• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * udc.c - Core UDC Framework
4  *
5  * Copyright (C) 2010 Texas Instruments
6  * Author: Felipe Balbi <balbi@ti.com>
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/device.h>
12 #include <linux/list.h>
13 #include <linux/err.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/workqueue.h>
17 
18 #include <linux/usb/ch9.h>
19 #include <linux/usb/gadget.h>
20 #include <linux/usb.h>
21 
22 #include "trace.h"
23 
24 /**
25  * struct usb_udc - describes one usb device controller
26  * @driver: the gadget driver pointer. For use by the class code
27  * @dev: the child device to the actual controller
28  * @gadget: the gadget. For use by the class code
29  * @list: for use by the udc class driver
30  * @vbus: for udcs who care about vbus status, this value is real vbus status;
31  * for udcs who do not care about vbus status, this value is always true
32  *
33  * This represents the internal data structure which is used by the UDC-class
34  * to hold information about udc driver and gadget together.
35  */
36 struct usb_udc {
37 	struct usb_gadget_driver	*driver;
38 	struct usb_gadget		*gadget;
39 	struct device			dev;
40 	struct list_head		list;
41 	bool				vbus;
42 };
43 
44 static struct class *udc_class;
45 static LIST_HEAD(udc_list);
46 static LIST_HEAD(gadget_driver_pending_list);
47 static DEFINE_MUTEX(udc_lock);
48 
49 static int udc_bind_to_driver(struct usb_udc *udc,
50 		struct usb_gadget_driver *driver);
51 
52 /* ------------------------------------------------------------------------- */
53 
54 /**
55  * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
56  * @ep:the endpoint being configured
57  * @maxpacket_limit:value of maximum packet size limit
58  *
59  * This function should be used only in UDC drivers to initialize endpoint
60  * (usually in probe function).
61  */
usb_ep_set_maxpacket_limit(struct usb_ep * ep,unsigned maxpacket_limit)62 void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
63 					      unsigned maxpacket_limit)
64 {
65 	ep->maxpacket_limit = maxpacket_limit;
66 	ep->maxpacket = maxpacket_limit;
67 
68 	trace_usb_ep_set_maxpacket_limit(ep, 0);
69 }
70 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
71 
72 /**
73  * usb_ep_enable - configure endpoint, making it usable
74  * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
75  *	drivers discover endpoints through the ep_list of a usb_gadget.
76  *
77  * When configurations are set, or when interface settings change, the driver
78  * will enable or disable the relevant endpoints.  while it is enabled, an
79  * endpoint may be used for i/o until the driver receives a disconnect() from
80  * the host or until the endpoint is disabled.
81  *
82  * the ep0 implementation (which calls this routine) must ensure that the
83  * hardware capabilities of each endpoint match the descriptor provided
84  * for it.  for example, an endpoint named "ep2in-bulk" would be usable
85  * for interrupt transfers as well as bulk, but it likely couldn't be used
86  * for iso transfers or for endpoint 14.  some endpoints are fully
87  * configurable, with more generic names like "ep-a".  (remember that for
88  * USB, "in" means "towards the USB host".)
89  *
90  * This routine must be called in process context.
91  *
92  * returns zero, or a negative error code.
93  */
usb_ep_enable(struct usb_ep * ep)94 int usb_ep_enable(struct usb_ep *ep)
95 {
96 	int ret = 0;
97 
98 	if (ep->enabled)
99 		goto out;
100 
101 	/* UDC drivers can't handle endpoints with maxpacket size 0 */
102 	if (usb_endpoint_maxp(ep->desc) == 0) {
103 		/*
104 		 * We should log an error message here, but we can't call
105 		 * dev_err() because there's no way to find the gadget
106 		 * given only ep.
107 		 */
108 		ret = -EINVAL;
109 		goto out;
110 	}
111 
112 	ret = ep->ops->enable(ep, ep->desc);
113 	if (ret)
114 		goto out;
115 
116 	ep->enabled = true;
117 
118 out:
119 	trace_usb_ep_enable(ep, ret);
120 
121 	return ret;
122 }
123 EXPORT_SYMBOL_GPL(usb_ep_enable);
124 
125 /**
126  * usb_ep_disable - endpoint is no longer usable
127  * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
128  *
129  * no other task may be using this endpoint when this is called.
130  * any pending and uncompleted requests will complete with status
131  * indicating disconnect (-ESHUTDOWN) before this call returns.
132  * gadget drivers must call usb_ep_enable() again before queueing
133  * requests to the endpoint.
134  *
135  * This routine must be called in process context.
136  *
137  * returns zero, or a negative error code.
138  */
usb_ep_disable(struct usb_ep * ep)139 int usb_ep_disable(struct usb_ep *ep)
140 {
141 	int ret = 0;
142 
143 	if (!ep->enabled)
144 		goto out;
145 
146 	ret = ep->ops->disable(ep);
147 	if (ret)
148 		goto out;
149 
150 	ep->enabled = false;
151 
152 out:
153 	trace_usb_ep_disable(ep, ret);
154 
155 	return ret;
156 }
157 EXPORT_SYMBOL_GPL(usb_ep_disable);
158 
159 /**
160  * usb_ep_alloc_request - allocate a request object to use with this endpoint
161  * @ep:the endpoint to be used with with the request
162  * @gfp_flags:GFP_* flags to use
163  *
164  * Request objects must be allocated with this call, since they normally
165  * need controller-specific setup and may even need endpoint-specific
166  * resources such as allocation of DMA descriptors.
167  * Requests may be submitted with usb_ep_queue(), and receive a single
168  * completion callback.  Free requests with usb_ep_free_request(), when
169  * they are no longer needed.
170  *
171  * Returns the request, or null if one could not be allocated.
172  */
usb_ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)173 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
174 						       gfp_t gfp_flags)
175 {
176 	struct usb_request *req = NULL;
177 
178 	req = ep->ops->alloc_request(ep, gfp_flags);
179 
180 	trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM);
181 
182 	return req;
183 }
184 EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
185 
186 /**
187  * usb_ep_free_request - frees a request object
188  * @ep:the endpoint associated with the request
189  * @req:the request being freed
190  *
191  * Reverses the effect of usb_ep_alloc_request().
192  * Caller guarantees the request is not queued, and that it will
193  * no longer be requeued (or otherwise used).
194  */
usb_ep_free_request(struct usb_ep * ep,struct usb_request * req)195 void usb_ep_free_request(struct usb_ep *ep,
196 				       struct usb_request *req)
197 {
198 	trace_usb_ep_free_request(ep, req, 0);
199 	ep->ops->free_request(ep, req);
200 }
201 EXPORT_SYMBOL_GPL(usb_ep_free_request);
202 
203 /**
204  * usb_ep_queue - queues (submits) an I/O request to an endpoint.
205  * @ep:the endpoint associated with the request
206  * @req:the request being submitted
207  * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
208  *	pre-allocate all necessary memory with the request.
209  *
210  * This tells the device controller to perform the specified request through
211  * that endpoint (reading or writing a buffer).  When the request completes,
212  * including being canceled by usb_ep_dequeue(), the request's completion
213  * routine is called to return the request to the driver.  Any endpoint
214  * (except control endpoints like ep0) may have more than one transfer
215  * request queued; they complete in FIFO order.  Once a gadget driver
216  * submits a request, that request may not be examined or modified until it
217  * is given back to that driver through the completion callback.
218  *
219  * Each request is turned into one or more packets.  The controller driver
220  * never merges adjacent requests into the same packet.  OUT transfers
221  * will sometimes use data that's already buffered in the hardware.
222  * Drivers can rely on the fact that the first byte of the request's buffer
223  * always corresponds to the first byte of some USB packet, for both
224  * IN and OUT transfers.
225  *
226  * Bulk endpoints can queue any amount of data; the transfer is packetized
227  * automatically.  The last packet will be short if the request doesn't fill it
228  * out completely.  Zero length packets (ZLPs) should be avoided in portable
229  * protocols since not all usb hardware can successfully handle zero length
230  * packets.  (ZLPs may be explicitly written, and may be implicitly written if
231  * the request 'zero' flag is set.)  Bulk endpoints may also be used
232  * for interrupt transfers; but the reverse is not true, and some endpoints
233  * won't support every interrupt transfer.  (Such as 768 byte packets.)
234  *
235  * Interrupt-only endpoints are less functional than bulk endpoints, for
236  * example by not supporting queueing or not handling buffers that are
237  * larger than the endpoint's maxpacket size.  They may also treat data
238  * toggle differently.
239  *
240  * Control endpoints ... after getting a setup() callback, the driver queues
241  * one response (even if it would be zero length).  That enables the
242  * status ack, after transferring data as specified in the response.  Setup
243  * functions may return negative error codes to generate protocol stalls.
244  * (Note that some USB device controllers disallow protocol stall responses
245  * in some cases.)  When control responses are deferred (the response is
246  * written after the setup callback returns), then usb_ep_set_halt() may be
247  * used on ep0 to trigger protocol stalls.  Depending on the controller,
248  * it may not be possible to trigger a status-stage protocol stall when the
249  * data stage is over, that is, from within the response's completion
250  * routine.
251  *
252  * For periodic endpoints, like interrupt or isochronous ones, the usb host
253  * arranges to poll once per interval, and the gadget driver usually will
254  * have queued some data to transfer at that time.
255  *
256  * Note that @req's ->complete() callback must never be called from
257  * within usb_ep_queue() as that can create deadlock situations.
258  *
259  * This routine may be called in interrupt context.
260  *
261  * Returns zero, or a negative error code.  Endpoints that are not enabled
262  * report errors; errors will also be
263  * reported when the usb peripheral is disconnected.
264  *
265  * If and only if @req is successfully queued (the return value is zero),
266  * @req->complete() will be called exactly once, when the Gadget core and
267  * UDC are finished with the request.  When the completion function is called,
268  * control of the request is returned to the device driver which submitted it.
269  * The completion handler may then immediately free or reuse @req.
270  */
usb_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)271 int usb_ep_queue(struct usb_ep *ep,
272 			       struct usb_request *req, gfp_t gfp_flags)
273 {
274 	int ret = 0;
275 
276 	if (!ep->enabled && ep->address) {
277 		pr_debug("USB gadget: queue request to disabled ep 0x%x (%s)\n",
278 				 ep->address, ep->name);
279 		ret = -ESHUTDOWN;
280 		goto out;
281 	}
282 
283 	ret = ep->ops->queue(ep, req, gfp_flags);
284 
285 out:
286 	trace_usb_ep_queue(ep, req, ret);
287 
288 	return ret;
289 }
290 EXPORT_SYMBOL_GPL(usb_ep_queue);
291 
292 /**
293  * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
294  * @ep:the endpoint associated with the request
295  * @req:the request being canceled
296  *
297  * If the request is still active on the endpoint, it is dequeued and
298  * eventually its completion routine is called (with status -ECONNRESET);
299  * else a negative error code is returned.  This routine is asynchronous,
300  * that is, it may return before the completion routine runs.
301  *
302  * Note that some hardware can't clear out write fifos (to unlink the request
303  * at the head of the queue) except as part of disconnecting from usb. Such
304  * restrictions prevent drivers from supporting configuration changes,
305  * even to configuration zero (a "chapter 9" requirement).
306  *
307  * This routine may be called in interrupt context.
308  */
usb_ep_dequeue(struct usb_ep * ep,struct usb_request * req)309 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
310 {
311 	int ret;
312 
313 	ret = ep->ops->dequeue(ep, req);
314 	trace_usb_ep_dequeue(ep, req, ret);
315 
316 	return ret;
317 }
318 EXPORT_SYMBOL_GPL(usb_ep_dequeue);
319 
320 /**
321  * usb_ep_set_halt - sets the endpoint halt feature.
322  * @ep: the non-isochronous endpoint being stalled
323  *
324  * Use this to stall an endpoint, perhaps as an error report.
325  * Except for control endpoints,
326  * the endpoint stays halted (will not stream any data) until the host
327  * clears this feature; drivers may need to empty the endpoint's request
328  * queue first, to make sure no inappropriate transfers happen.
329  *
330  * Note that while an endpoint CLEAR_FEATURE will be invisible to the
331  * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
332  * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
333  * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
334  *
335  * This routine may be called in interrupt context.
336  *
337  * Returns zero, or a negative error code.  On success, this call sets
338  * underlying hardware state that blocks data transfers.
339  * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
340  * transfer requests are still queued, or if the controller hardware
341  * (usually a FIFO) still holds bytes that the host hasn't collected.
342  */
usb_ep_set_halt(struct usb_ep * ep)343 int usb_ep_set_halt(struct usb_ep *ep)
344 {
345 	int ret;
346 
347 	ret = ep->ops->set_halt(ep, 1);
348 	trace_usb_ep_set_halt(ep, ret);
349 
350 	return ret;
351 }
352 EXPORT_SYMBOL_GPL(usb_ep_set_halt);
353 
354 /**
355  * usb_ep_clear_halt - clears endpoint halt, and resets toggle
356  * @ep:the bulk or interrupt endpoint being reset
357  *
358  * Use this when responding to the standard usb "set interface" request,
359  * for endpoints that aren't reconfigured, after clearing any other state
360  * in the endpoint's i/o queue.
361  *
362  * This routine may be called in interrupt context.
363  *
364  * Returns zero, or a negative error code.  On success, this call clears
365  * the underlying hardware state reflecting endpoint halt and data toggle.
366  * Note that some hardware can't support this request (like pxa2xx_udc),
367  * and accordingly can't correctly implement interface altsettings.
368  */
usb_ep_clear_halt(struct usb_ep * ep)369 int usb_ep_clear_halt(struct usb_ep *ep)
370 {
371 	int ret;
372 
373 	ret = ep->ops->set_halt(ep, 0);
374 	trace_usb_ep_clear_halt(ep, ret);
375 
376 	return ret;
377 }
378 EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
379 
380 /**
381  * usb_ep_set_wedge - sets the halt feature and ignores clear requests
382  * @ep: the endpoint being wedged
383  *
384  * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
385  * requests. If the gadget driver clears the halt status, it will
386  * automatically unwedge the endpoint.
387  *
388  * This routine may be called in interrupt context.
389  *
390  * Returns zero on success, else negative errno.
391  */
usb_ep_set_wedge(struct usb_ep * ep)392 int usb_ep_set_wedge(struct usb_ep *ep)
393 {
394 	int ret;
395 
396 	if (ep->ops->set_wedge)
397 		ret = ep->ops->set_wedge(ep);
398 	else
399 		ret = ep->ops->set_halt(ep, 1);
400 
401 	trace_usb_ep_set_wedge(ep, ret);
402 
403 	return ret;
404 }
405 EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
406 
407 /**
408  * usb_ep_fifo_status - returns number of bytes in fifo, or error
409  * @ep: the endpoint whose fifo status is being checked.
410  *
411  * FIFO endpoints may have "unclaimed data" in them in certain cases,
412  * such as after aborted transfers.  Hosts may not have collected all
413  * the IN data written by the gadget driver (and reported by a request
414  * completion).  The gadget driver may not have collected all the data
415  * written OUT to it by the host.  Drivers that need precise handling for
416  * fault reporting or recovery may need to use this call.
417  *
418  * This routine may be called in interrupt context.
419  *
420  * This returns the number of such bytes in the fifo, or a negative
421  * errno if the endpoint doesn't use a FIFO or doesn't support such
422  * precise handling.
423  */
usb_ep_fifo_status(struct usb_ep * ep)424 int usb_ep_fifo_status(struct usb_ep *ep)
425 {
426 	int ret;
427 
428 	if (ep->ops->fifo_status)
429 		ret = ep->ops->fifo_status(ep);
430 	else
431 		ret = -EOPNOTSUPP;
432 
433 	trace_usb_ep_fifo_status(ep, ret);
434 
435 	return ret;
436 }
437 EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
438 
439 /**
440  * usb_ep_fifo_flush - flushes contents of a fifo
441  * @ep: the endpoint whose fifo is being flushed.
442  *
443  * This call may be used to flush the "unclaimed data" that may exist in
444  * an endpoint fifo after abnormal transaction terminations.  The call
445  * must never be used except when endpoint is not being used for any
446  * protocol translation.
447  *
448  * This routine may be called in interrupt context.
449  */
usb_ep_fifo_flush(struct usb_ep * ep)450 void usb_ep_fifo_flush(struct usb_ep *ep)
451 {
452 	if (ep->ops->fifo_flush)
453 		ep->ops->fifo_flush(ep);
454 
455 	trace_usb_ep_fifo_flush(ep, 0);
456 }
457 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
458 
459 /* ------------------------------------------------------------------------- */
460 
461 /**
462  * usb_gadget_frame_number - returns the current frame number
463  * @gadget: controller that reports the frame number
464  *
465  * Returns the usb frame number, normally eleven bits from a SOF packet,
466  * or negative errno if this device doesn't support this capability.
467  */
usb_gadget_frame_number(struct usb_gadget * gadget)468 int usb_gadget_frame_number(struct usb_gadget *gadget)
469 {
470 	int ret;
471 
472 	ret = gadget->ops->get_frame(gadget);
473 
474 	trace_usb_gadget_frame_number(gadget, ret);
475 
476 	return ret;
477 }
478 EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
479 
480 /**
481  * usb_gadget_wakeup - tries to wake up the host connected to this gadget
482  * @gadget: controller used to wake up the host
483  *
484  * Returns zero on success, else negative error code if the hardware
485  * doesn't support such attempts, or its support has not been enabled
486  * by the usb host.  Drivers must return device descriptors that report
487  * their ability to support this, or hosts won't enable it.
488  *
489  * This may also try to use SRP to wake the host and start enumeration,
490  * even if OTG isn't otherwise in use.  OTG devices may also start
491  * remote wakeup even when hosts don't explicitly enable it.
492  */
usb_gadget_wakeup(struct usb_gadget * gadget)493 int usb_gadget_wakeup(struct usb_gadget *gadget)
494 {
495 	int ret = 0;
496 
497 	if (!gadget->ops->wakeup) {
498 		ret = -EOPNOTSUPP;
499 		goto out;
500 	}
501 
502 	ret = gadget->ops->wakeup(gadget);
503 
504 out:
505 	trace_usb_gadget_wakeup(gadget, ret);
506 
507 	return ret;
508 }
509 EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
510 
511 /**
512  * usb_gadget_set_selfpowered - sets the device selfpowered feature.
513  * @gadget:the device being declared as self-powered
514  *
515  * this affects the device status reported by the hardware driver
516  * to reflect that it now has a local power supply.
517  *
518  * returns zero on success, else negative errno.
519  */
usb_gadget_set_selfpowered(struct usb_gadget * gadget)520 int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
521 {
522 	int ret = 0;
523 
524 	if (!gadget->ops->set_selfpowered) {
525 		ret = -EOPNOTSUPP;
526 		goto out;
527 	}
528 
529 	ret = gadget->ops->set_selfpowered(gadget, 1);
530 
531 out:
532 	trace_usb_gadget_set_selfpowered(gadget, ret);
533 
534 	return ret;
535 }
536 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
537 
538 /**
539  * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
540  * @gadget:the device being declared as bus-powered
541  *
542  * this affects the device status reported by the hardware driver.
543  * some hardware may not support bus-powered operation, in which
544  * case this feature's value can never change.
545  *
546  * returns zero on success, else negative errno.
547  */
usb_gadget_clear_selfpowered(struct usb_gadget * gadget)548 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
549 {
550 	int ret = 0;
551 
552 	if (!gadget->ops->set_selfpowered) {
553 		ret = -EOPNOTSUPP;
554 		goto out;
555 	}
556 
557 	ret = gadget->ops->set_selfpowered(gadget, 0);
558 
559 out:
560 	trace_usb_gadget_clear_selfpowered(gadget, ret);
561 
562 	return ret;
563 }
564 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
565 
566 /**
567  * usb_gadget_vbus_connect - Notify controller that VBUS is powered
568  * @gadget:The device which now has VBUS power.
569  * Context: can sleep
570  *
571  * This call is used by a driver for an external transceiver (or GPIO)
572  * that detects a VBUS power session starting.  Common responses include
573  * resuming the controller, activating the D+ (or D-) pullup to let the
574  * host detect that a USB device is attached, and starting to draw power
575  * (8mA or possibly more, especially after SET_CONFIGURATION).
576  *
577  * Returns zero on success, else negative errno.
578  */
usb_gadget_vbus_connect(struct usb_gadget * gadget)579 int usb_gadget_vbus_connect(struct usb_gadget *gadget)
580 {
581 	int ret = 0;
582 
583 	if (!gadget->ops->vbus_session) {
584 		ret = -EOPNOTSUPP;
585 		goto out;
586 	}
587 
588 	ret = gadget->ops->vbus_session(gadget, 1);
589 
590 out:
591 	trace_usb_gadget_vbus_connect(gadget, ret);
592 
593 	return ret;
594 }
595 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
596 
597 /**
598  * usb_gadget_vbus_draw - constrain controller's VBUS power usage
599  * @gadget:The device whose VBUS usage is being described
600  * @mA:How much current to draw, in milliAmperes.  This should be twice
601  *	the value listed in the configuration descriptor bMaxPower field.
602  *
603  * This call is used by gadget drivers during SET_CONFIGURATION calls,
604  * reporting how much power the device may consume.  For example, this
605  * could affect how quickly batteries are recharged.
606  *
607  * Returns zero on success, else negative errno.
608  */
usb_gadget_vbus_draw(struct usb_gadget * gadget,unsigned mA)609 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
610 {
611 	int ret = 0;
612 
613 	if (!gadget->ops->vbus_draw) {
614 		ret = -EOPNOTSUPP;
615 		goto out;
616 	}
617 
618 	ret = gadget->ops->vbus_draw(gadget, mA);
619 	if (!ret)
620 		gadget->mA = mA;
621 
622 out:
623 	trace_usb_gadget_vbus_draw(gadget, ret);
624 
625 	return ret;
626 }
627 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
628 
629 /**
630  * usb_gadget_vbus_disconnect - notify controller about VBUS session end
631  * @gadget:the device whose VBUS supply is being described
632  * Context: can sleep
633  *
634  * This call is used by a driver for an external transceiver (or GPIO)
635  * that detects a VBUS power session ending.  Common responses include
636  * reversing everything done in usb_gadget_vbus_connect().
637  *
638  * Returns zero on success, else negative errno.
639  */
usb_gadget_vbus_disconnect(struct usb_gadget * gadget)640 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
641 {
642 	int ret = 0;
643 
644 	if (!gadget->ops->vbus_session) {
645 		ret = -EOPNOTSUPP;
646 		goto out;
647 	}
648 
649 	ret = gadget->ops->vbus_session(gadget, 0);
650 
651 out:
652 	trace_usb_gadget_vbus_disconnect(gadget, ret);
653 
654 	return ret;
655 }
656 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
657 
658 /**
659  * usb_gadget_connect - software-controlled connect to USB host
660  * @gadget:the peripheral being connected
661  *
662  * Enables the D+ (or potentially D-) pullup.  The host will start
663  * enumerating this gadget when the pullup is active and a VBUS session
664  * is active (the link is powered).  This pullup is always enabled unless
665  * usb_gadget_disconnect() has been used to disable it.
666  *
667  * Returns zero on success, else negative errno.
668  */
usb_gadget_connect(struct usb_gadget * gadget)669 int usb_gadget_connect(struct usb_gadget *gadget)
670 {
671 	int ret = 0;
672 
673 	if (!gadget->ops->pullup) {
674 		ret = -EOPNOTSUPP;
675 		goto out;
676 	}
677 
678 	if (gadget->deactivated) {
679 		/*
680 		 * If gadget is deactivated we only save new state.
681 		 * Gadget will be connected automatically after activation.
682 		 */
683 		gadget->connected = true;
684 		goto out;
685 	}
686 
687 	ret = gadget->ops->pullup(gadget, 1);
688 	if (!ret)
689 		gadget->connected = 1;
690 
691 out:
692 	trace_usb_gadget_connect(gadget, ret);
693 
694 	return ret;
695 }
696 EXPORT_SYMBOL_GPL(usb_gadget_connect);
697 
698 /**
699  * usb_gadget_disconnect - software-controlled disconnect from USB host
700  * @gadget:the peripheral being disconnected
701  *
702  * Disables the D+ (or potentially D-) pullup, which the host may see
703  * as a disconnect (when a VBUS session is active).  Not all systems
704  * support software pullup controls.
705  *
706  * Following a successful disconnect, invoke the ->disconnect() callback
707  * for the current gadget driver so that UDC drivers don't need to.
708  *
709  * Returns zero on success, else negative errno.
710  */
usb_gadget_disconnect(struct usb_gadget * gadget)711 int usb_gadget_disconnect(struct usb_gadget *gadget)
712 {
713 	int ret = 0;
714 
715 	if (!gadget->ops->pullup) {
716 		ret = -EOPNOTSUPP;
717 		goto out;
718 	}
719 
720 	if (!gadget->connected)
721 		goto out;
722 
723 	if (gadget->deactivated) {
724 		/*
725 		 * If gadget is deactivated we only save new state.
726 		 * Gadget will stay disconnected after activation.
727 		 */
728 		gadget->connected = false;
729 		goto out;
730 	}
731 
732 	ret = gadget->ops->pullup(gadget, 0);
733 	if (!ret) {
734 		gadget->connected = 0;
735 		gadget->udc->driver->disconnect(gadget);
736 	}
737 
738 out:
739 	trace_usb_gadget_disconnect(gadget, ret);
740 
741 	return ret;
742 }
743 EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
744 
745 /**
746  * usb_gadget_deactivate - deactivate function which is not ready to work
747  * @gadget: the peripheral being deactivated
748  *
749  * This routine may be used during the gadget driver bind() call to prevent
750  * the peripheral from ever being visible to the USB host, unless later
751  * usb_gadget_activate() is called.  For example, user mode components may
752  * need to be activated before the system can talk to hosts.
753  *
754  * Returns zero on success, else negative errno.
755  */
usb_gadget_deactivate(struct usb_gadget * gadget)756 int usb_gadget_deactivate(struct usb_gadget *gadget)
757 {
758 	int ret = 0;
759 
760 	if (gadget->deactivated)
761 		goto out;
762 
763 	if (gadget->connected) {
764 		ret = usb_gadget_disconnect(gadget);
765 		if (ret)
766 			goto out;
767 
768 		/*
769 		 * If gadget was being connected before deactivation, we want
770 		 * to reconnect it in usb_gadget_activate().
771 		 */
772 		gadget->connected = true;
773 	}
774 	gadget->deactivated = true;
775 
776 out:
777 	trace_usb_gadget_deactivate(gadget, ret);
778 
779 	return ret;
780 }
781 EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
782 
783 /**
784  * usb_gadget_activate - activate function which is not ready to work
785  * @gadget: the peripheral being activated
786  *
787  * This routine activates gadget which was previously deactivated with
788  * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
789  *
790  * Returns zero on success, else negative errno.
791  */
usb_gadget_activate(struct usb_gadget * gadget)792 int usb_gadget_activate(struct usb_gadget *gadget)
793 {
794 	int ret = 0;
795 
796 	if (!gadget->deactivated)
797 		goto out;
798 
799 	gadget->deactivated = false;
800 
801 	/*
802 	 * If gadget has been connected before deactivation, or became connected
803 	 * while it was being deactivated, we call usb_gadget_connect().
804 	 */
805 	if (gadget->connected)
806 		ret = usb_gadget_connect(gadget);
807 
808 out:
809 	trace_usb_gadget_activate(gadget, ret);
810 
811 	return ret;
812 }
813 EXPORT_SYMBOL_GPL(usb_gadget_activate);
814 
815 /* ------------------------------------------------------------------------- */
816 
817 #ifdef	CONFIG_HAS_DMA
818 
usb_gadget_map_request_by_dev(struct device * dev,struct usb_request * req,int is_in)819 int usb_gadget_map_request_by_dev(struct device *dev,
820 		struct usb_request *req, int is_in)
821 {
822 	if (req->length == 0)
823 		return 0;
824 
825 	if (req->num_sgs) {
826 		int     mapped;
827 
828 		mapped = dma_map_sg(dev, req->sg, req->num_sgs,
829 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
830 		if (mapped == 0) {
831 			dev_err(dev, "failed to map SGs\n");
832 			return -EFAULT;
833 		}
834 
835 		req->num_mapped_sgs = mapped;
836 	} else {
837 		if (is_vmalloc_addr(req->buf)) {
838 			dev_err(dev, "buffer is not dma capable\n");
839 			return -EFAULT;
840 		} else if (object_is_on_stack(req->buf)) {
841 			dev_err(dev, "buffer is on stack\n");
842 			return -EFAULT;
843 		}
844 
845 		req->dma = dma_map_single(dev, req->buf, req->length,
846 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
847 
848 		if (dma_mapping_error(dev, req->dma)) {
849 			dev_err(dev, "failed to map buffer\n");
850 			return -EFAULT;
851 		}
852 
853 		req->dma_mapped = 1;
854 	}
855 
856 	return 0;
857 }
858 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev);
859 
usb_gadget_map_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)860 int usb_gadget_map_request(struct usb_gadget *gadget,
861 		struct usb_request *req, int is_in)
862 {
863 	return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in);
864 }
865 EXPORT_SYMBOL_GPL(usb_gadget_map_request);
866 
usb_gadget_unmap_request_by_dev(struct device * dev,struct usb_request * req,int is_in)867 void usb_gadget_unmap_request_by_dev(struct device *dev,
868 		struct usb_request *req, int is_in)
869 {
870 	if (req->length == 0)
871 		return;
872 
873 	if (req->num_mapped_sgs) {
874 		dma_unmap_sg(dev, req->sg, req->num_sgs,
875 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
876 
877 		req->num_mapped_sgs = 0;
878 	} else if (req->dma_mapped) {
879 		dma_unmap_single(dev, req->dma, req->length,
880 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
881 		req->dma_mapped = 0;
882 	}
883 }
884 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev);
885 
usb_gadget_unmap_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)886 void usb_gadget_unmap_request(struct usb_gadget *gadget,
887 		struct usb_request *req, int is_in)
888 {
889 	usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in);
890 }
891 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request);
892 
893 #endif	/* CONFIG_HAS_DMA */
894 
895 /* ------------------------------------------------------------------------- */
896 
897 /**
898  * usb_gadget_giveback_request - give the request back to the gadget layer
899  * @ep: the endpoint to be used with with the request
900  * @req: the request being given back
901  *
902  * Context: in_interrupt()
903  *
904  * This is called by device controller drivers in order to return the
905  * completed request back to the gadget layer.
906  */
usb_gadget_giveback_request(struct usb_ep * ep,struct usb_request * req)907 void usb_gadget_giveback_request(struct usb_ep *ep,
908 		struct usb_request *req)
909 {
910 	if (likely(req->status == 0))
911 		usb_led_activity(USB_LED_EVENT_GADGET);
912 
913 	trace_usb_gadget_giveback_request(ep, req, 0);
914 
915 	req->complete(ep, req);
916 }
917 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request);
918 
919 /* ------------------------------------------------------------------------- */
920 
921 /**
922  * gadget_find_ep_by_name - returns ep whose name is the same as sting passed
923  *	in second parameter or NULL if searched endpoint not found
924  * @g: controller to check for quirk
925  * @name: name of searched endpoint
926  */
gadget_find_ep_by_name(struct usb_gadget * g,const char * name)927 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name)
928 {
929 	struct usb_ep *ep;
930 
931 	gadget_for_each_ep(ep, g) {
932 		if (!strcmp(ep->name, name))
933 			return ep;
934 	}
935 
936 	return NULL;
937 }
938 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name);
939 
940 /* ------------------------------------------------------------------------- */
941 
usb_gadget_ep_match_desc(struct usb_gadget * gadget,struct usb_ep * ep,struct usb_endpoint_descriptor * desc,struct usb_ss_ep_comp_descriptor * ep_comp)942 int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
943 		struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
944 		struct usb_ss_ep_comp_descriptor *ep_comp)
945 {
946 	u8		type;
947 	u16		max;
948 	int		num_req_streams = 0;
949 
950 	/* endpoint already claimed? */
951 	if (ep->claimed)
952 		return 0;
953 
954 	type = usb_endpoint_type(desc);
955 	max = usb_endpoint_maxp(desc);
956 
957 	if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in)
958 		return 0;
959 	if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out)
960 		return 0;
961 
962 	if (max > ep->maxpacket_limit)
963 		return 0;
964 
965 	/* "high bandwidth" works only at high speed */
966 	if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1)
967 		return 0;
968 
969 	switch (type) {
970 	case USB_ENDPOINT_XFER_CONTROL:
971 		/* only support ep0 for portable CONTROL traffic */
972 		return 0;
973 	case USB_ENDPOINT_XFER_ISOC:
974 		if (!ep->caps.type_iso)
975 			return 0;
976 		/* ISO:  limit 1023 bytes full speed, 1024 high/super speed */
977 		if (!gadget_is_dualspeed(gadget) && max > 1023)
978 			return 0;
979 		break;
980 	case USB_ENDPOINT_XFER_BULK:
981 		if (!ep->caps.type_bulk)
982 			return 0;
983 		if (ep_comp && gadget_is_superspeed(gadget)) {
984 			/* Get the number of required streams from the
985 			 * EP companion descriptor and see if the EP
986 			 * matches it
987 			 */
988 			num_req_streams = ep_comp->bmAttributes & 0x1f;
989 			if (num_req_streams > ep->max_streams)
990 				return 0;
991 		}
992 		break;
993 	case USB_ENDPOINT_XFER_INT:
994 		/* Bulk endpoints handle interrupt transfers,
995 		 * except the toggle-quirky iso-synch kind
996 		 */
997 		if (!ep->caps.type_int && !ep->caps.type_bulk)
998 			return 0;
999 		/* INT:  limit 64 bytes full speed, 1024 high/super speed */
1000 		if (!gadget_is_dualspeed(gadget) && max > 64)
1001 			return 0;
1002 		break;
1003 	}
1004 
1005 	return 1;
1006 }
1007 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc);
1008 
1009 /**
1010  * usb_gadget_check_config - checks if the UDC can support the binded
1011  *	configuration
1012  * @gadget: controller to check the USB configuration
1013  *
1014  * Ensure that a UDC is able to support the requested resources by a
1015  * configuration, and that there are no resource limitations, such as
1016  * internal memory allocated to all requested endpoints.
1017  *
1018  * Returns zero on success, else a negative errno.
1019  */
usb_gadget_check_config(struct usb_gadget * gadget)1020 int usb_gadget_check_config(struct usb_gadget *gadget)
1021 {
1022 	if (gadget->ops->check_config)
1023 		return gadget->ops->check_config(gadget);
1024 	return 0;
1025 }
1026 EXPORT_SYMBOL_GPL(usb_gadget_check_config);
1027 
1028 /* ------------------------------------------------------------------------- */
1029 
usb_gadget_state_work(struct work_struct * work)1030 static void usb_gadget_state_work(struct work_struct *work)
1031 {
1032 	struct usb_gadget *gadget = work_to_gadget(work);
1033 	struct usb_udc *udc = gadget->udc;
1034 
1035 	if (udc)
1036 		sysfs_notify(&udc->dev.kobj, NULL, "state");
1037 }
1038 
usb_gadget_set_state(struct usb_gadget * gadget,enum usb_device_state state)1039 void usb_gadget_set_state(struct usb_gadget *gadget,
1040 		enum usb_device_state state)
1041 {
1042 	gadget->state = state;
1043 	schedule_work(&gadget->work);
1044 }
1045 EXPORT_SYMBOL_GPL(usb_gadget_set_state);
1046 
1047 /* ------------------------------------------------------------------------- */
1048 
usb_udc_connect_control(struct usb_udc * udc)1049 static void usb_udc_connect_control(struct usb_udc *udc)
1050 {
1051 	if (udc->vbus)
1052 		usb_gadget_connect(udc->gadget);
1053 	else
1054 		usb_gadget_disconnect(udc->gadget);
1055 }
1056 
1057 /**
1058  * usb_udc_vbus_handler - updates the udc core vbus status, and try to
1059  * connect or disconnect gadget
1060  * @gadget: The gadget which vbus change occurs
1061  * @status: The vbus status
1062  *
1063  * The udc driver calls it when it wants to connect or disconnect gadget
1064  * according to vbus status.
1065  */
usb_udc_vbus_handler(struct usb_gadget * gadget,bool status)1066 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status)
1067 {
1068 	struct usb_udc *udc = gadget->udc;
1069 
1070 	if (udc) {
1071 		udc->vbus = status;
1072 		usb_udc_connect_control(udc);
1073 	}
1074 }
1075 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler);
1076 
1077 /**
1078  * usb_gadget_udc_reset - notifies the udc core that bus reset occurs
1079  * @gadget: The gadget which bus reset occurs
1080  * @driver: The gadget driver we want to notify
1081  *
1082  * If the udc driver has bus reset handler, it needs to call this when the bus
1083  * reset occurs, it notifies the gadget driver that the bus reset occurs as
1084  * well as updates gadget state.
1085  */
usb_gadget_udc_reset(struct usb_gadget * gadget,struct usb_gadget_driver * driver)1086 void usb_gadget_udc_reset(struct usb_gadget *gadget,
1087 		struct usb_gadget_driver *driver)
1088 {
1089 	driver->reset(gadget);
1090 	usb_gadget_set_state(gadget, USB_STATE_DEFAULT);
1091 }
1092 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset);
1093 
1094 /**
1095  * usb_gadget_udc_start - tells usb device controller to start up
1096  * @udc: The UDC to be started
1097  *
1098  * This call is issued by the UDC Class driver when it's about
1099  * to register a gadget driver to the device controller, before
1100  * calling gadget driver's bind() method.
1101  *
1102  * It allows the controller to be powered off until strictly
1103  * necessary to have it powered on.
1104  *
1105  * Returns zero on success, else negative errno.
1106  */
usb_gadget_udc_start(struct usb_udc * udc)1107 static inline int usb_gadget_udc_start(struct usb_udc *udc)
1108 {
1109 	return udc->gadget->ops->udc_start(udc->gadget, udc->driver);
1110 }
1111 
1112 /**
1113  * usb_gadget_udc_stop - tells usb device controller we don't need it anymore
1114  * @udc: The UDC to be stopped
1115  *
1116  * This call is issued by the UDC Class driver after calling
1117  * gadget driver's unbind() method.
1118  *
1119  * The details are implementation specific, but it can go as
1120  * far as powering off UDC completely and disable its data
1121  * line pullups.
1122  */
usb_gadget_udc_stop(struct usb_udc * udc)1123 static inline void usb_gadget_udc_stop(struct usb_udc *udc)
1124 {
1125 	udc->gadget->ops->udc_stop(udc->gadget);
1126 }
1127 
1128 /**
1129  * usb_gadget_udc_set_speed - tells usb device controller speed supported by
1130  *    current driver
1131  * @udc: The device we want to set maximum speed
1132  * @speed: The maximum speed to allowed to run
1133  *
1134  * This call is issued by the UDC Class driver before calling
1135  * usb_gadget_udc_start() in order to make sure that we don't try to
1136  * connect on speeds the gadget driver doesn't support.
1137  */
usb_gadget_udc_set_speed(struct usb_udc * udc,enum usb_device_speed speed)1138 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc,
1139 					    enum usb_device_speed speed)
1140 {
1141 	if (udc->gadget->ops->udc_set_speed) {
1142 		enum usb_device_speed s;
1143 
1144 		s = min(speed, udc->gadget->max_speed);
1145 		udc->gadget->ops->udc_set_speed(udc->gadget, s);
1146 	}
1147 }
1148 
1149 /**
1150  * usb_udc_release - release the usb_udc struct
1151  * @dev: the dev member within usb_udc
1152  *
1153  * This is called by driver's core in order to free memory once the last
1154  * reference is released.
1155  */
usb_udc_release(struct device * dev)1156 static void usb_udc_release(struct device *dev)
1157 {
1158 	struct usb_udc *udc;
1159 
1160 	udc = container_of(dev, struct usb_udc, dev);
1161 	dev_dbg(dev, "releasing '%s'\n", dev_name(dev));
1162 	kfree(udc);
1163 }
1164 
1165 static const struct attribute_group *usb_udc_attr_groups[];
1166 
usb_udc_nop_release(struct device * dev)1167 static void usb_udc_nop_release(struct device *dev)
1168 {
1169 	dev_vdbg(dev, "%s\n", __func__);
1170 }
1171 
1172 /* should be called with udc_lock held */
check_pending_gadget_drivers(struct usb_udc * udc)1173 static int check_pending_gadget_drivers(struct usb_udc *udc)
1174 {
1175 	struct usb_gadget_driver *driver;
1176 	int ret = 0;
1177 
1178 	list_for_each_entry(driver, &gadget_driver_pending_list, pending)
1179 		if (!driver->udc_name || strcmp(driver->udc_name,
1180 						dev_name(&udc->dev)) == 0) {
1181 			ret = udc_bind_to_driver(udc, driver);
1182 			if (ret != -EPROBE_DEFER)
1183 				list_del_init(&driver->pending);
1184 			break;
1185 		}
1186 
1187 	return ret;
1188 }
1189 
1190 /**
1191  * usb_initialize_gadget - initialize a gadget and its embedded struct device
1192  * @parent: the parent device to this udc. Usually the controller driver's
1193  * device.
1194  * @gadget: the gadget to be initialized.
1195  * @release: a gadget release function.
1196  *
1197  * Returns zero on success, negative errno otherwise.
1198  * Calls the gadget release function in the latter case.
1199  */
usb_initialize_gadget(struct device * parent,struct usb_gadget * gadget,void (* release)(struct device * dev))1200 void usb_initialize_gadget(struct device *parent, struct usb_gadget *gadget,
1201 		void (*release)(struct device *dev))
1202 {
1203 	dev_set_name(&gadget->dev, "gadget");
1204 	INIT_WORK(&gadget->work, usb_gadget_state_work);
1205 	gadget->dev.parent = parent;
1206 
1207 	if (release)
1208 		gadget->dev.release = release;
1209 	else
1210 		gadget->dev.release = usb_udc_nop_release;
1211 
1212 	device_initialize(&gadget->dev);
1213 }
1214 EXPORT_SYMBOL_GPL(usb_initialize_gadget);
1215 
1216 /**
1217  * usb_add_gadget - adds a new gadget to the udc class driver list
1218  * @gadget: the gadget to be added to the list.
1219  *
1220  * Returns zero on success, negative errno otherwise.
1221  * Does not do a final usb_put_gadget() if an error occurs.
1222  */
usb_add_gadget(struct usb_gadget * gadget)1223 int usb_add_gadget(struct usb_gadget *gadget)
1224 {
1225 	struct usb_udc		*udc;
1226 	int			ret = -ENOMEM;
1227 
1228 	udc = kzalloc(sizeof(*udc), GFP_KERNEL);
1229 	if (!udc)
1230 		goto error;
1231 
1232 	device_initialize(&udc->dev);
1233 	udc->dev.release = usb_udc_release;
1234 	udc->dev.class = udc_class;
1235 	udc->dev.groups = usb_udc_attr_groups;
1236 	udc->dev.parent = gadget->dev.parent;
1237 	ret = dev_set_name(&udc->dev, "%s",
1238 			kobject_name(&gadget->dev.parent->kobj));
1239 	if (ret)
1240 		goto err_put_udc;
1241 
1242 	ret = device_add(&gadget->dev);
1243 	if (ret)
1244 		goto err_put_udc;
1245 
1246 	udc->gadget = gadget;
1247 	gadget->udc = udc;
1248 
1249 	mutex_lock(&udc_lock);
1250 	list_add_tail(&udc->list, &udc_list);
1251 
1252 	ret = device_add(&udc->dev);
1253 	if (ret)
1254 		goto err_unlist_udc;
1255 
1256 	usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED);
1257 	udc->vbus = true;
1258 
1259 	/* pick up one of pending gadget drivers */
1260 	ret = check_pending_gadget_drivers(udc);
1261 	if (ret)
1262 		goto err_del_udc;
1263 
1264 	mutex_unlock(&udc_lock);
1265 
1266 	return 0;
1267 
1268  err_del_udc:
1269 	flush_work(&gadget->work);
1270 	device_del(&udc->dev);
1271 
1272  err_unlist_udc:
1273 	list_del(&udc->list);
1274 	mutex_unlock(&udc_lock);
1275 
1276 	device_del(&gadget->dev);
1277 
1278  err_put_udc:
1279 	put_device(&udc->dev);
1280 
1281  error:
1282 	return ret;
1283 }
1284 EXPORT_SYMBOL_GPL(usb_add_gadget);
1285 
1286 /**
1287  * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list
1288  * @parent: the parent device to this udc. Usually the controller driver's
1289  * device.
1290  * @gadget: the gadget to be added to the list.
1291  * @release: a gadget release function.
1292  *
1293  * Returns zero on success, negative errno otherwise.
1294  * Calls the gadget release function in the latter case.
1295  */
usb_add_gadget_udc_release(struct device * parent,struct usb_gadget * gadget,void (* release)(struct device * dev))1296 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget,
1297 		void (*release)(struct device *dev))
1298 {
1299 	int	ret;
1300 
1301 	usb_initialize_gadget(parent, gadget, release);
1302 	ret = usb_add_gadget(gadget);
1303 	if (ret)
1304 		usb_put_gadget(gadget);
1305 	return ret;
1306 }
1307 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release);
1308 
1309 /**
1310  * usb_get_gadget_udc_name - get the name of the first UDC controller
1311  * This functions returns the name of the first UDC controller in the system.
1312  * Please note that this interface is usefull only for legacy drivers which
1313  * assume that there is only one UDC controller in the system and they need to
1314  * get its name before initialization. There is no guarantee that the UDC
1315  * of the returned name will be still available, when gadget driver registers
1316  * itself.
1317  *
1318  * Returns pointer to string with UDC controller name on success, NULL
1319  * otherwise. Caller should kfree() returned string.
1320  */
usb_get_gadget_udc_name(void)1321 char *usb_get_gadget_udc_name(void)
1322 {
1323 	struct usb_udc *udc;
1324 	char *name = NULL;
1325 
1326 	/* For now we take the first available UDC */
1327 	mutex_lock(&udc_lock);
1328 	list_for_each_entry(udc, &udc_list, list) {
1329 		if (!udc->driver) {
1330 			name = kstrdup(udc->gadget->name, GFP_KERNEL);
1331 			break;
1332 		}
1333 	}
1334 	mutex_unlock(&udc_lock);
1335 	return name;
1336 }
1337 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name);
1338 
1339 /**
1340  * usb_add_gadget_udc - adds a new gadget to the udc class driver list
1341  * @parent: the parent device to this udc. Usually the controller
1342  * driver's device.
1343  * @gadget: the gadget to be added to the list
1344  *
1345  * Returns zero on success, negative errno otherwise.
1346  */
usb_add_gadget_udc(struct device * parent,struct usb_gadget * gadget)1347 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget)
1348 {
1349 	return usb_add_gadget_udc_release(parent, gadget, NULL);
1350 }
1351 EXPORT_SYMBOL_GPL(usb_add_gadget_udc);
1352 
usb_gadget_remove_driver(struct usb_udc * udc)1353 static void usb_gadget_remove_driver(struct usb_udc *udc)
1354 {
1355 	dev_dbg(&udc->dev, "unregistering UDC driver [%s]\n",
1356 			udc->driver->function);
1357 
1358 	usb_gadget_disconnect(udc->gadget);
1359 	if (udc->gadget->irq)
1360 		synchronize_irq(udc->gadget->irq);
1361 	udc->driver->unbind(udc->gadget);
1362 	usb_gadget_udc_stop(udc);
1363 
1364 	udc->driver = NULL;
1365 	udc->gadget->dev.driver = NULL;
1366 
1367 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1368 }
1369 
1370 /**
1371  * usb_del_gadget - deletes @udc from udc_list
1372  * @gadget: the gadget to be removed.
1373  *
1374  * This will call usb_gadget_unregister_driver() if
1375  * the @udc is still busy.
1376  * It will not do a final usb_put_gadget().
1377  */
usb_del_gadget(struct usb_gadget * gadget)1378 void usb_del_gadget(struct usb_gadget *gadget)
1379 {
1380 	struct usb_udc *udc = gadget->udc;
1381 
1382 	if (!udc)
1383 		return;
1384 
1385 	dev_vdbg(gadget->dev.parent, "unregistering gadget\n");
1386 
1387 	mutex_lock(&udc_lock);
1388 	list_del(&udc->list);
1389 
1390 	if (udc->driver) {
1391 		struct usb_gadget_driver *driver = udc->driver;
1392 
1393 		usb_gadget_remove_driver(udc);
1394 		list_add(&driver->pending, &gadget_driver_pending_list);
1395 	}
1396 	mutex_unlock(&udc_lock);
1397 
1398 	kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE);
1399 	flush_work(&gadget->work);
1400 	device_unregister(&udc->dev);
1401 	device_del(&gadget->dev);
1402 }
1403 EXPORT_SYMBOL_GPL(usb_del_gadget);
1404 
1405 /**
1406  * usb_del_gadget_udc - deletes @udc from udc_list
1407  * @gadget: the gadget to be removed.
1408  *
1409  * Calls usb_del_gadget() and does a final usb_put_gadget().
1410  */
usb_del_gadget_udc(struct usb_gadget * gadget)1411 void usb_del_gadget_udc(struct usb_gadget *gadget)
1412 {
1413 	usb_del_gadget(gadget);
1414 	usb_put_gadget(gadget);
1415 }
1416 EXPORT_SYMBOL_GPL(usb_del_gadget_udc);
1417 
1418 /* ------------------------------------------------------------------------- */
1419 
udc_bind_to_driver(struct usb_udc * udc,struct usb_gadget_driver * driver)1420 static int udc_bind_to_driver(struct usb_udc *udc, struct usb_gadget_driver *driver)
1421 {
1422 	int ret;
1423 
1424 	dev_dbg(&udc->dev, "registering UDC driver [%s]\n",
1425 			driver->function);
1426 
1427 	udc->driver = driver;
1428 	udc->gadget->dev.driver = &driver->driver;
1429 
1430 	usb_gadget_udc_set_speed(udc, driver->max_speed);
1431 
1432 	ret = driver->bind(udc->gadget, driver);
1433 	if (ret)
1434 		goto err1;
1435 	ret = usb_gadget_udc_start(udc);
1436 	if (ret) {
1437 		driver->unbind(udc->gadget);
1438 		goto err1;
1439 	}
1440 	usb_udc_connect_control(udc);
1441 
1442 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1443 	return 0;
1444 err1:
1445 	if (ret != -EISNAM)
1446 		dev_err(&udc->dev, "failed to start %s: %d\n",
1447 			udc->driver->function, ret);
1448 	udc->driver = NULL;
1449 	udc->gadget->dev.driver = NULL;
1450 	return ret;
1451 }
1452 
usb_gadget_probe_driver(struct usb_gadget_driver * driver)1453 int usb_gadget_probe_driver(struct usb_gadget_driver *driver)
1454 {
1455 	struct usb_udc		*udc = NULL;
1456 	int			ret = -ENODEV;
1457 
1458 	if (!driver || !driver->bind || !driver->setup)
1459 		return -EINVAL;
1460 
1461 	mutex_lock(&udc_lock);
1462 	if (driver->udc_name) {
1463 		list_for_each_entry(udc, &udc_list, list) {
1464 			ret = strcmp(driver->udc_name, dev_name(&udc->dev));
1465 			if (!ret)
1466 				break;
1467 		}
1468 		if (ret)
1469 			ret = -ENODEV;
1470 		else if (udc->driver)
1471 			ret = -EBUSY;
1472 		else
1473 			goto found;
1474 	} else {
1475 		list_for_each_entry(udc, &udc_list, list) {
1476 			/* For now we take the first one */
1477 			if (!udc->driver)
1478 				goto found;
1479 		}
1480 	}
1481 
1482 	if (!driver->match_existing_only) {
1483 		list_add_tail(&driver->pending, &gadget_driver_pending_list);
1484 		pr_info("udc-core: couldn't find an available UDC - added [%s] to list of pending drivers\n",
1485 			driver->function);
1486 		ret = 0;
1487 	}
1488 
1489 	mutex_unlock(&udc_lock);
1490 	if (ret)
1491 		pr_warn("udc-core: couldn't find an available UDC or it's busy\n");
1492 	return ret;
1493 found:
1494 	ret = udc_bind_to_driver(udc, driver);
1495 	mutex_unlock(&udc_lock);
1496 	return ret;
1497 }
1498 EXPORT_SYMBOL_GPL(usb_gadget_probe_driver);
1499 
usb_gadget_unregister_driver(struct usb_gadget_driver * driver)1500 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1501 {
1502 	struct usb_udc		*udc = NULL;
1503 	int			ret = -ENODEV;
1504 
1505 	if (!driver || !driver->unbind)
1506 		return -EINVAL;
1507 
1508 	mutex_lock(&udc_lock);
1509 	list_for_each_entry(udc, &udc_list, list) {
1510 		if (udc->driver == driver) {
1511 			usb_gadget_remove_driver(udc);
1512 			usb_gadget_set_state(udc->gadget,
1513 					     USB_STATE_NOTATTACHED);
1514 
1515 			/* Maybe there is someone waiting for this UDC? */
1516 			check_pending_gadget_drivers(udc);
1517 			/*
1518 			 * For now we ignore bind errors as probably it's
1519 			 * not a valid reason to fail other's gadget unbind
1520 			 */
1521 			ret = 0;
1522 			break;
1523 		}
1524 	}
1525 
1526 	if (ret) {
1527 		list_del(&driver->pending);
1528 		ret = 0;
1529 	}
1530 	mutex_unlock(&udc_lock);
1531 	return ret;
1532 }
1533 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver);
1534 
1535 /* ------------------------------------------------------------------------- */
1536 
srp_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t n)1537 static ssize_t srp_store(struct device *dev,
1538 		struct device_attribute *attr, const char *buf, size_t n)
1539 {
1540 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1541 
1542 	if (sysfs_streq(buf, "1"))
1543 		usb_gadget_wakeup(udc->gadget);
1544 
1545 	return n;
1546 }
1547 static DEVICE_ATTR_WO(srp);
1548 
soft_connect_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t n)1549 static ssize_t soft_connect_store(struct device *dev,
1550 		struct device_attribute *attr, const char *buf, size_t n)
1551 {
1552 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1553 	ssize_t			ret;
1554 
1555 	mutex_lock(&udc_lock);
1556 	if (!udc->driver) {
1557 		dev_err(dev, "soft-connect without a gadget driver\n");
1558 		ret = -EOPNOTSUPP;
1559 		goto out;
1560 	}
1561 
1562 	if (sysfs_streq(buf, "connect")) {
1563 		usb_gadget_udc_start(udc);
1564 		usb_gadget_connect(udc->gadget);
1565 	} else if (sysfs_streq(buf, "disconnect")) {
1566 		usb_gadget_disconnect(udc->gadget);
1567 		usb_gadget_udc_stop(udc);
1568 	} else {
1569 		dev_err(dev, "unsupported command '%s'\n", buf);
1570 		ret = -EINVAL;
1571 		goto out;
1572 	}
1573 
1574 	ret = n;
1575 out:
1576 	mutex_unlock(&udc_lock);
1577 	return ret;
1578 }
1579 static DEVICE_ATTR_WO(soft_connect);
1580 
state_show(struct device * dev,struct device_attribute * attr,char * buf)1581 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
1582 			  char *buf)
1583 {
1584 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1585 	struct usb_gadget	*gadget = udc->gadget;
1586 
1587 	return sprintf(buf, "%s\n", usb_state_string(gadget->state));
1588 }
1589 static DEVICE_ATTR_RO(state);
1590 
function_show(struct device * dev,struct device_attribute * attr,char * buf)1591 static ssize_t function_show(struct device *dev, struct device_attribute *attr,
1592 			     char *buf)
1593 {
1594 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1595 	struct usb_gadget_driver *drv = udc->driver;
1596 
1597 	if (!drv || !drv->function)
1598 		return 0;
1599 	return scnprintf(buf, PAGE_SIZE, "%s\n", drv->function);
1600 }
1601 static DEVICE_ATTR_RO(function);
1602 
1603 #define USB_UDC_SPEED_ATTR(name, param)					\
1604 ssize_t name##_show(struct device *dev,					\
1605 		struct device_attribute *attr, char *buf)		\
1606 {									\
1607 	struct usb_udc *udc = container_of(dev, struct usb_udc, dev);	\
1608 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1609 			usb_speed_string(udc->gadget->param));		\
1610 }									\
1611 static DEVICE_ATTR_RO(name)
1612 
1613 static USB_UDC_SPEED_ATTR(current_speed, speed);
1614 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed);
1615 
1616 #define USB_UDC_ATTR(name)					\
1617 ssize_t name##_show(struct device *dev,				\
1618 		struct device_attribute *attr, char *buf)	\
1619 {								\
1620 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev); \
1621 	struct usb_gadget	*gadget = udc->gadget;		\
1622 								\
1623 	return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name);	\
1624 }								\
1625 static DEVICE_ATTR_RO(name)
1626 
1627 static USB_UDC_ATTR(is_otg);
1628 static USB_UDC_ATTR(is_a_peripheral);
1629 static USB_UDC_ATTR(b_hnp_enable);
1630 static USB_UDC_ATTR(a_hnp_support);
1631 static USB_UDC_ATTR(a_alt_hnp_support);
1632 static USB_UDC_ATTR(is_selfpowered);
1633 
1634 static struct attribute *usb_udc_attrs[] = {
1635 	&dev_attr_srp.attr,
1636 	&dev_attr_soft_connect.attr,
1637 	&dev_attr_state.attr,
1638 	&dev_attr_function.attr,
1639 	&dev_attr_current_speed.attr,
1640 	&dev_attr_maximum_speed.attr,
1641 
1642 	&dev_attr_is_otg.attr,
1643 	&dev_attr_is_a_peripheral.attr,
1644 	&dev_attr_b_hnp_enable.attr,
1645 	&dev_attr_a_hnp_support.attr,
1646 	&dev_attr_a_alt_hnp_support.attr,
1647 	&dev_attr_is_selfpowered.attr,
1648 	NULL,
1649 };
1650 
1651 static const struct attribute_group usb_udc_attr_group = {
1652 	.attrs = usb_udc_attrs,
1653 };
1654 
1655 static const struct attribute_group *usb_udc_attr_groups[] = {
1656 	&usb_udc_attr_group,
1657 	NULL,
1658 };
1659 
usb_udc_uevent(struct device * dev,struct kobj_uevent_env * env)1660 static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env)
1661 {
1662 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1663 	int			ret;
1664 
1665 	ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name);
1666 	if (ret) {
1667 		dev_err(dev, "failed to add uevent USB_UDC_NAME\n");
1668 		return ret;
1669 	}
1670 
1671 	if (udc->driver) {
1672 		ret = add_uevent_var(env, "USB_UDC_DRIVER=%s",
1673 				udc->driver->function);
1674 		if (ret) {
1675 			dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n");
1676 			return ret;
1677 		}
1678 	}
1679 
1680 	return 0;
1681 }
1682 
usb_udc_init(void)1683 static int __init usb_udc_init(void)
1684 {
1685 	udc_class = class_create(THIS_MODULE, "udc");
1686 	if (IS_ERR(udc_class)) {
1687 		pr_err("failed to create udc class --> %ld\n",
1688 				PTR_ERR(udc_class));
1689 		return PTR_ERR(udc_class);
1690 	}
1691 
1692 	udc_class->dev_uevent = usb_udc_uevent;
1693 	return 0;
1694 }
1695 subsys_initcall(usb_udc_init);
1696 
usb_udc_exit(void)1697 static void __exit usb_udc_exit(void)
1698 {
1699 	class_destroy(udc_class);
1700 }
1701 module_exit(usb_udc_exit);
1702 
1703 MODULE_DESCRIPTION("UDC Framework");
1704 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>");
1705 MODULE_LICENSE("GPL v2");
1706