1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/file.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25
26 #include "f2fs.h"
27 #include "node.h"
28 #include "segment.h"
29 #include "xattr.h"
30 #include "acl.h"
31 #include "gc.h"
32 #include "trace.h"
33 #include <trace/events/f2fs.h>
34 #include <uapi/linux/f2fs.h>
35
f2fs_filemap_fault(struct vm_fault * vmf)36 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
37 {
38 struct inode *inode = file_inode(vmf->vma->vm_file);
39 vm_fault_t ret;
40
41 down_read(&F2FS_I(inode)->i_mmap_sem);
42 ret = filemap_fault(vmf);
43 up_read(&F2FS_I(inode)->i_mmap_sem);
44
45 if (!ret)
46 f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO,
47 F2FS_BLKSIZE);
48
49 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50
51 return ret;
52 }
53
f2fs_vm_page_mkwrite(struct vm_fault * vmf)54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56 struct page *page = vmf->page;
57 struct inode *inode = file_inode(vmf->vma->vm_file);
58 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59 struct dnode_of_data dn;
60 bool need_alloc = true;
61 int err = 0;
62
63 if (unlikely(IS_IMMUTABLE(inode)))
64 return VM_FAULT_SIGBUS;
65
66 if (unlikely(f2fs_cp_error(sbi))) {
67 err = -EIO;
68 goto err;
69 }
70
71 if (!f2fs_is_checkpoint_ready(sbi)) {
72 err = -ENOSPC;
73 goto err;
74 }
75
76 #ifdef CONFIG_F2FS_FS_COMPRESSION
77 if (f2fs_compressed_file(inode)) {
78 int ret = f2fs_is_compressed_cluster(inode, page->index);
79
80 if (ret < 0) {
81 err = ret;
82 goto err;
83 } else if (ret) {
84 if (ret < F2FS_I(inode)->i_cluster_size) {
85 err = -EAGAIN;
86 goto err;
87 }
88 need_alloc = false;
89 }
90 }
91 #endif
92 /* should do out of any locked page */
93 if (need_alloc)
94 f2fs_balance_fs(sbi, true);
95
96 sb_start_pagefault(inode->i_sb);
97
98 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
99
100 file_update_time(vmf->vma->vm_file);
101 down_read(&F2FS_I(inode)->i_mmap_sem);
102 lock_page(page);
103 if (unlikely(page->mapping != inode->i_mapping ||
104 page_offset(page) > i_size_read(inode) ||
105 !PageUptodate(page))) {
106 unlock_page(page);
107 err = -EFAULT;
108 goto out_sem;
109 }
110
111 if (need_alloc) {
112 /* block allocation */
113 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
114 set_new_dnode(&dn, inode, NULL, NULL, 0);
115 err = f2fs_get_block(&dn, page->index);
116 f2fs_put_dnode(&dn);
117 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
118 }
119
120 #ifdef CONFIG_F2FS_FS_COMPRESSION
121 if (!need_alloc) {
122 set_new_dnode(&dn, inode, NULL, NULL, 0);
123 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
124 f2fs_put_dnode(&dn);
125 }
126 #endif
127 if (err) {
128 unlock_page(page);
129 goto out_sem;
130 }
131
132 f2fs_wait_on_page_writeback(page, DATA, false, true);
133
134 /* wait for GCed page writeback via META_MAPPING */
135 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
136
137 /*
138 * check to see if the page is mapped already (no holes)
139 */
140 if (PageMappedToDisk(page))
141 goto out_sem;
142
143 /* page is wholly or partially inside EOF */
144 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
145 i_size_read(inode)) {
146 loff_t offset;
147
148 offset = i_size_read(inode) & ~PAGE_MASK;
149 zero_user_segment(page, offset, PAGE_SIZE);
150 }
151 set_page_dirty(page);
152 if (!PageUptodate(page))
153 SetPageUptodate(page);
154
155 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
156 f2fs_update_time(sbi, REQ_TIME);
157
158 trace_f2fs_vm_page_mkwrite(page, DATA);
159 out_sem:
160 up_read(&F2FS_I(inode)->i_mmap_sem);
161
162 sb_end_pagefault(inode->i_sb);
163 err:
164 return block_page_mkwrite_return(err);
165 }
166
167 static const struct vm_operations_struct f2fs_file_vm_ops = {
168 .fault = f2fs_filemap_fault,
169 .map_pages = filemap_map_pages,
170 .page_mkwrite = f2fs_vm_page_mkwrite,
171 };
172
get_parent_ino(struct inode * inode,nid_t * pino)173 static int get_parent_ino(struct inode *inode, nid_t *pino)
174 {
175 struct dentry *dentry;
176
177 /*
178 * Make sure to get the non-deleted alias. The alias associated with
179 * the open file descriptor being fsync()'ed may be deleted already.
180 */
181 dentry = d_find_alias(inode);
182 if (!dentry)
183 return 0;
184
185 *pino = parent_ino(dentry);
186 dput(dentry);
187 return 1;
188 }
189
need_do_checkpoint(struct inode * inode)190 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
191 {
192 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
193 enum cp_reason_type cp_reason = CP_NO_NEEDED;
194
195 if (!S_ISREG(inode->i_mode))
196 cp_reason = CP_NON_REGULAR;
197 else if (f2fs_compressed_file(inode))
198 cp_reason = CP_COMPRESSED;
199 else if (inode->i_nlink != 1)
200 cp_reason = CP_HARDLINK;
201 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
202 cp_reason = CP_SB_NEED_CP;
203 else if (file_wrong_pino(inode))
204 cp_reason = CP_WRONG_PINO;
205 else if (!f2fs_space_for_roll_forward(sbi))
206 cp_reason = CP_NO_SPC_ROLL;
207 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
208 cp_reason = CP_NODE_NEED_CP;
209 else if (test_opt(sbi, FASTBOOT))
210 cp_reason = CP_FASTBOOT_MODE;
211 else if (F2FS_OPTION(sbi).active_logs == 2)
212 cp_reason = CP_SPEC_LOG_NUM;
213 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
214 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
215 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
216 TRANS_DIR_INO))
217 cp_reason = CP_RECOVER_DIR;
218
219 return cp_reason;
220 }
221
need_inode_page_update(struct f2fs_sb_info * sbi,nid_t ino)222 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
223 {
224 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
225 bool ret = false;
226 /* But we need to avoid that there are some inode updates */
227 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
228 ret = true;
229 f2fs_put_page(i, 0);
230 return ret;
231 }
232
try_to_fix_pino(struct inode * inode)233 static void try_to_fix_pino(struct inode *inode)
234 {
235 struct f2fs_inode_info *fi = F2FS_I(inode);
236 nid_t pino;
237
238 down_write(&fi->i_sem);
239 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
240 get_parent_ino(inode, &pino)) {
241 f2fs_i_pino_write(inode, pino);
242 file_got_pino(inode);
243 }
244 up_write(&fi->i_sem);
245 }
246
f2fs_do_sync_file(struct file * file,loff_t start,loff_t end,int datasync,bool atomic)247 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
248 int datasync, bool atomic)
249 {
250 struct inode *inode = file->f_mapping->host;
251 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
252 nid_t ino = inode->i_ino;
253 int ret = 0;
254 enum cp_reason_type cp_reason = 0;
255 struct writeback_control wbc = {
256 .sync_mode = WB_SYNC_ALL,
257 .nr_to_write = LONG_MAX,
258 .for_reclaim = 0,
259 };
260 unsigned int seq_id = 0;
261
262 if (unlikely(f2fs_readonly(inode->i_sb)))
263 return 0;
264
265 trace_f2fs_sync_file_enter(inode);
266
267 if (S_ISDIR(inode->i_mode))
268 goto go_write;
269
270 /* if fdatasync is triggered, let's do in-place-update */
271 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
272 set_inode_flag(inode, FI_NEED_IPU);
273 ret = file_write_and_wait_range(file, start, end);
274 clear_inode_flag(inode, FI_NEED_IPU);
275
276 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
277 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
278 return ret;
279 }
280
281 /* if the inode is dirty, let's recover all the time */
282 if (!f2fs_skip_inode_update(inode, datasync)) {
283 f2fs_write_inode(inode, NULL);
284 goto go_write;
285 }
286
287 /*
288 * if there is no written data, don't waste time to write recovery info.
289 */
290 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
291 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
292
293 /* it may call write_inode just prior to fsync */
294 if (need_inode_page_update(sbi, ino))
295 goto go_write;
296
297 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
298 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
299 goto flush_out;
300 goto out;
301 }
302 go_write:
303 /*
304 * Both of fdatasync() and fsync() are able to be recovered from
305 * sudden-power-off.
306 */
307 down_read(&F2FS_I(inode)->i_sem);
308 cp_reason = need_do_checkpoint(inode);
309 up_read(&F2FS_I(inode)->i_sem);
310
311 if (cp_reason) {
312 /* all the dirty node pages should be flushed for POR */
313 ret = f2fs_sync_fs(inode->i_sb, 1);
314
315 /*
316 * We've secured consistency through sync_fs. Following pino
317 * will be used only for fsynced inodes after checkpoint.
318 */
319 try_to_fix_pino(inode);
320 clear_inode_flag(inode, FI_APPEND_WRITE);
321 clear_inode_flag(inode, FI_UPDATE_WRITE);
322 goto out;
323 }
324 sync_nodes:
325 atomic_inc(&sbi->wb_sync_req[NODE]);
326 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
327 atomic_dec(&sbi->wb_sync_req[NODE]);
328 if (ret)
329 goto out;
330
331 /* if cp_error was enabled, we should avoid infinite loop */
332 if (unlikely(f2fs_cp_error(sbi))) {
333 ret = -EIO;
334 goto out;
335 }
336
337 if (f2fs_need_inode_block_update(sbi, ino)) {
338 f2fs_mark_inode_dirty_sync(inode, true);
339 f2fs_write_inode(inode, NULL);
340 goto sync_nodes;
341 }
342
343 /*
344 * If it's atomic_write, it's just fine to keep write ordering. So
345 * here we don't need to wait for node write completion, since we use
346 * node chain which serializes node blocks. If one of node writes are
347 * reordered, we can see simply broken chain, resulting in stopping
348 * roll-forward recovery. It means we'll recover all or none node blocks
349 * given fsync mark.
350 */
351 if (!atomic) {
352 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
353 if (ret)
354 goto out;
355 }
356
357 /* once recovery info is written, don't need to tack this */
358 f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
359 clear_inode_flag(inode, FI_APPEND_WRITE);
360 flush_out:
361 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
362 ret = f2fs_issue_flush(sbi, inode->i_ino);
363 if (!ret) {
364 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
365 clear_inode_flag(inode, FI_UPDATE_WRITE);
366 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
367 }
368 f2fs_update_time(sbi, REQ_TIME);
369 out:
370 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
371 f2fs_trace_ios(NULL, 1);
372 return ret;
373 }
374
f2fs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)375 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
376 {
377 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
378 return -EIO;
379 return f2fs_do_sync_file(file, start, end, datasync, false);
380 }
381
__found_offset(struct address_space * mapping,block_t blkaddr,pgoff_t index,int whence)382 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
383 pgoff_t index, int whence)
384 {
385 switch (whence) {
386 case SEEK_DATA:
387 if (__is_valid_data_blkaddr(blkaddr))
388 return true;
389 if (blkaddr == NEW_ADDR &&
390 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
391 return true;
392 break;
393 case SEEK_HOLE:
394 if (blkaddr == NULL_ADDR)
395 return true;
396 break;
397 }
398 return false;
399 }
400
f2fs_seek_block(struct file * file,loff_t offset,int whence)401 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
402 {
403 struct inode *inode = file->f_mapping->host;
404 loff_t maxbytes = inode->i_sb->s_maxbytes;
405 struct dnode_of_data dn;
406 pgoff_t pgofs, end_offset;
407 loff_t data_ofs = offset;
408 loff_t isize;
409 int err = 0;
410
411 inode_lock(inode);
412
413 isize = i_size_read(inode);
414 if (offset >= isize)
415 goto fail;
416
417 /* handle inline data case */
418 if (f2fs_has_inline_data(inode)) {
419 if (whence == SEEK_HOLE) {
420 data_ofs = isize;
421 goto found;
422 } else if (whence == SEEK_DATA) {
423 data_ofs = offset;
424 goto found;
425 }
426 }
427
428 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
429
430 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
431 set_new_dnode(&dn, inode, NULL, NULL, 0);
432 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
433 if (err && err != -ENOENT) {
434 goto fail;
435 } else if (err == -ENOENT) {
436 /* direct node does not exists */
437 if (whence == SEEK_DATA) {
438 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
439 continue;
440 } else {
441 goto found;
442 }
443 }
444
445 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
446
447 /* find data/hole in dnode block */
448 for (; dn.ofs_in_node < end_offset;
449 dn.ofs_in_node++, pgofs++,
450 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
451 block_t blkaddr;
452
453 blkaddr = f2fs_data_blkaddr(&dn);
454
455 if (__is_valid_data_blkaddr(blkaddr) &&
456 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
457 blkaddr, DATA_GENERIC_ENHANCE)) {
458 f2fs_put_dnode(&dn);
459 goto fail;
460 }
461
462 if (__found_offset(file->f_mapping, blkaddr,
463 pgofs, whence)) {
464 f2fs_put_dnode(&dn);
465 goto found;
466 }
467 }
468 f2fs_put_dnode(&dn);
469 }
470
471 if (whence == SEEK_DATA)
472 goto fail;
473 found:
474 if (whence == SEEK_HOLE && data_ofs > isize)
475 data_ofs = isize;
476 inode_unlock(inode);
477 return vfs_setpos(file, data_ofs, maxbytes);
478 fail:
479 inode_unlock(inode);
480 return -ENXIO;
481 }
482
f2fs_llseek(struct file * file,loff_t offset,int whence)483 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
484 {
485 struct inode *inode = file->f_mapping->host;
486 loff_t maxbytes = inode->i_sb->s_maxbytes;
487
488 switch (whence) {
489 case SEEK_SET:
490 case SEEK_CUR:
491 case SEEK_END:
492 return generic_file_llseek_size(file, offset, whence,
493 maxbytes, i_size_read(inode));
494 case SEEK_DATA:
495 case SEEK_HOLE:
496 if (offset < 0)
497 return -ENXIO;
498 return f2fs_seek_block(file, offset, whence);
499 }
500
501 return -EINVAL;
502 }
503
f2fs_file_mmap(struct file * file,struct vm_area_struct * vma)504 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
505 {
506 struct inode *inode = file_inode(file);
507 int err;
508
509 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
510 return -EIO;
511
512 if (!f2fs_is_compress_backend_ready(inode))
513 return -EOPNOTSUPP;
514
515 /* we don't need to use inline_data strictly */
516 err = f2fs_convert_inline_inode(inode);
517 if (err)
518 return err;
519
520 file_accessed(file);
521 vma->vm_ops = &f2fs_file_vm_ops;
522 set_inode_flag(inode, FI_MMAP_FILE);
523 return 0;
524 }
525
f2fs_file_open(struct inode * inode,struct file * filp)526 static int f2fs_file_open(struct inode *inode, struct file *filp)
527 {
528 int err = fscrypt_file_open(inode, filp);
529
530 if (err)
531 return err;
532
533 if (!f2fs_is_compress_backend_ready(inode))
534 return -EOPNOTSUPP;
535
536 err = fsverity_file_open(inode, filp);
537 if (err)
538 return err;
539
540 filp->f_mode |= FMODE_NOWAIT;
541
542 return dquot_file_open(inode, filp);
543 }
544
f2fs_truncate_data_blocks_range(struct dnode_of_data * dn,int count)545 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
546 {
547 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
548 struct f2fs_node *raw_node;
549 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
550 __le32 *addr;
551 int base = 0;
552 bool compressed_cluster = false;
553 int cluster_index = 0, valid_blocks = 0;
554 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
555 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
556
557 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
558 base = get_extra_isize(dn->inode);
559
560 raw_node = F2FS_NODE(dn->node_page);
561 addr = blkaddr_in_node(raw_node) + base + ofs;
562
563 /* Assumption: truncateion starts with cluster */
564 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
565 block_t blkaddr = le32_to_cpu(*addr);
566
567 if (f2fs_compressed_file(dn->inode) &&
568 !(cluster_index & (cluster_size - 1))) {
569 if (compressed_cluster)
570 f2fs_i_compr_blocks_update(dn->inode,
571 valid_blocks, false);
572 compressed_cluster = (blkaddr == COMPRESS_ADDR);
573 valid_blocks = 0;
574 }
575
576 if (blkaddr == NULL_ADDR)
577 continue;
578
579 dn->data_blkaddr = NULL_ADDR;
580 f2fs_set_data_blkaddr(dn);
581
582 if (__is_valid_data_blkaddr(blkaddr)) {
583 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
584 DATA_GENERIC_ENHANCE))
585 continue;
586 if (compressed_cluster)
587 valid_blocks++;
588 }
589
590 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
591 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
592
593 f2fs_invalidate_blocks(sbi, blkaddr);
594
595 if (!released || blkaddr != COMPRESS_ADDR)
596 nr_free++;
597 }
598
599 if (compressed_cluster)
600 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
601
602 if (nr_free) {
603 pgoff_t fofs;
604 /*
605 * once we invalidate valid blkaddr in range [ofs, ofs + count],
606 * we will invalidate all blkaddr in the whole range.
607 */
608 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
609 dn->inode) + ofs;
610 f2fs_update_extent_cache_range(dn, fofs, 0, len);
611 dec_valid_block_count(sbi, dn->inode, nr_free);
612 }
613 dn->ofs_in_node = ofs;
614
615 f2fs_update_time(sbi, REQ_TIME);
616 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
617 dn->ofs_in_node, nr_free);
618 }
619
f2fs_truncate_data_blocks(struct dnode_of_data * dn)620 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
621 {
622 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
623 }
624
truncate_partial_data_page(struct inode * inode,u64 from,bool cache_only)625 static int truncate_partial_data_page(struct inode *inode, u64 from,
626 bool cache_only)
627 {
628 loff_t offset = from & (PAGE_SIZE - 1);
629 pgoff_t index = from >> PAGE_SHIFT;
630 struct address_space *mapping = inode->i_mapping;
631 struct page *page;
632
633 if (!offset && !cache_only)
634 return 0;
635
636 if (cache_only) {
637 page = find_lock_page(mapping, index);
638 if (page && PageUptodate(page))
639 goto truncate_out;
640 f2fs_put_page(page, 1);
641 return 0;
642 }
643
644 page = f2fs_get_lock_data_page(inode, index, true);
645 if (IS_ERR(page))
646 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
647 truncate_out:
648 f2fs_wait_on_page_writeback(page, DATA, true, true);
649 zero_user(page, offset, PAGE_SIZE - offset);
650
651 /* An encrypted inode should have a key and truncate the last page. */
652 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
653 if (!cache_only)
654 set_page_dirty(page);
655 f2fs_put_page(page, 1);
656 return 0;
657 }
658
f2fs_do_truncate_blocks(struct inode * inode,u64 from,bool lock)659 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
660 {
661 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
662 struct dnode_of_data dn;
663 pgoff_t free_from;
664 int count = 0, err = 0;
665 struct page *ipage;
666 bool truncate_page = false;
667
668 trace_f2fs_truncate_blocks_enter(inode, from);
669
670 free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
671
672 if (free_from >= sbi->max_file_blocks)
673 goto free_partial;
674
675 if (lock)
676 f2fs_lock_op(sbi);
677
678 ipage = f2fs_get_node_page(sbi, inode->i_ino);
679 if (IS_ERR(ipage)) {
680 err = PTR_ERR(ipage);
681 goto out;
682 }
683
684 if (f2fs_has_inline_data(inode)) {
685 f2fs_truncate_inline_inode(inode, ipage, from);
686 f2fs_put_page(ipage, 1);
687 truncate_page = true;
688 goto out;
689 }
690
691 set_new_dnode(&dn, inode, ipage, NULL, 0);
692 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
693 if (err) {
694 if (err == -ENOENT)
695 goto free_next;
696 goto out;
697 }
698
699 count = ADDRS_PER_PAGE(dn.node_page, inode);
700
701 count -= dn.ofs_in_node;
702 f2fs_bug_on(sbi, count < 0);
703
704 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
705 f2fs_truncate_data_blocks_range(&dn, count);
706 free_from += count;
707 }
708
709 f2fs_put_dnode(&dn);
710 free_next:
711 err = f2fs_truncate_inode_blocks(inode, free_from);
712 out:
713 if (lock)
714 f2fs_unlock_op(sbi);
715 free_partial:
716 /* lastly zero out the first data page */
717 if (!err)
718 err = truncate_partial_data_page(inode, from, truncate_page);
719
720 trace_f2fs_truncate_blocks_exit(inode, err);
721 return err;
722 }
723
f2fs_truncate_blocks(struct inode * inode,u64 from,bool lock)724 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
725 {
726 u64 free_from = from;
727 int err;
728
729 #ifdef CONFIG_F2FS_FS_COMPRESSION
730 /*
731 * for compressed file, only support cluster size
732 * aligned truncation.
733 */
734 if (f2fs_compressed_file(inode))
735 free_from = round_up(from,
736 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
737 #endif
738
739 err = f2fs_do_truncate_blocks(inode, free_from, lock);
740 if (err)
741 return err;
742
743 #ifdef CONFIG_F2FS_FS_COMPRESSION
744 if (from != free_from) {
745 err = f2fs_truncate_partial_cluster(inode, from, lock);
746 if (err)
747 return err;
748 }
749 #endif
750
751 return 0;
752 }
753
f2fs_truncate(struct inode * inode)754 int f2fs_truncate(struct inode *inode)
755 {
756 int err;
757
758 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
759 return -EIO;
760
761 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
762 S_ISLNK(inode->i_mode)))
763 return 0;
764
765 trace_f2fs_truncate(inode);
766
767 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
768 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE);
769 return -EIO;
770 }
771
772 err = dquot_initialize(inode);
773 if (err)
774 return err;
775
776 /* we should check inline_data size */
777 if (!f2fs_may_inline_data(inode)) {
778 err = f2fs_convert_inline_inode(inode);
779 if (err)
780 return err;
781 }
782
783 err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
784 if (err)
785 return err;
786
787 inode->i_mtime = inode->i_ctime = current_time(inode);
788 f2fs_mark_inode_dirty_sync(inode, false);
789 return 0;
790 }
791
f2fs_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)792 int f2fs_getattr(const struct path *path, struct kstat *stat,
793 u32 request_mask, unsigned int query_flags)
794 {
795 struct inode *inode = d_inode(path->dentry);
796 struct f2fs_inode_info *fi = F2FS_I(inode);
797 struct f2fs_inode *ri;
798 unsigned int flags;
799
800 if (f2fs_has_extra_attr(inode) &&
801 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
802 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
803 stat->result_mask |= STATX_BTIME;
804 stat->btime.tv_sec = fi->i_crtime.tv_sec;
805 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
806 }
807
808 flags = fi->i_flags;
809 if (flags & F2FS_COMPR_FL)
810 stat->attributes |= STATX_ATTR_COMPRESSED;
811 if (flags & F2FS_APPEND_FL)
812 stat->attributes |= STATX_ATTR_APPEND;
813 if (IS_ENCRYPTED(inode))
814 stat->attributes |= STATX_ATTR_ENCRYPTED;
815 if (flags & F2FS_IMMUTABLE_FL)
816 stat->attributes |= STATX_ATTR_IMMUTABLE;
817 if (flags & F2FS_NODUMP_FL)
818 stat->attributes |= STATX_ATTR_NODUMP;
819 if (IS_VERITY(inode))
820 stat->attributes |= STATX_ATTR_VERITY;
821
822 stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
823 STATX_ATTR_APPEND |
824 STATX_ATTR_ENCRYPTED |
825 STATX_ATTR_IMMUTABLE |
826 STATX_ATTR_NODUMP |
827 STATX_ATTR_VERITY);
828
829 generic_fillattr(inode, stat);
830
831 /* we need to show initial sectors used for inline_data/dentries */
832 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
833 f2fs_has_inline_dentry(inode))
834 stat->blocks += (stat->size + 511) >> 9;
835
836 return 0;
837 }
838
839 #ifdef CONFIG_F2FS_FS_POSIX_ACL
__setattr_copy(struct inode * inode,const struct iattr * attr)840 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
841 {
842 unsigned int ia_valid = attr->ia_valid;
843
844 if (ia_valid & ATTR_UID)
845 inode->i_uid = attr->ia_uid;
846 if (ia_valid & ATTR_GID)
847 inode->i_gid = attr->ia_gid;
848 if (ia_valid & ATTR_ATIME)
849 inode->i_atime = attr->ia_atime;
850 if (ia_valid & ATTR_MTIME)
851 inode->i_mtime = attr->ia_mtime;
852 if (ia_valid & ATTR_CTIME)
853 inode->i_ctime = attr->ia_ctime;
854 if (ia_valid & ATTR_MODE) {
855 umode_t mode = attr->ia_mode;
856
857 if (!in_group_p(inode->i_gid) &&
858 !capable_wrt_inode_uidgid(inode, CAP_FSETID))
859 mode &= ~S_ISGID;
860 set_acl_inode(inode, mode);
861 }
862 }
863 #else
864 #define __setattr_copy setattr_copy
865 #endif
866
f2fs_setattr(struct dentry * dentry,struct iattr * attr)867 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
868 {
869 struct inode *inode = d_inode(dentry);
870 int err;
871
872 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
873 return -EIO;
874
875 if (unlikely(IS_IMMUTABLE(inode)))
876 return -EPERM;
877
878 if (unlikely(IS_APPEND(inode) &&
879 (attr->ia_valid & (ATTR_MODE | ATTR_UID |
880 ATTR_GID | ATTR_TIMES_SET))))
881 return -EPERM;
882
883 if ((attr->ia_valid & ATTR_SIZE) &&
884 !f2fs_is_compress_backend_ready(inode))
885 return -EOPNOTSUPP;
886
887 err = setattr_prepare(dentry, attr);
888 if (err)
889 return err;
890
891 err = fscrypt_prepare_setattr(dentry, attr);
892 if (err)
893 return err;
894
895 err = fsverity_prepare_setattr(dentry, attr);
896 if (err)
897 return err;
898
899 if (is_quota_modification(inode, attr)) {
900 err = dquot_initialize(inode);
901 if (err)
902 return err;
903 }
904 if ((attr->ia_valid & ATTR_UID &&
905 !uid_eq(attr->ia_uid, inode->i_uid)) ||
906 (attr->ia_valid & ATTR_GID &&
907 !gid_eq(attr->ia_gid, inode->i_gid))) {
908 f2fs_lock_op(F2FS_I_SB(inode));
909 err = dquot_transfer(inode, attr);
910 if (err) {
911 set_sbi_flag(F2FS_I_SB(inode),
912 SBI_QUOTA_NEED_REPAIR);
913 f2fs_unlock_op(F2FS_I_SB(inode));
914 return err;
915 }
916 /*
917 * update uid/gid under lock_op(), so that dquot and inode can
918 * be updated atomically.
919 */
920 if (attr->ia_valid & ATTR_UID)
921 inode->i_uid = attr->ia_uid;
922 if (attr->ia_valid & ATTR_GID)
923 inode->i_gid = attr->ia_gid;
924 f2fs_mark_inode_dirty_sync(inode, true);
925 f2fs_unlock_op(F2FS_I_SB(inode));
926 }
927
928 if (attr->ia_valid & ATTR_SIZE) {
929 loff_t old_size = i_size_read(inode);
930
931 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
932 /*
933 * should convert inline inode before i_size_write to
934 * keep smaller than inline_data size with inline flag.
935 */
936 err = f2fs_convert_inline_inode(inode);
937 if (err)
938 return err;
939 }
940
941 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
942 down_write(&F2FS_I(inode)->i_mmap_sem);
943
944 truncate_setsize(inode, attr->ia_size);
945
946 if (attr->ia_size <= old_size)
947 err = f2fs_truncate(inode);
948 /*
949 * do not trim all blocks after i_size if target size is
950 * larger than i_size.
951 */
952 up_write(&F2FS_I(inode)->i_mmap_sem);
953 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
954 if (err)
955 return err;
956
957 spin_lock(&F2FS_I(inode)->i_size_lock);
958 inode->i_mtime = inode->i_ctime = current_time(inode);
959 F2FS_I(inode)->last_disk_size = i_size_read(inode);
960 spin_unlock(&F2FS_I(inode)->i_size_lock);
961 }
962
963 __setattr_copy(inode, attr);
964
965 if (attr->ia_valid & ATTR_MODE) {
966 err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode));
967 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
968 inode->i_mode = F2FS_I(inode)->i_acl_mode;
969 clear_inode_flag(inode, FI_ACL_MODE);
970 }
971 }
972
973 /* file size may changed here */
974 f2fs_mark_inode_dirty_sync(inode, true);
975
976 /* inode change will produce dirty node pages flushed by checkpoint */
977 f2fs_balance_fs(F2FS_I_SB(inode), true);
978
979 return err;
980 }
981
982 const struct inode_operations f2fs_file_inode_operations = {
983 .getattr = f2fs_getattr,
984 .setattr = f2fs_setattr,
985 .get_acl = f2fs_get_acl,
986 .set_acl = f2fs_set_acl,
987 .listxattr = f2fs_listxattr,
988 .fiemap = f2fs_fiemap,
989 };
990
fill_zero(struct inode * inode,pgoff_t index,loff_t start,loff_t len)991 static int fill_zero(struct inode *inode, pgoff_t index,
992 loff_t start, loff_t len)
993 {
994 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
995 struct page *page;
996
997 if (!len)
998 return 0;
999
1000 f2fs_balance_fs(sbi, true);
1001
1002 f2fs_lock_op(sbi);
1003 page = f2fs_get_new_data_page(inode, NULL, index, false);
1004 f2fs_unlock_op(sbi);
1005
1006 if (IS_ERR(page))
1007 return PTR_ERR(page);
1008
1009 f2fs_wait_on_page_writeback(page, DATA, true, true);
1010 zero_user(page, start, len);
1011 set_page_dirty(page);
1012 f2fs_put_page(page, 1);
1013 return 0;
1014 }
1015
f2fs_truncate_hole(struct inode * inode,pgoff_t pg_start,pgoff_t pg_end)1016 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1017 {
1018 int err;
1019
1020 while (pg_start < pg_end) {
1021 struct dnode_of_data dn;
1022 pgoff_t end_offset, count;
1023
1024 set_new_dnode(&dn, inode, NULL, NULL, 0);
1025 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1026 if (err) {
1027 if (err == -ENOENT) {
1028 pg_start = f2fs_get_next_page_offset(&dn,
1029 pg_start);
1030 continue;
1031 }
1032 return err;
1033 }
1034
1035 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1036 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1037
1038 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1039
1040 f2fs_truncate_data_blocks_range(&dn, count);
1041 f2fs_put_dnode(&dn);
1042
1043 pg_start += count;
1044 }
1045 return 0;
1046 }
1047
punch_hole(struct inode * inode,loff_t offset,loff_t len)1048 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
1049 {
1050 pgoff_t pg_start, pg_end;
1051 loff_t off_start, off_end;
1052 int ret;
1053
1054 ret = f2fs_convert_inline_inode(inode);
1055 if (ret)
1056 return ret;
1057
1058 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1059 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1060
1061 off_start = offset & (PAGE_SIZE - 1);
1062 off_end = (offset + len) & (PAGE_SIZE - 1);
1063
1064 if (pg_start == pg_end) {
1065 ret = fill_zero(inode, pg_start, off_start,
1066 off_end - off_start);
1067 if (ret)
1068 return ret;
1069 } else {
1070 if (off_start) {
1071 ret = fill_zero(inode, pg_start++, off_start,
1072 PAGE_SIZE - off_start);
1073 if (ret)
1074 return ret;
1075 }
1076 if (off_end) {
1077 ret = fill_zero(inode, pg_end, 0, off_end);
1078 if (ret)
1079 return ret;
1080 }
1081
1082 if (pg_start < pg_end) {
1083 loff_t blk_start, blk_end;
1084 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1085
1086 f2fs_balance_fs(sbi, true);
1087
1088 blk_start = (loff_t)pg_start << PAGE_SHIFT;
1089 blk_end = (loff_t)pg_end << PAGE_SHIFT;
1090
1091 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1092 down_write(&F2FS_I(inode)->i_mmap_sem);
1093
1094 truncate_pagecache_range(inode, blk_start, blk_end - 1);
1095
1096 f2fs_lock_op(sbi);
1097 ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1098 f2fs_unlock_op(sbi);
1099
1100 up_write(&F2FS_I(inode)->i_mmap_sem);
1101 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1102 }
1103 }
1104
1105 return ret;
1106 }
1107
__read_out_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,pgoff_t len)1108 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1109 int *do_replace, pgoff_t off, pgoff_t len)
1110 {
1111 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1112 struct dnode_of_data dn;
1113 int ret, done, i;
1114
1115 next_dnode:
1116 set_new_dnode(&dn, inode, NULL, NULL, 0);
1117 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1118 if (ret && ret != -ENOENT) {
1119 return ret;
1120 } else if (ret == -ENOENT) {
1121 if (dn.max_level == 0)
1122 return -ENOENT;
1123 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1124 dn.ofs_in_node, len);
1125 blkaddr += done;
1126 do_replace += done;
1127 goto next;
1128 }
1129
1130 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1131 dn.ofs_in_node, len);
1132 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1133 *blkaddr = f2fs_data_blkaddr(&dn);
1134
1135 if (__is_valid_data_blkaddr(*blkaddr) &&
1136 !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1137 DATA_GENERIC_ENHANCE)) {
1138 f2fs_put_dnode(&dn);
1139 return -EFSCORRUPTED;
1140 }
1141
1142 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1143
1144 if (f2fs_lfs_mode(sbi)) {
1145 f2fs_put_dnode(&dn);
1146 return -EOPNOTSUPP;
1147 }
1148
1149 /* do not invalidate this block address */
1150 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1151 *do_replace = 1;
1152 }
1153 }
1154 f2fs_put_dnode(&dn);
1155 next:
1156 len -= done;
1157 off += done;
1158 if (len)
1159 goto next_dnode;
1160 return 0;
1161 }
1162
__roll_back_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,int len)1163 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1164 int *do_replace, pgoff_t off, int len)
1165 {
1166 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1167 struct dnode_of_data dn;
1168 int ret, i;
1169
1170 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1171 if (*do_replace == 0)
1172 continue;
1173
1174 set_new_dnode(&dn, inode, NULL, NULL, 0);
1175 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1176 if (ret) {
1177 dec_valid_block_count(sbi, inode, 1);
1178 f2fs_invalidate_blocks(sbi, *blkaddr);
1179 } else {
1180 f2fs_update_data_blkaddr(&dn, *blkaddr);
1181 }
1182 f2fs_put_dnode(&dn);
1183 }
1184 return 0;
1185 }
1186
__clone_blkaddrs(struct inode * src_inode,struct inode * dst_inode,block_t * blkaddr,int * do_replace,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1187 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1188 block_t *blkaddr, int *do_replace,
1189 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1190 {
1191 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1192 pgoff_t i = 0;
1193 int ret;
1194
1195 while (i < len) {
1196 if (blkaddr[i] == NULL_ADDR && !full) {
1197 i++;
1198 continue;
1199 }
1200
1201 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1202 struct dnode_of_data dn;
1203 struct node_info ni;
1204 size_t new_size;
1205 pgoff_t ilen;
1206
1207 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1208 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1209 if (ret)
1210 return ret;
1211
1212 ret = f2fs_get_node_info(sbi, dn.nid, &ni);
1213 if (ret) {
1214 f2fs_put_dnode(&dn);
1215 return ret;
1216 }
1217
1218 ilen = min((pgoff_t)
1219 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1220 dn.ofs_in_node, len - i);
1221 do {
1222 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1223 f2fs_truncate_data_blocks_range(&dn, 1);
1224
1225 if (do_replace[i]) {
1226 f2fs_i_blocks_write(src_inode,
1227 1, false, false);
1228 f2fs_i_blocks_write(dst_inode,
1229 1, true, false);
1230 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1231 blkaddr[i], ni.version, true, false);
1232
1233 do_replace[i] = 0;
1234 }
1235 dn.ofs_in_node++;
1236 i++;
1237 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1238 if (dst_inode->i_size < new_size)
1239 f2fs_i_size_write(dst_inode, new_size);
1240 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1241
1242 f2fs_put_dnode(&dn);
1243 } else {
1244 struct page *psrc, *pdst;
1245
1246 psrc = f2fs_get_lock_data_page(src_inode,
1247 src + i, true);
1248 if (IS_ERR(psrc))
1249 return PTR_ERR(psrc);
1250 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1251 true);
1252 if (IS_ERR(pdst)) {
1253 f2fs_put_page(psrc, 1);
1254 return PTR_ERR(pdst);
1255 }
1256 f2fs_copy_page(psrc, pdst);
1257 set_page_dirty(pdst);
1258 f2fs_put_page(pdst, 1);
1259 f2fs_put_page(psrc, 1);
1260
1261 ret = f2fs_truncate_hole(src_inode,
1262 src + i, src + i + 1);
1263 if (ret)
1264 return ret;
1265 i++;
1266 }
1267 }
1268 return 0;
1269 }
1270
__exchange_data_block(struct inode * src_inode,struct inode * dst_inode,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1271 static int __exchange_data_block(struct inode *src_inode,
1272 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1273 pgoff_t len, bool full)
1274 {
1275 block_t *src_blkaddr;
1276 int *do_replace;
1277 pgoff_t olen;
1278 int ret;
1279
1280 while (len) {
1281 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1282
1283 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1284 array_size(olen, sizeof(block_t)),
1285 GFP_NOFS);
1286 if (!src_blkaddr)
1287 return -ENOMEM;
1288
1289 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1290 array_size(olen, sizeof(int)),
1291 GFP_NOFS);
1292 if (!do_replace) {
1293 kvfree(src_blkaddr);
1294 return -ENOMEM;
1295 }
1296
1297 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1298 do_replace, src, olen);
1299 if (ret)
1300 goto roll_back;
1301
1302 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1303 do_replace, src, dst, olen, full);
1304 if (ret)
1305 goto roll_back;
1306
1307 src += olen;
1308 dst += olen;
1309 len -= olen;
1310
1311 kvfree(src_blkaddr);
1312 kvfree(do_replace);
1313 }
1314 return 0;
1315
1316 roll_back:
1317 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1318 kvfree(src_blkaddr);
1319 kvfree(do_replace);
1320 return ret;
1321 }
1322
f2fs_do_collapse(struct inode * inode,loff_t offset,loff_t len)1323 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1324 {
1325 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1326 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1327 pgoff_t start = offset >> PAGE_SHIFT;
1328 pgoff_t end = (offset + len) >> PAGE_SHIFT;
1329 int ret;
1330
1331 f2fs_balance_fs(sbi, true);
1332
1333 /* avoid gc operation during block exchange */
1334 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1335 down_write(&F2FS_I(inode)->i_mmap_sem);
1336
1337 f2fs_lock_op(sbi);
1338 f2fs_drop_extent_tree(inode);
1339 truncate_pagecache(inode, offset);
1340 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1341 f2fs_unlock_op(sbi);
1342
1343 up_write(&F2FS_I(inode)->i_mmap_sem);
1344 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1345 return ret;
1346 }
1347
f2fs_collapse_range(struct inode * inode,loff_t offset,loff_t len)1348 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1349 {
1350 loff_t new_size;
1351 int ret;
1352
1353 if (offset + len >= i_size_read(inode))
1354 return -EINVAL;
1355
1356 /* collapse range should be aligned to block size of f2fs. */
1357 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1358 return -EINVAL;
1359
1360 ret = f2fs_convert_inline_inode(inode);
1361 if (ret)
1362 return ret;
1363
1364 /* write out all dirty pages from offset */
1365 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1366 if (ret)
1367 return ret;
1368
1369 ret = f2fs_do_collapse(inode, offset, len);
1370 if (ret)
1371 return ret;
1372
1373 /* write out all moved pages, if possible */
1374 down_write(&F2FS_I(inode)->i_mmap_sem);
1375 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1376 truncate_pagecache(inode, offset);
1377
1378 new_size = i_size_read(inode) - len;
1379 ret = f2fs_truncate_blocks(inode, new_size, true);
1380 up_write(&F2FS_I(inode)->i_mmap_sem);
1381 if (!ret)
1382 f2fs_i_size_write(inode, new_size);
1383 return ret;
1384 }
1385
f2fs_do_zero_range(struct dnode_of_data * dn,pgoff_t start,pgoff_t end)1386 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1387 pgoff_t end)
1388 {
1389 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1390 pgoff_t index = start;
1391 unsigned int ofs_in_node = dn->ofs_in_node;
1392 blkcnt_t count = 0;
1393 int ret;
1394
1395 for (; index < end; index++, dn->ofs_in_node++) {
1396 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1397 count++;
1398 }
1399
1400 dn->ofs_in_node = ofs_in_node;
1401 ret = f2fs_reserve_new_blocks(dn, count);
1402 if (ret)
1403 return ret;
1404
1405 dn->ofs_in_node = ofs_in_node;
1406 for (index = start; index < end; index++, dn->ofs_in_node++) {
1407 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1408 /*
1409 * f2fs_reserve_new_blocks will not guarantee entire block
1410 * allocation.
1411 */
1412 if (dn->data_blkaddr == NULL_ADDR) {
1413 ret = -ENOSPC;
1414 break;
1415 }
1416
1417 if (dn->data_blkaddr == NEW_ADDR)
1418 continue;
1419
1420 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1421 DATA_GENERIC_ENHANCE)) {
1422 ret = -EFSCORRUPTED;
1423 break;
1424 }
1425
1426 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1427 dn->data_blkaddr = NEW_ADDR;
1428 f2fs_set_data_blkaddr(dn);
1429 }
1430
1431 f2fs_update_extent_cache_range(dn, start, 0, index - start);
1432
1433 return ret;
1434 }
1435
f2fs_zero_range(struct inode * inode,loff_t offset,loff_t len,int mode)1436 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1437 int mode)
1438 {
1439 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1440 struct address_space *mapping = inode->i_mapping;
1441 pgoff_t index, pg_start, pg_end;
1442 loff_t new_size = i_size_read(inode);
1443 loff_t off_start, off_end;
1444 int ret = 0;
1445
1446 ret = inode_newsize_ok(inode, (len + offset));
1447 if (ret)
1448 return ret;
1449
1450 ret = f2fs_convert_inline_inode(inode);
1451 if (ret)
1452 return ret;
1453
1454 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1455 if (ret)
1456 return ret;
1457
1458 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1459 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1460
1461 off_start = offset & (PAGE_SIZE - 1);
1462 off_end = (offset + len) & (PAGE_SIZE - 1);
1463
1464 if (pg_start == pg_end) {
1465 ret = fill_zero(inode, pg_start, off_start,
1466 off_end - off_start);
1467 if (ret)
1468 return ret;
1469
1470 new_size = max_t(loff_t, new_size, offset + len);
1471 } else {
1472 if (off_start) {
1473 ret = fill_zero(inode, pg_start++, off_start,
1474 PAGE_SIZE - off_start);
1475 if (ret)
1476 return ret;
1477
1478 new_size = max_t(loff_t, new_size,
1479 (loff_t)pg_start << PAGE_SHIFT);
1480 }
1481
1482 for (index = pg_start; index < pg_end;) {
1483 struct dnode_of_data dn;
1484 unsigned int end_offset;
1485 pgoff_t end;
1486
1487 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1488 down_write(&F2FS_I(inode)->i_mmap_sem);
1489
1490 truncate_pagecache_range(inode,
1491 (loff_t)index << PAGE_SHIFT,
1492 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1493
1494 f2fs_lock_op(sbi);
1495
1496 set_new_dnode(&dn, inode, NULL, NULL, 0);
1497 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1498 if (ret) {
1499 f2fs_unlock_op(sbi);
1500 up_write(&F2FS_I(inode)->i_mmap_sem);
1501 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1502 goto out;
1503 }
1504
1505 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1506 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1507
1508 ret = f2fs_do_zero_range(&dn, index, end);
1509 f2fs_put_dnode(&dn);
1510
1511 f2fs_unlock_op(sbi);
1512 up_write(&F2FS_I(inode)->i_mmap_sem);
1513 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1514
1515 f2fs_balance_fs(sbi, dn.node_changed);
1516
1517 if (ret)
1518 goto out;
1519
1520 index = end;
1521 new_size = max_t(loff_t, new_size,
1522 (loff_t)index << PAGE_SHIFT);
1523 }
1524
1525 if (off_end) {
1526 ret = fill_zero(inode, pg_end, 0, off_end);
1527 if (ret)
1528 goto out;
1529
1530 new_size = max_t(loff_t, new_size, offset + len);
1531 }
1532 }
1533
1534 out:
1535 if (new_size > i_size_read(inode)) {
1536 if (mode & FALLOC_FL_KEEP_SIZE)
1537 file_set_keep_isize(inode);
1538 else
1539 f2fs_i_size_write(inode, new_size);
1540 }
1541 return ret;
1542 }
1543
f2fs_insert_range(struct inode * inode,loff_t offset,loff_t len)1544 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1545 {
1546 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1547 pgoff_t nr, pg_start, pg_end, delta, idx;
1548 loff_t new_size;
1549 int ret = 0;
1550
1551 new_size = i_size_read(inode) + len;
1552 ret = inode_newsize_ok(inode, new_size);
1553 if (ret)
1554 return ret;
1555
1556 if (offset >= i_size_read(inode))
1557 return -EINVAL;
1558
1559 /* insert range should be aligned to block size of f2fs. */
1560 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1561 return -EINVAL;
1562
1563 ret = f2fs_convert_inline_inode(inode);
1564 if (ret)
1565 return ret;
1566
1567 f2fs_balance_fs(sbi, true);
1568
1569 down_write(&F2FS_I(inode)->i_mmap_sem);
1570 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1571 up_write(&F2FS_I(inode)->i_mmap_sem);
1572 if (ret)
1573 return ret;
1574
1575 /* write out all dirty pages from offset */
1576 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1577 if (ret)
1578 return ret;
1579
1580 pg_start = offset >> PAGE_SHIFT;
1581 pg_end = (offset + len) >> PAGE_SHIFT;
1582 delta = pg_end - pg_start;
1583 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1584
1585 /* avoid gc operation during block exchange */
1586 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1587 down_write(&F2FS_I(inode)->i_mmap_sem);
1588 truncate_pagecache(inode, offset);
1589
1590 while (!ret && idx > pg_start) {
1591 nr = idx - pg_start;
1592 if (nr > delta)
1593 nr = delta;
1594 idx -= nr;
1595
1596 f2fs_lock_op(sbi);
1597 f2fs_drop_extent_tree(inode);
1598
1599 ret = __exchange_data_block(inode, inode, idx,
1600 idx + delta, nr, false);
1601 f2fs_unlock_op(sbi);
1602 }
1603 up_write(&F2FS_I(inode)->i_mmap_sem);
1604 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1605
1606 /* write out all moved pages, if possible */
1607 down_write(&F2FS_I(inode)->i_mmap_sem);
1608 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1609 truncate_pagecache(inode, offset);
1610 up_write(&F2FS_I(inode)->i_mmap_sem);
1611
1612 if (!ret)
1613 f2fs_i_size_write(inode, new_size);
1614 return ret;
1615 }
1616
expand_inode_data(struct inode * inode,loff_t offset,loff_t len,int mode)1617 static int expand_inode_data(struct inode *inode, loff_t offset,
1618 loff_t len, int mode)
1619 {
1620 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1621 struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1622 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1623 .m_may_create = true };
1624 pgoff_t pg_start, pg_end;
1625 loff_t new_size = i_size_read(inode);
1626 loff_t off_end;
1627 block_t expanded = 0;
1628 int err;
1629
1630 err = inode_newsize_ok(inode, (len + offset));
1631 if (err)
1632 return err;
1633
1634 err = f2fs_convert_inline_inode(inode);
1635 if (err)
1636 return err;
1637
1638 f2fs_balance_fs(sbi, true);
1639
1640 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1641 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1642 off_end = (offset + len) & (PAGE_SIZE - 1);
1643
1644 map.m_lblk = pg_start;
1645 map.m_len = pg_end - pg_start;
1646 if (off_end)
1647 map.m_len++;
1648
1649 if (!map.m_len)
1650 return 0;
1651
1652 if (f2fs_is_pinned_file(inode)) {
1653 block_t sec_blks = BLKS_PER_SEC(sbi);
1654 block_t sec_len = roundup(map.m_len, sec_blks);
1655
1656 map.m_len = sec_blks;
1657 next_alloc:
1658 if (has_not_enough_free_secs(sbi, 0,
1659 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1660 down_write(&sbi->gc_lock);
1661 err = f2fs_gc(sbi, true, false, false, NULL_SEGNO);
1662 if (err && err != -ENODATA && err != -EAGAIN)
1663 goto out_err;
1664 }
1665
1666 down_write(&sbi->pin_sem);
1667
1668 f2fs_lock_op(sbi);
1669 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED);
1670 f2fs_unlock_op(sbi);
1671
1672 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1673 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
1674
1675 up_write(&sbi->pin_sem);
1676
1677 expanded += map.m_len;
1678 sec_len -= map.m_len;
1679 map.m_lblk += map.m_len;
1680 if (!err && sec_len)
1681 goto next_alloc;
1682
1683 map.m_len = expanded;
1684 } else {
1685 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1686 expanded = map.m_len;
1687 }
1688 out_err:
1689 if (err) {
1690 pgoff_t last_off;
1691
1692 if (!expanded)
1693 return err;
1694
1695 last_off = pg_start + expanded - 1;
1696
1697 /* update new size to the failed position */
1698 new_size = (last_off == pg_end) ? offset + len :
1699 (loff_t)(last_off + 1) << PAGE_SHIFT;
1700 } else {
1701 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1702 }
1703
1704 if (new_size > i_size_read(inode)) {
1705 if (mode & FALLOC_FL_KEEP_SIZE)
1706 file_set_keep_isize(inode);
1707 else
1708 f2fs_i_size_write(inode, new_size);
1709 }
1710
1711 return err;
1712 }
1713
f2fs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1714 static long f2fs_fallocate(struct file *file, int mode,
1715 loff_t offset, loff_t len)
1716 {
1717 struct inode *inode = file_inode(file);
1718 long ret = 0;
1719
1720 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1721 return -EIO;
1722 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1723 return -ENOSPC;
1724 if (!f2fs_is_compress_backend_ready(inode))
1725 return -EOPNOTSUPP;
1726
1727 /* f2fs only support ->fallocate for regular file */
1728 if (!S_ISREG(inode->i_mode))
1729 return -EINVAL;
1730
1731 if (IS_ENCRYPTED(inode) &&
1732 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1733 return -EOPNOTSUPP;
1734
1735 if (f2fs_compressed_file(inode) &&
1736 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1737 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1738 return -EOPNOTSUPP;
1739
1740 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1741 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1742 FALLOC_FL_INSERT_RANGE))
1743 return -EOPNOTSUPP;
1744
1745 inode_lock(inode);
1746
1747 ret = file_modified(file);
1748 if (ret)
1749 goto out;
1750
1751 if (mode & FALLOC_FL_PUNCH_HOLE) {
1752 if (offset >= inode->i_size)
1753 goto out;
1754
1755 ret = punch_hole(inode, offset, len);
1756 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1757 ret = f2fs_collapse_range(inode, offset, len);
1758 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1759 ret = f2fs_zero_range(inode, offset, len, mode);
1760 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1761 ret = f2fs_insert_range(inode, offset, len);
1762 } else {
1763 ret = expand_inode_data(inode, offset, len, mode);
1764 }
1765
1766 if (!ret) {
1767 inode->i_mtime = inode->i_ctime = current_time(inode);
1768 f2fs_mark_inode_dirty_sync(inode, false);
1769 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1770 }
1771
1772 out:
1773 inode_unlock(inode);
1774
1775 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1776 return ret;
1777 }
1778
f2fs_release_file(struct inode * inode,struct file * filp)1779 static int f2fs_release_file(struct inode *inode, struct file *filp)
1780 {
1781 /*
1782 * f2fs_relase_file is called at every close calls. So we should
1783 * not drop any inmemory pages by close called by other process.
1784 */
1785 if (!(filp->f_mode & FMODE_WRITE) ||
1786 atomic_read(&inode->i_writecount) != 1)
1787 return 0;
1788
1789 /* some remained atomic pages should discarded */
1790 if (f2fs_is_atomic_file(inode))
1791 f2fs_drop_inmem_pages(inode);
1792 if (f2fs_is_volatile_file(inode)) {
1793 set_inode_flag(inode, FI_DROP_CACHE);
1794 filemap_fdatawrite(inode->i_mapping);
1795 clear_inode_flag(inode, FI_DROP_CACHE);
1796 clear_inode_flag(inode, FI_VOLATILE_FILE);
1797 stat_dec_volatile_write(inode);
1798 }
1799 return 0;
1800 }
1801
f2fs_file_flush(struct file * file,fl_owner_t id)1802 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1803 {
1804 struct inode *inode = file_inode(file);
1805
1806 /*
1807 * If the process doing a transaction is crashed, we should do
1808 * roll-back. Otherwise, other reader/write can see corrupted database
1809 * until all the writers close its file. Since this should be done
1810 * before dropping file lock, it needs to do in ->flush.
1811 */
1812 if (f2fs_is_atomic_file(inode) &&
1813 F2FS_I(inode)->inmem_task == current)
1814 f2fs_drop_inmem_pages(inode);
1815 return 0;
1816 }
1817
f2fs_setflags_common(struct inode * inode,u32 iflags,u32 mask)1818 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1819 {
1820 struct f2fs_inode_info *fi = F2FS_I(inode);
1821 u32 masked_flags = fi->i_flags & mask;
1822
1823 f2fs_bug_on(F2FS_I_SB(inode), (iflags & ~mask));
1824
1825 /* Is it quota file? Do not allow user to mess with it */
1826 if (IS_NOQUOTA(inode))
1827 return -EPERM;
1828
1829 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1830 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1831 return -EOPNOTSUPP;
1832 if (!f2fs_empty_dir(inode))
1833 return -ENOTEMPTY;
1834 }
1835
1836 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1837 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1838 return -EOPNOTSUPP;
1839 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1840 return -EINVAL;
1841 }
1842
1843 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1844 if (masked_flags & F2FS_COMPR_FL) {
1845 if (!f2fs_disable_compressed_file(inode))
1846 return -EINVAL;
1847 } else {
1848 if (!f2fs_may_compress(inode))
1849 return -EINVAL;
1850 if (S_ISREG(inode->i_mode) && inode->i_size)
1851 return -EINVAL;
1852
1853 set_compress_context(inode);
1854 }
1855 }
1856
1857 fi->i_flags = iflags | (fi->i_flags & ~mask);
1858 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1859 (fi->i_flags & F2FS_NOCOMP_FL));
1860
1861 if (fi->i_flags & F2FS_PROJINHERIT_FL)
1862 set_inode_flag(inode, FI_PROJ_INHERIT);
1863 else
1864 clear_inode_flag(inode, FI_PROJ_INHERIT);
1865
1866 inode->i_ctime = current_time(inode);
1867 f2fs_set_inode_flags(inode);
1868 f2fs_mark_inode_dirty_sync(inode, true);
1869 return 0;
1870 }
1871
1872 /* FS_IOC_GETFLAGS and FS_IOC_SETFLAGS support */
1873
1874 /*
1875 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1876 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1877 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add
1878 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1879 */
1880
1881 static const struct {
1882 u32 iflag;
1883 u32 fsflag;
1884 } f2fs_fsflags_map[] = {
1885 { F2FS_COMPR_FL, FS_COMPR_FL },
1886 { F2FS_SYNC_FL, FS_SYNC_FL },
1887 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL },
1888 { F2FS_APPEND_FL, FS_APPEND_FL },
1889 { F2FS_NODUMP_FL, FS_NODUMP_FL },
1890 { F2FS_NOATIME_FL, FS_NOATIME_FL },
1891 { F2FS_NOCOMP_FL, FS_NOCOMP_FL },
1892 { F2FS_INDEX_FL, FS_INDEX_FL },
1893 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL },
1894 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL },
1895 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL },
1896 };
1897
1898 #define F2FS_GETTABLE_FS_FL ( \
1899 FS_COMPR_FL | \
1900 FS_SYNC_FL | \
1901 FS_IMMUTABLE_FL | \
1902 FS_APPEND_FL | \
1903 FS_NODUMP_FL | \
1904 FS_NOATIME_FL | \
1905 FS_NOCOMP_FL | \
1906 FS_INDEX_FL | \
1907 FS_DIRSYNC_FL | \
1908 FS_PROJINHERIT_FL | \
1909 FS_ENCRYPT_FL | \
1910 FS_INLINE_DATA_FL | \
1911 FS_NOCOW_FL | \
1912 FS_VERITY_FL | \
1913 FS_CASEFOLD_FL)
1914
1915 #define F2FS_SETTABLE_FS_FL ( \
1916 FS_COMPR_FL | \
1917 FS_SYNC_FL | \
1918 FS_IMMUTABLE_FL | \
1919 FS_APPEND_FL | \
1920 FS_NODUMP_FL | \
1921 FS_NOATIME_FL | \
1922 FS_NOCOMP_FL | \
1923 FS_DIRSYNC_FL | \
1924 FS_PROJINHERIT_FL | \
1925 FS_CASEFOLD_FL)
1926
1927 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
f2fs_iflags_to_fsflags(u32 iflags)1928 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
1929 {
1930 u32 fsflags = 0;
1931 int i;
1932
1933 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1934 if (iflags & f2fs_fsflags_map[i].iflag)
1935 fsflags |= f2fs_fsflags_map[i].fsflag;
1936
1937 return fsflags;
1938 }
1939
1940 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
f2fs_fsflags_to_iflags(u32 fsflags)1941 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
1942 {
1943 u32 iflags = 0;
1944 int i;
1945
1946 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1947 if (fsflags & f2fs_fsflags_map[i].fsflag)
1948 iflags |= f2fs_fsflags_map[i].iflag;
1949
1950 return iflags;
1951 }
1952
f2fs_ioc_getflags(struct file * filp,unsigned long arg)1953 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1954 {
1955 struct inode *inode = file_inode(filp);
1956 struct f2fs_inode_info *fi = F2FS_I(inode);
1957 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
1958
1959 if (IS_ENCRYPTED(inode))
1960 fsflags |= FS_ENCRYPT_FL;
1961 if (IS_VERITY(inode))
1962 fsflags |= FS_VERITY_FL;
1963 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
1964 fsflags |= FS_INLINE_DATA_FL;
1965 if (is_inode_flag_set(inode, FI_PIN_FILE))
1966 fsflags |= FS_NOCOW_FL;
1967
1968 fsflags &= F2FS_GETTABLE_FS_FL;
1969
1970 return put_user(fsflags, (int __user *)arg);
1971 }
1972
f2fs_ioc_setflags(struct file * filp,unsigned long arg)1973 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1974 {
1975 struct inode *inode = file_inode(filp);
1976 struct f2fs_inode_info *fi = F2FS_I(inode);
1977 u32 fsflags, old_fsflags;
1978 u32 iflags;
1979 int ret;
1980
1981 if (!inode_owner_or_capable(inode))
1982 return -EACCES;
1983
1984 if (get_user(fsflags, (int __user *)arg))
1985 return -EFAULT;
1986
1987 if (fsflags & ~F2FS_GETTABLE_FS_FL)
1988 return -EOPNOTSUPP;
1989 fsflags &= F2FS_SETTABLE_FS_FL;
1990
1991 iflags = f2fs_fsflags_to_iflags(fsflags);
1992 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
1993 return -EOPNOTSUPP;
1994
1995 ret = mnt_want_write_file(filp);
1996 if (ret)
1997 return ret;
1998
1999 inode_lock(inode);
2000
2001 old_fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
2002 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
2003 if (ret)
2004 goto out;
2005
2006 ret = f2fs_setflags_common(inode, iflags,
2007 f2fs_fsflags_to_iflags(F2FS_SETTABLE_FS_FL));
2008 out:
2009 inode_unlock(inode);
2010 mnt_drop_write_file(filp);
2011 return ret;
2012 }
2013
f2fs_ioc_getversion(struct file * filp,unsigned long arg)2014 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2015 {
2016 struct inode *inode = file_inode(filp);
2017
2018 return put_user(inode->i_generation, (int __user *)arg);
2019 }
2020
f2fs_ioc_start_atomic_write(struct file * filp)2021 static int f2fs_ioc_start_atomic_write(struct file *filp)
2022 {
2023 struct inode *inode = file_inode(filp);
2024 struct f2fs_inode_info *fi = F2FS_I(inode);
2025 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2026 int ret;
2027
2028 if (!inode_owner_or_capable(inode))
2029 return -EACCES;
2030
2031 if (!S_ISREG(inode->i_mode))
2032 return -EINVAL;
2033
2034 if (filp->f_flags & O_DIRECT)
2035 return -EINVAL;
2036
2037 ret = mnt_want_write_file(filp);
2038 if (ret)
2039 return ret;
2040
2041 inode_lock(inode);
2042
2043 if (!f2fs_disable_compressed_file(inode)) {
2044 ret = -EINVAL;
2045 goto out;
2046 }
2047
2048 if (f2fs_is_atomic_file(inode)) {
2049 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
2050 ret = -EINVAL;
2051 goto out;
2052 }
2053
2054 ret = f2fs_convert_inline_inode(inode);
2055 if (ret)
2056 goto out;
2057
2058 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2059
2060 /*
2061 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2062 * f2fs_is_atomic_file.
2063 */
2064 if (get_dirty_pages(inode))
2065 f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2066 inode->i_ino, get_dirty_pages(inode));
2067 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2068 if (ret) {
2069 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2070 goto out;
2071 }
2072
2073 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
2074 if (list_empty(&fi->inmem_ilist))
2075 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
2076 sbi->atomic_files++;
2077 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
2078
2079 /* add inode in inmem_list first and set atomic_file */
2080 set_inode_flag(inode, FI_ATOMIC_FILE);
2081 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2082 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2083
2084 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2085 F2FS_I(inode)->inmem_task = current;
2086 stat_update_max_atomic_write(inode);
2087 out:
2088 inode_unlock(inode);
2089 mnt_drop_write_file(filp);
2090 return ret;
2091 }
2092
f2fs_ioc_commit_atomic_write(struct file * filp)2093 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2094 {
2095 struct inode *inode = file_inode(filp);
2096 int ret;
2097
2098 if (!inode_owner_or_capable(inode))
2099 return -EACCES;
2100
2101 ret = mnt_want_write_file(filp);
2102 if (ret)
2103 return ret;
2104
2105 f2fs_balance_fs(F2FS_I_SB(inode), true);
2106
2107 inode_lock(inode);
2108
2109 if (f2fs_is_volatile_file(inode)) {
2110 ret = -EINVAL;
2111 goto err_out;
2112 }
2113
2114 if (f2fs_is_atomic_file(inode)) {
2115 ret = f2fs_commit_inmem_pages(inode);
2116 if (ret)
2117 goto err_out;
2118
2119 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2120 if (!ret)
2121 f2fs_drop_inmem_pages(inode);
2122 } else {
2123 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2124 }
2125 err_out:
2126 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2127 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2128 ret = -EINVAL;
2129 }
2130 inode_unlock(inode);
2131 mnt_drop_write_file(filp);
2132 return ret;
2133 }
2134
f2fs_ioc_start_volatile_write(struct file * filp)2135 static int f2fs_ioc_start_volatile_write(struct file *filp)
2136 {
2137 struct inode *inode = file_inode(filp);
2138 int ret;
2139
2140 if (!inode_owner_or_capable(inode))
2141 return -EACCES;
2142
2143 if (!S_ISREG(inode->i_mode))
2144 return -EINVAL;
2145
2146 ret = mnt_want_write_file(filp);
2147 if (ret)
2148 return ret;
2149
2150 inode_lock(inode);
2151
2152 if (f2fs_is_volatile_file(inode))
2153 goto out;
2154
2155 ret = f2fs_convert_inline_inode(inode);
2156 if (ret)
2157 goto out;
2158
2159 stat_inc_volatile_write(inode);
2160 stat_update_max_volatile_write(inode);
2161
2162 set_inode_flag(inode, FI_VOLATILE_FILE);
2163 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2164 out:
2165 inode_unlock(inode);
2166 mnt_drop_write_file(filp);
2167 return ret;
2168 }
2169
f2fs_ioc_release_volatile_write(struct file * filp)2170 static int f2fs_ioc_release_volatile_write(struct file *filp)
2171 {
2172 struct inode *inode = file_inode(filp);
2173 int ret;
2174
2175 if (!inode_owner_or_capable(inode))
2176 return -EACCES;
2177
2178 ret = mnt_want_write_file(filp);
2179 if (ret)
2180 return ret;
2181
2182 inode_lock(inode);
2183
2184 if (!f2fs_is_volatile_file(inode))
2185 goto out;
2186
2187 if (!f2fs_is_first_block_written(inode)) {
2188 ret = truncate_partial_data_page(inode, 0, true);
2189 goto out;
2190 }
2191
2192 ret = punch_hole(inode, 0, F2FS_BLKSIZE);
2193 out:
2194 inode_unlock(inode);
2195 mnt_drop_write_file(filp);
2196 return ret;
2197 }
2198
f2fs_ioc_abort_volatile_write(struct file * filp)2199 static int f2fs_ioc_abort_volatile_write(struct file *filp)
2200 {
2201 struct inode *inode = file_inode(filp);
2202 int ret;
2203
2204 if (!inode_owner_or_capable(inode))
2205 return -EACCES;
2206
2207 ret = mnt_want_write_file(filp);
2208 if (ret)
2209 return ret;
2210
2211 inode_lock(inode);
2212
2213 if (f2fs_is_atomic_file(inode))
2214 f2fs_drop_inmem_pages(inode);
2215 if (f2fs_is_volatile_file(inode)) {
2216 clear_inode_flag(inode, FI_VOLATILE_FILE);
2217 stat_dec_volatile_write(inode);
2218 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2219 }
2220
2221 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2222
2223 inode_unlock(inode);
2224
2225 mnt_drop_write_file(filp);
2226 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2227 return ret;
2228 }
2229
f2fs_ioc_shutdown(struct file * filp,unsigned long arg)2230 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2231 {
2232 struct inode *inode = file_inode(filp);
2233 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2234 struct super_block *sb = sbi->sb;
2235 __u32 in;
2236 int ret = 0;
2237
2238 if (!capable(CAP_SYS_ADMIN))
2239 return -EPERM;
2240
2241 if (get_user(in, (__u32 __user *)arg))
2242 return -EFAULT;
2243
2244 if (in != F2FS_GOING_DOWN_FULLSYNC) {
2245 ret = mnt_want_write_file(filp);
2246 if (ret) {
2247 if (ret == -EROFS) {
2248 ret = 0;
2249 f2fs_stop_checkpoint(sbi, false);
2250 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2251 trace_f2fs_shutdown(sbi, in, ret);
2252 }
2253 return ret;
2254 }
2255 }
2256
2257 switch (in) {
2258 case F2FS_GOING_DOWN_FULLSYNC:
2259 sb = freeze_bdev(sb->s_bdev);
2260 if (IS_ERR(sb)) {
2261 ret = PTR_ERR(sb);
2262 goto out;
2263 }
2264 if (sb) {
2265 f2fs_stop_checkpoint(sbi, false);
2266 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2267 thaw_bdev(sb->s_bdev, sb);
2268 }
2269 break;
2270 case F2FS_GOING_DOWN_METASYNC:
2271 /* do checkpoint only */
2272 ret = f2fs_sync_fs(sb, 1);
2273 if (ret)
2274 goto out;
2275 f2fs_stop_checkpoint(sbi, false);
2276 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2277 break;
2278 case F2FS_GOING_DOWN_NOSYNC:
2279 f2fs_stop_checkpoint(sbi, false);
2280 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2281 break;
2282 case F2FS_GOING_DOWN_METAFLUSH:
2283 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2284 f2fs_stop_checkpoint(sbi, false);
2285 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2286 break;
2287 case F2FS_GOING_DOWN_NEED_FSCK:
2288 set_sbi_flag(sbi, SBI_NEED_FSCK);
2289 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2290 set_sbi_flag(sbi, SBI_IS_DIRTY);
2291 /* do checkpoint only */
2292 ret = f2fs_sync_fs(sb, 1);
2293 goto out;
2294 default:
2295 ret = -EINVAL;
2296 goto out;
2297 }
2298
2299 f2fs_stop_gc_thread(sbi);
2300 f2fs_stop_discard_thread(sbi);
2301
2302 f2fs_drop_discard_cmd(sbi);
2303 clear_opt(sbi, DISCARD);
2304
2305 f2fs_update_time(sbi, REQ_TIME);
2306 out:
2307 if (in != F2FS_GOING_DOWN_FULLSYNC)
2308 mnt_drop_write_file(filp);
2309
2310 trace_f2fs_shutdown(sbi, in, ret);
2311
2312 return ret;
2313 }
2314
f2fs_ioc_fitrim(struct file * filp,unsigned long arg)2315 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2316 {
2317 struct inode *inode = file_inode(filp);
2318 struct super_block *sb = inode->i_sb;
2319 struct request_queue *q = bdev_get_queue(sb->s_bdev);
2320 struct fstrim_range range;
2321 int ret;
2322
2323 if (!capable(CAP_SYS_ADMIN))
2324 return -EPERM;
2325
2326 if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2327 return -EOPNOTSUPP;
2328
2329 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2330 sizeof(range)))
2331 return -EFAULT;
2332
2333 ret = mnt_want_write_file(filp);
2334 if (ret)
2335 return ret;
2336
2337 range.minlen = max((unsigned int)range.minlen,
2338 q->limits.discard_granularity);
2339 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2340 mnt_drop_write_file(filp);
2341 if (ret < 0)
2342 return ret;
2343
2344 if (copy_to_user((struct fstrim_range __user *)arg, &range,
2345 sizeof(range)))
2346 return -EFAULT;
2347 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2348 return 0;
2349 }
2350
uuid_is_nonzero(__u8 u[16])2351 static bool uuid_is_nonzero(__u8 u[16])
2352 {
2353 int i;
2354
2355 for (i = 0; i < 16; i++)
2356 if (u[i])
2357 return true;
2358 return false;
2359 }
2360
f2fs_ioc_set_encryption_policy(struct file * filp,unsigned long arg)2361 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2362 {
2363 struct inode *inode = file_inode(filp);
2364
2365 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2366 return -EOPNOTSUPP;
2367
2368 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2369
2370 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2371 }
2372
f2fs_ioc_get_encryption_policy(struct file * filp,unsigned long arg)2373 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2374 {
2375 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2376 return -EOPNOTSUPP;
2377 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2378 }
2379
f2fs_ioc_get_encryption_pwsalt(struct file * filp,unsigned long arg)2380 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2381 {
2382 struct inode *inode = file_inode(filp);
2383 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2384 int err;
2385
2386 if (!f2fs_sb_has_encrypt(sbi))
2387 return -EOPNOTSUPP;
2388
2389 err = mnt_want_write_file(filp);
2390 if (err)
2391 return err;
2392
2393 down_write(&sbi->sb_lock);
2394
2395 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2396 goto got_it;
2397
2398 /* update superblock with uuid */
2399 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2400
2401 err = f2fs_commit_super(sbi, false);
2402 if (err) {
2403 /* undo new data */
2404 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2405 goto out_err;
2406 }
2407 got_it:
2408 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2409 16))
2410 err = -EFAULT;
2411 out_err:
2412 up_write(&sbi->sb_lock);
2413 mnt_drop_write_file(filp);
2414 return err;
2415 }
2416
f2fs_ioc_get_encryption_policy_ex(struct file * filp,unsigned long arg)2417 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2418 unsigned long arg)
2419 {
2420 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2421 return -EOPNOTSUPP;
2422
2423 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2424 }
2425
f2fs_ioc_add_encryption_key(struct file * filp,unsigned long arg)2426 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2427 {
2428 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2429 return -EOPNOTSUPP;
2430
2431 return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2432 }
2433
f2fs_ioc_remove_encryption_key(struct file * filp,unsigned long arg)2434 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2435 {
2436 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2437 return -EOPNOTSUPP;
2438
2439 return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2440 }
2441
f2fs_ioc_remove_encryption_key_all_users(struct file * filp,unsigned long arg)2442 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2443 unsigned long arg)
2444 {
2445 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2446 return -EOPNOTSUPP;
2447
2448 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2449 }
2450
f2fs_ioc_get_encryption_key_status(struct file * filp,unsigned long arg)2451 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2452 unsigned long arg)
2453 {
2454 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2455 return -EOPNOTSUPP;
2456
2457 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2458 }
2459
f2fs_ioc_get_encryption_nonce(struct file * filp,unsigned long arg)2460 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2461 {
2462 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2463 return -EOPNOTSUPP;
2464
2465 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2466 }
2467
f2fs_ioc_gc(struct file * filp,unsigned long arg)2468 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2469 {
2470 struct inode *inode = file_inode(filp);
2471 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2472 __u32 sync;
2473 int ret;
2474
2475 if (!capable(CAP_SYS_ADMIN))
2476 return -EPERM;
2477
2478 if (get_user(sync, (__u32 __user *)arg))
2479 return -EFAULT;
2480
2481 if (f2fs_readonly(sbi->sb))
2482 return -EROFS;
2483
2484 ret = mnt_want_write_file(filp);
2485 if (ret)
2486 return ret;
2487
2488 if (!sync) {
2489 if (!down_write_trylock(&sbi->gc_lock)) {
2490 ret = -EBUSY;
2491 goto out;
2492 }
2493 } else {
2494 down_write(&sbi->gc_lock);
2495 }
2496
2497 ret = f2fs_gc(sbi, sync, true, false, NULL_SEGNO);
2498 out:
2499 mnt_drop_write_file(filp);
2500 return ret;
2501 }
2502
__f2fs_ioc_gc_range(struct file * filp,struct f2fs_gc_range * range)2503 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2504 {
2505 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2506 u64 end;
2507 int ret;
2508
2509 if (!capable(CAP_SYS_ADMIN))
2510 return -EPERM;
2511 if (f2fs_readonly(sbi->sb))
2512 return -EROFS;
2513
2514 end = range->start + range->len;
2515 if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2516 end >= MAX_BLKADDR(sbi))
2517 return -EINVAL;
2518
2519 ret = mnt_want_write_file(filp);
2520 if (ret)
2521 return ret;
2522
2523 do_more:
2524 if (!range->sync) {
2525 if (!down_write_trylock(&sbi->gc_lock)) {
2526 ret = -EBUSY;
2527 goto out;
2528 }
2529 } else {
2530 down_write(&sbi->gc_lock);
2531 }
2532
2533 ret = f2fs_gc(sbi, range->sync, true, false,
2534 GET_SEGNO(sbi, range->start));
2535 if (ret) {
2536 if (ret == -EBUSY)
2537 ret = -EAGAIN;
2538 goto out;
2539 }
2540 range->start += BLKS_PER_SEC(sbi);
2541 if (range->start <= end)
2542 goto do_more;
2543 out:
2544 mnt_drop_write_file(filp);
2545 return ret;
2546 }
2547
f2fs_ioc_gc_range(struct file * filp,unsigned long arg)2548 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2549 {
2550 struct f2fs_gc_range range;
2551
2552 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2553 sizeof(range)))
2554 return -EFAULT;
2555 return __f2fs_ioc_gc_range(filp, &range);
2556 }
2557
f2fs_ioc_write_checkpoint(struct file * filp,unsigned long arg)2558 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2559 {
2560 struct inode *inode = file_inode(filp);
2561 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2562 int ret;
2563
2564 if (!capable(CAP_SYS_ADMIN))
2565 return -EPERM;
2566
2567 if (f2fs_readonly(sbi->sb))
2568 return -EROFS;
2569
2570 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2571 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2572 return -EINVAL;
2573 }
2574
2575 ret = mnt_want_write_file(filp);
2576 if (ret)
2577 return ret;
2578
2579 ret = f2fs_sync_fs(sbi->sb, 1);
2580
2581 mnt_drop_write_file(filp);
2582 return ret;
2583 }
2584
f2fs_defragment_range(struct f2fs_sb_info * sbi,struct file * filp,struct f2fs_defragment * range)2585 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2586 struct file *filp,
2587 struct f2fs_defragment *range)
2588 {
2589 struct inode *inode = file_inode(filp);
2590 struct f2fs_map_blocks map = { .m_next_extent = NULL,
2591 .m_seg_type = NO_CHECK_TYPE ,
2592 .m_may_create = false };
2593 struct extent_info ei = {0, 0, 0};
2594 pgoff_t pg_start, pg_end, next_pgofs;
2595 unsigned int blk_per_seg = sbi->blocks_per_seg;
2596 unsigned int total = 0, sec_num;
2597 block_t blk_end = 0;
2598 bool fragmented = false;
2599 int err;
2600
2601 /* if in-place-update policy is enabled, don't waste time here */
2602 if (f2fs_should_update_inplace(inode, NULL))
2603 return -EINVAL;
2604
2605 pg_start = range->start >> PAGE_SHIFT;
2606 pg_end = (range->start + range->len) >> PAGE_SHIFT;
2607
2608 f2fs_balance_fs(sbi, true);
2609
2610 inode_lock(inode);
2611
2612 /* writeback all dirty pages in the range */
2613 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2614 range->start + range->len - 1);
2615 if (err)
2616 goto out;
2617
2618 /*
2619 * lookup mapping info in extent cache, skip defragmenting if physical
2620 * block addresses are continuous.
2621 */
2622 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2623 if (ei.fofs + ei.len >= pg_end)
2624 goto out;
2625 }
2626
2627 map.m_lblk = pg_start;
2628 map.m_next_pgofs = &next_pgofs;
2629
2630 /*
2631 * lookup mapping info in dnode page cache, skip defragmenting if all
2632 * physical block addresses are continuous even if there are hole(s)
2633 * in logical blocks.
2634 */
2635 while (map.m_lblk < pg_end) {
2636 map.m_len = pg_end - map.m_lblk;
2637 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2638 if (err)
2639 goto out;
2640
2641 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2642 map.m_lblk = next_pgofs;
2643 continue;
2644 }
2645
2646 if (blk_end && blk_end != map.m_pblk)
2647 fragmented = true;
2648
2649 /* record total count of block that we're going to move */
2650 total += map.m_len;
2651
2652 blk_end = map.m_pblk + map.m_len;
2653
2654 map.m_lblk += map.m_len;
2655 }
2656
2657 if (!fragmented) {
2658 total = 0;
2659 goto out;
2660 }
2661
2662 sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi));
2663
2664 /*
2665 * make sure there are enough free section for LFS allocation, this can
2666 * avoid defragment running in SSR mode when free section are allocated
2667 * intensively
2668 */
2669 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2670 err = -EAGAIN;
2671 goto out;
2672 }
2673
2674 map.m_lblk = pg_start;
2675 map.m_len = pg_end - pg_start;
2676 total = 0;
2677
2678 while (map.m_lblk < pg_end) {
2679 pgoff_t idx;
2680 int cnt = 0;
2681
2682 do_map:
2683 map.m_len = pg_end - map.m_lblk;
2684 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2685 if (err)
2686 goto clear_out;
2687
2688 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2689 map.m_lblk = next_pgofs;
2690 goto check;
2691 }
2692
2693 set_inode_flag(inode, FI_DO_DEFRAG);
2694
2695 idx = map.m_lblk;
2696 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2697 struct page *page;
2698
2699 page = f2fs_get_lock_data_page(inode, idx, true);
2700 if (IS_ERR(page)) {
2701 err = PTR_ERR(page);
2702 goto clear_out;
2703 }
2704
2705 set_page_dirty(page);
2706 f2fs_put_page(page, 1);
2707
2708 idx++;
2709 cnt++;
2710 total++;
2711 }
2712
2713 map.m_lblk = idx;
2714 check:
2715 if (map.m_lblk < pg_end && cnt < blk_per_seg)
2716 goto do_map;
2717
2718 clear_inode_flag(inode, FI_DO_DEFRAG);
2719
2720 err = filemap_fdatawrite(inode->i_mapping);
2721 if (err)
2722 goto out;
2723 }
2724 clear_out:
2725 clear_inode_flag(inode, FI_DO_DEFRAG);
2726 out:
2727 inode_unlock(inode);
2728 if (!err)
2729 range->len = (u64)total << PAGE_SHIFT;
2730 return err;
2731 }
2732
f2fs_ioc_defragment(struct file * filp,unsigned long arg)2733 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2734 {
2735 struct inode *inode = file_inode(filp);
2736 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2737 struct f2fs_defragment range;
2738 int err;
2739
2740 if (!capable(CAP_SYS_ADMIN))
2741 return -EPERM;
2742
2743 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2744 return -EINVAL;
2745
2746 if (f2fs_readonly(sbi->sb))
2747 return -EROFS;
2748
2749 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2750 sizeof(range)))
2751 return -EFAULT;
2752
2753 /* verify alignment of offset & size */
2754 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2755 return -EINVAL;
2756
2757 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2758 sbi->max_file_blocks))
2759 return -EINVAL;
2760
2761 err = mnt_want_write_file(filp);
2762 if (err)
2763 return err;
2764
2765 err = f2fs_defragment_range(sbi, filp, &range);
2766 mnt_drop_write_file(filp);
2767
2768 f2fs_update_time(sbi, REQ_TIME);
2769 if (err < 0)
2770 return err;
2771
2772 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2773 sizeof(range)))
2774 return -EFAULT;
2775
2776 return 0;
2777 }
2778
f2fs_move_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len)2779 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2780 struct file *file_out, loff_t pos_out, size_t len)
2781 {
2782 struct inode *src = file_inode(file_in);
2783 struct inode *dst = file_inode(file_out);
2784 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2785 size_t olen = len, dst_max_i_size = 0;
2786 size_t dst_osize;
2787 int ret;
2788
2789 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2790 src->i_sb != dst->i_sb)
2791 return -EXDEV;
2792
2793 if (unlikely(f2fs_readonly(src->i_sb)))
2794 return -EROFS;
2795
2796 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2797 return -EINVAL;
2798
2799 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2800 return -EOPNOTSUPP;
2801
2802 if (pos_out < 0 || pos_in < 0)
2803 return -EINVAL;
2804
2805 if (src == dst) {
2806 if (pos_in == pos_out)
2807 return 0;
2808 if (pos_out > pos_in && pos_out < pos_in + len)
2809 return -EINVAL;
2810 }
2811
2812 inode_lock(src);
2813 if (src != dst) {
2814 ret = -EBUSY;
2815 if (!inode_trylock(dst))
2816 goto out;
2817 }
2818
2819 ret = -EINVAL;
2820 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2821 goto out_unlock;
2822 if (len == 0)
2823 olen = len = src->i_size - pos_in;
2824 if (pos_in + len == src->i_size)
2825 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2826 if (len == 0) {
2827 ret = 0;
2828 goto out_unlock;
2829 }
2830
2831 dst_osize = dst->i_size;
2832 if (pos_out + olen > dst->i_size)
2833 dst_max_i_size = pos_out + olen;
2834
2835 /* verify the end result is block aligned */
2836 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2837 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2838 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2839 goto out_unlock;
2840
2841 ret = f2fs_convert_inline_inode(src);
2842 if (ret)
2843 goto out_unlock;
2844
2845 ret = f2fs_convert_inline_inode(dst);
2846 if (ret)
2847 goto out_unlock;
2848
2849 /* write out all dirty pages from offset */
2850 ret = filemap_write_and_wait_range(src->i_mapping,
2851 pos_in, pos_in + len);
2852 if (ret)
2853 goto out_unlock;
2854
2855 ret = filemap_write_and_wait_range(dst->i_mapping,
2856 pos_out, pos_out + len);
2857 if (ret)
2858 goto out_unlock;
2859
2860 f2fs_balance_fs(sbi, true);
2861
2862 down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2863 if (src != dst) {
2864 ret = -EBUSY;
2865 if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2866 goto out_src;
2867 }
2868
2869 f2fs_lock_op(sbi);
2870 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2871 pos_out >> F2FS_BLKSIZE_BITS,
2872 len >> F2FS_BLKSIZE_BITS, false);
2873
2874 if (!ret) {
2875 if (dst_max_i_size)
2876 f2fs_i_size_write(dst, dst_max_i_size);
2877 else if (dst_osize != dst->i_size)
2878 f2fs_i_size_write(dst, dst_osize);
2879 }
2880 f2fs_unlock_op(sbi);
2881
2882 if (src != dst)
2883 up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2884 out_src:
2885 up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2886 out_unlock:
2887 if (src != dst)
2888 inode_unlock(dst);
2889 out:
2890 inode_unlock(src);
2891 return ret;
2892 }
2893
__f2fs_ioc_move_range(struct file * filp,struct f2fs_move_range * range)2894 static int __f2fs_ioc_move_range(struct file *filp,
2895 struct f2fs_move_range *range)
2896 {
2897 struct fd dst;
2898 int err;
2899
2900 if (!(filp->f_mode & FMODE_READ) ||
2901 !(filp->f_mode & FMODE_WRITE))
2902 return -EBADF;
2903
2904 dst = fdget(range->dst_fd);
2905 if (!dst.file)
2906 return -EBADF;
2907
2908 if (!(dst.file->f_mode & FMODE_WRITE)) {
2909 err = -EBADF;
2910 goto err_out;
2911 }
2912
2913 err = mnt_want_write_file(filp);
2914 if (err)
2915 goto err_out;
2916
2917 err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2918 range->pos_out, range->len);
2919
2920 mnt_drop_write_file(filp);
2921 err_out:
2922 fdput(dst);
2923 return err;
2924 }
2925
f2fs_ioc_move_range(struct file * filp,unsigned long arg)2926 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2927 {
2928 struct f2fs_move_range range;
2929
2930 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2931 sizeof(range)))
2932 return -EFAULT;
2933 return __f2fs_ioc_move_range(filp, &range);
2934 }
2935
f2fs_ioc_flush_device(struct file * filp,unsigned long arg)2936 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2937 {
2938 struct inode *inode = file_inode(filp);
2939 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2940 struct sit_info *sm = SIT_I(sbi);
2941 unsigned int start_segno = 0, end_segno = 0;
2942 unsigned int dev_start_segno = 0, dev_end_segno = 0;
2943 struct f2fs_flush_device range;
2944 int ret;
2945
2946 if (!capable(CAP_SYS_ADMIN))
2947 return -EPERM;
2948
2949 if (f2fs_readonly(sbi->sb))
2950 return -EROFS;
2951
2952 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2953 return -EINVAL;
2954
2955 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2956 sizeof(range)))
2957 return -EFAULT;
2958
2959 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2960 __is_large_section(sbi)) {
2961 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2962 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2963 return -EINVAL;
2964 }
2965
2966 ret = mnt_want_write_file(filp);
2967 if (ret)
2968 return ret;
2969
2970 if (range.dev_num != 0)
2971 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2972 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2973
2974 start_segno = sm->last_victim[FLUSH_DEVICE];
2975 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2976 start_segno = dev_start_segno;
2977 end_segno = min(start_segno + range.segments, dev_end_segno);
2978
2979 while (start_segno < end_segno) {
2980 if (!down_write_trylock(&sbi->gc_lock)) {
2981 ret = -EBUSY;
2982 goto out;
2983 }
2984 sm->last_victim[GC_CB] = end_segno + 1;
2985 sm->last_victim[GC_GREEDY] = end_segno + 1;
2986 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2987 ret = f2fs_gc(sbi, true, true, true, start_segno);
2988 if (ret == -EAGAIN)
2989 ret = 0;
2990 else if (ret < 0)
2991 break;
2992 start_segno++;
2993 }
2994 out:
2995 mnt_drop_write_file(filp);
2996 return ret;
2997 }
2998
f2fs_ioc_get_features(struct file * filp,unsigned long arg)2999 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3000 {
3001 struct inode *inode = file_inode(filp);
3002 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3003
3004 /* Must validate to set it with SQLite behavior in Android. */
3005 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3006
3007 return put_user(sb_feature, (u32 __user *)arg);
3008 }
3009
3010 #ifdef CONFIG_QUOTA
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3011 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3012 {
3013 struct dquot *transfer_to[MAXQUOTAS] = {};
3014 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3015 struct super_block *sb = sbi->sb;
3016 int err;
3017
3018 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3019 if (IS_ERR(transfer_to[PRJQUOTA]))
3020 return PTR_ERR(transfer_to[PRJQUOTA]);
3021
3022 err = __dquot_transfer(inode, transfer_to);
3023 if (err)
3024 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3025 dqput(transfer_to[PRJQUOTA]);
3026 return err;
3027 }
3028
f2fs_ioc_setproject(struct file * filp,__u32 projid)3029 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
3030 {
3031 struct inode *inode = file_inode(filp);
3032 struct f2fs_inode_info *fi = F2FS_I(inode);
3033 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3034 struct page *ipage;
3035 kprojid_t kprojid;
3036 int err;
3037
3038 if (!f2fs_sb_has_project_quota(sbi)) {
3039 if (projid != F2FS_DEF_PROJID)
3040 return -EOPNOTSUPP;
3041 else
3042 return 0;
3043 }
3044
3045 if (!f2fs_has_extra_attr(inode))
3046 return -EOPNOTSUPP;
3047
3048 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3049
3050 if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
3051 return 0;
3052
3053 err = -EPERM;
3054 /* Is it quota file? Do not allow user to mess with it */
3055 if (IS_NOQUOTA(inode))
3056 return err;
3057
3058 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3059 if (IS_ERR(ipage))
3060 return PTR_ERR(ipage);
3061
3062 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
3063 i_projid)) {
3064 err = -EOVERFLOW;
3065 f2fs_put_page(ipage, 1);
3066 return err;
3067 }
3068 f2fs_put_page(ipage, 1);
3069
3070 err = dquot_initialize(inode);
3071 if (err)
3072 return err;
3073
3074 f2fs_lock_op(sbi);
3075 err = f2fs_transfer_project_quota(inode, kprojid);
3076 if (err)
3077 goto out_unlock;
3078
3079 F2FS_I(inode)->i_projid = kprojid;
3080 inode->i_ctime = current_time(inode);
3081 f2fs_mark_inode_dirty_sync(inode, true);
3082 out_unlock:
3083 f2fs_unlock_op(sbi);
3084 return err;
3085 }
3086 #else
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3087 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3088 {
3089 return 0;
3090 }
3091
f2fs_ioc_setproject(struct file * filp,__u32 projid)3092 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
3093 {
3094 if (projid != F2FS_DEF_PROJID)
3095 return -EOPNOTSUPP;
3096 return 0;
3097 }
3098 #endif
3099
3100 /* FS_IOC_FSGETXATTR and FS_IOC_FSSETXATTR support */
3101
3102 /*
3103 * To make a new on-disk f2fs i_flag gettable via FS_IOC_FSGETXATTR and settable
3104 * via FS_IOC_FSSETXATTR, add an entry for it to f2fs_xflags_map[], and add its
3105 * FS_XFLAG_* equivalent to F2FS_SUPPORTED_XFLAGS.
3106 */
3107
3108 static const struct {
3109 u32 iflag;
3110 u32 xflag;
3111 } f2fs_xflags_map[] = {
3112 { F2FS_SYNC_FL, FS_XFLAG_SYNC },
3113 { F2FS_IMMUTABLE_FL, FS_XFLAG_IMMUTABLE },
3114 { F2FS_APPEND_FL, FS_XFLAG_APPEND },
3115 { F2FS_NODUMP_FL, FS_XFLAG_NODUMP },
3116 { F2FS_NOATIME_FL, FS_XFLAG_NOATIME },
3117 { F2FS_PROJINHERIT_FL, FS_XFLAG_PROJINHERIT },
3118 };
3119
3120 #define F2FS_SUPPORTED_XFLAGS ( \
3121 FS_XFLAG_SYNC | \
3122 FS_XFLAG_IMMUTABLE | \
3123 FS_XFLAG_APPEND | \
3124 FS_XFLAG_NODUMP | \
3125 FS_XFLAG_NOATIME | \
3126 FS_XFLAG_PROJINHERIT)
3127
3128 /* Convert f2fs on-disk i_flags to FS_IOC_FS{GET,SET}XATTR flags */
f2fs_iflags_to_xflags(u32 iflags)3129 static inline u32 f2fs_iflags_to_xflags(u32 iflags)
3130 {
3131 u32 xflags = 0;
3132 int i;
3133
3134 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++)
3135 if (iflags & f2fs_xflags_map[i].iflag)
3136 xflags |= f2fs_xflags_map[i].xflag;
3137
3138 return xflags;
3139 }
3140
3141 /* Convert FS_IOC_FS{GET,SET}XATTR flags to f2fs on-disk i_flags */
f2fs_xflags_to_iflags(u32 xflags)3142 static inline u32 f2fs_xflags_to_iflags(u32 xflags)
3143 {
3144 u32 iflags = 0;
3145 int i;
3146
3147 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++)
3148 if (xflags & f2fs_xflags_map[i].xflag)
3149 iflags |= f2fs_xflags_map[i].iflag;
3150
3151 return iflags;
3152 }
3153
f2fs_fill_fsxattr(struct inode * inode,struct fsxattr * fa)3154 static void f2fs_fill_fsxattr(struct inode *inode, struct fsxattr *fa)
3155 {
3156 struct f2fs_inode_info *fi = F2FS_I(inode);
3157
3158 simple_fill_fsxattr(fa, f2fs_iflags_to_xflags(fi->i_flags));
3159
3160 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3161 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3162 }
3163
f2fs_ioc_fsgetxattr(struct file * filp,unsigned long arg)3164 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
3165 {
3166 struct inode *inode = file_inode(filp);
3167 struct fsxattr fa;
3168
3169 f2fs_fill_fsxattr(inode, &fa);
3170
3171 if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
3172 return -EFAULT;
3173 return 0;
3174 }
3175
f2fs_ioc_fssetxattr(struct file * filp,unsigned long arg)3176 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
3177 {
3178 struct inode *inode = file_inode(filp);
3179 struct fsxattr fa, old_fa;
3180 u32 iflags;
3181 int err;
3182
3183 if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
3184 return -EFAULT;
3185
3186 /* Make sure caller has proper permission */
3187 if (!inode_owner_or_capable(inode))
3188 return -EACCES;
3189
3190 if (fa.fsx_xflags & ~F2FS_SUPPORTED_XFLAGS)
3191 return -EOPNOTSUPP;
3192
3193 iflags = f2fs_xflags_to_iflags(fa.fsx_xflags);
3194 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3195 return -EOPNOTSUPP;
3196
3197 err = mnt_want_write_file(filp);
3198 if (err)
3199 return err;
3200
3201 inode_lock(inode);
3202
3203 f2fs_fill_fsxattr(inode, &old_fa);
3204 err = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
3205 if (err)
3206 goto out;
3207
3208 err = f2fs_setflags_common(inode, iflags,
3209 f2fs_xflags_to_iflags(F2FS_SUPPORTED_XFLAGS));
3210 if (err)
3211 goto out;
3212
3213 err = f2fs_ioc_setproject(filp, fa.fsx_projid);
3214 out:
3215 inode_unlock(inode);
3216 mnt_drop_write_file(filp);
3217 return err;
3218 }
3219
f2fs_pin_file_control(struct inode * inode,bool inc)3220 int f2fs_pin_file_control(struct inode *inode, bool inc)
3221 {
3222 struct f2fs_inode_info *fi = F2FS_I(inode);
3223 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3224
3225 /* Use i_gc_failures for normal file as a risk signal. */
3226 if (inc)
3227 f2fs_i_gc_failures_write(inode,
3228 fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3229
3230 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3231 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3232 __func__, inode->i_ino,
3233 fi->i_gc_failures[GC_FAILURE_PIN]);
3234 clear_inode_flag(inode, FI_PIN_FILE);
3235 return -EAGAIN;
3236 }
3237 return 0;
3238 }
3239
f2fs_ioc_set_pin_file(struct file * filp,unsigned long arg)3240 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3241 {
3242 struct inode *inode = file_inode(filp);
3243 __u32 pin;
3244 int ret = 0;
3245
3246 if (get_user(pin, (__u32 __user *)arg))
3247 return -EFAULT;
3248
3249 if (!S_ISREG(inode->i_mode))
3250 return -EINVAL;
3251
3252 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3253 return -EROFS;
3254
3255 ret = mnt_want_write_file(filp);
3256 if (ret)
3257 return ret;
3258
3259 inode_lock(inode);
3260
3261 if (f2fs_should_update_outplace(inode, NULL)) {
3262 ret = -EINVAL;
3263 goto out;
3264 }
3265
3266 if (!pin) {
3267 clear_inode_flag(inode, FI_PIN_FILE);
3268 f2fs_i_gc_failures_write(inode, 0);
3269 goto done;
3270 }
3271
3272 if (f2fs_pin_file_control(inode, false)) {
3273 ret = -EAGAIN;
3274 goto out;
3275 }
3276
3277 ret = f2fs_convert_inline_inode(inode);
3278 if (ret)
3279 goto out;
3280
3281 if (!f2fs_disable_compressed_file(inode)) {
3282 ret = -EOPNOTSUPP;
3283 goto out;
3284 }
3285
3286 set_inode_flag(inode, FI_PIN_FILE);
3287 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3288 done:
3289 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3290 out:
3291 inode_unlock(inode);
3292 mnt_drop_write_file(filp);
3293 return ret;
3294 }
3295
f2fs_ioc_get_pin_file(struct file * filp,unsigned long arg)3296 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3297 {
3298 struct inode *inode = file_inode(filp);
3299 __u32 pin = 0;
3300
3301 if (is_inode_flag_set(inode, FI_PIN_FILE))
3302 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3303 return put_user(pin, (u32 __user *)arg);
3304 }
3305
f2fs_precache_extents(struct inode * inode)3306 int f2fs_precache_extents(struct inode *inode)
3307 {
3308 struct f2fs_inode_info *fi = F2FS_I(inode);
3309 struct f2fs_map_blocks map;
3310 pgoff_t m_next_extent;
3311 loff_t end;
3312 int err;
3313
3314 if (is_inode_flag_set(inode, FI_NO_EXTENT))
3315 return -EOPNOTSUPP;
3316
3317 map.m_lblk = 0;
3318 map.m_pblk = 0;
3319 map.m_next_pgofs = NULL;
3320 map.m_next_extent = &m_next_extent;
3321 map.m_seg_type = NO_CHECK_TYPE;
3322 map.m_may_create = false;
3323 end = F2FS_I_SB(inode)->max_file_blocks;
3324
3325 while (map.m_lblk < end) {
3326 map.m_len = end - map.m_lblk;
3327
3328 down_write(&fi->i_gc_rwsem[WRITE]);
3329 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
3330 up_write(&fi->i_gc_rwsem[WRITE]);
3331 if (err)
3332 return err;
3333
3334 map.m_lblk = m_next_extent;
3335 }
3336
3337 return err;
3338 }
3339
f2fs_ioc_precache_extents(struct file * filp,unsigned long arg)3340 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
3341 {
3342 return f2fs_precache_extents(file_inode(filp));
3343 }
3344
f2fs_ioc_resize_fs(struct file * filp,unsigned long arg)3345 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3346 {
3347 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3348 __u64 block_count;
3349
3350 if (!capable(CAP_SYS_ADMIN))
3351 return -EPERM;
3352
3353 if (f2fs_readonly(sbi->sb))
3354 return -EROFS;
3355
3356 if (copy_from_user(&block_count, (void __user *)arg,
3357 sizeof(block_count)))
3358 return -EFAULT;
3359
3360 return f2fs_resize_fs(filp, block_count);
3361 }
3362
f2fs_has_feature_verity(struct file * filp)3363 static inline int f2fs_has_feature_verity(struct file *filp)
3364 {
3365 struct inode *inode = file_inode(filp);
3366
3367 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3368
3369 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3370 f2fs_warn(F2FS_I_SB(inode),
3371 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem.\n",
3372 inode->i_ino);
3373 return -EOPNOTSUPP;
3374 }
3375 return 0;
3376 }
3377
f2fs_ioc_enable_verity(struct file * filp,unsigned long arg)3378 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3379 {
3380 int err = f2fs_has_feature_verity(filp);
3381
3382 if (err)
3383 return err;
3384
3385 return fsverity_ioctl_enable(filp, (const void __user *)arg);
3386 }
3387
f2fs_ioc_enable_code_sign(struct file * filp,unsigned long arg)3388 static int f2fs_ioc_enable_code_sign(struct file *filp, unsigned long arg)
3389 {
3390 int err = f2fs_has_feature_verity(filp);
3391
3392 if (err)
3393 return err;
3394
3395 return fsverity_ioctl_enable_code_sign(filp, (const void __user *)arg);
3396 }
3397
f2fs_ioc_measure_verity(struct file * filp,unsigned long arg)3398 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3399 {
3400 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3401 return -EOPNOTSUPP;
3402
3403 return fsverity_ioctl_measure(filp, (void __user *)arg);
3404 }
3405
f2fs_ioc_getfslabel(struct file * filp,unsigned long arg)3406 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3407 {
3408 struct inode *inode = file_inode(filp);
3409 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3410 char *vbuf;
3411 int count;
3412 int err = 0;
3413
3414 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3415 if (!vbuf)
3416 return -ENOMEM;
3417
3418 down_read(&sbi->sb_lock);
3419 count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3420 ARRAY_SIZE(sbi->raw_super->volume_name),
3421 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3422 up_read(&sbi->sb_lock);
3423
3424 if (copy_to_user((char __user *)arg, vbuf,
3425 min(FSLABEL_MAX, count)))
3426 err = -EFAULT;
3427
3428 kfree(vbuf);
3429 return err;
3430 }
3431
f2fs_ioc_setfslabel(struct file * filp,unsigned long arg)3432 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3433 {
3434 struct inode *inode = file_inode(filp);
3435 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3436 char *vbuf;
3437 int err = 0;
3438
3439 if (!capable(CAP_SYS_ADMIN))
3440 return -EPERM;
3441
3442 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3443 if (IS_ERR(vbuf))
3444 return PTR_ERR(vbuf);
3445
3446 err = mnt_want_write_file(filp);
3447 if (err)
3448 goto out;
3449
3450 down_write(&sbi->sb_lock);
3451
3452 memset(sbi->raw_super->volume_name, 0,
3453 sizeof(sbi->raw_super->volume_name));
3454 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3455 sbi->raw_super->volume_name,
3456 ARRAY_SIZE(sbi->raw_super->volume_name));
3457
3458 err = f2fs_commit_super(sbi, false);
3459
3460 up_write(&sbi->sb_lock);
3461
3462 mnt_drop_write_file(filp);
3463 out:
3464 kfree(vbuf);
3465 return err;
3466 }
3467
f2fs_get_compress_blocks(struct file * filp,unsigned long arg)3468 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg)
3469 {
3470 struct inode *inode = file_inode(filp);
3471 __u64 blocks;
3472
3473 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3474 return -EOPNOTSUPP;
3475
3476 if (!f2fs_compressed_file(inode))
3477 return -EINVAL;
3478
3479 blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3480 return put_user(blocks, (u64 __user *)arg);
3481 }
3482
release_compress_blocks(struct dnode_of_data * dn,pgoff_t count)3483 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3484 {
3485 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3486 unsigned int released_blocks = 0;
3487 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3488 block_t blkaddr;
3489 int i;
3490
3491 for (i = 0; i < count; i++) {
3492 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3493 dn->ofs_in_node + i);
3494
3495 if (!__is_valid_data_blkaddr(blkaddr))
3496 continue;
3497 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3498 DATA_GENERIC_ENHANCE)))
3499 return -EFSCORRUPTED;
3500 }
3501
3502 while (count) {
3503 int compr_blocks = 0;
3504
3505 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3506 blkaddr = f2fs_data_blkaddr(dn);
3507
3508 if (i == 0) {
3509 if (blkaddr == COMPRESS_ADDR)
3510 continue;
3511 dn->ofs_in_node += cluster_size;
3512 goto next;
3513 }
3514
3515 if (__is_valid_data_blkaddr(blkaddr))
3516 compr_blocks++;
3517
3518 if (blkaddr != NEW_ADDR)
3519 continue;
3520
3521 dn->data_blkaddr = NULL_ADDR;
3522 f2fs_set_data_blkaddr(dn);
3523 }
3524
3525 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3526 dec_valid_block_count(sbi, dn->inode,
3527 cluster_size - compr_blocks);
3528
3529 released_blocks += cluster_size - compr_blocks;
3530 next:
3531 count -= cluster_size;
3532 }
3533
3534 return released_blocks;
3535 }
3536
f2fs_release_compress_blocks(struct file * filp,unsigned long arg)3537 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3538 {
3539 struct inode *inode = file_inode(filp);
3540 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3541 pgoff_t page_idx = 0, last_idx;
3542 unsigned int released_blocks = 0;
3543 int ret;
3544 int writecount;
3545
3546 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3547 return -EOPNOTSUPP;
3548
3549 if (!f2fs_compressed_file(inode))
3550 return -EINVAL;
3551
3552 if (f2fs_readonly(sbi->sb))
3553 return -EROFS;
3554
3555 ret = mnt_want_write_file(filp);
3556 if (ret)
3557 return ret;
3558
3559 f2fs_balance_fs(F2FS_I_SB(inode), true);
3560
3561 inode_lock(inode);
3562
3563 writecount = atomic_read(&inode->i_writecount);
3564 if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3565 (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3566 ret = -EBUSY;
3567 goto out;
3568 }
3569
3570 if (IS_IMMUTABLE(inode)) {
3571 ret = -EINVAL;
3572 goto out;
3573 }
3574
3575 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3576 if (ret)
3577 goto out;
3578
3579 F2FS_I(inode)->i_flags |= F2FS_IMMUTABLE_FL;
3580 f2fs_set_inode_flags(inode);
3581 inode->i_ctime = current_time(inode);
3582 f2fs_mark_inode_dirty_sync(inode, true);
3583
3584 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks))
3585 goto out;
3586
3587 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3588 down_write(&F2FS_I(inode)->i_mmap_sem);
3589
3590 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3591
3592 while (page_idx < last_idx) {
3593 struct dnode_of_data dn;
3594 pgoff_t end_offset, count;
3595
3596 f2fs_lock_op(sbi);
3597
3598 set_new_dnode(&dn, inode, NULL, NULL, 0);
3599 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3600 if (ret) {
3601 f2fs_unlock_op(sbi);
3602 if (ret == -ENOENT) {
3603 page_idx = f2fs_get_next_page_offset(&dn,
3604 page_idx);
3605 ret = 0;
3606 continue;
3607 }
3608 break;
3609 }
3610
3611 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3612 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3613 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3614
3615 ret = release_compress_blocks(&dn, count);
3616
3617 f2fs_put_dnode(&dn);
3618
3619 f2fs_unlock_op(sbi);
3620
3621 if (ret < 0)
3622 break;
3623
3624 page_idx += count;
3625 released_blocks += ret;
3626 }
3627
3628 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3629 up_write(&F2FS_I(inode)->i_mmap_sem);
3630 out:
3631 inode_unlock(inode);
3632
3633 mnt_drop_write_file(filp);
3634
3635 if (ret >= 0) {
3636 ret = put_user(released_blocks, (u64 __user *)arg);
3637 } else if (released_blocks &&
3638 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3639 set_sbi_flag(sbi, SBI_NEED_FSCK);
3640 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3641 "iblocks=%llu, released=%u, compr_blocks=%u, "
3642 "run fsck to fix.",
3643 __func__, inode->i_ino, inode->i_blocks,
3644 released_blocks,
3645 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3646 }
3647
3648 return ret;
3649 }
3650
reserve_compress_blocks(struct dnode_of_data * dn,pgoff_t count,unsigned int * reserved_blocks)3651 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count,
3652 unsigned int *reserved_blocks)
3653 {
3654 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3655 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3656 block_t blkaddr;
3657 int i;
3658
3659 for (i = 0; i < count; i++) {
3660 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3661 dn->ofs_in_node + i);
3662
3663 if (!__is_valid_data_blkaddr(blkaddr))
3664 continue;
3665 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3666 DATA_GENERIC_ENHANCE)))
3667 return -EFSCORRUPTED;
3668 }
3669
3670 while (count) {
3671 int compr_blocks = 0;
3672 blkcnt_t reserved;
3673 int ret;
3674
3675 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3676 blkaddr = f2fs_data_blkaddr(dn);
3677
3678 if (i == 0) {
3679 if (blkaddr == COMPRESS_ADDR)
3680 continue;
3681 dn->ofs_in_node += cluster_size;
3682 goto next;
3683 }
3684
3685 if (__is_valid_data_blkaddr(blkaddr)) {
3686 compr_blocks++;
3687 continue;
3688 }
3689
3690 dn->data_blkaddr = NEW_ADDR;
3691 f2fs_set_data_blkaddr(dn);
3692 }
3693
3694 reserved = cluster_size - compr_blocks;
3695 ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3696 if (ret)
3697 return ret;
3698
3699 if (reserved != cluster_size - compr_blocks)
3700 return -ENOSPC;
3701
3702 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3703
3704 *reserved_blocks += reserved;
3705 next:
3706 count -= cluster_size;
3707 }
3708
3709 return 0;
3710 }
3711
f2fs_reserve_compress_blocks(struct file * filp,unsigned long arg)3712 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3713 {
3714 struct inode *inode = file_inode(filp);
3715 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3716 pgoff_t page_idx = 0, last_idx;
3717 unsigned int reserved_blocks = 0;
3718 int ret;
3719
3720 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3721 return -EOPNOTSUPP;
3722
3723 if (!f2fs_compressed_file(inode))
3724 return -EINVAL;
3725
3726 if (f2fs_readonly(sbi->sb))
3727 return -EROFS;
3728
3729 ret = mnt_want_write_file(filp);
3730 if (ret)
3731 return ret;
3732
3733 if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3734 goto out;
3735
3736 f2fs_balance_fs(F2FS_I_SB(inode), true);
3737
3738 inode_lock(inode);
3739
3740 if (!IS_IMMUTABLE(inode)) {
3741 ret = -EINVAL;
3742 goto unlock_inode;
3743 }
3744
3745 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3746 down_write(&F2FS_I(inode)->i_mmap_sem);
3747
3748 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3749
3750 while (page_idx < last_idx) {
3751 struct dnode_of_data dn;
3752 pgoff_t end_offset, count;
3753
3754 f2fs_lock_op(sbi);
3755
3756 set_new_dnode(&dn, inode, NULL, NULL, 0);
3757 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3758 if (ret) {
3759 f2fs_unlock_op(sbi);
3760 if (ret == -ENOENT) {
3761 page_idx = f2fs_get_next_page_offset(&dn,
3762 page_idx);
3763 ret = 0;
3764 continue;
3765 }
3766 break;
3767 }
3768
3769 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3770 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3771 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3772
3773 ret = reserve_compress_blocks(&dn, count, &reserved_blocks);
3774
3775 f2fs_put_dnode(&dn);
3776
3777 f2fs_unlock_op(sbi);
3778
3779 if (ret < 0)
3780 break;
3781
3782 page_idx += count;
3783 }
3784
3785 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3786 up_write(&F2FS_I(inode)->i_mmap_sem);
3787
3788 if (ret >= 0) {
3789 F2FS_I(inode)->i_flags &= ~F2FS_IMMUTABLE_FL;
3790 f2fs_set_inode_flags(inode);
3791 inode->i_ctime = current_time(inode);
3792 f2fs_mark_inode_dirty_sync(inode, true);
3793 }
3794 unlock_inode:
3795 inode_unlock(inode);
3796 out:
3797 mnt_drop_write_file(filp);
3798
3799 if (!ret) {
3800 ret = put_user(reserved_blocks, (u64 __user *)arg);
3801 } else if (reserved_blocks &&
3802 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3803 set_sbi_flag(sbi, SBI_NEED_FSCK);
3804 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3805 "iblocks=%llu, reserved=%u, compr_blocks=%u, "
3806 "run fsck to fix.",
3807 __func__, inode->i_ino, inode->i_blocks,
3808 reserved_blocks,
3809 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3810 }
3811
3812 return ret;
3813 }
3814
f2fs_secure_erase(struct block_device * bdev,struct inode * inode,pgoff_t off,block_t block,block_t len,u32 flags)3815 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3816 pgoff_t off, block_t block, block_t len, u32 flags)
3817 {
3818 struct request_queue *q = bdev_get_queue(bdev);
3819 sector_t sector = SECTOR_FROM_BLOCK(block);
3820 sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3821 int ret = 0;
3822
3823 if (!q)
3824 return -ENXIO;
3825
3826 if (flags & F2FS_TRIM_FILE_DISCARD)
3827 ret = blkdev_issue_discard(bdev, sector, nr_sects, GFP_NOFS,
3828 blk_queue_secure_erase(q) ?
3829 BLKDEV_DISCARD_SECURE : 0);
3830
3831 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3832 if (IS_ENCRYPTED(inode))
3833 ret = fscrypt_zeroout_range(inode, off, block, len);
3834 else
3835 ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3836 GFP_NOFS, 0);
3837 }
3838
3839 return ret;
3840 }
3841
f2fs_sec_trim_file(struct file * filp,unsigned long arg)3842 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3843 {
3844 struct inode *inode = file_inode(filp);
3845 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3846 struct address_space *mapping = inode->i_mapping;
3847 struct block_device *prev_bdev = NULL;
3848 struct f2fs_sectrim_range range;
3849 pgoff_t index, pg_end, prev_index = 0;
3850 block_t prev_block = 0, len = 0;
3851 loff_t end_addr;
3852 bool to_end = false;
3853 int ret = 0;
3854
3855 if (!(filp->f_mode & FMODE_WRITE))
3856 return -EBADF;
3857
3858 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3859 sizeof(range)))
3860 return -EFAULT;
3861
3862 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3863 !S_ISREG(inode->i_mode))
3864 return -EINVAL;
3865
3866 if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3867 !f2fs_hw_support_discard(sbi)) ||
3868 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3869 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3870 return -EOPNOTSUPP;
3871
3872 file_start_write(filp);
3873 inode_lock(inode);
3874
3875 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3876 range.start >= inode->i_size) {
3877 ret = -EINVAL;
3878 goto err;
3879 }
3880
3881 if (range.len == 0)
3882 goto err;
3883
3884 if (inode->i_size - range.start > range.len) {
3885 end_addr = range.start + range.len;
3886 } else {
3887 end_addr = range.len == (u64)-1 ?
3888 sbi->sb->s_maxbytes : inode->i_size;
3889 to_end = true;
3890 }
3891
3892 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3893 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3894 ret = -EINVAL;
3895 goto err;
3896 }
3897
3898 index = F2FS_BYTES_TO_BLK(range.start);
3899 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3900
3901 ret = f2fs_convert_inline_inode(inode);
3902 if (ret)
3903 goto err;
3904
3905 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3906 down_write(&F2FS_I(inode)->i_mmap_sem);
3907
3908 ret = filemap_write_and_wait_range(mapping, range.start,
3909 to_end ? LLONG_MAX : end_addr - 1);
3910 if (ret)
3911 goto out;
3912
3913 truncate_inode_pages_range(mapping, range.start,
3914 to_end ? -1 : end_addr - 1);
3915
3916 while (index < pg_end) {
3917 struct dnode_of_data dn;
3918 pgoff_t end_offset, count;
3919 int i;
3920
3921 set_new_dnode(&dn, inode, NULL, NULL, 0);
3922 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3923 if (ret) {
3924 if (ret == -ENOENT) {
3925 index = f2fs_get_next_page_offset(&dn, index);
3926 continue;
3927 }
3928 goto out;
3929 }
3930
3931 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3932 count = min(end_offset - dn.ofs_in_node, pg_end - index);
3933 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3934 struct block_device *cur_bdev;
3935 block_t blkaddr = f2fs_data_blkaddr(&dn);
3936
3937 if (!__is_valid_data_blkaddr(blkaddr))
3938 continue;
3939
3940 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3941 DATA_GENERIC_ENHANCE)) {
3942 ret = -EFSCORRUPTED;
3943 f2fs_put_dnode(&dn);
3944 goto out;
3945 }
3946
3947 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3948 if (f2fs_is_multi_device(sbi)) {
3949 int di = f2fs_target_device_index(sbi, blkaddr);
3950
3951 blkaddr -= FDEV(di).start_blk;
3952 }
3953
3954 if (len) {
3955 if (prev_bdev == cur_bdev &&
3956 index == prev_index + len &&
3957 blkaddr == prev_block + len) {
3958 len++;
3959 } else {
3960 ret = f2fs_secure_erase(prev_bdev,
3961 inode, prev_index, prev_block,
3962 len, range.flags);
3963 if (ret) {
3964 f2fs_put_dnode(&dn);
3965 goto out;
3966 }
3967
3968 len = 0;
3969 }
3970 }
3971
3972 if (!len) {
3973 prev_bdev = cur_bdev;
3974 prev_index = index;
3975 prev_block = blkaddr;
3976 len = 1;
3977 }
3978 }
3979
3980 f2fs_put_dnode(&dn);
3981
3982 if (fatal_signal_pending(current)) {
3983 ret = -EINTR;
3984 goto out;
3985 }
3986 cond_resched();
3987 }
3988
3989 if (len)
3990 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3991 prev_block, len, range.flags);
3992 out:
3993 up_write(&F2FS_I(inode)->i_mmap_sem);
3994 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3995 err:
3996 inode_unlock(inode);
3997 file_end_write(filp);
3998
3999 return ret;
4000 }
4001
__f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4002 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4003 {
4004 switch (cmd) {
4005 case FS_IOC_GETFLAGS:
4006 return f2fs_ioc_getflags(filp, arg);
4007 case FS_IOC_SETFLAGS:
4008 return f2fs_ioc_setflags(filp, arg);
4009 case FS_IOC_GETVERSION:
4010 return f2fs_ioc_getversion(filp, arg);
4011 case F2FS_IOC_START_ATOMIC_WRITE:
4012 return f2fs_ioc_start_atomic_write(filp);
4013 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4014 return f2fs_ioc_commit_atomic_write(filp);
4015 case F2FS_IOC_START_VOLATILE_WRITE:
4016 return f2fs_ioc_start_volatile_write(filp);
4017 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4018 return f2fs_ioc_release_volatile_write(filp);
4019 case F2FS_IOC_ABORT_VOLATILE_WRITE:
4020 return f2fs_ioc_abort_volatile_write(filp);
4021 case F2FS_IOC_SHUTDOWN:
4022 return f2fs_ioc_shutdown(filp, arg);
4023 case FITRIM:
4024 return f2fs_ioc_fitrim(filp, arg);
4025 case FS_IOC_SET_ENCRYPTION_POLICY:
4026 return f2fs_ioc_set_encryption_policy(filp, arg);
4027 case FS_IOC_GET_ENCRYPTION_POLICY:
4028 return f2fs_ioc_get_encryption_policy(filp, arg);
4029 case FS_IOC_GET_ENCRYPTION_PWSALT:
4030 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4031 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4032 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4033 case FS_IOC_ADD_ENCRYPTION_KEY:
4034 return f2fs_ioc_add_encryption_key(filp, arg);
4035 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4036 return f2fs_ioc_remove_encryption_key(filp, arg);
4037 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4038 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4039 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4040 return f2fs_ioc_get_encryption_key_status(filp, arg);
4041 case FS_IOC_GET_ENCRYPTION_NONCE:
4042 return f2fs_ioc_get_encryption_nonce(filp, arg);
4043 case F2FS_IOC_GARBAGE_COLLECT:
4044 return f2fs_ioc_gc(filp, arg);
4045 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4046 return f2fs_ioc_gc_range(filp, arg);
4047 case F2FS_IOC_WRITE_CHECKPOINT:
4048 return f2fs_ioc_write_checkpoint(filp, arg);
4049 case F2FS_IOC_DEFRAGMENT:
4050 return f2fs_ioc_defragment(filp, arg);
4051 case F2FS_IOC_MOVE_RANGE:
4052 return f2fs_ioc_move_range(filp, arg);
4053 case F2FS_IOC_FLUSH_DEVICE:
4054 return f2fs_ioc_flush_device(filp, arg);
4055 case F2FS_IOC_GET_FEATURES:
4056 return f2fs_ioc_get_features(filp, arg);
4057 case FS_IOC_FSGETXATTR:
4058 return f2fs_ioc_fsgetxattr(filp, arg);
4059 case FS_IOC_FSSETXATTR:
4060 return f2fs_ioc_fssetxattr(filp, arg);
4061 case F2FS_IOC_GET_PIN_FILE:
4062 return f2fs_ioc_get_pin_file(filp, arg);
4063 case F2FS_IOC_SET_PIN_FILE:
4064 return f2fs_ioc_set_pin_file(filp, arg);
4065 case F2FS_IOC_PRECACHE_EXTENTS:
4066 return f2fs_ioc_precache_extents(filp, arg);
4067 case F2FS_IOC_RESIZE_FS:
4068 return f2fs_ioc_resize_fs(filp, arg);
4069 case FS_IOC_ENABLE_VERITY:
4070 return f2fs_ioc_enable_verity(filp, arg);
4071 case FS_IOC_MEASURE_VERITY:
4072 return f2fs_ioc_measure_verity(filp, arg);
4073 case FS_IOC_ENABLE_CODE_SIGN:
4074 return f2fs_ioc_enable_code_sign(filp, arg);
4075 case FS_IOC_GETFSLABEL:
4076 return f2fs_ioc_getfslabel(filp, arg);
4077 case FS_IOC_SETFSLABEL:
4078 return f2fs_ioc_setfslabel(filp, arg);
4079 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4080 return f2fs_get_compress_blocks(filp, arg);
4081 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4082 return f2fs_release_compress_blocks(filp, arg);
4083 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4084 return f2fs_reserve_compress_blocks(filp, arg);
4085 case F2FS_IOC_SEC_TRIM_FILE:
4086 return f2fs_sec_trim_file(filp, arg);
4087 default:
4088 return -ENOTTY;
4089 }
4090 }
4091
f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4092 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4093 {
4094 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4095 return -EIO;
4096 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4097 return -ENOSPC;
4098
4099 return __f2fs_ioctl(filp, cmd, arg);
4100 }
4101
f2fs_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)4102 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
4103 {
4104 struct file *file = iocb->ki_filp;
4105 struct inode *inode = file_inode(file);
4106 int ret;
4107
4108 if (!f2fs_is_compress_backend_ready(inode))
4109 return -EOPNOTSUPP;
4110
4111 ret = generic_file_read_iter(iocb, iter);
4112
4113 if (ret > 0)
4114 f2fs_update_iostat(F2FS_I_SB(inode), APP_READ_IO, ret);
4115
4116 return ret;
4117 }
4118
f2fs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4119 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4120 {
4121 struct file *file = iocb->ki_filp;
4122 struct inode *inode = file_inode(file);
4123 ssize_t ret;
4124
4125 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4126 ret = -EIO;
4127 goto out;
4128 }
4129
4130 if (!f2fs_is_compress_backend_ready(inode)) {
4131 ret = -EOPNOTSUPP;
4132 goto out;
4133 }
4134
4135 if (iocb->ki_flags & IOCB_NOWAIT) {
4136 if (!inode_trylock(inode)) {
4137 ret = -EAGAIN;
4138 goto out;
4139 }
4140 } else {
4141 inode_lock(inode);
4142 }
4143
4144 if (unlikely(IS_IMMUTABLE(inode))) {
4145 ret = -EPERM;
4146 goto unlock;
4147 }
4148
4149 ret = generic_write_checks(iocb, from);
4150 if (ret > 0) {
4151 bool preallocated = false;
4152 size_t target_size = 0;
4153 int err;
4154
4155 if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
4156 set_inode_flag(inode, FI_NO_PREALLOC);
4157
4158 if ((iocb->ki_flags & IOCB_NOWAIT)) {
4159 if (!f2fs_overwrite_io(inode, iocb->ki_pos,
4160 iov_iter_count(from)) ||
4161 f2fs_has_inline_data(inode) ||
4162 f2fs_force_buffered_io(inode, iocb, from)) {
4163 clear_inode_flag(inode, FI_NO_PREALLOC);
4164 inode_unlock(inode);
4165 ret = -EAGAIN;
4166 goto out;
4167 }
4168 goto write;
4169 }
4170
4171 if (is_inode_flag_set(inode, FI_NO_PREALLOC))
4172 goto write;
4173
4174 if (iocb->ki_flags & IOCB_DIRECT) {
4175 /*
4176 * Convert inline data for Direct I/O before entering
4177 * f2fs_direct_IO().
4178 */
4179 err = f2fs_convert_inline_inode(inode);
4180 if (err)
4181 goto out_err;
4182 /*
4183 * If force_buffere_io() is true, we have to allocate
4184 * blocks all the time, since f2fs_direct_IO will fall
4185 * back to buffered IO.
4186 */
4187 if (!f2fs_force_buffered_io(inode, iocb, from) &&
4188 allow_outplace_dio(inode, iocb, from))
4189 goto write;
4190 }
4191 preallocated = true;
4192 target_size = iocb->ki_pos + iov_iter_count(from);
4193
4194 err = f2fs_preallocate_blocks(iocb, from);
4195 if (err) {
4196 out_err:
4197 clear_inode_flag(inode, FI_NO_PREALLOC);
4198 inode_unlock(inode);
4199 ret = err;
4200 goto out;
4201 }
4202 write:
4203 ret = __generic_file_write_iter(iocb, from);
4204 clear_inode_flag(inode, FI_NO_PREALLOC);
4205
4206 /* if we couldn't write data, we should deallocate blocks. */
4207 if (preallocated && i_size_read(inode) < target_size)
4208 f2fs_truncate(inode);
4209
4210 if (ret > 0)
4211 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
4212 }
4213 unlock:
4214 inode_unlock(inode);
4215 out:
4216 trace_f2fs_file_write_iter(inode, iocb->ki_pos,
4217 iov_iter_count(from), ret);
4218 if (ret > 0)
4219 ret = generic_write_sync(iocb, ret);
4220 return ret;
4221 }
4222
4223 #ifdef CONFIG_COMPAT
4224 struct compat_f2fs_gc_range {
4225 u32 sync;
4226 compat_u64 start;
4227 compat_u64 len;
4228 };
4229 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\
4230 struct compat_f2fs_gc_range)
4231
f2fs_compat_ioc_gc_range(struct file * file,unsigned long arg)4232 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4233 {
4234 struct compat_f2fs_gc_range __user *urange;
4235 struct f2fs_gc_range range;
4236 int err;
4237
4238 urange = compat_ptr(arg);
4239 err = get_user(range.sync, &urange->sync);
4240 err |= get_user(range.start, &urange->start);
4241 err |= get_user(range.len, &urange->len);
4242 if (err)
4243 return -EFAULT;
4244
4245 return __f2fs_ioc_gc_range(file, &range);
4246 }
4247
4248 struct compat_f2fs_move_range {
4249 u32 dst_fd;
4250 compat_u64 pos_in;
4251 compat_u64 pos_out;
4252 compat_u64 len;
4253 };
4254 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
4255 struct compat_f2fs_move_range)
4256
f2fs_compat_ioc_move_range(struct file * file,unsigned long arg)4257 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4258 {
4259 struct compat_f2fs_move_range __user *urange;
4260 struct f2fs_move_range range;
4261 int err;
4262
4263 urange = compat_ptr(arg);
4264 err = get_user(range.dst_fd, &urange->dst_fd);
4265 err |= get_user(range.pos_in, &urange->pos_in);
4266 err |= get_user(range.pos_out, &urange->pos_out);
4267 err |= get_user(range.len, &urange->len);
4268 if (err)
4269 return -EFAULT;
4270
4271 return __f2fs_ioc_move_range(file, &range);
4272 }
4273
f2fs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4274 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4275 {
4276 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4277 return -EIO;
4278 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4279 return -ENOSPC;
4280
4281 switch (cmd) {
4282 case FS_IOC32_GETFLAGS:
4283 cmd = FS_IOC_GETFLAGS;
4284 break;
4285 case FS_IOC32_SETFLAGS:
4286 cmd = FS_IOC_SETFLAGS;
4287 break;
4288 case FS_IOC32_GETVERSION:
4289 cmd = FS_IOC_GETVERSION;
4290 break;
4291 case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4292 return f2fs_compat_ioc_gc_range(file, arg);
4293 case F2FS_IOC32_MOVE_RANGE:
4294 return f2fs_compat_ioc_move_range(file, arg);
4295 case F2FS_IOC_START_ATOMIC_WRITE:
4296 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4297 case F2FS_IOC_START_VOLATILE_WRITE:
4298 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4299 case F2FS_IOC_ABORT_VOLATILE_WRITE:
4300 case F2FS_IOC_SHUTDOWN:
4301 case FITRIM:
4302 case FS_IOC_SET_ENCRYPTION_POLICY:
4303 case FS_IOC_GET_ENCRYPTION_PWSALT:
4304 case FS_IOC_GET_ENCRYPTION_POLICY:
4305 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4306 case FS_IOC_ADD_ENCRYPTION_KEY:
4307 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4308 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4309 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4310 case FS_IOC_GET_ENCRYPTION_NONCE:
4311 case F2FS_IOC_GARBAGE_COLLECT:
4312 case F2FS_IOC_WRITE_CHECKPOINT:
4313 case F2FS_IOC_DEFRAGMENT:
4314 case F2FS_IOC_FLUSH_DEVICE:
4315 case F2FS_IOC_GET_FEATURES:
4316 case FS_IOC_FSGETXATTR:
4317 case FS_IOC_FSSETXATTR:
4318 case F2FS_IOC_GET_PIN_FILE:
4319 case F2FS_IOC_SET_PIN_FILE:
4320 case F2FS_IOC_PRECACHE_EXTENTS:
4321 case F2FS_IOC_RESIZE_FS:
4322 case FS_IOC_ENABLE_VERITY:
4323 case FS_IOC_MEASURE_VERITY:
4324 case FS_IOC_ENABLE_CODE_SIGN:
4325 case FS_IOC_GETFSLABEL:
4326 case FS_IOC_SETFSLABEL:
4327 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4328 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4329 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4330 case F2FS_IOC_SEC_TRIM_FILE:
4331 break;
4332 default:
4333 return -ENOIOCTLCMD;
4334 }
4335 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4336 }
4337 #endif
4338
4339 const struct file_operations f2fs_file_operations = {
4340 .llseek = f2fs_llseek,
4341 .read_iter = f2fs_file_read_iter,
4342 .write_iter = f2fs_file_write_iter,
4343 .open = f2fs_file_open,
4344 .release = f2fs_release_file,
4345 .mmap = f2fs_file_mmap,
4346 .flush = f2fs_file_flush,
4347 .fsync = f2fs_sync_file,
4348 .fallocate = f2fs_fallocate,
4349 .unlocked_ioctl = f2fs_ioctl,
4350 #ifdef CONFIG_COMPAT
4351 .compat_ioctl = f2fs_compat_ioctl,
4352 #endif
4353 .splice_read = generic_file_splice_read,
4354 .splice_write = iter_file_splice_write,
4355 };
4356