• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/tso.h>
42 #include <linux/tcp.h>
43 #include <linux/udp.h>
44 #include <linux/icmp.h>
45 #include <linux/spinlock.h>
46 #include <linux/workqueue.h>
47 #include <linux/bitops.h>
48 #include <linux/io.h>
49 #include <linux/irq.h>
50 #include <linux/clk.h>
51 #include <linux/crc32.h>
52 #include <linux/platform_device.h>
53 #include <linux/mdio.h>
54 #include <linux/phy.h>
55 #include <linux/fec.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/of_gpio.h>
59 #include <linux/of_mdio.h>
60 #include <linux/of_net.h>
61 #include <linux/regulator/consumer.h>
62 #include <linux/if_vlan.h>
63 #include <linux/pinctrl/consumer.h>
64 #include <linux/prefetch.h>
65 #include <linux/mfd/syscon.h>
66 #include <linux/regmap.h>
67 #include <soc/imx/cpuidle.h>
68 
69 #include <asm/cacheflush.h>
70 
71 #include "fec.h"
72 
73 static void set_multicast_list(struct net_device *ndev);
74 static void fec_enet_itr_coal_init(struct net_device *ndev);
75 
76 #define DRIVER_NAME	"fec"
77 
78 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
79 
80 /* Pause frame feild and FIFO threshold */
81 #define FEC_ENET_FCE	(1 << 5)
82 #define FEC_ENET_RSEM_V	0x84
83 #define FEC_ENET_RSFL_V	16
84 #define FEC_ENET_RAEM_V	0x8
85 #define FEC_ENET_RAFL_V	0x8
86 #define FEC_ENET_OPD_V	0xFFF0
87 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
88 
89 struct fec_devinfo {
90 	u32 quirks;
91 };
92 
93 static const struct fec_devinfo fec_imx25_info = {
94 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
95 		  FEC_QUIRK_HAS_FRREG,
96 };
97 
98 static const struct fec_devinfo fec_imx27_info = {
99 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
100 };
101 
102 static const struct fec_devinfo fec_imx28_info = {
103 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
104 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
105 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII,
106 };
107 
108 static const struct fec_devinfo fec_imx6q_info = {
109 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
110 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
111 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
112 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII,
113 };
114 
115 static const struct fec_devinfo fec_mvf600_info = {
116 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
117 };
118 
119 static const struct fec_devinfo fec_imx6x_info = {
120 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
121 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
122 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
123 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
124 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
125 		  FEC_QUIRK_CLEAR_SETUP_MII,
126 };
127 
128 static const struct fec_devinfo fec_imx6ul_info = {
129 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
130 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
131 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
132 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
133 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII,
134 };
135 
136 static struct platform_device_id fec_devtype[] = {
137 	{
138 		/* keep it for coldfire */
139 		.name = DRIVER_NAME,
140 		.driver_data = 0,
141 	}, {
142 		.name = "imx25-fec",
143 		.driver_data = (kernel_ulong_t)&fec_imx25_info,
144 	}, {
145 		.name = "imx27-fec",
146 		.driver_data = (kernel_ulong_t)&fec_imx27_info,
147 	}, {
148 		.name = "imx28-fec",
149 		.driver_data = (kernel_ulong_t)&fec_imx28_info,
150 	}, {
151 		.name = "imx6q-fec",
152 		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
153 	}, {
154 		.name = "mvf600-fec",
155 		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
156 	}, {
157 		.name = "imx6sx-fec",
158 		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
159 	}, {
160 		.name = "imx6ul-fec",
161 		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
162 	}, {
163 		/* sentinel */
164 	}
165 };
166 MODULE_DEVICE_TABLE(platform, fec_devtype);
167 
168 enum imx_fec_type {
169 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
170 	IMX27_FEC,	/* runs on i.mx27/35/51 */
171 	IMX28_FEC,
172 	IMX6Q_FEC,
173 	MVF600_FEC,
174 	IMX6SX_FEC,
175 	IMX6UL_FEC,
176 };
177 
178 static const struct of_device_id fec_dt_ids[] = {
179 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
180 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
181 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
182 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
183 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
184 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
185 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
186 	{ /* sentinel */ }
187 };
188 MODULE_DEVICE_TABLE(of, fec_dt_ids);
189 
190 static unsigned char macaddr[ETH_ALEN];
191 module_param_array(macaddr, byte, NULL, 0);
192 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
193 
194 #if defined(CONFIG_M5272)
195 /*
196  * Some hardware gets it MAC address out of local flash memory.
197  * if this is non-zero then assume it is the address to get MAC from.
198  */
199 #if defined(CONFIG_NETtel)
200 #define	FEC_FLASHMAC	0xf0006006
201 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
202 #define	FEC_FLASHMAC	0xf0006000
203 #elif defined(CONFIG_CANCam)
204 #define	FEC_FLASHMAC	0xf0020000
205 #elif defined (CONFIG_M5272C3)
206 #define	FEC_FLASHMAC	(0xffe04000 + 4)
207 #elif defined(CONFIG_MOD5272)
208 #define FEC_FLASHMAC	0xffc0406b
209 #else
210 #define	FEC_FLASHMAC	0
211 #endif
212 #endif /* CONFIG_M5272 */
213 
214 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
215  *
216  * 2048 byte skbufs are allocated. However, alignment requirements
217  * varies between FEC variants. Worst case is 64, so round down by 64.
218  */
219 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
220 #define PKT_MINBUF_SIZE		64
221 
222 /* FEC receive acceleration */
223 #define FEC_RACC_IPDIS		(1 << 1)
224 #define FEC_RACC_PRODIS		(1 << 2)
225 #define FEC_RACC_SHIFT16	BIT(7)
226 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
227 
228 /* MIB Control Register */
229 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
230 
231 /*
232  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
233  * size bits. Other FEC hardware does not, so we need to take that into
234  * account when setting it.
235  */
236 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
237     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
238     defined(CONFIG_ARM64)
239 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
240 #else
241 #define	OPT_FRAME_SIZE	0
242 #endif
243 
244 /* FEC MII MMFR bits definition */
245 #define FEC_MMFR_ST		(1 << 30)
246 #define FEC_MMFR_ST_C45		(0)
247 #define FEC_MMFR_OP_READ	(2 << 28)
248 #define FEC_MMFR_OP_READ_C45	(3 << 28)
249 #define FEC_MMFR_OP_WRITE	(1 << 28)
250 #define FEC_MMFR_OP_ADDR_WRITE	(0)
251 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
252 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
253 #define FEC_MMFR_TA		(2 << 16)
254 #define FEC_MMFR_DATA(v)	(v & 0xffff)
255 /* FEC ECR bits definition */
256 #define FEC_ECR_MAGICEN		(1 << 2)
257 #define FEC_ECR_SLEEP		(1 << 3)
258 
259 #define FEC_MII_TIMEOUT		30000 /* us */
260 
261 /* Transmitter timeout */
262 #define TX_TIMEOUT (2 * HZ)
263 
264 #define FEC_PAUSE_FLAG_AUTONEG	0x1
265 #define FEC_PAUSE_FLAG_ENABLE	0x2
266 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
267 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
268 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
269 
270 #define COPYBREAK_DEFAULT	256
271 
272 /* Max number of allowed TCP segments for software TSO */
273 #define FEC_MAX_TSO_SEGS	100
274 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
275 
276 #define IS_TSO_HEADER(txq, addr) \
277 	((addr >= txq->tso_hdrs_dma) && \
278 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
279 
280 static int mii_cnt;
281 
fec_enet_get_nextdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)282 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
283 					     struct bufdesc_prop *bd)
284 {
285 	return (bdp >= bd->last) ? bd->base
286 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
287 }
288 
fec_enet_get_prevdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)289 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
290 					     struct bufdesc_prop *bd)
291 {
292 	return (bdp <= bd->base) ? bd->last
293 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
294 }
295 
fec_enet_get_bd_index(struct bufdesc * bdp,struct bufdesc_prop * bd)296 static int fec_enet_get_bd_index(struct bufdesc *bdp,
297 				 struct bufdesc_prop *bd)
298 {
299 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
300 }
301 
fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q * txq)302 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
303 {
304 	int entries;
305 
306 	entries = (((const char *)txq->dirty_tx -
307 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
308 
309 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
310 }
311 
swap_buffer(void * bufaddr,int len)312 static void swap_buffer(void *bufaddr, int len)
313 {
314 	int i;
315 	unsigned int *buf = bufaddr;
316 
317 	for (i = 0; i < len; i += 4, buf++)
318 		swab32s(buf);
319 }
320 
swap_buffer2(void * dst_buf,void * src_buf,int len)321 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
322 {
323 	int i;
324 	unsigned int *src = src_buf;
325 	unsigned int *dst = dst_buf;
326 
327 	for (i = 0; i < len; i += 4, src++, dst++)
328 		*dst = swab32p(src);
329 }
330 
fec_dump(struct net_device * ndev)331 static void fec_dump(struct net_device *ndev)
332 {
333 	struct fec_enet_private *fep = netdev_priv(ndev);
334 	struct bufdesc *bdp;
335 	struct fec_enet_priv_tx_q *txq;
336 	int index = 0;
337 
338 	netdev_info(ndev, "TX ring dump\n");
339 	pr_info("Nr     SC     addr       len  SKB\n");
340 
341 	txq = fep->tx_queue[0];
342 	bdp = txq->bd.base;
343 
344 	do {
345 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
346 			index,
347 			bdp == txq->bd.cur ? 'S' : ' ',
348 			bdp == txq->dirty_tx ? 'H' : ' ',
349 			fec16_to_cpu(bdp->cbd_sc),
350 			fec32_to_cpu(bdp->cbd_bufaddr),
351 			fec16_to_cpu(bdp->cbd_datlen),
352 			txq->tx_skbuff[index]);
353 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
354 		index++;
355 	} while (bdp != txq->bd.base);
356 }
357 
is_ipv4_pkt(struct sk_buff * skb)358 static inline bool is_ipv4_pkt(struct sk_buff *skb)
359 {
360 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
361 }
362 
363 static int
fec_enet_clear_csum(struct sk_buff * skb,struct net_device * ndev)364 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
365 {
366 	/* Only run for packets requiring a checksum. */
367 	if (skb->ip_summed != CHECKSUM_PARTIAL)
368 		return 0;
369 
370 	if (unlikely(skb_cow_head(skb, 0)))
371 		return -1;
372 
373 	if (is_ipv4_pkt(skb))
374 		ip_hdr(skb)->check = 0;
375 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
376 
377 	return 0;
378 }
379 
380 static struct bufdesc *
fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)381 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
382 			     struct sk_buff *skb,
383 			     struct net_device *ndev)
384 {
385 	struct fec_enet_private *fep = netdev_priv(ndev);
386 	struct bufdesc *bdp = txq->bd.cur;
387 	struct bufdesc_ex *ebdp;
388 	int nr_frags = skb_shinfo(skb)->nr_frags;
389 	int frag, frag_len;
390 	unsigned short status;
391 	unsigned int estatus = 0;
392 	skb_frag_t *this_frag;
393 	unsigned int index;
394 	void *bufaddr;
395 	dma_addr_t addr;
396 	int i;
397 
398 	for (frag = 0; frag < nr_frags; frag++) {
399 		this_frag = &skb_shinfo(skb)->frags[frag];
400 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
401 		ebdp = (struct bufdesc_ex *)bdp;
402 
403 		status = fec16_to_cpu(bdp->cbd_sc);
404 		status &= ~BD_ENET_TX_STATS;
405 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
406 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
407 
408 		/* Handle the last BD specially */
409 		if (frag == nr_frags - 1) {
410 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
411 			if (fep->bufdesc_ex) {
412 				estatus |= BD_ENET_TX_INT;
413 				if (unlikely(skb_shinfo(skb)->tx_flags &
414 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
415 					estatus |= BD_ENET_TX_TS;
416 			}
417 		}
418 
419 		if (fep->bufdesc_ex) {
420 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
421 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
422 			if (skb->ip_summed == CHECKSUM_PARTIAL)
423 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
424 			ebdp->cbd_bdu = 0;
425 			ebdp->cbd_esc = cpu_to_fec32(estatus);
426 		}
427 
428 		bufaddr = skb_frag_address(this_frag);
429 
430 		index = fec_enet_get_bd_index(bdp, &txq->bd);
431 		if (((unsigned long) bufaddr) & fep->tx_align ||
432 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
433 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
434 			bufaddr = txq->tx_bounce[index];
435 
436 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
437 				swap_buffer(bufaddr, frag_len);
438 		}
439 
440 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
441 				      DMA_TO_DEVICE);
442 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
443 			if (net_ratelimit())
444 				netdev_err(ndev, "Tx DMA memory map failed\n");
445 			goto dma_mapping_error;
446 		}
447 
448 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
449 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
450 		/* Make sure the updates to rest of the descriptor are
451 		 * performed before transferring ownership.
452 		 */
453 		wmb();
454 		bdp->cbd_sc = cpu_to_fec16(status);
455 	}
456 
457 	return bdp;
458 dma_mapping_error:
459 	bdp = txq->bd.cur;
460 	for (i = 0; i < frag; i++) {
461 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
462 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
463 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
464 	}
465 	return ERR_PTR(-ENOMEM);
466 }
467 
fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)468 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
469 				   struct sk_buff *skb, struct net_device *ndev)
470 {
471 	struct fec_enet_private *fep = netdev_priv(ndev);
472 	int nr_frags = skb_shinfo(skb)->nr_frags;
473 	struct bufdesc *bdp, *last_bdp;
474 	void *bufaddr;
475 	dma_addr_t addr;
476 	unsigned short status;
477 	unsigned short buflen;
478 	unsigned int estatus = 0;
479 	unsigned int index;
480 	int entries_free;
481 
482 	entries_free = fec_enet_get_free_txdesc_num(txq);
483 	if (entries_free < MAX_SKB_FRAGS + 1) {
484 		dev_kfree_skb_any(skb);
485 		if (net_ratelimit())
486 			netdev_err(ndev, "NOT enough BD for SG!\n");
487 		return NETDEV_TX_OK;
488 	}
489 
490 	/* Protocol checksum off-load for TCP and UDP. */
491 	if (fec_enet_clear_csum(skb, ndev)) {
492 		dev_kfree_skb_any(skb);
493 		return NETDEV_TX_OK;
494 	}
495 
496 	/* Fill in a Tx ring entry */
497 	bdp = txq->bd.cur;
498 	last_bdp = bdp;
499 	status = fec16_to_cpu(bdp->cbd_sc);
500 	status &= ~BD_ENET_TX_STATS;
501 
502 	/* Set buffer length and buffer pointer */
503 	bufaddr = skb->data;
504 	buflen = skb_headlen(skb);
505 
506 	index = fec_enet_get_bd_index(bdp, &txq->bd);
507 	if (((unsigned long) bufaddr) & fep->tx_align ||
508 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
509 		memcpy(txq->tx_bounce[index], skb->data, buflen);
510 		bufaddr = txq->tx_bounce[index];
511 
512 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
513 			swap_buffer(bufaddr, buflen);
514 	}
515 
516 	/* Push the data cache so the CPM does not get stale memory data. */
517 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
518 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
519 		dev_kfree_skb_any(skb);
520 		if (net_ratelimit())
521 			netdev_err(ndev, "Tx DMA memory map failed\n");
522 		return NETDEV_TX_OK;
523 	}
524 
525 	if (nr_frags) {
526 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
527 		if (IS_ERR(last_bdp)) {
528 			dma_unmap_single(&fep->pdev->dev, addr,
529 					 buflen, DMA_TO_DEVICE);
530 			dev_kfree_skb_any(skb);
531 			return NETDEV_TX_OK;
532 		}
533 	} else {
534 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
535 		if (fep->bufdesc_ex) {
536 			estatus = BD_ENET_TX_INT;
537 			if (unlikely(skb_shinfo(skb)->tx_flags &
538 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
539 				estatus |= BD_ENET_TX_TS;
540 		}
541 	}
542 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
543 	bdp->cbd_datlen = cpu_to_fec16(buflen);
544 
545 	if (fep->bufdesc_ex) {
546 
547 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
548 
549 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
550 			fep->hwts_tx_en))
551 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
552 
553 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
554 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
555 
556 		if (skb->ip_summed == CHECKSUM_PARTIAL)
557 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
558 
559 		ebdp->cbd_bdu = 0;
560 		ebdp->cbd_esc = cpu_to_fec32(estatus);
561 	}
562 
563 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
564 	/* Save skb pointer */
565 	txq->tx_skbuff[index] = skb;
566 
567 	/* Make sure the updates to rest of the descriptor are performed before
568 	 * transferring ownership.
569 	 */
570 	wmb();
571 
572 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
573 	 * it's the last BD of the frame, and to put the CRC on the end.
574 	 */
575 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
576 	bdp->cbd_sc = cpu_to_fec16(status);
577 
578 	/* If this was the last BD in the ring, start at the beginning again. */
579 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
580 
581 	skb_tx_timestamp(skb);
582 
583 	/* Make sure the update to bdp and tx_skbuff are performed before
584 	 * txq->bd.cur.
585 	 */
586 	wmb();
587 	txq->bd.cur = bdp;
588 
589 	/* Trigger transmission start */
590 	writel(0, txq->bd.reg_desc_active);
591 
592 	return 0;
593 }
594 
595 static int
fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index,char * data,int size,bool last_tcp,bool is_last)596 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
597 			  struct net_device *ndev,
598 			  struct bufdesc *bdp, int index, char *data,
599 			  int size, bool last_tcp, bool is_last)
600 {
601 	struct fec_enet_private *fep = netdev_priv(ndev);
602 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
603 	unsigned short status;
604 	unsigned int estatus = 0;
605 	dma_addr_t addr;
606 
607 	status = fec16_to_cpu(bdp->cbd_sc);
608 	status &= ~BD_ENET_TX_STATS;
609 
610 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
611 
612 	if (((unsigned long) data) & fep->tx_align ||
613 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
614 		memcpy(txq->tx_bounce[index], data, size);
615 		data = txq->tx_bounce[index];
616 
617 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
618 			swap_buffer(data, size);
619 	}
620 
621 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
622 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
623 		dev_kfree_skb_any(skb);
624 		if (net_ratelimit())
625 			netdev_err(ndev, "Tx DMA memory map failed\n");
626 		return NETDEV_TX_OK;
627 	}
628 
629 	bdp->cbd_datlen = cpu_to_fec16(size);
630 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
631 
632 	if (fep->bufdesc_ex) {
633 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
634 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
635 		if (skb->ip_summed == CHECKSUM_PARTIAL)
636 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
637 		ebdp->cbd_bdu = 0;
638 		ebdp->cbd_esc = cpu_to_fec32(estatus);
639 	}
640 
641 	/* Handle the last BD specially */
642 	if (last_tcp)
643 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
644 	if (is_last) {
645 		status |= BD_ENET_TX_INTR;
646 		if (fep->bufdesc_ex)
647 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
648 	}
649 
650 	bdp->cbd_sc = cpu_to_fec16(status);
651 
652 	return 0;
653 }
654 
655 static int
fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index)656 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
657 			 struct sk_buff *skb, struct net_device *ndev,
658 			 struct bufdesc *bdp, int index)
659 {
660 	struct fec_enet_private *fep = netdev_priv(ndev);
661 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
662 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
663 	void *bufaddr;
664 	unsigned long dmabuf;
665 	unsigned short status;
666 	unsigned int estatus = 0;
667 
668 	status = fec16_to_cpu(bdp->cbd_sc);
669 	status &= ~BD_ENET_TX_STATS;
670 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
671 
672 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
673 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
674 	if (((unsigned long)bufaddr) & fep->tx_align ||
675 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
676 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
677 		bufaddr = txq->tx_bounce[index];
678 
679 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
680 			swap_buffer(bufaddr, hdr_len);
681 
682 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
683 					hdr_len, DMA_TO_DEVICE);
684 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
685 			dev_kfree_skb_any(skb);
686 			if (net_ratelimit())
687 				netdev_err(ndev, "Tx DMA memory map failed\n");
688 			return NETDEV_TX_OK;
689 		}
690 	}
691 
692 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
693 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
694 
695 	if (fep->bufdesc_ex) {
696 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
697 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
698 		if (skb->ip_summed == CHECKSUM_PARTIAL)
699 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
700 		ebdp->cbd_bdu = 0;
701 		ebdp->cbd_esc = cpu_to_fec32(estatus);
702 	}
703 
704 	bdp->cbd_sc = cpu_to_fec16(status);
705 
706 	return 0;
707 }
708 
fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)709 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
710 				   struct sk_buff *skb,
711 				   struct net_device *ndev)
712 {
713 	struct fec_enet_private *fep = netdev_priv(ndev);
714 	int hdr_len, total_len, data_left;
715 	struct bufdesc *bdp = txq->bd.cur;
716 	struct tso_t tso;
717 	unsigned int index = 0;
718 	int ret;
719 
720 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
721 		dev_kfree_skb_any(skb);
722 		if (net_ratelimit())
723 			netdev_err(ndev, "NOT enough BD for TSO!\n");
724 		return NETDEV_TX_OK;
725 	}
726 
727 	/* Protocol checksum off-load for TCP and UDP. */
728 	if (fec_enet_clear_csum(skb, ndev)) {
729 		dev_kfree_skb_any(skb);
730 		return NETDEV_TX_OK;
731 	}
732 
733 	/* Initialize the TSO handler, and prepare the first payload */
734 	hdr_len = tso_start(skb, &tso);
735 
736 	total_len = skb->len - hdr_len;
737 	while (total_len > 0) {
738 		char *hdr;
739 
740 		index = fec_enet_get_bd_index(bdp, &txq->bd);
741 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
742 		total_len -= data_left;
743 
744 		/* prepare packet headers: MAC + IP + TCP */
745 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
746 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
747 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
748 		if (ret)
749 			goto err_release;
750 
751 		while (data_left > 0) {
752 			int size;
753 
754 			size = min_t(int, tso.size, data_left);
755 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
756 			index = fec_enet_get_bd_index(bdp, &txq->bd);
757 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
758 							bdp, index,
759 							tso.data, size,
760 							size == data_left,
761 							total_len == 0);
762 			if (ret)
763 				goto err_release;
764 
765 			data_left -= size;
766 			tso_build_data(skb, &tso, size);
767 		}
768 
769 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
770 	}
771 
772 	/* Save skb pointer */
773 	txq->tx_skbuff[index] = skb;
774 
775 	skb_tx_timestamp(skb);
776 	txq->bd.cur = bdp;
777 
778 	/* Trigger transmission start */
779 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
780 	    !readl(txq->bd.reg_desc_active) ||
781 	    !readl(txq->bd.reg_desc_active) ||
782 	    !readl(txq->bd.reg_desc_active) ||
783 	    !readl(txq->bd.reg_desc_active))
784 		writel(0, txq->bd.reg_desc_active);
785 
786 	return 0;
787 
788 err_release:
789 	/* TODO: Release all used data descriptors for TSO */
790 	return ret;
791 }
792 
793 static netdev_tx_t
fec_enet_start_xmit(struct sk_buff * skb,struct net_device * ndev)794 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
795 {
796 	struct fec_enet_private *fep = netdev_priv(ndev);
797 	int entries_free;
798 	unsigned short queue;
799 	struct fec_enet_priv_tx_q *txq;
800 	struct netdev_queue *nq;
801 	int ret;
802 
803 	queue = skb_get_queue_mapping(skb);
804 	txq = fep->tx_queue[queue];
805 	nq = netdev_get_tx_queue(ndev, queue);
806 
807 	if (skb_is_gso(skb))
808 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
809 	else
810 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
811 	if (ret)
812 		return ret;
813 
814 	entries_free = fec_enet_get_free_txdesc_num(txq);
815 	if (entries_free <= txq->tx_stop_threshold)
816 		netif_tx_stop_queue(nq);
817 
818 	return NETDEV_TX_OK;
819 }
820 
821 /* Init RX & TX buffer descriptors
822  */
fec_enet_bd_init(struct net_device * dev)823 static void fec_enet_bd_init(struct net_device *dev)
824 {
825 	struct fec_enet_private *fep = netdev_priv(dev);
826 	struct fec_enet_priv_tx_q *txq;
827 	struct fec_enet_priv_rx_q *rxq;
828 	struct bufdesc *bdp;
829 	unsigned int i;
830 	unsigned int q;
831 
832 	for (q = 0; q < fep->num_rx_queues; q++) {
833 		/* Initialize the receive buffer descriptors. */
834 		rxq = fep->rx_queue[q];
835 		bdp = rxq->bd.base;
836 
837 		for (i = 0; i < rxq->bd.ring_size; i++) {
838 
839 			/* Initialize the BD for every fragment in the page. */
840 			if (bdp->cbd_bufaddr)
841 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
842 			else
843 				bdp->cbd_sc = cpu_to_fec16(0);
844 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
845 		}
846 
847 		/* Set the last buffer to wrap */
848 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
849 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
850 
851 		rxq->bd.cur = rxq->bd.base;
852 	}
853 
854 	for (q = 0; q < fep->num_tx_queues; q++) {
855 		/* ...and the same for transmit */
856 		txq = fep->tx_queue[q];
857 		bdp = txq->bd.base;
858 		txq->bd.cur = bdp;
859 
860 		for (i = 0; i < txq->bd.ring_size; i++) {
861 			/* Initialize the BD for every fragment in the page. */
862 			bdp->cbd_sc = cpu_to_fec16(0);
863 			if (bdp->cbd_bufaddr &&
864 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
865 				dma_unmap_single(&fep->pdev->dev,
866 						 fec32_to_cpu(bdp->cbd_bufaddr),
867 						 fec16_to_cpu(bdp->cbd_datlen),
868 						 DMA_TO_DEVICE);
869 			if (txq->tx_skbuff[i]) {
870 				dev_kfree_skb_any(txq->tx_skbuff[i]);
871 				txq->tx_skbuff[i] = NULL;
872 			}
873 			bdp->cbd_bufaddr = cpu_to_fec32(0);
874 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
875 		}
876 
877 		/* Set the last buffer to wrap */
878 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
879 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
880 		txq->dirty_tx = bdp;
881 	}
882 }
883 
fec_enet_active_rxring(struct net_device * ndev)884 static void fec_enet_active_rxring(struct net_device *ndev)
885 {
886 	struct fec_enet_private *fep = netdev_priv(ndev);
887 	int i;
888 
889 	for (i = 0; i < fep->num_rx_queues; i++)
890 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
891 }
892 
fec_enet_enable_ring(struct net_device * ndev)893 static void fec_enet_enable_ring(struct net_device *ndev)
894 {
895 	struct fec_enet_private *fep = netdev_priv(ndev);
896 	struct fec_enet_priv_tx_q *txq;
897 	struct fec_enet_priv_rx_q *rxq;
898 	int i;
899 
900 	for (i = 0; i < fep->num_rx_queues; i++) {
901 		rxq = fep->rx_queue[i];
902 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
903 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
904 
905 		/* enable DMA1/2 */
906 		if (i)
907 			writel(RCMR_MATCHEN | RCMR_CMP(i),
908 			       fep->hwp + FEC_RCMR(i));
909 	}
910 
911 	for (i = 0; i < fep->num_tx_queues; i++) {
912 		txq = fep->tx_queue[i];
913 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
914 
915 		/* enable DMA1/2 */
916 		if (i)
917 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
918 			       fep->hwp + FEC_DMA_CFG(i));
919 	}
920 }
921 
fec_enet_reset_skb(struct net_device * ndev)922 static void fec_enet_reset_skb(struct net_device *ndev)
923 {
924 	struct fec_enet_private *fep = netdev_priv(ndev);
925 	struct fec_enet_priv_tx_q *txq;
926 	int i, j;
927 
928 	for (i = 0; i < fep->num_tx_queues; i++) {
929 		txq = fep->tx_queue[i];
930 
931 		for (j = 0; j < txq->bd.ring_size; j++) {
932 			if (txq->tx_skbuff[j]) {
933 				dev_kfree_skb_any(txq->tx_skbuff[j]);
934 				txq->tx_skbuff[j] = NULL;
935 			}
936 		}
937 	}
938 }
939 
940 /*
941  * This function is called to start or restart the FEC during a link
942  * change, transmit timeout, or to reconfigure the FEC.  The network
943  * packet processing for this device must be stopped before this call.
944  */
945 static void
fec_restart(struct net_device * ndev)946 fec_restart(struct net_device *ndev)
947 {
948 	struct fec_enet_private *fep = netdev_priv(ndev);
949 	u32 val;
950 	u32 temp_mac[2];
951 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
952 	u32 ecntl = 0x2; /* ETHEREN */
953 
954 	/* Whack a reset.  We should wait for this.
955 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
956 	 * instead of reset MAC itself.
957 	 */
958 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
959 		writel(0, fep->hwp + FEC_ECNTRL);
960 	} else {
961 		writel(1, fep->hwp + FEC_ECNTRL);
962 		udelay(10);
963 	}
964 
965 	/*
966 	 * enet-mac reset will reset mac address registers too,
967 	 * so need to reconfigure it.
968 	 */
969 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
970 	writel((__force u32)cpu_to_be32(temp_mac[0]),
971 	       fep->hwp + FEC_ADDR_LOW);
972 	writel((__force u32)cpu_to_be32(temp_mac[1]),
973 	       fep->hwp + FEC_ADDR_HIGH);
974 
975 	/* Clear any outstanding interrupt, except MDIO. */
976 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
977 
978 	fec_enet_bd_init(ndev);
979 
980 	fec_enet_enable_ring(ndev);
981 
982 	/* Reset tx SKB buffers. */
983 	fec_enet_reset_skb(ndev);
984 
985 	/* Enable MII mode */
986 	if (fep->full_duplex == DUPLEX_FULL) {
987 		/* FD enable */
988 		writel(0x04, fep->hwp + FEC_X_CNTRL);
989 	} else {
990 		/* No Rcv on Xmit */
991 		rcntl |= 0x02;
992 		writel(0x0, fep->hwp + FEC_X_CNTRL);
993 	}
994 
995 	/* Set MII speed */
996 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
997 
998 #if !defined(CONFIG_M5272)
999 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1000 		val = readl(fep->hwp + FEC_RACC);
1001 		/* align IP header */
1002 		val |= FEC_RACC_SHIFT16;
1003 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1004 			/* set RX checksum */
1005 			val |= FEC_RACC_OPTIONS;
1006 		else
1007 			val &= ~FEC_RACC_OPTIONS;
1008 		writel(val, fep->hwp + FEC_RACC);
1009 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1010 	}
1011 #endif
1012 
1013 	/*
1014 	 * The phy interface and speed need to get configured
1015 	 * differently on enet-mac.
1016 	 */
1017 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1018 		/* Enable flow control and length check */
1019 		rcntl |= 0x40000000 | 0x00000020;
1020 
1021 		/* RGMII, RMII or MII */
1022 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1023 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1024 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1025 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1026 			rcntl |= (1 << 6);
1027 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1028 			rcntl |= (1 << 8);
1029 		else
1030 			rcntl &= ~(1 << 8);
1031 
1032 		/* 1G, 100M or 10M */
1033 		if (ndev->phydev) {
1034 			if (ndev->phydev->speed == SPEED_1000)
1035 				ecntl |= (1 << 5);
1036 			else if (ndev->phydev->speed == SPEED_100)
1037 				rcntl &= ~(1 << 9);
1038 			else
1039 				rcntl |= (1 << 9);
1040 		}
1041 	} else {
1042 #ifdef FEC_MIIGSK_ENR
1043 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1044 			u32 cfgr;
1045 			/* disable the gasket and wait */
1046 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1047 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1048 				udelay(1);
1049 
1050 			/*
1051 			 * configure the gasket:
1052 			 *   RMII, 50 MHz, no loopback, no echo
1053 			 *   MII, 25 MHz, no loopback, no echo
1054 			 */
1055 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1056 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1057 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1058 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1059 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1060 
1061 			/* re-enable the gasket */
1062 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1063 		}
1064 #endif
1065 	}
1066 
1067 #if !defined(CONFIG_M5272)
1068 	/* enable pause frame*/
1069 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1070 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1071 	     ndev->phydev && ndev->phydev->pause)) {
1072 		rcntl |= FEC_ENET_FCE;
1073 
1074 		/* set FIFO threshold parameter to reduce overrun */
1075 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1076 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1077 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1078 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1079 
1080 		/* OPD */
1081 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1082 	} else {
1083 		rcntl &= ~FEC_ENET_FCE;
1084 	}
1085 #endif /* !defined(CONFIG_M5272) */
1086 
1087 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1088 
1089 	/* Setup multicast filter. */
1090 	set_multicast_list(ndev);
1091 #ifndef CONFIG_M5272
1092 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1093 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1094 #endif
1095 
1096 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1097 		/* enable ENET endian swap */
1098 		ecntl |= (1 << 8);
1099 		/* enable ENET store and forward mode */
1100 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1101 	}
1102 
1103 	if (fep->bufdesc_ex)
1104 		ecntl |= (1 << 4);
1105 
1106 #ifndef CONFIG_M5272
1107 	/* Enable the MIB statistic event counters */
1108 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1109 #endif
1110 
1111 	/* And last, enable the transmit and receive processing */
1112 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1113 	fec_enet_active_rxring(ndev);
1114 
1115 	if (fep->bufdesc_ex)
1116 		fec_ptp_start_cyclecounter(ndev);
1117 
1118 	/* Enable interrupts we wish to service */
1119 	if (fep->link)
1120 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1121 	else
1122 		writel(0, fep->hwp + FEC_IMASK);
1123 
1124 	/* Init the interrupt coalescing */
1125 	fec_enet_itr_coal_init(ndev);
1126 
1127 }
1128 
fec_enet_stop_mode(struct fec_enet_private * fep,bool enabled)1129 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1130 {
1131 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1132 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1133 
1134 	if (stop_gpr->gpr) {
1135 		if (enabled)
1136 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1137 					   BIT(stop_gpr->bit),
1138 					   BIT(stop_gpr->bit));
1139 		else
1140 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1141 					   BIT(stop_gpr->bit), 0);
1142 	} else if (pdata && pdata->sleep_mode_enable) {
1143 		pdata->sleep_mode_enable(enabled);
1144 	}
1145 }
1146 
1147 static void
fec_stop(struct net_device * ndev)1148 fec_stop(struct net_device *ndev)
1149 {
1150 	struct fec_enet_private *fep = netdev_priv(ndev);
1151 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1152 	u32 val;
1153 
1154 	/* We cannot expect a graceful transmit stop without link !!! */
1155 	if (fep->link) {
1156 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1157 		udelay(10);
1158 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1159 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1160 	}
1161 
1162 	/* Whack a reset.  We should wait for this.
1163 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1164 	 * instead of reset MAC itself.
1165 	 */
1166 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1167 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1168 			writel(0, fep->hwp + FEC_ECNTRL);
1169 		} else {
1170 			writel(1, fep->hwp + FEC_ECNTRL);
1171 			udelay(10);
1172 		}
1173 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1174 	} else {
1175 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1176 		val = readl(fep->hwp + FEC_ECNTRL);
1177 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1178 		writel(val, fep->hwp + FEC_ECNTRL);
1179 		fec_enet_stop_mode(fep, true);
1180 	}
1181 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1182 
1183 	/* We have to keep ENET enabled to have MII interrupt stay working */
1184 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1185 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1186 		writel(2, fep->hwp + FEC_ECNTRL);
1187 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1188 	}
1189 }
1190 
1191 
1192 static void
fec_timeout(struct net_device * ndev,unsigned int txqueue)1193 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1194 {
1195 	struct fec_enet_private *fep = netdev_priv(ndev);
1196 
1197 	fec_dump(ndev);
1198 
1199 	ndev->stats.tx_errors++;
1200 
1201 	schedule_work(&fep->tx_timeout_work);
1202 }
1203 
fec_enet_timeout_work(struct work_struct * work)1204 static void fec_enet_timeout_work(struct work_struct *work)
1205 {
1206 	struct fec_enet_private *fep =
1207 		container_of(work, struct fec_enet_private, tx_timeout_work);
1208 	struct net_device *ndev = fep->netdev;
1209 
1210 	rtnl_lock();
1211 	if (netif_device_present(ndev) || netif_running(ndev)) {
1212 		napi_disable(&fep->napi);
1213 		netif_tx_lock_bh(ndev);
1214 		fec_restart(ndev);
1215 		netif_tx_wake_all_queues(ndev);
1216 		netif_tx_unlock_bh(ndev);
1217 		napi_enable(&fep->napi);
1218 	}
1219 	rtnl_unlock();
1220 }
1221 
1222 static void
fec_enet_hwtstamp(struct fec_enet_private * fep,unsigned ts,struct skb_shared_hwtstamps * hwtstamps)1223 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1224 	struct skb_shared_hwtstamps *hwtstamps)
1225 {
1226 	unsigned long flags;
1227 	u64 ns;
1228 
1229 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1230 	ns = timecounter_cyc2time(&fep->tc, ts);
1231 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1232 
1233 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1234 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1235 }
1236 
1237 static void
fec_enet_tx_queue(struct net_device * ndev,u16 queue_id)1238 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1239 {
1240 	struct	fec_enet_private *fep;
1241 	struct bufdesc *bdp;
1242 	unsigned short status;
1243 	struct	sk_buff	*skb;
1244 	struct fec_enet_priv_tx_q *txq;
1245 	struct netdev_queue *nq;
1246 	int	index = 0;
1247 	int	entries_free;
1248 
1249 	fep = netdev_priv(ndev);
1250 
1251 	txq = fep->tx_queue[queue_id];
1252 	/* get next bdp of dirty_tx */
1253 	nq = netdev_get_tx_queue(ndev, queue_id);
1254 	bdp = txq->dirty_tx;
1255 
1256 	/* get next bdp of dirty_tx */
1257 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1258 
1259 	while (bdp != READ_ONCE(txq->bd.cur)) {
1260 		/* Order the load of bd.cur and cbd_sc */
1261 		rmb();
1262 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1263 		if (status & BD_ENET_TX_READY)
1264 			break;
1265 
1266 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1267 
1268 		skb = txq->tx_skbuff[index];
1269 		txq->tx_skbuff[index] = NULL;
1270 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1271 			dma_unmap_single(&fep->pdev->dev,
1272 					 fec32_to_cpu(bdp->cbd_bufaddr),
1273 					 fec16_to_cpu(bdp->cbd_datlen),
1274 					 DMA_TO_DEVICE);
1275 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1276 		if (!skb)
1277 			goto skb_done;
1278 
1279 		/* Check for errors. */
1280 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1281 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1282 				   BD_ENET_TX_CSL)) {
1283 			ndev->stats.tx_errors++;
1284 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1285 				ndev->stats.tx_heartbeat_errors++;
1286 			if (status & BD_ENET_TX_LC)  /* Late collision */
1287 				ndev->stats.tx_window_errors++;
1288 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1289 				ndev->stats.tx_aborted_errors++;
1290 			if (status & BD_ENET_TX_UN)  /* Underrun */
1291 				ndev->stats.tx_fifo_errors++;
1292 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1293 				ndev->stats.tx_carrier_errors++;
1294 		} else {
1295 			ndev->stats.tx_packets++;
1296 			ndev->stats.tx_bytes += skb->len;
1297 		}
1298 
1299 		/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1300 		 * are to time stamp the packet, so we still need to check time
1301 		 * stamping enabled flag.
1302 		 */
1303 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1304 			     fep->hwts_tx_en) &&
1305 		    fep->bufdesc_ex) {
1306 			struct skb_shared_hwtstamps shhwtstamps;
1307 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1308 
1309 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1310 			skb_tstamp_tx(skb, &shhwtstamps);
1311 		}
1312 
1313 		/* Deferred means some collisions occurred during transmit,
1314 		 * but we eventually sent the packet OK.
1315 		 */
1316 		if (status & BD_ENET_TX_DEF)
1317 			ndev->stats.collisions++;
1318 
1319 		/* Free the sk buffer associated with this last transmit */
1320 		dev_kfree_skb_any(skb);
1321 skb_done:
1322 		/* Make sure the update to bdp and tx_skbuff are performed
1323 		 * before dirty_tx
1324 		 */
1325 		wmb();
1326 		txq->dirty_tx = bdp;
1327 
1328 		/* Update pointer to next buffer descriptor to be transmitted */
1329 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1330 
1331 		/* Since we have freed up a buffer, the ring is no longer full
1332 		 */
1333 		if (netif_tx_queue_stopped(nq)) {
1334 			entries_free = fec_enet_get_free_txdesc_num(txq);
1335 			if (entries_free >= txq->tx_wake_threshold)
1336 				netif_tx_wake_queue(nq);
1337 		}
1338 	}
1339 
1340 	/* ERR006358: Keep the transmitter going */
1341 	if (bdp != txq->bd.cur &&
1342 	    readl(txq->bd.reg_desc_active) == 0)
1343 		writel(0, txq->bd.reg_desc_active);
1344 }
1345 
fec_enet_tx(struct net_device * ndev)1346 static void fec_enet_tx(struct net_device *ndev)
1347 {
1348 	struct fec_enet_private *fep = netdev_priv(ndev);
1349 	int i;
1350 
1351 	/* Make sure that AVB queues are processed first. */
1352 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1353 		fec_enet_tx_queue(ndev, i);
1354 }
1355 
1356 static int
fec_enet_new_rxbdp(struct net_device * ndev,struct bufdesc * bdp,struct sk_buff * skb)1357 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1358 {
1359 	struct  fec_enet_private *fep = netdev_priv(ndev);
1360 	int off;
1361 
1362 	off = ((unsigned long)skb->data) & fep->rx_align;
1363 	if (off)
1364 		skb_reserve(skb, fep->rx_align + 1 - off);
1365 
1366 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1367 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1368 		if (net_ratelimit())
1369 			netdev_err(ndev, "Rx DMA memory map failed\n");
1370 		return -ENOMEM;
1371 	}
1372 
1373 	return 0;
1374 }
1375 
fec_enet_copybreak(struct net_device * ndev,struct sk_buff ** skb,struct bufdesc * bdp,u32 length,bool swap)1376 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1377 			       struct bufdesc *bdp, u32 length, bool swap)
1378 {
1379 	struct  fec_enet_private *fep = netdev_priv(ndev);
1380 	struct sk_buff *new_skb;
1381 
1382 	if (length > fep->rx_copybreak)
1383 		return false;
1384 
1385 	new_skb = netdev_alloc_skb(ndev, length);
1386 	if (!new_skb)
1387 		return false;
1388 
1389 	dma_sync_single_for_cpu(&fep->pdev->dev,
1390 				fec32_to_cpu(bdp->cbd_bufaddr),
1391 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1392 				DMA_FROM_DEVICE);
1393 	if (!swap)
1394 		memcpy(new_skb->data, (*skb)->data, length);
1395 	else
1396 		swap_buffer2(new_skb->data, (*skb)->data, length);
1397 	*skb = new_skb;
1398 
1399 	return true;
1400 }
1401 
1402 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1403  * When we update through the ring, if the next incoming buffer has
1404  * not been given to the system, we just set the empty indicator,
1405  * effectively tossing the packet.
1406  */
1407 static int
fec_enet_rx_queue(struct net_device * ndev,int budget,u16 queue_id)1408 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1409 {
1410 	struct fec_enet_private *fep = netdev_priv(ndev);
1411 	struct fec_enet_priv_rx_q *rxq;
1412 	struct bufdesc *bdp;
1413 	unsigned short status;
1414 	struct  sk_buff *skb_new = NULL;
1415 	struct  sk_buff *skb;
1416 	ushort	pkt_len;
1417 	__u8 *data;
1418 	int	pkt_received = 0;
1419 	struct	bufdesc_ex *ebdp = NULL;
1420 	bool	vlan_packet_rcvd = false;
1421 	u16	vlan_tag;
1422 	int	index = 0;
1423 	bool	is_copybreak;
1424 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1425 
1426 #ifdef CONFIG_M532x
1427 	flush_cache_all();
1428 #endif
1429 	rxq = fep->rx_queue[queue_id];
1430 
1431 	/* First, grab all of the stats for the incoming packet.
1432 	 * These get messed up if we get called due to a busy condition.
1433 	 */
1434 	bdp = rxq->bd.cur;
1435 
1436 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1437 
1438 		if (pkt_received >= budget)
1439 			break;
1440 		pkt_received++;
1441 
1442 		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1443 
1444 		/* Check for errors. */
1445 		status ^= BD_ENET_RX_LAST;
1446 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1447 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1448 			   BD_ENET_RX_CL)) {
1449 			ndev->stats.rx_errors++;
1450 			if (status & BD_ENET_RX_OV) {
1451 				/* FIFO overrun */
1452 				ndev->stats.rx_fifo_errors++;
1453 				goto rx_processing_done;
1454 			}
1455 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1456 						| BD_ENET_RX_LAST)) {
1457 				/* Frame too long or too short. */
1458 				ndev->stats.rx_length_errors++;
1459 				if (status & BD_ENET_RX_LAST)
1460 					netdev_err(ndev, "rcv is not +last\n");
1461 			}
1462 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1463 				ndev->stats.rx_crc_errors++;
1464 			/* Report late collisions as a frame error. */
1465 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1466 				ndev->stats.rx_frame_errors++;
1467 			goto rx_processing_done;
1468 		}
1469 
1470 		/* Process the incoming frame. */
1471 		ndev->stats.rx_packets++;
1472 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1473 		ndev->stats.rx_bytes += pkt_len;
1474 
1475 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1476 		skb = rxq->rx_skbuff[index];
1477 
1478 		/* The packet length includes FCS, but we don't want to
1479 		 * include that when passing upstream as it messes up
1480 		 * bridging applications.
1481 		 */
1482 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1483 						  need_swap);
1484 		if (!is_copybreak) {
1485 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1486 			if (unlikely(!skb_new)) {
1487 				ndev->stats.rx_dropped++;
1488 				goto rx_processing_done;
1489 			}
1490 			dma_unmap_single(&fep->pdev->dev,
1491 					 fec32_to_cpu(bdp->cbd_bufaddr),
1492 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1493 					 DMA_FROM_DEVICE);
1494 		}
1495 
1496 		prefetch(skb->data - NET_IP_ALIGN);
1497 		skb_put(skb, pkt_len - 4);
1498 		data = skb->data;
1499 
1500 		if (!is_copybreak && need_swap)
1501 			swap_buffer(data, pkt_len);
1502 
1503 #if !defined(CONFIG_M5272)
1504 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1505 			data = skb_pull_inline(skb, 2);
1506 #endif
1507 
1508 		/* Extract the enhanced buffer descriptor */
1509 		ebdp = NULL;
1510 		if (fep->bufdesc_ex)
1511 			ebdp = (struct bufdesc_ex *)bdp;
1512 
1513 		/* If this is a VLAN packet remove the VLAN Tag */
1514 		vlan_packet_rcvd = false;
1515 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1516 		    fep->bufdesc_ex &&
1517 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1518 			/* Push and remove the vlan tag */
1519 			struct vlan_hdr *vlan_header =
1520 					(struct vlan_hdr *) (data + ETH_HLEN);
1521 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1522 
1523 			vlan_packet_rcvd = true;
1524 
1525 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1526 			skb_pull(skb, VLAN_HLEN);
1527 		}
1528 
1529 		skb->protocol = eth_type_trans(skb, ndev);
1530 
1531 		/* Get receive timestamp from the skb */
1532 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1533 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1534 					  skb_hwtstamps(skb));
1535 
1536 		if (fep->bufdesc_ex &&
1537 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1538 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1539 				/* don't check it */
1540 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1541 			} else {
1542 				skb_checksum_none_assert(skb);
1543 			}
1544 		}
1545 
1546 		/* Handle received VLAN packets */
1547 		if (vlan_packet_rcvd)
1548 			__vlan_hwaccel_put_tag(skb,
1549 					       htons(ETH_P_8021Q),
1550 					       vlan_tag);
1551 
1552 		skb_record_rx_queue(skb, queue_id);
1553 		napi_gro_receive(&fep->napi, skb);
1554 
1555 		if (is_copybreak) {
1556 			dma_sync_single_for_device(&fep->pdev->dev,
1557 						   fec32_to_cpu(bdp->cbd_bufaddr),
1558 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1559 						   DMA_FROM_DEVICE);
1560 		} else {
1561 			rxq->rx_skbuff[index] = skb_new;
1562 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1563 		}
1564 
1565 rx_processing_done:
1566 		/* Clear the status flags for this buffer */
1567 		status &= ~BD_ENET_RX_STATS;
1568 
1569 		/* Mark the buffer empty */
1570 		status |= BD_ENET_RX_EMPTY;
1571 
1572 		if (fep->bufdesc_ex) {
1573 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1574 
1575 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1576 			ebdp->cbd_prot = 0;
1577 			ebdp->cbd_bdu = 0;
1578 		}
1579 		/* Make sure the updates to rest of the descriptor are
1580 		 * performed before transferring ownership.
1581 		 */
1582 		wmb();
1583 		bdp->cbd_sc = cpu_to_fec16(status);
1584 
1585 		/* Update BD pointer to next entry */
1586 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1587 
1588 		/* Doing this here will keep the FEC running while we process
1589 		 * incoming frames.  On a heavily loaded network, we should be
1590 		 * able to keep up at the expense of system resources.
1591 		 */
1592 		writel(0, rxq->bd.reg_desc_active);
1593 	}
1594 	rxq->bd.cur = bdp;
1595 	return pkt_received;
1596 }
1597 
fec_enet_rx(struct net_device * ndev,int budget)1598 static int fec_enet_rx(struct net_device *ndev, int budget)
1599 {
1600 	struct fec_enet_private *fep = netdev_priv(ndev);
1601 	int i, done = 0;
1602 
1603 	/* Make sure that AVB queues are processed first. */
1604 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1605 		done += fec_enet_rx_queue(ndev, budget - done, i);
1606 
1607 	return done;
1608 }
1609 
fec_enet_collect_events(struct fec_enet_private * fep)1610 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1611 {
1612 	uint int_events;
1613 
1614 	int_events = readl(fep->hwp + FEC_IEVENT);
1615 
1616 	/* Don't clear MDIO events, we poll for those */
1617 	int_events &= ~FEC_ENET_MII;
1618 
1619 	writel(int_events, fep->hwp + FEC_IEVENT);
1620 
1621 	return int_events != 0;
1622 }
1623 
1624 static irqreturn_t
fec_enet_interrupt(int irq,void * dev_id)1625 fec_enet_interrupt(int irq, void *dev_id)
1626 {
1627 	struct net_device *ndev = dev_id;
1628 	struct fec_enet_private *fep = netdev_priv(ndev);
1629 	irqreturn_t ret = IRQ_NONE;
1630 
1631 	if (fec_enet_collect_events(fep) && fep->link) {
1632 		ret = IRQ_HANDLED;
1633 
1634 		if (napi_schedule_prep(&fep->napi)) {
1635 			/* Disable interrupts */
1636 			writel(0, fep->hwp + FEC_IMASK);
1637 			__napi_schedule(&fep->napi);
1638 		}
1639 	}
1640 
1641 	return ret;
1642 }
1643 
fec_enet_rx_napi(struct napi_struct * napi,int budget)1644 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1645 {
1646 	struct net_device *ndev = napi->dev;
1647 	struct fec_enet_private *fep = netdev_priv(ndev);
1648 	int done = 0;
1649 
1650 	do {
1651 		done += fec_enet_rx(ndev, budget - done);
1652 		fec_enet_tx(ndev);
1653 	} while ((done < budget) && fec_enet_collect_events(fep));
1654 
1655 	if (done < budget) {
1656 		napi_complete_done(napi, done);
1657 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1658 	}
1659 
1660 	return done;
1661 }
1662 
1663 /* ------------------------------------------------------------------------- */
fec_get_mac(struct net_device * ndev)1664 static void fec_get_mac(struct net_device *ndev)
1665 {
1666 	struct fec_enet_private *fep = netdev_priv(ndev);
1667 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1668 	unsigned char *iap, tmpaddr[ETH_ALEN];
1669 
1670 	/*
1671 	 * try to get mac address in following order:
1672 	 *
1673 	 * 1) module parameter via kernel command line in form
1674 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1675 	 */
1676 	iap = macaddr;
1677 
1678 	/*
1679 	 * 2) from device tree data
1680 	 */
1681 	if (!is_valid_ether_addr(iap)) {
1682 		struct device_node *np = fep->pdev->dev.of_node;
1683 		if (np) {
1684 			const char *mac = of_get_mac_address(np);
1685 			if (!IS_ERR(mac))
1686 				iap = (unsigned char *) mac;
1687 		}
1688 	}
1689 
1690 	/*
1691 	 * 3) from flash or fuse (via platform data)
1692 	 */
1693 	if (!is_valid_ether_addr(iap)) {
1694 #ifdef CONFIG_M5272
1695 		if (FEC_FLASHMAC)
1696 			iap = (unsigned char *)FEC_FLASHMAC;
1697 #else
1698 		if (pdata)
1699 			iap = (unsigned char *)&pdata->mac;
1700 #endif
1701 	}
1702 
1703 	/*
1704 	 * 4) FEC mac registers set by bootloader
1705 	 */
1706 	if (!is_valid_ether_addr(iap)) {
1707 		*((__be32 *) &tmpaddr[0]) =
1708 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1709 		*((__be16 *) &tmpaddr[4]) =
1710 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1711 		iap = &tmpaddr[0];
1712 	}
1713 
1714 	/*
1715 	 * 5) random mac address
1716 	 */
1717 	if (!is_valid_ether_addr(iap)) {
1718 		/* Report it and use a random ethernet address instead */
1719 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1720 		eth_hw_addr_random(ndev);
1721 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1722 			 ndev->dev_addr);
1723 		return;
1724 	}
1725 
1726 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1727 
1728 	/* Adjust MAC if using macaddr */
1729 	if (iap == macaddr)
1730 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1731 }
1732 
1733 /* ------------------------------------------------------------------------- */
1734 
1735 /*
1736  * Phy section
1737  */
fec_enet_adjust_link(struct net_device * ndev)1738 static void fec_enet_adjust_link(struct net_device *ndev)
1739 {
1740 	struct fec_enet_private *fep = netdev_priv(ndev);
1741 	struct phy_device *phy_dev = ndev->phydev;
1742 	int status_change = 0;
1743 
1744 	/*
1745 	 * If the netdev is down, or is going down, we're not interested
1746 	 * in link state events, so just mark our idea of the link as down
1747 	 * and ignore the event.
1748 	 */
1749 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1750 		fep->link = 0;
1751 	} else if (phy_dev->link) {
1752 		if (!fep->link) {
1753 			fep->link = phy_dev->link;
1754 			status_change = 1;
1755 		}
1756 
1757 		if (fep->full_duplex != phy_dev->duplex) {
1758 			fep->full_duplex = phy_dev->duplex;
1759 			status_change = 1;
1760 		}
1761 
1762 		if (phy_dev->speed != fep->speed) {
1763 			fep->speed = phy_dev->speed;
1764 			status_change = 1;
1765 		}
1766 
1767 		/* if any of the above changed restart the FEC */
1768 		if (status_change) {
1769 			napi_disable(&fep->napi);
1770 			netif_tx_lock_bh(ndev);
1771 			fec_restart(ndev);
1772 			netif_tx_wake_all_queues(ndev);
1773 			netif_tx_unlock_bh(ndev);
1774 			napi_enable(&fep->napi);
1775 		}
1776 	} else {
1777 		if (fep->link) {
1778 			napi_disable(&fep->napi);
1779 			netif_tx_lock_bh(ndev);
1780 			fec_stop(ndev);
1781 			netif_tx_unlock_bh(ndev);
1782 			napi_enable(&fep->napi);
1783 			fep->link = phy_dev->link;
1784 			status_change = 1;
1785 		}
1786 	}
1787 
1788 	if (status_change)
1789 		phy_print_status(phy_dev);
1790 }
1791 
fec_enet_mdio_wait(struct fec_enet_private * fep)1792 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
1793 {
1794 	uint ievent;
1795 	int ret;
1796 
1797 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
1798 					ievent & FEC_ENET_MII, 2, 30000);
1799 
1800 	if (!ret)
1801 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1802 
1803 	return ret;
1804 }
1805 
fec_enet_mdio_read(struct mii_bus * bus,int mii_id,int regnum)1806 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1807 {
1808 	struct fec_enet_private *fep = bus->priv;
1809 	struct device *dev = &fep->pdev->dev;
1810 	int ret = 0, frame_start, frame_addr, frame_op;
1811 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1812 
1813 	ret = pm_runtime_resume_and_get(dev);
1814 	if (ret < 0)
1815 		return ret;
1816 
1817 	if (is_c45) {
1818 		frame_start = FEC_MMFR_ST_C45;
1819 
1820 		/* write address */
1821 		frame_addr = (regnum >> 16);
1822 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1823 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1824 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1825 		       fep->hwp + FEC_MII_DATA);
1826 
1827 		/* wait for end of transfer */
1828 		ret = fec_enet_mdio_wait(fep);
1829 		if (ret) {
1830 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1831 			goto out;
1832 		}
1833 
1834 		frame_op = FEC_MMFR_OP_READ_C45;
1835 
1836 	} else {
1837 		/* C22 read */
1838 		frame_op = FEC_MMFR_OP_READ;
1839 		frame_start = FEC_MMFR_ST;
1840 		frame_addr = regnum;
1841 	}
1842 
1843 	/* start a read op */
1844 	writel(frame_start | frame_op |
1845 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1846 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1847 
1848 	/* wait for end of transfer */
1849 	ret = fec_enet_mdio_wait(fep);
1850 	if (ret) {
1851 		netdev_err(fep->netdev, "MDIO read timeout\n");
1852 		goto out;
1853 	}
1854 
1855 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1856 
1857 out:
1858 	pm_runtime_mark_last_busy(dev);
1859 	pm_runtime_put_autosuspend(dev);
1860 
1861 	return ret;
1862 }
1863 
fec_enet_mdio_write(struct mii_bus * bus,int mii_id,int regnum,u16 value)1864 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1865 			   u16 value)
1866 {
1867 	struct fec_enet_private *fep = bus->priv;
1868 	struct device *dev = &fep->pdev->dev;
1869 	int ret, frame_start, frame_addr;
1870 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1871 
1872 	ret = pm_runtime_resume_and_get(dev);
1873 	if (ret < 0)
1874 		return ret;
1875 
1876 	if (is_c45) {
1877 		frame_start = FEC_MMFR_ST_C45;
1878 
1879 		/* write address */
1880 		frame_addr = (regnum >> 16);
1881 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1882 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1883 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1884 		       fep->hwp + FEC_MII_DATA);
1885 
1886 		/* wait for end of transfer */
1887 		ret = fec_enet_mdio_wait(fep);
1888 		if (ret) {
1889 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1890 			goto out;
1891 		}
1892 	} else {
1893 		/* C22 write */
1894 		frame_start = FEC_MMFR_ST;
1895 		frame_addr = regnum;
1896 	}
1897 
1898 	/* start a write op */
1899 	writel(frame_start | FEC_MMFR_OP_WRITE |
1900 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1901 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1902 		fep->hwp + FEC_MII_DATA);
1903 
1904 	/* wait for end of transfer */
1905 	ret = fec_enet_mdio_wait(fep);
1906 	if (ret)
1907 		netdev_err(fep->netdev, "MDIO write timeout\n");
1908 
1909 out:
1910 	pm_runtime_mark_last_busy(dev);
1911 	pm_runtime_put_autosuspend(dev);
1912 
1913 	return ret;
1914 }
1915 
fec_enet_phy_reset_after_clk_enable(struct net_device * ndev)1916 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
1917 {
1918 	struct fec_enet_private *fep = netdev_priv(ndev);
1919 	struct phy_device *phy_dev = ndev->phydev;
1920 
1921 	if (phy_dev) {
1922 		phy_reset_after_clk_enable(phy_dev);
1923 	} else if (fep->phy_node) {
1924 		/*
1925 		 * If the PHY still is not bound to the MAC, but there is
1926 		 * OF PHY node and a matching PHY device instance already,
1927 		 * use the OF PHY node to obtain the PHY device instance,
1928 		 * and then use that PHY device instance when triggering
1929 		 * the PHY reset.
1930 		 */
1931 		phy_dev = of_phy_find_device(fep->phy_node);
1932 		phy_reset_after_clk_enable(phy_dev);
1933 		put_device(&phy_dev->mdio.dev);
1934 	}
1935 }
1936 
fec_enet_clk_enable(struct net_device * ndev,bool enable)1937 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1938 {
1939 	struct fec_enet_private *fep = netdev_priv(ndev);
1940 	int ret;
1941 
1942 	if (enable) {
1943 		ret = clk_prepare_enable(fep->clk_enet_out);
1944 		if (ret)
1945 			return ret;
1946 
1947 		if (fep->clk_ptp) {
1948 			mutex_lock(&fep->ptp_clk_mutex);
1949 			ret = clk_prepare_enable(fep->clk_ptp);
1950 			if (ret) {
1951 				mutex_unlock(&fep->ptp_clk_mutex);
1952 				goto failed_clk_ptp;
1953 			} else {
1954 				fep->ptp_clk_on = true;
1955 			}
1956 			mutex_unlock(&fep->ptp_clk_mutex);
1957 		}
1958 
1959 		ret = clk_prepare_enable(fep->clk_ref);
1960 		if (ret)
1961 			goto failed_clk_ref;
1962 
1963 		fec_enet_phy_reset_after_clk_enable(ndev);
1964 	} else {
1965 		clk_disable_unprepare(fep->clk_enet_out);
1966 		if (fep->clk_ptp) {
1967 			mutex_lock(&fep->ptp_clk_mutex);
1968 			clk_disable_unprepare(fep->clk_ptp);
1969 			fep->ptp_clk_on = false;
1970 			mutex_unlock(&fep->ptp_clk_mutex);
1971 		}
1972 		clk_disable_unprepare(fep->clk_ref);
1973 	}
1974 
1975 	return 0;
1976 
1977 failed_clk_ref:
1978 	if (fep->clk_ptp) {
1979 		mutex_lock(&fep->ptp_clk_mutex);
1980 		clk_disable_unprepare(fep->clk_ptp);
1981 		fep->ptp_clk_on = false;
1982 		mutex_unlock(&fep->ptp_clk_mutex);
1983 	}
1984 failed_clk_ptp:
1985 	clk_disable_unprepare(fep->clk_enet_out);
1986 
1987 	return ret;
1988 }
1989 
fec_enet_mii_probe(struct net_device * ndev)1990 static int fec_enet_mii_probe(struct net_device *ndev)
1991 {
1992 	struct fec_enet_private *fep = netdev_priv(ndev);
1993 	struct phy_device *phy_dev = NULL;
1994 	char mdio_bus_id[MII_BUS_ID_SIZE];
1995 	char phy_name[MII_BUS_ID_SIZE + 3];
1996 	int phy_id;
1997 	int dev_id = fep->dev_id;
1998 
1999 	if (fep->phy_node) {
2000 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2001 					 &fec_enet_adjust_link, 0,
2002 					 fep->phy_interface);
2003 		if (!phy_dev) {
2004 			netdev_err(ndev, "Unable to connect to phy\n");
2005 			return -ENODEV;
2006 		}
2007 	} else {
2008 		/* check for attached phy */
2009 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2010 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2011 				continue;
2012 			if (dev_id--)
2013 				continue;
2014 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2015 			break;
2016 		}
2017 
2018 		if (phy_id >= PHY_MAX_ADDR) {
2019 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2020 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2021 			phy_id = 0;
2022 		}
2023 
2024 		snprintf(phy_name, sizeof(phy_name),
2025 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2026 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2027 				      fep->phy_interface);
2028 	}
2029 
2030 	if (IS_ERR(phy_dev)) {
2031 		netdev_err(ndev, "could not attach to PHY\n");
2032 		return PTR_ERR(phy_dev);
2033 	}
2034 
2035 	/* mask with MAC supported features */
2036 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2037 		phy_set_max_speed(phy_dev, 1000);
2038 		phy_remove_link_mode(phy_dev,
2039 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2040 #if !defined(CONFIG_M5272)
2041 		phy_support_sym_pause(phy_dev);
2042 #endif
2043 	}
2044 	else
2045 		phy_set_max_speed(phy_dev, 100);
2046 
2047 	fep->link = 0;
2048 	fep->full_duplex = 0;
2049 
2050 	phy_attached_info(phy_dev);
2051 
2052 	return 0;
2053 }
2054 
fec_enet_mii_init(struct platform_device * pdev)2055 static int fec_enet_mii_init(struct platform_device *pdev)
2056 {
2057 	static struct mii_bus *fec0_mii_bus;
2058 	struct net_device *ndev = platform_get_drvdata(pdev);
2059 	struct fec_enet_private *fep = netdev_priv(ndev);
2060 	bool suppress_preamble = false;
2061 	struct device_node *node;
2062 	int err = -ENXIO;
2063 	u32 mii_speed, holdtime;
2064 	u32 bus_freq;
2065 
2066 	/*
2067 	 * The i.MX28 dual fec interfaces are not equal.
2068 	 * Here are the differences:
2069 	 *
2070 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2071 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2072 	 *  - external phys can only be configured by fec0
2073 	 *
2074 	 * That is to say fec1 can not work independently. It only works
2075 	 * when fec0 is working. The reason behind this design is that the
2076 	 * second interface is added primarily for Switch mode.
2077 	 *
2078 	 * Because of the last point above, both phys are attached on fec0
2079 	 * mdio interface in board design, and need to be configured by
2080 	 * fec0 mii_bus.
2081 	 */
2082 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2083 		/* fec1 uses fec0 mii_bus */
2084 		if (mii_cnt && fec0_mii_bus) {
2085 			fep->mii_bus = fec0_mii_bus;
2086 			mii_cnt++;
2087 			return 0;
2088 		}
2089 		return -ENOENT;
2090 	}
2091 
2092 	bus_freq = 2500000; /* 2.5MHz by default */
2093 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2094 	if (node) {
2095 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2096 		suppress_preamble = of_property_read_bool(node,
2097 							  "suppress-preamble");
2098 	}
2099 
2100 	/*
2101 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2102 	 *
2103 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2104 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2105 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2106 	 * document.
2107 	 */
2108 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2109 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2110 		mii_speed--;
2111 	if (mii_speed > 63) {
2112 		dev_err(&pdev->dev,
2113 			"fec clock (%lu) too fast to get right mii speed\n",
2114 			clk_get_rate(fep->clk_ipg));
2115 		err = -EINVAL;
2116 		goto err_out;
2117 	}
2118 
2119 	/*
2120 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2121 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2122 	 * versions are RAZ there, so just ignore the difference and write the
2123 	 * register always.
2124 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2125 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2126 	 * output.
2127 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2128 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2129 	 * holdtime cannot result in a value greater than 3.
2130 	 */
2131 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2132 
2133 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2134 
2135 	if (suppress_preamble)
2136 		fep->phy_speed |= BIT(7);
2137 
2138 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2139 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2140 		 * MII event generation condition:
2141 		 * - writing MSCR:
2142 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2143 		 *	  mscr_reg_data_in[7:0] != 0
2144 		 * - writing MMFR:
2145 		 *	- mscr[7:0]_not_zero
2146 		 */
2147 		writel(0, fep->hwp + FEC_MII_DATA);
2148 	}
2149 
2150 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2151 
2152 	/* Clear any pending transaction complete indication */
2153 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2154 
2155 	fep->mii_bus = mdiobus_alloc();
2156 	if (fep->mii_bus == NULL) {
2157 		err = -ENOMEM;
2158 		goto err_out;
2159 	}
2160 
2161 	fep->mii_bus->name = "fec_enet_mii_bus";
2162 	fep->mii_bus->read = fec_enet_mdio_read;
2163 	fep->mii_bus->write = fec_enet_mdio_write;
2164 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2165 		pdev->name, fep->dev_id + 1);
2166 	fep->mii_bus->priv = fep;
2167 	fep->mii_bus->parent = &pdev->dev;
2168 
2169 	err = of_mdiobus_register(fep->mii_bus, node);
2170 	if (err)
2171 		goto err_out_free_mdiobus;
2172 	of_node_put(node);
2173 
2174 	mii_cnt++;
2175 
2176 	/* save fec0 mii_bus */
2177 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2178 		fec0_mii_bus = fep->mii_bus;
2179 
2180 	return 0;
2181 
2182 err_out_free_mdiobus:
2183 	mdiobus_free(fep->mii_bus);
2184 err_out:
2185 	of_node_put(node);
2186 	return err;
2187 }
2188 
fec_enet_mii_remove(struct fec_enet_private * fep)2189 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2190 {
2191 	if (--mii_cnt == 0) {
2192 		mdiobus_unregister(fep->mii_bus);
2193 		mdiobus_free(fep->mii_bus);
2194 	}
2195 }
2196 
fec_enet_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)2197 static void fec_enet_get_drvinfo(struct net_device *ndev,
2198 				 struct ethtool_drvinfo *info)
2199 {
2200 	struct fec_enet_private *fep = netdev_priv(ndev);
2201 
2202 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2203 		sizeof(info->driver));
2204 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2205 }
2206 
fec_enet_get_regs_len(struct net_device * ndev)2207 static int fec_enet_get_regs_len(struct net_device *ndev)
2208 {
2209 	struct fec_enet_private *fep = netdev_priv(ndev);
2210 	struct resource *r;
2211 	int s = 0;
2212 
2213 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2214 	if (r)
2215 		s = resource_size(r);
2216 
2217 	return s;
2218 }
2219 
2220 /* List of registers that can be safety be read to dump them with ethtool */
2221 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2222 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2223 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2224 static __u32 fec_enet_register_version = 2;
2225 static u32 fec_enet_register_offset[] = {
2226 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2227 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2228 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2229 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2230 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2231 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2232 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2233 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2234 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2235 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2236 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2237 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2238 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2239 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2240 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2241 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2242 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2243 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2244 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2245 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2246 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2247 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2248 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2249 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2250 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2251 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2252 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2253 };
2254 /* for i.MX6ul */
2255 static u32 fec_enet_register_offset_6ul[] = {
2256 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2257 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2258 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2259 	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2260 	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2261 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2262 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2263 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2264 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2265 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2266 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2267 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2268 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2269 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2270 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2271 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2272 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2273 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2274 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2275 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2276 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2277 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2278 };
2279 #else
2280 static __u32 fec_enet_register_version = 1;
2281 static u32 fec_enet_register_offset[] = {
2282 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2283 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2284 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2285 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2286 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2287 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2288 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2289 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2290 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2291 };
2292 #endif
2293 
fec_enet_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * regbuf)2294 static void fec_enet_get_regs(struct net_device *ndev,
2295 			      struct ethtool_regs *regs, void *regbuf)
2296 {
2297 	struct fec_enet_private *fep = netdev_priv(ndev);
2298 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2299 	struct device *dev = &fep->pdev->dev;
2300 	u32 *buf = (u32 *)regbuf;
2301 	u32 i, off;
2302 	int ret;
2303 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2304 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2305 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2306 	u32 *reg_list;
2307 	u32 reg_cnt;
2308 
2309 	if (!of_machine_is_compatible("fsl,imx6ul")) {
2310 		reg_list = fec_enet_register_offset;
2311 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2312 	} else {
2313 		reg_list = fec_enet_register_offset_6ul;
2314 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2315 	}
2316 #else
2317 	/* coldfire */
2318 	static u32 *reg_list = fec_enet_register_offset;
2319 	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2320 #endif
2321 	ret = pm_runtime_resume_and_get(dev);
2322 	if (ret < 0)
2323 		return;
2324 
2325 	regs->version = fec_enet_register_version;
2326 
2327 	memset(buf, 0, regs->len);
2328 
2329 	for (i = 0; i < reg_cnt; i++) {
2330 		off = reg_list[i];
2331 
2332 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2333 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2334 			continue;
2335 
2336 		off >>= 2;
2337 		buf[off] = readl(&theregs[off]);
2338 	}
2339 
2340 	pm_runtime_mark_last_busy(dev);
2341 	pm_runtime_put_autosuspend(dev);
2342 }
2343 
fec_enet_get_ts_info(struct net_device * ndev,struct ethtool_ts_info * info)2344 static int fec_enet_get_ts_info(struct net_device *ndev,
2345 				struct ethtool_ts_info *info)
2346 {
2347 	struct fec_enet_private *fep = netdev_priv(ndev);
2348 
2349 	if (fep->bufdesc_ex) {
2350 
2351 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2352 					SOF_TIMESTAMPING_RX_SOFTWARE |
2353 					SOF_TIMESTAMPING_SOFTWARE |
2354 					SOF_TIMESTAMPING_TX_HARDWARE |
2355 					SOF_TIMESTAMPING_RX_HARDWARE |
2356 					SOF_TIMESTAMPING_RAW_HARDWARE;
2357 		if (fep->ptp_clock)
2358 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2359 		else
2360 			info->phc_index = -1;
2361 
2362 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2363 				 (1 << HWTSTAMP_TX_ON);
2364 
2365 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2366 				   (1 << HWTSTAMP_FILTER_ALL);
2367 		return 0;
2368 	} else {
2369 		return ethtool_op_get_ts_info(ndev, info);
2370 	}
2371 }
2372 
2373 #if !defined(CONFIG_M5272)
2374 
fec_enet_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2375 static void fec_enet_get_pauseparam(struct net_device *ndev,
2376 				    struct ethtool_pauseparam *pause)
2377 {
2378 	struct fec_enet_private *fep = netdev_priv(ndev);
2379 
2380 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2381 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2382 	pause->rx_pause = pause->tx_pause;
2383 }
2384 
fec_enet_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2385 static int fec_enet_set_pauseparam(struct net_device *ndev,
2386 				   struct ethtool_pauseparam *pause)
2387 {
2388 	struct fec_enet_private *fep = netdev_priv(ndev);
2389 
2390 	if (!ndev->phydev)
2391 		return -ENODEV;
2392 
2393 	if (pause->tx_pause != pause->rx_pause) {
2394 		netdev_info(ndev,
2395 			"hardware only support enable/disable both tx and rx");
2396 		return -EINVAL;
2397 	}
2398 
2399 	fep->pause_flag = 0;
2400 
2401 	/* tx pause must be same as rx pause */
2402 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2403 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2404 
2405 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2406 			  pause->autoneg);
2407 
2408 	if (pause->autoneg) {
2409 		if (netif_running(ndev))
2410 			fec_stop(ndev);
2411 		phy_start_aneg(ndev->phydev);
2412 	}
2413 	if (netif_running(ndev)) {
2414 		napi_disable(&fep->napi);
2415 		netif_tx_lock_bh(ndev);
2416 		fec_restart(ndev);
2417 		netif_tx_wake_all_queues(ndev);
2418 		netif_tx_unlock_bh(ndev);
2419 		napi_enable(&fep->napi);
2420 	}
2421 
2422 	return 0;
2423 }
2424 
2425 static const struct fec_stat {
2426 	char name[ETH_GSTRING_LEN];
2427 	u16 offset;
2428 } fec_stats[] = {
2429 	/* RMON TX */
2430 	{ "tx_dropped", RMON_T_DROP },
2431 	{ "tx_packets", RMON_T_PACKETS },
2432 	{ "tx_broadcast", RMON_T_BC_PKT },
2433 	{ "tx_multicast", RMON_T_MC_PKT },
2434 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2435 	{ "tx_undersize", RMON_T_UNDERSIZE },
2436 	{ "tx_oversize", RMON_T_OVERSIZE },
2437 	{ "tx_fragment", RMON_T_FRAG },
2438 	{ "tx_jabber", RMON_T_JAB },
2439 	{ "tx_collision", RMON_T_COL },
2440 	{ "tx_64byte", RMON_T_P64 },
2441 	{ "tx_65to127byte", RMON_T_P65TO127 },
2442 	{ "tx_128to255byte", RMON_T_P128TO255 },
2443 	{ "tx_256to511byte", RMON_T_P256TO511 },
2444 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2445 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2446 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2447 	{ "tx_octets", RMON_T_OCTETS },
2448 
2449 	/* IEEE TX */
2450 	{ "IEEE_tx_drop", IEEE_T_DROP },
2451 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2452 	{ "IEEE_tx_1col", IEEE_T_1COL },
2453 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2454 	{ "IEEE_tx_def", IEEE_T_DEF },
2455 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2456 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2457 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2458 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2459 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2460 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2461 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2462 
2463 	/* RMON RX */
2464 	{ "rx_packets", RMON_R_PACKETS },
2465 	{ "rx_broadcast", RMON_R_BC_PKT },
2466 	{ "rx_multicast", RMON_R_MC_PKT },
2467 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2468 	{ "rx_undersize", RMON_R_UNDERSIZE },
2469 	{ "rx_oversize", RMON_R_OVERSIZE },
2470 	{ "rx_fragment", RMON_R_FRAG },
2471 	{ "rx_jabber", RMON_R_JAB },
2472 	{ "rx_64byte", RMON_R_P64 },
2473 	{ "rx_65to127byte", RMON_R_P65TO127 },
2474 	{ "rx_128to255byte", RMON_R_P128TO255 },
2475 	{ "rx_256to511byte", RMON_R_P256TO511 },
2476 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2477 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2478 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2479 	{ "rx_octets", RMON_R_OCTETS },
2480 
2481 	/* IEEE RX */
2482 	{ "IEEE_rx_drop", IEEE_R_DROP },
2483 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2484 	{ "IEEE_rx_crc", IEEE_R_CRC },
2485 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2486 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2487 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2488 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2489 };
2490 
2491 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2492 
fec_enet_update_ethtool_stats(struct net_device * dev)2493 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2494 {
2495 	struct fec_enet_private *fep = netdev_priv(dev);
2496 	int i;
2497 
2498 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2499 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2500 }
2501 
fec_enet_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)2502 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2503 				       struct ethtool_stats *stats, u64 *data)
2504 {
2505 	struct fec_enet_private *fep = netdev_priv(dev);
2506 
2507 	if (netif_running(dev))
2508 		fec_enet_update_ethtool_stats(dev);
2509 
2510 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2511 }
2512 
fec_enet_get_strings(struct net_device * netdev,u32 stringset,u8 * data)2513 static void fec_enet_get_strings(struct net_device *netdev,
2514 	u32 stringset, u8 *data)
2515 {
2516 	int i;
2517 	switch (stringset) {
2518 	case ETH_SS_STATS:
2519 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2520 			memcpy(data + i * ETH_GSTRING_LEN,
2521 				fec_stats[i].name, ETH_GSTRING_LEN);
2522 		break;
2523 	}
2524 }
2525 
fec_enet_get_sset_count(struct net_device * dev,int sset)2526 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2527 {
2528 	switch (sset) {
2529 	case ETH_SS_STATS:
2530 		return ARRAY_SIZE(fec_stats);
2531 	default:
2532 		return -EOPNOTSUPP;
2533 	}
2534 }
2535 
fec_enet_clear_ethtool_stats(struct net_device * dev)2536 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2537 {
2538 	struct fec_enet_private *fep = netdev_priv(dev);
2539 	int i;
2540 
2541 	/* Disable MIB statistics counters */
2542 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2543 
2544 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2545 		writel(0, fep->hwp + fec_stats[i].offset);
2546 
2547 	/* Don't disable MIB statistics counters */
2548 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2549 }
2550 
2551 #else	/* !defined(CONFIG_M5272) */
2552 #define FEC_STATS_SIZE	0
fec_enet_update_ethtool_stats(struct net_device * dev)2553 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2554 {
2555 }
2556 
fec_enet_clear_ethtool_stats(struct net_device * dev)2557 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2558 {
2559 }
2560 #endif /* !defined(CONFIG_M5272) */
2561 
2562 /* ITR clock source is enet system clock (clk_ahb).
2563  * TCTT unit is cycle_ns * 64 cycle
2564  * So, the ICTT value = X us / (cycle_ns * 64)
2565  */
fec_enet_us_to_itr_clock(struct net_device * ndev,int us)2566 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2567 {
2568 	struct fec_enet_private *fep = netdev_priv(ndev);
2569 
2570 	return us * (fep->itr_clk_rate / 64000) / 1000;
2571 }
2572 
2573 /* Set threshold for interrupt coalescing */
fec_enet_itr_coal_set(struct net_device * ndev)2574 static void fec_enet_itr_coal_set(struct net_device *ndev)
2575 {
2576 	struct fec_enet_private *fep = netdev_priv(ndev);
2577 	int rx_itr, tx_itr;
2578 
2579 	/* Must be greater than zero to avoid unpredictable behavior */
2580 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2581 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2582 		return;
2583 
2584 	/* Select enet system clock as Interrupt Coalescing
2585 	 * timer Clock Source
2586 	 */
2587 	rx_itr = FEC_ITR_CLK_SEL;
2588 	tx_itr = FEC_ITR_CLK_SEL;
2589 
2590 	/* set ICFT and ICTT */
2591 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2592 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2593 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2594 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2595 
2596 	rx_itr |= FEC_ITR_EN;
2597 	tx_itr |= FEC_ITR_EN;
2598 
2599 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2600 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2601 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2602 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2603 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2604 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2605 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2606 	}
2607 }
2608 
2609 static int
fec_enet_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec)2610 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2611 {
2612 	struct fec_enet_private *fep = netdev_priv(ndev);
2613 
2614 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2615 		return -EOPNOTSUPP;
2616 
2617 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2618 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2619 
2620 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2621 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2622 
2623 	return 0;
2624 }
2625 
2626 static int
fec_enet_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec)2627 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2628 {
2629 	struct fec_enet_private *fep = netdev_priv(ndev);
2630 	struct device *dev = &fep->pdev->dev;
2631 	unsigned int cycle;
2632 
2633 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2634 		return -EOPNOTSUPP;
2635 
2636 	if (ec->rx_max_coalesced_frames > 255) {
2637 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2638 		return -EINVAL;
2639 	}
2640 
2641 	if (ec->tx_max_coalesced_frames > 255) {
2642 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2643 		return -EINVAL;
2644 	}
2645 
2646 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2647 	if (cycle > 0xFFFF) {
2648 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2649 		return -EINVAL;
2650 	}
2651 
2652 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2653 	if (cycle > 0xFFFF) {
2654 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2655 		return -EINVAL;
2656 	}
2657 
2658 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2659 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2660 
2661 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2662 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2663 
2664 	fec_enet_itr_coal_set(ndev);
2665 
2666 	return 0;
2667 }
2668 
fec_enet_itr_coal_init(struct net_device * ndev)2669 static void fec_enet_itr_coal_init(struct net_device *ndev)
2670 {
2671 	struct ethtool_coalesce ec;
2672 
2673 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2674 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2675 
2676 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2677 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2678 
2679 	fec_enet_set_coalesce(ndev, &ec);
2680 }
2681 
fec_enet_get_tunable(struct net_device * netdev,const struct ethtool_tunable * tuna,void * data)2682 static int fec_enet_get_tunable(struct net_device *netdev,
2683 				const struct ethtool_tunable *tuna,
2684 				void *data)
2685 {
2686 	struct fec_enet_private *fep = netdev_priv(netdev);
2687 	int ret = 0;
2688 
2689 	switch (tuna->id) {
2690 	case ETHTOOL_RX_COPYBREAK:
2691 		*(u32 *)data = fep->rx_copybreak;
2692 		break;
2693 	default:
2694 		ret = -EINVAL;
2695 		break;
2696 	}
2697 
2698 	return ret;
2699 }
2700 
fec_enet_set_tunable(struct net_device * netdev,const struct ethtool_tunable * tuna,const void * data)2701 static int fec_enet_set_tunable(struct net_device *netdev,
2702 				const struct ethtool_tunable *tuna,
2703 				const void *data)
2704 {
2705 	struct fec_enet_private *fep = netdev_priv(netdev);
2706 	int ret = 0;
2707 
2708 	switch (tuna->id) {
2709 	case ETHTOOL_RX_COPYBREAK:
2710 		fep->rx_copybreak = *(u32 *)data;
2711 		break;
2712 	default:
2713 		ret = -EINVAL;
2714 		break;
2715 	}
2716 
2717 	return ret;
2718 }
2719 
2720 static void
fec_enet_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)2721 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2722 {
2723 	struct fec_enet_private *fep = netdev_priv(ndev);
2724 
2725 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2726 		wol->supported = WAKE_MAGIC;
2727 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2728 	} else {
2729 		wol->supported = wol->wolopts = 0;
2730 	}
2731 }
2732 
2733 static int
fec_enet_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)2734 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2735 {
2736 	struct fec_enet_private *fep = netdev_priv(ndev);
2737 
2738 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2739 		return -EINVAL;
2740 
2741 	if (wol->wolopts & ~WAKE_MAGIC)
2742 		return -EINVAL;
2743 
2744 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2745 	if (device_may_wakeup(&ndev->dev)) {
2746 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2747 		if (fep->irq[0] > 0)
2748 			enable_irq_wake(fep->irq[0]);
2749 	} else {
2750 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2751 		if (fep->irq[0] > 0)
2752 			disable_irq_wake(fep->irq[0]);
2753 	}
2754 
2755 	return 0;
2756 }
2757 
2758 static const struct ethtool_ops fec_enet_ethtool_ops = {
2759 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2760 				     ETHTOOL_COALESCE_MAX_FRAMES,
2761 	.get_drvinfo		= fec_enet_get_drvinfo,
2762 	.get_regs_len		= fec_enet_get_regs_len,
2763 	.get_regs		= fec_enet_get_regs,
2764 	.nway_reset		= phy_ethtool_nway_reset,
2765 	.get_link		= ethtool_op_get_link,
2766 	.get_coalesce		= fec_enet_get_coalesce,
2767 	.set_coalesce		= fec_enet_set_coalesce,
2768 #ifndef CONFIG_M5272
2769 	.get_pauseparam		= fec_enet_get_pauseparam,
2770 	.set_pauseparam		= fec_enet_set_pauseparam,
2771 	.get_strings		= fec_enet_get_strings,
2772 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2773 	.get_sset_count		= fec_enet_get_sset_count,
2774 #endif
2775 	.get_ts_info		= fec_enet_get_ts_info,
2776 	.get_tunable		= fec_enet_get_tunable,
2777 	.set_tunable		= fec_enet_set_tunable,
2778 	.get_wol		= fec_enet_get_wol,
2779 	.set_wol		= fec_enet_set_wol,
2780 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2781 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2782 };
2783 
fec_enet_ioctl(struct net_device * ndev,struct ifreq * rq,int cmd)2784 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2785 {
2786 	struct fec_enet_private *fep = netdev_priv(ndev);
2787 	struct phy_device *phydev = ndev->phydev;
2788 
2789 	if (!netif_running(ndev))
2790 		return -EINVAL;
2791 
2792 	if (!phydev)
2793 		return -ENODEV;
2794 
2795 	if (fep->bufdesc_ex) {
2796 		bool use_fec_hwts = !phy_has_hwtstamp(phydev);
2797 
2798 		if (cmd == SIOCSHWTSTAMP) {
2799 			if (use_fec_hwts)
2800 				return fec_ptp_set(ndev, rq);
2801 			fec_ptp_disable_hwts(ndev);
2802 		} else if (cmd == SIOCGHWTSTAMP) {
2803 			if (use_fec_hwts)
2804 				return fec_ptp_get(ndev, rq);
2805 		}
2806 	}
2807 
2808 	return phy_mii_ioctl(phydev, rq, cmd);
2809 }
2810 
fec_enet_free_buffers(struct net_device * ndev)2811 static void fec_enet_free_buffers(struct net_device *ndev)
2812 {
2813 	struct fec_enet_private *fep = netdev_priv(ndev);
2814 	unsigned int i;
2815 	struct sk_buff *skb;
2816 	struct bufdesc	*bdp;
2817 	struct fec_enet_priv_tx_q *txq;
2818 	struct fec_enet_priv_rx_q *rxq;
2819 	unsigned int q;
2820 
2821 	for (q = 0; q < fep->num_rx_queues; q++) {
2822 		rxq = fep->rx_queue[q];
2823 		bdp = rxq->bd.base;
2824 		for (i = 0; i < rxq->bd.ring_size; i++) {
2825 			skb = rxq->rx_skbuff[i];
2826 			rxq->rx_skbuff[i] = NULL;
2827 			if (skb) {
2828 				dma_unmap_single(&fep->pdev->dev,
2829 						 fec32_to_cpu(bdp->cbd_bufaddr),
2830 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2831 						 DMA_FROM_DEVICE);
2832 				dev_kfree_skb(skb);
2833 			}
2834 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2835 		}
2836 	}
2837 
2838 	for (q = 0; q < fep->num_tx_queues; q++) {
2839 		txq = fep->tx_queue[q];
2840 		for (i = 0; i < txq->bd.ring_size; i++) {
2841 			kfree(txq->tx_bounce[i]);
2842 			txq->tx_bounce[i] = NULL;
2843 			skb = txq->tx_skbuff[i];
2844 			txq->tx_skbuff[i] = NULL;
2845 			dev_kfree_skb(skb);
2846 		}
2847 	}
2848 }
2849 
fec_enet_free_queue(struct net_device * ndev)2850 static void fec_enet_free_queue(struct net_device *ndev)
2851 {
2852 	struct fec_enet_private *fep = netdev_priv(ndev);
2853 	int i;
2854 	struct fec_enet_priv_tx_q *txq;
2855 
2856 	for (i = 0; i < fep->num_tx_queues; i++)
2857 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2858 			txq = fep->tx_queue[i];
2859 			dma_free_coherent(&fep->pdev->dev,
2860 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2861 					  txq->tso_hdrs,
2862 					  txq->tso_hdrs_dma);
2863 		}
2864 
2865 	for (i = 0; i < fep->num_rx_queues; i++)
2866 		kfree(fep->rx_queue[i]);
2867 	for (i = 0; i < fep->num_tx_queues; i++)
2868 		kfree(fep->tx_queue[i]);
2869 }
2870 
fec_enet_alloc_queue(struct net_device * ndev)2871 static int fec_enet_alloc_queue(struct net_device *ndev)
2872 {
2873 	struct fec_enet_private *fep = netdev_priv(ndev);
2874 	int i;
2875 	int ret = 0;
2876 	struct fec_enet_priv_tx_q *txq;
2877 
2878 	for (i = 0; i < fep->num_tx_queues; i++) {
2879 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2880 		if (!txq) {
2881 			ret = -ENOMEM;
2882 			goto alloc_failed;
2883 		}
2884 
2885 		fep->tx_queue[i] = txq;
2886 		txq->bd.ring_size = TX_RING_SIZE;
2887 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2888 
2889 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2890 		txq->tx_wake_threshold =
2891 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2892 
2893 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2894 					txq->bd.ring_size * TSO_HEADER_SIZE,
2895 					&txq->tso_hdrs_dma,
2896 					GFP_KERNEL);
2897 		if (!txq->tso_hdrs) {
2898 			ret = -ENOMEM;
2899 			goto alloc_failed;
2900 		}
2901 	}
2902 
2903 	for (i = 0; i < fep->num_rx_queues; i++) {
2904 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2905 					   GFP_KERNEL);
2906 		if (!fep->rx_queue[i]) {
2907 			ret = -ENOMEM;
2908 			goto alloc_failed;
2909 		}
2910 
2911 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2912 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2913 	}
2914 	return ret;
2915 
2916 alloc_failed:
2917 	fec_enet_free_queue(ndev);
2918 	return ret;
2919 }
2920 
2921 static int
fec_enet_alloc_rxq_buffers(struct net_device * ndev,unsigned int queue)2922 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2923 {
2924 	struct fec_enet_private *fep = netdev_priv(ndev);
2925 	unsigned int i;
2926 	struct sk_buff *skb;
2927 	struct bufdesc	*bdp;
2928 	struct fec_enet_priv_rx_q *rxq;
2929 
2930 	rxq = fep->rx_queue[queue];
2931 	bdp = rxq->bd.base;
2932 	for (i = 0; i < rxq->bd.ring_size; i++) {
2933 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2934 		if (!skb)
2935 			goto err_alloc;
2936 
2937 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2938 			dev_kfree_skb(skb);
2939 			goto err_alloc;
2940 		}
2941 
2942 		rxq->rx_skbuff[i] = skb;
2943 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2944 
2945 		if (fep->bufdesc_ex) {
2946 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2947 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2948 		}
2949 
2950 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2951 	}
2952 
2953 	/* Set the last buffer to wrap. */
2954 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2955 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2956 	return 0;
2957 
2958  err_alloc:
2959 	fec_enet_free_buffers(ndev);
2960 	return -ENOMEM;
2961 }
2962 
2963 static int
fec_enet_alloc_txq_buffers(struct net_device * ndev,unsigned int queue)2964 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2965 {
2966 	struct fec_enet_private *fep = netdev_priv(ndev);
2967 	unsigned int i;
2968 	struct bufdesc  *bdp;
2969 	struct fec_enet_priv_tx_q *txq;
2970 
2971 	txq = fep->tx_queue[queue];
2972 	bdp = txq->bd.base;
2973 	for (i = 0; i < txq->bd.ring_size; i++) {
2974 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2975 		if (!txq->tx_bounce[i])
2976 			goto err_alloc;
2977 
2978 		bdp->cbd_sc = cpu_to_fec16(0);
2979 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2980 
2981 		if (fep->bufdesc_ex) {
2982 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2983 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2984 		}
2985 
2986 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2987 	}
2988 
2989 	/* Set the last buffer to wrap. */
2990 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2991 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2992 
2993 	return 0;
2994 
2995  err_alloc:
2996 	fec_enet_free_buffers(ndev);
2997 	return -ENOMEM;
2998 }
2999 
fec_enet_alloc_buffers(struct net_device * ndev)3000 static int fec_enet_alloc_buffers(struct net_device *ndev)
3001 {
3002 	struct fec_enet_private *fep = netdev_priv(ndev);
3003 	unsigned int i;
3004 
3005 	for (i = 0; i < fep->num_rx_queues; i++)
3006 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3007 			return -ENOMEM;
3008 
3009 	for (i = 0; i < fep->num_tx_queues; i++)
3010 		if (fec_enet_alloc_txq_buffers(ndev, i))
3011 			return -ENOMEM;
3012 	return 0;
3013 }
3014 
3015 static int
fec_enet_open(struct net_device * ndev)3016 fec_enet_open(struct net_device *ndev)
3017 {
3018 	struct fec_enet_private *fep = netdev_priv(ndev);
3019 	int ret;
3020 	bool reset_again;
3021 
3022 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3023 	if (ret < 0)
3024 		return ret;
3025 
3026 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3027 	ret = fec_enet_clk_enable(ndev, true);
3028 	if (ret)
3029 		goto clk_enable;
3030 
3031 	/* During the first fec_enet_open call the PHY isn't probed at this
3032 	 * point. Therefore the phy_reset_after_clk_enable() call within
3033 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3034 	 * sure the PHY is working correctly we check if we need to reset again
3035 	 * later when the PHY is probed
3036 	 */
3037 	if (ndev->phydev && ndev->phydev->drv)
3038 		reset_again = false;
3039 	else
3040 		reset_again = true;
3041 
3042 	/* I should reset the ring buffers here, but I don't yet know
3043 	 * a simple way to do that.
3044 	 */
3045 
3046 	ret = fec_enet_alloc_buffers(ndev);
3047 	if (ret)
3048 		goto err_enet_alloc;
3049 
3050 	/* Init MAC prior to mii bus probe */
3051 	fec_restart(ndev);
3052 
3053 	/* Call phy_reset_after_clk_enable() again if it failed during
3054 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3055 	 */
3056 	if (reset_again)
3057 		fec_enet_phy_reset_after_clk_enable(ndev);
3058 
3059 	/* Probe and connect to PHY when open the interface */
3060 	ret = fec_enet_mii_probe(ndev);
3061 	if (ret)
3062 		goto err_enet_mii_probe;
3063 
3064 	if (fep->quirks & FEC_QUIRK_ERR006687)
3065 		imx6q_cpuidle_fec_irqs_used();
3066 
3067 	napi_enable(&fep->napi);
3068 	phy_start(ndev->phydev);
3069 	netif_tx_start_all_queues(ndev);
3070 
3071 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3072 				 FEC_WOL_FLAG_ENABLE);
3073 
3074 	return 0;
3075 
3076 err_enet_mii_probe:
3077 	fec_enet_free_buffers(ndev);
3078 err_enet_alloc:
3079 	fec_enet_clk_enable(ndev, false);
3080 clk_enable:
3081 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3082 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3083 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3084 	return ret;
3085 }
3086 
3087 static int
fec_enet_close(struct net_device * ndev)3088 fec_enet_close(struct net_device *ndev)
3089 {
3090 	struct fec_enet_private *fep = netdev_priv(ndev);
3091 
3092 	phy_stop(ndev->phydev);
3093 
3094 	if (netif_device_present(ndev)) {
3095 		napi_disable(&fep->napi);
3096 		netif_tx_disable(ndev);
3097 		fec_stop(ndev);
3098 	}
3099 
3100 	phy_disconnect(ndev->phydev);
3101 
3102 	if (fep->quirks & FEC_QUIRK_ERR006687)
3103 		imx6q_cpuidle_fec_irqs_unused();
3104 
3105 	fec_enet_update_ethtool_stats(ndev);
3106 
3107 	fec_enet_clk_enable(ndev, false);
3108 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3109 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3110 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3111 
3112 	fec_enet_free_buffers(ndev);
3113 
3114 	return 0;
3115 }
3116 
3117 /* Set or clear the multicast filter for this adaptor.
3118  * Skeleton taken from sunlance driver.
3119  * The CPM Ethernet implementation allows Multicast as well as individual
3120  * MAC address filtering.  Some of the drivers check to make sure it is
3121  * a group multicast address, and discard those that are not.  I guess I
3122  * will do the same for now, but just remove the test if you want
3123  * individual filtering as well (do the upper net layers want or support
3124  * this kind of feature?).
3125  */
3126 
3127 #define FEC_HASH_BITS	6		/* #bits in hash */
3128 
set_multicast_list(struct net_device * ndev)3129 static void set_multicast_list(struct net_device *ndev)
3130 {
3131 	struct fec_enet_private *fep = netdev_priv(ndev);
3132 	struct netdev_hw_addr *ha;
3133 	unsigned int crc, tmp;
3134 	unsigned char hash;
3135 	unsigned int hash_high = 0, hash_low = 0;
3136 
3137 	if (ndev->flags & IFF_PROMISC) {
3138 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3139 		tmp |= 0x8;
3140 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3141 		return;
3142 	}
3143 
3144 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3145 	tmp &= ~0x8;
3146 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3147 
3148 	if (ndev->flags & IFF_ALLMULTI) {
3149 		/* Catch all multicast addresses, so set the
3150 		 * filter to all 1's
3151 		 */
3152 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3153 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3154 
3155 		return;
3156 	}
3157 
3158 	/* Add the addresses in hash register */
3159 	netdev_for_each_mc_addr(ha, ndev) {
3160 		/* calculate crc32 value of mac address */
3161 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3162 
3163 		/* only upper 6 bits (FEC_HASH_BITS) are used
3164 		 * which point to specific bit in the hash registers
3165 		 */
3166 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3167 
3168 		if (hash > 31)
3169 			hash_high |= 1 << (hash - 32);
3170 		else
3171 			hash_low |= 1 << hash;
3172 	}
3173 
3174 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3175 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3176 }
3177 
3178 /* Set a MAC change in hardware. */
3179 static int
fec_set_mac_address(struct net_device * ndev,void * p)3180 fec_set_mac_address(struct net_device *ndev, void *p)
3181 {
3182 	struct fec_enet_private *fep = netdev_priv(ndev);
3183 	struct sockaddr *addr = p;
3184 
3185 	if (addr) {
3186 		if (!is_valid_ether_addr(addr->sa_data))
3187 			return -EADDRNOTAVAIL;
3188 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3189 	}
3190 
3191 	/* Add netif status check here to avoid system hang in below case:
3192 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3193 	 * After ethx down, fec all clocks are gated off and then register
3194 	 * access causes system hang.
3195 	 */
3196 	if (!netif_running(ndev))
3197 		return 0;
3198 
3199 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3200 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3201 		fep->hwp + FEC_ADDR_LOW);
3202 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3203 		fep->hwp + FEC_ADDR_HIGH);
3204 	return 0;
3205 }
3206 
3207 #ifdef CONFIG_NET_POLL_CONTROLLER
3208 /**
3209  * fec_poll_controller - FEC Poll controller function
3210  * @dev: The FEC network adapter
3211  *
3212  * Polled functionality used by netconsole and others in non interrupt mode
3213  *
3214  */
fec_poll_controller(struct net_device * dev)3215 static void fec_poll_controller(struct net_device *dev)
3216 {
3217 	int i;
3218 	struct fec_enet_private *fep = netdev_priv(dev);
3219 
3220 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3221 		if (fep->irq[i] > 0) {
3222 			disable_irq(fep->irq[i]);
3223 			fec_enet_interrupt(fep->irq[i], dev);
3224 			enable_irq(fep->irq[i]);
3225 		}
3226 	}
3227 }
3228 #endif
3229 
fec_enet_set_netdev_features(struct net_device * netdev,netdev_features_t features)3230 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3231 	netdev_features_t features)
3232 {
3233 	struct fec_enet_private *fep = netdev_priv(netdev);
3234 	netdev_features_t changed = features ^ netdev->features;
3235 
3236 	netdev->features = features;
3237 
3238 	/* Receive checksum has been changed */
3239 	if (changed & NETIF_F_RXCSUM) {
3240 		if (features & NETIF_F_RXCSUM)
3241 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3242 		else
3243 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3244 	}
3245 }
3246 
fec_set_features(struct net_device * netdev,netdev_features_t features)3247 static int fec_set_features(struct net_device *netdev,
3248 	netdev_features_t features)
3249 {
3250 	struct fec_enet_private *fep = netdev_priv(netdev);
3251 	netdev_features_t changed = features ^ netdev->features;
3252 
3253 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3254 		napi_disable(&fep->napi);
3255 		netif_tx_lock_bh(netdev);
3256 		fec_stop(netdev);
3257 		fec_enet_set_netdev_features(netdev, features);
3258 		fec_restart(netdev);
3259 		netif_tx_wake_all_queues(netdev);
3260 		netif_tx_unlock_bh(netdev);
3261 		napi_enable(&fep->napi);
3262 	} else {
3263 		fec_enet_set_netdev_features(netdev, features);
3264 	}
3265 
3266 	return 0;
3267 }
3268 
fec_enet_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)3269 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3270 				 struct net_device *sb_dev)
3271 {
3272 	struct fec_enet_private *fep = netdev_priv(ndev);
3273 	u16 vlan_tag = 0;
3274 
3275 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3276 		return netdev_pick_tx(ndev, skb, NULL);
3277 
3278 	/* VLAN is present in the payload.*/
3279 	if (eth_type_vlan(skb->protocol)) {
3280 		struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3281 
3282 		vlan_tag = ntohs(vhdr->h_vlan_TCI);
3283 	/*  VLAN is present in the skb but not yet pushed in the payload.*/
3284 	} else if (skb_vlan_tag_present(skb)) {
3285 		vlan_tag = skb->vlan_tci;
3286 	} else {
3287 		return vlan_tag;
3288 	}
3289 
3290 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3291 }
3292 
3293 static const struct net_device_ops fec_netdev_ops = {
3294 	.ndo_open		= fec_enet_open,
3295 	.ndo_stop		= fec_enet_close,
3296 	.ndo_start_xmit		= fec_enet_start_xmit,
3297 	.ndo_select_queue       = fec_enet_select_queue,
3298 	.ndo_set_rx_mode	= set_multicast_list,
3299 	.ndo_validate_addr	= eth_validate_addr,
3300 	.ndo_tx_timeout		= fec_timeout,
3301 	.ndo_set_mac_address	= fec_set_mac_address,
3302 	.ndo_do_ioctl		= fec_enet_ioctl,
3303 #ifdef CONFIG_NET_POLL_CONTROLLER
3304 	.ndo_poll_controller	= fec_poll_controller,
3305 #endif
3306 	.ndo_set_features	= fec_set_features,
3307 };
3308 
3309 static const unsigned short offset_des_active_rxq[] = {
3310 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3311 };
3312 
3313 static const unsigned short offset_des_active_txq[] = {
3314 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3315 };
3316 
3317  /*
3318   * XXX:  We need to clean up on failure exits here.
3319   *
3320   */
fec_enet_init(struct net_device * ndev)3321 static int fec_enet_init(struct net_device *ndev)
3322 {
3323 	struct fec_enet_private *fep = netdev_priv(ndev);
3324 	struct bufdesc *cbd_base;
3325 	dma_addr_t bd_dma;
3326 	int bd_size;
3327 	unsigned int i;
3328 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3329 			sizeof(struct bufdesc);
3330 	unsigned dsize_log2 = __fls(dsize);
3331 	int ret;
3332 
3333 	WARN_ON(dsize != (1 << dsize_log2));
3334 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3335 	fep->rx_align = 0xf;
3336 	fep->tx_align = 0xf;
3337 #else
3338 	fep->rx_align = 0x3;
3339 	fep->tx_align = 0x3;
3340 #endif
3341 
3342 	/* Check mask of the streaming and coherent API */
3343 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3344 	if (ret < 0) {
3345 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3346 		return ret;
3347 	}
3348 
3349 	ret = fec_enet_alloc_queue(ndev);
3350 	if (ret)
3351 		return ret;
3352 
3353 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3354 
3355 	/* Allocate memory for buffer descriptors. */
3356 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3357 				       GFP_KERNEL);
3358 	if (!cbd_base) {
3359 		ret = -ENOMEM;
3360 		goto free_queue_mem;
3361 	}
3362 
3363 	/* Get the Ethernet address */
3364 	fec_get_mac(ndev);
3365 	/* make sure MAC we just acquired is programmed into the hw */
3366 	fec_set_mac_address(ndev, NULL);
3367 
3368 	/* Set receive and transmit descriptor base. */
3369 	for (i = 0; i < fep->num_rx_queues; i++) {
3370 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3371 		unsigned size = dsize * rxq->bd.ring_size;
3372 
3373 		rxq->bd.qid = i;
3374 		rxq->bd.base = cbd_base;
3375 		rxq->bd.cur = cbd_base;
3376 		rxq->bd.dma = bd_dma;
3377 		rxq->bd.dsize = dsize;
3378 		rxq->bd.dsize_log2 = dsize_log2;
3379 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3380 		bd_dma += size;
3381 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3382 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3383 	}
3384 
3385 	for (i = 0; i < fep->num_tx_queues; i++) {
3386 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3387 		unsigned size = dsize * txq->bd.ring_size;
3388 
3389 		txq->bd.qid = i;
3390 		txq->bd.base = cbd_base;
3391 		txq->bd.cur = cbd_base;
3392 		txq->bd.dma = bd_dma;
3393 		txq->bd.dsize = dsize;
3394 		txq->bd.dsize_log2 = dsize_log2;
3395 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3396 		bd_dma += size;
3397 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3398 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3399 	}
3400 
3401 
3402 	/* The FEC Ethernet specific entries in the device structure */
3403 	ndev->watchdog_timeo = TX_TIMEOUT;
3404 	ndev->netdev_ops = &fec_netdev_ops;
3405 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3406 
3407 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3408 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3409 
3410 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3411 		/* enable hw VLAN support */
3412 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3413 
3414 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3415 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3416 
3417 		/* enable hw accelerator */
3418 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3419 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3420 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3421 	}
3422 
3423 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3424 		fep->tx_align = 0;
3425 		fep->rx_align = 0x3f;
3426 	}
3427 
3428 	ndev->hw_features = ndev->features;
3429 
3430 	fec_restart(ndev);
3431 
3432 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3433 		fec_enet_clear_ethtool_stats(ndev);
3434 	else
3435 		fec_enet_update_ethtool_stats(ndev);
3436 
3437 	return 0;
3438 
3439 free_queue_mem:
3440 	fec_enet_free_queue(ndev);
3441 	return ret;
3442 }
3443 
3444 #ifdef CONFIG_OF
fec_reset_phy(struct platform_device * pdev)3445 static int fec_reset_phy(struct platform_device *pdev)
3446 {
3447 	int err, phy_reset;
3448 	bool active_high = false;
3449 	int msec = 1, phy_post_delay = 0;
3450 	struct device_node *np = pdev->dev.of_node;
3451 
3452 	if (!np)
3453 		return 0;
3454 
3455 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3456 	/* A sane reset duration should not be longer than 1s */
3457 	if (!err && msec > 1000)
3458 		msec = 1;
3459 
3460 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3461 	if (phy_reset == -EPROBE_DEFER)
3462 		return phy_reset;
3463 	else if (!gpio_is_valid(phy_reset))
3464 		return 0;
3465 
3466 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3467 	/* valid reset duration should be less than 1s */
3468 	if (!err && phy_post_delay > 1000)
3469 		return -EINVAL;
3470 
3471 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3472 
3473 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3474 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3475 			"phy-reset");
3476 	if (err) {
3477 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3478 		return err;
3479 	}
3480 
3481 	if (msec > 20)
3482 		msleep(msec);
3483 	else
3484 		usleep_range(msec * 1000, msec * 1000 + 1000);
3485 
3486 	gpio_set_value_cansleep(phy_reset, !active_high);
3487 
3488 	if (!phy_post_delay)
3489 		return 0;
3490 
3491 	if (phy_post_delay > 20)
3492 		msleep(phy_post_delay);
3493 	else
3494 		usleep_range(phy_post_delay * 1000,
3495 			     phy_post_delay * 1000 + 1000);
3496 
3497 	return 0;
3498 }
3499 #else /* CONFIG_OF */
fec_reset_phy(struct platform_device * pdev)3500 static int fec_reset_phy(struct platform_device *pdev)
3501 {
3502 	/*
3503 	 * In case of platform probe, the reset has been done
3504 	 * by machine code.
3505 	 */
3506 	return 0;
3507 }
3508 #endif /* CONFIG_OF */
3509 
3510 static void
fec_enet_get_queue_num(struct platform_device * pdev,int * num_tx,int * num_rx)3511 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3512 {
3513 	struct device_node *np = pdev->dev.of_node;
3514 
3515 	*num_tx = *num_rx = 1;
3516 
3517 	if (!np || !of_device_is_available(np))
3518 		return;
3519 
3520 	/* parse the num of tx and rx queues */
3521 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3522 
3523 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3524 
3525 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3526 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3527 			 *num_tx);
3528 		*num_tx = 1;
3529 		return;
3530 	}
3531 
3532 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3533 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3534 			 *num_rx);
3535 		*num_rx = 1;
3536 		return;
3537 	}
3538 
3539 }
3540 
fec_enet_get_irq_cnt(struct platform_device * pdev)3541 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3542 {
3543 	int irq_cnt = platform_irq_count(pdev);
3544 
3545 	if (irq_cnt > FEC_IRQ_NUM)
3546 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3547 	else if (irq_cnt == 2)
3548 		irq_cnt = 1;	/* last for pps */
3549 	else if (irq_cnt <= 0)
3550 		irq_cnt = 1;	/* At least 1 irq is needed */
3551 	return irq_cnt;
3552 }
3553 
fec_enet_init_stop_mode(struct fec_enet_private * fep,struct device_node * np)3554 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3555 				   struct device_node *np)
3556 {
3557 	struct device_node *gpr_np;
3558 	u32 out_val[3];
3559 	int ret = 0;
3560 
3561 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
3562 	if (!gpr_np)
3563 		return 0;
3564 
3565 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
3566 					 ARRAY_SIZE(out_val));
3567 	if (ret) {
3568 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
3569 		goto out;
3570 	}
3571 
3572 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3573 	if (IS_ERR(fep->stop_gpr.gpr)) {
3574 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3575 		ret = PTR_ERR(fep->stop_gpr.gpr);
3576 		fep->stop_gpr.gpr = NULL;
3577 		goto out;
3578 	}
3579 
3580 	fep->stop_gpr.reg = out_val[1];
3581 	fep->stop_gpr.bit = out_val[2];
3582 
3583 out:
3584 	of_node_put(gpr_np);
3585 
3586 	return ret;
3587 }
3588 
3589 static int
fec_probe(struct platform_device * pdev)3590 fec_probe(struct platform_device *pdev)
3591 {
3592 	struct fec_enet_private *fep;
3593 	struct fec_platform_data *pdata;
3594 	phy_interface_t interface;
3595 	struct net_device *ndev;
3596 	int i, irq, ret = 0;
3597 	const struct of_device_id *of_id;
3598 	static int dev_id;
3599 	struct device_node *np = pdev->dev.of_node, *phy_node;
3600 	int num_tx_qs;
3601 	int num_rx_qs;
3602 	char irq_name[8];
3603 	int irq_cnt;
3604 	struct fec_devinfo *dev_info;
3605 
3606 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3607 
3608 	/* Init network device */
3609 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3610 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3611 	if (!ndev)
3612 		return -ENOMEM;
3613 
3614 	SET_NETDEV_DEV(ndev, &pdev->dev);
3615 
3616 	/* setup board info structure */
3617 	fep = netdev_priv(ndev);
3618 
3619 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3620 	if (of_id)
3621 		pdev->id_entry = of_id->data;
3622 	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3623 	if (dev_info)
3624 		fep->quirks = dev_info->quirks;
3625 
3626 	fep->netdev = ndev;
3627 	fep->num_rx_queues = num_rx_qs;
3628 	fep->num_tx_queues = num_tx_qs;
3629 
3630 #if !defined(CONFIG_M5272)
3631 	/* default enable pause frame auto negotiation */
3632 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3633 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3634 #endif
3635 
3636 	/* Select default pin state */
3637 	pinctrl_pm_select_default_state(&pdev->dev);
3638 
3639 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3640 	if (IS_ERR(fep->hwp)) {
3641 		ret = PTR_ERR(fep->hwp);
3642 		goto failed_ioremap;
3643 	}
3644 
3645 	fep->pdev = pdev;
3646 	fep->dev_id = dev_id++;
3647 
3648 	platform_set_drvdata(pdev, ndev);
3649 
3650 	if ((of_machine_is_compatible("fsl,imx6q") ||
3651 	     of_machine_is_compatible("fsl,imx6dl")) &&
3652 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3653 		fep->quirks |= FEC_QUIRK_ERR006687;
3654 
3655 	if (of_get_property(np, "fsl,magic-packet", NULL))
3656 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3657 
3658 	ret = fec_enet_init_stop_mode(fep, np);
3659 	if (ret)
3660 		goto failed_stop_mode;
3661 
3662 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3663 	if (!phy_node && of_phy_is_fixed_link(np)) {
3664 		ret = of_phy_register_fixed_link(np);
3665 		if (ret < 0) {
3666 			dev_err(&pdev->dev,
3667 				"broken fixed-link specification\n");
3668 			goto failed_phy;
3669 		}
3670 		phy_node = of_node_get(np);
3671 	}
3672 	fep->phy_node = phy_node;
3673 
3674 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3675 	if (ret) {
3676 		pdata = dev_get_platdata(&pdev->dev);
3677 		if (pdata)
3678 			fep->phy_interface = pdata->phy;
3679 		else
3680 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3681 	} else {
3682 		fep->phy_interface = interface;
3683 	}
3684 
3685 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3686 	if (IS_ERR(fep->clk_ipg)) {
3687 		ret = PTR_ERR(fep->clk_ipg);
3688 		goto failed_clk;
3689 	}
3690 
3691 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3692 	if (IS_ERR(fep->clk_ahb)) {
3693 		ret = PTR_ERR(fep->clk_ahb);
3694 		goto failed_clk;
3695 	}
3696 
3697 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3698 
3699 	/* enet_out is optional, depends on board */
3700 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3701 	if (IS_ERR(fep->clk_enet_out))
3702 		fep->clk_enet_out = NULL;
3703 
3704 	fep->ptp_clk_on = false;
3705 	mutex_init(&fep->ptp_clk_mutex);
3706 
3707 	/* clk_ref is optional, depends on board */
3708 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3709 	if (IS_ERR(fep->clk_ref))
3710 		fep->clk_ref = NULL;
3711 
3712 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3713 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3714 	if (IS_ERR(fep->clk_ptp)) {
3715 		fep->clk_ptp = NULL;
3716 		fep->bufdesc_ex = false;
3717 	}
3718 
3719 	ret = fec_enet_clk_enable(ndev, true);
3720 	if (ret)
3721 		goto failed_clk;
3722 
3723 	ret = clk_prepare_enable(fep->clk_ipg);
3724 	if (ret)
3725 		goto failed_clk_ipg;
3726 	ret = clk_prepare_enable(fep->clk_ahb);
3727 	if (ret)
3728 		goto failed_clk_ahb;
3729 
3730 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3731 	if (!IS_ERR(fep->reg_phy)) {
3732 		ret = regulator_enable(fep->reg_phy);
3733 		if (ret) {
3734 			dev_err(&pdev->dev,
3735 				"Failed to enable phy regulator: %d\n", ret);
3736 			goto failed_regulator;
3737 		}
3738 	} else {
3739 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3740 			ret = -EPROBE_DEFER;
3741 			goto failed_regulator;
3742 		}
3743 		fep->reg_phy = NULL;
3744 	}
3745 
3746 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3747 	pm_runtime_use_autosuspend(&pdev->dev);
3748 	pm_runtime_get_noresume(&pdev->dev);
3749 	pm_runtime_set_active(&pdev->dev);
3750 	pm_runtime_enable(&pdev->dev);
3751 
3752 	ret = fec_reset_phy(pdev);
3753 	if (ret)
3754 		goto failed_reset;
3755 
3756 	irq_cnt = fec_enet_get_irq_cnt(pdev);
3757 	if (fep->bufdesc_ex)
3758 		fec_ptp_init(pdev, irq_cnt);
3759 
3760 	ret = fec_enet_init(ndev);
3761 	if (ret)
3762 		goto failed_init;
3763 
3764 	for (i = 0; i < irq_cnt; i++) {
3765 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
3766 		irq = platform_get_irq_byname_optional(pdev, irq_name);
3767 		if (irq < 0)
3768 			irq = platform_get_irq(pdev, i);
3769 		if (irq < 0) {
3770 			ret = irq;
3771 			goto failed_irq;
3772 		}
3773 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3774 				       0, pdev->name, ndev);
3775 		if (ret)
3776 			goto failed_irq;
3777 
3778 		fep->irq[i] = irq;
3779 	}
3780 
3781 	ret = fec_enet_mii_init(pdev);
3782 	if (ret)
3783 		goto failed_mii_init;
3784 
3785 	/* Carrier starts down, phylib will bring it up */
3786 	netif_carrier_off(ndev);
3787 	fec_enet_clk_enable(ndev, false);
3788 	pinctrl_pm_select_sleep_state(&pdev->dev);
3789 
3790 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
3791 
3792 	ret = register_netdev(ndev);
3793 	if (ret)
3794 		goto failed_register;
3795 
3796 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3797 			   FEC_WOL_HAS_MAGIC_PACKET);
3798 
3799 	if (fep->bufdesc_ex && fep->ptp_clock)
3800 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3801 
3802 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3803 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3804 
3805 	pm_runtime_mark_last_busy(&pdev->dev);
3806 	pm_runtime_put_autosuspend(&pdev->dev);
3807 
3808 	return 0;
3809 
3810 failed_register:
3811 	fec_enet_mii_remove(fep);
3812 failed_mii_init:
3813 failed_irq:
3814 failed_init:
3815 	fec_ptp_stop(pdev);
3816 failed_reset:
3817 	pm_runtime_put_noidle(&pdev->dev);
3818 	pm_runtime_disable(&pdev->dev);
3819 	if (fep->reg_phy)
3820 		regulator_disable(fep->reg_phy);
3821 failed_regulator:
3822 	clk_disable_unprepare(fep->clk_ahb);
3823 failed_clk_ahb:
3824 	clk_disable_unprepare(fep->clk_ipg);
3825 failed_clk_ipg:
3826 	fec_enet_clk_enable(ndev, false);
3827 failed_clk:
3828 	if (of_phy_is_fixed_link(np))
3829 		of_phy_deregister_fixed_link(np);
3830 	of_node_put(phy_node);
3831 failed_stop_mode:
3832 failed_phy:
3833 	dev_id--;
3834 failed_ioremap:
3835 	free_netdev(ndev);
3836 
3837 	return ret;
3838 }
3839 
3840 static int
fec_drv_remove(struct platform_device * pdev)3841 fec_drv_remove(struct platform_device *pdev)
3842 {
3843 	struct net_device *ndev = platform_get_drvdata(pdev);
3844 	struct fec_enet_private *fep = netdev_priv(ndev);
3845 	struct device_node *np = pdev->dev.of_node;
3846 	int ret;
3847 
3848 	ret = pm_runtime_get_sync(&pdev->dev);
3849 	if (ret < 0)
3850 		dev_err(&pdev->dev,
3851 			"Failed to resume device in remove callback (%pe)\n",
3852 			ERR_PTR(ret));
3853 
3854 	cancel_work_sync(&fep->tx_timeout_work);
3855 	fec_ptp_stop(pdev);
3856 	unregister_netdev(ndev);
3857 	fec_enet_mii_remove(fep);
3858 	if (fep->reg_phy)
3859 		regulator_disable(fep->reg_phy);
3860 
3861 	if (of_phy_is_fixed_link(np))
3862 		of_phy_deregister_fixed_link(np);
3863 	of_node_put(fep->phy_node);
3864 
3865 	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
3866 	 * disabling them again.
3867 	 */
3868 	if (ret >= 0) {
3869 		clk_disable_unprepare(fep->clk_ahb);
3870 		clk_disable_unprepare(fep->clk_ipg);
3871 	}
3872 	pm_runtime_put_noidle(&pdev->dev);
3873 	pm_runtime_disable(&pdev->dev);
3874 
3875 	free_netdev(ndev);
3876 	return 0;
3877 }
3878 
fec_suspend(struct device * dev)3879 static int __maybe_unused fec_suspend(struct device *dev)
3880 {
3881 	struct net_device *ndev = dev_get_drvdata(dev);
3882 	struct fec_enet_private *fep = netdev_priv(ndev);
3883 
3884 	rtnl_lock();
3885 	if (netif_running(ndev)) {
3886 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3887 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3888 		phy_stop(ndev->phydev);
3889 		napi_disable(&fep->napi);
3890 		netif_tx_lock_bh(ndev);
3891 		netif_device_detach(ndev);
3892 		netif_tx_unlock_bh(ndev);
3893 		fec_stop(ndev);
3894 		fec_enet_clk_enable(ndev, false);
3895 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3896 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3897 	}
3898 	rtnl_unlock();
3899 
3900 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3901 		regulator_disable(fep->reg_phy);
3902 
3903 	/* SOC supply clock to phy, when clock is disabled, phy link down
3904 	 * SOC control phy regulator, when regulator is disabled, phy link down
3905 	 */
3906 	if (fep->clk_enet_out || fep->reg_phy)
3907 		fep->link = 0;
3908 
3909 	return 0;
3910 }
3911 
fec_resume(struct device * dev)3912 static int __maybe_unused fec_resume(struct device *dev)
3913 {
3914 	struct net_device *ndev = dev_get_drvdata(dev);
3915 	struct fec_enet_private *fep = netdev_priv(ndev);
3916 	int ret;
3917 	int val;
3918 
3919 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3920 		ret = regulator_enable(fep->reg_phy);
3921 		if (ret)
3922 			return ret;
3923 	}
3924 
3925 	rtnl_lock();
3926 	if (netif_running(ndev)) {
3927 		ret = fec_enet_clk_enable(ndev, true);
3928 		if (ret) {
3929 			rtnl_unlock();
3930 			goto failed_clk;
3931 		}
3932 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3933 			fec_enet_stop_mode(fep, false);
3934 
3935 			val = readl(fep->hwp + FEC_ECNTRL);
3936 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3937 			writel(val, fep->hwp + FEC_ECNTRL);
3938 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3939 		} else {
3940 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3941 		}
3942 		fec_restart(ndev);
3943 		netif_tx_lock_bh(ndev);
3944 		netif_device_attach(ndev);
3945 		netif_tx_unlock_bh(ndev);
3946 		napi_enable(&fep->napi);
3947 		phy_start(ndev->phydev);
3948 	}
3949 	rtnl_unlock();
3950 
3951 	return 0;
3952 
3953 failed_clk:
3954 	if (fep->reg_phy)
3955 		regulator_disable(fep->reg_phy);
3956 	return ret;
3957 }
3958 
fec_runtime_suspend(struct device * dev)3959 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3960 {
3961 	struct net_device *ndev = dev_get_drvdata(dev);
3962 	struct fec_enet_private *fep = netdev_priv(ndev);
3963 
3964 	clk_disable_unprepare(fep->clk_ahb);
3965 	clk_disable_unprepare(fep->clk_ipg);
3966 
3967 	return 0;
3968 }
3969 
fec_runtime_resume(struct device * dev)3970 static int __maybe_unused fec_runtime_resume(struct device *dev)
3971 {
3972 	struct net_device *ndev = dev_get_drvdata(dev);
3973 	struct fec_enet_private *fep = netdev_priv(ndev);
3974 	int ret;
3975 
3976 	ret = clk_prepare_enable(fep->clk_ahb);
3977 	if (ret)
3978 		return ret;
3979 	ret = clk_prepare_enable(fep->clk_ipg);
3980 	if (ret)
3981 		goto failed_clk_ipg;
3982 
3983 	return 0;
3984 
3985 failed_clk_ipg:
3986 	clk_disable_unprepare(fep->clk_ahb);
3987 	return ret;
3988 }
3989 
3990 static const struct dev_pm_ops fec_pm_ops = {
3991 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3992 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3993 };
3994 
3995 static struct platform_driver fec_driver = {
3996 	.driver	= {
3997 		.name	= DRIVER_NAME,
3998 		.pm	= &fec_pm_ops,
3999 		.of_match_table = fec_dt_ids,
4000 		.suppress_bind_attrs = true,
4001 	},
4002 	.id_table = fec_devtype,
4003 	.probe	= fec_probe,
4004 	.remove	= fec_drv_remove,
4005 };
4006 
4007 module_platform_driver(fec_driver);
4008 
4009 MODULE_ALIAS("platform:"DRIVER_NAME);
4010 MODULE_LICENSE("GPL");
4011