1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 *
6 * Right now, I am very wasteful with the buffers. I allocate memory
7 * pages and then divide them into 2K frame buffers. This way I know I
8 * have buffers large enough to hold one frame within one buffer descriptor.
9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10 * will be much more memory efficient and will easily handle lots of
11 * small packets.
12 *
13 * Much better multiple PHY support by Magnus Damm.
14 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 *
16 * Support for FEC controller of ColdFire processors.
17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 *
19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20 * Copyright (c) 2004-2006 Macq Electronique SA.
21 *
22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23 */
24
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/tso.h>
42 #include <linux/tcp.h>
43 #include <linux/udp.h>
44 #include <linux/icmp.h>
45 #include <linux/spinlock.h>
46 #include <linux/workqueue.h>
47 #include <linux/bitops.h>
48 #include <linux/io.h>
49 #include <linux/irq.h>
50 #include <linux/clk.h>
51 #include <linux/crc32.h>
52 #include <linux/platform_device.h>
53 #include <linux/mdio.h>
54 #include <linux/phy.h>
55 #include <linux/fec.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/of_gpio.h>
59 #include <linux/of_mdio.h>
60 #include <linux/of_net.h>
61 #include <linux/regulator/consumer.h>
62 #include <linux/if_vlan.h>
63 #include <linux/pinctrl/consumer.h>
64 #include <linux/prefetch.h>
65 #include <linux/mfd/syscon.h>
66 #include <linux/regmap.h>
67 #include <soc/imx/cpuidle.h>
68
69 #include <asm/cacheflush.h>
70
71 #include "fec.h"
72
73 static void set_multicast_list(struct net_device *ndev);
74 static void fec_enet_itr_coal_init(struct net_device *ndev);
75
76 #define DRIVER_NAME "fec"
77
78 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
79
80 /* Pause frame feild and FIFO threshold */
81 #define FEC_ENET_FCE (1 << 5)
82 #define FEC_ENET_RSEM_V 0x84
83 #define FEC_ENET_RSFL_V 16
84 #define FEC_ENET_RAEM_V 0x8
85 #define FEC_ENET_RAFL_V 0x8
86 #define FEC_ENET_OPD_V 0xFFF0
87 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */
88
89 struct fec_devinfo {
90 u32 quirks;
91 };
92
93 static const struct fec_devinfo fec_imx25_info = {
94 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
95 FEC_QUIRK_HAS_FRREG,
96 };
97
98 static const struct fec_devinfo fec_imx27_info = {
99 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
100 };
101
102 static const struct fec_devinfo fec_imx28_info = {
103 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
104 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
105 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII,
106 };
107
108 static const struct fec_devinfo fec_imx6q_info = {
109 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
110 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
111 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
112 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII,
113 };
114
115 static const struct fec_devinfo fec_mvf600_info = {
116 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
117 };
118
119 static const struct fec_devinfo fec_imx6x_info = {
120 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
121 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
122 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
123 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
124 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
125 FEC_QUIRK_CLEAR_SETUP_MII,
126 };
127
128 static const struct fec_devinfo fec_imx6ul_info = {
129 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
130 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
131 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
132 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
133 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII,
134 };
135
136 static struct platform_device_id fec_devtype[] = {
137 {
138 /* keep it for coldfire */
139 .name = DRIVER_NAME,
140 .driver_data = 0,
141 }, {
142 .name = "imx25-fec",
143 .driver_data = (kernel_ulong_t)&fec_imx25_info,
144 }, {
145 .name = "imx27-fec",
146 .driver_data = (kernel_ulong_t)&fec_imx27_info,
147 }, {
148 .name = "imx28-fec",
149 .driver_data = (kernel_ulong_t)&fec_imx28_info,
150 }, {
151 .name = "imx6q-fec",
152 .driver_data = (kernel_ulong_t)&fec_imx6q_info,
153 }, {
154 .name = "mvf600-fec",
155 .driver_data = (kernel_ulong_t)&fec_mvf600_info,
156 }, {
157 .name = "imx6sx-fec",
158 .driver_data = (kernel_ulong_t)&fec_imx6x_info,
159 }, {
160 .name = "imx6ul-fec",
161 .driver_data = (kernel_ulong_t)&fec_imx6ul_info,
162 }, {
163 /* sentinel */
164 }
165 };
166 MODULE_DEVICE_TABLE(platform, fec_devtype);
167
168 enum imx_fec_type {
169 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
170 IMX27_FEC, /* runs on i.mx27/35/51 */
171 IMX28_FEC,
172 IMX6Q_FEC,
173 MVF600_FEC,
174 IMX6SX_FEC,
175 IMX6UL_FEC,
176 };
177
178 static const struct of_device_id fec_dt_ids[] = {
179 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
180 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
181 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
182 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
183 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
184 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
185 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
186 { /* sentinel */ }
187 };
188 MODULE_DEVICE_TABLE(of, fec_dt_ids);
189
190 static unsigned char macaddr[ETH_ALEN];
191 module_param_array(macaddr, byte, NULL, 0);
192 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
193
194 #if defined(CONFIG_M5272)
195 /*
196 * Some hardware gets it MAC address out of local flash memory.
197 * if this is non-zero then assume it is the address to get MAC from.
198 */
199 #if defined(CONFIG_NETtel)
200 #define FEC_FLASHMAC 0xf0006006
201 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
202 #define FEC_FLASHMAC 0xf0006000
203 #elif defined(CONFIG_CANCam)
204 #define FEC_FLASHMAC 0xf0020000
205 #elif defined (CONFIG_M5272C3)
206 #define FEC_FLASHMAC (0xffe04000 + 4)
207 #elif defined(CONFIG_MOD5272)
208 #define FEC_FLASHMAC 0xffc0406b
209 #else
210 #define FEC_FLASHMAC 0
211 #endif
212 #endif /* CONFIG_M5272 */
213
214 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
215 *
216 * 2048 byte skbufs are allocated. However, alignment requirements
217 * varies between FEC variants. Worst case is 64, so round down by 64.
218 */
219 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64))
220 #define PKT_MINBUF_SIZE 64
221
222 /* FEC receive acceleration */
223 #define FEC_RACC_IPDIS (1 << 1)
224 #define FEC_RACC_PRODIS (1 << 2)
225 #define FEC_RACC_SHIFT16 BIT(7)
226 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
227
228 /* MIB Control Register */
229 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31)
230
231 /*
232 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
233 * size bits. Other FEC hardware does not, so we need to take that into
234 * account when setting it.
235 */
236 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
237 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
238 defined(CONFIG_ARM64)
239 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
240 #else
241 #define OPT_FRAME_SIZE 0
242 #endif
243
244 /* FEC MII MMFR bits definition */
245 #define FEC_MMFR_ST (1 << 30)
246 #define FEC_MMFR_ST_C45 (0)
247 #define FEC_MMFR_OP_READ (2 << 28)
248 #define FEC_MMFR_OP_READ_C45 (3 << 28)
249 #define FEC_MMFR_OP_WRITE (1 << 28)
250 #define FEC_MMFR_OP_ADDR_WRITE (0)
251 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
252 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
253 #define FEC_MMFR_TA (2 << 16)
254 #define FEC_MMFR_DATA(v) (v & 0xffff)
255 /* FEC ECR bits definition */
256 #define FEC_ECR_MAGICEN (1 << 2)
257 #define FEC_ECR_SLEEP (1 << 3)
258
259 #define FEC_MII_TIMEOUT 30000 /* us */
260
261 /* Transmitter timeout */
262 #define TX_TIMEOUT (2 * HZ)
263
264 #define FEC_PAUSE_FLAG_AUTONEG 0x1
265 #define FEC_PAUSE_FLAG_ENABLE 0x2
266 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
267 #define FEC_WOL_FLAG_ENABLE (0x1 << 1)
268 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
269
270 #define COPYBREAK_DEFAULT 256
271
272 /* Max number of allowed TCP segments for software TSO */
273 #define FEC_MAX_TSO_SEGS 100
274 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
275
276 #define IS_TSO_HEADER(txq, addr) \
277 ((addr >= txq->tso_hdrs_dma) && \
278 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
279
280 static int mii_cnt;
281
fec_enet_get_nextdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)282 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
283 struct bufdesc_prop *bd)
284 {
285 return (bdp >= bd->last) ? bd->base
286 : (struct bufdesc *)(((void *)bdp) + bd->dsize);
287 }
288
fec_enet_get_prevdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)289 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
290 struct bufdesc_prop *bd)
291 {
292 return (bdp <= bd->base) ? bd->last
293 : (struct bufdesc *)(((void *)bdp) - bd->dsize);
294 }
295
fec_enet_get_bd_index(struct bufdesc * bdp,struct bufdesc_prop * bd)296 static int fec_enet_get_bd_index(struct bufdesc *bdp,
297 struct bufdesc_prop *bd)
298 {
299 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
300 }
301
fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q * txq)302 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
303 {
304 int entries;
305
306 entries = (((const char *)txq->dirty_tx -
307 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
308
309 return entries >= 0 ? entries : entries + txq->bd.ring_size;
310 }
311
swap_buffer(void * bufaddr,int len)312 static void swap_buffer(void *bufaddr, int len)
313 {
314 int i;
315 unsigned int *buf = bufaddr;
316
317 for (i = 0; i < len; i += 4, buf++)
318 swab32s(buf);
319 }
320
swap_buffer2(void * dst_buf,void * src_buf,int len)321 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
322 {
323 int i;
324 unsigned int *src = src_buf;
325 unsigned int *dst = dst_buf;
326
327 for (i = 0; i < len; i += 4, src++, dst++)
328 *dst = swab32p(src);
329 }
330
fec_dump(struct net_device * ndev)331 static void fec_dump(struct net_device *ndev)
332 {
333 struct fec_enet_private *fep = netdev_priv(ndev);
334 struct bufdesc *bdp;
335 struct fec_enet_priv_tx_q *txq;
336 int index = 0;
337
338 netdev_info(ndev, "TX ring dump\n");
339 pr_info("Nr SC addr len SKB\n");
340
341 txq = fep->tx_queue[0];
342 bdp = txq->bd.base;
343
344 do {
345 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
346 index,
347 bdp == txq->bd.cur ? 'S' : ' ',
348 bdp == txq->dirty_tx ? 'H' : ' ',
349 fec16_to_cpu(bdp->cbd_sc),
350 fec32_to_cpu(bdp->cbd_bufaddr),
351 fec16_to_cpu(bdp->cbd_datlen),
352 txq->tx_skbuff[index]);
353 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
354 index++;
355 } while (bdp != txq->bd.base);
356 }
357
is_ipv4_pkt(struct sk_buff * skb)358 static inline bool is_ipv4_pkt(struct sk_buff *skb)
359 {
360 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
361 }
362
363 static int
fec_enet_clear_csum(struct sk_buff * skb,struct net_device * ndev)364 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
365 {
366 /* Only run for packets requiring a checksum. */
367 if (skb->ip_summed != CHECKSUM_PARTIAL)
368 return 0;
369
370 if (unlikely(skb_cow_head(skb, 0)))
371 return -1;
372
373 if (is_ipv4_pkt(skb))
374 ip_hdr(skb)->check = 0;
375 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
376
377 return 0;
378 }
379
380 static struct bufdesc *
fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)381 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
382 struct sk_buff *skb,
383 struct net_device *ndev)
384 {
385 struct fec_enet_private *fep = netdev_priv(ndev);
386 struct bufdesc *bdp = txq->bd.cur;
387 struct bufdesc_ex *ebdp;
388 int nr_frags = skb_shinfo(skb)->nr_frags;
389 int frag, frag_len;
390 unsigned short status;
391 unsigned int estatus = 0;
392 skb_frag_t *this_frag;
393 unsigned int index;
394 void *bufaddr;
395 dma_addr_t addr;
396 int i;
397
398 for (frag = 0; frag < nr_frags; frag++) {
399 this_frag = &skb_shinfo(skb)->frags[frag];
400 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
401 ebdp = (struct bufdesc_ex *)bdp;
402
403 status = fec16_to_cpu(bdp->cbd_sc);
404 status &= ~BD_ENET_TX_STATS;
405 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
406 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
407
408 /* Handle the last BD specially */
409 if (frag == nr_frags - 1) {
410 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
411 if (fep->bufdesc_ex) {
412 estatus |= BD_ENET_TX_INT;
413 if (unlikely(skb_shinfo(skb)->tx_flags &
414 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
415 estatus |= BD_ENET_TX_TS;
416 }
417 }
418
419 if (fep->bufdesc_ex) {
420 if (fep->quirks & FEC_QUIRK_HAS_AVB)
421 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
422 if (skb->ip_summed == CHECKSUM_PARTIAL)
423 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
424 ebdp->cbd_bdu = 0;
425 ebdp->cbd_esc = cpu_to_fec32(estatus);
426 }
427
428 bufaddr = skb_frag_address(this_frag);
429
430 index = fec_enet_get_bd_index(bdp, &txq->bd);
431 if (((unsigned long) bufaddr) & fep->tx_align ||
432 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
433 memcpy(txq->tx_bounce[index], bufaddr, frag_len);
434 bufaddr = txq->tx_bounce[index];
435
436 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
437 swap_buffer(bufaddr, frag_len);
438 }
439
440 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
441 DMA_TO_DEVICE);
442 if (dma_mapping_error(&fep->pdev->dev, addr)) {
443 if (net_ratelimit())
444 netdev_err(ndev, "Tx DMA memory map failed\n");
445 goto dma_mapping_error;
446 }
447
448 bdp->cbd_bufaddr = cpu_to_fec32(addr);
449 bdp->cbd_datlen = cpu_to_fec16(frag_len);
450 /* Make sure the updates to rest of the descriptor are
451 * performed before transferring ownership.
452 */
453 wmb();
454 bdp->cbd_sc = cpu_to_fec16(status);
455 }
456
457 return bdp;
458 dma_mapping_error:
459 bdp = txq->bd.cur;
460 for (i = 0; i < frag; i++) {
461 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
462 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
463 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
464 }
465 return ERR_PTR(-ENOMEM);
466 }
467
fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)468 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
469 struct sk_buff *skb, struct net_device *ndev)
470 {
471 struct fec_enet_private *fep = netdev_priv(ndev);
472 int nr_frags = skb_shinfo(skb)->nr_frags;
473 struct bufdesc *bdp, *last_bdp;
474 void *bufaddr;
475 dma_addr_t addr;
476 unsigned short status;
477 unsigned short buflen;
478 unsigned int estatus = 0;
479 unsigned int index;
480 int entries_free;
481
482 entries_free = fec_enet_get_free_txdesc_num(txq);
483 if (entries_free < MAX_SKB_FRAGS + 1) {
484 dev_kfree_skb_any(skb);
485 if (net_ratelimit())
486 netdev_err(ndev, "NOT enough BD for SG!\n");
487 return NETDEV_TX_OK;
488 }
489
490 /* Protocol checksum off-load for TCP and UDP. */
491 if (fec_enet_clear_csum(skb, ndev)) {
492 dev_kfree_skb_any(skb);
493 return NETDEV_TX_OK;
494 }
495
496 /* Fill in a Tx ring entry */
497 bdp = txq->bd.cur;
498 last_bdp = bdp;
499 status = fec16_to_cpu(bdp->cbd_sc);
500 status &= ~BD_ENET_TX_STATS;
501
502 /* Set buffer length and buffer pointer */
503 bufaddr = skb->data;
504 buflen = skb_headlen(skb);
505
506 index = fec_enet_get_bd_index(bdp, &txq->bd);
507 if (((unsigned long) bufaddr) & fep->tx_align ||
508 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
509 memcpy(txq->tx_bounce[index], skb->data, buflen);
510 bufaddr = txq->tx_bounce[index];
511
512 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
513 swap_buffer(bufaddr, buflen);
514 }
515
516 /* Push the data cache so the CPM does not get stale memory data. */
517 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
518 if (dma_mapping_error(&fep->pdev->dev, addr)) {
519 dev_kfree_skb_any(skb);
520 if (net_ratelimit())
521 netdev_err(ndev, "Tx DMA memory map failed\n");
522 return NETDEV_TX_OK;
523 }
524
525 if (nr_frags) {
526 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
527 if (IS_ERR(last_bdp)) {
528 dma_unmap_single(&fep->pdev->dev, addr,
529 buflen, DMA_TO_DEVICE);
530 dev_kfree_skb_any(skb);
531 return NETDEV_TX_OK;
532 }
533 } else {
534 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
535 if (fep->bufdesc_ex) {
536 estatus = BD_ENET_TX_INT;
537 if (unlikely(skb_shinfo(skb)->tx_flags &
538 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
539 estatus |= BD_ENET_TX_TS;
540 }
541 }
542 bdp->cbd_bufaddr = cpu_to_fec32(addr);
543 bdp->cbd_datlen = cpu_to_fec16(buflen);
544
545 if (fep->bufdesc_ex) {
546
547 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
548
549 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
550 fep->hwts_tx_en))
551 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
552
553 if (fep->quirks & FEC_QUIRK_HAS_AVB)
554 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
555
556 if (skb->ip_summed == CHECKSUM_PARTIAL)
557 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
558
559 ebdp->cbd_bdu = 0;
560 ebdp->cbd_esc = cpu_to_fec32(estatus);
561 }
562
563 index = fec_enet_get_bd_index(last_bdp, &txq->bd);
564 /* Save skb pointer */
565 txq->tx_skbuff[index] = skb;
566
567 /* Make sure the updates to rest of the descriptor are performed before
568 * transferring ownership.
569 */
570 wmb();
571
572 /* Send it on its way. Tell FEC it's ready, interrupt when done,
573 * it's the last BD of the frame, and to put the CRC on the end.
574 */
575 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
576 bdp->cbd_sc = cpu_to_fec16(status);
577
578 /* If this was the last BD in the ring, start at the beginning again. */
579 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
580
581 skb_tx_timestamp(skb);
582
583 /* Make sure the update to bdp and tx_skbuff are performed before
584 * txq->bd.cur.
585 */
586 wmb();
587 txq->bd.cur = bdp;
588
589 /* Trigger transmission start */
590 writel(0, txq->bd.reg_desc_active);
591
592 return 0;
593 }
594
595 static int
fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index,char * data,int size,bool last_tcp,bool is_last)596 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
597 struct net_device *ndev,
598 struct bufdesc *bdp, int index, char *data,
599 int size, bool last_tcp, bool is_last)
600 {
601 struct fec_enet_private *fep = netdev_priv(ndev);
602 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
603 unsigned short status;
604 unsigned int estatus = 0;
605 dma_addr_t addr;
606
607 status = fec16_to_cpu(bdp->cbd_sc);
608 status &= ~BD_ENET_TX_STATS;
609
610 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
611
612 if (((unsigned long) data) & fep->tx_align ||
613 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
614 memcpy(txq->tx_bounce[index], data, size);
615 data = txq->tx_bounce[index];
616
617 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
618 swap_buffer(data, size);
619 }
620
621 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
622 if (dma_mapping_error(&fep->pdev->dev, addr)) {
623 dev_kfree_skb_any(skb);
624 if (net_ratelimit())
625 netdev_err(ndev, "Tx DMA memory map failed\n");
626 return NETDEV_TX_OK;
627 }
628
629 bdp->cbd_datlen = cpu_to_fec16(size);
630 bdp->cbd_bufaddr = cpu_to_fec32(addr);
631
632 if (fep->bufdesc_ex) {
633 if (fep->quirks & FEC_QUIRK_HAS_AVB)
634 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
635 if (skb->ip_summed == CHECKSUM_PARTIAL)
636 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
637 ebdp->cbd_bdu = 0;
638 ebdp->cbd_esc = cpu_to_fec32(estatus);
639 }
640
641 /* Handle the last BD specially */
642 if (last_tcp)
643 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
644 if (is_last) {
645 status |= BD_ENET_TX_INTR;
646 if (fep->bufdesc_ex)
647 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
648 }
649
650 bdp->cbd_sc = cpu_to_fec16(status);
651
652 return 0;
653 }
654
655 static int
fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index)656 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
657 struct sk_buff *skb, struct net_device *ndev,
658 struct bufdesc *bdp, int index)
659 {
660 struct fec_enet_private *fep = netdev_priv(ndev);
661 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
662 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
663 void *bufaddr;
664 unsigned long dmabuf;
665 unsigned short status;
666 unsigned int estatus = 0;
667
668 status = fec16_to_cpu(bdp->cbd_sc);
669 status &= ~BD_ENET_TX_STATS;
670 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
671
672 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
673 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
674 if (((unsigned long)bufaddr) & fep->tx_align ||
675 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
676 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
677 bufaddr = txq->tx_bounce[index];
678
679 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
680 swap_buffer(bufaddr, hdr_len);
681
682 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
683 hdr_len, DMA_TO_DEVICE);
684 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
685 dev_kfree_skb_any(skb);
686 if (net_ratelimit())
687 netdev_err(ndev, "Tx DMA memory map failed\n");
688 return NETDEV_TX_OK;
689 }
690 }
691
692 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
693 bdp->cbd_datlen = cpu_to_fec16(hdr_len);
694
695 if (fep->bufdesc_ex) {
696 if (fep->quirks & FEC_QUIRK_HAS_AVB)
697 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
698 if (skb->ip_summed == CHECKSUM_PARTIAL)
699 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
700 ebdp->cbd_bdu = 0;
701 ebdp->cbd_esc = cpu_to_fec32(estatus);
702 }
703
704 bdp->cbd_sc = cpu_to_fec16(status);
705
706 return 0;
707 }
708
fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)709 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
710 struct sk_buff *skb,
711 struct net_device *ndev)
712 {
713 struct fec_enet_private *fep = netdev_priv(ndev);
714 int hdr_len, total_len, data_left;
715 struct bufdesc *bdp = txq->bd.cur;
716 struct tso_t tso;
717 unsigned int index = 0;
718 int ret;
719
720 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
721 dev_kfree_skb_any(skb);
722 if (net_ratelimit())
723 netdev_err(ndev, "NOT enough BD for TSO!\n");
724 return NETDEV_TX_OK;
725 }
726
727 /* Protocol checksum off-load for TCP and UDP. */
728 if (fec_enet_clear_csum(skb, ndev)) {
729 dev_kfree_skb_any(skb);
730 return NETDEV_TX_OK;
731 }
732
733 /* Initialize the TSO handler, and prepare the first payload */
734 hdr_len = tso_start(skb, &tso);
735
736 total_len = skb->len - hdr_len;
737 while (total_len > 0) {
738 char *hdr;
739
740 index = fec_enet_get_bd_index(bdp, &txq->bd);
741 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
742 total_len -= data_left;
743
744 /* prepare packet headers: MAC + IP + TCP */
745 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
746 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
747 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
748 if (ret)
749 goto err_release;
750
751 while (data_left > 0) {
752 int size;
753
754 size = min_t(int, tso.size, data_left);
755 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
756 index = fec_enet_get_bd_index(bdp, &txq->bd);
757 ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
758 bdp, index,
759 tso.data, size,
760 size == data_left,
761 total_len == 0);
762 if (ret)
763 goto err_release;
764
765 data_left -= size;
766 tso_build_data(skb, &tso, size);
767 }
768
769 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
770 }
771
772 /* Save skb pointer */
773 txq->tx_skbuff[index] = skb;
774
775 skb_tx_timestamp(skb);
776 txq->bd.cur = bdp;
777
778 /* Trigger transmission start */
779 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
780 !readl(txq->bd.reg_desc_active) ||
781 !readl(txq->bd.reg_desc_active) ||
782 !readl(txq->bd.reg_desc_active) ||
783 !readl(txq->bd.reg_desc_active))
784 writel(0, txq->bd.reg_desc_active);
785
786 return 0;
787
788 err_release:
789 /* TODO: Release all used data descriptors for TSO */
790 return ret;
791 }
792
793 static netdev_tx_t
fec_enet_start_xmit(struct sk_buff * skb,struct net_device * ndev)794 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
795 {
796 struct fec_enet_private *fep = netdev_priv(ndev);
797 int entries_free;
798 unsigned short queue;
799 struct fec_enet_priv_tx_q *txq;
800 struct netdev_queue *nq;
801 int ret;
802
803 queue = skb_get_queue_mapping(skb);
804 txq = fep->tx_queue[queue];
805 nq = netdev_get_tx_queue(ndev, queue);
806
807 if (skb_is_gso(skb))
808 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
809 else
810 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
811 if (ret)
812 return ret;
813
814 entries_free = fec_enet_get_free_txdesc_num(txq);
815 if (entries_free <= txq->tx_stop_threshold)
816 netif_tx_stop_queue(nq);
817
818 return NETDEV_TX_OK;
819 }
820
821 /* Init RX & TX buffer descriptors
822 */
fec_enet_bd_init(struct net_device * dev)823 static void fec_enet_bd_init(struct net_device *dev)
824 {
825 struct fec_enet_private *fep = netdev_priv(dev);
826 struct fec_enet_priv_tx_q *txq;
827 struct fec_enet_priv_rx_q *rxq;
828 struct bufdesc *bdp;
829 unsigned int i;
830 unsigned int q;
831
832 for (q = 0; q < fep->num_rx_queues; q++) {
833 /* Initialize the receive buffer descriptors. */
834 rxq = fep->rx_queue[q];
835 bdp = rxq->bd.base;
836
837 for (i = 0; i < rxq->bd.ring_size; i++) {
838
839 /* Initialize the BD for every fragment in the page. */
840 if (bdp->cbd_bufaddr)
841 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
842 else
843 bdp->cbd_sc = cpu_to_fec16(0);
844 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
845 }
846
847 /* Set the last buffer to wrap */
848 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
849 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
850
851 rxq->bd.cur = rxq->bd.base;
852 }
853
854 for (q = 0; q < fep->num_tx_queues; q++) {
855 /* ...and the same for transmit */
856 txq = fep->tx_queue[q];
857 bdp = txq->bd.base;
858 txq->bd.cur = bdp;
859
860 for (i = 0; i < txq->bd.ring_size; i++) {
861 /* Initialize the BD for every fragment in the page. */
862 bdp->cbd_sc = cpu_to_fec16(0);
863 if (bdp->cbd_bufaddr &&
864 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
865 dma_unmap_single(&fep->pdev->dev,
866 fec32_to_cpu(bdp->cbd_bufaddr),
867 fec16_to_cpu(bdp->cbd_datlen),
868 DMA_TO_DEVICE);
869 if (txq->tx_skbuff[i]) {
870 dev_kfree_skb_any(txq->tx_skbuff[i]);
871 txq->tx_skbuff[i] = NULL;
872 }
873 bdp->cbd_bufaddr = cpu_to_fec32(0);
874 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
875 }
876
877 /* Set the last buffer to wrap */
878 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
879 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
880 txq->dirty_tx = bdp;
881 }
882 }
883
fec_enet_active_rxring(struct net_device * ndev)884 static void fec_enet_active_rxring(struct net_device *ndev)
885 {
886 struct fec_enet_private *fep = netdev_priv(ndev);
887 int i;
888
889 for (i = 0; i < fep->num_rx_queues; i++)
890 writel(0, fep->rx_queue[i]->bd.reg_desc_active);
891 }
892
fec_enet_enable_ring(struct net_device * ndev)893 static void fec_enet_enable_ring(struct net_device *ndev)
894 {
895 struct fec_enet_private *fep = netdev_priv(ndev);
896 struct fec_enet_priv_tx_q *txq;
897 struct fec_enet_priv_rx_q *rxq;
898 int i;
899
900 for (i = 0; i < fep->num_rx_queues; i++) {
901 rxq = fep->rx_queue[i];
902 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
903 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
904
905 /* enable DMA1/2 */
906 if (i)
907 writel(RCMR_MATCHEN | RCMR_CMP(i),
908 fep->hwp + FEC_RCMR(i));
909 }
910
911 for (i = 0; i < fep->num_tx_queues; i++) {
912 txq = fep->tx_queue[i];
913 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
914
915 /* enable DMA1/2 */
916 if (i)
917 writel(DMA_CLASS_EN | IDLE_SLOPE(i),
918 fep->hwp + FEC_DMA_CFG(i));
919 }
920 }
921
fec_enet_reset_skb(struct net_device * ndev)922 static void fec_enet_reset_skb(struct net_device *ndev)
923 {
924 struct fec_enet_private *fep = netdev_priv(ndev);
925 struct fec_enet_priv_tx_q *txq;
926 int i, j;
927
928 for (i = 0; i < fep->num_tx_queues; i++) {
929 txq = fep->tx_queue[i];
930
931 for (j = 0; j < txq->bd.ring_size; j++) {
932 if (txq->tx_skbuff[j]) {
933 dev_kfree_skb_any(txq->tx_skbuff[j]);
934 txq->tx_skbuff[j] = NULL;
935 }
936 }
937 }
938 }
939
940 /*
941 * This function is called to start or restart the FEC during a link
942 * change, transmit timeout, or to reconfigure the FEC. The network
943 * packet processing for this device must be stopped before this call.
944 */
945 static void
fec_restart(struct net_device * ndev)946 fec_restart(struct net_device *ndev)
947 {
948 struct fec_enet_private *fep = netdev_priv(ndev);
949 u32 val;
950 u32 temp_mac[2];
951 u32 rcntl = OPT_FRAME_SIZE | 0x04;
952 u32 ecntl = 0x2; /* ETHEREN */
953
954 /* Whack a reset. We should wait for this.
955 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
956 * instead of reset MAC itself.
957 */
958 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
959 writel(0, fep->hwp + FEC_ECNTRL);
960 } else {
961 writel(1, fep->hwp + FEC_ECNTRL);
962 udelay(10);
963 }
964
965 /*
966 * enet-mac reset will reset mac address registers too,
967 * so need to reconfigure it.
968 */
969 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
970 writel((__force u32)cpu_to_be32(temp_mac[0]),
971 fep->hwp + FEC_ADDR_LOW);
972 writel((__force u32)cpu_to_be32(temp_mac[1]),
973 fep->hwp + FEC_ADDR_HIGH);
974
975 /* Clear any outstanding interrupt, except MDIO. */
976 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
977
978 fec_enet_bd_init(ndev);
979
980 fec_enet_enable_ring(ndev);
981
982 /* Reset tx SKB buffers. */
983 fec_enet_reset_skb(ndev);
984
985 /* Enable MII mode */
986 if (fep->full_duplex == DUPLEX_FULL) {
987 /* FD enable */
988 writel(0x04, fep->hwp + FEC_X_CNTRL);
989 } else {
990 /* No Rcv on Xmit */
991 rcntl |= 0x02;
992 writel(0x0, fep->hwp + FEC_X_CNTRL);
993 }
994
995 /* Set MII speed */
996 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
997
998 #if !defined(CONFIG_M5272)
999 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1000 val = readl(fep->hwp + FEC_RACC);
1001 /* align IP header */
1002 val |= FEC_RACC_SHIFT16;
1003 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1004 /* set RX checksum */
1005 val |= FEC_RACC_OPTIONS;
1006 else
1007 val &= ~FEC_RACC_OPTIONS;
1008 writel(val, fep->hwp + FEC_RACC);
1009 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1010 }
1011 #endif
1012
1013 /*
1014 * The phy interface and speed need to get configured
1015 * differently on enet-mac.
1016 */
1017 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1018 /* Enable flow control and length check */
1019 rcntl |= 0x40000000 | 0x00000020;
1020
1021 /* RGMII, RMII or MII */
1022 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1023 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1024 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1025 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1026 rcntl |= (1 << 6);
1027 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1028 rcntl |= (1 << 8);
1029 else
1030 rcntl &= ~(1 << 8);
1031
1032 /* 1G, 100M or 10M */
1033 if (ndev->phydev) {
1034 if (ndev->phydev->speed == SPEED_1000)
1035 ecntl |= (1 << 5);
1036 else if (ndev->phydev->speed == SPEED_100)
1037 rcntl &= ~(1 << 9);
1038 else
1039 rcntl |= (1 << 9);
1040 }
1041 } else {
1042 #ifdef FEC_MIIGSK_ENR
1043 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1044 u32 cfgr;
1045 /* disable the gasket and wait */
1046 writel(0, fep->hwp + FEC_MIIGSK_ENR);
1047 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1048 udelay(1);
1049
1050 /*
1051 * configure the gasket:
1052 * RMII, 50 MHz, no loopback, no echo
1053 * MII, 25 MHz, no loopback, no echo
1054 */
1055 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1056 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1057 if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1058 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1059 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1060
1061 /* re-enable the gasket */
1062 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1063 }
1064 #endif
1065 }
1066
1067 #if !defined(CONFIG_M5272)
1068 /* enable pause frame*/
1069 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1070 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1071 ndev->phydev && ndev->phydev->pause)) {
1072 rcntl |= FEC_ENET_FCE;
1073
1074 /* set FIFO threshold parameter to reduce overrun */
1075 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1076 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1077 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1078 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1079
1080 /* OPD */
1081 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1082 } else {
1083 rcntl &= ~FEC_ENET_FCE;
1084 }
1085 #endif /* !defined(CONFIG_M5272) */
1086
1087 writel(rcntl, fep->hwp + FEC_R_CNTRL);
1088
1089 /* Setup multicast filter. */
1090 set_multicast_list(ndev);
1091 #ifndef CONFIG_M5272
1092 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1093 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1094 #endif
1095
1096 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1097 /* enable ENET endian swap */
1098 ecntl |= (1 << 8);
1099 /* enable ENET store and forward mode */
1100 writel(1 << 8, fep->hwp + FEC_X_WMRK);
1101 }
1102
1103 if (fep->bufdesc_ex)
1104 ecntl |= (1 << 4);
1105
1106 #ifndef CONFIG_M5272
1107 /* Enable the MIB statistic event counters */
1108 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1109 #endif
1110
1111 /* And last, enable the transmit and receive processing */
1112 writel(ecntl, fep->hwp + FEC_ECNTRL);
1113 fec_enet_active_rxring(ndev);
1114
1115 if (fep->bufdesc_ex)
1116 fec_ptp_start_cyclecounter(ndev);
1117
1118 /* Enable interrupts we wish to service */
1119 if (fep->link)
1120 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1121 else
1122 writel(0, fep->hwp + FEC_IMASK);
1123
1124 /* Init the interrupt coalescing */
1125 fec_enet_itr_coal_init(ndev);
1126
1127 }
1128
fec_enet_stop_mode(struct fec_enet_private * fep,bool enabled)1129 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1130 {
1131 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1132 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1133
1134 if (stop_gpr->gpr) {
1135 if (enabled)
1136 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1137 BIT(stop_gpr->bit),
1138 BIT(stop_gpr->bit));
1139 else
1140 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1141 BIT(stop_gpr->bit), 0);
1142 } else if (pdata && pdata->sleep_mode_enable) {
1143 pdata->sleep_mode_enable(enabled);
1144 }
1145 }
1146
1147 static void
fec_stop(struct net_device * ndev)1148 fec_stop(struct net_device *ndev)
1149 {
1150 struct fec_enet_private *fep = netdev_priv(ndev);
1151 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1152 u32 val;
1153
1154 /* We cannot expect a graceful transmit stop without link !!! */
1155 if (fep->link) {
1156 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1157 udelay(10);
1158 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1159 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1160 }
1161
1162 /* Whack a reset. We should wait for this.
1163 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1164 * instead of reset MAC itself.
1165 */
1166 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1167 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1168 writel(0, fep->hwp + FEC_ECNTRL);
1169 } else {
1170 writel(1, fep->hwp + FEC_ECNTRL);
1171 udelay(10);
1172 }
1173 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1174 } else {
1175 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1176 val = readl(fep->hwp + FEC_ECNTRL);
1177 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1178 writel(val, fep->hwp + FEC_ECNTRL);
1179 fec_enet_stop_mode(fep, true);
1180 }
1181 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1182
1183 /* We have to keep ENET enabled to have MII interrupt stay working */
1184 if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1185 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1186 writel(2, fep->hwp + FEC_ECNTRL);
1187 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1188 }
1189 }
1190
1191
1192 static void
fec_timeout(struct net_device * ndev,unsigned int txqueue)1193 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1194 {
1195 struct fec_enet_private *fep = netdev_priv(ndev);
1196
1197 fec_dump(ndev);
1198
1199 ndev->stats.tx_errors++;
1200
1201 schedule_work(&fep->tx_timeout_work);
1202 }
1203
fec_enet_timeout_work(struct work_struct * work)1204 static void fec_enet_timeout_work(struct work_struct *work)
1205 {
1206 struct fec_enet_private *fep =
1207 container_of(work, struct fec_enet_private, tx_timeout_work);
1208 struct net_device *ndev = fep->netdev;
1209
1210 rtnl_lock();
1211 if (netif_device_present(ndev) || netif_running(ndev)) {
1212 napi_disable(&fep->napi);
1213 netif_tx_lock_bh(ndev);
1214 fec_restart(ndev);
1215 netif_tx_wake_all_queues(ndev);
1216 netif_tx_unlock_bh(ndev);
1217 napi_enable(&fep->napi);
1218 }
1219 rtnl_unlock();
1220 }
1221
1222 static void
fec_enet_hwtstamp(struct fec_enet_private * fep,unsigned ts,struct skb_shared_hwtstamps * hwtstamps)1223 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1224 struct skb_shared_hwtstamps *hwtstamps)
1225 {
1226 unsigned long flags;
1227 u64 ns;
1228
1229 spin_lock_irqsave(&fep->tmreg_lock, flags);
1230 ns = timecounter_cyc2time(&fep->tc, ts);
1231 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1232
1233 memset(hwtstamps, 0, sizeof(*hwtstamps));
1234 hwtstamps->hwtstamp = ns_to_ktime(ns);
1235 }
1236
1237 static void
fec_enet_tx_queue(struct net_device * ndev,u16 queue_id)1238 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1239 {
1240 struct fec_enet_private *fep;
1241 struct bufdesc *bdp;
1242 unsigned short status;
1243 struct sk_buff *skb;
1244 struct fec_enet_priv_tx_q *txq;
1245 struct netdev_queue *nq;
1246 int index = 0;
1247 int entries_free;
1248
1249 fep = netdev_priv(ndev);
1250
1251 txq = fep->tx_queue[queue_id];
1252 /* get next bdp of dirty_tx */
1253 nq = netdev_get_tx_queue(ndev, queue_id);
1254 bdp = txq->dirty_tx;
1255
1256 /* get next bdp of dirty_tx */
1257 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1258
1259 while (bdp != READ_ONCE(txq->bd.cur)) {
1260 /* Order the load of bd.cur and cbd_sc */
1261 rmb();
1262 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1263 if (status & BD_ENET_TX_READY)
1264 break;
1265
1266 index = fec_enet_get_bd_index(bdp, &txq->bd);
1267
1268 skb = txq->tx_skbuff[index];
1269 txq->tx_skbuff[index] = NULL;
1270 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1271 dma_unmap_single(&fep->pdev->dev,
1272 fec32_to_cpu(bdp->cbd_bufaddr),
1273 fec16_to_cpu(bdp->cbd_datlen),
1274 DMA_TO_DEVICE);
1275 bdp->cbd_bufaddr = cpu_to_fec32(0);
1276 if (!skb)
1277 goto skb_done;
1278
1279 /* Check for errors. */
1280 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1281 BD_ENET_TX_RL | BD_ENET_TX_UN |
1282 BD_ENET_TX_CSL)) {
1283 ndev->stats.tx_errors++;
1284 if (status & BD_ENET_TX_HB) /* No heartbeat */
1285 ndev->stats.tx_heartbeat_errors++;
1286 if (status & BD_ENET_TX_LC) /* Late collision */
1287 ndev->stats.tx_window_errors++;
1288 if (status & BD_ENET_TX_RL) /* Retrans limit */
1289 ndev->stats.tx_aborted_errors++;
1290 if (status & BD_ENET_TX_UN) /* Underrun */
1291 ndev->stats.tx_fifo_errors++;
1292 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1293 ndev->stats.tx_carrier_errors++;
1294 } else {
1295 ndev->stats.tx_packets++;
1296 ndev->stats.tx_bytes += skb->len;
1297 }
1298
1299 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1300 * are to time stamp the packet, so we still need to check time
1301 * stamping enabled flag.
1302 */
1303 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1304 fep->hwts_tx_en) &&
1305 fep->bufdesc_ex) {
1306 struct skb_shared_hwtstamps shhwtstamps;
1307 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1308
1309 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1310 skb_tstamp_tx(skb, &shhwtstamps);
1311 }
1312
1313 /* Deferred means some collisions occurred during transmit,
1314 * but we eventually sent the packet OK.
1315 */
1316 if (status & BD_ENET_TX_DEF)
1317 ndev->stats.collisions++;
1318
1319 /* Free the sk buffer associated with this last transmit */
1320 dev_kfree_skb_any(skb);
1321 skb_done:
1322 /* Make sure the update to bdp and tx_skbuff are performed
1323 * before dirty_tx
1324 */
1325 wmb();
1326 txq->dirty_tx = bdp;
1327
1328 /* Update pointer to next buffer descriptor to be transmitted */
1329 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1330
1331 /* Since we have freed up a buffer, the ring is no longer full
1332 */
1333 if (netif_tx_queue_stopped(nq)) {
1334 entries_free = fec_enet_get_free_txdesc_num(txq);
1335 if (entries_free >= txq->tx_wake_threshold)
1336 netif_tx_wake_queue(nq);
1337 }
1338 }
1339
1340 /* ERR006358: Keep the transmitter going */
1341 if (bdp != txq->bd.cur &&
1342 readl(txq->bd.reg_desc_active) == 0)
1343 writel(0, txq->bd.reg_desc_active);
1344 }
1345
fec_enet_tx(struct net_device * ndev)1346 static void fec_enet_tx(struct net_device *ndev)
1347 {
1348 struct fec_enet_private *fep = netdev_priv(ndev);
1349 int i;
1350
1351 /* Make sure that AVB queues are processed first. */
1352 for (i = fep->num_tx_queues - 1; i >= 0; i--)
1353 fec_enet_tx_queue(ndev, i);
1354 }
1355
1356 static int
fec_enet_new_rxbdp(struct net_device * ndev,struct bufdesc * bdp,struct sk_buff * skb)1357 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1358 {
1359 struct fec_enet_private *fep = netdev_priv(ndev);
1360 int off;
1361
1362 off = ((unsigned long)skb->data) & fep->rx_align;
1363 if (off)
1364 skb_reserve(skb, fep->rx_align + 1 - off);
1365
1366 bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1367 if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1368 if (net_ratelimit())
1369 netdev_err(ndev, "Rx DMA memory map failed\n");
1370 return -ENOMEM;
1371 }
1372
1373 return 0;
1374 }
1375
fec_enet_copybreak(struct net_device * ndev,struct sk_buff ** skb,struct bufdesc * bdp,u32 length,bool swap)1376 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1377 struct bufdesc *bdp, u32 length, bool swap)
1378 {
1379 struct fec_enet_private *fep = netdev_priv(ndev);
1380 struct sk_buff *new_skb;
1381
1382 if (length > fep->rx_copybreak)
1383 return false;
1384
1385 new_skb = netdev_alloc_skb(ndev, length);
1386 if (!new_skb)
1387 return false;
1388
1389 dma_sync_single_for_cpu(&fep->pdev->dev,
1390 fec32_to_cpu(bdp->cbd_bufaddr),
1391 FEC_ENET_RX_FRSIZE - fep->rx_align,
1392 DMA_FROM_DEVICE);
1393 if (!swap)
1394 memcpy(new_skb->data, (*skb)->data, length);
1395 else
1396 swap_buffer2(new_skb->data, (*skb)->data, length);
1397 *skb = new_skb;
1398
1399 return true;
1400 }
1401
1402 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1403 * When we update through the ring, if the next incoming buffer has
1404 * not been given to the system, we just set the empty indicator,
1405 * effectively tossing the packet.
1406 */
1407 static int
fec_enet_rx_queue(struct net_device * ndev,int budget,u16 queue_id)1408 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1409 {
1410 struct fec_enet_private *fep = netdev_priv(ndev);
1411 struct fec_enet_priv_rx_q *rxq;
1412 struct bufdesc *bdp;
1413 unsigned short status;
1414 struct sk_buff *skb_new = NULL;
1415 struct sk_buff *skb;
1416 ushort pkt_len;
1417 __u8 *data;
1418 int pkt_received = 0;
1419 struct bufdesc_ex *ebdp = NULL;
1420 bool vlan_packet_rcvd = false;
1421 u16 vlan_tag;
1422 int index = 0;
1423 bool is_copybreak;
1424 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1425
1426 #ifdef CONFIG_M532x
1427 flush_cache_all();
1428 #endif
1429 rxq = fep->rx_queue[queue_id];
1430
1431 /* First, grab all of the stats for the incoming packet.
1432 * These get messed up if we get called due to a busy condition.
1433 */
1434 bdp = rxq->bd.cur;
1435
1436 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1437
1438 if (pkt_received >= budget)
1439 break;
1440 pkt_received++;
1441
1442 writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1443
1444 /* Check for errors. */
1445 status ^= BD_ENET_RX_LAST;
1446 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1447 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1448 BD_ENET_RX_CL)) {
1449 ndev->stats.rx_errors++;
1450 if (status & BD_ENET_RX_OV) {
1451 /* FIFO overrun */
1452 ndev->stats.rx_fifo_errors++;
1453 goto rx_processing_done;
1454 }
1455 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1456 | BD_ENET_RX_LAST)) {
1457 /* Frame too long or too short. */
1458 ndev->stats.rx_length_errors++;
1459 if (status & BD_ENET_RX_LAST)
1460 netdev_err(ndev, "rcv is not +last\n");
1461 }
1462 if (status & BD_ENET_RX_CR) /* CRC Error */
1463 ndev->stats.rx_crc_errors++;
1464 /* Report late collisions as a frame error. */
1465 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1466 ndev->stats.rx_frame_errors++;
1467 goto rx_processing_done;
1468 }
1469
1470 /* Process the incoming frame. */
1471 ndev->stats.rx_packets++;
1472 pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1473 ndev->stats.rx_bytes += pkt_len;
1474
1475 index = fec_enet_get_bd_index(bdp, &rxq->bd);
1476 skb = rxq->rx_skbuff[index];
1477
1478 /* The packet length includes FCS, but we don't want to
1479 * include that when passing upstream as it messes up
1480 * bridging applications.
1481 */
1482 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1483 need_swap);
1484 if (!is_copybreak) {
1485 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1486 if (unlikely(!skb_new)) {
1487 ndev->stats.rx_dropped++;
1488 goto rx_processing_done;
1489 }
1490 dma_unmap_single(&fep->pdev->dev,
1491 fec32_to_cpu(bdp->cbd_bufaddr),
1492 FEC_ENET_RX_FRSIZE - fep->rx_align,
1493 DMA_FROM_DEVICE);
1494 }
1495
1496 prefetch(skb->data - NET_IP_ALIGN);
1497 skb_put(skb, pkt_len - 4);
1498 data = skb->data;
1499
1500 if (!is_copybreak && need_swap)
1501 swap_buffer(data, pkt_len);
1502
1503 #if !defined(CONFIG_M5272)
1504 if (fep->quirks & FEC_QUIRK_HAS_RACC)
1505 data = skb_pull_inline(skb, 2);
1506 #endif
1507
1508 /* Extract the enhanced buffer descriptor */
1509 ebdp = NULL;
1510 if (fep->bufdesc_ex)
1511 ebdp = (struct bufdesc_ex *)bdp;
1512
1513 /* If this is a VLAN packet remove the VLAN Tag */
1514 vlan_packet_rcvd = false;
1515 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1516 fep->bufdesc_ex &&
1517 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1518 /* Push and remove the vlan tag */
1519 struct vlan_hdr *vlan_header =
1520 (struct vlan_hdr *) (data + ETH_HLEN);
1521 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1522
1523 vlan_packet_rcvd = true;
1524
1525 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1526 skb_pull(skb, VLAN_HLEN);
1527 }
1528
1529 skb->protocol = eth_type_trans(skb, ndev);
1530
1531 /* Get receive timestamp from the skb */
1532 if (fep->hwts_rx_en && fep->bufdesc_ex)
1533 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1534 skb_hwtstamps(skb));
1535
1536 if (fep->bufdesc_ex &&
1537 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1538 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1539 /* don't check it */
1540 skb->ip_summed = CHECKSUM_UNNECESSARY;
1541 } else {
1542 skb_checksum_none_assert(skb);
1543 }
1544 }
1545
1546 /* Handle received VLAN packets */
1547 if (vlan_packet_rcvd)
1548 __vlan_hwaccel_put_tag(skb,
1549 htons(ETH_P_8021Q),
1550 vlan_tag);
1551
1552 skb_record_rx_queue(skb, queue_id);
1553 napi_gro_receive(&fep->napi, skb);
1554
1555 if (is_copybreak) {
1556 dma_sync_single_for_device(&fep->pdev->dev,
1557 fec32_to_cpu(bdp->cbd_bufaddr),
1558 FEC_ENET_RX_FRSIZE - fep->rx_align,
1559 DMA_FROM_DEVICE);
1560 } else {
1561 rxq->rx_skbuff[index] = skb_new;
1562 fec_enet_new_rxbdp(ndev, bdp, skb_new);
1563 }
1564
1565 rx_processing_done:
1566 /* Clear the status flags for this buffer */
1567 status &= ~BD_ENET_RX_STATS;
1568
1569 /* Mark the buffer empty */
1570 status |= BD_ENET_RX_EMPTY;
1571
1572 if (fep->bufdesc_ex) {
1573 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1574
1575 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1576 ebdp->cbd_prot = 0;
1577 ebdp->cbd_bdu = 0;
1578 }
1579 /* Make sure the updates to rest of the descriptor are
1580 * performed before transferring ownership.
1581 */
1582 wmb();
1583 bdp->cbd_sc = cpu_to_fec16(status);
1584
1585 /* Update BD pointer to next entry */
1586 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1587
1588 /* Doing this here will keep the FEC running while we process
1589 * incoming frames. On a heavily loaded network, we should be
1590 * able to keep up at the expense of system resources.
1591 */
1592 writel(0, rxq->bd.reg_desc_active);
1593 }
1594 rxq->bd.cur = bdp;
1595 return pkt_received;
1596 }
1597
fec_enet_rx(struct net_device * ndev,int budget)1598 static int fec_enet_rx(struct net_device *ndev, int budget)
1599 {
1600 struct fec_enet_private *fep = netdev_priv(ndev);
1601 int i, done = 0;
1602
1603 /* Make sure that AVB queues are processed first. */
1604 for (i = fep->num_rx_queues - 1; i >= 0; i--)
1605 done += fec_enet_rx_queue(ndev, budget - done, i);
1606
1607 return done;
1608 }
1609
fec_enet_collect_events(struct fec_enet_private * fep)1610 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1611 {
1612 uint int_events;
1613
1614 int_events = readl(fep->hwp + FEC_IEVENT);
1615
1616 /* Don't clear MDIO events, we poll for those */
1617 int_events &= ~FEC_ENET_MII;
1618
1619 writel(int_events, fep->hwp + FEC_IEVENT);
1620
1621 return int_events != 0;
1622 }
1623
1624 static irqreturn_t
fec_enet_interrupt(int irq,void * dev_id)1625 fec_enet_interrupt(int irq, void *dev_id)
1626 {
1627 struct net_device *ndev = dev_id;
1628 struct fec_enet_private *fep = netdev_priv(ndev);
1629 irqreturn_t ret = IRQ_NONE;
1630
1631 if (fec_enet_collect_events(fep) && fep->link) {
1632 ret = IRQ_HANDLED;
1633
1634 if (napi_schedule_prep(&fep->napi)) {
1635 /* Disable interrupts */
1636 writel(0, fep->hwp + FEC_IMASK);
1637 __napi_schedule(&fep->napi);
1638 }
1639 }
1640
1641 return ret;
1642 }
1643
fec_enet_rx_napi(struct napi_struct * napi,int budget)1644 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1645 {
1646 struct net_device *ndev = napi->dev;
1647 struct fec_enet_private *fep = netdev_priv(ndev);
1648 int done = 0;
1649
1650 do {
1651 done += fec_enet_rx(ndev, budget - done);
1652 fec_enet_tx(ndev);
1653 } while ((done < budget) && fec_enet_collect_events(fep));
1654
1655 if (done < budget) {
1656 napi_complete_done(napi, done);
1657 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1658 }
1659
1660 return done;
1661 }
1662
1663 /* ------------------------------------------------------------------------- */
fec_get_mac(struct net_device * ndev)1664 static void fec_get_mac(struct net_device *ndev)
1665 {
1666 struct fec_enet_private *fep = netdev_priv(ndev);
1667 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1668 unsigned char *iap, tmpaddr[ETH_ALEN];
1669
1670 /*
1671 * try to get mac address in following order:
1672 *
1673 * 1) module parameter via kernel command line in form
1674 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1675 */
1676 iap = macaddr;
1677
1678 /*
1679 * 2) from device tree data
1680 */
1681 if (!is_valid_ether_addr(iap)) {
1682 struct device_node *np = fep->pdev->dev.of_node;
1683 if (np) {
1684 const char *mac = of_get_mac_address(np);
1685 if (!IS_ERR(mac))
1686 iap = (unsigned char *) mac;
1687 }
1688 }
1689
1690 /*
1691 * 3) from flash or fuse (via platform data)
1692 */
1693 if (!is_valid_ether_addr(iap)) {
1694 #ifdef CONFIG_M5272
1695 if (FEC_FLASHMAC)
1696 iap = (unsigned char *)FEC_FLASHMAC;
1697 #else
1698 if (pdata)
1699 iap = (unsigned char *)&pdata->mac;
1700 #endif
1701 }
1702
1703 /*
1704 * 4) FEC mac registers set by bootloader
1705 */
1706 if (!is_valid_ether_addr(iap)) {
1707 *((__be32 *) &tmpaddr[0]) =
1708 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1709 *((__be16 *) &tmpaddr[4]) =
1710 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1711 iap = &tmpaddr[0];
1712 }
1713
1714 /*
1715 * 5) random mac address
1716 */
1717 if (!is_valid_ether_addr(iap)) {
1718 /* Report it and use a random ethernet address instead */
1719 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1720 eth_hw_addr_random(ndev);
1721 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1722 ndev->dev_addr);
1723 return;
1724 }
1725
1726 memcpy(ndev->dev_addr, iap, ETH_ALEN);
1727
1728 /* Adjust MAC if using macaddr */
1729 if (iap == macaddr)
1730 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1731 }
1732
1733 /* ------------------------------------------------------------------------- */
1734
1735 /*
1736 * Phy section
1737 */
fec_enet_adjust_link(struct net_device * ndev)1738 static void fec_enet_adjust_link(struct net_device *ndev)
1739 {
1740 struct fec_enet_private *fep = netdev_priv(ndev);
1741 struct phy_device *phy_dev = ndev->phydev;
1742 int status_change = 0;
1743
1744 /*
1745 * If the netdev is down, or is going down, we're not interested
1746 * in link state events, so just mark our idea of the link as down
1747 * and ignore the event.
1748 */
1749 if (!netif_running(ndev) || !netif_device_present(ndev)) {
1750 fep->link = 0;
1751 } else if (phy_dev->link) {
1752 if (!fep->link) {
1753 fep->link = phy_dev->link;
1754 status_change = 1;
1755 }
1756
1757 if (fep->full_duplex != phy_dev->duplex) {
1758 fep->full_duplex = phy_dev->duplex;
1759 status_change = 1;
1760 }
1761
1762 if (phy_dev->speed != fep->speed) {
1763 fep->speed = phy_dev->speed;
1764 status_change = 1;
1765 }
1766
1767 /* if any of the above changed restart the FEC */
1768 if (status_change) {
1769 napi_disable(&fep->napi);
1770 netif_tx_lock_bh(ndev);
1771 fec_restart(ndev);
1772 netif_tx_wake_all_queues(ndev);
1773 netif_tx_unlock_bh(ndev);
1774 napi_enable(&fep->napi);
1775 }
1776 } else {
1777 if (fep->link) {
1778 napi_disable(&fep->napi);
1779 netif_tx_lock_bh(ndev);
1780 fec_stop(ndev);
1781 netif_tx_unlock_bh(ndev);
1782 napi_enable(&fep->napi);
1783 fep->link = phy_dev->link;
1784 status_change = 1;
1785 }
1786 }
1787
1788 if (status_change)
1789 phy_print_status(phy_dev);
1790 }
1791
fec_enet_mdio_wait(struct fec_enet_private * fep)1792 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
1793 {
1794 uint ievent;
1795 int ret;
1796
1797 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
1798 ievent & FEC_ENET_MII, 2, 30000);
1799
1800 if (!ret)
1801 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1802
1803 return ret;
1804 }
1805
fec_enet_mdio_read(struct mii_bus * bus,int mii_id,int regnum)1806 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1807 {
1808 struct fec_enet_private *fep = bus->priv;
1809 struct device *dev = &fep->pdev->dev;
1810 int ret = 0, frame_start, frame_addr, frame_op;
1811 bool is_c45 = !!(regnum & MII_ADDR_C45);
1812
1813 ret = pm_runtime_resume_and_get(dev);
1814 if (ret < 0)
1815 return ret;
1816
1817 if (is_c45) {
1818 frame_start = FEC_MMFR_ST_C45;
1819
1820 /* write address */
1821 frame_addr = (regnum >> 16);
1822 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1823 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1824 FEC_MMFR_TA | (regnum & 0xFFFF),
1825 fep->hwp + FEC_MII_DATA);
1826
1827 /* wait for end of transfer */
1828 ret = fec_enet_mdio_wait(fep);
1829 if (ret) {
1830 netdev_err(fep->netdev, "MDIO address write timeout\n");
1831 goto out;
1832 }
1833
1834 frame_op = FEC_MMFR_OP_READ_C45;
1835
1836 } else {
1837 /* C22 read */
1838 frame_op = FEC_MMFR_OP_READ;
1839 frame_start = FEC_MMFR_ST;
1840 frame_addr = regnum;
1841 }
1842
1843 /* start a read op */
1844 writel(frame_start | frame_op |
1845 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1846 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1847
1848 /* wait for end of transfer */
1849 ret = fec_enet_mdio_wait(fep);
1850 if (ret) {
1851 netdev_err(fep->netdev, "MDIO read timeout\n");
1852 goto out;
1853 }
1854
1855 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1856
1857 out:
1858 pm_runtime_mark_last_busy(dev);
1859 pm_runtime_put_autosuspend(dev);
1860
1861 return ret;
1862 }
1863
fec_enet_mdio_write(struct mii_bus * bus,int mii_id,int regnum,u16 value)1864 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1865 u16 value)
1866 {
1867 struct fec_enet_private *fep = bus->priv;
1868 struct device *dev = &fep->pdev->dev;
1869 int ret, frame_start, frame_addr;
1870 bool is_c45 = !!(regnum & MII_ADDR_C45);
1871
1872 ret = pm_runtime_resume_and_get(dev);
1873 if (ret < 0)
1874 return ret;
1875
1876 if (is_c45) {
1877 frame_start = FEC_MMFR_ST_C45;
1878
1879 /* write address */
1880 frame_addr = (regnum >> 16);
1881 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1882 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1883 FEC_MMFR_TA | (regnum & 0xFFFF),
1884 fep->hwp + FEC_MII_DATA);
1885
1886 /* wait for end of transfer */
1887 ret = fec_enet_mdio_wait(fep);
1888 if (ret) {
1889 netdev_err(fep->netdev, "MDIO address write timeout\n");
1890 goto out;
1891 }
1892 } else {
1893 /* C22 write */
1894 frame_start = FEC_MMFR_ST;
1895 frame_addr = regnum;
1896 }
1897
1898 /* start a write op */
1899 writel(frame_start | FEC_MMFR_OP_WRITE |
1900 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1901 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1902 fep->hwp + FEC_MII_DATA);
1903
1904 /* wait for end of transfer */
1905 ret = fec_enet_mdio_wait(fep);
1906 if (ret)
1907 netdev_err(fep->netdev, "MDIO write timeout\n");
1908
1909 out:
1910 pm_runtime_mark_last_busy(dev);
1911 pm_runtime_put_autosuspend(dev);
1912
1913 return ret;
1914 }
1915
fec_enet_phy_reset_after_clk_enable(struct net_device * ndev)1916 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
1917 {
1918 struct fec_enet_private *fep = netdev_priv(ndev);
1919 struct phy_device *phy_dev = ndev->phydev;
1920
1921 if (phy_dev) {
1922 phy_reset_after_clk_enable(phy_dev);
1923 } else if (fep->phy_node) {
1924 /*
1925 * If the PHY still is not bound to the MAC, but there is
1926 * OF PHY node and a matching PHY device instance already,
1927 * use the OF PHY node to obtain the PHY device instance,
1928 * and then use that PHY device instance when triggering
1929 * the PHY reset.
1930 */
1931 phy_dev = of_phy_find_device(fep->phy_node);
1932 phy_reset_after_clk_enable(phy_dev);
1933 put_device(&phy_dev->mdio.dev);
1934 }
1935 }
1936
fec_enet_clk_enable(struct net_device * ndev,bool enable)1937 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1938 {
1939 struct fec_enet_private *fep = netdev_priv(ndev);
1940 int ret;
1941
1942 if (enable) {
1943 ret = clk_prepare_enable(fep->clk_enet_out);
1944 if (ret)
1945 return ret;
1946
1947 if (fep->clk_ptp) {
1948 mutex_lock(&fep->ptp_clk_mutex);
1949 ret = clk_prepare_enable(fep->clk_ptp);
1950 if (ret) {
1951 mutex_unlock(&fep->ptp_clk_mutex);
1952 goto failed_clk_ptp;
1953 } else {
1954 fep->ptp_clk_on = true;
1955 }
1956 mutex_unlock(&fep->ptp_clk_mutex);
1957 }
1958
1959 ret = clk_prepare_enable(fep->clk_ref);
1960 if (ret)
1961 goto failed_clk_ref;
1962
1963 fec_enet_phy_reset_after_clk_enable(ndev);
1964 } else {
1965 clk_disable_unprepare(fep->clk_enet_out);
1966 if (fep->clk_ptp) {
1967 mutex_lock(&fep->ptp_clk_mutex);
1968 clk_disable_unprepare(fep->clk_ptp);
1969 fep->ptp_clk_on = false;
1970 mutex_unlock(&fep->ptp_clk_mutex);
1971 }
1972 clk_disable_unprepare(fep->clk_ref);
1973 }
1974
1975 return 0;
1976
1977 failed_clk_ref:
1978 if (fep->clk_ptp) {
1979 mutex_lock(&fep->ptp_clk_mutex);
1980 clk_disable_unprepare(fep->clk_ptp);
1981 fep->ptp_clk_on = false;
1982 mutex_unlock(&fep->ptp_clk_mutex);
1983 }
1984 failed_clk_ptp:
1985 clk_disable_unprepare(fep->clk_enet_out);
1986
1987 return ret;
1988 }
1989
fec_enet_mii_probe(struct net_device * ndev)1990 static int fec_enet_mii_probe(struct net_device *ndev)
1991 {
1992 struct fec_enet_private *fep = netdev_priv(ndev);
1993 struct phy_device *phy_dev = NULL;
1994 char mdio_bus_id[MII_BUS_ID_SIZE];
1995 char phy_name[MII_BUS_ID_SIZE + 3];
1996 int phy_id;
1997 int dev_id = fep->dev_id;
1998
1999 if (fep->phy_node) {
2000 phy_dev = of_phy_connect(ndev, fep->phy_node,
2001 &fec_enet_adjust_link, 0,
2002 fep->phy_interface);
2003 if (!phy_dev) {
2004 netdev_err(ndev, "Unable to connect to phy\n");
2005 return -ENODEV;
2006 }
2007 } else {
2008 /* check for attached phy */
2009 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2010 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2011 continue;
2012 if (dev_id--)
2013 continue;
2014 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2015 break;
2016 }
2017
2018 if (phy_id >= PHY_MAX_ADDR) {
2019 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2020 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2021 phy_id = 0;
2022 }
2023
2024 snprintf(phy_name, sizeof(phy_name),
2025 PHY_ID_FMT, mdio_bus_id, phy_id);
2026 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2027 fep->phy_interface);
2028 }
2029
2030 if (IS_ERR(phy_dev)) {
2031 netdev_err(ndev, "could not attach to PHY\n");
2032 return PTR_ERR(phy_dev);
2033 }
2034
2035 /* mask with MAC supported features */
2036 if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2037 phy_set_max_speed(phy_dev, 1000);
2038 phy_remove_link_mode(phy_dev,
2039 ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2040 #if !defined(CONFIG_M5272)
2041 phy_support_sym_pause(phy_dev);
2042 #endif
2043 }
2044 else
2045 phy_set_max_speed(phy_dev, 100);
2046
2047 fep->link = 0;
2048 fep->full_duplex = 0;
2049
2050 phy_attached_info(phy_dev);
2051
2052 return 0;
2053 }
2054
fec_enet_mii_init(struct platform_device * pdev)2055 static int fec_enet_mii_init(struct platform_device *pdev)
2056 {
2057 static struct mii_bus *fec0_mii_bus;
2058 struct net_device *ndev = platform_get_drvdata(pdev);
2059 struct fec_enet_private *fep = netdev_priv(ndev);
2060 bool suppress_preamble = false;
2061 struct device_node *node;
2062 int err = -ENXIO;
2063 u32 mii_speed, holdtime;
2064 u32 bus_freq;
2065
2066 /*
2067 * The i.MX28 dual fec interfaces are not equal.
2068 * Here are the differences:
2069 *
2070 * - fec0 supports MII & RMII modes while fec1 only supports RMII
2071 * - fec0 acts as the 1588 time master while fec1 is slave
2072 * - external phys can only be configured by fec0
2073 *
2074 * That is to say fec1 can not work independently. It only works
2075 * when fec0 is working. The reason behind this design is that the
2076 * second interface is added primarily for Switch mode.
2077 *
2078 * Because of the last point above, both phys are attached on fec0
2079 * mdio interface in board design, and need to be configured by
2080 * fec0 mii_bus.
2081 */
2082 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2083 /* fec1 uses fec0 mii_bus */
2084 if (mii_cnt && fec0_mii_bus) {
2085 fep->mii_bus = fec0_mii_bus;
2086 mii_cnt++;
2087 return 0;
2088 }
2089 return -ENOENT;
2090 }
2091
2092 bus_freq = 2500000; /* 2.5MHz by default */
2093 node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2094 if (node) {
2095 of_property_read_u32(node, "clock-frequency", &bus_freq);
2096 suppress_preamble = of_property_read_bool(node,
2097 "suppress-preamble");
2098 }
2099
2100 /*
2101 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2102 *
2103 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2104 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
2105 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2106 * document.
2107 */
2108 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2109 if (fep->quirks & FEC_QUIRK_ENET_MAC)
2110 mii_speed--;
2111 if (mii_speed > 63) {
2112 dev_err(&pdev->dev,
2113 "fec clock (%lu) too fast to get right mii speed\n",
2114 clk_get_rate(fep->clk_ipg));
2115 err = -EINVAL;
2116 goto err_out;
2117 }
2118
2119 /*
2120 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2121 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2122 * versions are RAZ there, so just ignore the difference and write the
2123 * register always.
2124 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2125 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2126 * output.
2127 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2128 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2129 * holdtime cannot result in a value greater than 3.
2130 */
2131 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2132
2133 fep->phy_speed = mii_speed << 1 | holdtime << 8;
2134
2135 if (suppress_preamble)
2136 fep->phy_speed |= BIT(7);
2137
2138 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2139 /* Clear MMFR to avoid to generate MII event by writing MSCR.
2140 * MII event generation condition:
2141 * - writing MSCR:
2142 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2143 * mscr_reg_data_in[7:0] != 0
2144 * - writing MMFR:
2145 * - mscr[7:0]_not_zero
2146 */
2147 writel(0, fep->hwp + FEC_MII_DATA);
2148 }
2149
2150 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2151
2152 /* Clear any pending transaction complete indication */
2153 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2154
2155 fep->mii_bus = mdiobus_alloc();
2156 if (fep->mii_bus == NULL) {
2157 err = -ENOMEM;
2158 goto err_out;
2159 }
2160
2161 fep->mii_bus->name = "fec_enet_mii_bus";
2162 fep->mii_bus->read = fec_enet_mdio_read;
2163 fep->mii_bus->write = fec_enet_mdio_write;
2164 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2165 pdev->name, fep->dev_id + 1);
2166 fep->mii_bus->priv = fep;
2167 fep->mii_bus->parent = &pdev->dev;
2168
2169 err = of_mdiobus_register(fep->mii_bus, node);
2170 if (err)
2171 goto err_out_free_mdiobus;
2172 of_node_put(node);
2173
2174 mii_cnt++;
2175
2176 /* save fec0 mii_bus */
2177 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2178 fec0_mii_bus = fep->mii_bus;
2179
2180 return 0;
2181
2182 err_out_free_mdiobus:
2183 mdiobus_free(fep->mii_bus);
2184 err_out:
2185 of_node_put(node);
2186 return err;
2187 }
2188
fec_enet_mii_remove(struct fec_enet_private * fep)2189 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2190 {
2191 if (--mii_cnt == 0) {
2192 mdiobus_unregister(fep->mii_bus);
2193 mdiobus_free(fep->mii_bus);
2194 }
2195 }
2196
fec_enet_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)2197 static void fec_enet_get_drvinfo(struct net_device *ndev,
2198 struct ethtool_drvinfo *info)
2199 {
2200 struct fec_enet_private *fep = netdev_priv(ndev);
2201
2202 strlcpy(info->driver, fep->pdev->dev.driver->name,
2203 sizeof(info->driver));
2204 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2205 }
2206
fec_enet_get_regs_len(struct net_device * ndev)2207 static int fec_enet_get_regs_len(struct net_device *ndev)
2208 {
2209 struct fec_enet_private *fep = netdev_priv(ndev);
2210 struct resource *r;
2211 int s = 0;
2212
2213 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2214 if (r)
2215 s = resource_size(r);
2216
2217 return s;
2218 }
2219
2220 /* List of registers that can be safety be read to dump them with ethtool */
2221 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2222 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2223 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2224 static __u32 fec_enet_register_version = 2;
2225 static u32 fec_enet_register_offset[] = {
2226 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2227 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2228 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2229 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2230 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2231 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2232 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2233 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2234 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2235 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2236 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2237 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2238 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2239 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2240 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2241 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2242 RMON_T_P_GTE2048, RMON_T_OCTETS,
2243 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2244 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2245 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2246 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2247 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2248 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2249 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2250 RMON_R_P_GTE2048, RMON_R_OCTETS,
2251 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2252 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2253 };
2254 /* for i.MX6ul */
2255 static u32 fec_enet_register_offset_6ul[] = {
2256 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2257 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2258 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2259 FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2260 FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2261 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2262 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2263 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2264 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2265 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2266 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2267 RMON_T_P_GTE2048, RMON_T_OCTETS,
2268 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2269 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2270 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2271 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2272 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2273 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2274 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2275 RMON_R_P_GTE2048, RMON_R_OCTETS,
2276 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2277 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2278 };
2279 #else
2280 static __u32 fec_enet_register_version = 1;
2281 static u32 fec_enet_register_offset[] = {
2282 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2283 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2284 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2285 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2286 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2287 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2288 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2289 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2290 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2291 };
2292 #endif
2293
fec_enet_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * regbuf)2294 static void fec_enet_get_regs(struct net_device *ndev,
2295 struct ethtool_regs *regs, void *regbuf)
2296 {
2297 struct fec_enet_private *fep = netdev_priv(ndev);
2298 u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2299 struct device *dev = &fep->pdev->dev;
2300 u32 *buf = (u32 *)regbuf;
2301 u32 i, off;
2302 int ret;
2303 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2304 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2305 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2306 u32 *reg_list;
2307 u32 reg_cnt;
2308
2309 if (!of_machine_is_compatible("fsl,imx6ul")) {
2310 reg_list = fec_enet_register_offset;
2311 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2312 } else {
2313 reg_list = fec_enet_register_offset_6ul;
2314 reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2315 }
2316 #else
2317 /* coldfire */
2318 static u32 *reg_list = fec_enet_register_offset;
2319 static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2320 #endif
2321 ret = pm_runtime_resume_and_get(dev);
2322 if (ret < 0)
2323 return;
2324
2325 regs->version = fec_enet_register_version;
2326
2327 memset(buf, 0, regs->len);
2328
2329 for (i = 0; i < reg_cnt; i++) {
2330 off = reg_list[i];
2331
2332 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2333 !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2334 continue;
2335
2336 off >>= 2;
2337 buf[off] = readl(&theregs[off]);
2338 }
2339
2340 pm_runtime_mark_last_busy(dev);
2341 pm_runtime_put_autosuspend(dev);
2342 }
2343
fec_enet_get_ts_info(struct net_device * ndev,struct ethtool_ts_info * info)2344 static int fec_enet_get_ts_info(struct net_device *ndev,
2345 struct ethtool_ts_info *info)
2346 {
2347 struct fec_enet_private *fep = netdev_priv(ndev);
2348
2349 if (fep->bufdesc_ex) {
2350
2351 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2352 SOF_TIMESTAMPING_RX_SOFTWARE |
2353 SOF_TIMESTAMPING_SOFTWARE |
2354 SOF_TIMESTAMPING_TX_HARDWARE |
2355 SOF_TIMESTAMPING_RX_HARDWARE |
2356 SOF_TIMESTAMPING_RAW_HARDWARE;
2357 if (fep->ptp_clock)
2358 info->phc_index = ptp_clock_index(fep->ptp_clock);
2359 else
2360 info->phc_index = -1;
2361
2362 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2363 (1 << HWTSTAMP_TX_ON);
2364
2365 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2366 (1 << HWTSTAMP_FILTER_ALL);
2367 return 0;
2368 } else {
2369 return ethtool_op_get_ts_info(ndev, info);
2370 }
2371 }
2372
2373 #if !defined(CONFIG_M5272)
2374
fec_enet_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2375 static void fec_enet_get_pauseparam(struct net_device *ndev,
2376 struct ethtool_pauseparam *pause)
2377 {
2378 struct fec_enet_private *fep = netdev_priv(ndev);
2379
2380 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2381 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2382 pause->rx_pause = pause->tx_pause;
2383 }
2384
fec_enet_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2385 static int fec_enet_set_pauseparam(struct net_device *ndev,
2386 struct ethtool_pauseparam *pause)
2387 {
2388 struct fec_enet_private *fep = netdev_priv(ndev);
2389
2390 if (!ndev->phydev)
2391 return -ENODEV;
2392
2393 if (pause->tx_pause != pause->rx_pause) {
2394 netdev_info(ndev,
2395 "hardware only support enable/disable both tx and rx");
2396 return -EINVAL;
2397 }
2398
2399 fep->pause_flag = 0;
2400
2401 /* tx pause must be same as rx pause */
2402 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2403 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2404
2405 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2406 pause->autoneg);
2407
2408 if (pause->autoneg) {
2409 if (netif_running(ndev))
2410 fec_stop(ndev);
2411 phy_start_aneg(ndev->phydev);
2412 }
2413 if (netif_running(ndev)) {
2414 napi_disable(&fep->napi);
2415 netif_tx_lock_bh(ndev);
2416 fec_restart(ndev);
2417 netif_tx_wake_all_queues(ndev);
2418 netif_tx_unlock_bh(ndev);
2419 napi_enable(&fep->napi);
2420 }
2421
2422 return 0;
2423 }
2424
2425 static const struct fec_stat {
2426 char name[ETH_GSTRING_LEN];
2427 u16 offset;
2428 } fec_stats[] = {
2429 /* RMON TX */
2430 { "tx_dropped", RMON_T_DROP },
2431 { "tx_packets", RMON_T_PACKETS },
2432 { "tx_broadcast", RMON_T_BC_PKT },
2433 { "tx_multicast", RMON_T_MC_PKT },
2434 { "tx_crc_errors", RMON_T_CRC_ALIGN },
2435 { "tx_undersize", RMON_T_UNDERSIZE },
2436 { "tx_oversize", RMON_T_OVERSIZE },
2437 { "tx_fragment", RMON_T_FRAG },
2438 { "tx_jabber", RMON_T_JAB },
2439 { "tx_collision", RMON_T_COL },
2440 { "tx_64byte", RMON_T_P64 },
2441 { "tx_65to127byte", RMON_T_P65TO127 },
2442 { "tx_128to255byte", RMON_T_P128TO255 },
2443 { "tx_256to511byte", RMON_T_P256TO511 },
2444 { "tx_512to1023byte", RMON_T_P512TO1023 },
2445 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2446 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2447 { "tx_octets", RMON_T_OCTETS },
2448
2449 /* IEEE TX */
2450 { "IEEE_tx_drop", IEEE_T_DROP },
2451 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2452 { "IEEE_tx_1col", IEEE_T_1COL },
2453 { "IEEE_tx_mcol", IEEE_T_MCOL },
2454 { "IEEE_tx_def", IEEE_T_DEF },
2455 { "IEEE_tx_lcol", IEEE_T_LCOL },
2456 { "IEEE_tx_excol", IEEE_T_EXCOL },
2457 { "IEEE_tx_macerr", IEEE_T_MACERR },
2458 { "IEEE_tx_cserr", IEEE_T_CSERR },
2459 { "IEEE_tx_sqe", IEEE_T_SQE },
2460 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2461 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2462
2463 /* RMON RX */
2464 { "rx_packets", RMON_R_PACKETS },
2465 { "rx_broadcast", RMON_R_BC_PKT },
2466 { "rx_multicast", RMON_R_MC_PKT },
2467 { "rx_crc_errors", RMON_R_CRC_ALIGN },
2468 { "rx_undersize", RMON_R_UNDERSIZE },
2469 { "rx_oversize", RMON_R_OVERSIZE },
2470 { "rx_fragment", RMON_R_FRAG },
2471 { "rx_jabber", RMON_R_JAB },
2472 { "rx_64byte", RMON_R_P64 },
2473 { "rx_65to127byte", RMON_R_P65TO127 },
2474 { "rx_128to255byte", RMON_R_P128TO255 },
2475 { "rx_256to511byte", RMON_R_P256TO511 },
2476 { "rx_512to1023byte", RMON_R_P512TO1023 },
2477 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2478 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2479 { "rx_octets", RMON_R_OCTETS },
2480
2481 /* IEEE RX */
2482 { "IEEE_rx_drop", IEEE_R_DROP },
2483 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2484 { "IEEE_rx_crc", IEEE_R_CRC },
2485 { "IEEE_rx_align", IEEE_R_ALIGN },
2486 { "IEEE_rx_macerr", IEEE_R_MACERR },
2487 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2488 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2489 };
2490
2491 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64))
2492
fec_enet_update_ethtool_stats(struct net_device * dev)2493 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2494 {
2495 struct fec_enet_private *fep = netdev_priv(dev);
2496 int i;
2497
2498 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2499 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2500 }
2501
fec_enet_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)2502 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2503 struct ethtool_stats *stats, u64 *data)
2504 {
2505 struct fec_enet_private *fep = netdev_priv(dev);
2506
2507 if (netif_running(dev))
2508 fec_enet_update_ethtool_stats(dev);
2509
2510 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2511 }
2512
fec_enet_get_strings(struct net_device * netdev,u32 stringset,u8 * data)2513 static void fec_enet_get_strings(struct net_device *netdev,
2514 u32 stringset, u8 *data)
2515 {
2516 int i;
2517 switch (stringset) {
2518 case ETH_SS_STATS:
2519 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2520 memcpy(data + i * ETH_GSTRING_LEN,
2521 fec_stats[i].name, ETH_GSTRING_LEN);
2522 break;
2523 }
2524 }
2525
fec_enet_get_sset_count(struct net_device * dev,int sset)2526 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2527 {
2528 switch (sset) {
2529 case ETH_SS_STATS:
2530 return ARRAY_SIZE(fec_stats);
2531 default:
2532 return -EOPNOTSUPP;
2533 }
2534 }
2535
fec_enet_clear_ethtool_stats(struct net_device * dev)2536 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2537 {
2538 struct fec_enet_private *fep = netdev_priv(dev);
2539 int i;
2540
2541 /* Disable MIB statistics counters */
2542 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2543
2544 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2545 writel(0, fep->hwp + fec_stats[i].offset);
2546
2547 /* Don't disable MIB statistics counters */
2548 writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2549 }
2550
2551 #else /* !defined(CONFIG_M5272) */
2552 #define FEC_STATS_SIZE 0
fec_enet_update_ethtool_stats(struct net_device * dev)2553 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2554 {
2555 }
2556
fec_enet_clear_ethtool_stats(struct net_device * dev)2557 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2558 {
2559 }
2560 #endif /* !defined(CONFIG_M5272) */
2561
2562 /* ITR clock source is enet system clock (clk_ahb).
2563 * TCTT unit is cycle_ns * 64 cycle
2564 * So, the ICTT value = X us / (cycle_ns * 64)
2565 */
fec_enet_us_to_itr_clock(struct net_device * ndev,int us)2566 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2567 {
2568 struct fec_enet_private *fep = netdev_priv(ndev);
2569
2570 return us * (fep->itr_clk_rate / 64000) / 1000;
2571 }
2572
2573 /* Set threshold for interrupt coalescing */
fec_enet_itr_coal_set(struct net_device * ndev)2574 static void fec_enet_itr_coal_set(struct net_device *ndev)
2575 {
2576 struct fec_enet_private *fep = netdev_priv(ndev);
2577 int rx_itr, tx_itr;
2578
2579 /* Must be greater than zero to avoid unpredictable behavior */
2580 if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2581 !fep->tx_time_itr || !fep->tx_pkts_itr)
2582 return;
2583
2584 /* Select enet system clock as Interrupt Coalescing
2585 * timer Clock Source
2586 */
2587 rx_itr = FEC_ITR_CLK_SEL;
2588 tx_itr = FEC_ITR_CLK_SEL;
2589
2590 /* set ICFT and ICTT */
2591 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2592 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2593 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2594 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2595
2596 rx_itr |= FEC_ITR_EN;
2597 tx_itr |= FEC_ITR_EN;
2598
2599 writel(tx_itr, fep->hwp + FEC_TXIC0);
2600 writel(rx_itr, fep->hwp + FEC_RXIC0);
2601 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2602 writel(tx_itr, fep->hwp + FEC_TXIC1);
2603 writel(rx_itr, fep->hwp + FEC_RXIC1);
2604 writel(tx_itr, fep->hwp + FEC_TXIC2);
2605 writel(rx_itr, fep->hwp + FEC_RXIC2);
2606 }
2607 }
2608
2609 static int
fec_enet_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec)2610 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2611 {
2612 struct fec_enet_private *fep = netdev_priv(ndev);
2613
2614 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2615 return -EOPNOTSUPP;
2616
2617 ec->rx_coalesce_usecs = fep->rx_time_itr;
2618 ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2619
2620 ec->tx_coalesce_usecs = fep->tx_time_itr;
2621 ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2622
2623 return 0;
2624 }
2625
2626 static int
fec_enet_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec)2627 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2628 {
2629 struct fec_enet_private *fep = netdev_priv(ndev);
2630 struct device *dev = &fep->pdev->dev;
2631 unsigned int cycle;
2632
2633 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2634 return -EOPNOTSUPP;
2635
2636 if (ec->rx_max_coalesced_frames > 255) {
2637 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2638 return -EINVAL;
2639 }
2640
2641 if (ec->tx_max_coalesced_frames > 255) {
2642 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2643 return -EINVAL;
2644 }
2645
2646 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2647 if (cycle > 0xFFFF) {
2648 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2649 return -EINVAL;
2650 }
2651
2652 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2653 if (cycle > 0xFFFF) {
2654 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2655 return -EINVAL;
2656 }
2657
2658 fep->rx_time_itr = ec->rx_coalesce_usecs;
2659 fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2660
2661 fep->tx_time_itr = ec->tx_coalesce_usecs;
2662 fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2663
2664 fec_enet_itr_coal_set(ndev);
2665
2666 return 0;
2667 }
2668
fec_enet_itr_coal_init(struct net_device * ndev)2669 static void fec_enet_itr_coal_init(struct net_device *ndev)
2670 {
2671 struct ethtool_coalesce ec;
2672
2673 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2674 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2675
2676 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2677 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2678
2679 fec_enet_set_coalesce(ndev, &ec);
2680 }
2681
fec_enet_get_tunable(struct net_device * netdev,const struct ethtool_tunable * tuna,void * data)2682 static int fec_enet_get_tunable(struct net_device *netdev,
2683 const struct ethtool_tunable *tuna,
2684 void *data)
2685 {
2686 struct fec_enet_private *fep = netdev_priv(netdev);
2687 int ret = 0;
2688
2689 switch (tuna->id) {
2690 case ETHTOOL_RX_COPYBREAK:
2691 *(u32 *)data = fep->rx_copybreak;
2692 break;
2693 default:
2694 ret = -EINVAL;
2695 break;
2696 }
2697
2698 return ret;
2699 }
2700
fec_enet_set_tunable(struct net_device * netdev,const struct ethtool_tunable * tuna,const void * data)2701 static int fec_enet_set_tunable(struct net_device *netdev,
2702 const struct ethtool_tunable *tuna,
2703 const void *data)
2704 {
2705 struct fec_enet_private *fep = netdev_priv(netdev);
2706 int ret = 0;
2707
2708 switch (tuna->id) {
2709 case ETHTOOL_RX_COPYBREAK:
2710 fep->rx_copybreak = *(u32 *)data;
2711 break;
2712 default:
2713 ret = -EINVAL;
2714 break;
2715 }
2716
2717 return ret;
2718 }
2719
2720 static void
fec_enet_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)2721 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2722 {
2723 struct fec_enet_private *fep = netdev_priv(ndev);
2724
2725 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2726 wol->supported = WAKE_MAGIC;
2727 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2728 } else {
2729 wol->supported = wol->wolopts = 0;
2730 }
2731 }
2732
2733 static int
fec_enet_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)2734 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2735 {
2736 struct fec_enet_private *fep = netdev_priv(ndev);
2737
2738 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2739 return -EINVAL;
2740
2741 if (wol->wolopts & ~WAKE_MAGIC)
2742 return -EINVAL;
2743
2744 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2745 if (device_may_wakeup(&ndev->dev)) {
2746 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2747 if (fep->irq[0] > 0)
2748 enable_irq_wake(fep->irq[0]);
2749 } else {
2750 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2751 if (fep->irq[0] > 0)
2752 disable_irq_wake(fep->irq[0]);
2753 }
2754
2755 return 0;
2756 }
2757
2758 static const struct ethtool_ops fec_enet_ethtool_ops = {
2759 .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2760 ETHTOOL_COALESCE_MAX_FRAMES,
2761 .get_drvinfo = fec_enet_get_drvinfo,
2762 .get_regs_len = fec_enet_get_regs_len,
2763 .get_regs = fec_enet_get_regs,
2764 .nway_reset = phy_ethtool_nway_reset,
2765 .get_link = ethtool_op_get_link,
2766 .get_coalesce = fec_enet_get_coalesce,
2767 .set_coalesce = fec_enet_set_coalesce,
2768 #ifndef CONFIG_M5272
2769 .get_pauseparam = fec_enet_get_pauseparam,
2770 .set_pauseparam = fec_enet_set_pauseparam,
2771 .get_strings = fec_enet_get_strings,
2772 .get_ethtool_stats = fec_enet_get_ethtool_stats,
2773 .get_sset_count = fec_enet_get_sset_count,
2774 #endif
2775 .get_ts_info = fec_enet_get_ts_info,
2776 .get_tunable = fec_enet_get_tunable,
2777 .set_tunable = fec_enet_set_tunable,
2778 .get_wol = fec_enet_get_wol,
2779 .set_wol = fec_enet_set_wol,
2780 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2781 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2782 };
2783
fec_enet_ioctl(struct net_device * ndev,struct ifreq * rq,int cmd)2784 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2785 {
2786 struct fec_enet_private *fep = netdev_priv(ndev);
2787 struct phy_device *phydev = ndev->phydev;
2788
2789 if (!netif_running(ndev))
2790 return -EINVAL;
2791
2792 if (!phydev)
2793 return -ENODEV;
2794
2795 if (fep->bufdesc_ex) {
2796 bool use_fec_hwts = !phy_has_hwtstamp(phydev);
2797
2798 if (cmd == SIOCSHWTSTAMP) {
2799 if (use_fec_hwts)
2800 return fec_ptp_set(ndev, rq);
2801 fec_ptp_disable_hwts(ndev);
2802 } else if (cmd == SIOCGHWTSTAMP) {
2803 if (use_fec_hwts)
2804 return fec_ptp_get(ndev, rq);
2805 }
2806 }
2807
2808 return phy_mii_ioctl(phydev, rq, cmd);
2809 }
2810
fec_enet_free_buffers(struct net_device * ndev)2811 static void fec_enet_free_buffers(struct net_device *ndev)
2812 {
2813 struct fec_enet_private *fep = netdev_priv(ndev);
2814 unsigned int i;
2815 struct sk_buff *skb;
2816 struct bufdesc *bdp;
2817 struct fec_enet_priv_tx_q *txq;
2818 struct fec_enet_priv_rx_q *rxq;
2819 unsigned int q;
2820
2821 for (q = 0; q < fep->num_rx_queues; q++) {
2822 rxq = fep->rx_queue[q];
2823 bdp = rxq->bd.base;
2824 for (i = 0; i < rxq->bd.ring_size; i++) {
2825 skb = rxq->rx_skbuff[i];
2826 rxq->rx_skbuff[i] = NULL;
2827 if (skb) {
2828 dma_unmap_single(&fep->pdev->dev,
2829 fec32_to_cpu(bdp->cbd_bufaddr),
2830 FEC_ENET_RX_FRSIZE - fep->rx_align,
2831 DMA_FROM_DEVICE);
2832 dev_kfree_skb(skb);
2833 }
2834 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2835 }
2836 }
2837
2838 for (q = 0; q < fep->num_tx_queues; q++) {
2839 txq = fep->tx_queue[q];
2840 for (i = 0; i < txq->bd.ring_size; i++) {
2841 kfree(txq->tx_bounce[i]);
2842 txq->tx_bounce[i] = NULL;
2843 skb = txq->tx_skbuff[i];
2844 txq->tx_skbuff[i] = NULL;
2845 dev_kfree_skb(skb);
2846 }
2847 }
2848 }
2849
fec_enet_free_queue(struct net_device * ndev)2850 static void fec_enet_free_queue(struct net_device *ndev)
2851 {
2852 struct fec_enet_private *fep = netdev_priv(ndev);
2853 int i;
2854 struct fec_enet_priv_tx_q *txq;
2855
2856 for (i = 0; i < fep->num_tx_queues; i++)
2857 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2858 txq = fep->tx_queue[i];
2859 dma_free_coherent(&fep->pdev->dev,
2860 txq->bd.ring_size * TSO_HEADER_SIZE,
2861 txq->tso_hdrs,
2862 txq->tso_hdrs_dma);
2863 }
2864
2865 for (i = 0; i < fep->num_rx_queues; i++)
2866 kfree(fep->rx_queue[i]);
2867 for (i = 0; i < fep->num_tx_queues; i++)
2868 kfree(fep->tx_queue[i]);
2869 }
2870
fec_enet_alloc_queue(struct net_device * ndev)2871 static int fec_enet_alloc_queue(struct net_device *ndev)
2872 {
2873 struct fec_enet_private *fep = netdev_priv(ndev);
2874 int i;
2875 int ret = 0;
2876 struct fec_enet_priv_tx_q *txq;
2877
2878 for (i = 0; i < fep->num_tx_queues; i++) {
2879 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2880 if (!txq) {
2881 ret = -ENOMEM;
2882 goto alloc_failed;
2883 }
2884
2885 fep->tx_queue[i] = txq;
2886 txq->bd.ring_size = TX_RING_SIZE;
2887 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2888
2889 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2890 txq->tx_wake_threshold =
2891 (txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2892
2893 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2894 txq->bd.ring_size * TSO_HEADER_SIZE,
2895 &txq->tso_hdrs_dma,
2896 GFP_KERNEL);
2897 if (!txq->tso_hdrs) {
2898 ret = -ENOMEM;
2899 goto alloc_failed;
2900 }
2901 }
2902
2903 for (i = 0; i < fep->num_rx_queues; i++) {
2904 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2905 GFP_KERNEL);
2906 if (!fep->rx_queue[i]) {
2907 ret = -ENOMEM;
2908 goto alloc_failed;
2909 }
2910
2911 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2912 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2913 }
2914 return ret;
2915
2916 alloc_failed:
2917 fec_enet_free_queue(ndev);
2918 return ret;
2919 }
2920
2921 static int
fec_enet_alloc_rxq_buffers(struct net_device * ndev,unsigned int queue)2922 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2923 {
2924 struct fec_enet_private *fep = netdev_priv(ndev);
2925 unsigned int i;
2926 struct sk_buff *skb;
2927 struct bufdesc *bdp;
2928 struct fec_enet_priv_rx_q *rxq;
2929
2930 rxq = fep->rx_queue[queue];
2931 bdp = rxq->bd.base;
2932 for (i = 0; i < rxq->bd.ring_size; i++) {
2933 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2934 if (!skb)
2935 goto err_alloc;
2936
2937 if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2938 dev_kfree_skb(skb);
2939 goto err_alloc;
2940 }
2941
2942 rxq->rx_skbuff[i] = skb;
2943 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2944
2945 if (fep->bufdesc_ex) {
2946 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2947 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2948 }
2949
2950 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2951 }
2952
2953 /* Set the last buffer to wrap. */
2954 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2955 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2956 return 0;
2957
2958 err_alloc:
2959 fec_enet_free_buffers(ndev);
2960 return -ENOMEM;
2961 }
2962
2963 static int
fec_enet_alloc_txq_buffers(struct net_device * ndev,unsigned int queue)2964 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2965 {
2966 struct fec_enet_private *fep = netdev_priv(ndev);
2967 unsigned int i;
2968 struct bufdesc *bdp;
2969 struct fec_enet_priv_tx_q *txq;
2970
2971 txq = fep->tx_queue[queue];
2972 bdp = txq->bd.base;
2973 for (i = 0; i < txq->bd.ring_size; i++) {
2974 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2975 if (!txq->tx_bounce[i])
2976 goto err_alloc;
2977
2978 bdp->cbd_sc = cpu_to_fec16(0);
2979 bdp->cbd_bufaddr = cpu_to_fec32(0);
2980
2981 if (fep->bufdesc_ex) {
2982 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2983 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2984 }
2985
2986 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2987 }
2988
2989 /* Set the last buffer to wrap. */
2990 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2991 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2992
2993 return 0;
2994
2995 err_alloc:
2996 fec_enet_free_buffers(ndev);
2997 return -ENOMEM;
2998 }
2999
fec_enet_alloc_buffers(struct net_device * ndev)3000 static int fec_enet_alloc_buffers(struct net_device *ndev)
3001 {
3002 struct fec_enet_private *fep = netdev_priv(ndev);
3003 unsigned int i;
3004
3005 for (i = 0; i < fep->num_rx_queues; i++)
3006 if (fec_enet_alloc_rxq_buffers(ndev, i))
3007 return -ENOMEM;
3008
3009 for (i = 0; i < fep->num_tx_queues; i++)
3010 if (fec_enet_alloc_txq_buffers(ndev, i))
3011 return -ENOMEM;
3012 return 0;
3013 }
3014
3015 static int
fec_enet_open(struct net_device * ndev)3016 fec_enet_open(struct net_device *ndev)
3017 {
3018 struct fec_enet_private *fep = netdev_priv(ndev);
3019 int ret;
3020 bool reset_again;
3021
3022 ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3023 if (ret < 0)
3024 return ret;
3025
3026 pinctrl_pm_select_default_state(&fep->pdev->dev);
3027 ret = fec_enet_clk_enable(ndev, true);
3028 if (ret)
3029 goto clk_enable;
3030
3031 /* During the first fec_enet_open call the PHY isn't probed at this
3032 * point. Therefore the phy_reset_after_clk_enable() call within
3033 * fec_enet_clk_enable() fails. As we need this reset in order to be
3034 * sure the PHY is working correctly we check if we need to reset again
3035 * later when the PHY is probed
3036 */
3037 if (ndev->phydev && ndev->phydev->drv)
3038 reset_again = false;
3039 else
3040 reset_again = true;
3041
3042 /* I should reset the ring buffers here, but I don't yet know
3043 * a simple way to do that.
3044 */
3045
3046 ret = fec_enet_alloc_buffers(ndev);
3047 if (ret)
3048 goto err_enet_alloc;
3049
3050 /* Init MAC prior to mii bus probe */
3051 fec_restart(ndev);
3052
3053 /* Call phy_reset_after_clk_enable() again if it failed during
3054 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3055 */
3056 if (reset_again)
3057 fec_enet_phy_reset_after_clk_enable(ndev);
3058
3059 /* Probe and connect to PHY when open the interface */
3060 ret = fec_enet_mii_probe(ndev);
3061 if (ret)
3062 goto err_enet_mii_probe;
3063
3064 if (fep->quirks & FEC_QUIRK_ERR006687)
3065 imx6q_cpuidle_fec_irqs_used();
3066
3067 napi_enable(&fep->napi);
3068 phy_start(ndev->phydev);
3069 netif_tx_start_all_queues(ndev);
3070
3071 device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3072 FEC_WOL_FLAG_ENABLE);
3073
3074 return 0;
3075
3076 err_enet_mii_probe:
3077 fec_enet_free_buffers(ndev);
3078 err_enet_alloc:
3079 fec_enet_clk_enable(ndev, false);
3080 clk_enable:
3081 pm_runtime_mark_last_busy(&fep->pdev->dev);
3082 pm_runtime_put_autosuspend(&fep->pdev->dev);
3083 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3084 return ret;
3085 }
3086
3087 static int
fec_enet_close(struct net_device * ndev)3088 fec_enet_close(struct net_device *ndev)
3089 {
3090 struct fec_enet_private *fep = netdev_priv(ndev);
3091
3092 phy_stop(ndev->phydev);
3093
3094 if (netif_device_present(ndev)) {
3095 napi_disable(&fep->napi);
3096 netif_tx_disable(ndev);
3097 fec_stop(ndev);
3098 }
3099
3100 phy_disconnect(ndev->phydev);
3101
3102 if (fep->quirks & FEC_QUIRK_ERR006687)
3103 imx6q_cpuidle_fec_irqs_unused();
3104
3105 fec_enet_update_ethtool_stats(ndev);
3106
3107 fec_enet_clk_enable(ndev, false);
3108 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3109 pm_runtime_mark_last_busy(&fep->pdev->dev);
3110 pm_runtime_put_autosuspend(&fep->pdev->dev);
3111
3112 fec_enet_free_buffers(ndev);
3113
3114 return 0;
3115 }
3116
3117 /* Set or clear the multicast filter for this adaptor.
3118 * Skeleton taken from sunlance driver.
3119 * The CPM Ethernet implementation allows Multicast as well as individual
3120 * MAC address filtering. Some of the drivers check to make sure it is
3121 * a group multicast address, and discard those that are not. I guess I
3122 * will do the same for now, but just remove the test if you want
3123 * individual filtering as well (do the upper net layers want or support
3124 * this kind of feature?).
3125 */
3126
3127 #define FEC_HASH_BITS 6 /* #bits in hash */
3128
set_multicast_list(struct net_device * ndev)3129 static void set_multicast_list(struct net_device *ndev)
3130 {
3131 struct fec_enet_private *fep = netdev_priv(ndev);
3132 struct netdev_hw_addr *ha;
3133 unsigned int crc, tmp;
3134 unsigned char hash;
3135 unsigned int hash_high = 0, hash_low = 0;
3136
3137 if (ndev->flags & IFF_PROMISC) {
3138 tmp = readl(fep->hwp + FEC_R_CNTRL);
3139 tmp |= 0x8;
3140 writel(tmp, fep->hwp + FEC_R_CNTRL);
3141 return;
3142 }
3143
3144 tmp = readl(fep->hwp + FEC_R_CNTRL);
3145 tmp &= ~0x8;
3146 writel(tmp, fep->hwp + FEC_R_CNTRL);
3147
3148 if (ndev->flags & IFF_ALLMULTI) {
3149 /* Catch all multicast addresses, so set the
3150 * filter to all 1's
3151 */
3152 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3153 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3154
3155 return;
3156 }
3157
3158 /* Add the addresses in hash register */
3159 netdev_for_each_mc_addr(ha, ndev) {
3160 /* calculate crc32 value of mac address */
3161 crc = ether_crc_le(ndev->addr_len, ha->addr);
3162
3163 /* only upper 6 bits (FEC_HASH_BITS) are used
3164 * which point to specific bit in the hash registers
3165 */
3166 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3167
3168 if (hash > 31)
3169 hash_high |= 1 << (hash - 32);
3170 else
3171 hash_low |= 1 << hash;
3172 }
3173
3174 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3175 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3176 }
3177
3178 /* Set a MAC change in hardware. */
3179 static int
fec_set_mac_address(struct net_device * ndev,void * p)3180 fec_set_mac_address(struct net_device *ndev, void *p)
3181 {
3182 struct fec_enet_private *fep = netdev_priv(ndev);
3183 struct sockaddr *addr = p;
3184
3185 if (addr) {
3186 if (!is_valid_ether_addr(addr->sa_data))
3187 return -EADDRNOTAVAIL;
3188 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3189 }
3190
3191 /* Add netif status check here to avoid system hang in below case:
3192 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3193 * After ethx down, fec all clocks are gated off and then register
3194 * access causes system hang.
3195 */
3196 if (!netif_running(ndev))
3197 return 0;
3198
3199 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3200 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3201 fep->hwp + FEC_ADDR_LOW);
3202 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3203 fep->hwp + FEC_ADDR_HIGH);
3204 return 0;
3205 }
3206
3207 #ifdef CONFIG_NET_POLL_CONTROLLER
3208 /**
3209 * fec_poll_controller - FEC Poll controller function
3210 * @dev: The FEC network adapter
3211 *
3212 * Polled functionality used by netconsole and others in non interrupt mode
3213 *
3214 */
fec_poll_controller(struct net_device * dev)3215 static void fec_poll_controller(struct net_device *dev)
3216 {
3217 int i;
3218 struct fec_enet_private *fep = netdev_priv(dev);
3219
3220 for (i = 0; i < FEC_IRQ_NUM; i++) {
3221 if (fep->irq[i] > 0) {
3222 disable_irq(fep->irq[i]);
3223 fec_enet_interrupt(fep->irq[i], dev);
3224 enable_irq(fep->irq[i]);
3225 }
3226 }
3227 }
3228 #endif
3229
fec_enet_set_netdev_features(struct net_device * netdev,netdev_features_t features)3230 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3231 netdev_features_t features)
3232 {
3233 struct fec_enet_private *fep = netdev_priv(netdev);
3234 netdev_features_t changed = features ^ netdev->features;
3235
3236 netdev->features = features;
3237
3238 /* Receive checksum has been changed */
3239 if (changed & NETIF_F_RXCSUM) {
3240 if (features & NETIF_F_RXCSUM)
3241 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3242 else
3243 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3244 }
3245 }
3246
fec_set_features(struct net_device * netdev,netdev_features_t features)3247 static int fec_set_features(struct net_device *netdev,
3248 netdev_features_t features)
3249 {
3250 struct fec_enet_private *fep = netdev_priv(netdev);
3251 netdev_features_t changed = features ^ netdev->features;
3252
3253 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3254 napi_disable(&fep->napi);
3255 netif_tx_lock_bh(netdev);
3256 fec_stop(netdev);
3257 fec_enet_set_netdev_features(netdev, features);
3258 fec_restart(netdev);
3259 netif_tx_wake_all_queues(netdev);
3260 netif_tx_unlock_bh(netdev);
3261 napi_enable(&fep->napi);
3262 } else {
3263 fec_enet_set_netdev_features(netdev, features);
3264 }
3265
3266 return 0;
3267 }
3268
fec_enet_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)3269 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3270 struct net_device *sb_dev)
3271 {
3272 struct fec_enet_private *fep = netdev_priv(ndev);
3273 u16 vlan_tag = 0;
3274
3275 if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3276 return netdev_pick_tx(ndev, skb, NULL);
3277
3278 /* VLAN is present in the payload.*/
3279 if (eth_type_vlan(skb->protocol)) {
3280 struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3281
3282 vlan_tag = ntohs(vhdr->h_vlan_TCI);
3283 /* VLAN is present in the skb but not yet pushed in the payload.*/
3284 } else if (skb_vlan_tag_present(skb)) {
3285 vlan_tag = skb->vlan_tci;
3286 } else {
3287 return vlan_tag;
3288 }
3289
3290 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3291 }
3292
3293 static const struct net_device_ops fec_netdev_ops = {
3294 .ndo_open = fec_enet_open,
3295 .ndo_stop = fec_enet_close,
3296 .ndo_start_xmit = fec_enet_start_xmit,
3297 .ndo_select_queue = fec_enet_select_queue,
3298 .ndo_set_rx_mode = set_multicast_list,
3299 .ndo_validate_addr = eth_validate_addr,
3300 .ndo_tx_timeout = fec_timeout,
3301 .ndo_set_mac_address = fec_set_mac_address,
3302 .ndo_do_ioctl = fec_enet_ioctl,
3303 #ifdef CONFIG_NET_POLL_CONTROLLER
3304 .ndo_poll_controller = fec_poll_controller,
3305 #endif
3306 .ndo_set_features = fec_set_features,
3307 };
3308
3309 static const unsigned short offset_des_active_rxq[] = {
3310 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3311 };
3312
3313 static const unsigned short offset_des_active_txq[] = {
3314 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3315 };
3316
3317 /*
3318 * XXX: We need to clean up on failure exits here.
3319 *
3320 */
fec_enet_init(struct net_device * ndev)3321 static int fec_enet_init(struct net_device *ndev)
3322 {
3323 struct fec_enet_private *fep = netdev_priv(ndev);
3324 struct bufdesc *cbd_base;
3325 dma_addr_t bd_dma;
3326 int bd_size;
3327 unsigned int i;
3328 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3329 sizeof(struct bufdesc);
3330 unsigned dsize_log2 = __fls(dsize);
3331 int ret;
3332
3333 WARN_ON(dsize != (1 << dsize_log2));
3334 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3335 fep->rx_align = 0xf;
3336 fep->tx_align = 0xf;
3337 #else
3338 fep->rx_align = 0x3;
3339 fep->tx_align = 0x3;
3340 #endif
3341
3342 /* Check mask of the streaming and coherent API */
3343 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3344 if (ret < 0) {
3345 dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3346 return ret;
3347 }
3348
3349 ret = fec_enet_alloc_queue(ndev);
3350 if (ret)
3351 return ret;
3352
3353 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3354
3355 /* Allocate memory for buffer descriptors. */
3356 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3357 GFP_KERNEL);
3358 if (!cbd_base) {
3359 ret = -ENOMEM;
3360 goto free_queue_mem;
3361 }
3362
3363 /* Get the Ethernet address */
3364 fec_get_mac(ndev);
3365 /* make sure MAC we just acquired is programmed into the hw */
3366 fec_set_mac_address(ndev, NULL);
3367
3368 /* Set receive and transmit descriptor base. */
3369 for (i = 0; i < fep->num_rx_queues; i++) {
3370 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3371 unsigned size = dsize * rxq->bd.ring_size;
3372
3373 rxq->bd.qid = i;
3374 rxq->bd.base = cbd_base;
3375 rxq->bd.cur = cbd_base;
3376 rxq->bd.dma = bd_dma;
3377 rxq->bd.dsize = dsize;
3378 rxq->bd.dsize_log2 = dsize_log2;
3379 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3380 bd_dma += size;
3381 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3382 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3383 }
3384
3385 for (i = 0; i < fep->num_tx_queues; i++) {
3386 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3387 unsigned size = dsize * txq->bd.ring_size;
3388
3389 txq->bd.qid = i;
3390 txq->bd.base = cbd_base;
3391 txq->bd.cur = cbd_base;
3392 txq->bd.dma = bd_dma;
3393 txq->bd.dsize = dsize;
3394 txq->bd.dsize_log2 = dsize_log2;
3395 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3396 bd_dma += size;
3397 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3398 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3399 }
3400
3401
3402 /* The FEC Ethernet specific entries in the device structure */
3403 ndev->watchdog_timeo = TX_TIMEOUT;
3404 ndev->netdev_ops = &fec_netdev_ops;
3405 ndev->ethtool_ops = &fec_enet_ethtool_ops;
3406
3407 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3408 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3409
3410 if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3411 /* enable hw VLAN support */
3412 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3413
3414 if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3415 ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3416
3417 /* enable hw accelerator */
3418 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3419 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3420 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3421 }
3422
3423 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3424 fep->tx_align = 0;
3425 fep->rx_align = 0x3f;
3426 }
3427
3428 ndev->hw_features = ndev->features;
3429
3430 fec_restart(ndev);
3431
3432 if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3433 fec_enet_clear_ethtool_stats(ndev);
3434 else
3435 fec_enet_update_ethtool_stats(ndev);
3436
3437 return 0;
3438
3439 free_queue_mem:
3440 fec_enet_free_queue(ndev);
3441 return ret;
3442 }
3443
3444 #ifdef CONFIG_OF
fec_reset_phy(struct platform_device * pdev)3445 static int fec_reset_phy(struct platform_device *pdev)
3446 {
3447 int err, phy_reset;
3448 bool active_high = false;
3449 int msec = 1, phy_post_delay = 0;
3450 struct device_node *np = pdev->dev.of_node;
3451
3452 if (!np)
3453 return 0;
3454
3455 err = of_property_read_u32(np, "phy-reset-duration", &msec);
3456 /* A sane reset duration should not be longer than 1s */
3457 if (!err && msec > 1000)
3458 msec = 1;
3459
3460 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3461 if (phy_reset == -EPROBE_DEFER)
3462 return phy_reset;
3463 else if (!gpio_is_valid(phy_reset))
3464 return 0;
3465
3466 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3467 /* valid reset duration should be less than 1s */
3468 if (!err && phy_post_delay > 1000)
3469 return -EINVAL;
3470
3471 active_high = of_property_read_bool(np, "phy-reset-active-high");
3472
3473 err = devm_gpio_request_one(&pdev->dev, phy_reset,
3474 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3475 "phy-reset");
3476 if (err) {
3477 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3478 return err;
3479 }
3480
3481 if (msec > 20)
3482 msleep(msec);
3483 else
3484 usleep_range(msec * 1000, msec * 1000 + 1000);
3485
3486 gpio_set_value_cansleep(phy_reset, !active_high);
3487
3488 if (!phy_post_delay)
3489 return 0;
3490
3491 if (phy_post_delay > 20)
3492 msleep(phy_post_delay);
3493 else
3494 usleep_range(phy_post_delay * 1000,
3495 phy_post_delay * 1000 + 1000);
3496
3497 return 0;
3498 }
3499 #else /* CONFIG_OF */
fec_reset_phy(struct platform_device * pdev)3500 static int fec_reset_phy(struct platform_device *pdev)
3501 {
3502 /*
3503 * In case of platform probe, the reset has been done
3504 * by machine code.
3505 */
3506 return 0;
3507 }
3508 #endif /* CONFIG_OF */
3509
3510 static void
fec_enet_get_queue_num(struct platform_device * pdev,int * num_tx,int * num_rx)3511 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3512 {
3513 struct device_node *np = pdev->dev.of_node;
3514
3515 *num_tx = *num_rx = 1;
3516
3517 if (!np || !of_device_is_available(np))
3518 return;
3519
3520 /* parse the num of tx and rx queues */
3521 of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3522
3523 of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3524
3525 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3526 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3527 *num_tx);
3528 *num_tx = 1;
3529 return;
3530 }
3531
3532 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3533 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3534 *num_rx);
3535 *num_rx = 1;
3536 return;
3537 }
3538
3539 }
3540
fec_enet_get_irq_cnt(struct platform_device * pdev)3541 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3542 {
3543 int irq_cnt = platform_irq_count(pdev);
3544
3545 if (irq_cnt > FEC_IRQ_NUM)
3546 irq_cnt = FEC_IRQ_NUM; /* last for pps */
3547 else if (irq_cnt == 2)
3548 irq_cnt = 1; /* last for pps */
3549 else if (irq_cnt <= 0)
3550 irq_cnt = 1; /* At least 1 irq is needed */
3551 return irq_cnt;
3552 }
3553
fec_enet_init_stop_mode(struct fec_enet_private * fep,struct device_node * np)3554 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3555 struct device_node *np)
3556 {
3557 struct device_node *gpr_np;
3558 u32 out_val[3];
3559 int ret = 0;
3560
3561 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
3562 if (!gpr_np)
3563 return 0;
3564
3565 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
3566 ARRAY_SIZE(out_val));
3567 if (ret) {
3568 dev_dbg(&fep->pdev->dev, "no stop mode property\n");
3569 goto out;
3570 }
3571
3572 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3573 if (IS_ERR(fep->stop_gpr.gpr)) {
3574 dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3575 ret = PTR_ERR(fep->stop_gpr.gpr);
3576 fep->stop_gpr.gpr = NULL;
3577 goto out;
3578 }
3579
3580 fep->stop_gpr.reg = out_val[1];
3581 fep->stop_gpr.bit = out_val[2];
3582
3583 out:
3584 of_node_put(gpr_np);
3585
3586 return ret;
3587 }
3588
3589 static int
fec_probe(struct platform_device * pdev)3590 fec_probe(struct platform_device *pdev)
3591 {
3592 struct fec_enet_private *fep;
3593 struct fec_platform_data *pdata;
3594 phy_interface_t interface;
3595 struct net_device *ndev;
3596 int i, irq, ret = 0;
3597 const struct of_device_id *of_id;
3598 static int dev_id;
3599 struct device_node *np = pdev->dev.of_node, *phy_node;
3600 int num_tx_qs;
3601 int num_rx_qs;
3602 char irq_name[8];
3603 int irq_cnt;
3604 struct fec_devinfo *dev_info;
3605
3606 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3607
3608 /* Init network device */
3609 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3610 FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3611 if (!ndev)
3612 return -ENOMEM;
3613
3614 SET_NETDEV_DEV(ndev, &pdev->dev);
3615
3616 /* setup board info structure */
3617 fep = netdev_priv(ndev);
3618
3619 of_id = of_match_device(fec_dt_ids, &pdev->dev);
3620 if (of_id)
3621 pdev->id_entry = of_id->data;
3622 dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3623 if (dev_info)
3624 fep->quirks = dev_info->quirks;
3625
3626 fep->netdev = ndev;
3627 fep->num_rx_queues = num_rx_qs;
3628 fep->num_tx_queues = num_tx_qs;
3629
3630 #if !defined(CONFIG_M5272)
3631 /* default enable pause frame auto negotiation */
3632 if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3633 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3634 #endif
3635
3636 /* Select default pin state */
3637 pinctrl_pm_select_default_state(&pdev->dev);
3638
3639 fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3640 if (IS_ERR(fep->hwp)) {
3641 ret = PTR_ERR(fep->hwp);
3642 goto failed_ioremap;
3643 }
3644
3645 fep->pdev = pdev;
3646 fep->dev_id = dev_id++;
3647
3648 platform_set_drvdata(pdev, ndev);
3649
3650 if ((of_machine_is_compatible("fsl,imx6q") ||
3651 of_machine_is_compatible("fsl,imx6dl")) &&
3652 !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3653 fep->quirks |= FEC_QUIRK_ERR006687;
3654
3655 if (of_get_property(np, "fsl,magic-packet", NULL))
3656 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3657
3658 ret = fec_enet_init_stop_mode(fep, np);
3659 if (ret)
3660 goto failed_stop_mode;
3661
3662 phy_node = of_parse_phandle(np, "phy-handle", 0);
3663 if (!phy_node && of_phy_is_fixed_link(np)) {
3664 ret = of_phy_register_fixed_link(np);
3665 if (ret < 0) {
3666 dev_err(&pdev->dev,
3667 "broken fixed-link specification\n");
3668 goto failed_phy;
3669 }
3670 phy_node = of_node_get(np);
3671 }
3672 fep->phy_node = phy_node;
3673
3674 ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3675 if (ret) {
3676 pdata = dev_get_platdata(&pdev->dev);
3677 if (pdata)
3678 fep->phy_interface = pdata->phy;
3679 else
3680 fep->phy_interface = PHY_INTERFACE_MODE_MII;
3681 } else {
3682 fep->phy_interface = interface;
3683 }
3684
3685 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3686 if (IS_ERR(fep->clk_ipg)) {
3687 ret = PTR_ERR(fep->clk_ipg);
3688 goto failed_clk;
3689 }
3690
3691 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3692 if (IS_ERR(fep->clk_ahb)) {
3693 ret = PTR_ERR(fep->clk_ahb);
3694 goto failed_clk;
3695 }
3696
3697 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3698
3699 /* enet_out is optional, depends on board */
3700 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3701 if (IS_ERR(fep->clk_enet_out))
3702 fep->clk_enet_out = NULL;
3703
3704 fep->ptp_clk_on = false;
3705 mutex_init(&fep->ptp_clk_mutex);
3706
3707 /* clk_ref is optional, depends on board */
3708 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3709 if (IS_ERR(fep->clk_ref))
3710 fep->clk_ref = NULL;
3711
3712 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3713 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3714 if (IS_ERR(fep->clk_ptp)) {
3715 fep->clk_ptp = NULL;
3716 fep->bufdesc_ex = false;
3717 }
3718
3719 ret = fec_enet_clk_enable(ndev, true);
3720 if (ret)
3721 goto failed_clk;
3722
3723 ret = clk_prepare_enable(fep->clk_ipg);
3724 if (ret)
3725 goto failed_clk_ipg;
3726 ret = clk_prepare_enable(fep->clk_ahb);
3727 if (ret)
3728 goto failed_clk_ahb;
3729
3730 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3731 if (!IS_ERR(fep->reg_phy)) {
3732 ret = regulator_enable(fep->reg_phy);
3733 if (ret) {
3734 dev_err(&pdev->dev,
3735 "Failed to enable phy regulator: %d\n", ret);
3736 goto failed_regulator;
3737 }
3738 } else {
3739 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3740 ret = -EPROBE_DEFER;
3741 goto failed_regulator;
3742 }
3743 fep->reg_phy = NULL;
3744 }
3745
3746 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3747 pm_runtime_use_autosuspend(&pdev->dev);
3748 pm_runtime_get_noresume(&pdev->dev);
3749 pm_runtime_set_active(&pdev->dev);
3750 pm_runtime_enable(&pdev->dev);
3751
3752 ret = fec_reset_phy(pdev);
3753 if (ret)
3754 goto failed_reset;
3755
3756 irq_cnt = fec_enet_get_irq_cnt(pdev);
3757 if (fep->bufdesc_ex)
3758 fec_ptp_init(pdev, irq_cnt);
3759
3760 ret = fec_enet_init(ndev);
3761 if (ret)
3762 goto failed_init;
3763
3764 for (i = 0; i < irq_cnt; i++) {
3765 snprintf(irq_name, sizeof(irq_name), "int%d", i);
3766 irq = platform_get_irq_byname_optional(pdev, irq_name);
3767 if (irq < 0)
3768 irq = platform_get_irq(pdev, i);
3769 if (irq < 0) {
3770 ret = irq;
3771 goto failed_irq;
3772 }
3773 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3774 0, pdev->name, ndev);
3775 if (ret)
3776 goto failed_irq;
3777
3778 fep->irq[i] = irq;
3779 }
3780
3781 ret = fec_enet_mii_init(pdev);
3782 if (ret)
3783 goto failed_mii_init;
3784
3785 /* Carrier starts down, phylib will bring it up */
3786 netif_carrier_off(ndev);
3787 fec_enet_clk_enable(ndev, false);
3788 pinctrl_pm_select_sleep_state(&pdev->dev);
3789
3790 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
3791
3792 ret = register_netdev(ndev);
3793 if (ret)
3794 goto failed_register;
3795
3796 device_init_wakeup(&ndev->dev, fep->wol_flag &
3797 FEC_WOL_HAS_MAGIC_PACKET);
3798
3799 if (fep->bufdesc_ex && fep->ptp_clock)
3800 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3801
3802 fep->rx_copybreak = COPYBREAK_DEFAULT;
3803 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3804
3805 pm_runtime_mark_last_busy(&pdev->dev);
3806 pm_runtime_put_autosuspend(&pdev->dev);
3807
3808 return 0;
3809
3810 failed_register:
3811 fec_enet_mii_remove(fep);
3812 failed_mii_init:
3813 failed_irq:
3814 failed_init:
3815 fec_ptp_stop(pdev);
3816 failed_reset:
3817 pm_runtime_put_noidle(&pdev->dev);
3818 pm_runtime_disable(&pdev->dev);
3819 if (fep->reg_phy)
3820 regulator_disable(fep->reg_phy);
3821 failed_regulator:
3822 clk_disable_unprepare(fep->clk_ahb);
3823 failed_clk_ahb:
3824 clk_disable_unprepare(fep->clk_ipg);
3825 failed_clk_ipg:
3826 fec_enet_clk_enable(ndev, false);
3827 failed_clk:
3828 if (of_phy_is_fixed_link(np))
3829 of_phy_deregister_fixed_link(np);
3830 of_node_put(phy_node);
3831 failed_stop_mode:
3832 failed_phy:
3833 dev_id--;
3834 failed_ioremap:
3835 free_netdev(ndev);
3836
3837 return ret;
3838 }
3839
3840 static int
fec_drv_remove(struct platform_device * pdev)3841 fec_drv_remove(struct platform_device *pdev)
3842 {
3843 struct net_device *ndev = platform_get_drvdata(pdev);
3844 struct fec_enet_private *fep = netdev_priv(ndev);
3845 struct device_node *np = pdev->dev.of_node;
3846 int ret;
3847
3848 ret = pm_runtime_get_sync(&pdev->dev);
3849 if (ret < 0)
3850 dev_err(&pdev->dev,
3851 "Failed to resume device in remove callback (%pe)\n",
3852 ERR_PTR(ret));
3853
3854 cancel_work_sync(&fep->tx_timeout_work);
3855 fec_ptp_stop(pdev);
3856 unregister_netdev(ndev);
3857 fec_enet_mii_remove(fep);
3858 if (fep->reg_phy)
3859 regulator_disable(fep->reg_phy);
3860
3861 if (of_phy_is_fixed_link(np))
3862 of_phy_deregister_fixed_link(np);
3863 of_node_put(fep->phy_node);
3864
3865 /* After pm_runtime_get_sync() failed, the clks are still off, so skip
3866 * disabling them again.
3867 */
3868 if (ret >= 0) {
3869 clk_disable_unprepare(fep->clk_ahb);
3870 clk_disable_unprepare(fep->clk_ipg);
3871 }
3872 pm_runtime_put_noidle(&pdev->dev);
3873 pm_runtime_disable(&pdev->dev);
3874
3875 free_netdev(ndev);
3876 return 0;
3877 }
3878
fec_suspend(struct device * dev)3879 static int __maybe_unused fec_suspend(struct device *dev)
3880 {
3881 struct net_device *ndev = dev_get_drvdata(dev);
3882 struct fec_enet_private *fep = netdev_priv(ndev);
3883
3884 rtnl_lock();
3885 if (netif_running(ndev)) {
3886 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3887 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3888 phy_stop(ndev->phydev);
3889 napi_disable(&fep->napi);
3890 netif_tx_lock_bh(ndev);
3891 netif_device_detach(ndev);
3892 netif_tx_unlock_bh(ndev);
3893 fec_stop(ndev);
3894 fec_enet_clk_enable(ndev, false);
3895 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3896 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3897 }
3898 rtnl_unlock();
3899
3900 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3901 regulator_disable(fep->reg_phy);
3902
3903 /* SOC supply clock to phy, when clock is disabled, phy link down
3904 * SOC control phy regulator, when regulator is disabled, phy link down
3905 */
3906 if (fep->clk_enet_out || fep->reg_phy)
3907 fep->link = 0;
3908
3909 return 0;
3910 }
3911
fec_resume(struct device * dev)3912 static int __maybe_unused fec_resume(struct device *dev)
3913 {
3914 struct net_device *ndev = dev_get_drvdata(dev);
3915 struct fec_enet_private *fep = netdev_priv(ndev);
3916 int ret;
3917 int val;
3918
3919 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3920 ret = regulator_enable(fep->reg_phy);
3921 if (ret)
3922 return ret;
3923 }
3924
3925 rtnl_lock();
3926 if (netif_running(ndev)) {
3927 ret = fec_enet_clk_enable(ndev, true);
3928 if (ret) {
3929 rtnl_unlock();
3930 goto failed_clk;
3931 }
3932 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3933 fec_enet_stop_mode(fep, false);
3934
3935 val = readl(fep->hwp + FEC_ECNTRL);
3936 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3937 writel(val, fep->hwp + FEC_ECNTRL);
3938 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3939 } else {
3940 pinctrl_pm_select_default_state(&fep->pdev->dev);
3941 }
3942 fec_restart(ndev);
3943 netif_tx_lock_bh(ndev);
3944 netif_device_attach(ndev);
3945 netif_tx_unlock_bh(ndev);
3946 napi_enable(&fep->napi);
3947 phy_start(ndev->phydev);
3948 }
3949 rtnl_unlock();
3950
3951 return 0;
3952
3953 failed_clk:
3954 if (fep->reg_phy)
3955 regulator_disable(fep->reg_phy);
3956 return ret;
3957 }
3958
fec_runtime_suspend(struct device * dev)3959 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3960 {
3961 struct net_device *ndev = dev_get_drvdata(dev);
3962 struct fec_enet_private *fep = netdev_priv(ndev);
3963
3964 clk_disable_unprepare(fep->clk_ahb);
3965 clk_disable_unprepare(fep->clk_ipg);
3966
3967 return 0;
3968 }
3969
fec_runtime_resume(struct device * dev)3970 static int __maybe_unused fec_runtime_resume(struct device *dev)
3971 {
3972 struct net_device *ndev = dev_get_drvdata(dev);
3973 struct fec_enet_private *fep = netdev_priv(ndev);
3974 int ret;
3975
3976 ret = clk_prepare_enable(fep->clk_ahb);
3977 if (ret)
3978 return ret;
3979 ret = clk_prepare_enable(fep->clk_ipg);
3980 if (ret)
3981 goto failed_clk_ipg;
3982
3983 return 0;
3984
3985 failed_clk_ipg:
3986 clk_disable_unprepare(fep->clk_ahb);
3987 return ret;
3988 }
3989
3990 static const struct dev_pm_ops fec_pm_ops = {
3991 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3992 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3993 };
3994
3995 static struct platform_driver fec_driver = {
3996 .driver = {
3997 .name = DRIVER_NAME,
3998 .pm = &fec_pm_ops,
3999 .of_match_table = fec_dt_ids,
4000 .suppress_bind_attrs = true,
4001 },
4002 .id_table = fec_devtype,
4003 .probe = fec_probe,
4004 .remove = fec_drv_remove,
4005 };
4006
4007 module_platform_driver(fec_driver);
4008
4009 MODULE_ALIAS("platform:"DRIVER_NAME);
4010 MODULE_LICENSE("GPL");
4011