	RBD_OBJ_WRITE_START = 1,
270 	RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 	RBD_OBJ_WRITE_OBJECT,
272 	__RBD_OBJ_WRITE_COPYUP,
273 	RBD_OBJ_WRITE_COPYUP,
274 	RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276 
277 enum rbd_obj_copyup_state {
278 	RBD_OBJ_COPYUP_START = 1,
279 	RBD_OBJ_COPYUP_READ_PARENT,
280 	__RBD_OBJ_COPYUP_OBJECT_MAPS,
281 	RBD_OBJ_COPYUP_OBJECT_MAPS,
282 	__RBD_OBJ_COPYUP_WRITE_OBJECT,
283 	RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285 
286 struct rbd_obj_request {
287 	struct ceph_object_extent ex;
288 	unsigned int		flags;	/* RBD_OBJ_FLAG_* */
289 	union {
290 		enum rbd_obj_read_state	 read_state;	/* for reads */
291 		enum rbd_obj_write_state write_state;	/* for writes */
292 	};
293 
294 	struct rbd_img_request	*img_request;
295 	struct ceph_file_extent	*img_extents;
296 	u32			num_img_extents;
297 
298 	union {
299 		struct ceph_bio_iter	bio_pos;
300 		struct {
301 			struct ceph_bvec_iter	bvec_pos;
302 			u32			bvec_count;
303 			u32			bvec_idx;
304 		};
305 	};
306 
307 	enum rbd_obj_copyup_state copyup_state;
308 	struct bio_vec		*copyup_bvecs;
309 	u32			copyup_bvec_count;
310 
311 	struct list_head	osd_reqs;	/* w/ r_private_item */
312 
313 	struct mutex		state_mutex;
314 	struct pending_result	pending;
315 	struct kref		kref;
316 };
317 
318 enum img_req_flags {
319 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
320 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
321 };
322 
323 enum rbd_img_state {
324 	RBD_IMG_START = 1,
325 	RBD_IMG_EXCLUSIVE_LOCK,
326 	__RBD_IMG_OBJECT_REQUESTS,
327 	RBD_IMG_OBJECT_REQUESTS,
328 };
329 
330 struct rbd_img_request {
331 	struct rbd_device	*rbd_dev;
332 	enum obj_operation_type	op_type;
333 	enum obj_request_type	data_type;
334 	unsigned long		flags;
335 	enum rbd_img_state	state;
336 	union {
337 		u64			snap_id;	/* for reads */
338 		struct ceph_snap_context *snapc;	/* for writes */
339 	};
340 	struct rbd_obj_request	*obj_request;	/* obj req initiator */
341 
342 	struct list_head	lock_item;
343 	struct list_head	object_extents;	/* obj_req.ex structs */
344 
345 	struct mutex		state_mutex;
346 	struct pending_result	pending;
347 	struct work_struct	work;
348 	int			work_result;
349 };
350 
351 #define for_each_obj_request(ireq, oreq) \
352 	list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354 	list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355 
356 enum rbd_watch_state {
357 	RBD_WATCH_STATE_UNREGISTERED,
358 	RBD_WATCH_STATE_REGISTERED,
359 	RBD_WATCH_STATE_ERROR,
360 };
361 
362 enum rbd_lock_state {
363 	RBD_LOCK_STATE_UNLOCKED,
364 	RBD_LOCK_STATE_LOCKED,
365 	RBD_LOCK_STATE_RELEASING,
366 };
367 
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370 	u64 gid;
371 	u64 handle;
372 };
373 
374 struct rbd_mapping {
375 	u64                     size;
376 };
377 
378 /*
379  * a single device
380  */
381 struct rbd_device {
382 	int			dev_id;		/* blkdev unique id */
383 
384 	int			major;		/* blkdev assigned major */
385 	int			minor;
386 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
387 
388 	u32			image_format;	/* Either 1 or 2 */
389 	struct rbd_client	*rbd_client;
390 
391 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392 
393 	spinlock_t		lock;		/* queue, flags, open_count */
394 
395 	struct rbd_image_header	header;
396 	unsigned long		flags;		/* possibly lock protected */
397 	struct rbd_spec		*spec;
398 	struct rbd_options	*opts;
399 	char			*config_info;	/* add{,_single_major} string */
400 
401 	struct ceph_object_id	header_oid;
402 	struct ceph_object_locator header_oloc;
403 
404 	struct ceph_file_layout	layout;		/* used for all rbd requests */
405 
406 	struct mutex		watch_mutex;
407 	enum rbd_watch_state	watch_state;
408 	struct ceph_osd_linger_request *watch_handle;
409 	u64			watch_cookie;
410 	struct delayed_work	watch_dwork;
411 
412 	struct rw_semaphore	lock_rwsem;
413 	enum rbd_lock_state	lock_state;
414 	char			lock_cookie[32];
415 	struct rbd_client_id	owner_cid;
416 	struct work_struct	acquired_lock_work;
417 	struct work_struct	released_lock_work;
418 	struct delayed_work	lock_dwork;
419 	struct work_struct	unlock_work;
420 	spinlock_t		lock_lists_lock;
421 	struct list_head	acquiring_list;
422 	struct list_head	running_list;
423 	struct completion	acquire_wait;
424 	int			acquire_err;
425 	struct completion	releasing_wait;
426 
427 	spinlock_t		object_map_lock;
428 	u8			*object_map;
429 	u64			object_map_size;	/* in objects */
430 	u64			object_map_flags;
431 
432 	struct workqueue_struct	*task_wq;
433 
434 	struct rbd_spec		*parent_spec;
435 	u64			parent_overlap;
436 	atomic_t		parent_ref;
437 	struct rbd_device	*parent;
438 
439 	/* Block layer tags. */
440 	struct blk_mq_tag_set	tag_set;
441 
442 	/* protects updating the header */
443 	struct rw_semaphore     header_rwsem;
444 
445 	struct rbd_mapping	mapping;
446 
447 	struct list_head	node;
448 
449 	/* sysfs related */
450 	struct device		dev;
451 	unsigned long		open_count;	/* protected by lock */
452 };
453 
454 /*
455  * Flag bits for rbd_dev->flags:
456  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457  *   by rbd_dev->lock
458  */
459 enum rbd_dev_flags {
460 	RBD_DEV_FLAG_EXISTS,	/* rbd_dev_device_setup() ran */
461 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
462 	RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463 };
464 
465 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
466 
467 static LIST_HEAD(rbd_dev_list);    /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469 
470 static LIST_HEAD(rbd_client_list);		/* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472 
473 /* Slab caches for frequently-allocated structures */
474 
475 static struct kmem_cache	*rbd_img_request_cache;
476 static struct kmem_cache	*rbd_obj_request_cache;
477 
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480 
481 static struct workqueue_struct *rbd_wq;
482 
483 static struct ceph_snap_context rbd_empty_snapc = {
484 	.nref = REFCOUNT_INIT(1),
485 };
486 
487 /*
488  * single-major requires >= 0.75 version of userspace rbd utility.
489  */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493 
494 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(struct bus_type *bus, const char *buf,
496 			    size_t count);
497 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
498 				      size_t count);
499 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
500 					 size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502 
rbd_dev_id_to_minor(int dev_id)503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507 
minor_to_rbd_dev_id(int minor)508 static int minor_to_rbd_dev_id(int minor)
509 {
510 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512 
rbd_is_ro(struct rbd_device * rbd_dev)513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515 	return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517 
rbd_is_snap(struct rbd_device * rbd_dev)518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520 	return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522 
__rbd_is_lock_owner(struct rbd_device * rbd_dev)523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525 	lockdep_assert_held(&rbd_dev->lock_rwsem);
526 
527 	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528 	       rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530 
rbd_is_lock_owner(struct rbd_device * rbd_dev)531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533 	bool is_lock_owner;
534 
535 	down_read(&rbd_dev->lock_rwsem);
536 	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537 	up_read(&rbd_dev->lock_rwsem);
538 	return is_lock_owner;
539 }
540 
supported_features_show(struct bus_type * bus,char * buf)541 static ssize_t supported_features_show(struct bus_type *bus, char *buf)
542 {
543 	return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545 
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551 
552 static struct attribute *rbd_bus_attrs[] = {
553 	&bus_attr_add.attr,
554 	&bus_attr_remove.attr,
555 	&bus_attr_add_single_major.attr,
556 	&bus_attr_remove_single_major.attr,
557 	&bus_attr_supported_features.attr,
558 	NULL,
559 };
560 
rbd_bus_is_visible(struct kobject * kobj,struct attribute * attr,int index)561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562 				  struct attribute *attr, int index)
563 {
564 	if (!single_major &&
565 	    (attr == &bus_attr_add_single_major.attr ||
566 	     attr == &bus_attr_remove_single_major.attr))
567 		return 0;
568 
569 	return attr->mode;
570 }
571 
572 static const struct attribute_group rbd_bus_group = {
573 	.attrs = rbd_bus_attrs,
574 	.is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577 
578 static struct bus_type rbd_bus_type = {
579 	.name		= "rbd",
580 	.bus_groups	= rbd_bus_groups,
581 };
582 
rbd_root_dev_release(struct device * dev)583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586 
587 static struct device rbd_root_dev = {
588 	.init_name =    "rbd",
589 	.release =      rbd_root_dev_release,
590 };
591 
592 static __printf(2, 3)
rbd_warn(struct rbd_device * rbd_dev,const char * fmt,...)593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595 	struct va_format vaf;
596 	va_list args;
597 
598 	va_start(args, fmt);
599 	vaf.fmt = fmt;
600 	vaf.va = &args;
601 
602 	if (!rbd_dev)
603 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604 	else if (rbd_dev->disk)
605 		printk(KERN_WARNING "%s: %s: %pV\n",
606 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
608 		printk(KERN_WARNING "%s: image %s: %pV\n",
609 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
611 		printk(KERN_WARNING "%s: id %s: %pV\n",
612 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613 	else	/* punt */
614 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615 			RBD_DRV_NAME, rbd_dev, &vaf);
616 	va_end(args);
617 }
618 
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr)						\
621 		if (unlikely(!(expr))) {				\
622 			printk(KERN_ERR "\nAssertion failure in %s() "	\
623 						"at line %d:\n\n"	\
624 					"\trbd_assert(%s);\n\n",	\
625 					__func__, __LINE__, #expr);	\
626 			BUG();						\
627 		}
628 #else /* !RBD_DEBUG */
629 #  define rbd_assert(expr)	((void) 0)
630 #endif /* !RBD_DEBUG */
631 
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633 
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
636 				     struct rbd_image_header *header);
637 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
638 					u64 snap_id);
639 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
640 				u8 *order, u64 *snap_size);
641 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
642 
643 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
644 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
645 
646 /*
647  * Return true if nothing else is pending.
648  */
pending_result_dec(struct pending_result * pending,int * result)649 static bool pending_result_dec(struct pending_result *pending, int *result)
650 {
651 	rbd_assert(pending->num_pending > 0);
652 
653 	if (*result && !pending->result)
654 		pending->result = *result;
655 	if (--pending->num_pending)
656 		return false;
657 
658 	*result = pending->result;
659 	return true;
660 }
661 
rbd_open(struct block_device * bdev,fmode_t mode)662 static int rbd_open(struct block_device *bdev, fmode_t mode)
663 {
664 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
665 	bool removing = false;
666 
667 	spin_lock_irq(&rbd_dev->lock);
668 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
669 		removing = true;
670 	else
671 		rbd_dev->open_count++;
672 	spin_unlock_irq(&rbd_dev->lock);
673 	if (removing)
674 		return -ENOENT;
675 
676 	(void) get_device(&rbd_dev->dev);
677 
678 	return 0;
679 }
680 
rbd_release(struct gendisk * disk,fmode_t mode)681 static void rbd_release(struct gendisk *disk, fmode_t mode)
682 {
683 	struct rbd_device *rbd_dev = disk->private_data;
684 	unsigned long open_count_before;
685 
686 	spin_lock_irq(&rbd_dev->lock);
687 	open_count_before = rbd_dev->open_count--;
688 	spin_unlock_irq(&rbd_dev->lock);
689 	rbd_assert(open_count_before > 0);
690 
691 	put_device(&rbd_dev->dev);
692 }
693 
rbd_ioctl_set_ro(struct rbd_device * rbd_dev,unsigned long arg)694 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
695 {
696 	int ro;
697 
698 	if (get_user(ro, (int __user *)arg))
699 		return -EFAULT;
700 
701 	/*
702 	 * Both images mapped read-only and snapshots can't be marked
703 	 * read-write.
704 	 */
705 	if (!ro) {
706 		if (rbd_is_ro(rbd_dev))
707 			return -EROFS;
708 
709 		rbd_assert(!rbd_is_snap(rbd_dev));
710 	}
711 
712 	/* Let blkdev_roset() handle it */
713 	return -ENOTTY;
714 }
715 
rbd_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)716 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
717 			unsigned int cmd, unsigned long arg)
718 {
719 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
720 	int ret;
721 
722 	switch (cmd) {
723 	case BLKROSET:
724 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
725 		break;
726 	default:
727 		ret = -ENOTTY;
728 	}
729 
730 	return ret;
731 }
732 
733 #ifdef CONFIG_COMPAT
rbd_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)734 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
735 				unsigned int cmd, unsigned long arg)
736 {
737 	return rbd_ioctl(bdev, mode, cmd, arg);
738 }
739 #endif /* CONFIG_COMPAT */
740 
741 static const struct block_device_operations rbd_bd_ops = {
742 	.owner			= THIS_MODULE,
743 	.open			= rbd_open,
744 	.release		= rbd_release,
745 	.ioctl			= rbd_ioctl,
746 #ifdef CONFIG_COMPAT
747 	.compat_ioctl		= rbd_compat_ioctl,
748 #endif
749 };
750 
751 /*
752  * Initialize an rbd client instance.  Success or not, this function
753  * consumes ceph_opts.  Caller holds client_mutex.
754  */
rbd_client_create(struct ceph_options * ceph_opts)755 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
756 {
757 	struct rbd_client *rbdc;
758 	int ret = -ENOMEM;
759 
760 	dout("%s:\n", __func__);
761 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
762 	if (!rbdc)
763 		goto out_opt;
764 
765 	kref_init(&rbdc->kref);
766 	INIT_LIST_HEAD(&rbdc->node);
767 
768 	rbdc->client = ceph_create_client(ceph_opts, rbdc);
769 	if (IS_ERR(rbdc->client))
770 		goto out_rbdc;
771 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
772 
773 	ret = ceph_open_session(rbdc->client);
774 	if (ret < 0)
775 		goto out_client;
776 
777 	spin_lock(&rbd_client_list_lock);
778 	list_add_tail(&rbdc->node, &rbd_client_list);
779 	spin_unlock(&rbd_client_list_lock);
780 
781 	dout("%s: rbdc %p\n", __func__, rbdc);
782 
783 	return rbdc;
784 out_client:
785 	ceph_destroy_client(rbdc->client);
786 out_rbdc:
787 	kfree(rbdc);
788 out_opt:
789 	if (ceph_opts)
790 		ceph_destroy_options(ceph_opts);
791 	dout("%s: error %d\n", __func__, ret);
792 
793 	return ERR_PTR(ret);
794 }
795 
__rbd_get_client(struct rbd_client * rbdc)796 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
797 {
798 	kref_get(&rbdc->kref);
799 
800 	return rbdc;
801 }
802 
803 /*
804  * Find a ceph client with specific addr and configuration.  If
805  * found, bump its reference count.
806  */
rbd_client_find(struct ceph_options * ceph_opts)807 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
808 {
809 	struct rbd_client *client_node;
810 	bool found = false;
811 
812 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
813 		return NULL;
814 
815 	spin_lock(&rbd_client_list_lock);
816 	list_for_each_entry(client_node, &rbd_client_list, node) {
817 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
818 			__rbd_get_client(client_node);
819 
820 			found = true;
821 			break;
822 		}
823 	}
824 	spin_unlock(&rbd_client_list_lock);
825 
826 	return found ? client_node : NULL;
827 }
828 
829 /*
830  * (Per device) rbd map options
831  */
832 enum {
833 	Opt_queue_depth,
834 	Opt_alloc_size,
835 	Opt_lock_timeout,
836 	/* int args above */
837 	Opt_pool_ns,
838 	Opt_compression_hint,
839 	/* string args above */
840 	Opt_read_only,
841 	Opt_read_write,
842 	Opt_lock_on_read,
843 	Opt_exclusive,
844 	Opt_notrim,
845 };
846 
847 enum {
848 	Opt_compression_hint_none,
849 	Opt_compression_hint_compressible,
850 	Opt_compression_hint_incompressible,
851 };
852 
853 static const struct constant_table rbd_param_compression_hint[] = {
854 	{"none",		Opt_compression_hint_none},
855 	{"compressible",	Opt_compression_hint_compressible},
856 	{"incompressible",	Opt_compression_hint_incompressible},
857 	{}
858 };
859 
860 static const struct fs_parameter_spec rbd_parameters[] = {
861 	fsparam_u32	("alloc_size",			Opt_alloc_size),
862 	fsparam_enum	("compression_hint",		Opt_compression_hint,
863 			 rbd_param_compression_hint),
864 	fsparam_flag	("exclusive",			Opt_exclusive),
865 	fsparam_flag	("lock_on_read",		Opt_lock_on_read),
866 	fsparam_u32	("lock_timeout",		Opt_lock_timeout),
867 	fsparam_flag	("notrim",			Opt_notrim),
868 	fsparam_string	("_pool_ns",			Opt_pool_ns),
869 	fsparam_u32	("queue_depth",			Opt_queue_depth),
870 	fsparam_flag	("read_only",			Opt_read_only),
871 	fsparam_flag	("read_write",			Opt_read_write),
872 	fsparam_flag	("ro",				Opt_read_only),
873 	fsparam_flag	("rw",				Opt_read_write),
874 	{}
875 };
876 
877 struct rbd_options {
878 	int	queue_depth;
879 	int	alloc_size;
880 	unsigned long	lock_timeout;
881 	bool	read_only;
882 	bool	lock_on_read;
883 	bool	exclusive;
884 	bool	trim;
885 
886 	u32 alloc_hint_flags;  /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
887 };
888 
889 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_MAX_RQ
890 #define RBD_ALLOC_SIZE_DEFAULT	(64 * 1024)
891 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
892 #define RBD_READ_ONLY_DEFAULT	false
893 #define RBD_LOCK_ON_READ_DEFAULT false
894 #define RBD_EXCLUSIVE_DEFAULT	false
895 #define RBD_TRIM_DEFAULT	true
896 
897 struct rbd_parse_opts_ctx {
898 	struct rbd_spec		*spec;
899 	struct ceph_options	*copts;
900 	struct rbd_options	*opts;
901 };
902 
obj_op_name(enum obj_operation_type op_type)903 static char* obj_op_name(enum obj_operation_type op_type)
904 {
905 	switch (op_type) {
906 	case OBJ_OP_READ:
907 		return "read";
908 	case OBJ_OP_WRITE:
909 		return "write";
910 	case OBJ_OP_DISCARD:
911 		return "discard";
912 	case OBJ_OP_ZEROOUT:
913 		return "zeroout";
914 	default:
915 		return "???";
916 	}
917 }
918 
919 /*
920  * Destroy ceph client
921  *
922  * Caller must hold rbd_client_list_lock.
923  */
rbd_client_release(struct kref * kref)924 static void rbd_client_release(struct kref *kref)
925 {
926 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
927 
928 	dout("%s: rbdc %p\n", __func__, rbdc);
929 	spin_lock(&rbd_client_list_lock);
930 	list_del(&rbdc->node);
931 	spin_unlock(&rbd_client_list_lock);
932 
933 	ceph_destroy_client(rbdc->client);
934 	kfree(rbdc);
935 }
936 
937 /*
938  * Drop reference to ceph client node. If it's not referenced anymore, release
939  * it.
940  */
rbd_put_client(struct rbd_client * rbdc)941 static void rbd_put_client(struct rbd_client *rbdc)
942 {
943 	if (rbdc)
944 		kref_put(&rbdc->kref, rbd_client_release);
945 }
946 
947 /*
948  * Get a ceph client with specific addr and configuration, if one does
949  * not exist create it.  Either way, ceph_opts is consumed by this
950  * function.
951  */
rbd_get_client(struct ceph_options * ceph_opts)952 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
953 {
954 	struct rbd_client *rbdc;
955 	int ret;
956 
957 	mutex_lock(&client_mutex);
958 	rbdc = rbd_client_find(ceph_opts);
959 	if (rbdc) {
960 		ceph_destroy_options(ceph_opts);
961 
962 		/*
963 		 * Using an existing client.  Make sure ->pg_pools is up to
964 		 * date before we look up the pool id in do_rbd_add().
965 		 */
966 		ret = ceph_wait_for_latest_osdmap(rbdc->client,
967 					rbdc->client->options->mount_timeout);
968 		if (ret) {
969 			rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
970 			rbd_put_client(rbdc);
971 			rbdc = ERR_PTR(ret);
972 		}
973 	} else {
974 		rbdc = rbd_client_create(ceph_opts);
975 	}
976 	mutex_unlock(&client_mutex);
977 
978 	return rbdc;
979 }
980 
rbd_image_format_valid(u32 image_format)981 static bool rbd_image_format_valid(u32 image_format)
982 {
983 	return image_format == 1 || image_format == 2;
984 }
985 
rbd_dev_ondisk_valid(struct rbd_image_header_ondisk * ondisk)986 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
987 {
988 	size_t size;
989 	u32 snap_count;
990 
991 	/* The header has to start with the magic rbd header text */
992 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
993 		return false;
994 
995 	/* The bio layer requires at least sector-sized I/O */
996 
997 	if (ondisk->options.order < SECTOR_SHIFT)
998 		return false;
999 
1000 	/* If we use u64 in a few spots we may be able to loosen this */
1001 
1002 	if (ondisk->options.order > 8 * sizeof (int) - 1)
1003 		return false;
1004 
1005 	/*
1006 	 * The size of a snapshot header has to fit in a size_t, and
1007 	 * that limits the number of snapshots.
1008 	 */
1009 	snap_count = le32_to_cpu(ondisk->snap_count);
1010 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
1011 	if (snap_count > size / sizeof (__le64))
1012 		return false;
1013 
1014 	/*
1015 	 * Not only that, but the size of the entire the snapshot
1016 	 * header must also be representable in a size_t.
1017 	 */
1018 	size -= snap_count * sizeof (__le64);
1019 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
1020 		return false;
1021 
1022 	return true;
1023 }
1024 
1025 /*
1026  * returns the size of an object in the image
1027  */
rbd_obj_bytes(struct rbd_image_header * header)1028 static u32 rbd_obj_bytes(struct rbd_image_header *header)
1029 {
1030 	return 1U << header->obj_order;
1031 }
1032 
rbd_init_layout(struct rbd_device * rbd_dev)1033 static void rbd_init_layout(struct rbd_device *rbd_dev)
1034 {
1035 	if (rbd_dev->header.stripe_unit == 0 ||
1036 	    rbd_dev->header.stripe_count == 0) {
1037 		rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
1038 		rbd_dev->header.stripe_count = 1;
1039 	}
1040 
1041 	rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
1042 	rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
1043 	rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
1044 	rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
1045 			  rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
1046 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
1047 }
1048 
rbd_image_header_cleanup(struct rbd_image_header * header)1049 static void rbd_image_header_cleanup(struct rbd_image_header *header)
1050 {
1051 	kfree(header->object_prefix);
1052 	ceph_put_snap_context(header->snapc);
1053 	kfree(header->snap_sizes);
1054 	kfree(header->snap_names);
1055 
1056 	memset(header, 0, sizeof(*header));
1057 }
1058 
1059 /*
1060  * Fill an rbd image header with information from the given format 1
1061  * on-disk header.
1062  */
rbd_header_from_disk(struct rbd_image_header * header,struct rbd_image_header_ondisk * ondisk,bool first_time)1063 static int rbd_header_from_disk(struct rbd_image_header *header,
1064 				struct rbd_image_header_ondisk *ondisk,
1065 				bool first_time)
1066 {
1067 	struct ceph_snap_context *snapc;
1068 	char *object_prefix = NULL;
1069 	char *snap_names = NULL;
1070 	u64 *snap_sizes = NULL;
1071 	u32 snap_count;
1072 	int ret = -ENOMEM;
1073 	u32 i;
1074 
1075 	/* Allocate this now to avoid having to handle failure below */
1076 
1077 	if (first_time) {
1078 		object_prefix = kstrndup(ondisk->object_prefix,
1079 					 sizeof(ondisk->object_prefix),
1080 					 GFP_KERNEL);
1081 		if (!object_prefix)
1082 			return -ENOMEM;
1083 	}
1084 
1085 	/* Allocate the snapshot context and fill it in */
1086 
1087 	snap_count = le32_to_cpu(ondisk->snap_count);
1088 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1089 	if (!snapc)
1090 		goto out_err;
1091 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1092 	if (snap_count) {
1093 		struct rbd_image_snap_ondisk *snaps;
1094 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1095 
1096 		/* We'll keep a copy of the snapshot names... */
1097 
1098 		if (snap_names_len > (u64)SIZE_MAX)
1099 			goto out_2big;
1100 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1101 		if (!snap_names)
1102 			goto out_err;
1103 
1104 		/* ...as well as the array of their sizes. */
1105 		snap_sizes = kmalloc_array(snap_count,
1106 					   sizeof(*header->snap_sizes),
1107 					   GFP_KERNEL);
1108 		if (!snap_sizes)
1109 			goto out_err;
1110 
1111 		/*
1112 		 * Copy the names, and fill in each snapshot's id
1113 		 * and size.
1114 		 *
1115 		 * Note that rbd_dev_v1_header_info() guarantees the
1116 		 * ondisk buffer we're working with has
1117 		 * snap_names_len bytes beyond the end of the
1118 		 * snapshot id array, this memcpy() is safe.
1119 		 */
1120 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1121 		snaps = ondisk->snaps;
1122 		for (i = 0; i < snap_count; i++) {
1123 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1124 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1125 		}
1126 	}
1127 
1128 	/* We won't fail any more, fill in the header */
1129 
1130 	if (first_time) {
1131 		header->object_prefix = object_prefix;
1132 		header->obj_order = ondisk->options.order;
1133 	}
1134 
1135 	/* The remaining fields always get updated (when we refresh) */
1136 
1137 	header->image_size = le64_to_cpu(ondisk->image_size);
1138 	header->snapc = snapc;
1139 	header->snap_names = snap_names;
1140 	header->snap_sizes = snap_sizes;
1141 
1142 	return 0;
1143 out_2big:
1144 	ret = -EIO;
1145 out_err:
1146 	kfree(snap_sizes);
1147 	kfree(snap_names);
1148 	ceph_put_snap_context(snapc);
1149 	kfree(object_prefix);
1150 
1151 	return ret;
1152 }
1153 
_rbd_dev_v1_snap_name(struct rbd_device * rbd_dev,u32 which)1154 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1155 {
1156 	const char *snap_name;
1157 
1158 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1159 
1160 	/* Skip over names until we find the one we are looking for */
1161 
1162 	snap_name = rbd_dev->header.snap_names;
1163 	while (which--)
1164 		snap_name += strlen(snap_name) + 1;
1165 
1166 	return kstrdup(snap_name, GFP_KERNEL);
1167 }
1168 
1169 /*
1170  * Snapshot id comparison function for use with qsort()/bsearch().
1171  * Note that result is for snapshots in *descending* order.
1172  */
snapid_compare_reverse(const void * s1,const void * s2)1173 static int snapid_compare_reverse(const void *s1, const void *s2)
1174 {
1175 	u64 snap_id1 = *(u64 *)s1;
1176 	u64 snap_id2 = *(u64 *)s2;
1177 
1178 	if (snap_id1 < snap_id2)
1179 		return 1;
1180 	return snap_id1 == snap_id2 ? 0 : -1;
1181 }
1182 
1183 /*
1184  * Search a snapshot context to see if the given snapshot id is
1185  * present.
1186  *
1187  * Returns the position of the snapshot id in the array if it's found,
1188  * or BAD_SNAP_INDEX otherwise.
1189  *
1190  * Note: The snapshot array is in kept sorted (by the osd) in
1191  * reverse order, highest snapshot id first.
1192  */
rbd_dev_snap_index(struct rbd_device * rbd_dev,u64 snap_id)1193 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1194 {
1195 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1196 	u64 *found;
1197 
1198 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1199 				sizeof (snap_id), snapid_compare_reverse);
1200 
1201 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1202 }
1203 
rbd_dev_v1_snap_name(struct rbd_device * rbd_dev,u64 snap_id)1204 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1205 					u64 snap_id)
1206 {
1207 	u32 which;
1208 	const char *snap_name;
1209 
1210 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1211 	if (which == BAD_SNAP_INDEX)
1212 		return ERR_PTR(-ENOENT);
1213 
1214 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1215 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1216 }
1217 
rbd_snap_name(struct rbd_device * rbd_dev,u64 snap_id)1218 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1219 {
1220 	if (snap_id == CEPH_NOSNAP)
1221 		return RBD_SNAP_HEAD_NAME;
1222 
1223 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1224 	if (rbd_dev->image_format == 1)
1225 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1226 
1227 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1228 }
1229 
rbd_snap_size(struct rbd_device * rbd_dev,u64 snap_id,u64 * snap_size)1230 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1231 				u64 *snap_size)
1232 {
1233 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1234 	if (snap_id == CEPH_NOSNAP) {
1235 		*snap_size = rbd_dev->header.image_size;
1236 	} else if (rbd_dev->image_format == 1) {
1237 		u32 which;
1238 
1239 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1240 		if (which == BAD_SNAP_INDEX)
1241 			return -ENOENT;
1242 
1243 		*snap_size = rbd_dev->header.snap_sizes[which];
1244 	} else {
1245 		u64 size = 0;
1246 		int ret;
1247 
1248 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1249 		if (ret)
1250 			return ret;
1251 
1252 		*snap_size = size;
1253 	}
1254 	return 0;
1255 }
1256 
rbd_dev_mapping_set(struct rbd_device * rbd_dev)1257 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1258 {
1259 	u64 snap_id = rbd_dev->spec->snap_id;
1260 	u64 size = 0;
1261 	int ret;
1262 
1263 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1264 	if (ret)
1265 		return ret;
1266 
1267 	rbd_dev->mapping.size = size;
1268 	return 0;
1269 }
1270 
rbd_dev_mapping_clear(struct rbd_device * rbd_dev)1271 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1272 {
1273 	rbd_dev->mapping.size = 0;
1274 }
1275 
zero_bvec(struct bio_vec * bv)1276 static void zero_bvec(struct bio_vec *bv)
1277 {
1278 	void *buf;
1279 	unsigned long flags;
1280 
1281 	buf = bvec_kmap_irq(bv, &flags);
1282 	memset(buf, 0, bv->bv_len);
1283 	flush_dcache_page(bv->bv_page);
1284 	bvec_kunmap_irq(buf, &flags);
1285 }
1286 
zero_bios(struct ceph_bio_iter * bio_pos,u32 off,u32 bytes)1287 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1288 {
1289 	struct ceph_bio_iter it = *bio_pos;
1290 
1291 	ceph_bio_iter_advance(&it, off);
1292 	ceph_bio_iter_advance_step(&it, bytes, ({
1293 		zero_bvec(&bv);
1294 	}));
1295 }
1296 
zero_bvecs(struct ceph_bvec_iter * bvec_pos,u32 off,u32 bytes)1297 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1298 {
1299 	struct ceph_bvec_iter it = *bvec_pos;
1300 
1301 	ceph_bvec_iter_advance(&it, off);
1302 	ceph_bvec_iter_advance_step(&it, bytes, ({
1303 		zero_bvec(&bv);
1304 	}));
1305 }
1306 
1307 /*
1308  * Zero a range in @obj_req data buffer defined by a bio (list) or
1309  * (private) bio_vec array.
1310  *
1311  * @off is relative to the start of the data buffer.
1312  */
rbd_obj_zero_range(struct rbd_obj_request * obj_req,u32 off,u32 bytes)1313 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1314 			       u32 bytes)
1315 {
1316 	dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1317 
1318 	switch (obj_req->img_request->data_type) {
1319 	case OBJ_REQUEST_BIO:
1320 		zero_bios(&obj_req->bio_pos, off, bytes);
1321 		break;
1322 	case OBJ_REQUEST_BVECS:
1323 	case OBJ_REQUEST_OWN_BVECS:
1324 		zero_bvecs(&obj_req->bvec_pos, off, bytes);
1325 		break;
1326 	default:
1327 		BUG();
1328 	}
1329 }
1330 
1331 static void rbd_obj_request_destroy(struct kref *kref);
rbd_obj_request_put(struct rbd_obj_request * obj_request)1332 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1333 {
1334 	rbd_assert(obj_request != NULL);
1335 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1336 		kref_read(&obj_request->kref));
1337 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1338 }
1339 
rbd_img_obj_request_add(struct rbd_img_request * img_request,struct rbd_obj_request * obj_request)1340 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1341 					struct rbd_obj_request *obj_request)
1342 {
1343 	rbd_assert(obj_request->img_request == NULL);
1344 
1345 	/* Image request now owns object's original reference */
1346 	obj_request->img_request = img_request;
1347 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1348 }
1349 
rbd_img_obj_request_del(struct rbd_img_request * img_request,struct rbd_obj_request * obj_request)1350 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1351 					struct rbd_obj_request *obj_request)
1352 {
1353 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1354 	list_del(&obj_request->ex.oe_item);
1355 	rbd_assert(obj_request->img_request == img_request);
1356 	rbd_obj_request_put(obj_request);
1357 }
1358 
rbd_osd_submit(struct ceph_osd_request * osd_req)1359 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1360 {
1361 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1362 
1363 	dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1364 	     __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1365 	     obj_req->ex.oe_off, obj_req->ex.oe_len);
1366 	ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1367 }
1368 
1369 /*
1370  * The default/initial value for all image request flags is 0.  Each
1371  * is conditionally set to 1 at image request initialization time
1372  * and currently never change thereafter.
1373  */
img_request_layered_set(struct rbd_img_request * img_request)1374 static void img_request_layered_set(struct rbd_img_request *img_request)
1375 {
1376 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1377 }
1378 
img_request_layered_test(struct rbd_img_request * img_request)1379 static bool img_request_layered_test(struct rbd_img_request *img_request)
1380 {
1381 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1382 }
1383 
rbd_obj_is_entire(struct rbd_obj_request * obj_req)1384 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1385 {
1386 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1387 
1388 	return !obj_req->ex.oe_off &&
1389 	       obj_req->ex.oe_len == rbd_dev->layout.object_size;
1390 }
1391 
rbd_obj_is_tail(struct rbd_obj_request * obj_req)1392 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1393 {
1394 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1395 
1396 	return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1397 					rbd_dev->layout.object_size;
1398 }
1399 
1400 /*
1401  * Must be called after rbd_obj_calc_img_extents().
1402  */
rbd_obj_set_copyup_enabled(struct rbd_obj_request * obj_req)1403 static void rbd_obj_set_copyup_enabled(struct rbd_obj_request *obj_req)
1404 {
1405 	rbd_assert(obj_req->img_request->snapc);
1406 
1407 	if (obj_req->img_request->op_type == OBJ_OP_DISCARD) {
1408 		dout("%s %p objno %llu discard\n", __func__, obj_req,
1409 		     obj_req->ex.oe_objno);
1410 		return;
1411 	}
1412 
1413 	if (!obj_req->num_img_extents) {
1414 		dout("%s %p objno %llu not overlapping\n", __func__, obj_req,
1415 		     obj_req->ex.oe_objno);
1416 		return;
1417 	}
1418 
1419 	if (rbd_obj_is_entire(obj_req) &&
1420 	    !obj_req->img_request->snapc->num_snaps) {
1421 		dout("%s %p objno %llu entire\n", __func__, obj_req,
1422 		     obj_req->ex.oe_objno);
1423 		return;
1424 	}
1425 
1426 	obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
1427 }
1428 
rbd_obj_img_extents_bytes(struct rbd_obj_request * obj_req)1429 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1430 {
1431 	return ceph_file_extents_bytes(obj_req->img_extents,
1432 				       obj_req->num_img_extents);
1433 }
1434 
rbd_img_is_write(struct rbd_img_request * img_req)1435 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1436 {
1437 	switch (img_req->op_type) {
1438 	case OBJ_OP_READ:
1439 		return false;
1440 	case OBJ_OP_WRITE:
1441 	case OBJ_OP_DISCARD:
1442 	case OBJ_OP_ZEROOUT:
1443 		return true;
1444 	default:
1445 		BUG();
1446 	}
1447 }
1448 
rbd_osd_req_callback(struct ceph_osd_request * osd_req)1449 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1450 {
1451 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1452 	int result;
1453 
1454 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1455 	     osd_req->r_result, obj_req);
1456 
1457 	/*
1458 	 * Writes aren't allowed to return a data payload.  In some
1459 	 * guarded write cases (e.g. stat + zero on an empty object)
1460 	 * a stat response makes it through, but we don't care.
1461 	 */
1462 	if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1463 		result = 0;
1464 	else
1465 		result = osd_req->r_result;
1466 
1467 	rbd_obj_handle_request(obj_req, result);
1468 }
1469 
rbd_osd_format_read(struct ceph_osd_request * osd_req)1470 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1471 {
1472 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1473 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1474 	struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1475 
1476 	osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1477 	osd_req->r_snapid = obj_request->img_request->snap_id;
1478 }
1479 
rbd_osd_format_write(struct ceph_osd_request * osd_req)1480 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1481 {
1482 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1483 
1484 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1485 	ktime_get_real_ts64(&osd_req->r_mtime);
1486 	osd_req->r_data_offset = obj_request->ex.oe_off;
1487 }
1488 
1489 static struct ceph_osd_request *
__rbd_obj_add_osd_request(struct rbd_obj_request * obj_req,struct ceph_snap_context * snapc,int num_ops)1490 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1491 			  struct ceph_snap_context *snapc, int num_ops)
1492 {
1493 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1494 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1495 	struct ceph_osd_request *req;
1496 	const char *name_format = rbd_dev->image_format == 1 ?
1497 				      RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1498 	int ret;
1499 
1500 	req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1501 	if (!req)
1502 		return ERR_PTR(-ENOMEM);
1503 
1504 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1505 	req->r_callback = rbd_osd_req_callback;
1506 	req->r_priv = obj_req;
1507 
1508 	/*
1509 	 * Data objects may be stored in a separate pool, but always in
1510 	 * the same namespace in that pool as the header in its pool.
1511 	 */
1512 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1513 	req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1514 
1515 	ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1516 			       rbd_dev->header.object_prefix,
1517 			       obj_req->ex.oe_objno);
1518 	if (ret)
1519 		return ERR_PTR(ret);
1520 
1521 	return req;
1522 }
1523 
1524 static struct ceph_osd_request *
rbd_obj_add_osd_request(struct rbd_obj_request * obj_req,int num_ops)1525 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1526 {
1527 	rbd_assert(obj_req->img_request->snapc);
1528 	return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1529 					 num_ops);
1530 }
1531 
rbd_obj_request_create(void)1532 static struct rbd_obj_request *rbd_obj_request_create(void)
1533 {
1534 	struct rbd_obj_request *obj_request;
1535 
1536 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1537 	if (!obj_request)
1538 		return NULL;
1539 
1540 	ceph_object_extent_init(&obj_request->ex);
1541 	INIT_LIST_HEAD(&obj_request->osd_reqs);
1542 	mutex_init(&obj_request->state_mutex);
1543 	kref_init(&obj_request->kref);
1544 
1545 	dout("%s %p\n", __func__, obj_request);
1546 	return obj_request;
1547 }
1548 
rbd_obj_request_destroy(struct kref * kref)1549 static void rbd_obj_request_destroy(struct kref *kref)
1550 {
1551 	struct rbd_obj_request *obj_request;
1552 	struct ceph_osd_request *osd_req;
1553 	u32 i;
1554 
1555 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1556 
1557 	dout("%s: obj %p\n", __func__, obj_request);
1558 
1559 	while (!list_empty(&obj_request->osd_reqs)) {
1560 		osd_req = list_first_entry(&obj_request->osd_reqs,
1561 				    struct ceph_osd_request, r_private_item);
1562 		list_del_init(&osd_req->r_private_item);
1563 		ceph_osdc_put_request(osd_req);
1564 	}
1565 
1566 	switch (obj_request->img_request->data_type) {
1567 	case OBJ_REQUEST_NODATA:
1568 	case OBJ_REQUEST_BIO:
1569 	case OBJ_REQUEST_BVECS:
1570 		break;		/* Nothing to do */
1571 	case OBJ_REQUEST_OWN_BVECS:
1572 		kfree(obj_request->bvec_pos.bvecs);
1573 		break;
1574 	default:
1575 		BUG();
1576 	}
1577 
1578 	kfree(obj_request->img_extents);
1579 	if (obj_request->copyup_bvecs) {
1580 		for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1581 			if (obj_request->copyup_bvecs[i].bv_page)
1582 				__free_page(obj_request->copyup_bvecs[i].bv_page);
1583 		}
1584 		kfree(obj_request->copyup_bvecs);
1585 	}
1586 
1587 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1588 }
1589 
1590 /* It's OK to call this for a device with no parent */
1591 
1592 static void rbd_spec_put(struct rbd_spec *spec);
rbd_dev_unparent(struct rbd_device * rbd_dev)1593 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1594 {
1595 	rbd_dev_remove_parent(rbd_dev);
1596 	rbd_spec_put(rbd_dev->parent_spec);
1597 	rbd_dev->parent_spec = NULL;
1598 	rbd_dev->parent_overlap = 0;
1599 }
1600 
1601 /*
1602  * Parent image reference counting is used to determine when an
1603  * image's parent fields can be safely torn down--after there are no
1604  * more in-flight requests to the parent image.  When the last
1605  * reference is dropped, cleaning them up is safe.
1606  */
rbd_dev_parent_put(struct rbd_device * rbd_dev)1607 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1608 {
1609 	int counter;
1610 
1611 	if (!rbd_dev->parent_spec)
1612 		return;
1613 
1614 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1615 	if (counter > 0)
1616 		return;
1617 
1618 	/* Last reference; clean up parent data structures */
1619 
1620 	if (!counter)
1621 		rbd_dev_unparent(rbd_dev);
1622 	else
1623 		rbd_warn(rbd_dev, "parent reference underflow");
1624 }
1625 
1626 /*
1627  * If an image has a non-zero parent overlap, get a reference to its
1628  * parent.
1629  *
1630  * Returns true if the rbd device has a parent with a non-zero
1631  * overlap and a reference for it was successfully taken, or
1632  * false otherwise.
1633  */
rbd_dev_parent_get(struct rbd_device * rbd_dev)1634 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1635 {
1636 	int counter = 0;
1637 
1638 	if (!rbd_dev->parent_spec)
1639 		return false;
1640 
1641 	if (rbd_dev->parent_overlap)
1642 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1643 
1644 	if (counter < 0)
1645 		rbd_warn(rbd_dev, "parent reference overflow");
1646 
1647 	return counter > 0;
1648 }
1649 
rbd_img_request_init(struct rbd_img_request * img_request,struct rbd_device * rbd_dev,enum obj_operation_type op_type)1650 static void rbd_img_request_init(struct rbd_img_request *img_request,
1651 				 struct rbd_device *rbd_dev,
1652 				 enum obj_operation_type op_type)
1653 {
1654 	memset(img_request, 0, sizeof(*img_request));
1655 
1656 	img_request->rbd_dev = rbd_dev;
1657 	img_request->op_type = op_type;
1658 
1659 	INIT_LIST_HEAD(&img_request->lock_item);
1660 	INIT_LIST_HEAD(&img_request->object_extents);
1661 	mutex_init(&img_request->state_mutex);
1662 }
1663 
1664 /*
1665  * Only snap_id is captured here, for reads.  For writes, snapshot
1666  * context is captured in rbd_img_object_requests() after exclusive
1667  * lock is ensured to be held.
1668  */
rbd_img_capture_header(struct rbd_img_request * img_req)1669 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1670 {
1671 	struct rbd_device *rbd_dev = img_req->rbd_dev;
1672 
1673 	lockdep_assert_held(&rbd_dev->header_rwsem);
1674 
1675 	if (!rbd_img_is_write(img_req))
1676 		img_req->snap_id = rbd_dev->spec->snap_id;
1677 
1678 	if (rbd_dev_parent_get(rbd_dev))
1679 		img_request_layered_set(img_req);
1680 }
1681 
rbd_img_request_destroy(struct rbd_img_request * img_request)1682 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1683 {
1684 	struct rbd_obj_request *obj_request;
1685 	struct rbd_obj_request *next_obj_request;
1686 
1687 	dout("%s: img %p\n", __func__, img_request);
1688 
1689 	WARN_ON(!list_empty(&img_request->lock_item));
1690 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1691 		rbd_img_obj_request_del(img_request, obj_request);
1692 
1693 	if (img_request_layered_test(img_request))
1694 		rbd_dev_parent_put(img_request->rbd_dev);
1695 
1696 	if (rbd_img_is_write(img_request))
1697 		ceph_put_snap_context(img_request->snapc);
1698 
1699 	if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1700 		kmem_cache_free(rbd_img_request_cache, img_request);
1701 }
1702 
1703 #define BITS_PER_OBJ	2
1704 #define OBJS_PER_BYTE	(BITS_PER_BYTE / BITS_PER_OBJ)
1705 #define OBJ_MASK	((1 << BITS_PER_OBJ) - 1)
1706 
__rbd_object_map_index(struct rbd_device * rbd_dev,u64 objno,u64 * index,u8 * shift)1707 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1708 				   u64 *index, u8 *shift)
1709 {
1710 	u32 off;
1711 
1712 	rbd_assert(objno < rbd_dev->object_map_size);
1713 	*index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1714 	*shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1715 }
1716 
__rbd_object_map_get(struct rbd_device * rbd_dev,u64 objno)1717 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1718 {
1719 	u64 index;
1720 	u8 shift;
1721 
1722 	lockdep_assert_held(&rbd_dev->object_map_lock);
1723 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1724 	return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1725 }
1726 
__rbd_object_map_set(struct rbd_device * rbd_dev,u64 objno,u8 val)1727 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1728 {
1729 	u64 index;
1730 	u8 shift;
1731 	u8 *p;
1732 
1733 	lockdep_assert_held(&rbd_dev->object_map_lock);
1734 	rbd_assert(!(val & ~OBJ_MASK));
1735 
1736 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1737 	p = &rbd_dev->object_map[index];
1738 	*p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1739 }
1740 
rbd_object_map_get(struct rbd_device * rbd_dev,u64 objno)1741 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1742 {
1743 	u8 state;
1744 
1745 	spin_lock(&rbd_dev->object_map_lock);
1746 	state = __rbd_object_map_get(rbd_dev, objno);
1747 	spin_unlock(&rbd_dev->object_map_lock);
1748 	return state;
1749 }
1750 
use_object_map(struct rbd_device * rbd_dev)1751 static bool use_object_map(struct rbd_device *rbd_dev)
1752 {
1753 	/*
1754 	 * An image mapped read-only can't use the object map -- it isn't
1755 	 * loaded because the header lock isn't acquired.  Someone else can
1756 	 * write to the image and update the object map behind our back.
1757 	 *
1758 	 * A snapshot can't be written to, so using the object map is always
1759 	 * safe.
1760 	 */
1761 	if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1762 		return false;
1763 
1764 	return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1765 		!(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1766 }
1767 
rbd_object_map_may_exist(struct rbd_device * rbd_dev,u64 objno)1768 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1769 {
1770 	u8 state;
1771 
1772 	/* fall back to default logic if object map is disabled or invalid */
1773 	if (!use_object_map(rbd_dev))
1774 		return true;
1775 
1776 	state = rbd_object_map_get(rbd_dev, objno);
1777 	return state != OBJECT_NONEXISTENT;
1778 }
1779 
rbd_object_map_name(struct rbd_device * rbd_dev,u64 snap_id,struct ceph_object_id * oid)1780 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1781 				struct ceph_object_id *oid)
1782 {
1783 	if (snap_id == CEPH_NOSNAP)
1784 		ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1785 				rbd_dev->spec->image_id);
1786 	else
1787 		ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1788 				rbd_dev->spec->image_id, snap_id);
1789 }
1790 
rbd_object_map_lock(struct rbd_device * rbd_dev)1791 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1792 {
1793 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1794 	CEPH_DEFINE_OID_ONSTACK(oid);
1795 	u8 lock_type;
1796 	char *lock_tag;
1797 	struct ceph_locker *lockers;
1798 	u32 num_lockers;
1799 	bool broke_lock = false;
1800 	int ret;
1801 
1802 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1803 
1804 again:
1805 	ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1806 			    CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1807 	if (ret != -EBUSY || broke_lock) {
1808 		if (ret == -EEXIST)
1809 			ret = 0; /* already locked by myself */
1810 		if (ret)
1811 			rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1812 		return ret;
1813 	}
1814 
1815 	ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1816 				 RBD_LOCK_NAME, &lock_type, &lock_tag,
1817 				 &lockers, &num_lockers);
1818 	if (ret) {
1819 		if (ret == -ENOENT)
1820 			goto again;
1821 
1822 		rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1823 		return ret;
1824 	}
1825 
1826 	kfree(lock_tag);
1827 	if (num_lockers == 0)
1828 		goto again;
1829 
1830 	rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1831 		 ENTITY_NAME(lockers[0].id.name));
1832 
1833 	ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1834 				  RBD_LOCK_NAME, lockers[0].id.cookie,
1835 				  &lockers[0].id.name);
1836 	ceph_free_lockers(lockers, num_lockers);
1837 	if (ret) {
1838 		if (ret == -ENOENT)
1839 			goto again;
1840 
1841 		rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1842 		return ret;
1843 	}
1844 
1845 	broke_lock = true;
1846 	goto again;
1847 }
1848 
rbd_object_map_unlock(struct rbd_device * rbd_dev)1849 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1850 {
1851 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1852 	CEPH_DEFINE_OID_ONSTACK(oid);
1853 	int ret;
1854 
1855 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1856 
1857 	ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1858 			      "");
1859 	if (ret && ret != -ENOENT)
1860 		rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1861 }
1862 
decode_object_map_header(void ** p,void * end,u64 * object_map_size)1863 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1864 {
1865 	u8 struct_v;
1866 	u32 struct_len;
1867 	u32 header_len;
1868 	void *header_end;
1869 	int ret;
1870 
1871 	ceph_decode_32_safe(p, end, header_len, e_inval);
1872 	header_end = *p + header_len;
1873 
1874 	ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1875 				  &struct_len);
1876 	if (ret)
1877 		return ret;
1878 
1879 	ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1880 
1881 	*p = header_end;
1882 	return 0;
1883 
1884 e_inval:
1885 	return -EINVAL;
1886 }
1887 
__rbd_object_map_load(struct rbd_device * rbd_dev)1888 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1889 {
1890 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1891 	CEPH_DEFINE_OID_ONSTACK(oid);
1892 	struct page **pages;
1893 	void *p, *end;
1894 	size_t reply_len;
1895 	u64 num_objects;
1896 	u64 object_map_bytes;
1897 	u64 object_map_size;
1898 	int num_pages;
1899 	int ret;
1900 
1901 	rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1902 
1903 	num_objects = ceph_get_num_objects(&rbd_dev->layout,
1904 					   rbd_dev->mapping.size);
1905 	object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1906 					    BITS_PER_BYTE);
1907 	num_pages = calc_pages_for(0, object_map_bytes) + 1;
1908 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1909 	if (IS_ERR(pages))
1910 		return PTR_ERR(pages);
1911 
1912 	reply_len = num_pages * PAGE_SIZE;
1913 	rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1914 	ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1915 			     "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1916 			     NULL, 0, pages, &reply_len);
1917 	if (ret)
1918 		goto out;
1919 
1920 	p = page_address(pages[0]);
1921 	end = p + min(reply_len, (size_t)PAGE_SIZE);
1922 	ret = decode_object_map_header(&p, end, &object_map_size);
1923 	if (ret)
1924 		goto out;
1925 
1926 	if (object_map_size != num_objects) {
1927 		rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1928 			 object_map_size, num_objects);
1929 		ret = -EINVAL;
1930 		goto out;
1931 	}
1932 
1933 	if (offset_in_page(p) + object_map_bytes > reply_len) {
1934 		ret = -EINVAL;
1935 		goto out;
1936 	}
1937 
1938 	rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1939 	if (!rbd_dev->object_map) {
1940 		ret = -ENOMEM;
1941 		goto out;
1942 	}
1943 
1944 	rbd_dev->object_map_size = object_map_size;
1945 	ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1946 				   offset_in_page(p), object_map_bytes);
1947 
1948 out:
1949 	ceph_release_page_vector(pages, num_pages);
1950 	return ret;
1951 }
1952 
rbd_object_map_free(struct rbd_device * rbd_dev)1953 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1954 {
1955 	kvfree(rbd_dev->object_map);
1956 	rbd_dev->object_map = NULL;
1957 	rbd_dev->object_map_size = 0;
1958 }
1959 
rbd_object_map_load(struct rbd_device * rbd_dev)1960 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1961 {
1962 	int ret;
1963 
1964 	ret = __rbd_object_map_load(rbd_dev);
1965 	if (ret)
1966 		return ret;
1967 
1968 	ret = rbd_dev_v2_get_flags(rbd_dev);
1969 	if (ret) {
1970 		rbd_object_map_free(rbd_dev);
1971 		return ret;
1972 	}
1973 
1974 	if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1975 		rbd_warn(rbd_dev, "object map is invalid");
1976 
1977 	return 0;
1978 }
1979 
rbd_object_map_open(struct rbd_device * rbd_dev)1980 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1981 {
1982 	int ret;
1983 
1984 	ret = rbd_object_map_lock(rbd_dev);
1985 	if (ret)
1986 		return ret;
1987 
1988 	ret = rbd_object_map_load(rbd_dev);
1989 	if (ret) {
1990 		rbd_object_map_unlock(rbd_dev);
1991 		return ret;
1992 	}
1993 
1994 	return 0;
1995 }
1996 
rbd_object_map_close(struct rbd_device * rbd_dev)1997 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1998 {
1999 	rbd_object_map_free(rbd_dev);
2000 	rbd_object_map_unlock(rbd_dev);
2001 }
2002 
2003 /*
2004  * This function needs snap_id (or more precisely just something to
2005  * distinguish between HEAD and snapshot object maps), new_state and
2006  * current_state that were passed to rbd_object_map_update().
2007  *
2008  * To avoid allocating and stashing a context we piggyback on the OSD
2009  * request.  A HEAD update has two ops (assert_locked).  For new_state
2010  * and current_state we decode our own object_map_update op, encoded in
2011  * rbd_cls_object_map_update().
2012  */
rbd_object_map_update_finish(struct rbd_obj_request * obj_req,struct ceph_osd_request * osd_req)2013 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
2014 					struct ceph_osd_request *osd_req)
2015 {
2016 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2017 	struct ceph_osd_data *osd_data;
2018 	u64 objno;
2019 	u8 state, new_state, current_state;
2020 	bool has_current_state;
2021 	void *p;
2022 
2023 	if (osd_req->r_result)
2024 		return osd_req->r_result;
2025 
2026 	/*
2027 	 * Nothing to do for a snapshot object map.
2028 	 */
2029 	if (osd_req->r_num_ops == 1)
2030 		return 0;
2031 
2032 	/*
2033 	 * Update in-memory HEAD object map.
2034 	 */
2035 	rbd_assert(osd_req->r_num_ops == 2);
2036 	osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
2037 	rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
2038 
2039 	p = page_address(osd_data->pages[0]);
2040 	objno = ceph_decode_64(&p);
2041 	rbd_assert(objno == obj_req->ex.oe_objno);
2042 	rbd_assert(ceph_decode_64(&p) == objno + 1);
2043 	new_state = ceph_decode_8(&p);
2044 	has_current_state = ceph_decode_8(&p);
2045 	if (has_current_state)
2046 		current_state = ceph_decode_8(&p);
2047 
2048 	spin_lock(&rbd_dev->object_map_lock);
2049 	state = __rbd_object_map_get(rbd_dev, objno);
2050 	if (!has_current_state || current_state == state ||
2051 	    (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
2052 		__rbd_object_map_set(rbd_dev, objno, new_state);
2053 	spin_unlock(&rbd_dev->object_map_lock);
2054 
2055 	return 0;
2056 }
2057 
rbd_object_map_callback(struct ceph_osd_request * osd_req)2058 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
2059 {
2060 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2061 	int result;
2062 
2063 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2064 	     osd_req->r_result, obj_req);
2065 
2066 	result = rbd_object_map_update_finish(obj_req, osd_req);
2067 	rbd_obj_handle_request(obj_req, result);
2068 }
2069 
update_needed(struct rbd_device * rbd_dev,u64 objno,u8 new_state)2070 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2071 {
2072 	u8 state = rbd_object_map_get(rbd_dev, objno);
2073 
2074 	if (state == new_state ||
2075 	    (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2076 	    (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2077 		return false;
2078 
2079 	return true;
2080 }
2081 
rbd_cls_object_map_update(struct ceph_osd_request * req,int which,u64 objno,u8 new_state,const u8 * current_state)2082 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2083 				     int which, u64 objno, u8 new_state,
2084 				     const u8 *current_state)
2085 {
2086 	struct page **pages;
2087 	void *p, *start;
2088 	int ret;
2089 
2090 	ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2091 	if (ret)
2092 		return ret;
2093 
2094 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2095 	if (IS_ERR(pages))
2096 		return PTR_ERR(pages);
2097 
2098 	p = start = page_address(pages[0]);
2099 	ceph_encode_64(&p, objno);
2100 	ceph_encode_64(&p, objno + 1);
2101 	ceph_encode_8(&p, new_state);
2102 	if (current_state) {
2103 		ceph_encode_8(&p, 1);
2104 		ceph_encode_8(&p, *current_state);
2105 	} else {
2106 		ceph_encode_8(&p, 0);
2107 	}
2108 
2109 	osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2110 					  false, true);
2111 	return 0;
2112 }
2113 
2114 /*
2115  * Return:
2116  *   0 - object map update sent
2117  *   1 - object map update isn't needed
2118  *  <0 - error
2119  */
rbd_object_map_update(struct rbd_obj_request * obj_req,u64 snap_id,u8 new_state,const u8 * current_state)2120 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2121 				 u8 new_state, const u8 *current_state)
2122 {
2123 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2124 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2125 	struct ceph_osd_request *req;
2126 	int num_ops = 1;
2127 	int which = 0;
2128 	int ret;
2129 
2130 	if (snap_id == CEPH_NOSNAP) {
2131 		if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2132 			return 1;
2133 
2134 		num_ops++; /* assert_locked */
2135 	}
2136 
2137 	req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2138 	if (!req)
2139 		return -ENOMEM;
2140 
2141 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2142 	req->r_callback = rbd_object_map_callback;
2143 	req->r_priv = obj_req;
2144 
2145 	rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2146 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2147 	req->r_flags = CEPH_OSD_FLAG_WRITE;
2148 	ktime_get_real_ts64(&req->r_mtime);
2149 
2150 	if (snap_id == CEPH_NOSNAP) {
2151 		/*
2152 		 * Protect against possible race conditions during lock
2153 		 * ownership transitions.
2154 		 */
2155 		ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2156 					     CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2157 		if (ret)
2158 			return ret;
2159 	}
2160 
2161 	ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2162 					new_state, current_state);
2163 	if (ret)
2164 		return ret;
2165 
2166 	ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2167 	if (ret)
2168 		return ret;
2169 
2170 	ceph_osdc_start_request(osdc, req, false);
2171 	return 0;
2172 }
2173 
prune_extents(struct ceph_file_extent * img_extents,u32 * num_img_extents,u64 overlap)2174 static void prune_extents(struct ceph_file_extent *img_extents,
2175 			  u32 *num_img_extents, u64 overlap)
2176 {
2177 	u32 cnt = *num_img_extents;
2178 
2179 	/* drop extents completely beyond the overlap */
2180 	while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2181 		cnt--;
2182 
2183 	if (cnt) {
2184 		struct ceph_file_extent *ex = &img_extents[cnt - 1];
2185 
2186 		/* trim final overlapping extent */
2187 		if (ex->fe_off + ex->fe_len > overlap)
2188 			ex->fe_len = overlap - ex->fe_off;
2189 	}
2190 
2191 	*num_img_extents = cnt;
2192 }
2193 
2194 /*
2195  * Determine the byte range(s) covered by either just the object extent
2196  * or the entire object in the parent image.
2197  */
rbd_obj_calc_img_extents(struct rbd_obj_request * obj_req,bool entire)2198 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2199 				    bool entire)
2200 {
2201 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2202 	int ret;
2203 
2204 	if (!rbd_dev->parent_overlap)
2205 		return 0;
2206 
2207 	ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2208 				  entire ? 0 : obj_req->ex.oe_off,
2209 				  entire ? rbd_dev->layout.object_size :
2210 							obj_req->ex.oe_len,
2211 				  &obj_req->img_extents,
2212 				  &obj_req->num_img_extents);
2213 	if (ret)
2214 		return ret;
2215 
2216 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2217 		      rbd_dev->parent_overlap);
2218 	return 0;
2219 }
2220 
rbd_osd_setup_data(struct ceph_osd_request * osd_req,int which)2221 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2222 {
2223 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2224 
2225 	switch (obj_req->img_request->data_type) {
2226 	case OBJ_REQUEST_BIO:
2227 		osd_req_op_extent_osd_data_bio(osd_req, which,
2228 					       &obj_req->bio_pos,
2229 					       obj_req->ex.oe_len);
2230 		break;
2231 	case OBJ_REQUEST_BVECS:
2232 	case OBJ_REQUEST_OWN_BVECS:
2233 		rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2234 							obj_req->ex.oe_len);
2235 		rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2236 		osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2237 						    &obj_req->bvec_pos);
2238 		break;
2239 	default:
2240 		BUG();
2241 	}
2242 }
2243 
rbd_osd_setup_stat(struct ceph_osd_request * osd_req,int which)2244 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2245 {
2246 	struct page **pages;
2247 
2248 	/*
2249 	 * The response data for a STAT call consists of:
2250 	 *     le64 length;
2251 	 *     struct {
2252 	 *         le32 tv_sec;
2253 	 *         le32 tv_nsec;
2254 	 *     } mtime;
2255 	 */
2256 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2257 	if (IS_ERR(pages))
2258 		return PTR_ERR(pages);
2259 
2260 	osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2261 	osd_req_op_raw_data_in_pages(osd_req, which, pages,
2262 				     8 + sizeof(struct ceph_timespec),
2263 				     0, false, true);
2264 	return 0;
2265 }
2266 
rbd_osd_setup_copyup(struct ceph_osd_request * osd_req,int which,u32 bytes)2267 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2268 				u32 bytes)
2269 {
2270 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2271 	int ret;
2272 
2273 	ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2274 	if (ret)
2275 		return ret;
2276 
2277 	osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2278 					  obj_req->copyup_bvec_count, bytes);
2279 	return 0;
2280 }
2281 
rbd_obj_init_read(struct rbd_obj_request * obj_req)2282 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2283 {
2284 	obj_req->read_state = RBD_OBJ_READ_START;
2285 	return 0;
2286 }
2287 
__rbd_osd_setup_write_ops(struct ceph_osd_request * osd_req,int which)2288 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2289 				      int which)
2290 {
2291 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2292 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2293 	u16 opcode;
2294 
2295 	if (!use_object_map(rbd_dev) ||
2296 	    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2297 		osd_req_op_alloc_hint_init(osd_req, which++,
2298 					   rbd_dev->layout.object_size,
2299 					   rbd_dev->layout.object_size,
2300 					   rbd_dev->opts->alloc_hint_flags);
2301 	}
2302 
2303 	if (rbd_obj_is_entire(obj_req))
2304 		opcode = CEPH_OSD_OP_WRITEFULL;
2305 	else
2306 		opcode = CEPH_OSD_OP_WRITE;
2307 
2308 	osd_req_op_extent_init(osd_req, which, opcode,
2309 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2310 	rbd_osd_setup_data(osd_req, which);
2311 }
2312 
rbd_obj_init_write(struct rbd_obj_request * obj_req)2313 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2314 {
2315 	int ret;
2316 
2317 	/* reverse map the entire object onto the parent */
2318 	ret = rbd_obj_calc_img_extents(obj_req, true);
2319 	if (ret)
2320 		return ret;
2321 
2322 	obj_req->write_state = RBD_OBJ_WRITE_START;
2323 	return 0;
2324 }
2325 
truncate_or_zero_opcode(struct rbd_obj_request * obj_req)2326 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2327 {
2328 	return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2329 					  CEPH_OSD_OP_ZERO;
2330 }
2331 
__rbd_osd_setup_discard_ops(struct ceph_osd_request * osd_req,int which)2332 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2333 					int which)
2334 {
2335 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2336 
2337 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2338 		rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2339 		osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2340 	} else {
2341 		osd_req_op_extent_init(osd_req, which,
2342 				       truncate_or_zero_opcode(obj_req),
2343 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2344 				       0, 0);
2345 	}
2346 }
2347 
rbd_obj_init_discard(struct rbd_obj_request * obj_req)2348 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2349 {
2350 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2351 	u64 off, next_off;
2352 	int ret;
2353 
2354 	/*
2355 	 * Align the range to alloc_size boundary and punt on discards
2356 	 * that are too small to free up any space.
2357 	 *
2358 	 * alloc_size == object_size && is_tail() is a special case for
2359 	 * filestore with filestore_punch_hole = false, needed to allow
2360 	 * truncate (in addition to delete).
2361 	 */
2362 	if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2363 	    !rbd_obj_is_tail(obj_req)) {
2364 		off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2365 		next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2366 				      rbd_dev->opts->alloc_size);
2367 		if (off >= next_off)
2368 			return 1;
2369 
2370 		dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2371 		     obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2372 		     off, next_off - off);
2373 		obj_req->ex.oe_off = off;
2374 		obj_req->ex.oe_len = next_off - off;
2375 	}
2376 
2377 	/* reverse map the entire object onto the parent */
2378 	ret = rbd_obj_calc_img_extents(obj_req, true);
2379 	if (ret)
2380 		return ret;
2381 
2382 	obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2383 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2384 		obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2385 
2386 	obj_req->write_state = RBD_OBJ_WRITE_START;
2387 	return 0;
2388 }
2389 
__rbd_osd_setup_zeroout_ops(struct ceph_osd_request * osd_req,int which)2390 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2391 					int which)
2392 {
2393 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2394 	u16 opcode;
2395 
2396 	if (rbd_obj_is_entire(obj_req)) {
2397 		if (obj_req->num_img_extents) {
2398 			if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2399 				osd_req_op_init(osd_req, which++,
2400 						CEPH_OSD_OP_CREATE, 0);
2401 			opcode = CEPH_OSD_OP_TRUNCATE;
2402 		} else {
2403 			rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2404 			osd_req_op_init(osd_req, which++,
2405 					CEPH_OSD_OP_DELETE, 0);
2406 			opcode = 0;
2407 		}
2408 	} else {
2409 		opcode = truncate_or_zero_opcode(obj_req);
2410 	}
2411 
2412 	if (opcode)
2413 		osd_req_op_extent_init(osd_req, which, opcode,
2414 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2415 				       0, 0);
2416 }
2417 
rbd_obj_init_zeroout(struct rbd_obj_request * obj_req)2418 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2419 {
2420 	int ret;
2421 
2422 	/* reverse map the entire object onto the parent */
2423 	ret = rbd_obj_calc_img_extents(obj_req, true);
2424 	if (ret)
2425 		return ret;
2426 
2427 	if (!obj_req->num_img_extents) {
2428 		obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2429 		if (rbd_obj_is_entire(obj_req))
2430 			obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2431 	}
2432 
2433 	obj_req->write_state = RBD_OBJ_WRITE_START;
2434 	return 0;
2435 }
2436 
count_write_ops(struct rbd_obj_request * obj_req)2437 static int count_write_ops(struct rbd_obj_request *obj_req)
2438 {
2439 	struct rbd_img_request *img_req = obj_req->img_request;
2440 
2441 	switch (img_req->op_type) {
2442 	case OBJ_OP_WRITE:
2443 		if (!use_object_map(img_req->rbd_dev) ||
2444 		    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2445 			return 2; /* setallochint + write/writefull */
2446 
2447 		return 1; /* write/writefull */
2448 	case OBJ_OP_DISCARD:
2449 		return 1; /* delete/truncate/zero */
2450 	case OBJ_OP_ZEROOUT:
2451 		if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2452 		    !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2453 			return 2; /* create + truncate */
2454 
2455 		return 1; /* delete/truncate/zero */
2456 	default:
2457 		BUG();
2458 	}
2459 }
2460 
rbd_osd_setup_write_ops(struct ceph_osd_request * osd_req,int which)2461 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2462 				    int which)
2463 {
2464 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2465 
2466 	switch (obj_req->img_request->op_type) {
2467 	case OBJ_OP_WRITE:
2468 		__rbd_osd_setup_write_ops(osd_req, which);
2469 		break;
2470 	case OBJ_OP_DISCARD:
2471 		__rbd_osd_setup_discard_ops(osd_req, which);
2472 		break;
2473 	case OBJ_OP_ZEROOUT:
2474 		__rbd_osd_setup_zeroout_ops(osd_req, which);
2475 		break;
2476 	default:
2477 		BUG();
2478 	}
2479 }
2480 
2481 /*
2482  * Prune the list of object requests (adjust offset and/or length, drop
2483  * redundant requests).  Prepare object request state machines and image
2484  * request state machine for execution.
2485  */
__rbd_img_fill_request(struct rbd_img_request * img_req)2486 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2487 {
2488 	struct rbd_obj_request *obj_req, *next_obj_req;
2489 	int ret;
2490 
2491 	for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2492 		switch (img_req->op_type) {
2493 		case OBJ_OP_READ:
2494 			ret = rbd_obj_init_read(obj_req);
2495 			break;
2496 		case OBJ_OP_WRITE:
2497 			ret = rbd_obj_init_write(obj_req);
2498 			break;
2499 		case OBJ_OP_DISCARD:
2500 			ret = rbd_obj_init_discard(obj_req);
2501 			break;
2502 		case OBJ_OP_ZEROOUT:
2503 			ret = rbd_obj_init_zeroout(obj_req);
2504 			break;
2505 		default:
2506 			BUG();
2507 		}
2508 		if (ret < 0)
2509 			return ret;
2510 		if (ret > 0) {
2511 			rbd_img_obj_request_del(img_req, obj_req);
2512 			continue;
2513 		}
2514 	}
2515 
2516 	img_req->state = RBD_IMG_START;
2517 	return 0;
2518 }
2519 
2520 union rbd_img_fill_iter {
2521 	struct ceph_bio_iter	bio_iter;
2522 	struct ceph_bvec_iter	bvec_iter;
2523 };
2524 
2525 struct rbd_img_fill_ctx {
2526 	enum obj_request_type	pos_type;
2527 	union rbd_img_fill_iter	*pos;
2528 	union rbd_img_fill_iter	iter;
2529 	ceph_object_extent_fn_t	set_pos_fn;
2530 	ceph_object_extent_fn_t	count_fn;
2531 	ceph_object_extent_fn_t	copy_fn;
2532 };
2533 
alloc_object_extent(void * arg)2534 static struct ceph_object_extent *alloc_object_extent(void *arg)
2535 {
2536 	struct rbd_img_request *img_req = arg;
2537 	struct rbd_obj_request *obj_req;
2538 
2539 	obj_req = rbd_obj_request_create();
2540 	if (!obj_req)
2541 		return NULL;
2542 
2543 	rbd_img_obj_request_add(img_req, obj_req);
2544 	return &obj_req->ex;
2545 }
2546 
2547 /*
2548  * While su != os && sc == 1 is technically not fancy (it's the same
2549  * layout as su == os && sc == 1), we can't use the nocopy path for it
2550  * because ->set_pos_fn() should be called only once per object.
2551  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2552  * treat su != os && sc == 1 as fancy.
2553  */
rbd_layout_is_fancy(struct ceph_file_layout * l)2554 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2555 {
2556 	return l->stripe_unit != l->object_size;
2557 }
2558 
rbd_img_fill_request_nocopy(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct rbd_img_fill_ctx * fctx)2559 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2560 				       struct ceph_file_extent *img_extents,
2561 				       u32 num_img_extents,
2562 				       struct rbd_img_fill_ctx *fctx)
2563 {
2564 	u32 i;
2565 	int ret;
2566 
2567 	img_req->data_type = fctx->pos_type;
2568 
2569 	/*
2570 	 * Create object requests and set each object request's starting
2571 	 * position in the provided bio (list) or bio_vec array.
2572 	 */
2573 	fctx->iter = *fctx->pos;
2574 	for (i = 0; i < num_img_extents; i++) {
2575 		ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2576 					   img_extents[i].fe_off,
2577 					   img_extents[i].fe_len,
2578 					   &img_req->object_extents,
2579 					   alloc_object_extent, img_req,
2580 					   fctx->set_pos_fn, &fctx->iter);
2581 		if (ret)
2582 			return ret;
2583 	}
2584 
2585 	return __rbd_img_fill_request(img_req);
2586 }
2587 
2588 /*
2589  * Map a list of image extents to a list of object extents, create the
2590  * corresponding object requests (normally each to a different object,
2591  * but not always) and add them to @img_req.  For each object request,
2592  * set up its data descriptor to point to the corresponding chunk(s) of
2593  * @fctx->pos data buffer.
2594  *
2595  * Because ceph_file_to_extents() will merge adjacent object extents
2596  * together, each object request's data descriptor may point to multiple
2597  * different chunks of @fctx->pos data buffer.
2598  *
2599  * @fctx->pos data buffer is assumed to be large enough.
2600  */
rbd_img_fill_request(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct rbd_img_fill_ctx * fctx)2601 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2602 				struct ceph_file_extent *img_extents,
2603 				u32 num_img_extents,
2604 				struct rbd_img_fill_ctx *fctx)
2605 {
2606 	struct rbd_device *rbd_dev = img_req->rbd_dev;
2607 	struct rbd_obj_request *obj_req;
2608 	u32 i;
2609 	int ret;
2610 
2611 	if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2612 	    !rbd_layout_is_fancy(&rbd_dev->layout))
2613 		return rbd_img_fill_request_nocopy(img_req, img_extents,
2614 						   num_img_extents, fctx);
2615 
2616 	img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2617 
2618 	/*
2619 	 * Create object requests and determine ->bvec_count for each object
2620 	 * request.  Note that ->bvec_count sum over all object requests may
2621 	 * be greater than the number of bio_vecs in the provided bio (list)
2622 	 * or bio_vec array because when mapped, those bio_vecs can straddle
2623 	 * stripe unit boundaries.
2624 	 */
2625 	fctx->iter = *fctx->pos;
2626 	for (i = 0; i < num_img_extents; i++) {
2627 		ret = ceph_file_to_extents(&rbd_dev->layout,
2628 					   img_extents[i].fe_off,
2629 					   img_extents[i].fe_len,
2630 					   &img_req->object_extents,
2631 					   alloc_object_extent, img_req,
2632 					   fctx->count_fn, &fctx->iter);
2633 		if (ret)
2634 			return ret;
2635 	}
2636 
2637 	for_each_obj_request(img_req, obj_req) {
2638 		obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2639 					      sizeof(*obj_req->bvec_pos.bvecs),
2640 					      GFP_NOIO);
2641 		if (!obj_req->bvec_pos.bvecs)
2642 			return -ENOMEM;
2643 	}
2644 
2645 	/*
2646 	 * Fill in each object request's private bio_vec array, splitting and
2647 	 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2648 	 */
2649 	fctx->iter = *fctx->pos;
2650 	for (i = 0; i < num_img_extents; i++) {
2651 		ret = ceph_iterate_extents(&rbd_dev->layout,
2652 					   img_extents[i].fe_off,
2653 					   img_extents[i].fe_len,
2654 					   &img_req->object_extents,
2655 					   fctx->copy_fn, &fctx->iter);
2656 		if (ret)
2657 			return ret;
2658 	}
2659 
2660 	return __rbd_img_fill_request(img_req);
2661 }
2662 
rbd_img_fill_nodata(struct rbd_img_request * img_req,u64 off,u64 len)2663 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2664 			       u64 off, u64 len)
2665 {
2666 	struct ceph_file_extent ex = { off, len };
2667 	union rbd_img_fill_iter dummy = {};
2668 	struct rbd_img_fill_ctx fctx = {
2669 		.pos_type = OBJ_REQUEST_NODATA,
2670 		.pos = &dummy,
2671 	};
2672 
2673 	return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2674 }
2675 
set_bio_pos(struct ceph_object_extent * ex,u32 bytes,void * arg)2676 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2677 {
2678 	struct rbd_obj_request *obj_req =
2679 	    container_of(ex, struct rbd_obj_request, ex);
2680 	struct ceph_bio_iter *it = arg;
2681 
2682 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2683 	obj_req->bio_pos = *it;
2684 	ceph_bio_iter_advance(it, bytes);
2685 }
2686 
count_bio_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2687 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2688 {
2689 	struct rbd_obj_request *obj_req =
2690 	    container_of(ex, struct rbd_obj_request, ex);
2691 	struct ceph_bio_iter *it = arg;
2692 
2693 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2694 	ceph_bio_iter_advance_step(it, bytes, ({
2695 		obj_req->bvec_count++;
2696 	}));
2697 
2698 }
2699 
copy_bio_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2700 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2701 {
2702 	struct rbd_obj_request *obj_req =
2703 	    container_of(ex, struct rbd_obj_request, ex);
2704 	struct ceph_bio_iter *it = arg;
2705 
2706 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2707 	ceph_bio_iter_advance_step(it, bytes, ({
2708 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2709 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2710 	}));
2711 }
2712 
__rbd_img_fill_from_bio(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct ceph_bio_iter * bio_pos)2713 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2714 				   struct ceph_file_extent *img_extents,
2715 				   u32 num_img_extents,
2716 				   struct ceph_bio_iter *bio_pos)
2717 {
2718 	struct rbd_img_fill_ctx fctx = {
2719 		.pos_type = OBJ_REQUEST_BIO,
2720 		.pos = (union rbd_img_fill_iter *)bio_pos,
2721 		.set_pos_fn = set_bio_pos,
2722 		.count_fn = count_bio_bvecs,
2723 		.copy_fn = copy_bio_bvecs,
2724 	};
2725 
2726 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2727 				    &fctx);
2728 }
2729 
rbd_img_fill_from_bio(struct rbd_img_request * img_req,u64 off,u64 len,struct bio * bio)2730 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2731 				 u64 off, u64 len, struct bio *bio)
2732 {
2733 	struct ceph_file_extent ex = { off, len };
2734 	struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2735 
2736 	return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2737 }
2738 
set_bvec_pos(struct ceph_object_extent * ex,u32 bytes,void * arg)2739 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2740 {
2741 	struct rbd_obj_request *obj_req =
2742 	    container_of(ex, struct rbd_obj_request, ex);
2743 	struct ceph_bvec_iter *it = arg;
2744 
2745 	obj_req->bvec_pos = *it;
2746 	ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2747 	ceph_bvec_iter_advance(it, bytes);
2748 }
2749 
count_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2750 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2751 {
2752 	struct rbd_obj_request *obj_req =
2753 	    container_of(ex, struct rbd_obj_request, ex);
2754 	struct ceph_bvec_iter *it = arg;
2755 
2756 	ceph_bvec_iter_advance_step(it, bytes, ({
2757 		obj_req->bvec_count++;
2758 	}));
2759 }
2760 
copy_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2761 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2762 {
2763 	struct rbd_obj_request *obj_req =
2764 	    container_of(ex, struct rbd_obj_request, ex);
2765 	struct ceph_bvec_iter *it = arg;
2766 
2767 	ceph_bvec_iter_advance_step(it, bytes, ({
2768 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2769 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2770 	}));
2771 }
2772 
__rbd_img_fill_from_bvecs(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct ceph_bvec_iter * bvec_pos)2773 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2774 				     struct ceph_file_extent *img_extents,
2775 				     u32 num_img_extents,
2776 				     struct ceph_bvec_iter *bvec_pos)
2777 {
2778 	struct rbd_img_fill_ctx fctx = {
2779 		.pos_type = OBJ_REQUEST_BVECS,
2780 		.pos = (union rbd_img_fill_iter *)bvec_pos,
2781 		.set_pos_fn = set_bvec_pos,
2782 		.count_fn = count_bvecs,
2783 		.copy_fn = copy_bvecs,
2784 	};
2785 
2786 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2787 				    &fctx);
2788 }
2789 
rbd_img_fill_from_bvecs(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct bio_vec * bvecs)2790 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2791 				   struct ceph_file_extent *img_extents,
2792 				   u32 num_img_extents,
2793 				   struct bio_vec *bvecs)
2794 {
2795 	struct ceph_bvec_iter it = {
2796 		.bvecs = bvecs,
2797 		.iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2798 							     num_img_extents) },
2799 	};
2800 
2801 	return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2802 					 &it);
2803 }
2804 
rbd_img_handle_request_work(struct work_struct * work)2805 static void rbd_img_handle_request_work(struct work_struct *work)
2806 {
2807 	struct rbd_img_request *img_req =
2808 	    container_of(work, struct rbd_img_request, work);
2809 
2810 	rbd_img_handle_request(img_req, img_req->work_result);
2811 }
2812 
rbd_img_schedule(struct rbd_img_request * img_req,int result)2813 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2814 {
2815 	INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2816 	img_req->work_result = result;
2817 	queue_work(rbd_wq, &img_req->work);
2818 }
2819 
rbd_obj_may_exist(struct rbd_obj_request * obj_req)2820 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2821 {
2822 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2823 
2824 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2825 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2826 		return true;
2827 	}
2828 
2829 	dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2830 	     obj_req->ex.oe_objno);
2831 	return false;
2832 }
2833 
rbd_obj_read_object(struct rbd_obj_request * obj_req)2834 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2835 {
2836 	struct ceph_osd_request *osd_req;
2837 	int ret;
2838 
2839 	osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2840 	if (IS_ERR(osd_req))
2841 		return PTR_ERR(osd_req);
2842 
2843 	osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2844 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2845 	rbd_osd_setup_data(osd_req, 0);
2846 	rbd_osd_format_read(osd_req);
2847 
2848 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2849 	if (ret)
2850 		return ret;
2851 
2852 	rbd_osd_submit(osd_req);
2853 	return 0;
2854 }
2855 
rbd_obj_read_from_parent(struct rbd_obj_request * obj_req)2856 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2857 {
2858 	struct rbd_img_request *img_req = obj_req->img_request;
2859 	struct rbd_device *parent = img_req->rbd_dev->parent;
2860 	struct rbd_img_request *child_img_req;
2861 	int ret;
2862 
2863 	child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2864 	if (!child_img_req)
2865 		return -ENOMEM;
2866 
2867 	rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2868 	__set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2869 	child_img_req->obj_request = obj_req;
2870 
2871 	down_read(&parent->header_rwsem);
2872 	rbd_img_capture_header(child_img_req);
2873 	up_read(&parent->header_rwsem);
2874 
2875 	dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2876 	     obj_req);
2877 
2878 	if (!rbd_img_is_write(img_req)) {
2879 		switch (img_req->data_type) {
2880 		case OBJ_REQUEST_BIO:
2881 			ret = __rbd_img_fill_from_bio(child_img_req,
2882 						      obj_req->img_extents,
2883 						      obj_req->num_img_extents,
2884 						      &obj_req->bio_pos);
2885 			break;
2886 		case OBJ_REQUEST_BVECS:
2887 		case OBJ_REQUEST_OWN_BVECS:
2888 			ret = __rbd_img_fill_from_bvecs(child_img_req,
2889 						      obj_req->img_extents,
2890 						      obj_req->num_img_extents,
2891 						      &obj_req->bvec_pos);
2892 			break;
2893 		default:
2894 			BUG();
2895 		}
2896 	} else {
2897 		ret = rbd_img_fill_from_bvecs(child_img_req,
2898 					      obj_req->img_extents,
2899 					      obj_req->num_img_extents,
2900 					      obj_req->copyup_bvecs);
2901 	}
2902 	if (ret) {
2903 		rbd_img_request_destroy(child_img_req);
2904 		return ret;
2905 	}
2906 
2907 	/* avoid parent chain recursion */
2908 	rbd_img_schedule(child_img_req, 0);
2909 	return 0;
2910 }
2911 
rbd_obj_advance_read(struct rbd_obj_request * obj_req,int * result)2912 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2913 {
2914 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2915 	int ret;
2916 
2917 again:
2918 	switch (obj_req->read_state) {
2919 	case RBD_OBJ_READ_START:
2920 		rbd_assert(!*result);
2921 
2922 		if (!rbd_obj_may_exist(obj_req)) {
2923 			*result = -ENOENT;
2924 			obj_req->read_state = RBD_OBJ_READ_OBJECT;
2925 			goto again;
2926 		}
2927 
2928 		ret = rbd_obj_read_object(obj_req);
2929 		if (ret) {
2930 			*result = ret;
2931 			return true;
2932 		}
2933 		obj_req->read_state = RBD_OBJ_READ_OBJECT;
2934 		return false;
2935 	case RBD_OBJ_READ_OBJECT:
2936 		if (*result == -ENOENT && rbd_dev->parent_overlap) {
2937 			/* reverse map this object extent onto the parent */
2938 			ret = rbd_obj_calc_img_extents(obj_req, false);
2939 			if (ret) {
2940 				*result = ret;
2941 				return true;
2942 			}
2943 			if (obj_req->num_img_extents) {
2944 				ret = rbd_obj_read_from_parent(obj_req);
2945 				if (ret) {
2946 					*result = ret;
2947 					return true;
2948 				}
2949 				obj_req->read_state = RBD_OBJ_READ_PARENT;
2950 				return false;
2951 			}
2952 		}
2953 
2954 		/*
2955 		 * -ENOENT means a hole in the image -- zero-fill the entire
2956 		 * length of the request.  A short read also implies zero-fill
2957 		 * to the end of the request.
2958 		 */
2959 		if (*result == -ENOENT) {
2960 			rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2961 			*result = 0;
2962 		} else if (*result >= 0) {
2963 			if (*result < obj_req->ex.oe_len)
2964 				rbd_obj_zero_range(obj_req, *result,
2965 						obj_req->ex.oe_len - *result);
2966 			else
2967 				rbd_assert(*result == obj_req->ex.oe_len);
2968 			*result = 0;
2969 		}
2970 		return true;
2971 	case RBD_OBJ_READ_PARENT:
2972 		/*
2973 		 * The parent image is read only up to the overlap -- zero-fill
2974 		 * from the overlap to the end of the request.
2975 		 */
2976 		if (!*result) {
2977 			u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2978 
2979 			if (obj_overlap < obj_req->ex.oe_len)
2980 				rbd_obj_zero_range(obj_req, obj_overlap,
2981 					    obj_req->ex.oe_len - obj_overlap);
2982 		}
2983 		return true;
2984 	default:
2985 		BUG();
2986 	}
2987 }
2988 
rbd_obj_write_is_noop(struct rbd_obj_request * obj_req)2989 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2990 {
2991 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2992 
2993 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2994 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2995 
2996 	if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2997 	    (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2998 		dout("%s %p noop for nonexistent\n", __func__, obj_req);
2999 		return true;
3000 	}
3001 
3002 	return false;
3003 }
3004 
3005 /*
3006  * Return:
3007  *   0 - object map update sent
3008  *   1 - object map update isn't needed
3009  *  <0 - error
3010  */
rbd_obj_write_pre_object_map(struct rbd_obj_request * obj_req)3011 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
3012 {
3013 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3014 	u8 new_state;
3015 
3016 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3017 		return 1;
3018 
3019 	if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3020 		new_state = OBJECT_PENDING;
3021 	else
3022 		new_state = OBJECT_EXISTS;
3023 
3024 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
3025 }
3026 
rbd_obj_write_object(struct rbd_obj_request * obj_req)3027 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
3028 {
3029 	struct ceph_osd_request *osd_req;
3030 	int num_ops = count_write_ops(obj_req);
3031 	int which = 0;
3032 	int ret;
3033 
3034 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
3035 		num_ops++; /* stat */
3036 
3037 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3038 	if (IS_ERR(osd_req))
3039 		return PTR_ERR(osd_req);
3040 
3041 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3042 		ret = rbd_osd_setup_stat(osd_req, which++);
3043 		if (ret)
3044 			return ret;
3045 	}
3046 
3047 	rbd_osd_setup_write_ops(osd_req, which);
3048 	rbd_osd_format_write(osd_req);
3049 
3050 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3051 	if (ret)
3052 		return ret;
3053 
3054 	rbd_osd_submit(osd_req);
3055 	return 0;
3056 }
3057 
3058 /*
3059  * copyup_bvecs pages are never highmem pages
3060  */
is_zero_bvecs(struct bio_vec * bvecs,u32 bytes)3061 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
3062 {
3063 	struct ceph_bvec_iter it = {
3064 		.bvecs = bvecs,
3065 		.iter = { .bi_size = bytes },
3066 	};
3067 
3068 	ceph_bvec_iter_advance_step(&it, bytes, ({
3069 		if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
3070 			       bv.bv_len))
3071 			return false;
3072 	}));
3073 	return true;
3074 }
3075 
3076 #define MODS_ONLY	U32_MAX
3077 
rbd_obj_copyup_empty_snapc(struct rbd_obj_request * obj_req,u32 bytes)3078 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3079 				      u32 bytes)
3080 {
3081 	struct ceph_osd_request *osd_req;
3082 	int ret;
3083 
3084 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3085 	rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3086 
3087 	osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3088 	if (IS_ERR(osd_req))
3089 		return PTR_ERR(osd_req);
3090 
3091 	ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3092 	if (ret)
3093 		return ret;
3094 
3095 	rbd_osd_format_write(osd_req);
3096 
3097 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3098 	if (ret)
3099 		return ret;
3100 
3101 	rbd_osd_submit(osd_req);
3102 	return 0;
3103 }
3104 
rbd_obj_copyup_current_snapc(struct rbd_obj_request * obj_req,u32 bytes)3105 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3106 					u32 bytes)
3107 {
3108 	struct ceph_osd_request *osd_req;
3109 	int num_ops = count_write_ops(obj_req);
3110 	int which = 0;
3111 	int ret;
3112 
3113 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3114 
3115 	if (bytes != MODS_ONLY)
3116 		num_ops++; /* copyup */
3117 
3118 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3119 	if (IS_ERR(osd_req))
3120 		return PTR_ERR(osd_req);
3121 
3122 	if (bytes != MODS_ONLY) {
3123 		ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3124 		if (ret)
3125 			return ret;
3126 	}
3127 
3128 	rbd_osd_setup_write_ops(osd_req, which);
3129 	rbd_osd_format_write(osd_req);
3130 
3131 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3132 	if (ret)
3133 		return ret;
3134 
3135 	rbd_osd_submit(osd_req);
3136 	return 0;
3137 }
3138 
setup_copyup_bvecs(struct rbd_obj_request * obj_req,u64 obj_overlap)3139 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3140 {
3141 	u32 i;
3142 
3143 	rbd_assert(!obj_req->copyup_bvecs);
3144 	obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3145 	obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3146 					sizeof(*obj_req->copyup_bvecs),
3147 					GFP_NOIO);
3148 	if (!obj_req->copyup_bvecs)
3149 		return -ENOMEM;
3150 
3151 	for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3152 		unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3153 
3154 		obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
3155 		if (!obj_req->copyup_bvecs[i].bv_page)
3156 			return -ENOMEM;
3157 
3158 		obj_req->copyup_bvecs[i].bv_offset = 0;
3159 		obj_req->copyup_bvecs[i].bv_len = len;
3160 		obj_overlap -= len;
3161 	}
3162 
3163 	rbd_assert(!obj_overlap);
3164 	return 0;
3165 }
3166 
3167 /*
3168  * The target object doesn't exist.  Read the data for the entire
3169  * target object up to the overlap point (if any) from the parent,
3170  * so we can use it for a copyup.
3171  */
rbd_obj_copyup_read_parent(struct rbd_obj_request * obj_req)3172 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3173 {
3174 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3175 	int ret;
3176 
3177 	rbd_assert(obj_req->num_img_extents);
3178 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3179 		      rbd_dev->parent_overlap);
3180 	if (!obj_req->num_img_extents) {
3181 		/*
3182 		 * The overlap has become 0 (most likely because the
3183 		 * image has been flattened).  Re-submit the original write
3184 		 * request -- pass MODS_ONLY since the copyup isn't needed
3185 		 * anymore.
3186 		 */
3187 		return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3188 	}
3189 
3190 	ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3191 	if (ret)
3192 		return ret;
3193 
3194 	return rbd_obj_read_from_parent(obj_req);
3195 }
3196 
rbd_obj_copyup_object_maps(struct rbd_obj_request * obj_req)3197 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3198 {
3199 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3200 	struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3201 	u8 new_state;
3202 	u32 i;
3203 	int ret;
3204 
3205 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3206 
3207 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3208 		return;
3209 
3210 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3211 		return;
3212 
3213 	for (i = 0; i < snapc->num_snaps; i++) {
3214 		if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3215 		    i + 1 < snapc->num_snaps)
3216 			new_state = OBJECT_EXISTS_CLEAN;
3217 		else
3218 			new_state = OBJECT_EXISTS;
3219 
3220 		ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3221 					    new_state, NULL);
3222 		if (ret < 0) {
3223 			obj_req->pending.result = ret;
3224 			return;
3225 		}
3226 
3227 		rbd_assert(!ret);
3228 		obj_req->pending.num_pending++;
3229 	}
3230 }
3231 
rbd_obj_copyup_write_object(struct rbd_obj_request * obj_req)3232 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3233 {
3234 	u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3235 	int ret;
3236 
3237 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3238 
3239 	/*
3240 	 * Only send non-zero copyup data to save some I/O and network
3241 	 * bandwidth -- zero copyup data is equivalent to the object not
3242 	 * existing.
3243 	 */
3244 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3245 		bytes = 0;
3246 
3247 	if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3248 		/*
3249 		 * Send a copyup request with an empty snapshot context to
3250 		 * deep-copyup the object through all existing snapshots.
3251 		 * A second request with the current snapshot context will be
3252 		 * sent for the actual modification.
3253 		 */
3254 		ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3255 		if (ret) {
3256 			obj_req->pending.result = ret;
3257 			return;
3258 		}
3259 
3260 		obj_req->pending.num_pending++;
3261 		bytes = MODS_ONLY;
3262 	}
3263 
3264 	ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3265 	if (ret) {
3266 		obj_req->pending.result = ret;
3267 		return;
3268 	}
3269 
3270 	obj_req->pending.num_pending++;
3271 }
3272 
rbd_obj_advance_copyup(struct rbd_obj_request * obj_req,int * result)3273 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3274 {
3275 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3276 	int ret;
3277 
3278 again:
3279 	switch (obj_req->copyup_state) {
3280 	case RBD_OBJ_COPYUP_START:
3281 		rbd_assert(!*result);
3282 
3283 		ret = rbd_obj_copyup_read_parent(obj_req);
3284 		if (ret) {
3285 			*result = ret;
3286 			return true;
3287 		}
3288 		if (obj_req->num_img_extents)
3289 			obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3290 		else
3291 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3292 		return false;
3293 	case RBD_OBJ_COPYUP_READ_PARENT:
3294 		if (*result)
3295 			return true;
3296 
3297 		if (is_zero_bvecs(obj_req->copyup_bvecs,
3298 				  rbd_obj_img_extents_bytes(obj_req))) {
3299 			dout("%s %p detected zeros\n", __func__, obj_req);
3300 			obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3301 		}
3302 
3303 		rbd_obj_copyup_object_maps(obj_req);
3304 		if (!obj_req->pending.num_pending) {
3305 			*result = obj_req->pending.result;
3306 			obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3307 			goto again;
3308 		}
3309 		obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3310 		return false;
3311 	case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3312 		if (!pending_result_dec(&obj_req->pending, result))
3313 			return false;
3314 		fallthrough;
3315 	case RBD_OBJ_COPYUP_OBJECT_MAPS:
3316 		if (*result) {
3317 			rbd_warn(rbd_dev, "snap object map update failed: %d",
3318 				 *result);
3319 			return true;
3320 		}
3321 
3322 		rbd_obj_copyup_write_object(obj_req);
3323 		if (!obj_req->pending.num_pending) {
3324 			*result = obj_req->pending.result;
3325 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3326 			goto again;
3327 		}
3328 		obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3329 		return false;
3330 	case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3331 		if (!pending_result_dec(&obj_req->pending, result))
3332 			return false;
3333 		fallthrough;
3334 	case RBD_OBJ_COPYUP_WRITE_OBJECT:
3335 		return true;
3336 	default:
3337 		BUG();
3338 	}
3339 }
3340 
3341 /*
3342  * Return:
3343  *   0 - object map update sent
3344  *   1 - object map update isn't needed
3345  *  <0 - error
3346  */
rbd_obj_write_post_object_map(struct rbd_obj_request * obj_req)3347 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3348 {
3349 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3350 	u8 current_state = OBJECT_PENDING;
3351 
3352 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3353 		return 1;
3354 
3355 	if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3356 		return 1;
3357 
3358 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3359 				     &current_state);
3360 }
3361 
rbd_obj_advance_write(struct rbd_obj_request * obj_req,int * result)3362 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3363 {
3364 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3365 	int ret;
3366 
3367 again:
3368 	switch (obj_req->write_state) {
3369 	case RBD_OBJ_WRITE_START:
3370 		rbd_assert(!*result);
3371 
3372 		rbd_obj_set_copyup_enabled(obj_req);
3373 		if (rbd_obj_write_is_noop(obj_req))
3374 			return true;
3375 
3376 		ret = rbd_obj_write_pre_object_map(obj_req);
3377 		if (ret < 0) {
3378 			*result = ret;
3379 			return true;
3380 		}
3381 		obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3382 		if (ret > 0)
3383 			goto again;
3384 		return false;
3385 	case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3386 		if (*result) {
3387 			rbd_warn(rbd_dev, "pre object map update failed: %d",
3388 				 *result);
3389 			return true;
3390 		}
3391 		ret = rbd_obj_write_object(obj_req);
3392 		if (ret) {
3393 			*result = ret;
3394 			return true;
3395 		}
3396 		obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3397 		return false;
3398 	case RBD_OBJ_WRITE_OBJECT:
3399 		if (*result == -ENOENT) {
3400 			if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3401 				*result = 0;
3402 				obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3403 				obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3404 				goto again;
3405 			}
3406 			/*
3407 			 * On a non-existent object:
3408 			 *   delete - -ENOENT, truncate/zero - 0
3409 			 */
3410 			if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3411 				*result = 0;
3412 		}
3413 		if (*result)
3414 			return true;
3415 
3416 		obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3417 		goto again;
3418 	case __RBD_OBJ_WRITE_COPYUP:
3419 		if (!rbd_obj_advance_copyup(obj_req, result))
3420 			return false;
3421 		fallthrough;
3422 	case RBD_OBJ_WRITE_COPYUP:
3423 		if (*result) {
3424 			rbd_warn(rbd_dev, "copyup failed: %d", *result);
3425 			return true;
3426 		}
3427 		ret = rbd_obj_write_post_object_map(obj_req);
3428 		if (ret < 0) {
3429 			*result = ret;
3430 			return true;
3431 		}
3432 		obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3433 		if (ret > 0)
3434 			goto again;
3435 		return false;
3436 	case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3437 		if (*result)
3438 			rbd_warn(rbd_dev, "post object map update failed: %d",
3439 				 *result);
3440 		return true;
3441 	default:
3442 		BUG();
3443 	}
3444 }
3445 
3446 /*
3447  * Return true if @obj_req is completed.
3448  */
__rbd_obj_handle_request(struct rbd_obj_request * obj_req,int * result)3449 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3450 				     int *result)
3451 {
3452 	struct rbd_img_request *img_req = obj_req->img_request;
3453 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3454 	bool done;
3455 
3456 	mutex_lock(&obj_req->state_mutex);
3457 	if (!rbd_img_is_write(img_req))
3458 		done = rbd_obj_advance_read(obj_req, result);
3459 	else
3460 		done = rbd_obj_advance_write(obj_req, result);
3461 	mutex_unlock(&obj_req->state_mutex);
3462 
3463 	if (done && *result) {
3464 		rbd_assert(*result < 0);
3465 		rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3466 			 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3467 			 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3468 	}
3469 	return done;
3470 }
3471 
3472 /*
3473  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3474  * recursion.
3475  */
rbd_obj_handle_request(struct rbd_obj_request * obj_req,int result)3476 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3477 {
3478 	if (__rbd_obj_handle_request(obj_req, &result))
3479 		rbd_img_handle_request(obj_req->img_request, result);
3480 }
3481 
need_exclusive_lock(struct rbd_img_request * img_req)3482 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3483 {
3484 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3485 
3486 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3487 		return false;
3488 
3489 	if (rbd_is_ro(rbd_dev))
3490 		return false;
3491 
3492 	rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3493 	if (rbd_dev->opts->lock_on_read ||
3494 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3495 		return true;
3496 
3497 	return rbd_img_is_write(img_req);
3498 }
3499 
rbd_lock_add_request(struct rbd_img_request * img_req)3500 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3501 {
3502 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3503 	bool locked;
3504 
3505 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3506 	locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3507 	spin_lock(&rbd_dev->lock_lists_lock);
3508 	rbd_assert(list_empty(&img_req->lock_item));
3509 	if (!locked)
3510 		list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3511 	else
3512 		list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3513 	spin_unlock(&rbd_dev->lock_lists_lock);
3514 	return locked;
3515 }
3516 
rbd_lock_del_request(struct rbd_img_request * img_req)3517 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3518 {
3519 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3520 	bool need_wakeup;
3521 
3522 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3523 	spin_lock(&rbd_dev->lock_lists_lock);
3524 	rbd_assert(!list_empty(&img_req->lock_item));
3525 	list_del_init(&img_req->lock_item);
3526 	need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3527 		       list_empty(&rbd_dev->running_list));
3528 	spin_unlock(&rbd_dev->lock_lists_lock);
3529 	if (need_wakeup)
3530 		complete(&rbd_dev->releasing_wait);
3531 }
3532 
rbd_img_exclusive_lock(struct rbd_img_request * img_req)3533 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3534 {
3535 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3536 
3537 	if (!need_exclusive_lock(img_req))
3538 		return 1;
3539 
3540 	if (rbd_lock_add_request(img_req))
3541 		return 1;
3542 
3543 	if (rbd_dev->opts->exclusive) {
3544 		WARN_ON(1); /* lock got released? */
3545 		return -EROFS;
3546 	}
3547 
3548 	/*
3549 	 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3550 	 * and cancel_delayed_work() in wake_lock_waiters().
3551 	 */
3552 	dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3553 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3554 	return 0;
3555 }
3556 
rbd_img_object_requests(struct rbd_img_request * img_req)3557 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3558 {
3559 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3560 	struct rbd_obj_request *obj_req;
3561 
3562 	rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3563 	rbd_assert(!need_exclusive_lock(img_req) ||
3564 		   __rbd_is_lock_owner(rbd_dev));
3565 
3566 	if (rbd_img_is_write(img_req)) {
3567 		rbd_assert(!img_req->snapc);
3568 		down_read(&rbd_dev->header_rwsem);
3569 		img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
3570 		up_read(&rbd_dev->header_rwsem);
3571 	}
3572 
3573 	for_each_obj_request(img_req, obj_req) {
3574 		int result = 0;
3575 
3576 		if (__rbd_obj_handle_request(obj_req, &result)) {
3577 			if (result) {
3578 				img_req->pending.result = result;
3579 				return;
3580 			}
3581 		} else {
3582 			img_req->pending.num_pending++;
3583 		}
3584 	}
3585 }
3586 
rbd_img_advance(struct rbd_img_request * img_req,int * result)3587 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3588 {
3589 	int ret;
3590 
3591 again:
3592 	switch (img_req->state) {
3593 	case RBD_IMG_START:
3594 		rbd_assert(!*result);
3595 
3596 		ret = rbd_img_exclusive_lock(img_req);
3597 		if (ret < 0) {
3598 			*result = ret;
3599 			return true;
3600 		}
3601 		img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3602 		if (ret > 0)
3603 			goto again;
3604 		return false;
3605 	case RBD_IMG_EXCLUSIVE_LOCK:
3606 		if (*result)
3607 			return true;
3608 
3609 		rbd_img_object_requests(img_req);
3610 		if (!img_req->pending.num_pending) {
3611 			*result = img_req->pending.result;
3612 			img_req->state = RBD_IMG_OBJECT_REQUESTS;
3613 			goto again;
3614 		}
3615 		img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3616 		return false;
3617 	case __RBD_IMG_OBJECT_REQUESTS:
3618 		if (!pending_result_dec(&img_req->pending, result))
3619 			return false;
3620 		fallthrough;
3621 	case RBD_IMG_OBJECT_REQUESTS:
3622 		return true;
3623 	default:
3624 		BUG();
3625 	}
3626 }
3627 
3628 /*
3629  * Return true if @img_req is completed.
3630  */
__rbd_img_handle_request(struct rbd_img_request * img_req,int * result)3631 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3632 				     int *result)
3633 {
3634 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3635 	bool done;
3636 
3637 	if (need_exclusive_lock(img_req)) {
3638 		down_read(&rbd_dev->lock_rwsem);
3639 		mutex_lock(&img_req->state_mutex);
3640 		done = rbd_img_advance(img_req, result);
3641 		if (done)
3642 			rbd_lock_del_request(img_req);
3643 		mutex_unlock(&img_req->state_mutex);
3644 		up_read(&rbd_dev->lock_rwsem);
3645 	} else {
3646 		mutex_lock(&img_req->state_mutex);
3647 		done = rbd_img_advance(img_req, result);
3648 		mutex_unlock(&img_req->state_mutex);
3649 	}
3650 
3651 	if (done && *result) {
3652 		rbd_assert(*result < 0);
3653 		rbd_warn(rbd_dev, "%s%s result %d",
3654 		      test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3655 		      obj_op_name(img_req->op_type), *result);
3656 	}
3657 	return done;
3658 }
3659 
rbd_img_handle_request(struct rbd_img_request * img_req,int result)3660 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3661 {
3662 again:
3663 	if (!__rbd_img_handle_request(img_req, &result))
3664 		return;
3665 
3666 	if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3667 		struct rbd_obj_request *obj_req = img_req->obj_request;
3668 
3669 		rbd_img_request_destroy(img_req);
3670 		if (__rbd_obj_handle_request(obj_req, &result)) {
3671 			img_req = obj_req->img_request;
3672 			goto again;
3673 		}
3674 	} else {
3675 		struct request *rq = blk_mq_rq_from_pdu(img_req);
3676 
3677 		rbd_img_request_destroy(img_req);
3678 		blk_mq_end_request(rq, errno_to_blk_status(result));
3679 	}
3680 }
3681 
3682 static const struct rbd_client_id rbd_empty_cid;
3683 
rbd_cid_equal(const struct rbd_client_id * lhs,const struct rbd_client_id * rhs)3684 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3685 			  const struct rbd_client_id *rhs)
3686 {
3687 	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3688 }
3689 
rbd_get_cid(struct rbd_device * rbd_dev)3690 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3691 {
3692 	struct rbd_client_id cid;
3693 
3694 	mutex_lock(&rbd_dev->watch_mutex);
3695 	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3696 	cid.handle = rbd_dev->watch_cookie;
3697 	mutex_unlock(&rbd_dev->watch_mutex);
3698 	return cid;
3699 }
3700 
3701 /*
3702  * lock_rwsem must be held for write
3703  */
rbd_set_owner_cid(struct rbd_device * rbd_dev,const struct rbd_client_id * cid)3704 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3705 			      const struct rbd_client_id *cid)
3706 {
3707 	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3708 	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3709 	     cid->gid, cid->handle);
3710 	rbd_dev->owner_cid = *cid; /* struct */
3711 }
3712 
format_lock_cookie(struct rbd_device * rbd_dev,char * buf)3713 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3714 {
3715 	mutex_lock(&rbd_dev->watch_mutex);
3716 	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3717 	mutex_unlock(&rbd_dev->watch_mutex);
3718 }
3719 
__rbd_lock(struct rbd_device * rbd_dev,const char * cookie)3720 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3721 {
3722 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3723 
3724 	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3725 	strcpy(rbd_dev->lock_cookie, cookie);
3726 	rbd_set_owner_cid(rbd_dev, &cid);
3727 	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3728 }
3729 
3730 /*
3731  * lock_rwsem must be held for write
3732  */
rbd_lock(struct rbd_device * rbd_dev)3733 static int rbd_lock(struct rbd_device *rbd_dev)
3734 {
3735 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3736 	char cookie[32];
3737 	int ret;
3738 
3739 	WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3740 		rbd_dev->lock_cookie[0] != '\0');
3741 
3742 	format_lock_cookie(rbd_dev, cookie);
3743 	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3744 			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3745 			    RBD_LOCK_TAG, "", 0);
3746 	if (ret && ret != -EEXIST)
3747 		return ret;
3748 
3749 	__rbd_lock(rbd_dev, cookie);
3750 	return 0;
3751 }
3752 
3753 /*
3754  * lock_rwsem must be held for write
3755  */
rbd_unlock(struct rbd_device * rbd_dev)3756 static void rbd_unlock(struct rbd_device *rbd_dev)
3757 {
3758 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3759 	int ret;
3760 
3761 	WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3762 		rbd_dev->lock_cookie[0] == '\0');
3763 
3764 	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3765 			      RBD_LOCK_NAME, rbd_dev->lock_cookie);
3766 	if (ret && ret != -ENOENT)
3767 		rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3768 
3769 	/* treat errors as the image is unlocked */
3770 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3771 	rbd_dev->lock_cookie[0] = '\0';
3772 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3773 	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3774 }
3775 
__rbd_notify_op_lock(struct rbd_device * rbd_dev,enum rbd_notify_op notify_op,struct page *** preply_pages,size_t * preply_len)3776 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3777 				enum rbd_notify_op notify_op,
3778 				struct page ***preply_pages,
3779 				size_t *preply_len)
3780 {
3781 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3782 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3783 	char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3784 	int buf_size = sizeof(buf);
3785 	void *p = buf;
3786 
3787 	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3788 
3789 	/* encode *LockPayload NotifyMessage (op + ClientId) */
3790 	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3791 	ceph_encode_32(&p, notify_op);
3792 	ceph_encode_64(&p, cid.gid);
3793 	ceph_encode_64(&p, cid.handle);
3794 
3795 	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3796 				&rbd_dev->header_oloc, buf, buf_size,
3797 				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3798 }
3799 
rbd_notify_op_lock(struct rbd_device * rbd_dev,enum rbd_notify_op notify_op)3800 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3801 			       enum rbd_notify_op notify_op)
3802 {
3803 	__rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3804 }
3805 
rbd_notify_acquired_lock(struct work_struct * work)3806 static void rbd_notify_acquired_lock(struct work_struct *work)
3807 {
3808 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3809 						  acquired_lock_work);
3810 
3811 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3812 }
3813 
rbd_notify_released_lock(struct work_struct * work)3814 static void rbd_notify_released_lock(struct work_struct *work)
3815 {
3816 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3817 						  released_lock_work);
3818 
3819 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3820 }
3821 
rbd_request_lock(struct rbd_device * rbd_dev)3822 static int rbd_request_lock(struct rbd_device *rbd_dev)
3823 {
3824 	struct page **reply_pages;
3825 	size_t reply_len;
3826 	bool lock_owner_responded = false;
3827 	int ret;
3828 
3829 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3830 
3831 	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3832 				   &reply_pages, &reply_len);
3833 	if (ret && ret != -ETIMEDOUT) {
3834 		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3835 		goto out;
3836 	}
3837 
3838 	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3839 		void *p = page_address(reply_pages[0]);
3840 		void *const end = p + reply_len;
3841 		u32 n;
3842 
3843 		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3844 		while (n--) {
3845 			u8 struct_v;
3846 			u32 len;
3847 
3848 			ceph_decode_need(&p, end, 8 + 8, e_inval);
3849 			p += 8 + 8; /* skip gid and cookie */
3850 
3851 			ceph_decode_32_safe(&p, end, len, e_inval);
3852 			if (!len)
3853 				continue;
3854 
3855 			if (lock_owner_responded) {
3856 				rbd_warn(rbd_dev,
3857 					 "duplicate lock owners detected");
3858 				ret = -EIO;
3859 				goto out;
3860 			}
3861 
3862 			lock_owner_responded = true;
3863 			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3864 						  &struct_v, &len);
3865 			if (ret) {
3866 				rbd_warn(rbd_dev,
3867 					 "failed to decode ResponseMessage: %d",
3868 					 ret);
3869 				goto e_inval;
3870 			}
3871 
3872 			ret = ceph_decode_32(&p);
3873 		}
3874 	}
3875 
3876 	if (!lock_owner_responded) {
3877 		rbd_warn(rbd_dev, "no lock owners detected");
3878 		ret = -ETIMEDOUT;
3879 	}
3880 
3881 out:
3882 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3883 	return ret;
3884 
3885 e_inval:
3886 	ret = -EINVAL;
3887 	goto out;
3888 }
3889 
3890 /*
3891  * Either image request state machine(s) or rbd_add_acquire_lock()
3892  * (i.e. "rbd map").
3893  */
wake_lock_waiters(struct rbd_device * rbd_dev,int result)3894 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3895 {
3896 	struct rbd_img_request *img_req;
3897 
3898 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3899 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3900 
3901 	cancel_delayed_work(&rbd_dev->lock_dwork);
3902 	if (!completion_done(&rbd_dev->acquire_wait)) {
3903 		rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3904 			   list_empty(&rbd_dev->running_list));
3905 		rbd_dev->acquire_err = result;
3906 		complete_all(&rbd_dev->acquire_wait);
3907 		return;
3908 	}
3909 
3910 	list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3911 		mutex_lock(&img_req->state_mutex);
3912 		rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3913 		rbd_img_schedule(img_req, result);
3914 		mutex_unlock(&img_req->state_mutex);
3915 	}
3916 
3917 	list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3918 }
3919 
locker_equal(const struct ceph_locker * lhs,const struct ceph_locker * rhs)3920 static bool locker_equal(const struct ceph_locker *lhs,
3921 			 const struct ceph_locker *rhs)
3922 {
3923 	return lhs->id.name.type == rhs->id.name.type &&
3924 	       lhs->id.name.num == rhs->id.name.num &&
3925 	       !strcmp(lhs->id.cookie, rhs->id.cookie) &&
3926 	       ceph_addr_equal_no_type(&lhs->info.addr, &rhs->info.addr);
3927 }
3928 
free_locker(struct ceph_locker * locker)3929 static void free_locker(struct ceph_locker *locker)
3930 {
3931 	if (locker)
3932 		ceph_free_lockers(locker, 1);
3933 }
3934 
get_lock_owner_info(struct rbd_device * rbd_dev)3935 static struct ceph_locker *get_lock_owner_info(struct rbd_device *rbd_dev)
3936 {
3937 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3938 	struct ceph_locker *lockers;
3939 	u32 num_lockers;
3940 	u8 lock_type;
3941 	char *lock_tag;
3942 	int ret;
3943 
3944 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3945 
3946 	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3947 				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3948 				 &lock_type, &lock_tag, &lockers, &num_lockers);
3949 	if (ret) {
3950 		rbd_warn(rbd_dev, "failed to get header lockers: %d", ret);
3951 		return ERR_PTR(ret);
3952 	}
3953 
3954 	if (num_lockers == 0) {
3955 		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3956 		lockers = NULL;
3957 		goto out;
3958 	}
3959 
3960 	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3961 		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3962 			 lock_tag);
3963 		goto err_busy;
3964 	}
3965 
3966 	if (lock_type == CEPH_CLS_LOCK_SHARED) {
3967 		rbd_warn(rbd_dev, "shared lock type detected");
3968 		goto err_busy;
3969 	}
3970 
3971 	WARN_ON(num_lockers != 1);
3972 	if (strncmp(lockers[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3973 		    strlen(RBD_LOCK_COOKIE_PREFIX))) {
3974 		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3975 			 lockers[0].id.cookie);
3976 		goto err_busy;
3977 	}
3978 
3979 out:
3980 	kfree(lock_tag);
3981 	return lockers;
3982 
3983 err_busy:
3984 	kfree(lock_tag);
3985 	ceph_free_lockers(lockers, num_lockers);
3986 	return ERR_PTR(-EBUSY);
3987 }
3988 
find_watcher(struct rbd_device * rbd_dev,const struct ceph_locker * locker)3989 static int find_watcher(struct rbd_device *rbd_dev,
3990 			const struct ceph_locker *locker)
3991 {
3992 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3993 	struct ceph_watch_item *watchers;
3994 	u32 num_watchers;
3995 	u64 cookie;
3996 	int i;
3997 	int ret;
3998 
3999 	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
4000 				      &rbd_dev->header_oloc, &watchers,
4001 				      &num_watchers);
4002 	if (ret) {
4003 		rbd_warn(rbd_dev, "failed to get watchers: %d", ret);
4004 		return ret;
4005 	}
4006 
4007 	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
4008 	for (i = 0; i < num_watchers; i++) {
4009 		/*
4010 		 * Ignore addr->type while comparing.  This mimics
4011 		 * entity_addr_t::get_legacy_str() + strcmp().
4012 		 */
4013 		if (ceph_addr_equal_no_type(&watchers[i].addr,
4014 					    &locker->info.addr) &&
4015 		    watchers[i].cookie == cookie) {
4016 			struct rbd_client_id cid = {
4017 				.gid = le64_to_cpu(watchers[i].name.num),
4018 				.handle = cookie,
4019 			};
4020 
4021 			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
4022 			     rbd_dev, cid.gid, cid.handle);
4023 			rbd_set_owner_cid(rbd_dev, &cid);
4024 			ret = 1;
4025 			goto out;
4026 		}
4027 	}
4028 
4029 	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
4030 	ret = 0;
4031 out:
4032 	kfree(watchers);
4033 	return ret;
4034 }
4035 
4036 /*
4037  * lock_rwsem must be held for write
4038  */
rbd_try_lock(struct rbd_device * rbd_dev)4039 static int rbd_try_lock(struct rbd_device *rbd_dev)
4040 {
4041 	struct ceph_client *client = rbd_dev->rbd_client->client;
4042 	struct ceph_locker *locker, *refreshed_locker;
4043 	int ret;
4044 
4045 	for (;;) {
4046 		locker = refreshed_locker = NULL;
4047 
4048 		ret = rbd_lock(rbd_dev);
4049 		if (!ret)
4050 			goto out;
4051 		if (ret != -EBUSY) {
4052 			rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4053 			goto out;
4054 		}
4055 
4056 		/* determine if the current lock holder is still alive */
4057 		locker = get_lock_owner_info(rbd_dev);
4058 		if (IS_ERR(locker)) {
4059 			ret = PTR_ERR(locker);
4060 			locker = NULL;
4061 			goto out;
4062 		}
4063 		if (!locker)
4064 			goto again;
4065 
4066 		ret = find_watcher(rbd_dev, locker);
4067 		if (ret)
4068 			goto out; /* request lock or error */
4069 
4070 		refreshed_locker = get_lock_owner_info(rbd_dev);
4071 		if (IS_ERR(refreshed_locker)) {
4072 			ret = PTR_ERR(refreshed_locker);
4073 			refreshed_locker = NULL;
4074 			goto out;
4075 		}
4076 		if (!refreshed_locker ||
4077 		    !locker_equal(locker, refreshed_locker))
4078 			goto again;
4079 
4080 		rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4081 			 ENTITY_NAME(locker->id.name));
4082 
4083 		ret = ceph_monc_blocklist_add(&client->monc,
4084 					      &locker->info.addr);
4085 		if (ret) {
4086 			rbd_warn(rbd_dev, "failed to blocklist %s%llu: %d",
4087 				 ENTITY_NAME(locker->id.name), ret);
4088 			goto out;
4089 		}
4090 
4091 		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4092 					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4093 					  locker->id.cookie, &locker->id.name);
4094 		if (ret && ret != -ENOENT) {
4095 			rbd_warn(rbd_dev, "failed to break header lock: %d",
4096 				 ret);
4097 			goto out;
4098 		}
4099 
4100 again:
4101 		free_locker(refreshed_locker);
4102 		free_locker(locker);
4103 	}
4104 
4105 out:
4106 	free_locker(refreshed_locker);
4107 	free_locker(locker);
4108 	return ret;
4109 }
4110 
rbd_post_acquire_action(struct rbd_device * rbd_dev)4111 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4112 {
4113 	int ret;
4114 
4115 	ret = rbd_dev_refresh(rbd_dev);
4116 	if (ret)
4117 		return ret;
4118 
4119 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4120 		ret = rbd_object_map_open(rbd_dev);
4121 		if (ret)
4122 			return ret;
4123 	}
4124 
4125 	return 0;
4126 }
4127 
4128 /*
4129  * Return:
4130  *   0 - lock acquired
4131  *   1 - caller should call rbd_request_lock()
4132  *  <0 - error
4133  */
rbd_try_acquire_lock(struct rbd_device * rbd_dev)4134 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4135 {
4136 	int ret;
4137 
4138 	down_read(&rbd_dev->lock_rwsem);
4139 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4140 	     rbd_dev->lock_state);
4141 	if (__rbd_is_lock_owner(rbd_dev)) {
4142 		up_read(&rbd_dev->lock_rwsem);
4143 		return 0;
4144 	}
4145 
4146 	up_read(&rbd_dev->lock_rwsem);
4147 	down_write(&rbd_dev->lock_rwsem);
4148 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4149 	     rbd_dev->lock_state);
4150 	if (__rbd_is_lock_owner(rbd_dev)) {
4151 		up_write(&rbd_dev->lock_rwsem);
4152 		return 0;
4153 	}
4154 
4155 	ret = rbd_try_lock(rbd_dev);
4156 	if (ret < 0) {
4157 		rbd_warn(rbd_dev, "failed to acquire lock: %d", ret);
4158 		goto out;
4159 	}
4160 	if (ret > 0) {
4161 		up_write(&rbd_dev->lock_rwsem);
4162 		return ret;
4163 	}
4164 
4165 	rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4166 	rbd_assert(list_empty(&rbd_dev->running_list));
4167 
4168 	ret = rbd_post_acquire_action(rbd_dev);
4169 	if (ret) {
4170 		rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4171 		/*
4172 		 * Can't stay in RBD_LOCK_STATE_LOCKED because
4173 		 * rbd_lock_add_request() would let the request through,
4174 		 * assuming that e.g. object map is locked and loaded.
4175 		 */
4176 		rbd_unlock(rbd_dev);
4177 	}
4178 
4179 out:
4180 	wake_lock_waiters(rbd_dev, ret);
4181 	up_write(&rbd_dev->lock_rwsem);
4182 	return ret;
4183 }
4184 
rbd_acquire_lock(struct work_struct * work)4185 static void rbd_acquire_lock(struct work_struct *work)
4186 {
4187 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4188 					    struct rbd_device, lock_dwork);
4189 	int ret;
4190 
4191 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4192 again:
4193 	ret = rbd_try_acquire_lock(rbd_dev);
4194 	if (ret <= 0) {
4195 		dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4196 		return;
4197 	}
4198 
4199 	ret = rbd_request_lock(rbd_dev);
4200 	if (ret == -ETIMEDOUT) {
4201 		goto again; /* treat this as a dead client */
4202 	} else if (ret == -EROFS) {
4203 		rbd_warn(rbd_dev, "peer will not release lock");
4204 		down_write(&rbd_dev->lock_rwsem);
4205 		wake_lock_waiters(rbd_dev, ret);
4206 		up_write(&rbd_dev->lock_rwsem);
4207 	} else if (ret < 0) {
4208 		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4209 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4210 				 RBD_RETRY_DELAY);
4211 	} else {
4212 		/*
4213 		 * lock owner acked, but resend if we don't see them
4214 		 * release the lock
4215 		 */
4216 		dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4217 		     rbd_dev);
4218 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4219 		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4220 	}
4221 }
4222 
rbd_quiesce_lock(struct rbd_device * rbd_dev)4223 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4224 {
4225 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4226 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4227 
4228 	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4229 		return false;
4230 
4231 	/*
4232 	 * Ensure that all in-flight IO is flushed.
4233 	 */
4234 	rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4235 	rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4236 	if (list_empty(&rbd_dev->running_list))
4237 		return true;
4238 
4239 	up_write(&rbd_dev->lock_rwsem);
4240 	wait_for_completion(&rbd_dev->releasing_wait);
4241 
4242 	down_write(&rbd_dev->lock_rwsem);
4243 	if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4244 		return false;
4245 
4246 	rbd_assert(list_empty(&rbd_dev->running_list));
4247 	return true;
4248 }
4249 
rbd_pre_release_action(struct rbd_device * rbd_dev)4250 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4251 {
4252 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4253 		rbd_object_map_close(rbd_dev);
4254 }
4255 
__rbd_release_lock(struct rbd_device * rbd_dev)4256 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4257 {
4258 	rbd_assert(list_empty(&rbd_dev->running_list));
4259 
4260 	rbd_pre_release_action(rbd_dev);
4261 	rbd_unlock(rbd_dev);
4262 }
4263 
4264 /*
4265  * lock_rwsem must be held for write
4266  */
rbd_release_lock(struct rbd_device * rbd_dev)4267 static void rbd_release_lock(struct rbd_device *rbd_dev)
4268 {
4269 	if (!rbd_quiesce_lock(rbd_dev))
4270 		return;
4271 
4272 	__rbd_release_lock(rbd_dev);
4273 
4274 	/*
4275 	 * Give others a chance to grab the lock - we would re-acquire
4276 	 * almost immediately if we got new IO while draining the running
4277 	 * list otherwise.  We need to ack our own notifications, so this
4278 	 * lock_dwork will be requeued from rbd_handle_released_lock() by
4279 	 * way of maybe_kick_acquire().
4280 	 */
4281 	cancel_delayed_work(&rbd_dev->lock_dwork);
4282 }
4283 
rbd_release_lock_work(struct work_struct * work)4284 static void rbd_release_lock_work(struct work_struct *work)
4285 {
4286 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4287 						  unlock_work);
4288 
4289 	down_write(&rbd_dev->lock_rwsem);
4290 	rbd_release_lock(rbd_dev);
4291 	up_write(&rbd_dev->lock_rwsem);
4292 }
4293 
maybe_kick_acquire(struct rbd_device * rbd_dev)4294 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4295 {
4296 	bool have_requests;
4297 
4298 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4299 	if (__rbd_is_lock_owner(rbd_dev))
4300 		return;
4301 
4302 	spin_lock(&rbd_dev->lock_lists_lock);
4303 	have_requests = !list_empty(&rbd_dev->acquiring_list);
4304 	spin_unlock(&rbd_dev->lock_lists_lock);
4305 	if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4306 		dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4307 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4308 	}
4309 }
4310 
rbd_handle_acquired_lock(struct rbd_device * rbd_dev,u8 struct_v,void ** p)4311 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4312 				     void **p)
4313 {
4314 	struct rbd_client_id cid = { 0 };
4315 
4316 	if (struct_v >= 2) {
4317 		cid.gid = ceph_decode_64(p);
4318 		cid.handle = ceph_decode_64(p);
4319 	}
4320 
4321 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4322 	     cid.handle);
4323 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4324 		down_write(&rbd_dev->lock_rwsem);
4325 		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4326 			dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4327 			     __func__, rbd_dev, cid.gid, cid.handle);
4328 		} else {
4329 			rbd_set_owner_cid(rbd_dev, &cid);
4330 		}
4331 		downgrade_write(&rbd_dev->lock_rwsem);
4332 	} else {
4333 		down_read(&rbd_dev->lock_rwsem);
4334 	}
4335 
4336 	maybe_kick_acquire(rbd_dev);
4337 	up_read(&rbd_dev->lock_rwsem);
4338 }
4339 
rbd_handle_released_lock(struct rbd_device * rbd_dev,u8 struct_v,void ** p)4340 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4341 				     void **p)
4342 {
4343 	struct rbd_client_id cid = { 0 };
4344 
4345 	if (struct_v >= 2) {
4346 		cid.gid = ceph_decode_64(p);
4347 		cid.handle = ceph_decode_64(p);
4348 	}
4349 
4350 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4351 	     cid.handle);
4352 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4353 		down_write(&rbd_dev->lock_rwsem);
4354 		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4355 			dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4356 			     __func__, rbd_dev, cid.gid, cid.handle,
4357 			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4358 		} else {
4359 			rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4360 		}
4361 		downgrade_write(&rbd_dev->lock_rwsem);
4362 	} else {
4363 		down_read(&rbd_dev->lock_rwsem);
4364 	}
4365 
4366 	maybe_kick_acquire(rbd_dev);
4367 	up_read(&rbd_dev->lock_rwsem);
4368 }
4369 
4370 /*
4371  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4372  * ResponseMessage is needed.
4373  */
rbd_handle_request_lock(struct rbd_device * rbd_dev,u8 struct_v,void ** p)4374 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4375 				   void **p)
4376 {
4377 	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4378 	struct rbd_client_id cid = { 0 };
4379 	int result = 1;
4380 
4381 	if (struct_v >= 2) {
4382 		cid.gid = ceph_decode_64(p);
4383 		cid.handle = ceph_decode_64(p);
4384 	}
4385 
4386 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4387 	     cid.handle);
4388 	if (rbd_cid_equal(&cid, &my_cid))
4389 		return result;
4390 
4391 	down_read(&rbd_dev->lock_rwsem);
4392 	if (__rbd_is_lock_owner(rbd_dev)) {
4393 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4394 		    rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4395 			goto out_unlock;
4396 
4397 		/*
4398 		 * encode ResponseMessage(0) so the peer can detect
4399 		 * a missing owner
4400 		 */
4401 		result = 0;
4402 
4403 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4404 			if (!rbd_dev->opts->exclusive) {
4405 				dout("%s rbd_dev %p queueing unlock_work\n",
4406 				     __func__, rbd_dev);
4407 				queue_work(rbd_dev->task_wq,
4408 					   &rbd_dev->unlock_work);
4409 			} else {
4410 				/* refuse to release the lock */
4411 				result = -EROFS;
4412 			}
4413 		}
4414 	}
4415 
4416 out_unlock:
4417 	up_read(&rbd_dev->lock_rwsem);
4418 	return result;
4419 }
4420 
__rbd_acknowledge_notify(struct rbd_device * rbd_dev,u64 notify_id,u64 cookie,s32 * result)4421 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4422 				     u64 notify_id, u64 cookie, s32 *result)
4423 {
4424 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4425 	char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4426 	int buf_size = sizeof(buf);
4427 	int ret;
4428 
4429 	if (result) {
4430 		void *p = buf;
4431 
4432 		/* encode ResponseMessage */
4433 		ceph_start_encoding(&p, 1, 1,
4434 				    buf_size - CEPH_ENCODING_START_BLK_LEN);
4435 		ceph_encode_32(&p, *result);
4436 	} else {
4437 		buf_size = 0;
4438 	}
4439 
4440 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4441 				   &rbd_dev->header_oloc, notify_id, cookie,
4442 				   buf, buf_size);
4443 	if (ret)
4444 		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4445 }
4446 
rbd_acknowledge_notify(struct rbd_device * rbd_dev,u64 notify_id,u64 cookie)4447 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4448 				   u64 cookie)
4449 {
4450 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4451 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4452 }
4453 
rbd_acknowledge_notify_result(struct rbd_device * rbd_dev,u64 notify_id,u64 cookie,s32 result)4454 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4455 					  u64 notify_id, u64 cookie, s32 result)
4456 {
4457 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4458 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4459 }
4460 
rbd_watch_cb(void * arg,u64 notify_id,u64 cookie,u64 notifier_id,void * data,size_t data_len)4461 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4462 			 u64 notifier_id, void *data, size_t data_len)
4463 {
4464 	struct rbd_device *rbd_dev = arg;
4465 	void *p = data;
4466 	void *const end = p + data_len;
4467 	u8 struct_v = 0;
4468 	u32 len;
4469 	u32 notify_op;
4470 	int ret;
4471 
4472 	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4473 	     __func__, rbd_dev, cookie, notify_id, data_len);
4474 	if (data_len) {
4475 		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4476 					  &struct_v, &len);
4477 		if (ret) {
4478 			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4479 				 ret);
4480 			return;
4481 		}
4482 
4483 		notify_op = ceph_decode_32(&p);
4484 	} else {
4485 		/* legacy notification for header updates */
4486 		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4487 		len = 0;
4488 	}
4489 
4490 	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4491 	switch (notify_op) {
4492 	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4493 		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4494 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4495 		break;
4496 	case RBD_NOTIFY_OP_RELEASED_LOCK:
4497 		rbd_handle_released_lock(rbd_dev, struct_v, &p);
4498 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4499 		break;
4500 	case RBD_NOTIFY_OP_REQUEST_LOCK:
4501 		ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4502 		if (ret <= 0)
4503 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4504 						      cookie, ret);
4505 		else
4506 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4507 		break;
4508 	case RBD_NOTIFY_OP_HEADER_UPDATE:
4509 		ret = rbd_dev_refresh(rbd_dev);
4510 		if (ret)
4511 			rbd_warn(rbd_dev, "refresh failed: %d", ret);
4512 
4513 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4514 		break;
4515 	default:
4516 		if (rbd_is_lock_owner(rbd_dev))
4517 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4518 						      cookie, -EOPNOTSUPP);
4519 		else
4520 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4521 		break;
4522 	}
4523 }
4524 
4525 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4526 
rbd_watch_errcb(void * arg,u64 cookie,int err)4527 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4528 {
4529 	struct rbd_device *rbd_dev = arg;
4530 
4531 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
4532 
4533 	down_write(&rbd_dev->lock_rwsem);
4534 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4535 	up_write(&rbd_dev->lock_rwsem);
4536 
4537 	mutex_lock(&rbd_dev->watch_mutex);
4538 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4539 		__rbd_unregister_watch(rbd_dev);
4540 		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4541 
4542 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4543 	}
4544 	mutex_unlock(&rbd_dev->watch_mutex);
4545 }
4546 
4547 /*
4548  * watch_mutex must be locked
4549  */
__rbd_register_watch(struct rbd_device * rbd_dev)4550 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4551 {
4552 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4553 	struct ceph_osd_linger_request *handle;
4554 
4555 	rbd_assert(!rbd_dev->watch_handle);
4556 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4557 
4558 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4559 				 &rbd_dev->header_oloc, rbd_watch_cb,
4560 				 rbd_watch_errcb, rbd_dev);
4561 	if (IS_ERR(handle))
4562 		return PTR_ERR(handle);
4563 
4564 	rbd_dev->watch_handle = handle;
4565 	return 0;
4566 }
4567 
4568 /*
4569  * watch_mutex must be locked
4570  */
__rbd_unregister_watch(struct rbd_device * rbd_dev)4571 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4572 {
4573 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4574 	int ret;
4575 
4576 	rbd_assert(rbd_dev->watch_handle);
4577 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4578 
4579 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4580 	if (ret)
4581 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4582 
4583 	rbd_dev->watch_handle = NULL;
4584 }
4585 
rbd_register_watch(struct rbd_device * rbd_dev)4586 static int rbd_register_watch(struct rbd_device *rbd_dev)
4587 {
4588 	int ret;
4589 
4590 	mutex_lock(&rbd_dev->watch_mutex);
4591 	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4592 	ret = __rbd_register_watch(rbd_dev);
4593 	if (ret)
4594 		goto out;
4595 
4596 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4597 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4598 
4599 out:
4600 	mutex_unlock(&rbd_dev->watch_mutex);
4601 	return ret;
4602 }
4603 
cancel_tasks_sync(struct rbd_device * rbd_dev)4604 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4605 {
4606 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4607 
4608 	cancel_work_sync(&rbd_dev->acquired_lock_work);
4609 	cancel_work_sync(&rbd_dev->released_lock_work);
4610 	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4611 	cancel_work_sync(&rbd_dev->unlock_work);
4612 }
4613 
4614 /*
4615  * header_rwsem must not be held to avoid a deadlock with
4616  * rbd_dev_refresh() when flushing notifies.
4617  */
rbd_unregister_watch(struct rbd_device * rbd_dev)4618 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4619 {
4620 	cancel_tasks_sync(rbd_dev);
4621 
4622 	mutex_lock(&rbd_dev->watch_mutex);
4623 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4624 		__rbd_unregister_watch(rbd_dev);
4625 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4626 	mutex_unlock(&rbd_dev->watch_mutex);
4627 
4628 	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4629 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4630 }
4631 
4632 /*
4633  * lock_rwsem must be held for write
4634  */
rbd_reacquire_lock(struct rbd_device * rbd_dev)4635 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4636 {
4637 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4638 	char cookie[32];
4639 	int ret;
4640 
4641 	if (!rbd_quiesce_lock(rbd_dev))
4642 		return;
4643 
4644 	format_lock_cookie(rbd_dev, cookie);
4645 	ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4646 				  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4647 				  CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4648 				  RBD_LOCK_TAG, cookie);
4649 	if (ret) {
4650 		if (ret != -EOPNOTSUPP)
4651 			rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4652 				 ret);
4653 
4654 		/*
4655 		 * Lock cookie cannot be updated on older OSDs, so do
4656 		 * a manual release and queue an acquire.
4657 		 */
4658 		__rbd_release_lock(rbd_dev);
4659 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4660 	} else {
4661 		__rbd_lock(rbd_dev, cookie);
4662 		wake_lock_waiters(rbd_dev, 0);
4663 	}
4664 }
4665 
rbd_reregister_watch(struct work_struct * work)4666 static void rbd_reregister_watch(struct work_struct *work)
4667 {
4668 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4669 					    struct rbd_device, watch_dwork);
4670 	int ret;
4671 
4672 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4673 
4674 	mutex_lock(&rbd_dev->watch_mutex);
4675 	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4676 		mutex_unlock(&rbd_dev->watch_mutex);
4677 		return;
4678 	}
4679 
4680 	ret = __rbd_register_watch(rbd_dev);
4681 	if (ret) {
4682 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4683 		if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4684 			queue_delayed_work(rbd_dev->task_wq,
4685 					   &rbd_dev->watch_dwork,
4686 					   RBD_RETRY_DELAY);
4687 			mutex_unlock(&rbd_dev->watch_mutex);
4688 			return;
4689 		}
4690 
4691 		mutex_unlock(&rbd_dev->watch_mutex);
4692 		down_write(&rbd_dev->lock_rwsem);
4693 		wake_lock_waiters(rbd_dev, ret);
4694 		up_write(&rbd_dev->lock_rwsem);
4695 		return;
4696 	}
4697 
4698 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4699 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4700 	mutex_unlock(&rbd_dev->watch_mutex);
4701 
4702 	down_write(&rbd_dev->lock_rwsem);
4703 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4704 		rbd_reacquire_lock(rbd_dev);
4705 	up_write(&rbd_dev->lock_rwsem);
4706 
4707 	ret = rbd_dev_refresh(rbd_dev);
4708 	if (ret)
4709 		rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4710 }
4711 
4712 /*
4713  * Synchronous osd object method call.  Returns the number of bytes
4714  * returned in the outbound buffer, or a negative error code.
4715  */
rbd_obj_method_sync(struct rbd_device * rbd_dev,struct ceph_object_id * oid,struct ceph_object_locator * oloc,const char * method_name,const void * outbound,size_t outbound_size,void * inbound,size_t inbound_size)4716 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4717 			     struct ceph_object_id *oid,
4718 			     struct ceph_object_locator *oloc,
4719 			     const char *method_name,
4720 			     const void *outbound,
4721 			     size_t outbound_size,
4722 			     void *inbound,
4723 			     size_t inbound_size)
4724 {
4725 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4726 	struct page *req_page = NULL;
4727 	struct page *reply_page;
4728 	int ret;
4729 
4730 	/*
4731 	 * Method calls are ultimately read operations.  The result
4732 	 * should placed into the inbound buffer provided.  They
4733 	 * also supply outbound data--parameters for the object
4734 	 * method.  Currently if this is present it will be a
4735 	 * snapshot id.
4736 	 */
4737 	if (outbound) {
4738 		if (outbound_size > PAGE_SIZE)
4739 			return -E2BIG;
4740 
4741 		req_page = alloc_page(GFP_KERNEL);
4742 		if (!req_page)
4743 			return -ENOMEM;
4744 
4745 		memcpy(page_address(req_page), outbound, outbound_size);
4746 	}
4747 
4748 	reply_page = alloc_page(GFP_KERNEL);
4749 	if (!reply_page) {
4750 		if (req_page)
4751 			__free_page(req_page);
4752 		return -ENOMEM;
4753 	}
4754 
4755 	ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4756 			     CEPH_OSD_FLAG_READ, req_page, outbound_size,
4757 			     &reply_page, &inbound_size);
4758 	if (!ret) {
4759 		memcpy(inbound, page_address(reply_page), inbound_size);
4760 		ret = inbound_size;
4761 	}
4762 
4763 	if (req_page)
4764 		__free_page(req_page);
4765 	__free_page(reply_page);
4766 	return ret;
4767 }
4768 
rbd_queue_workfn(struct work_struct * work)4769 static void rbd_queue_workfn(struct work_struct *work)
4770 {
4771 	struct rbd_img_request *img_request =
4772 	    container_of(work, struct rbd_img_request, work);
4773 	struct rbd_device *rbd_dev = img_request->rbd_dev;
4774 	enum obj_operation_type op_type = img_request->op_type;
4775 	struct request *rq = blk_mq_rq_from_pdu(img_request);
4776 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4777 	u64 length = blk_rq_bytes(rq);
4778 	u64 mapping_size;
4779 	int result;
4780 
4781 	/* Ignore/skip any zero-length requests */
4782 	if (!length) {
4783 		dout("%s: zero-length request\n", __func__);
4784 		result = 0;
4785 		goto err_img_request;
4786 	}
4787 
4788 	blk_mq_start_request(rq);
4789 
4790 	down_read(&rbd_dev->header_rwsem);
4791 	mapping_size = rbd_dev->mapping.size;
4792 	rbd_img_capture_header(img_request);
4793 	up_read(&rbd_dev->header_rwsem);
4794 
4795 	if (offset + length > mapping_size) {
4796 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4797 			 length, mapping_size);
4798 		result = -EIO;
4799 		goto err_img_request;
4800 	}
4801 
4802 	dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4803 	     img_request, obj_op_name(op_type), offset, length);
4804 
4805 	if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4806 		result = rbd_img_fill_nodata(img_request, offset, length);
4807 	else
4808 		result = rbd_img_fill_from_bio(img_request, offset, length,
4809 					       rq->bio);
4810 	if (result)
4811 		goto err_img_request;
4812 
4813 	rbd_img_handle_request(img_request, 0);
4814 	return;
4815 
4816 err_img_request:
4817 	rbd_img_request_destroy(img_request);
4818 	if (result)
4819 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4820 			 obj_op_name(op_type), length, offset, result);
4821 	blk_mq_end_request(rq, errno_to_blk_status(result));
4822 }
4823 
rbd_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)4824 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4825 		const struct blk_mq_queue_data *bd)
4826 {
4827 	struct rbd_device *rbd_dev = hctx->queue->queuedata;
4828 	struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4829 	enum obj_operation_type op_type;
4830 
4831 	switch (req_op(bd->rq)) {
4832 	case REQ_OP_DISCARD:
4833 		op_type = OBJ_OP_DISCARD;
4834 		break;
4835 	case REQ_OP_WRITE_ZEROES:
4836 		op_type = OBJ_OP_ZEROOUT;
4837 		break;
4838 	case REQ_OP_WRITE:
4839 		op_type = OBJ_OP_WRITE;
4840 		break;
4841 	case REQ_OP_READ:
4842 		op_type = OBJ_OP_READ;
4843 		break;
4844 	default:
4845 		rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4846 		return BLK_STS_IOERR;
4847 	}
4848 
4849 	rbd_img_request_init(img_req, rbd_dev, op_type);
4850 
4851 	if (rbd_img_is_write(img_req)) {
4852 		if (rbd_is_ro(rbd_dev)) {
4853 			rbd_warn(rbd_dev, "%s on read-only mapping",
4854 				 obj_op_name(img_req->op_type));
4855 			return BLK_STS_IOERR;
4856 		}
4857 		rbd_assert(!rbd_is_snap(rbd_dev));
4858 	}
4859 
4860 	INIT_WORK(&img_req->work, rbd_queue_workfn);
4861 	queue_work(rbd_wq, &img_req->work);
4862 	return BLK_STS_OK;
4863 }
4864 
rbd_free_disk(struct rbd_device * rbd_dev)4865 static void rbd_free_disk(struct rbd_device *rbd_dev)
4866 {
4867 	blk_cleanup_queue(rbd_dev->disk->queue);
4868 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4869 	put_disk(rbd_dev->disk);
4870 	rbd_dev->disk = NULL;
4871 }
4872 
rbd_obj_read_sync(struct rbd_device * rbd_dev,struct ceph_object_id * oid,struct ceph_object_locator * oloc,void * buf,int buf_len)4873 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4874 			     struct ceph_object_id *oid,
4875 			     struct ceph_object_locator *oloc,
4876 			     void *buf, int buf_len)
4877 
4878 {
4879 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4880 	struct ceph_osd_request *req;
4881 	struct page **pages;
4882 	int num_pages = calc_pages_for(0, buf_len);
4883 	int ret;
4884 
4885 	req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4886 	if (!req)
4887 		return -ENOMEM;
4888 
4889 	ceph_oid_copy(&req->r_base_oid, oid);
4890 	ceph_oloc_copy(&req->r_base_oloc, oloc);
4891 	req->r_flags = CEPH_OSD_FLAG_READ;
4892 
4893 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4894 	if (IS_ERR(pages)) {
4895 		ret = PTR_ERR(pages);
4896 		goto out_req;
4897 	}
4898 
4899 	osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4900 	osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4901 					 true);
4902 
4903 	ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4904 	if (ret)
4905 		goto out_req;
4906 
4907 	ceph_osdc_start_request(osdc, req, false);
4908 	ret = ceph_osdc_wait_request(osdc, req);
4909 	if (ret >= 0)
4910 		ceph_copy_from_page_vector(pages, buf, 0, ret);
4911 
4912 out_req:
4913 	ceph_osdc_put_request(req);
4914 	return ret;
4915 }
4916 
4917 /*
4918  * Read the complete header for the given rbd device.  On successful
4919  * return, the rbd_dev->header field will contain up-to-date
4920  * information about the image.
4921  */
rbd_dev_v1_header_info(struct rbd_device * rbd_dev,struct rbd_image_header * header,bool first_time)4922 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev,
4923 				  struct rbd_image_header *header,
4924 				  bool first_time)
4925 {
4926 	struct rbd_image_header_ondisk *ondisk = NULL;
4927 	u32 snap_count = 0;
4928 	u64 names_size = 0;
4929 	u32 want_count;
4930 	int ret;
4931 
4932 	/*
4933 	 * The complete header will include an array of its 64-bit
4934 	 * snapshot ids, followed by the names of those snapshots as
4935 	 * a contiguous block of NUL-terminated strings.  Note that
4936 	 * the number of snapshots could change by the time we read
4937 	 * it in, in which case we re-read it.
4938 	 */
4939 	do {
4940 		size_t size;
4941 
4942 		kfree(ondisk);
4943 
4944 		size = sizeof (*ondisk);
4945 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4946 		size += names_size;
4947 		ondisk = kmalloc(size, GFP_KERNEL);
4948 		if (!ondisk)
4949 			return -ENOMEM;
4950 
4951 		ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4952 					&rbd_dev->header_oloc, ondisk, size);
4953 		if (ret < 0)
4954 			goto out;
4955 		if ((size_t)ret < size) {
4956 			ret = -ENXIO;
4957 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4958 				size, ret);
4959 			goto out;
4960 		}
4961 		if (!rbd_dev_ondisk_valid(ondisk)) {
4962 			ret = -ENXIO;
4963 			rbd_warn(rbd_dev, "invalid header");
4964 			goto out;
4965 		}
4966 
4967 		names_size = le64_to_cpu(ondisk->snap_names_len);
4968 		want_count = snap_count;
4969 		snap_count = le32_to_cpu(ondisk->snap_count);
4970 	} while (snap_count != want_count);
4971 
4972 	ret = rbd_header_from_disk(header, ondisk, first_time);
4973 out:
4974 	kfree(ondisk);
4975 
4976 	return ret;
4977 }
4978 
rbd_dev_update_size(struct rbd_device * rbd_dev)4979 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4980 {
4981 	sector_t size;
4982 
4983 	/*
4984 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4985 	 * try to update its size.  If REMOVING is set, updating size
4986 	 * is just useless work since the device can't be opened.
4987 	 */
4988 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4989 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4990 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4991 		dout("setting size to %llu sectors", (unsigned long long)size);
4992 		set_capacity(rbd_dev->disk, size);
4993 		revalidate_disk_size(rbd_dev->disk, true);
4994 	}
4995 }
4996 
4997 static const struct blk_mq_ops rbd_mq_ops = {
4998 	.queue_rq	= rbd_queue_rq,
4999 };
5000 
rbd_init_disk(struct rbd_device * rbd_dev)5001 static int rbd_init_disk(struct rbd_device *rbd_dev)
5002 {
5003 	struct gendisk *disk;
5004 	struct request_queue *q;
5005 	unsigned int objset_bytes =
5006 	    rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
5007 	int err;
5008 
5009 	/* create gendisk info */
5010 	disk = alloc_disk(single_major ?
5011 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
5012 			  RBD_MINORS_PER_MAJOR);
5013 	if (!disk)
5014 		return -ENOMEM;
5015 
5016 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
5017 		 rbd_dev->dev_id);
5018 	disk->major = rbd_dev->major;
5019 	disk->first_minor = rbd_dev->minor;
5020 	if (single_major)
5021 		disk->flags |= GENHD_FL_EXT_DEVT;
5022 	disk->fops = &rbd_bd_ops;
5023 	disk->private_data = rbd_dev;
5024 
5025 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
5026 	rbd_dev->tag_set.ops = &rbd_mq_ops;
5027 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
5028 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
5029 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
5030 	rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
5031 	rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
5032 
5033 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
5034 	if (err)
5035 		goto out_disk;
5036 
5037 	q = blk_mq_init_queue(&rbd_dev->tag_set);
5038 	if (IS_ERR(q)) {
5039 		err = PTR_ERR(q);
5040 		goto out_tag_set;
5041 	}
5042 
5043 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
5044 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
5045 
5046 	blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
5047 	q->limits.max_sectors = queue_max_hw_sectors(q);
5048 	blk_queue_max_segments(q, USHRT_MAX);
5049 	blk_queue_max_segment_size(q, UINT_MAX);
5050 	blk_queue_io_min(q, rbd_dev->opts->alloc_size);
5051 	blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
5052 
5053 	if (rbd_dev->opts->trim) {
5054 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
5055 		q->limits.discard_granularity = rbd_dev->opts->alloc_size;
5056 		blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
5057 		blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
5058 	}
5059 
5060 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
5061 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
5062 
5063 	/*
5064 	 * disk_release() expects a queue ref from add_disk() and will
5065 	 * put it.  Hold an extra ref until add_disk() is called.
5066 	 */
5067 	WARN_ON(!blk_get_queue(q));
5068 	disk->queue = q;
5069 	q->queuedata = rbd_dev;
5070 
5071 	rbd_dev->disk = disk;
5072 
5073 	return 0;
5074 out_tag_set:
5075 	blk_mq_free_tag_set(&rbd_dev->tag_set);
5076 out_disk:
5077 	put_disk(disk);
5078 	return err;
5079 }
5080 
5081 /*
5082   sysfs
5083 */
5084 
dev_to_rbd_dev(struct device * dev)5085 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5086 {
5087 	return container_of(dev, struct rbd_device, dev);
5088 }
5089 
rbd_size_show(struct device * dev,struct device_attribute * attr,char * buf)5090 static ssize_t rbd_size_show(struct device *dev,
5091 			     struct device_attribute *attr, char *buf)
5092 {
5093 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5094 
5095 	return sprintf(buf, "%llu\n",
5096 		(unsigned long long)rbd_dev->mapping.size);
5097 }
5098 
rbd_features_show(struct device * dev,struct device_attribute * attr,char * buf)5099 static ssize_t rbd_features_show(struct device *dev,
5100 			     struct device_attribute *attr, char *buf)
5101 {
5102 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5103 
5104 	return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5105 }
5106 
rbd_major_show(struct device * dev,struct device_attribute * attr,char * buf)5107 static ssize_t rbd_major_show(struct device *dev,
5108 			      struct device_attribute *attr, char *buf)
5109 {
5110 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5111 
5112 	if (rbd_dev->major)
5113 		return sprintf(buf, "%d\n", rbd_dev->major);
5114 
5115 	return sprintf(buf, "(none)\n");
5116 }
5117 
rbd_minor_show(struct device * dev,struct device_attribute * attr,char * buf)5118 static ssize_t rbd_minor_show(struct device *dev,
5119 			      struct device_attribute *attr, char *buf)
5120 {
5121 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5122 
5123 	return sprintf(buf, "%d\n", rbd_dev->minor);
5124 }
5125 
rbd_client_addr_show(struct device * dev,struct device_attribute * attr,char * buf)5126 static ssize_t rbd_client_addr_show(struct device *dev,
5127 				    struct device_attribute *attr, char *buf)
5128 {
5129 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5130 	struct ceph_entity_addr *client_addr =
5131 	    ceph_client_addr(rbd_dev->rbd_client->client);
5132 
5133 	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5134 		       le32_to_cpu(client_addr->nonce));
5135 }
5136 
rbd_client_id_show(struct device * dev,struct device_attribute * attr,char * buf)5137 static ssize_t rbd_client_id_show(struct device *dev,
5138 				  struct device_attribute *attr, char *buf)
5139 {
5140 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5141 
5142 	return sprintf(buf, "client%lld\n",
5143 		       ceph_client_gid(rbd_dev->rbd_client->client));
5144 }
5145 
rbd_cluster_fsid_show(struct device * dev,struct device_attribute * attr,char * buf)5146 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5147 				     struct device_attribute *attr, char *buf)
5148 {
5149 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5150 
5151 	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5152 }
5153 
rbd_config_info_show(struct device * dev,struct device_attribute * attr,char * buf)5154 static ssize_t rbd_config_info_show(struct device *dev,
5155 				    struct device_attribute *attr, char *buf)
5156 {
5157 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5158 
5159 	if (!capable(CAP_SYS_ADMIN))
5160 		return -EPERM;
5161 
5162 	return sprintf(buf, "%s\n", rbd_dev->config_info);
5163 }
5164 
rbd_pool_show(struct device * dev,struct device_attribute * attr,char * buf)5165 static ssize_t rbd_pool_show(struct device *dev,
5166 			     struct device_attribute *attr, char *buf)
5167 {
5168 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5169 
5170 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5171 }
5172 
rbd_pool_id_show(struct device * dev,struct device_attribute * attr,char * buf)5173 static ssize_t rbd_pool_id_show(struct device *dev,
5174 			     struct device_attribute *attr, char *buf)
5175 {
5176 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5177 
5178 	return sprintf(buf, "%llu\n",
5179 			(unsigned long long) rbd_dev->spec->pool_id);
5180 }
5181 
rbd_pool_ns_show(struct device * dev,struct device_attribute * attr,char * buf)5182 static ssize_t rbd_pool_ns_show(struct device *dev,
5183 				struct device_attribute *attr, char *buf)
5184 {
5185 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5186 
5187 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5188 }
5189 
rbd_name_show(struct device * dev,struct device_attribute * attr,char * buf)5190 static ssize_t rbd_name_show(struct device *dev,
5191 			     struct device_attribute *attr, char *buf)
5192 {
5193 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5194 
5195 	if (rbd_dev->spec->image_name)
5196 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5197 
5198 	return sprintf(buf, "(unknown)\n");
5199 }
5200 
rbd_image_id_show(struct device * dev,struct device_attribute * attr,char * buf)5201 static ssize_t rbd_image_id_show(struct device *dev,
5202 			     struct device_attribute *attr, char *buf)
5203 {
5204 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5205 
5206 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5207 }
5208 
5209 /*
5210  * Shows the name of the currently-mapped snapshot (or
5211  * RBD_SNAP_HEAD_NAME for the base image).
5212  */
rbd_snap_show(struct device * dev,struct device_attribute * attr,char * buf)5213 static ssize_t rbd_snap_show(struct device *dev,
5214 			     struct device_attribute *attr,
5215 			     char *buf)
5216 {
5217 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5218 
5219 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5220 }
5221 
rbd_snap_id_show(struct device * dev,struct device_attribute * attr,char * buf)5222 static ssize_t rbd_snap_id_show(struct device *dev,
5223 				struct device_attribute *attr, char *buf)
5224 {
5225 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5226 
5227 	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5228 }
5229 
5230 /*
5231  * For a v2 image, shows the chain of parent images, separated by empty
5232  * lines.  For v1 images or if there is no parent, shows "(no parent
5233  * image)".
5234  */
rbd_parent_show(struct device * dev,struct device_attribute * attr,char * buf)5235 static ssize_t rbd_parent_show(struct device *dev,
5236 			       struct device_attribute *attr,
5237 			       char *buf)
5238 {
5239 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5240 	ssize_t count = 0;
5241 
5242 	if (!rbd_dev->parent)
5243 		return sprintf(buf, "(no parent image)\n");
5244 
5245 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5246 		struct rbd_spec *spec = rbd_dev->parent_spec;
5247 
5248 		count += sprintf(&buf[count], "%s"
5249 			    "pool_id %llu\npool_name %s\n"
5250 			    "pool_ns %s\n"
5251 			    "image_id %s\nimage_name %s\n"
5252 			    "snap_id %llu\nsnap_name %s\n"
5253 			    "overlap %llu\n",
5254 			    !count ? "" : "\n", /* first? */
5255 			    spec->pool_id, spec->pool_name,
5256 			    spec->pool_ns ?: "",
5257 			    spec->image_id, spec->image_name ?: "(unknown)",
5258 			    spec->snap_id, spec->snap_name,
5259 			    rbd_dev->parent_overlap);
5260 	}
5261 
5262 	return count;
5263 }
5264 
rbd_image_refresh(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)5265 static ssize_t rbd_image_refresh(struct device *dev,
5266 				 struct device_attribute *attr,
5267 				 const char *buf,
5268 				 size_t size)
5269 {
5270 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5271 	int ret;
5272 
5273 	if (!capable(CAP_SYS_ADMIN))
5274 		return -EPERM;
5275 
5276 	ret = rbd_dev_refresh(rbd_dev);
5277 	if (ret)
5278 		return ret;
5279 
5280 	return size;
5281 }
5282 
5283 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5284 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5285 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5286 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5287 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5288 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5289 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5290 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5291 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5292 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5293 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5294 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5295 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5296 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5297 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5298 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5299 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5300 
5301 static struct attribute *rbd_attrs[] = {
5302 	&dev_attr_size.attr,
5303 	&dev_attr_features.attr,
5304 	&dev_attr_major.attr,
5305 	&dev_attr_minor.attr,
5306 	&dev_attr_client_addr.attr,
5307 	&dev_attr_client_id.attr,
5308 	&dev_attr_cluster_fsid.attr,
5309 	&dev_attr_config_info.attr,
5310 	&dev_attr_pool.attr,
5311 	&dev_attr_pool_id.attr,
5312 	&dev_attr_pool_ns.attr,
5313 	&dev_attr_name.attr,
5314 	&dev_attr_image_id.attr,
5315 	&dev_attr_current_snap.attr,
5316 	&dev_attr_snap_id.attr,
5317 	&dev_attr_parent.attr,
5318 	&dev_attr_refresh.attr,
5319 	NULL
5320 };
5321 
5322 static struct attribute_group rbd_attr_group = {
5323 	.attrs = rbd_attrs,
5324 };
5325 
5326 static const struct attribute_group *rbd_attr_groups[] = {
5327 	&rbd_attr_group,
5328 	NULL
5329 };
5330 
5331 static void rbd_dev_release(struct device *dev);
5332 
5333 static const struct device_type rbd_device_type = {
5334 	.name		= "rbd",
5335 	.groups		= rbd_attr_groups,
5336 	.release	= rbd_dev_release,
5337 };
5338 
rbd_spec_get(struct rbd_spec * spec)5339 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5340 {
5341 	kref_get(&spec->kref);
5342 
5343 	return spec;
5344 }
5345 
5346 static void rbd_spec_free(struct kref *kref);
rbd_spec_put(struct rbd_spec * spec)5347 static void rbd_spec_put(struct rbd_spec *spec)
5348 {
5349 	if (spec)
5350 		kref_put(&spec->kref, rbd_spec_free);
5351 }
5352 
rbd_spec_alloc(void)5353 static struct rbd_spec *rbd_spec_alloc(void)
5354 {
5355 	struct rbd_spec *spec;
5356 
5357 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5358 	if (!spec)
5359 		return NULL;
5360 
5361 	spec->pool_id = CEPH_NOPOOL;
5362 	spec->snap_id = CEPH_NOSNAP;
5363 	kref_init(&spec->kref);
5364 
5365 	return spec;
5366 }
5367 
rbd_spec_free(struct kref * kref)5368 static void rbd_spec_free(struct kref *kref)
5369 {
5370 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5371 
5372 	kfree(spec->pool_name);
5373 	kfree(spec->pool_ns);
5374 	kfree(spec->image_id);
5375 	kfree(spec->image_name);
5376 	kfree(spec->snap_name);
5377 	kfree(spec);
5378 }
5379 
rbd_dev_free(struct rbd_device * rbd_dev)5380 static void rbd_dev_free(struct rbd_device *rbd_dev)
5381 {
5382 	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5383 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5384 
5385 	ceph_oid_destroy(&rbd_dev->header_oid);
5386 	ceph_oloc_destroy(&rbd_dev->header_oloc);
5387 	kfree(rbd_dev->config_info);
5388 
5389 	rbd_put_client(rbd_dev->rbd_client);
5390 	rbd_spec_put(rbd_dev->spec);
5391 	kfree(rbd_dev->opts);
5392 	kfree(rbd_dev);
5393 }
5394 
rbd_dev_release(struct device * dev)5395 static void rbd_dev_release(struct device *dev)
5396 {
5397 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5398 	bool need_put = !!rbd_dev->opts;
5399 
5400 	if (need_put) {
5401 		destroy_workqueue(rbd_dev->task_wq);
5402 		ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5403 	}
5404 
5405 	rbd_dev_free(rbd_dev);
5406 
5407 	/*
5408 	 * This is racy, but way better than putting module outside of
5409 	 * the release callback.  The race window is pretty small, so
5410 	 * doing something similar to dm (dm-builtin.c) is overkill.
5411 	 */
5412 	if (need_put)
5413 		module_put(THIS_MODULE);
5414 }
5415 
__rbd_dev_create(struct rbd_spec * spec)5416 static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec)
5417 {
5418 	struct rbd_device *rbd_dev;
5419 
5420 	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5421 	if (!rbd_dev)
5422 		return NULL;
5423 
5424 	spin_lock_init(&rbd_dev->lock);
5425 	INIT_LIST_HEAD(&rbd_dev->node);
5426 	init_rwsem(&rbd_dev->header_rwsem);
5427 
5428 	rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5429 	ceph_oid_init(&rbd_dev->header_oid);
5430 	rbd_dev->header_oloc.pool = spec->pool_id;
5431 	if (spec->pool_ns) {
5432 		WARN_ON(!*spec->pool_ns);
5433 		rbd_dev->header_oloc.pool_ns =
5434 		    ceph_find_or_create_string(spec->pool_ns,
5435 					       strlen(spec->pool_ns));
5436 	}
5437 
5438 	mutex_init(&rbd_dev->watch_mutex);
5439 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5440 	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5441 
5442 	init_rwsem(&rbd_dev->lock_rwsem);
5443 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5444 	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5445 	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5446 	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5447 	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5448 	spin_lock_init(&rbd_dev->lock_lists_lock);
5449 	INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5450 	INIT_LIST_HEAD(&rbd_dev->running_list);
5451 	init_completion(&rbd_dev->acquire_wait);
5452 	init_completion(&rbd_dev->releasing_wait);
5453 
5454 	spin_lock_init(&rbd_dev->object_map_lock);
5455 
5456 	rbd_dev->dev.bus = &rbd_bus_type;
5457 	rbd_dev->dev.type = &rbd_device_type;
5458 	rbd_dev->dev.parent = &rbd_root_dev;
5459 	device_initialize(&rbd_dev->dev);
5460 
5461 	return rbd_dev;
5462 }
5463 
5464 /*
5465  * Create a mapping rbd_dev.
5466  */
rbd_dev_create(struct rbd_client * rbdc,struct rbd_spec * spec,struct rbd_options * opts)5467 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5468 					 struct rbd_spec *spec,
5469 					 struct rbd_options *opts)
5470 {
5471 	struct rbd_device *rbd_dev;
5472 
5473 	rbd_dev = __rbd_dev_create(spec);
5474 	if (!rbd_dev)
5475 		return NULL;
5476 
5477 	/* get an id and fill in device name */
5478 	rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5479 					 minor_to_rbd_dev_id(1 << MINORBITS),
5480 					 GFP_KERNEL);
5481 	if (rbd_dev->dev_id < 0)
5482 		goto fail_rbd_dev;
5483 
5484 	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5485 	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5486 						   rbd_dev->name);
5487 	if (!rbd_dev->task_wq)
5488 		goto fail_dev_id;
5489 
5490 	/* we have a ref from do_rbd_add() */
5491 	__module_get(THIS_MODULE);
5492 
5493 	rbd_dev->rbd_client = rbdc;
5494 	rbd_dev->spec = spec;
5495 	rbd_dev->opts = opts;
5496 
5497 	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5498 	return rbd_dev;
5499 
5500 fail_dev_id:
5501 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5502 fail_rbd_dev:
5503 	rbd_dev_free(rbd_dev);
5504 	return NULL;
5505 }
5506 
rbd_dev_destroy(struct rbd_device * rbd_dev)5507 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5508 {
5509 	if (rbd_dev)
5510 		put_device(&rbd_dev->dev);
5511 }
5512 
5513 /*
5514  * Get the size and object order for an image snapshot, or if
5515  * snap_id is CEPH_NOSNAP, gets this information for the base
5516  * image.
5517  */
_rbd_dev_v2_snap_size(struct rbd_device * rbd_dev,u64 snap_id,u8 * order,u64 * snap_size)5518 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5519 				u8 *order, u64 *snap_size)
5520 {
5521 	__le64 snapid = cpu_to_le64(snap_id);
5522 	int ret;
5523 	struct {
5524 		u8 order;
5525 		__le64 size;
5526 	} __attribute__ ((packed)) size_buf = { 0 };
5527 
5528 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5529 				  &rbd_dev->header_oloc, "get_size",
5530 				  &snapid, sizeof(snapid),
5531 				  &size_buf, sizeof(size_buf));
5532 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5533 	if (ret < 0)
5534 		return ret;
5535 	if (ret < sizeof (size_buf))
5536 		return -ERANGE;
5537 
5538 	if (order) {
5539 		*order = size_buf.order;
5540 		dout("  order %u", (unsigned int)*order);
5541 	}
5542 	*snap_size = le64_to_cpu(size_buf.size);
5543 
5544 	dout("  snap_id 0x%016llx snap_size = %llu\n",
5545 		(unsigned long long)snap_id,
5546 		(unsigned long long)*snap_size);
5547 
5548 	return 0;
5549 }
5550 
rbd_dev_v2_object_prefix(struct rbd_device * rbd_dev,char ** pobject_prefix)5551 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev,
5552 				    char **pobject_prefix)
5553 {
5554 	size_t size;
5555 	void *reply_buf;
5556 	char *object_prefix;
5557 	int ret;
5558 	void *p;
5559 
5560 	/* Response will be an encoded string, which includes a length */
5561 	size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5562 	reply_buf = kzalloc(size, GFP_KERNEL);
5563 	if (!reply_buf)
5564 		return -ENOMEM;
5565 
5566 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5567 				  &rbd_dev->header_oloc, "get_object_prefix",
5568 				  NULL, 0, reply_buf, size);
5569 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5570 	if (ret < 0)
5571 		goto out;
5572 
5573 	p = reply_buf;
5574 	object_prefix = ceph_extract_encoded_string(&p, p + ret, NULL,
5575 						    GFP_NOIO);
5576 	if (IS_ERR(object_prefix)) {
5577 		ret = PTR_ERR(object_prefix);
5578 		goto out;
5579 	}
5580 	ret = 0;
5581 
5582 	*pobject_prefix = object_prefix;
5583 	dout("  object_prefix = %s\n", object_prefix);
5584 out:
5585 	kfree(reply_buf);
5586 
5587 	return ret;
5588 }
5589 
_rbd_dev_v2_snap_features(struct rbd_device * rbd_dev,u64 snap_id,bool read_only,u64 * snap_features)5590 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5591 				     bool read_only, u64 *snap_features)
5592 {
5593 	struct {
5594 		__le64 snap_id;
5595 		u8 read_only;
5596 	} features_in;
5597 	struct {
5598 		__le64 features;
5599 		__le64 incompat;
5600 	} __attribute__ ((packed)) features_buf = { 0 };
5601 	u64 unsup;
5602 	int ret;
5603 
5604 	features_in.snap_id = cpu_to_le64(snap_id);
5605 	features_in.read_only = read_only;
5606 
5607 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5608 				  &rbd_dev->header_oloc, "get_features",
5609 				  &features_in, sizeof(features_in),
5610 				  &features_buf, sizeof(features_buf));
5611 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5612 	if (ret < 0)
5613 		return ret;
5614 	if (ret < sizeof (features_buf))
5615 		return -ERANGE;
5616 
5617 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5618 	if (unsup) {
5619 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5620 			 unsup);
5621 		return -ENXIO;
5622 	}
5623 
5624 	*snap_features = le64_to_cpu(features_buf.features);
5625 
5626 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5627 		(unsigned long long)snap_id,
5628 		(unsigned long long)*snap_features,
5629 		(unsigned long long)le64_to_cpu(features_buf.incompat));
5630 
5631 	return 0;
5632 }
5633 
5634 /*
5635  * These are generic image flags, but since they are used only for
5636  * object map, store them in rbd_dev->object_map_flags.
5637  *
5638  * For the same reason, this function is called only on object map
5639  * (re)load and not on header refresh.
5640  */
rbd_dev_v2_get_flags(struct rbd_device * rbd_dev)5641 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5642 {
5643 	__le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5644 	__le64 flags;
5645 	int ret;
5646 
5647 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5648 				  &rbd_dev->header_oloc, "get_flags",
5649 				  &snapid, sizeof(snapid),
5650 				  &flags, sizeof(flags));
5651 	if (ret < 0)
5652 		return ret;
5653 	if (ret < sizeof(flags))
5654 		return -EBADMSG;
5655 
5656 	rbd_dev->object_map_flags = le64_to_cpu(flags);
5657 	return 0;
5658 }
5659 
5660 struct parent_image_info {
5661 	u64		pool_id;
5662 	const char	*pool_ns;
5663 	const char	*image_id;
5664 	u64		snap_id;
5665 
5666 	bool		has_overlap;
5667 	u64		overlap;
5668 };
5669 
rbd_parent_info_cleanup(struct parent_image_info * pii)5670 static void rbd_parent_info_cleanup(struct parent_image_info *pii)
5671 {
5672 	kfree(pii->pool_ns);
5673 	kfree(pii->image_id);
5674 
5675 	memset(pii, 0, sizeof(*pii));
5676 }
5677 
5678 /*
5679  * The caller is responsible for @pii.
5680  */
decode_parent_image_spec(void ** p,void * end,struct parent_image_info * pii)5681 static int decode_parent_image_spec(void **p, void *end,
5682 				    struct parent_image_info *pii)
5683 {
5684 	u8 struct_v;
5685 	u32 struct_len;
5686 	int ret;
5687 
5688 	ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5689 				  &struct_v, &struct_len);
5690 	if (ret)
5691 		return ret;
5692 
5693 	ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5694 	pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5695 	if (IS_ERR(pii->pool_ns)) {
5696 		ret = PTR_ERR(pii->pool_ns);
5697 		pii->pool_ns = NULL;
5698 		return ret;
5699 	}
5700 	pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5701 	if (IS_ERR(pii->image_id)) {
5702 		ret = PTR_ERR(pii->image_id);
5703 		pii->image_id = NULL;
5704 		return ret;
5705 	}
5706 	ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5707 	return 0;
5708 
5709 e_inval:
5710 	return -EINVAL;
5711 }
5712 
__get_parent_info(struct rbd_device * rbd_dev,struct page * req_page,struct page * reply_page,struct parent_image_info * pii)5713 static int __get_parent_info(struct rbd_device *rbd_dev,
5714 			     struct page *req_page,
5715 			     struct page *reply_page,
5716 			     struct parent_image_info *pii)
5717 {
5718 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5719 	size_t reply_len = PAGE_SIZE;
5720 	void *p, *end;
5721 	int ret;
5722 
5723 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5724 			     "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5725 			     req_page, sizeof(u64), &reply_page, &reply_len);
5726 	if (ret)
5727 		return ret == -EOPNOTSUPP ? 1 : ret;
5728 
5729 	p = page_address(reply_page);
5730 	end = p + reply_len;
5731 	ret = decode_parent_image_spec(&p, end, pii);
5732 	if (ret)
5733 		return ret;
5734 
5735 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5736 			     "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5737 			     req_page, sizeof(u64), &reply_page, &reply_len);
5738 	if (ret)
5739 		return ret;
5740 
5741 	p = page_address(reply_page);
5742 	end = p + reply_len;
5743 	ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5744 	if (pii->has_overlap)
5745 		ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5746 
5747 	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5748 	     __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5749 	     pii->has_overlap, pii->overlap);
5750 	return 0;
5751 
5752 e_inval:
5753 	return -EINVAL;
5754 }
5755 
5756 /*
5757  * The caller is responsible for @pii.
5758  */
__get_parent_info_legacy(struct rbd_device * rbd_dev,struct page * req_page,struct page * reply_page,struct parent_image_info * pii)5759 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5760 				    struct page *req_page,
5761 				    struct page *reply_page,
5762 				    struct parent_image_info *pii)
5763 {
5764 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5765 	size_t reply_len = PAGE_SIZE;
5766 	void *p, *end;
5767 	int ret;
5768 
5769 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5770 			     "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5771 			     req_page, sizeof(u64), &reply_page, &reply_len);
5772 	if (ret)
5773 		return ret;
5774 
5775 	p = page_address(reply_page);
5776 	end = p + reply_len;
5777 	ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5778 	pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5779 	if (IS_ERR(pii->image_id)) {
5780 		ret = PTR_ERR(pii->image_id);
5781 		pii->image_id = NULL;
5782 		return ret;
5783 	}
5784 	ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5785 	pii->has_overlap = true;
5786 	ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5787 
5788 	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5789 	     __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5790 	     pii->has_overlap, pii->overlap);
5791 	return 0;
5792 
5793 e_inval:
5794 	return -EINVAL;
5795 }
5796 
rbd_dev_v2_parent_info(struct rbd_device * rbd_dev,struct parent_image_info * pii)5797 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev,
5798 				  struct parent_image_info *pii)
5799 {
5800 	struct page *req_page, *reply_page;
5801 	void *p;
5802 	int ret;
5803 
5804 	req_page = alloc_page(GFP_KERNEL);
5805 	if (!req_page)
5806 		return -ENOMEM;
5807 
5808 	reply_page = alloc_page(GFP_KERNEL);
5809 	if (!reply_page) {
5810 		__free_page(req_page);
5811 		return -ENOMEM;
5812 	}
5813 
5814 	p = page_address(req_page);
5815 	ceph_encode_64(&p, rbd_dev->spec->snap_id);
5816 	ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5817 	if (ret > 0)
5818 		ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5819 					       pii);
5820 
5821 	__free_page(req_page);
5822 	__free_page(reply_page);
5823 	return ret;
5824 }
5825 
rbd_dev_setup_parent(struct rbd_device * rbd_dev)5826 static int rbd_dev_setup_parent(struct rbd_device *rbd_dev)
5827 {
5828 	struct rbd_spec *parent_spec;
5829 	struct parent_image_info pii = { 0 };
5830 	int ret;
5831 
5832 	parent_spec = rbd_spec_alloc();
5833 	if (!parent_spec)
5834 		return -ENOMEM;
5835 
5836 	ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
5837 	if (ret)
5838 		goto out_err;
5839 
5840 	if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap)
5841 		goto out;	/* No parent?  No problem. */
5842 
5843 	/* The ceph file layout needs to fit pool id in 32 bits */
5844 
5845 	ret = -EIO;
5846 	if (pii.pool_id > (u64)U32_MAX) {
5847 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5848 			(unsigned long long)pii.pool_id, U32_MAX);
5849 		goto out_err;
5850 	}
5851 
5852 	/*
5853 	 * The parent won't change except when the clone is flattened,
5854 	 * so we only need to record the parent image spec once.
5855 	 */
5856 	parent_spec->pool_id = pii.pool_id;
5857 	if (pii.pool_ns && *pii.pool_ns) {
5858 		parent_spec->pool_ns = pii.pool_ns;
5859 		pii.pool_ns = NULL;
5860 	}
5861 	parent_spec->image_id = pii.image_id;
5862 	pii.image_id = NULL;
5863 	parent_spec->snap_id = pii.snap_id;
5864 
5865 	rbd_assert(!rbd_dev->parent_spec);
5866 	rbd_dev->parent_spec = parent_spec;
5867 	parent_spec = NULL;	/* rbd_dev now owns this */
5868 
5869 	/*
5870 	 * Record the parent overlap.  If it's zero, issue a warning as
5871 	 * we will proceed as if there is no parent.
5872 	 */
5873 	if (!pii.overlap)
5874 		rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5875 	rbd_dev->parent_overlap = pii.overlap;
5876 
5877 out:
5878 	ret = 0;
5879 out_err:
5880 	rbd_parent_info_cleanup(&pii);
5881 	rbd_spec_put(parent_spec);
5882 	return ret;
5883 }
5884 
rbd_dev_v2_striping_info(struct rbd_device * rbd_dev,u64 * stripe_unit,u64 * stripe_count)5885 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev,
5886 				    u64 *stripe_unit, u64 *stripe_count)
5887 {
5888 	struct {
5889 		__le64 stripe_unit;
5890 		__le64 stripe_count;
5891 	} __attribute__ ((packed)) striping_info_buf = { 0 };
5892 	size_t size = sizeof (striping_info_buf);
5893 	int ret;
5894 
5895 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5896 				&rbd_dev->header_oloc, "get_stripe_unit_count",
5897 				NULL, 0, &striping_info_buf, size);
5898 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5899 	if (ret < 0)
5900 		return ret;
5901 	if (ret < size)
5902 		return -ERANGE;
5903 
5904 	*stripe_unit = le64_to_cpu(striping_info_buf.stripe_unit);
5905 	*stripe_count = le64_to_cpu(striping_info_buf.stripe_count);
5906 	dout("  stripe_unit = %llu stripe_count = %llu\n", *stripe_unit,
5907 	     *stripe_count);
5908 
5909 	return 0;
5910 }
5911 
rbd_dev_v2_data_pool(struct rbd_device * rbd_dev,s64 * data_pool_id)5912 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev, s64 *data_pool_id)
5913 {
5914 	__le64 data_pool_buf;
5915 	int ret;
5916 
5917 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5918 				  &rbd_dev->header_oloc, "get_data_pool",
5919 				  NULL, 0, &data_pool_buf,
5920 				  sizeof(data_pool_buf));
5921 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5922 	if (ret < 0)
5923 		return ret;
5924 	if (ret < sizeof(data_pool_buf))
5925 		return -EBADMSG;
5926 
5927 	*data_pool_id = le64_to_cpu(data_pool_buf);
5928 	dout("  data_pool_id = %lld\n", *data_pool_id);
5929 	WARN_ON(*data_pool_id == CEPH_NOPOOL);
5930 
5931 	return 0;
5932 }
5933 
rbd_dev_image_name(struct rbd_device * rbd_dev)5934 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5935 {
5936 	CEPH_DEFINE_OID_ONSTACK(oid);
5937 	size_t image_id_size;
5938 	char *image_id;
5939 	void *p;
5940 	void *end;
5941 	size_t size;
5942 	void *reply_buf = NULL;
5943 	size_t len = 0;
5944 	char *image_name = NULL;
5945 	int ret;
5946 
5947 	rbd_assert(!rbd_dev->spec->image_name);
5948 
5949 	len = strlen(rbd_dev->spec->image_id);
5950 	image_id_size = sizeof (__le32) + len;
5951 	image_id = kmalloc(image_id_size, GFP_KERNEL);
5952 	if (!image_id)
5953 		return NULL;
5954 
5955 	p = image_id;
5956 	end = image_id + image_id_size;
5957 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5958 
5959 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5960 	reply_buf = kmalloc(size, GFP_KERNEL);
5961 	if (!reply_buf)
5962 		goto out;
5963 
5964 	ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5965 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5966 				  "dir_get_name", image_id, image_id_size,
5967 				  reply_buf, size);
5968 	if (ret < 0)
5969 		goto out;
5970 	p = reply_buf;
5971 	end = reply_buf + ret;
5972 
5973 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5974 	if (IS_ERR(image_name))
5975 		image_name = NULL;
5976 	else
5977 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5978 out:
5979 	kfree(reply_buf);
5980 	kfree(image_id);
5981 
5982 	return image_name;
5983 }
5984 
rbd_v1_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)5985 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5986 {
5987 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5988 	const char *snap_name;
5989 	u32 which = 0;
5990 
5991 	/* Skip over names until we find the one we are looking for */
5992 
5993 	snap_name = rbd_dev->header.snap_names;
5994 	while (which < snapc->num_snaps) {
5995 		if (!strcmp(name, snap_name))
5996 			return snapc->snaps[which];
5997 		snap_name += strlen(snap_name) + 1;
5998 		which++;
5999 	}
6000 	return CEPH_NOSNAP;
6001 }
6002 
rbd_v2_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)6003 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6004 {
6005 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
6006 	u32 which;
6007 	bool found = false;
6008 	u64 snap_id;
6009 
6010 	for (which = 0; !found && which < snapc->num_snaps; which++) {
6011 		const char *snap_name;
6012 
6013 		snap_id = snapc->snaps[which];
6014 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
6015 		if (IS_ERR(snap_name)) {
6016 			/* ignore no-longer existing snapshots */
6017 			if (PTR_ERR(snap_name) == -ENOENT)
6018 				continue;
6019 			else
6020 				break;
6021 		}
6022 		found = !strcmp(name, snap_name);
6023 		kfree(snap_name);
6024 	}
6025 	return found ? snap_id : CEPH_NOSNAP;
6026 }
6027 
6028 /*
6029  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
6030  * no snapshot by that name is found, or if an error occurs.
6031  */
rbd_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)6032 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6033 {
6034 	if (rbd_dev->image_format == 1)
6035 		return rbd_v1_snap_id_by_name(rbd_dev, name);
6036 
6037 	return rbd_v2_snap_id_by_name(rbd_dev, name);
6038 }
6039 
6040 /*
6041  * An image being mapped will have everything but the snap id.
6042  */
rbd_spec_fill_snap_id(struct rbd_device * rbd_dev)6043 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
6044 {
6045 	struct rbd_spec *spec = rbd_dev->spec;
6046 
6047 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
6048 	rbd_assert(spec->image_id && spec->image_name);
6049 	rbd_assert(spec->snap_name);
6050 
6051 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
6052 		u64 snap_id;
6053 
6054 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
6055 		if (snap_id == CEPH_NOSNAP)
6056 			return -ENOENT;
6057 
6058 		spec->snap_id = snap_id;
6059 	} else {
6060 		spec->snap_id = CEPH_NOSNAP;
6061 	}
6062 
6063 	return 0;
6064 }
6065 
6066 /*
6067  * A parent image will have all ids but none of the names.
6068  *
6069  * All names in an rbd spec are dynamically allocated.  It's OK if we
6070  * can't figure out the name for an image id.
6071  */
rbd_spec_fill_names(struct rbd_device * rbd_dev)6072 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6073 {
6074 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6075 	struct rbd_spec *spec = rbd_dev->spec;
6076 	const char *pool_name;
6077 	const char *image_name;
6078 	const char *snap_name;
6079 	int ret;
6080 
6081 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
6082 	rbd_assert(spec->image_id);
6083 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
6084 
6085 	/* Get the pool name; we have to make our own copy of this */
6086 
6087 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6088 	if (!pool_name) {
6089 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6090 		return -EIO;
6091 	}
6092 	pool_name = kstrdup(pool_name, GFP_KERNEL);
6093 	if (!pool_name)
6094 		return -ENOMEM;
6095 
6096 	/* Fetch the image name; tolerate failure here */
6097 
6098 	image_name = rbd_dev_image_name(rbd_dev);
6099 	if (!image_name)
6100 		rbd_warn(rbd_dev, "unable to get image name");
6101 
6102 	/* Fetch the snapshot name */
6103 
6104 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6105 	if (IS_ERR(snap_name)) {
6106 		ret = PTR_ERR(snap_name);
6107 		goto out_err;
6108 	}
6109 
6110 	spec->pool_name = pool_name;
6111 	spec->image_name = image_name;
6112 	spec->snap_name = snap_name;
6113 
6114 	return 0;
6115 
6116 out_err:
6117 	kfree(image_name);
6118 	kfree(pool_name);
6119 	return ret;
6120 }
6121 
rbd_dev_v2_snap_context(struct rbd_device * rbd_dev,struct ceph_snap_context ** psnapc)6122 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev,
6123 				   struct ceph_snap_context **psnapc)
6124 {
6125 	size_t size;
6126 	int ret;
6127 	void *reply_buf;
6128 	void *p;
6129 	void *end;
6130 	u64 seq;
6131 	u32 snap_count;
6132 	struct ceph_snap_context *snapc;
6133 	u32 i;
6134 
6135 	/*
6136 	 * We'll need room for the seq value (maximum snapshot id),
6137 	 * snapshot count, and array of that many snapshot ids.
6138 	 * For now we have a fixed upper limit on the number we're
6139 	 * prepared to receive.
6140 	 */
6141 	size = sizeof (__le64) + sizeof (__le32) +
6142 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
6143 	reply_buf = kzalloc(size, GFP_KERNEL);
6144 	if (!reply_buf)
6145 		return -ENOMEM;
6146 
6147 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6148 				  &rbd_dev->header_oloc, "get_snapcontext",
6149 				  NULL, 0, reply_buf, size);
6150 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6151 	if (ret < 0)
6152 		goto out;
6153 
6154 	p = reply_buf;
6155 	end = reply_buf + ret;
6156 	ret = -ERANGE;
6157 	ceph_decode_64_safe(&p, end, seq, out);
6158 	ceph_decode_32_safe(&p, end, snap_count, out);
6159 
6160 	/*
6161 	 * Make sure the reported number of snapshot ids wouldn't go
6162 	 * beyond the end of our buffer.  But before checking that,
6163 	 * make sure the computed size of the snapshot context we
6164 	 * allocate is representable in a size_t.
6165 	 */
6166 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6167 				 / sizeof (u64)) {
6168 		ret = -EINVAL;
6169 		goto out;
6170 	}
6171 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6172 		goto out;
6173 	ret = 0;
6174 
6175 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6176 	if (!snapc) {
6177 		ret = -ENOMEM;
6178 		goto out;
6179 	}
6180 	snapc->seq = seq;
6181 	for (i = 0; i < snap_count; i++)
6182 		snapc->snaps[i] = ceph_decode_64(&p);
6183 
6184 	*psnapc = snapc;
6185 	dout("  snap context seq = %llu, snap_count = %u\n",
6186 		(unsigned long long)seq, (unsigned int)snap_count);
6187 out:
6188 	kfree(reply_buf);
6189 
6190 	return ret;
6191 }
6192 
rbd_dev_v2_snap_name(struct rbd_device * rbd_dev,u64 snap_id)6193 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6194 					u64 snap_id)
6195 {
6196 	size_t size;
6197 	void *reply_buf;
6198 	__le64 snapid;
6199 	int ret;
6200 	void *p;
6201 	void *end;
6202 	char *snap_name;
6203 
6204 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6205 	reply_buf = kmalloc(size, GFP_KERNEL);
6206 	if (!reply_buf)
6207 		return ERR_PTR(-ENOMEM);
6208 
6209 	snapid = cpu_to_le64(snap_id);
6210 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6211 				  &rbd_dev->header_oloc, "get_snapshot_name",
6212 				  &snapid, sizeof(snapid), reply_buf, size);
6213 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6214 	if (ret < 0) {
6215 		snap_name = ERR_PTR(ret);
6216 		goto out;
6217 	}
6218 
6219 	p = reply_buf;
6220 	end = reply_buf + ret;
6221 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6222 	if (IS_ERR(snap_name))
6223 		goto out;
6224 
6225 	dout("  snap_id 0x%016llx snap_name = %s\n",
6226 		(unsigned long long)snap_id, snap_name);
6227 out:
6228 	kfree(reply_buf);
6229 
6230 	return snap_name;
6231 }
6232 
rbd_dev_v2_header_info(struct rbd_device * rbd_dev,struct rbd_image_header * header,bool first_time)6233 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev,
6234 				  struct rbd_image_header *header,
6235 				  bool first_time)
6236 {
6237 	int ret;
6238 
6239 	ret = _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
6240 				    first_time ? &header->obj_order : NULL,
6241 				    &header->image_size);
6242 	if (ret)
6243 		return ret;
6244 
6245 	if (first_time) {
6246 		ret = rbd_dev_v2_header_onetime(rbd_dev, header);
6247 		if (ret)
6248 			return ret;
6249 	}
6250 
6251 	ret = rbd_dev_v2_snap_context(rbd_dev, &header->snapc);
6252 	if (ret)
6253 		return ret;
6254 
6255 	return 0;
6256 }
6257 
rbd_dev_header_info(struct rbd_device * rbd_dev,struct rbd_image_header * header,bool first_time)6258 static int rbd_dev_header_info(struct rbd_device *rbd_dev,
6259 			       struct rbd_image_header *header,
6260 			       bool first_time)
6261 {
6262 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6263 	rbd_assert(!header->object_prefix && !header->snapc);
6264 
6265 	if (rbd_dev->image_format == 1)
6266 		return rbd_dev_v1_header_info(rbd_dev, header, first_time);
6267 
6268 	return rbd_dev_v2_header_info(rbd_dev, header, first_time);
6269 }
6270 
6271 /*
6272  * Skips over white space at *buf, and updates *buf to point to the
6273  * first found non-space character (if any). Returns the length of
6274  * the token (string of non-white space characters) found.  Note
6275  * that *buf must be terminated with '\0'.
6276  */
next_token(const char ** buf)6277 static inline size_t next_token(const char **buf)
6278 {
6279         /*
6280         * These are the characters that produce nonzero for
6281         * isspace() in the "C" and "POSIX" locales.
6282         */
6283         const char *spaces = " \f\n\r\t\v";
6284 
6285         *buf += strspn(*buf, spaces);	/* Find start of token */
6286 
6287 	return strcspn(*buf, spaces);   /* Return token length */
6288 }
6289 
6290 /*
6291  * Finds the next token in *buf, dynamically allocates a buffer big
6292  * enough to hold a copy of it, and copies the token into the new
6293  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6294  * that a duplicate buffer is created even for a zero-length token.
6295  *
6296  * Returns a pointer to the newly-allocated duplicate, or a null
6297  * pointer if memory for the duplicate was not available.  If
6298  * the lenp argument is a non-null pointer, the length of the token
6299  * (not including the '\0') is returned in *lenp.
6300  *
6301  * If successful, the *buf pointer will be updated to point beyond
6302  * the end of the found token.
6303  *
6304  * Note: uses GFP_KERNEL for allocation.
6305  */
dup_token(const char ** buf,size_t * lenp)6306 static inline char *dup_token(const char **buf, size_t *lenp)
6307 {
6308 	char *dup;
6309 	size_t len;
6310 
6311 	len = next_token(buf);
6312 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6313 	if (!dup)
6314 		return NULL;
6315 	*(dup + len) = '\0';
6316 	*buf += len;
6317 
6318 	if (lenp)
6319 		*lenp = len;
6320 
6321 	return dup;
6322 }
6323 
rbd_parse_param(struct fs_parameter * param,struct rbd_parse_opts_ctx * pctx)6324 static int rbd_parse_param(struct fs_parameter *param,
6325 			    struct rbd_parse_opts_ctx *pctx)
6326 {
6327 	struct rbd_options *opt = pctx->opts;
6328 	struct fs_parse_result result;
6329 	struct p_log log = {.prefix = "rbd"};
6330 	int token, ret;
6331 
6332 	ret = ceph_parse_param(param, pctx->copts, NULL);
6333 	if (ret != -ENOPARAM)
6334 		return ret;
6335 
6336 	token = __fs_parse(&log, rbd_parameters, param, &result);
6337 	dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6338 	if (token < 0) {
6339 		if (token == -ENOPARAM)
6340 			return inval_plog(&log, "Unknown parameter '%s'",
6341 					  param->key);
6342 		return token;
6343 	}
6344 
6345 	switch (token) {
6346 	case Opt_queue_depth:
6347 		if (result.uint_32 < 1)
6348 			goto out_of_range;
6349 		opt->queue_depth = result.uint_32;
6350 		break;
6351 	case Opt_alloc_size:
6352 		if (result.uint_32 < SECTOR_SIZE)
6353 			goto out_of_range;
6354 		if (!is_power_of_2(result.uint_32))
6355 			return inval_plog(&log, "alloc_size must be a power of 2");
6356 		opt->alloc_size = result.uint_32;
6357 		break;
6358 	case Opt_lock_timeout:
6359 		/* 0 is "wait forever" (i.e. infinite timeout) */
6360 		if (result.uint_32 > INT_MAX / 1000)
6361 			goto out_of_range;
6362 		opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6363 		break;
6364 	case Opt_pool_ns:
6365 		kfree(pctx->spec->pool_ns);
6366 		pctx->spec->pool_ns = param->string;
6367 		param->string = NULL;
6368 		break;
6369 	case Opt_compression_hint:
6370 		switch (result.uint_32) {
6371 		case Opt_compression_hint_none:
6372 			opt->alloc_hint_flags &=
6373 			    ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6374 			      CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6375 			break;
6376 		case Opt_compression_hint_compressible:
6377 			opt->alloc_hint_flags |=
6378 			    CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6379 			opt->alloc_hint_flags &=
6380 			    ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6381 			break;
6382 		case Opt_compression_hint_incompressible:
6383 			opt->alloc_hint_flags |=
6384 			    CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6385 			opt->alloc_hint_flags &=
6386 			    ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6387 			break;
6388 		default:
6389 			BUG();
6390 		}
6391 		break;
6392 	case Opt_read_only:
6393 		opt->read_only = true;
6394 		break;
6395 	case Opt_read_write:
6396 		opt->read_only = false;
6397 		break;
6398 	case Opt_lock_on_read:
6399 		opt->lock_on_read = true;
6400 		break;
6401 	case Opt_exclusive:
6402 		opt->exclusive = true;
6403 		break;
6404 	case Opt_notrim:
6405 		opt->trim = false;
6406 		break;
6407 	default:
6408 		BUG();
6409 	}
6410 
6411 	return 0;
6412 
6413 out_of_range:
6414 	return inval_plog(&log, "%s out of range", param->key);
6415 }
6416 
6417 /*
6418  * This duplicates most of generic_parse_monolithic(), untying it from
6419  * fs_context and skipping standard superblock and security options.
6420  */
rbd_parse_options(char * options,struct rbd_parse_opts_ctx * pctx)6421 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6422 {
6423 	char *key;
6424 	int ret = 0;
6425 
6426 	dout("%s '%s'\n", __func__, options);
6427 	while ((key = strsep(&options, ",")) != NULL) {
6428 		if (*key) {
6429 			struct fs_parameter param = {
6430 				.key	= key,
6431 				.type	= fs_value_is_flag,
6432 			};
6433 			char *value = strchr(key, '=');
6434 			size_t v_len = 0;
6435 
6436 			if (value) {
6437 				if (value == key)
6438 					continue;
6439 				*value++ = 0;
6440 				v_len = strlen(value);
6441 				param.string = kmemdup_nul(value, v_len,
6442 							   GFP_KERNEL);
6443 				if (!param.string)
6444 					return -ENOMEM;
6445 				param.type = fs_value_is_string;
6446 			}
6447 			param.size = v_len;
6448 
6449 			ret = rbd_parse_param(&param, pctx);
6450 			kfree(param.string);
6451 			if (ret)
6452 				break;
6453 		}
6454 	}
6455 
6456 	return ret;
6457 }
6458 
6459 /*
6460  * Parse the options provided for an "rbd add" (i.e., rbd image
6461  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6462  * and the data written is passed here via a NUL-terminated buffer.
6463  * Returns 0 if successful or an error code otherwise.
6464  *
6465  * The information extracted from these options is recorded in
6466  * the other parameters which return dynamically-allocated
6467  * structures:
6468  *  ceph_opts
6469  *      The address of a pointer that will refer to a ceph options
6470  *      structure.  Caller must release the returned pointer using
6471  *      ceph_destroy_options() when it is no longer needed.
6472  *  rbd_opts
6473  *	Address of an rbd options pointer.  Fully initialized by
6474  *	this function; caller must release with kfree().
6475  *  spec
6476  *	Address of an rbd image specification pointer.  Fully
6477  *	initialized by this function based on parsed options.
6478  *	Caller must release with rbd_spec_put().
6479  *
6480  * The options passed take this form:
6481  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6482  * where:
6483  *  <mon_addrs>
6484  *      A comma-separated list of one or more monitor addresses.
6485  *      A monitor address is an ip address, optionally followed
6486  *      by a port number (separated by a colon).
6487  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6488  *  <options>
6489  *      A comma-separated list of ceph and/or rbd options.
6490  *  <pool_name>
6491  *      The name of the rados pool containing the rbd image.
6492  *  <image_name>
6493  *      The name of the image in that pool to map.
6494  *  <snap_id>
6495  *      An optional snapshot id.  If provided, the mapping will
6496  *      present data from the image at the time that snapshot was
6497  *      created.  The image head is used if no snapshot id is
6498  *      provided.  Snapshot mappings are always read-only.
6499  */
rbd_add_parse_args(const char * buf,struct ceph_options ** ceph_opts,struct rbd_options ** opts,struct rbd_spec ** rbd_spec)6500 static int rbd_add_parse_args(const char *buf,
6501 				struct ceph_options **ceph_opts,
6502 				struct rbd_options **opts,
6503 				struct rbd_spec **rbd_spec)
6504 {
6505 	size_t len;
6506 	char *options;
6507 	const char *mon_addrs;
6508 	char *snap_name;
6509 	size_t mon_addrs_size;
6510 	struct rbd_parse_opts_ctx pctx = { 0 };
6511 	int ret;
6512 
6513 	/* The first four tokens are required */
6514 
6515 	len = next_token(&buf);
6516 	if (!len) {
6517 		rbd_warn(NULL, "no monitor address(es) provided");
6518 		return -EINVAL;
6519 	}
6520 	mon_addrs = buf;
6521 	mon_addrs_size = len;
6522 	buf += len;
6523 
6524 	ret = -EINVAL;
6525 	options = dup_token(&buf, NULL);
6526 	if (!options)
6527 		return -ENOMEM;
6528 	if (!*options) {
6529 		rbd_warn(NULL, "no options provided");
6530 		goto out_err;
6531 	}
6532 
6533 	pctx.spec = rbd_spec_alloc();
6534 	if (!pctx.spec)
6535 		goto out_mem;
6536 
6537 	pctx.spec->pool_name = dup_token(&buf, NULL);
6538 	if (!pctx.spec->pool_name)
6539 		goto out_mem;
6540 	if (!*pctx.spec->pool_name) {
6541 		rbd_warn(NULL, "no pool name provided");
6542 		goto out_err;
6543 	}
6544 
6545 	pctx.spec->image_name = dup_token(&buf, NULL);
6546 	if (!pctx.spec->image_name)
6547 		goto out_mem;
6548 	if (!*pctx.spec->image_name) {
6549 		rbd_warn(NULL, "no image name provided");
6550 		goto out_err;
6551 	}
6552 
6553 	/*
6554 	 * Snapshot name is optional; default is to use "-"
6555 	 * (indicating the head/no snapshot).
6556 	 */
6557 	len = next_token(&buf);
6558 	if (!len) {
6559 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6560 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6561 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
6562 		ret = -ENAMETOOLONG;
6563 		goto out_err;
6564 	}
6565 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6566 	if (!snap_name)
6567 		goto out_mem;
6568 	*(snap_name + len) = '\0';
6569 	pctx.spec->snap_name = snap_name;
6570 
6571 	pctx.copts = ceph_alloc_options();
6572 	if (!pctx.copts)
6573 		goto out_mem;
6574 
6575 	/* Initialize all rbd options to the defaults */
6576 
6577 	pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6578 	if (!pctx.opts)
6579 		goto out_mem;
6580 
6581 	pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6582 	pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6583 	pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6584 	pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6585 	pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6586 	pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6587 	pctx.opts->trim = RBD_TRIM_DEFAULT;
6588 
6589 	ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL);
6590 	if (ret)
6591 		goto out_err;
6592 
6593 	ret = rbd_parse_options(options, &pctx);
6594 	if (ret)
6595 		goto out_err;
6596 
6597 	*ceph_opts = pctx.copts;
6598 	*opts = pctx.opts;
6599 	*rbd_spec = pctx.spec;
6600 	kfree(options);
6601 	return 0;
6602 
6603 out_mem:
6604 	ret = -ENOMEM;
6605 out_err:
6606 	kfree(pctx.opts);
6607 	ceph_destroy_options(pctx.copts);
6608 	rbd_spec_put(pctx.spec);
6609 	kfree(options);
6610 	return ret;
6611 }
6612 
rbd_dev_image_unlock(struct rbd_device * rbd_dev)6613 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6614 {
6615 	down_write(&rbd_dev->lock_rwsem);
6616 	if (__rbd_is_lock_owner(rbd_dev))
6617 		__rbd_release_lock(rbd_dev);
6618 	up_write(&rbd_dev->lock_rwsem);
6619 }
6620 
6621 /*
6622  * If the wait is interrupted, an error is returned even if the lock
6623  * was successfully acquired.  rbd_dev_image_unlock() will release it
6624  * if needed.
6625  */
rbd_add_acquire_lock(struct rbd_device * rbd_dev)6626 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6627 {
6628 	long ret;
6629 
6630 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6631 		if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6632 			return 0;
6633 
6634 		rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6635 		return -EINVAL;
6636 	}
6637 
6638 	if (rbd_is_ro(rbd_dev))
6639 		return 0;
6640 
6641 	rbd_assert(!rbd_is_lock_owner(rbd_dev));
6642 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6643 	ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6644 			    ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6645 	if (ret > 0) {
6646 		ret = rbd_dev->acquire_err;
6647 	} else {
6648 		cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6649 		if (!ret)
6650 			ret = -ETIMEDOUT;
6651 
6652 		rbd_warn(rbd_dev, "failed to acquire lock: %ld", ret);
6653 	}
6654 	if (ret)
6655 		return ret;
6656 
6657 	/*
6658 	 * The lock may have been released by now, unless automatic lock
6659 	 * transitions are disabled.
6660 	 */
6661 	rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6662 	return 0;
6663 }
6664 
6665 /*
6666  * An rbd format 2 image has a unique identifier, distinct from the
6667  * name given to it by the user.  Internally, that identifier is
6668  * what's used to specify the names of objects related to the image.
6669  *
6670  * A special "rbd id" object is used to map an rbd image name to its
6671  * id.  If that object doesn't exist, then there is no v2 rbd image
6672  * with the supplied name.
6673  *
6674  * This function will record the given rbd_dev's image_id field if
6675  * it can be determined, and in that case will return 0.  If any
6676  * errors occur a negative errno will be returned and the rbd_dev's
6677  * image_id field will be unchanged (and should be NULL).
6678  */
rbd_dev_image_id(struct rbd_device * rbd_dev)6679 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6680 {
6681 	int ret;
6682 	size_t size;
6683 	CEPH_DEFINE_OID_ONSTACK(oid);
6684 	void *response;
6685 	char *image_id;
6686 
6687 	/*
6688 	 * When probing a parent image, the image id is already
6689 	 * known (and the image name likely is not).  There's no
6690 	 * need to fetch the image id again in this case.  We
6691 	 * do still need to set the image format though.
6692 	 */
6693 	if (rbd_dev->spec->image_id) {
6694 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6695 
6696 		return 0;
6697 	}
6698 
6699 	/*
6700 	 * First, see if the format 2 image id file exists, and if
6701 	 * so, get the image's persistent id from it.
6702 	 */
6703 	ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6704 			       rbd_dev->spec->image_name);
6705 	if (ret)
6706 		return ret;
6707 
6708 	dout("rbd id object name is %s\n", oid.name);
6709 
6710 	/* Response will be an encoded string, which includes a length */
6711 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6712 	response = kzalloc(size, GFP_NOIO);
6713 	if (!response) {
6714 		ret = -ENOMEM;
6715 		goto out;
6716 	}
6717 
6718 	/* If it doesn't exist we'll assume it's a format 1 image */
6719 
6720 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6721 				  "get_id", NULL, 0,
6722 				  response, size);
6723 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6724 	if (ret == -ENOENT) {
6725 		image_id = kstrdup("", GFP_KERNEL);
6726 		ret = image_id ? 0 : -ENOMEM;
6727 		if (!ret)
6728 			rbd_dev->image_format = 1;
6729 	} else if (ret >= 0) {
6730 		void *p = response;
6731 
6732 		image_id = ceph_extract_encoded_string(&p, p + ret,
6733 						NULL, GFP_NOIO);
6734 		ret = PTR_ERR_OR_ZERO(image_id);
6735 		if (!ret)
6736 			rbd_dev->image_format = 2;
6737 	}
6738 
6739 	if (!ret) {
6740 		rbd_dev->spec->image_id = image_id;
6741 		dout("image_id is %s\n", image_id);
6742 	}
6743 out:
6744 	kfree(response);
6745 	ceph_oid_destroy(&oid);
6746 	return ret;
6747 }
6748 
6749 /*
6750  * Undo whatever state changes are made by v1 or v2 header info
6751  * call.
6752  */
rbd_dev_unprobe(struct rbd_device * rbd_dev)6753 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6754 {
6755 	rbd_dev_parent_put(rbd_dev);
6756 	rbd_object_map_free(rbd_dev);
6757 	rbd_dev_mapping_clear(rbd_dev);
6758 
6759 	/* Free dynamic fields from the header, then zero it out */
6760 
6761 	rbd_image_header_cleanup(&rbd_dev->header);
6762 }
6763 
rbd_dev_v2_header_onetime(struct rbd_device * rbd_dev,struct rbd_image_header * header)6764 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
6765 				     struct rbd_image_header *header)
6766 {
6767 	int ret;
6768 
6769 	ret = rbd_dev_v2_object_prefix(rbd_dev, &header->object_prefix);
6770 	if (ret)
6771 		return ret;
6772 
6773 	/*
6774 	 * Get the and check features for the image.  Currently the
6775 	 * features are assumed to never change.
6776 	 */
6777 	ret = _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
6778 					rbd_is_ro(rbd_dev), &header->features);
6779 	if (ret)
6780 		return ret;
6781 
6782 	/* If the image supports fancy striping, get its parameters */
6783 
6784 	if (header->features & RBD_FEATURE_STRIPINGV2) {
6785 		ret = rbd_dev_v2_striping_info(rbd_dev, &header->stripe_unit,
6786 					       &header->stripe_count);
6787 		if (ret)
6788 			return ret;
6789 	}
6790 
6791 	if (header->features & RBD_FEATURE_DATA_POOL) {
6792 		ret = rbd_dev_v2_data_pool(rbd_dev, &header->data_pool_id);
6793 		if (ret)
6794 			return ret;
6795 	}
6796 
6797 	return 0;
6798 }
6799 
6800 /*
6801  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6802  * rbd_dev_image_probe() recursion depth, which means it's also the
6803  * length of the already discovered part of the parent chain.
6804  */
rbd_dev_probe_parent(struct rbd_device * rbd_dev,int depth)6805 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6806 {
6807 	struct rbd_device *parent = NULL;
6808 	int ret;
6809 
6810 	if (!rbd_dev->parent_spec)
6811 		return 0;
6812 
6813 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6814 		pr_info("parent chain is too long (%d)\n", depth);
6815 		ret = -EINVAL;
6816 		goto out_err;
6817 	}
6818 
6819 	parent = __rbd_dev_create(rbd_dev->parent_spec);
6820 	if (!parent) {
6821 		ret = -ENOMEM;
6822 		goto out_err;
6823 	}
6824 
6825 	/*
6826 	 * Images related by parent/child relationships always share
6827 	 * rbd_client and spec/parent_spec, so bump their refcounts.
6828 	 */
6829 	parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client);
6830 	parent->spec = rbd_spec_get(rbd_dev->parent_spec);
6831 
6832 	__set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6833 
6834 	ret = rbd_dev_image_probe(parent, depth);
6835 	if (ret < 0)
6836 		goto out_err;
6837 
6838 	rbd_dev->parent = parent;
6839 	atomic_set(&rbd_dev->parent_ref, 1);
6840 	return 0;
6841 
6842 out_err:
6843 	rbd_dev_unparent(rbd_dev);
6844 	rbd_dev_destroy(parent);
6845 	return ret;
6846 }
6847 
rbd_dev_device_release(struct rbd_device * rbd_dev)6848 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6849 {
6850 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6851 	rbd_free_disk(rbd_dev);
6852 	if (!single_major)
6853 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6854 }
6855 
6856 /*
6857  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6858  * upon return.
6859  */
rbd_dev_device_setup(struct rbd_device * rbd_dev)6860 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6861 {
6862 	int ret;
6863 
6864 	/* Record our major and minor device numbers. */
6865 
6866 	if (!single_major) {
6867 		ret = register_blkdev(0, rbd_dev->name);
6868 		if (ret < 0)
6869 			goto err_out_unlock;
6870 
6871 		rbd_dev->major = ret;
6872 		rbd_dev->minor = 0;
6873 	} else {
6874 		rbd_dev->major = rbd_major;
6875 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6876 	}
6877 
6878 	/* Set up the blkdev mapping. */
6879 
6880 	ret = rbd_init_disk(rbd_dev);
6881 	if (ret)
6882 		goto err_out_blkdev;
6883 
6884 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6885 	set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6886 
6887 	ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6888 	if (ret)
6889 		goto err_out_disk;
6890 
6891 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6892 	up_write(&rbd_dev->header_rwsem);
6893 	return 0;
6894 
6895 err_out_disk:
6896 	rbd_free_disk(rbd_dev);
6897 err_out_blkdev:
6898 	if (!single_major)
6899 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6900 err_out_unlock:
6901 	up_write(&rbd_dev->header_rwsem);
6902 	return ret;
6903 }
6904 
rbd_dev_header_name(struct rbd_device * rbd_dev)6905 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6906 {
6907 	struct rbd_spec *spec = rbd_dev->spec;
6908 	int ret;
6909 
6910 	/* Record the header object name for this rbd image. */
6911 
6912 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6913 	if (rbd_dev->image_format == 1)
6914 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6915 				       spec->image_name, RBD_SUFFIX);
6916 	else
6917 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6918 				       RBD_HEADER_PREFIX, spec->image_id);
6919 
6920 	return ret;
6921 }
6922 
rbd_print_dne(struct rbd_device * rbd_dev,bool is_snap)6923 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6924 {
6925 	if (!is_snap) {
6926 		pr_info("image %s/%s%s%s does not exist\n",
6927 			rbd_dev->spec->pool_name,
6928 			rbd_dev->spec->pool_ns ?: "",
6929 			rbd_dev->spec->pool_ns ? "/" : "",
6930 			rbd_dev->spec->image_name);
6931 	} else {
6932 		pr_info("snap %s/%s%s%s@%s does not exist\n",
6933 			rbd_dev->spec->pool_name,
6934 			rbd_dev->spec->pool_ns ?: "",
6935 			rbd_dev->spec->pool_ns ? "/" : "",
6936 			rbd_dev->spec->image_name,
6937 			rbd_dev->spec->snap_name);
6938 	}
6939 }
6940 
rbd_dev_image_release(struct rbd_device * rbd_dev)6941 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6942 {
6943 	if (!rbd_is_ro(rbd_dev))
6944 		rbd_unregister_watch(rbd_dev);
6945 
6946 	rbd_dev_unprobe(rbd_dev);
6947 	rbd_dev->image_format = 0;
6948 	kfree(rbd_dev->spec->image_id);
6949 	rbd_dev->spec->image_id = NULL;
6950 }
6951 
6952 /*
6953  * Probe for the existence of the header object for the given rbd
6954  * device.  If this image is the one being mapped (i.e., not a
6955  * parent), initiate a watch on its header object before using that
6956  * object to get detailed information about the rbd image.
6957  *
6958  * On success, returns with header_rwsem held for write if called
6959  * with @depth == 0.
6960  */
rbd_dev_image_probe(struct rbd_device * rbd_dev,int depth)6961 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6962 {
6963 	bool need_watch = !rbd_is_ro(rbd_dev);
6964 	int ret;
6965 
6966 	/*
6967 	 * Get the id from the image id object.  Unless there's an
6968 	 * error, rbd_dev->spec->image_id will be filled in with
6969 	 * a dynamically-allocated string, and rbd_dev->image_format
6970 	 * will be set to either 1 or 2.
6971 	 */
6972 	ret = rbd_dev_image_id(rbd_dev);
6973 	if (ret)
6974 		return ret;
6975 
6976 	ret = rbd_dev_header_name(rbd_dev);
6977 	if (ret)
6978 		goto err_out_format;
6979 
6980 	if (need_watch) {
6981 		ret = rbd_register_watch(rbd_dev);
6982 		if (ret) {
6983 			if (ret == -ENOENT)
6984 				rbd_print_dne(rbd_dev, false);
6985 			goto err_out_format;
6986 		}
6987 	}
6988 
6989 	if (!depth)
6990 		down_write(&rbd_dev->header_rwsem);
6991 
6992 	ret = rbd_dev_header_info(rbd_dev, &rbd_dev->header, true);
6993 	if (ret) {
6994 		if (ret == -ENOENT && !need_watch)
6995 			rbd_print_dne(rbd_dev, false);
6996 		goto err_out_probe;
6997 	}
6998 
6999 	rbd_init_layout(rbd_dev);
7000 
7001 	/*
7002 	 * If this image is the one being mapped, we have pool name and
7003 	 * id, image name and id, and snap name - need to fill snap id.
7004 	 * Otherwise this is a parent image, identified by pool, image
7005 	 * and snap ids - need to fill in names for those ids.
7006 	 */
7007 	if (!depth)
7008 		ret = rbd_spec_fill_snap_id(rbd_dev);
7009 	else
7010 		ret = rbd_spec_fill_names(rbd_dev);
7011 	if (ret) {
7012 		if (ret == -ENOENT)
7013 			rbd_print_dne(rbd_dev, true);
7014 		goto err_out_probe;
7015 	}
7016 
7017 	ret = rbd_dev_mapping_set(rbd_dev);
7018 	if (ret)
7019 		goto err_out_probe;
7020 
7021 	if (rbd_is_snap(rbd_dev) &&
7022 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
7023 		ret = rbd_object_map_load(rbd_dev);
7024 		if (ret)
7025 			goto err_out_probe;
7026 	}
7027 
7028 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
7029 		ret = rbd_dev_setup_parent(rbd_dev);
7030 		if (ret)
7031 			goto err_out_probe;
7032 	}
7033 
7034 	ret = rbd_dev_probe_parent(rbd_dev, depth);
7035 	if (ret)
7036 		goto err_out_probe;
7037 
7038 	dout("discovered format %u image, header name is %s\n",
7039 		rbd_dev->image_format, rbd_dev->header_oid.name);
7040 	return 0;
7041 
7042 err_out_probe:
7043 	if (!depth)
7044 		up_write(&rbd_dev->header_rwsem);
7045 	if (need_watch)
7046 		rbd_unregister_watch(rbd_dev);
7047 	rbd_dev_unprobe(rbd_dev);
7048 err_out_format:
7049 	rbd_dev->image_format = 0;
7050 	kfree(rbd_dev->spec->image_id);
7051 	rbd_dev->spec->image_id = NULL;
7052 	return ret;
7053 }
7054 
rbd_dev_update_header(struct rbd_device * rbd_dev,struct rbd_image_header * header)7055 static void rbd_dev_update_header(struct rbd_device *rbd_dev,
7056 				  struct rbd_image_header *header)
7057 {
7058 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
7059 	rbd_assert(rbd_dev->header.object_prefix); /* !first_time */
7060 
7061 	if (rbd_dev->header.image_size != header->image_size) {
7062 		rbd_dev->header.image_size = header->image_size;
7063 
7064 		if (!rbd_is_snap(rbd_dev)) {
7065 			rbd_dev->mapping.size = header->image_size;
7066 			rbd_dev_update_size(rbd_dev);
7067 		}
7068 	}
7069 
7070 	ceph_put_snap_context(rbd_dev->header.snapc);
7071 	rbd_dev->header.snapc = header->snapc;
7072 	header->snapc = NULL;
7073 
7074 	if (rbd_dev->image_format == 1) {
7075 		kfree(rbd_dev->header.snap_names);
7076 		rbd_dev->header.snap_names = header->snap_names;
7077 		header->snap_names = NULL;
7078 
7079 		kfree(rbd_dev->header.snap_sizes);
7080 		rbd_dev->header.snap_sizes = header->snap_sizes;
7081 		header->snap_sizes = NULL;
7082 	}
7083 }
7084 
rbd_dev_update_parent(struct rbd_device * rbd_dev,struct parent_image_info * pii)7085 static void rbd_dev_update_parent(struct rbd_device *rbd_dev,
7086 				  struct parent_image_info *pii)
7087 {
7088 	if (pii->pool_id == CEPH_NOPOOL || !pii->has_overlap) {
7089 		/*
7090 		 * Either the parent never existed, or we have
7091 		 * record of it but the image got flattened so it no
7092 		 * longer has a parent.  When the parent of a
7093 		 * layered image disappears we immediately set the
7094 		 * overlap to 0.  The effect of this is that all new
7095 		 * requests will be treated as if the image had no
7096 		 * parent.
7097 		 *
7098 		 * If !pii.has_overlap, the parent image spec is not
7099 		 * applicable.  It's there to avoid duplication in each
7100 		 * snapshot record.
7101 		 */
7102 		if (rbd_dev->parent_overlap) {
7103 			rbd_dev->parent_overlap = 0;
7104 			rbd_dev_parent_put(rbd_dev);
7105 			pr_info("%s: clone has been flattened\n",
7106 				rbd_dev->disk->disk_name);
7107 		}
7108 	} else {
7109 		rbd_assert(rbd_dev->parent_spec);
7110 
7111 		/*
7112 		 * Update the parent overlap.  If it became zero, issue
7113 		 * a warning as we will proceed as if there is no parent.
7114 		 */
7115 		if (!pii->overlap && rbd_dev->parent_overlap)
7116 			rbd_warn(rbd_dev,
7117 				 "clone has become standalone (overlap 0)");
7118 		rbd_dev->parent_overlap = pii->overlap;
7119 	}
7120 }
7121 
rbd_dev_refresh(struct rbd_device * rbd_dev)7122 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
7123 {
7124 	struct rbd_image_header	header = { 0 };
7125 	struct parent_image_info pii = { 0 };
7126 	int ret;
7127 
7128 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
7129 
7130 	ret = rbd_dev_header_info(rbd_dev, &header, false);
7131 	if (ret)
7132 		goto out;
7133 
7134 	/*
7135 	 * If there is a parent, see if it has disappeared due to the
7136 	 * mapped image getting flattened.
7137 	 */
7138 	if (rbd_dev->parent) {
7139 		ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
7140 		if (ret)
7141 			goto out;
7142 	}
7143 
7144 	down_write(&rbd_dev->header_rwsem);
7145 	rbd_dev_update_header(rbd_dev, &header);
7146 	if (rbd_dev->parent)
7147 		rbd_dev_update_parent(rbd_dev, &pii);
7148 	up_write(&rbd_dev->header_rwsem);
7149 
7150 out:
7151 	rbd_parent_info_cleanup(&pii);
7152 	rbd_image_header_cleanup(&header);
7153 	return ret;
7154 }
7155 
do_rbd_add(struct bus_type * bus,const char * buf,size_t count)7156 static ssize_t do_rbd_add(struct bus_type *bus,
7157 			  const char *buf,
7158 			  size_t count)
7159 {
7160 	struct rbd_device *rbd_dev = NULL;
7161 	struct ceph_options *ceph_opts = NULL;
7162 	struct rbd_options *rbd_opts = NULL;
7163 	struct rbd_spec *spec = NULL;
7164 	struct rbd_client *rbdc;
7165 	int rc;
7166 
7167 	if (!capable(CAP_SYS_ADMIN))
7168 		return -EPERM;
7169 
7170 	if (!try_module_get(THIS_MODULE))
7171 		return -ENODEV;
7172 
7173 	/* parse add command */
7174 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7175 	if (rc < 0)
7176 		goto out;
7177 
7178 	rbdc = rbd_get_client(ceph_opts);
7179 	if (IS_ERR(rbdc)) {
7180 		rc = PTR_ERR(rbdc);
7181 		goto err_out_args;
7182 	}
7183 
7184 	/* pick the pool */
7185 	rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7186 	if (rc < 0) {
7187 		if (rc == -ENOENT)
7188 			pr_info("pool %s does not exist\n", spec->pool_name);
7189 		goto err_out_client;
7190 	}
7191 	spec->pool_id = (u64)rc;
7192 
7193 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7194 	if (!rbd_dev) {
7195 		rc = -ENOMEM;
7196 		goto err_out_client;
7197 	}
7198 	rbdc = NULL;		/* rbd_dev now owns this */
7199 	spec = NULL;		/* rbd_dev now owns this */
7200 	rbd_opts = NULL;	/* rbd_dev now owns this */
7201 
7202 	/* if we are mapping a snapshot it will be a read-only mapping */
7203 	if (rbd_dev->opts->read_only ||
7204 	    strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7205 		__set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7206 
7207 	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7208 	if (!rbd_dev->config_info) {
7209 		rc = -ENOMEM;
7210 		goto err_out_rbd_dev;
7211 	}
7212 
7213 	rc = rbd_dev_image_probe(rbd_dev, 0);
7214 	if (rc < 0)
7215 		goto err_out_rbd_dev;
7216 
7217 	if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7218 		rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7219 			 rbd_dev->layout.object_size);
7220 		rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7221 	}
7222 
7223 	rc = rbd_dev_device_setup(rbd_dev);
7224 	if (rc)
7225 		goto err_out_image_probe;
7226 
7227 	rc = rbd_add_acquire_lock(rbd_dev);
7228 	if (rc)
7229 		goto err_out_image_lock;
7230 
7231 	/* Everything's ready.  Announce the disk to the world. */
7232 
7233 	rc = device_add(&rbd_dev->dev);
7234 	if (rc)
7235 		goto err_out_image_lock;
7236 
7237 	device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7238 	/* see rbd_init_disk() */
7239 	blk_put_queue(rbd_dev->disk->queue);
7240 
7241 	spin_lock(&rbd_dev_list_lock);
7242 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
7243 	spin_unlock(&rbd_dev_list_lock);
7244 
7245 	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7246 		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7247 		rbd_dev->header.features);
7248 	rc = count;
7249 out:
7250 	module_put(THIS_MODULE);
7251 	return rc;
7252 
7253 err_out_image_lock:
7254 	rbd_dev_image_unlock(rbd_dev);
7255 	rbd_dev_device_release(rbd_dev);
7256 err_out_image_probe:
7257 	rbd_dev_image_release(rbd_dev);
7258 err_out_rbd_dev:
7259 	rbd_dev_destroy(rbd_dev);
7260 err_out_client:
7261 	rbd_put_client(rbdc);
7262 err_out_args:
7263 	rbd_spec_put(spec);
7264 	kfree(rbd_opts);
7265 	goto out;
7266 }
7267 
add_store(struct bus_type * bus,const char * buf,size_t count)7268 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count)
7269 {
7270 	if (single_major)
7271 		return -EINVAL;
7272 
7273 	return do_rbd_add(bus, buf, count);
7274 }
7275 
add_single_major_store(struct bus_type * bus,const char * buf,size_t count)7276 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
7277 				      size_t count)
7278 {
7279 	return do_rbd_add(bus, buf, count);
7280 }
7281 
rbd_dev_remove_parent(struct rbd_device * rbd_dev)7282 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7283 {
7284 	while (rbd_dev->parent) {
7285 		struct rbd_device *first = rbd_dev;
7286 		struct rbd_device *second = first->parent;
7287 		struct rbd_device *third;
7288 
7289 		/*
7290 		 * Follow to the parent with no grandparent and
7291 		 * remove it.
7292 		 */
7293 		while (second && (third = second->parent)) {
7294 			first = second;
7295 			second = third;
7296 		}
7297 		rbd_assert(second);
7298 		rbd_dev_image_release(second);
7299 		rbd_dev_destroy(second);
7300 		first->parent = NULL;
7301 		first->parent_overlap = 0;
7302 
7303 		rbd_assert(first->parent_spec);
7304 		rbd_spec_put(first->parent_spec);
7305 		first->parent_spec = NULL;
7306 	}
7307 }
7308 
do_rbd_remove(struct bus_type * bus,const char * buf,size_t count)7309 static ssize_t do_rbd_remove(struct bus_type *bus,
7310 			     const char *buf,
7311 			     size_t count)
7312 {
7313 	struct rbd_device *rbd_dev = NULL;
7314 	struct list_head *tmp;
7315 	int dev_id;
7316 	char opt_buf[6];
7317 	bool force = false;
7318 	int ret;
7319 
7320 	if (!capable(CAP_SYS_ADMIN))
7321 		return -EPERM;
7322 
7323 	dev_id = -1;
7324 	opt_buf[0] = '\0';
7325 	sscanf(buf, "%d %5s", &dev_id, opt_buf);
7326 	if (dev_id < 0) {
7327 		pr_err("dev_id out of range\n");
7328 		return -EINVAL;
7329 	}
7330 	if (opt_buf[0] != '\0') {
7331 		if (!strcmp(opt_buf, "force")) {
7332 			force = true;
7333 		} else {
7334 			pr_err("bad remove option at '%s'\n", opt_buf);
7335 			return -EINVAL;
7336 		}
7337 	}
7338 
7339 	ret = -ENOENT;
7340 	spin_lock(&rbd_dev_list_lock);
7341 	list_for_each(tmp, &rbd_dev_list) {
7342 		rbd_dev = list_entry(tmp, struct rbd_device, node);
7343 		if (rbd_dev->dev_id == dev_id) {
7344 			ret = 0;
7345 			break;
7346 		}
7347 	}
7348 	if (!ret) {
7349 		spin_lock_irq(&rbd_dev->lock);
7350 		if (rbd_dev->open_count && !force)
7351 			ret = -EBUSY;
7352 		else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7353 					  &rbd_dev->flags))
7354 			ret = -EINPROGRESS;
7355 		spin_unlock_irq(&rbd_dev->lock);
7356 	}
7357 	spin_unlock(&rbd_dev_list_lock);
7358 	if (ret)
7359 		return ret;
7360 
7361 	if (force) {
7362 		/*
7363 		 * Prevent new IO from being queued and wait for existing
7364 		 * IO to complete/fail.
7365 		 */
7366 		blk_mq_freeze_queue(rbd_dev->disk->queue);
7367 		blk_set_queue_dying(rbd_dev->disk->queue);
7368 	}
7369 
7370 	del_gendisk(rbd_dev->disk);
7371 	spin_lock(&rbd_dev_list_lock);
7372 	list_del_init(&rbd_dev->node);
7373 	spin_unlock(&rbd_dev_list_lock);
7374 	device_del(&rbd_dev->dev);
7375 
7376 	rbd_dev_image_unlock(rbd_dev);
7377 	rbd_dev_device_release(rbd_dev);
7378 	rbd_dev_image_release(rbd_dev);
7379 	rbd_dev_destroy(rbd_dev);
7380 	return count;
7381 }
7382 
remove_store(struct bus_type * bus,const char * buf,size_t count)7383 static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count)
7384 {
7385 	if (single_major)
7386 		return -EINVAL;
7387 
7388 	return do_rbd_remove(bus, buf, count);
7389 }
7390 
remove_single_major_store(struct bus_type * bus,const char * buf,size_t count)7391 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
7392 					 size_t count)
7393 {
7394 	return do_rbd_remove(bus, buf, count);
7395 }
7396 
7397 /*
7398  * create control files in sysfs
7399  * /sys/bus/rbd/...
7400  */
rbd_sysfs_init(void)7401 static int __init rbd_sysfs_init(void)
7402 {
7403 	int ret;
7404 
7405 	ret = device_register(&rbd_root_dev);
7406 	if (ret < 0)
7407 		return ret;
7408 
7409 	ret = bus_register(&rbd_bus_type);
7410 	if (ret < 0)
7411 		device_unregister(&rbd_root_dev);
7412 
7413 	return ret;
7414 }
7415 
rbd_sysfs_cleanup(void)7416 static void __exit rbd_sysfs_cleanup(void)
7417 {
7418 	bus_unregister(&rbd_bus_type);
7419 	device_unregister(&rbd_root_dev);
7420 }
7421 
rbd_slab_init(void)7422 static int __init rbd_slab_init(void)
7423 {
7424 	rbd_assert(!rbd_img_request_cache);
7425 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7426 	if (!rbd_img_request_cache)
7427 		return -ENOMEM;
7428 
7429 	rbd_assert(!rbd_obj_request_cache);
7430 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7431 	if (!rbd_obj_request_cache)
7432 		goto out_err;
7433 
7434 	return 0;
7435 
7436 out_err:
7437 	kmem_cache_destroy(rbd_img_request_cache);
7438 	rbd_img_request_cache = NULL;
7439 	return -ENOMEM;
7440 }
7441 
rbd_slab_exit(void)7442 static void rbd_slab_exit(void)
7443 {
7444 	rbd_assert(rbd_obj_request_cache);
7445 	kmem_cache_destroy(rbd_obj_request_cache);
7446 	rbd_obj_request_cache = NULL;
7447 
7448 	rbd_assert(rbd_img_request_cache);
7449 	kmem_cache_destroy(rbd_img_request_cache);
7450 	rbd_img_request_cache = NULL;
7451 }
7452 
rbd_init(void)7453 static int __init rbd_init(void)
7454 {
7455 	int rc;
7456 
7457 	if (!libceph_compatible(NULL)) {
7458 		rbd_warn(NULL, "libceph incompatibility (quitting)");
7459 		return -EINVAL;
7460 	}
7461 
7462 	rc = rbd_slab_init();
7463 	if (rc)
7464 		return rc;
7465 
7466 	/*
7467 	 * The number of active work items is limited by the number of
7468 	 * rbd devices * queue depth, so leave @max_active at default.
7469 	 */
7470 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7471 	if (!rbd_wq) {
7472 		rc = -ENOMEM;
7473 		goto err_out_slab;
7474 	}
7475 
7476 	if (single_major) {
7477 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
7478 		if (rbd_major < 0) {
7479 			rc = rbd_major;
7480 			goto err_out_wq;
7481 		}
7482 	}
7483 
7484 	rc = rbd_sysfs_init();
7485 	if (rc)
7486 		goto err_out_blkdev;
7487 
7488 	if (single_major)
7489 		pr_info("loaded (major %d)\n", rbd_major);
7490 	else
7491 		pr_info("loaded\n");
7492 
7493 	return 0;
7494 
7495 err_out_blkdev:
7496 	if (single_major)
7497 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7498 err_out_wq:
7499 	destroy_workqueue(rbd_wq);
7500 err_out_slab:
7501 	rbd_slab_exit();
7502 	return rc;
7503 }
7504 
rbd_exit(void)7505 static void __exit rbd_exit(void)
7506 {
7507 	ida_destroy(&rbd_dev_id_ida);
7508 	rbd_sysfs_cleanup();
7509 	if (single_major)
7510 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7511 	destroy_workqueue(rbd_wq);
7512 	rbd_slab_exit();
7513 }
7514 
7515 module_init(rbd_init);
7516 module_exit(rbd_exit);
7517 
7518 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7519 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7520 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7521 /* following authorship retained from original osdblk.c */
7522 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7523 
7524 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7525 MODULE_LICENSE("GPL");
7526