• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 #ifdef CONFIG_LOWPOWER_PROTOCOL
283 #include <net/lowpower_protocol.h>
284 #endif /* CONFIG_LOWPOWER_PROTOCOL */
285 #if defined(CONFIG_TCP_NATA_URC) || defined(CONFIG_TCP_NATA_STL)
286 #include <net/nata.h>
287 #endif
288 
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294 
295 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 
298 #if IS_ENABLED(CONFIG_SMC)
299 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
300 EXPORT_SYMBOL(tcp_have_smc);
301 #endif
302 
303 /*
304  * Current number of TCP sockets.
305  */
306 struct percpu_counter tcp_sockets_allocated;
307 EXPORT_SYMBOL(tcp_sockets_allocated);
308 
309 /*
310  * TCP splice context
311  */
312 struct tcp_splice_state {
313 	struct pipe_inode_info *pipe;
314 	size_t len;
315 	unsigned int flags;
316 };
317 
318 /*
319  * Pressure flag: try to collapse.
320  * Technical note: it is used by multiple contexts non atomically.
321  * All the __sk_mem_schedule() is of this nature: accounting
322  * is strict, actions are advisory and have some latency.
323  */
324 unsigned long tcp_memory_pressure __read_mostly;
325 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
326 
327 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
328 EXPORT_SYMBOL(tcp_rx_skb_cache_key);
329 
330 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
331 
tcp_enter_memory_pressure(struct sock * sk)332 void tcp_enter_memory_pressure(struct sock *sk)
333 {
334 	unsigned long val;
335 
336 	if (READ_ONCE(tcp_memory_pressure))
337 		return;
338 	val = jiffies;
339 
340 	if (!val)
341 		val--;
342 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
343 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
344 }
345 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
346 
tcp_leave_memory_pressure(struct sock * sk)347 void tcp_leave_memory_pressure(struct sock *sk)
348 {
349 	unsigned long val;
350 
351 	if (!READ_ONCE(tcp_memory_pressure))
352 		return;
353 	val = xchg(&tcp_memory_pressure, 0);
354 	if (val)
355 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
356 			      jiffies_to_msecs(jiffies - val));
357 }
358 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
359 
360 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)361 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
362 {
363 	u8 res = 0;
364 
365 	if (seconds > 0) {
366 		int period = timeout;
367 
368 		res = 1;
369 		while (seconds > period && res < 255) {
370 			res++;
371 			timeout <<= 1;
372 			if (timeout > rto_max)
373 				timeout = rto_max;
374 			period += timeout;
375 		}
376 	}
377 	return res;
378 }
379 
380 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)381 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
382 {
383 	int period = 0;
384 
385 	if (retrans > 0) {
386 		period = timeout;
387 		while (--retrans) {
388 			timeout <<= 1;
389 			if (timeout > rto_max)
390 				timeout = rto_max;
391 			period += timeout;
392 		}
393 	}
394 	return period;
395 }
396 
tcp_compute_delivery_rate(const struct tcp_sock * tp)397 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
398 {
399 	u32 rate = READ_ONCE(tp->rate_delivered);
400 	u32 intv = READ_ONCE(tp->rate_interval_us);
401 	u64 rate64 = 0;
402 
403 	if (rate && intv) {
404 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
405 		do_div(rate64, intv);
406 	}
407 	return rate64;
408 }
409 
410 /* Address-family independent initialization for a tcp_sock.
411  *
412  * NOTE: A lot of things set to zero explicitly by call to
413  *       sk_alloc() so need not be done here.
414  */
tcp_init_sock(struct sock * sk)415 void tcp_init_sock(struct sock *sk)
416 {
417 	struct inet_connection_sock *icsk = inet_csk(sk);
418 	struct tcp_sock *tp = tcp_sk(sk);
419 
420 	tp->out_of_order_queue = RB_ROOT;
421 	sk->tcp_rtx_queue = RB_ROOT;
422 	tcp_init_xmit_timers(sk);
423 	INIT_LIST_HEAD(&tp->tsq_node);
424 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
425 
426 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
427 	icsk->icsk_rto_min = TCP_RTO_MIN;
428 	icsk->icsk_delack_max = TCP_DELACK_MAX;
429 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
430 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
431 
432 	/* So many TCP implementations out there (incorrectly) count the
433 	 * initial SYN frame in their delayed-ACK and congestion control
434 	 * algorithms that we must have the following bandaid to talk
435 	 * efficiently to them.  -DaveM
436 	 */
437 	tp->snd_cwnd = TCP_INIT_CWND;
438 
439 	/* There's a bubble in the pipe until at least the first ACK. */
440 	tp->app_limited = ~0U;
441 	tp->rate_app_limited = 1;
442 
443 	/* See draft-stevens-tcpca-spec-01 for discussion of the
444 	 * initialization of these values.
445 	 */
446 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
447 	tp->snd_cwnd_clamp = ~0;
448 	tp->mss_cache = TCP_MSS_DEFAULT;
449 
450 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
451 	tcp_assign_congestion_control(sk);
452 
453 	tp->tsoffset = 0;
454 	tp->rack.reo_wnd_steps = 1;
455 
456 	sk->sk_write_space = sk_stream_write_space;
457 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
458 
459 	icsk->icsk_sync_mss = tcp_sync_mss;
460 
461 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
462 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
463 
464 	sk_sockets_allocated_inc(sk);
465 	sk->sk_route_forced_caps = NETIF_F_GSO;
466 #if defined(CONFIG_TCP_NATA_URC) || defined(CONFIG_TCP_NATA_STL)
467 	icsk->nata_retries_enabled = 0;
468 	icsk->nata_retries_type = NATA_NA;
469 	icsk->nata_syn_rto = TCP_TIMEOUT_INIT;
470 	icsk->nata_data_rto = TCP_TIMEOUT_INIT;
471 	icsk->nata_data_retries = 0;
472 #endif
473 }
474 EXPORT_SYMBOL(tcp_init_sock);
475 
tcp_tx_timestamp(struct sock * sk,u16 tsflags)476 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
477 {
478 	struct sk_buff *skb = tcp_write_queue_tail(sk);
479 
480 	if (tsflags && skb) {
481 		struct skb_shared_info *shinfo = skb_shinfo(skb);
482 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
483 
484 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
485 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
486 			tcb->txstamp_ack = 1;
487 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
488 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
489 	}
490 }
491 
tcp_stream_is_readable(const struct tcp_sock * tp,int target,struct sock * sk)492 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
493 					  int target, struct sock *sk)
494 {
495 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
496 
497 	if (avail > 0) {
498 		if (avail >= target)
499 			return true;
500 		if (tcp_rmem_pressure(sk))
501 			return true;
502 		if (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss)
503 			return true;
504 	}
505 	if (sk->sk_prot->stream_memory_read)
506 		return sk->sk_prot->stream_memory_read(sk);
507 	return false;
508 }
509 
510 /*
511  *	Wait for a TCP event.
512  *
513  *	Note that we don't need to lock the socket, as the upper poll layers
514  *	take care of normal races (between the test and the event) and we don't
515  *	go look at any of the socket buffers directly.
516  */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)517 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
518 {
519 	__poll_t mask;
520 	struct sock *sk = sock->sk;
521 	const struct tcp_sock *tp = tcp_sk(sk);
522 	u8 shutdown;
523 	int state;
524 
525 	sock_poll_wait(file, sock, wait);
526 
527 	state = inet_sk_state_load(sk);
528 	if (state == TCP_LISTEN)
529 		return inet_csk_listen_poll(sk);
530 
531 	/* Socket is not locked. We are protected from async events
532 	 * by poll logic and correct handling of state changes
533 	 * made by other threads is impossible in any case.
534 	 */
535 
536 	mask = 0;
537 
538 	/*
539 	 * EPOLLHUP is certainly not done right. But poll() doesn't
540 	 * have a notion of HUP in just one direction, and for a
541 	 * socket the read side is more interesting.
542 	 *
543 	 * Some poll() documentation says that EPOLLHUP is incompatible
544 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
545 	 * all. But careful, it tends to be safer to return too many
546 	 * bits than too few, and you can easily break real applications
547 	 * if you don't tell them that something has hung up!
548 	 *
549 	 * Check-me.
550 	 *
551 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
552 	 * our fs/select.c). It means that after we received EOF,
553 	 * poll always returns immediately, making impossible poll() on write()
554 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
555 	 * if and only if shutdown has been made in both directions.
556 	 * Actually, it is interesting to look how Solaris and DUX
557 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
558 	 * then we could set it on SND_SHUTDOWN. BTW examples given
559 	 * in Stevens' books assume exactly this behaviour, it explains
560 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
561 	 *
562 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
563 	 * blocking on fresh not-connected or disconnected socket. --ANK
564 	 */
565 	shutdown = READ_ONCE(sk->sk_shutdown);
566 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
567 		mask |= EPOLLHUP;
568 	if (shutdown & RCV_SHUTDOWN)
569 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
570 
571 	/* Connected or passive Fast Open socket? */
572 	if (state != TCP_SYN_SENT &&
573 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
574 		int target = sock_rcvlowat(sk, 0, INT_MAX);
575 
576 		if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
577 		    !sock_flag(sk, SOCK_URGINLINE) &&
578 		    tp->urg_data)
579 			target++;
580 
581 		if (tcp_stream_is_readable(tp, target, sk))
582 			mask |= EPOLLIN | EPOLLRDNORM;
583 
584 		if (!(shutdown & SEND_SHUTDOWN)) {
585 			if (__sk_stream_is_writeable(sk, 1)) {
586 				mask |= EPOLLOUT | EPOLLWRNORM;
587 			} else {  /* send SIGIO later */
588 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
589 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
590 
591 				/* Race breaker. If space is freed after
592 				 * wspace test but before the flags are set,
593 				 * IO signal will be lost. Memory barrier
594 				 * pairs with the input side.
595 				 */
596 				smp_mb__after_atomic();
597 				if (__sk_stream_is_writeable(sk, 1))
598 					mask |= EPOLLOUT | EPOLLWRNORM;
599 			}
600 		} else
601 			mask |= EPOLLOUT | EPOLLWRNORM;
602 
603 		if (tp->urg_data & TCP_URG_VALID)
604 			mask |= EPOLLPRI;
605 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
606 		/* Active TCP fastopen socket with defer_connect
607 		 * Return EPOLLOUT so application can call write()
608 		 * in order for kernel to generate SYN+data
609 		 */
610 		mask |= EPOLLOUT | EPOLLWRNORM;
611 	}
612 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
613 	smp_rmb();
614 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
615 		mask |= EPOLLERR;
616 
617 	return mask;
618 }
619 EXPORT_SYMBOL(tcp_poll);
620 
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)621 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
622 {
623 	struct tcp_sock *tp = tcp_sk(sk);
624 	int answ;
625 	bool slow;
626 
627 	switch (cmd) {
628 	case SIOCINQ:
629 		if (sk->sk_state == TCP_LISTEN)
630 			return -EINVAL;
631 
632 		slow = lock_sock_fast(sk);
633 		answ = tcp_inq(sk);
634 		unlock_sock_fast(sk, slow);
635 		break;
636 	case SIOCATMARK:
637 		answ = tp->urg_data &&
638 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
639 		break;
640 	case SIOCOUTQ:
641 		if (sk->sk_state == TCP_LISTEN)
642 			return -EINVAL;
643 
644 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
645 			answ = 0;
646 		else
647 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
648 		break;
649 	case SIOCOUTQNSD:
650 		if (sk->sk_state == TCP_LISTEN)
651 			return -EINVAL;
652 
653 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
654 			answ = 0;
655 		else
656 			answ = READ_ONCE(tp->write_seq) -
657 			       READ_ONCE(tp->snd_nxt);
658 		break;
659 	default:
660 		return -ENOIOCTLCMD;
661 	}
662 
663 	return put_user(answ, (int __user *)arg);
664 }
665 EXPORT_SYMBOL(tcp_ioctl);
666 
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)667 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
668 {
669 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
670 	tp->pushed_seq = tp->write_seq;
671 }
672 
forced_push(const struct tcp_sock * tp)673 static inline bool forced_push(const struct tcp_sock *tp)
674 {
675 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
676 }
677 
skb_entail(struct sock * sk,struct sk_buff * skb)678 static void skb_entail(struct sock *sk, struct sk_buff *skb)
679 {
680 	struct tcp_sock *tp = tcp_sk(sk);
681 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
682 
683 	skb->csum    = 0;
684 	tcb->seq     = tcb->end_seq = tp->write_seq;
685 	tcb->tcp_flags = TCPHDR_ACK;
686 	tcb->sacked  = 0;
687 	__skb_header_release(skb);
688 	tcp_add_write_queue_tail(sk, skb);
689 	sk_wmem_queued_add(sk, skb->truesize);
690 	sk_mem_charge(sk, skb->truesize);
691 	if (tp->nonagle & TCP_NAGLE_PUSH)
692 		tp->nonagle &= ~TCP_NAGLE_PUSH;
693 
694 	tcp_slow_start_after_idle_check(sk);
695 }
696 
tcp_mark_urg(struct tcp_sock * tp,int flags)697 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
698 {
699 	if (flags & MSG_OOB)
700 		tp->snd_up = tp->write_seq;
701 }
702 
703 /* If a not yet filled skb is pushed, do not send it if
704  * we have data packets in Qdisc or NIC queues :
705  * Because TX completion will happen shortly, it gives a chance
706  * to coalesce future sendmsg() payload into this skb, without
707  * need for a timer, and with no latency trade off.
708  * As packets containing data payload have a bigger truesize
709  * than pure acks (dataless) packets, the last checks prevent
710  * autocorking if we only have an ACK in Qdisc/NIC queues,
711  * or if TX completion was delayed after we processed ACK packet.
712  */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)713 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
714 				int size_goal)
715 {
716 	return skb->len < size_goal &&
717 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
718 	       !tcp_rtx_queue_empty(sk) &&
719 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
720 }
721 
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)722 void tcp_push(struct sock *sk, int flags, int mss_now,
723 	      int nonagle, int size_goal)
724 {
725 	struct tcp_sock *tp = tcp_sk(sk);
726 	struct sk_buff *skb;
727 
728 	skb = tcp_write_queue_tail(sk);
729 	if (!skb)
730 		return;
731 	if (!(flags & MSG_MORE) || forced_push(tp))
732 		tcp_mark_push(tp, skb);
733 
734 	tcp_mark_urg(tp, flags);
735 
736 	if (tcp_should_autocork(sk, skb, size_goal)) {
737 
738 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
739 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
740 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
741 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
742 		}
743 		/* It is possible TX completion already happened
744 		 * before we set TSQ_THROTTLED.
745 		 */
746 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
747 			return;
748 	}
749 
750 	if (flags & MSG_MORE)
751 		nonagle = TCP_NAGLE_CORK;
752 
753 	__tcp_push_pending_frames(sk, mss_now, nonagle);
754 }
755 
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)756 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
757 				unsigned int offset, size_t len)
758 {
759 	struct tcp_splice_state *tss = rd_desc->arg.data;
760 	int ret;
761 
762 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
763 			      min(rd_desc->count, len), tss->flags);
764 	if (ret > 0)
765 		rd_desc->count -= ret;
766 	return ret;
767 }
768 
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)769 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
770 {
771 	/* Store TCP splice context information in read_descriptor_t. */
772 	read_descriptor_t rd_desc = {
773 		.arg.data = tss,
774 		.count	  = tss->len,
775 	};
776 
777 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
778 }
779 
780 /**
781  *  tcp_splice_read - splice data from TCP socket to a pipe
782  * @sock:	socket to splice from
783  * @ppos:	position (not valid)
784  * @pipe:	pipe to splice to
785  * @len:	number of bytes to splice
786  * @flags:	splice modifier flags
787  *
788  * Description:
789  *    Will read pages from given socket and fill them into a pipe.
790  *
791  **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)792 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
793 			struct pipe_inode_info *pipe, size_t len,
794 			unsigned int flags)
795 {
796 	struct sock *sk = sock->sk;
797 	struct tcp_splice_state tss = {
798 		.pipe = pipe,
799 		.len = len,
800 		.flags = flags,
801 	};
802 	long timeo;
803 	ssize_t spliced;
804 	int ret;
805 
806 	sock_rps_record_flow(sk);
807 	/*
808 	 * We can't seek on a socket input
809 	 */
810 	if (unlikely(*ppos))
811 		return -ESPIPE;
812 
813 	ret = spliced = 0;
814 
815 	lock_sock(sk);
816 
817 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
818 	while (tss.len) {
819 		ret = __tcp_splice_read(sk, &tss);
820 		if (ret < 0)
821 			break;
822 		else if (!ret) {
823 			if (spliced)
824 				break;
825 			if (sock_flag(sk, SOCK_DONE))
826 				break;
827 			if (sk->sk_err) {
828 				ret = sock_error(sk);
829 				break;
830 			}
831 			if (sk->sk_shutdown & RCV_SHUTDOWN)
832 				break;
833 			if (sk->sk_state == TCP_CLOSE) {
834 				/*
835 				 * This occurs when user tries to read
836 				 * from never connected socket.
837 				 */
838 				ret = -ENOTCONN;
839 				break;
840 			}
841 			if (!timeo) {
842 				ret = -EAGAIN;
843 				break;
844 			}
845 			/* if __tcp_splice_read() got nothing while we have
846 			 * an skb in receive queue, we do not want to loop.
847 			 * This might happen with URG data.
848 			 */
849 			if (!skb_queue_empty(&sk->sk_receive_queue))
850 				break;
851 			sk_wait_data(sk, &timeo, NULL);
852 			if (signal_pending(current)) {
853 				ret = sock_intr_errno(timeo);
854 				break;
855 			}
856 			continue;
857 		}
858 		tss.len -= ret;
859 		spliced += ret;
860 
861 		if (!timeo)
862 			break;
863 		release_sock(sk);
864 		lock_sock(sk);
865 
866 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
867 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
868 		    signal_pending(current))
869 			break;
870 	}
871 
872 	release_sock(sk);
873 
874 	if (spliced)
875 		return spliced;
876 
877 	return ret;
878 }
879 EXPORT_SYMBOL(tcp_splice_read);
880 
sk_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp,bool force_schedule)881 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
882 				    bool force_schedule)
883 {
884 	struct sk_buff *skb;
885 
886 	if (likely(!size)) {
887 		skb = sk->sk_tx_skb_cache;
888 		if (skb) {
889 			skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
890 			sk->sk_tx_skb_cache = NULL;
891 			pskb_trim(skb, 0);
892 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
893 			skb_shinfo(skb)->tx_flags = 0;
894 			memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
895 			return skb;
896 		}
897 	}
898 	/* The TCP header must be at least 32-bit aligned.  */
899 	size = ALIGN(size, 4);
900 
901 	if (unlikely(tcp_under_memory_pressure(sk)))
902 		sk_mem_reclaim_partial(sk);
903 
904 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
905 	if (likely(skb)) {
906 		bool mem_scheduled;
907 
908 		if (force_schedule) {
909 			mem_scheduled = true;
910 			sk_forced_mem_schedule(sk, skb->truesize);
911 		} else {
912 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
913 		}
914 		if (likely(mem_scheduled)) {
915 			skb_reserve(skb, sk->sk_prot->max_header);
916 			/*
917 			 * Make sure that we have exactly size bytes
918 			 * available to the caller, no more, no less.
919 			 */
920 			skb->reserved_tailroom = skb->end - skb->tail - size;
921 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
922 			return skb;
923 		}
924 		__kfree_skb(skb);
925 	} else {
926 		sk->sk_prot->enter_memory_pressure(sk);
927 		sk_stream_moderate_sndbuf(sk);
928 	}
929 	return NULL;
930 }
931 
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)932 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
933 				       int large_allowed)
934 {
935 	struct tcp_sock *tp = tcp_sk(sk);
936 	u32 new_size_goal, size_goal;
937 
938 	if (!large_allowed)
939 		return mss_now;
940 
941 	/* Note : tcp_tso_autosize() will eventually split this later */
942 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
943 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
944 
945 	/* We try hard to avoid divides here */
946 	size_goal = tp->gso_segs * mss_now;
947 	if (unlikely(new_size_goal < size_goal ||
948 		     new_size_goal >= size_goal + mss_now)) {
949 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
950 				     sk->sk_gso_max_segs);
951 		size_goal = tp->gso_segs * mss_now;
952 	}
953 
954 	return max(size_goal, mss_now);
955 }
956 
tcp_send_mss(struct sock * sk,int * size_goal,int flags)957 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
958 {
959 	int mss_now;
960 
961 	mss_now = tcp_current_mss(sk);
962 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
963 
964 	return mss_now;
965 }
966 
967 /* In some cases, both sendpage() and sendmsg() could have added
968  * an skb to the write queue, but failed adding payload on it.
969  * We need to remove it to consume less memory, but more
970  * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
971  * users.
972  */
tcp_remove_empty_skb(struct sock * sk,struct sk_buff * skb)973 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
974 {
975 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
976 		tcp_unlink_write_queue(skb, sk);
977 		if (tcp_write_queue_empty(sk))
978 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
979 		sk_wmem_free_skb(sk, skb);
980 	}
981 }
982 
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)983 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
984 			 size_t size, int flags)
985 {
986 	struct tcp_sock *tp = tcp_sk(sk);
987 	int mss_now, size_goal;
988 	int err;
989 	ssize_t copied;
990 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
991 
992 	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
993 	    WARN_ONCE(!sendpage_ok(page),
994 		      "page must not be a Slab one and have page_count > 0"))
995 		return -EINVAL;
996 
997 	/* Wait for a connection to finish. One exception is TCP Fast Open
998 	 * (passive side) where data is allowed to be sent before a connection
999 	 * is fully established.
1000 	 */
1001 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1002 	    !tcp_passive_fastopen(sk)) {
1003 		err = sk_stream_wait_connect(sk, &timeo);
1004 		if (err != 0)
1005 			goto out_err;
1006 	}
1007 
1008 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1009 
1010 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1011 	copied = 0;
1012 
1013 	err = -EPIPE;
1014 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1015 		goto out_err;
1016 
1017 	while (size > 0) {
1018 		struct sk_buff *skb = tcp_write_queue_tail(sk);
1019 		int copy, i;
1020 		bool can_coalesce;
1021 
1022 		if (!skb || (copy = size_goal - skb->len) <= 0 ||
1023 		    !tcp_skb_can_collapse_to(skb)) {
1024 new_segment:
1025 			if (!sk_stream_memory_free(sk))
1026 				goto wait_for_space;
1027 
1028 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1029 					tcp_rtx_and_write_queues_empty(sk));
1030 			if (!skb)
1031 				goto wait_for_space;
1032 
1033 #ifdef CONFIG_TLS_DEVICE
1034 			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1035 #endif
1036 			skb_entail(sk, skb);
1037 			copy = size_goal;
1038 		}
1039 
1040 		if (copy > size)
1041 			copy = size;
1042 
1043 		i = skb_shinfo(skb)->nr_frags;
1044 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
1045 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
1046 			tcp_mark_push(tp, skb);
1047 			goto new_segment;
1048 		}
1049 		if (!sk_wmem_schedule(sk, copy))
1050 			goto wait_for_space;
1051 
1052 		if (can_coalesce) {
1053 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1054 		} else {
1055 			get_page(page);
1056 			skb_fill_page_desc(skb, i, page, offset, copy);
1057 		}
1058 
1059 		if (!(flags & MSG_NO_SHARED_FRAGS))
1060 			skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1061 
1062 		skb->len += copy;
1063 		skb->data_len += copy;
1064 		skb->truesize += copy;
1065 		sk_wmem_queued_add(sk, copy);
1066 		sk_mem_charge(sk, copy);
1067 		skb->ip_summed = CHECKSUM_PARTIAL;
1068 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1069 		TCP_SKB_CB(skb)->end_seq += copy;
1070 		tcp_skb_pcount_set(skb, 0);
1071 
1072 		if (!copied)
1073 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1074 
1075 		copied += copy;
1076 		offset += copy;
1077 		size -= copy;
1078 		if (!size)
1079 			goto out;
1080 
1081 		if (skb->len < size_goal || (flags & MSG_OOB))
1082 			continue;
1083 
1084 		if (forced_push(tp)) {
1085 			tcp_mark_push(tp, skb);
1086 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1087 		} else if (skb == tcp_send_head(sk))
1088 			tcp_push_one(sk, mss_now);
1089 		continue;
1090 
1091 wait_for_space:
1092 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1093 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1094 			 TCP_NAGLE_PUSH, size_goal);
1095 
1096 		err = sk_stream_wait_memory(sk, &timeo);
1097 		if (err != 0)
1098 			goto do_error;
1099 
1100 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1101 	}
1102 
1103 out:
1104 	if (copied) {
1105 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1106 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1107 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1108 	}
1109 	return copied;
1110 
1111 do_error:
1112 	tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1113 	if (copied)
1114 		goto out;
1115 out_err:
1116 	/* make sure we wake any epoll edge trigger waiter */
1117 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1118 		sk->sk_write_space(sk);
1119 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1120 	}
1121 	return sk_stream_error(sk, flags, err);
1122 }
1123 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1124 
tcp_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1125 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1126 			size_t size, int flags)
1127 {
1128 	if (!(sk->sk_route_caps & NETIF_F_SG))
1129 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1130 
1131 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1132 
1133 	return do_tcp_sendpages(sk, page, offset, size, flags);
1134 }
1135 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1136 
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1137 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1138 		 size_t size, int flags)
1139 {
1140 	int ret;
1141 
1142 	lock_sock(sk);
1143 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1144 	release_sock(sk);
1145 
1146 	return ret;
1147 }
1148 EXPORT_SYMBOL(tcp_sendpage);
1149 
tcp_free_fastopen_req(struct tcp_sock * tp)1150 void tcp_free_fastopen_req(struct tcp_sock *tp)
1151 {
1152 	if (tp->fastopen_req) {
1153 		kfree(tp->fastopen_req);
1154 		tp->fastopen_req = NULL;
1155 	}
1156 }
1157 
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1158 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1159 				int *copied, size_t size,
1160 				struct ubuf_info *uarg)
1161 {
1162 	struct tcp_sock *tp = tcp_sk(sk);
1163 	struct inet_sock *inet = inet_sk(sk);
1164 	struct sockaddr *uaddr = msg->msg_name;
1165 	int err, flags;
1166 
1167 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1168 	      TFO_CLIENT_ENABLE) ||
1169 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1170 	     uaddr->sa_family == AF_UNSPEC))
1171 		return -EOPNOTSUPP;
1172 	if (tp->fastopen_req)
1173 		return -EALREADY; /* Another Fast Open is in progress */
1174 
1175 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1176 				   sk->sk_allocation);
1177 	if (unlikely(!tp->fastopen_req))
1178 		return -ENOBUFS;
1179 	tp->fastopen_req->data = msg;
1180 	tp->fastopen_req->size = size;
1181 	tp->fastopen_req->uarg = uarg;
1182 
1183 	if (inet->defer_connect) {
1184 		err = tcp_connect(sk);
1185 		/* Same failure procedure as in tcp_v4/6_connect */
1186 		if (err) {
1187 			tcp_set_state(sk, TCP_CLOSE);
1188 			inet->inet_dport = 0;
1189 			sk->sk_route_caps = 0;
1190 		}
1191 	}
1192 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1193 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1194 				    msg->msg_namelen, flags, 1);
1195 	/* fastopen_req could already be freed in __inet_stream_connect
1196 	 * if the connection times out or gets rst
1197 	 */
1198 	if (tp->fastopen_req) {
1199 		*copied = tp->fastopen_req->copied;
1200 		tcp_free_fastopen_req(tp);
1201 		inet->defer_connect = 0;
1202 	}
1203 	return err;
1204 }
1205 
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1206 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1207 {
1208 	struct tcp_sock *tp = tcp_sk(sk);
1209 	struct ubuf_info *uarg = NULL;
1210 	struct sk_buff *skb;
1211 	struct sockcm_cookie sockc;
1212 	int flags, err, copied = 0;
1213 	int mss_now = 0, size_goal, copied_syn = 0;
1214 	int process_backlog = 0;
1215 	bool zc = false;
1216 	long timeo;
1217 
1218 	flags = msg->msg_flags;
1219 
1220 	if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1221 		skb = tcp_write_queue_tail(sk);
1222 		uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1223 		if (!uarg) {
1224 			err = -ENOBUFS;
1225 			goto out_err;
1226 		}
1227 
1228 		zc = sk->sk_route_caps & NETIF_F_SG;
1229 		if (!zc)
1230 			uarg->zerocopy = 0;
1231 	}
1232 
1233 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1234 	    !tp->repair) {
1235 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1236 		if (err == -EINPROGRESS && copied_syn > 0)
1237 			goto out;
1238 		else if (err)
1239 			goto out_err;
1240 	}
1241 
1242 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1243 
1244 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1245 
1246 	/* Wait for a connection to finish. One exception is TCP Fast Open
1247 	 * (passive side) where data is allowed to be sent before a connection
1248 	 * is fully established.
1249 	 */
1250 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1251 	    !tcp_passive_fastopen(sk)) {
1252 		err = sk_stream_wait_connect(sk, &timeo);
1253 		if (err != 0)
1254 			goto do_error;
1255 	}
1256 
1257 	if (unlikely(tp->repair)) {
1258 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1259 			copied = tcp_send_rcvq(sk, msg, size);
1260 			goto out_nopush;
1261 		}
1262 
1263 		err = -EINVAL;
1264 		if (tp->repair_queue == TCP_NO_QUEUE)
1265 			goto out_err;
1266 
1267 		/* 'common' sending to sendq */
1268 	}
1269 
1270 	sockcm_init(&sockc, sk);
1271 	if (msg->msg_controllen) {
1272 		err = sock_cmsg_send(sk, msg, &sockc);
1273 		if (unlikely(err)) {
1274 			err = -EINVAL;
1275 			goto out_err;
1276 		}
1277 	}
1278 
1279 	/* This should be in poll */
1280 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1281 
1282 	/* Ok commence sending. */
1283 	copied = 0;
1284 
1285 restart:
1286 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1287 
1288 	err = -EPIPE;
1289 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1290 		goto do_error;
1291 
1292 	while (msg_data_left(msg)) {
1293 		int copy = 0;
1294 
1295 		skb = tcp_write_queue_tail(sk);
1296 		if (skb)
1297 			copy = size_goal - skb->len;
1298 
1299 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1300 			bool first_skb;
1301 
1302 new_segment:
1303 			if (!sk_stream_memory_free(sk))
1304 				goto wait_for_space;
1305 
1306 			if (unlikely(process_backlog >= 16)) {
1307 				process_backlog = 0;
1308 				if (sk_flush_backlog(sk))
1309 					goto restart;
1310 			}
1311 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1312 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1313 						  first_skb);
1314 			if (!skb)
1315 				goto wait_for_space;
1316 
1317 			process_backlog++;
1318 			skb->ip_summed = CHECKSUM_PARTIAL;
1319 
1320 			skb_entail(sk, skb);
1321 			copy = size_goal;
1322 
1323 			/* All packets are restored as if they have
1324 			 * already been sent. skb_mstamp_ns isn't set to
1325 			 * avoid wrong rtt estimation.
1326 			 */
1327 			if (tp->repair)
1328 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1329 		}
1330 
1331 		/* Try to append data to the end of skb. */
1332 		if (copy > msg_data_left(msg))
1333 			copy = msg_data_left(msg);
1334 
1335 		/* Where to copy to? */
1336 		if (skb_availroom(skb) > 0 && !zc) {
1337 			/* We have some space in skb head. Superb! */
1338 			copy = min_t(int, copy, skb_availroom(skb));
1339 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1340 			if (err)
1341 				goto do_fault;
1342 		} else if (!zc) {
1343 			bool merge = true;
1344 			int i = skb_shinfo(skb)->nr_frags;
1345 			struct page_frag *pfrag = sk_page_frag(sk);
1346 
1347 			if (!sk_page_frag_refill(sk, pfrag))
1348 				goto wait_for_space;
1349 
1350 			if (!skb_can_coalesce(skb, i, pfrag->page,
1351 					      pfrag->offset)) {
1352 				if (i >= sysctl_max_skb_frags) {
1353 					tcp_mark_push(tp, skb);
1354 					goto new_segment;
1355 				}
1356 				merge = false;
1357 			}
1358 
1359 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1360 
1361 			if (!sk_wmem_schedule(sk, copy))
1362 				goto wait_for_space;
1363 
1364 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1365 						       pfrag->page,
1366 						       pfrag->offset,
1367 						       copy);
1368 			if (err)
1369 				goto do_error;
1370 
1371 			/* Update the skb. */
1372 			if (merge) {
1373 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1374 			} else {
1375 				skb_fill_page_desc(skb, i, pfrag->page,
1376 						   pfrag->offset, copy);
1377 				page_ref_inc(pfrag->page);
1378 			}
1379 			pfrag->offset += copy;
1380 		} else {
1381 			if (!sk_wmem_schedule(sk, copy))
1382 				goto wait_for_space;
1383 
1384 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1385 			if (err == -EMSGSIZE || err == -EEXIST) {
1386 				tcp_mark_push(tp, skb);
1387 				goto new_segment;
1388 			}
1389 			if (err < 0)
1390 				goto do_error;
1391 			copy = err;
1392 		}
1393 
1394 		if (!copied)
1395 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1396 
1397 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1398 		TCP_SKB_CB(skb)->end_seq += copy;
1399 		tcp_skb_pcount_set(skb, 0);
1400 
1401 		copied += copy;
1402 		if (!msg_data_left(msg)) {
1403 			if (unlikely(flags & MSG_EOR))
1404 				TCP_SKB_CB(skb)->eor = 1;
1405 			goto out;
1406 		}
1407 
1408 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1409 			continue;
1410 
1411 		if (forced_push(tp)) {
1412 			tcp_mark_push(tp, skb);
1413 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1414 		} else if (skb == tcp_send_head(sk))
1415 			tcp_push_one(sk, mss_now);
1416 		continue;
1417 
1418 wait_for_space:
1419 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1420 		if (copied)
1421 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1422 				 TCP_NAGLE_PUSH, size_goal);
1423 
1424 		err = sk_stream_wait_memory(sk, &timeo);
1425 		if (err != 0)
1426 			goto do_error;
1427 
1428 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1429 	}
1430 
1431 out:
1432 	if (copied) {
1433 		tcp_tx_timestamp(sk, sockc.tsflags);
1434 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1435 	}
1436 out_nopush:
1437 	sock_zerocopy_put(uarg);
1438 	return copied + copied_syn;
1439 
1440 do_error:
1441 	skb = tcp_write_queue_tail(sk);
1442 do_fault:
1443 	tcp_remove_empty_skb(sk, skb);
1444 
1445 	if (copied + copied_syn)
1446 		goto out;
1447 out_err:
1448 	sock_zerocopy_put_abort(uarg, true);
1449 	err = sk_stream_error(sk, flags, err);
1450 	/* make sure we wake any epoll edge trigger waiter */
1451 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1452 		sk->sk_write_space(sk);
1453 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1454 	}
1455 	return err;
1456 }
1457 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1458 
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1459 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1460 {
1461 	int ret;
1462 
1463 	lock_sock(sk);
1464 	ret = tcp_sendmsg_locked(sk, msg, size);
1465 	release_sock(sk);
1466 
1467 	return ret;
1468 }
1469 EXPORT_SYMBOL(tcp_sendmsg);
1470 
1471 /*
1472  *	Handle reading urgent data. BSD has very simple semantics for
1473  *	this, no blocking and very strange errors 8)
1474  */
1475 
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1476 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1477 {
1478 	struct tcp_sock *tp = tcp_sk(sk);
1479 
1480 	/* No URG data to read. */
1481 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1482 	    tp->urg_data == TCP_URG_READ)
1483 		return -EINVAL;	/* Yes this is right ! */
1484 
1485 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1486 		return -ENOTCONN;
1487 
1488 	if (tp->urg_data & TCP_URG_VALID) {
1489 		int err = 0;
1490 		char c = tp->urg_data;
1491 
1492 		if (!(flags & MSG_PEEK))
1493 			tp->urg_data = TCP_URG_READ;
1494 
1495 		/* Read urgent data. */
1496 		msg->msg_flags |= MSG_OOB;
1497 
1498 		if (len > 0) {
1499 			if (!(flags & MSG_TRUNC))
1500 				err = memcpy_to_msg(msg, &c, 1);
1501 			len = 1;
1502 		} else
1503 			msg->msg_flags |= MSG_TRUNC;
1504 
1505 		return err ? -EFAULT : len;
1506 	}
1507 
1508 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1509 		return 0;
1510 
1511 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1512 	 * the available implementations agree in this case:
1513 	 * this call should never block, independent of the
1514 	 * blocking state of the socket.
1515 	 * Mike <pall@rz.uni-karlsruhe.de>
1516 	 */
1517 	return -EAGAIN;
1518 }
1519 
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1520 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1521 {
1522 	struct sk_buff *skb;
1523 	int copied = 0, err = 0;
1524 
1525 	/* XXX -- need to support SO_PEEK_OFF */
1526 
1527 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1528 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1529 		if (err)
1530 			return err;
1531 		copied += skb->len;
1532 	}
1533 
1534 	skb_queue_walk(&sk->sk_write_queue, skb) {
1535 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1536 		if (err)
1537 			break;
1538 
1539 		copied += skb->len;
1540 	}
1541 
1542 	return err ?: copied;
1543 }
1544 
1545 /* Clean up the receive buffer for full frames taken by the user,
1546  * then send an ACK if necessary.  COPIED is the number of bytes
1547  * tcp_recvmsg has given to the user so far, it speeds up the
1548  * calculation of whether or not we must ACK for the sake of
1549  * a window update.
1550  */
tcp_cleanup_rbuf(struct sock * sk,int copied)1551 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1552 {
1553 	struct tcp_sock *tp = tcp_sk(sk);
1554 	bool time_to_ack = false;
1555 
1556 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1557 
1558 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1559 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1560 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1561 
1562 	if (inet_csk_ack_scheduled(sk)) {
1563 		const struct inet_connection_sock *icsk = inet_csk(sk);
1564 		__u16 rcv_mss = icsk->icsk_ack.rcv_mss;
1565 #ifdef CONFIG_LOWPOWER_PROTOCOL
1566 		rcv_mss *= tcp_ack_num(sk);
1567 #endif /* CONFIG_LOWPOWER_PROTOCOL */
1568 
1569 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1570 		    tp->rcv_nxt - tp->rcv_wup > rcv_mss ||
1571 		    /*
1572 		     * If this read emptied read buffer, we send ACK, if
1573 		     * connection is not bidirectional, user drained
1574 		     * receive buffer and there was a small segment
1575 		     * in queue.
1576 		     */
1577 		    (copied > 0 &&
1578 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1579 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1580 		       !inet_csk_in_pingpong_mode(sk))) &&
1581 		      !atomic_read(&sk->sk_rmem_alloc)))
1582 			time_to_ack = true;
1583 	}
1584 
1585 	/* We send an ACK if we can now advertise a non-zero window
1586 	 * which has been raised "significantly".
1587 	 *
1588 	 * Even if window raised up to infinity, do not send window open ACK
1589 	 * in states, where we will not receive more. It is useless.
1590 	 */
1591 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1592 		__u32 rcv_window_now = tcp_receive_window(tp);
1593 
1594 		/* Optimize, __tcp_select_window() is not cheap. */
1595 		if (2*rcv_window_now <= tp->window_clamp) {
1596 			__u32 new_window = __tcp_select_window(sk);
1597 
1598 			/* Send ACK now, if this read freed lots of space
1599 			 * in our buffer. Certainly, new_window is new window.
1600 			 * We can advertise it now, if it is not less than current one.
1601 			 * "Lots" means "at least twice" here.
1602 			 */
1603 			if (new_window && new_window >= 2 * rcv_window_now)
1604 				time_to_ack = true;
1605 		}
1606 	}
1607 	if (time_to_ack)
1608 		tcp_send_ack(sk);
1609 }
1610 
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1611 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1612 {
1613 	struct sk_buff *skb;
1614 	u32 offset;
1615 
1616 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1617 		offset = seq - TCP_SKB_CB(skb)->seq;
1618 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1619 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1620 			offset--;
1621 		}
1622 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1623 			*off = offset;
1624 			return skb;
1625 		}
1626 		/* This looks weird, but this can happen if TCP collapsing
1627 		 * splitted a fat GRO packet, while we released socket lock
1628 		 * in skb_splice_bits()
1629 		 */
1630 		sk_eat_skb(sk, skb);
1631 	}
1632 	return NULL;
1633 }
1634 
1635 /*
1636  * This routine provides an alternative to tcp_recvmsg() for routines
1637  * that would like to handle copying from skbuffs directly in 'sendfile'
1638  * fashion.
1639  * Note:
1640  *	- It is assumed that the socket was locked by the caller.
1641  *	- The routine does not block.
1642  *	- At present, there is no support for reading OOB data
1643  *	  or for 'peeking' the socket using this routine
1644  *	  (although both would be easy to implement).
1645  */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1646 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1647 		  sk_read_actor_t recv_actor)
1648 {
1649 	struct sk_buff *skb;
1650 	struct tcp_sock *tp = tcp_sk(sk);
1651 	u32 seq = tp->copied_seq;
1652 	u32 offset;
1653 	int copied = 0;
1654 
1655 	if (sk->sk_state == TCP_LISTEN)
1656 		return -ENOTCONN;
1657 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1658 		if (offset < skb->len) {
1659 			int used;
1660 			size_t len;
1661 
1662 			len = skb->len - offset;
1663 			/* Stop reading if we hit a patch of urgent data */
1664 			if (tp->urg_data) {
1665 				u32 urg_offset = tp->urg_seq - seq;
1666 				if (urg_offset < len)
1667 					len = urg_offset;
1668 				if (!len)
1669 					break;
1670 			}
1671 			used = recv_actor(desc, skb, offset, len);
1672 			if (used <= 0) {
1673 				if (!copied)
1674 					copied = used;
1675 				break;
1676 			}
1677 			if (WARN_ON_ONCE(used > len))
1678 				used = len;
1679 			seq += used;
1680 			copied += used;
1681 			offset += used;
1682 
1683 			/* If recv_actor drops the lock (e.g. TCP splice
1684 			 * receive) the skb pointer might be invalid when
1685 			 * getting here: tcp_collapse might have deleted it
1686 			 * while aggregating skbs from the socket queue.
1687 			 */
1688 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1689 			if (!skb)
1690 				break;
1691 			/* TCP coalescing might have appended data to the skb.
1692 			 * Try to splice more frags
1693 			 */
1694 			if (offset + 1 != skb->len)
1695 				continue;
1696 		}
1697 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1698 			sk_eat_skb(sk, skb);
1699 			++seq;
1700 			break;
1701 		}
1702 		sk_eat_skb(sk, skb);
1703 		if (!desc->count)
1704 			break;
1705 		WRITE_ONCE(tp->copied_seq, seq);
1706 	}
1707 	WRITE_ONCE(tp->copied_seq, seq);
1708 
1709 	tcp_rcv_space_adjust(sk);
1710 
1711 	/* Clean up data we have read: This will do ACK frames. */
1712 	if (copied > 0) {
1713 		tcp_recv_skb(sk, seq, &offset);
1714 		tcp_cleanup_rbuf(sk, copied);
1715 	}
1716 	return copied;
1717 }
1718 EXPORT_SYMBOL(tcp_read_sock);
1719 
tcp_peek_len(struct socket * sock)1720 int tcp_peek_len(struct socket *sock)
1721 {
1722 	return tcp_inq(sock->sk);
1723 }
1724 EXPORT_SYMBOL(tcp_peek_len);
1725 
1726 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1727 int tcp_set_rcvlowat(struct sock *sk, int val)
1728 {
1729 	int cap;
1730 
1731 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1732 		cap = sk->sk_rcvbuf >> 1;
1733 	else
1734 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1735 	val = min(val, cap);
1736 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1737 
1738 	/* Check if we need to signal EPOLLIN right now */
1739 	tcp_data_ready(sk);
1740 
1741 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1742 		return 0;
1743 
1744 	val <<= 1;
1745 	if (val > sk->sk_rcvbuf) {
1746 		WRITE_ONCE(sk->sk_rcvbuf, val);
1747 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1748 	}
1749 	return 0;
1750 }
1751 EXPORT_SYMBOL(tcp_set_rcvlowat);
1752 
1753 #ifdef CONFIG_MMU
1754 static const struct vm_operations_struct tcp_vm_ops = {
1755 };
1756 
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1757 int tcp_mmap(struct file *file, struct socket *sock,
1758 	     struct vm_area_struct *vma)
1759 {
1760 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1761 		return -EPERM;
1762 	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1763 
1764 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1765 	vma->vm_flags |= VM_MIXEDMAP;
1766 
1767 	vma->vm_ops = &tcp_vm_ops;
1768 	return 0;
1769 }
1770 EXPORT_SYMBOL(tcp_mmap);
1771 
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1772 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1773 				       u32 *offset_frag)
1774 {
1775 	skb_frag_t *frag;
1776 
1777 	if (unlikely(offset_skb >= skb->len))
1778 		return NULL;
1779 
1780 	offset_skb -= skb_headlen(skb);
1781 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1782 		return NULL;
1783 
1784 	frag = skb_shinfo(skb)->frags;
1785 	while (offset_skb) {
1786 		if (skb_frag_size(frag) > offset_skb) {
1787 			*offset_frag = offset_skb;
1788 			return frag;
1789 		}
1790 		offset_skb -= skb_frag_size(frag);
1791 		++frag;
1792 	}
1793 	*offset_frag = 0;
1794 	return frag;
1795 }
1796 
can_map_frag(const skb_frag_t * frag)1797 static bool can_map_frag(const skb_frag_t *frag)
1798 {
1799 	struct page *page;
1800 
1801 	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1802 		return false;
1803 
1804 	page = skb_frag_page(frag);
1805 
1806 	if (PageCompound(page) || page->mapping)
1807 		return false;
1808 
1809 	return true;
1810 }
1811 
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1812 static int find_next_mappable_frag(const skb_frag_t *frag,
1813 				   int remaining_in_skb)
1814 {
1815 	int offset = 0;
1816 
1817 	if (likely(can_map_frag(frag)))
1818 		return 0;
1819 
1820 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1821 		offset += skb_frag_size(frag);
1822 		++frag;
1823 	}
1824 	return offset;
1825 }
1826 
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1827 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1828 				   struct sk_buff *skb, u32 copylen,
1829 				   u32 *offset, u32 *seq)
1830 {
1831 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1832 	struct msghdr msg = {};
1833 	struct iovec iov;
1834 	int err;
1835 
1836 	if (copy_address != zc->copybuf_address)
1837 		return -EINVAL;
1838 
1839 	err = import_single_range(READ, (void __user *)copy_address,
1840 				  copylen, &iov, &msg.msg_iter);
1841 	if (err)
1842 		return err;
1843 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1844 	if (err)
1845 		return err;
1846 	zc->recv_skip_hint -= copylen;
1847 	*offset += copylen;
1848 	*seq += copylen;
1849 	return (__s32)copylen;
1850 }
1851 
tcp_zerocopy_handle_leftover_data(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len)1852 static int tcp_zerocopy_handle_leftover_data(struct tcp_zerocopy_receive *zc,
1853 					     struct sock *sk,
1854 					     struct sk_buff *skb,
1855 					     u32 *seq,
1856 					     s32 copybuf_len)
1857 {
1858 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1859 
1860 	if (!copylen)
1861 		return 0;
1862 	/* skb is null if inq < PAGE_SIZE. */
1863 	if (skb)
1864 		offset = *seq - TCP_SKB_CB(skb)->seq;
1865 	else
1866 		skb = tcp_recv_skb(sk, *seq, &offset);
1867 
1868 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1869 						  seq);
1870 	return zc->copybuf_len < 0 ? 0 : copylen;
1871 }
1872 
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned long pages_to_map,unsigned long * insert_addr,u32 * length_with_pending,u32 * seq,struct tcp_zerocopy_receive * zc)1873 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1874 					struct page **pages,
1875 					unsigned long pages_to_map,
1876 					unsigned long *insert_addr,
1877 					u32 *length_with_pending,
1878 					u32 *seq,
1879 					struct tcp_zerocopy_receive *zc)
1880 {
1881 	unsigned long pages_remaining = pages_to_map;
1882 	int bytes_mapped;
1883 	int ret;
1884 
1885 	ret = vm_insert_pages(vma, *insert_addr, pages, &pages_remaining);
1886 	bytes_mapped = PAGE_SIZE * (pages_to_map - pages_remaining);
1887 	/* Even if vm_insert_pages fails, it may have partially succeeded in
1888 	 * mapping (some but not all of the pages).
1889 	 */
1890 	*seq += bytes_mapped;
1891 	*insert_addr += bytes_mapped;
1892 	if (ret) {
1893 		/* But if vm_insert_pages did fail, we have to unroll some state
1894 		 * we speculatively touched before.
1895 		 */
1896 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1897 		*length_with_pending -= bytes_not_mapped;
1898 		zc->recv_skip_hint += bytes_not_mapped;
1899 	}
1900 	return ret;
1901 }
1902 
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc)1903 static int tcp_zerocopy_receive(struct sock *sk,
1904 				struct tcp_zerocopy_receive *zc)
1905 {
1906 	u32 length = 0, offset, vma_len, avail_len, aligned_len, copylen = 0;
1907 	unsigned long address = (unsigned long)zc->address;
1908 	s32 copybuf_len = zc->copybuf_len;
1909 	struct tcp_sock *tp = tcp_sk(sk);
1910 	#define PAGE_BATCH_SIZE 8
1911 	struct page *pages[PAGE_BATCH_SIZE];
1912 	const skb_frag_t *frags = NULL;
1913 	struct vm_area_struct *vma;
1914 	struct sk_buff *skb = NULL;
1915 	unsigned long pg_idx = 0;
1916 	unsigned long curr_addr;
1917 	u32 seq = tp->copied_seq;
1918 	int inq = tcp_inq(sk);
1919 	int ret;
1920 
1921 	zc->copybuf_len = 0;
1922 
1923 	if (address & (PAGE_SIZE - 1) || address != zc->address)
1924 		return -EINVAL;
1925 
1926 	if (sk->sk_state == TCP_LISTEN)
1927 		return -ENOTCONN;
1928 
1929 	sock_rps_record_flow(sk);
1930 
1931 	mmap_read_lock(current->mm);
1932 
1933 	vma = find_vma(current->mm, address);
1934 	if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) {
1935 		mmap_read_unlock(current->mm);
1936 		return -EINVAL;
1937 	}
1938 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
1939 	avail_len = min_t(u32, vma_len, inq);
1940 	aligned_len = avail_len & ~(PAGE_SIZE - 1);
1941 	if (aligned_len) {
1942 		zap_page_range(vma, address, aligned_len);
1943 		zc->length = aligned_len;
1944 		zc->recv_skip_hint = 0;
1945 	} else {
1946 		zc->length = avail_len;
1947 		zc->recv_skip_hint = avail_len;
1948 	}
1949 	ret = 0;
1950 	curr_addr = address;
1951 	while (length + PAGE_SIZE <= zc->length) {
1952 		int mappable_offset;
1953 
1954 		if (zc->recv_skip_hint < PAGE_SIZE) {
1955 			u32 offset_frag;
1956 
1957 			/* If we're here, finish the current batch. */
1958 			if (pg_idx) {
1959 				ret = tcp_zerocopy_vm_insert_batch(vma, pages,
1960 								   pg_idx,
1961 								   &curr_addr,
1962 								   &length,
1963 								   &seq, zc);
1964 				if (ret)
1965 					goto out;
1966 				pg_idx = 0;
1967 			}
1968 			if (skb) {
1969 				if (zc->recv_skip_hint > 0)
1970 					break;
1971 				skb = skb->next;
1972 				offset = seq - TCP_SKB_CB(skb)->seq;
1973 			} else {
1974 				skb = tcp_recv_skb(sk, seq, &offset);
1975 			}
1976 			zc->recv_skip_hint = skb->len - offset;
1977 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
1978 			if (!frags || offset_frag)
1979 				break;
1980 		}
1981 
1982 		mappable_offset = find_next_mappable_frag(frags,
1983 							  zc->recv_skip_hint);
1984 		if (mappable_offset) {
1985 			zc->recv_skip_hint = mappable_offset;
1986 			break;
1987 		}
1988 		pages[pg_idx] = skb_frag_page(frags);
1989 		pg_idx++;
1990 		length += PAGE_SIZE;
1991 		zc->recv_skip_hint -= PAGE_SIZE;
1992 		frags++;
1993 		if (pg_idx == PAGE_BATCH_SIZE) {
1994 			ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
1995 							   &curr_addr, &length,
1996 							   &seq, zc);
1997 			if (ret)
1998 				goto out;
1999 			pg_idx = 0;
2000 		}
2001 	}
2002 	if (pg_idx) {
2003 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
2004 						   &curr_addr, &length, &seq,
2005 						   zc);
2006 	}
2007 out:
2008 	mmap_read_unlock(current->mm);
2009 	/* Try to copy straggler data. */
2010 	if (!ret)
2011 		copylen = tcp_zerocopy_handle_leftover_data(zc, sk, skb, &seq,
2012 							    copybuf_len);
2013 
2014 	if (length + copylen) {
2015 		WRITE_ONCE(tp->copied_seq, seq);
2016 		tcp_rcv_space_adjust(sk);
2017 
2018 		/* Clean up data we have read: This will do ACK frames. */
2019 		tcp_recv_skb(sk, seq, &offset);
2020 		tcp_cleanup_rbuf(sk, length + copylen);
2021 		ret = 0;
2022 		if (length == zc->length)
2023 			zc->recv_skip_hint = 0;
2024 	} else {
2025 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2026 			ret = -EIO;
2027 	}
2028 	zc->length = length;
2029 	return ret;
2030 }
2031 #endif
2032 
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)2033 static void tcp_update_recv_tstamps(struct sk_buff *skb,
2034 				    struct scm_timestamping_internal *tss)
2035 {
2036 	if (skb->tstamp)
2037 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
2038 	else
2039 		tss->ts[0] = (struct timespec64) {0};
2040 
2041 	if (skb_hwtstamps(skb)->hwtstamp)
2042 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
2043 	else
2044 		tss->ts[2] = (struct timespec64) {0};
2045 }
2046 
2047 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2048 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2049 			       struct scm_timestamping_internal *tss)
2050 {
2051 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2052 	bool has_timestamping = false;
2053 
2054 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2055 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2056 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2057 				if (new_tstamp) {
2058 					struct __kernel_timespec kts = {
2059 						.tv_sec = tss->ts[0].tv_sec,
2060 						.tv_nsec = tss->ts[0].tv_nsec,
2061 					};
2062 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2063 						 sizeof(kts), &kts);
2064 				} else {
2065 					struct __kernel_old_timespec ts_old = {
2066 						.tv_sec = tss->ts[0].tv_sec,
2067 						.tv_nsec = tss->ts[0].tv_nsec,
2068 					};
2069 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2070 						 sizeof(ts_old), &ts_old);
2071 				}
2072 			} else {
2073 				if (new_tstamp) {
2074 					struct __kernel_sock_timeval stv = {
2075 						.tv_sec = tss->ts[0].tv_sec,
2076 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2077 					};
2078 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2079 						 sizeof(stv), &stv);
2080 				} else {
2081 					struct __kernel_old_timeval tv = {
2082 						.tv_sec = tss->ts[0].tv_sec,
2083 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2084 					};
2085 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2086 						 sizeof(tv), &tv);
2087 				}
2088 			}
2089 		}
2090 
2091 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2092 			has_timestamping = true;
2093 		else
2094 			tss->ts[0] = (struct timespec64) {0};
2095 	}
2096 
2097 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2098 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2099 			has_timestamping = true;
2100 		else
2101 			tss->ts[2] = (struct timespec64) {0};
2102 	}
2103 
2104 	if (has_timestamping) {
2105 		tss->ts[1] = (struct timespec64) {0};
2106 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2107 			put_cmsg_scm_timestamping64(msg, tss);
2108 		else
2109 			put_cmsg_scm_timestamping(msg, tss);
2110 	}
2111 }
2112 
tcp_inq_hint(struct sock * sk)2113 static int tcp_inq_hint(struct sock *sk)
2114 {
2115 	const struct tcp_sock *tp = tcp_sk(sk);
2116 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2117 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2118 	int inq;
2119 
2120 	inq = rcv_nxt - copied_seq;
2121 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2122 		lock_sock(sk);
2123 		inq = tp->rcv_nxt - tp->copied_seq;
2124 		release_sock(sk);
2125 	}
2126 	/* After receiving a FIN, tell the user-space to continue reading
2127 	 * by returning a non-zero inq.
2128 	 */
2129 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2130 		inq = 1;
2131 	return inq;
2132 }
2133 
2134 /*
2135  *	This routine copies from a sock struct into the user buffer.
2136  *
2137  *	Technical note: in 2.3 we work on _locked_ socket, so that
2138  *	tricks with *seq access order and skb->users are not required.
2139  *	Probably, code can be easily improved even more.
2140  */
2141 
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)2142 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
2143 		int flags, int *addr_len)
2144 {
2145 	struct tcp_sock *tp = tcp_sk(sk);
2146 	int copied = 0;
2147 	u32 peek_seq;
2148 	u32 *seq;
2149 	unsigned long used;
2150 	int err, inq;
2151 	int target;		/* Read at least this many bytes */
2152 	long timeo;
2153 	struct sk_buff *skb, *last;
2154 	u32 urg_hole = 0;
2155 	struct scm_timestamping_internal tss;
2156 	int cmsg_flags;
2157 
2158 	if (unlikely(flags & MSG_ERRQUEUE))
2159 		return inet_recv_error(sk, msg, len, addr_len);
2160 
2161 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2162 	    (sk->sk_state == TCP_ESTABLISHED))
2163 		sk_busy_loop(sk, nonblock);
2164 
2165 	lock_sock(sk);
2166 
2167 	err = -ENOTCONN;
2168 	if (sk->sk_state == TCP_LISTEN)
2169 		goto out;
2170 
2171 	cmsg_flags = tp->recvmsg_inq ? 1 : 0;
2172 	timeo = sock_rcvtimeo(sk, nonblock);
2173 
2174 	/* Urgent data needs to be handled specially. */
2175 	if (flags & MSG_OOB)
2176 		goto recv_urg;
2177 
2178 	if (unlikely(tp->repair)) {
2179 		err = -EPERM;
2180 		if (!(flags & MSG_PEEK))
2181 			goto out;
2182 
2183 		if (tp->repair_queue == TCP_SEND_QUEUE)
2184 			goto recv_sndq;
2185 
2186 		err = -EINVAL;
2187 		if (tp->repair_queue == TCP_NO_QUEUE)
2188 			goto out;
2189 
2190 		/* 'common' recv queue MSG_PEEK-ing */
2191 	}
2192 
2193 	seq = &tp->copied_seq;
2194 	if (flags & MSG_PEEK) {
2195 		peek_seq = tp->copied_seq;
2196 		seq = &peek_seq;
2197 	}
2198 
2199 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2200 
2201 	do {
2202 		u32 offset;
2203 
2204 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2205 		if (tp->urg_data && tp->urg_seq == *seq) {
2206 			if (copied)
2207 				break;
2208 			if (signal_pending(current)) {
2209 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2210 				break;
2211 			}
2212 		}
2213 
2214 		/* Next get a buffer. */
2215 
2216 		last = skb_peek_tail(&sk->sk_receive_queue);
2217 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2218 			last = skb;
2219 			/* Now that we have two receive queues this
2220 			 * shouldn't happen.
2221 			 */
2222 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2223 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2224 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2225 				 flags))
2226 				break;
2227 
2228 			offset = *seq - TCP_SKB_CB(skb)->seq;
2229 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2230 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2231 				offset--;
2232 			}
2233 			if (offset < skb->len)
2234 				goto found_ok_skb;
2235 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2236 				goto found_fin_ok;
2237 			WARN(!(flags & MSG_PEEK),
2238 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2239 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2240 		}
2241 
2242 		/* Well, if we have backlog, try to process it now yet. */
2243 
2244 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2245 			break;
2246 
2247 		if (copied) {
2248 			if (sk->sk_err ||
2249 			    sk->sk_state == TCP_CLOSE ||
2250 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2251 			    !timeo ||
2252 			    signal_pending(current))
2253 				break;
2254 		} else {
2255 			if (sock_flag(sk, SOCK_DONE))
2256 				break;
2257 
2258 			if (sk->sk_err) {
2259 				copied = sock_error(sk);
2260 				break;
2261 			}
2262 
2263 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2264 				break;
2265 
2266 			if (sk->sk_state == TCP_CLOSE) {
2267 				/* This occurs when user tries to read
2268 				 * from never connected socket.
2269 				 */
2270 				copied = -ENOTCONN;
2271 				break;
2272 			}
2273 
2274 			if (!timeo) {
2275 				copied = -EAGAIN;
2276 				break;
2277 			}
2278 
2279 			if (signal_pending(current)) {
2280 				copied = sock_intr_errno(timeo);
2281 				break;
2282 			}
2283 		}
2284 
2285 		tcp_cleanup_rbuf(sk, copied);
2286 
2287 		if (copied >= target) {
2288 			/* Do not sleep, just process backlog. */
2289 			release_sock(sk);
2290 			lock_sock(sk);
2291 		} else {
2292 			sk_wait_data(sk, &timeo, last);
2293 		}
2294 
2295 		if ((flags & MSG_PEEK) &&
2296 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2297 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2298 					    current->comm,
2299 					    task_pid_nr(current));
2300 			peek_seq = tp->copied_seq;
2301 		}
2302 		continue;
2303 
2304 found_ok_skb:
2305 		/* Ok so how much can we use? */
2306 		used = skb->len - offset;
2307 		if (len < used)
2308 			used = len;
2309 
2310 		/* Do we have urgent data here? */
2311 		if (tp->urg_data) {
2312 			u32 urg_offset = tp->urg_seq - *seq;
2313 			if (urg_offset < used) {
2314 				if (!urg_offset) {
2315 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2316 						WRITE_ONCE(*seq, *seq + 1);
2317 						urg_hole++;
2318 						offset++;
2319 						used--;
2320 						if (!used)
2321 							goto skip_copy;
2322 					}
2323 				} else
2324 					used = urg_offset;
2325 			}
2326 		}
2327 
2328 		if (!(flags & MSG_TRUNC)) {
2329 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2330 			if (err) {
2331 				/* Exception. Bailout! */
2332 				if (!copied)
2333 					copied = -EFAULT;
2334 				break;
2335 			}
2336 		}
2337 
2338 		WRITE_ONCE(*seq, *seq + used);
2339 		copied += used;
2340 		len -= used;
2341 
2342 		tcp_rcv_space_adjust(sk);
2343 
2344 skip_copy:
2345 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2346 			tp->urg_data = 0;
2347 			tcp_fast_path_check(sk);
2348 		}
2349 
2350 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2351 			tcp_update_recv_tstamps(skb, &tss);
2352 			cmsg_flags |= 2;
2353 		}
2354 
2355 		if (used + offset < skb->len)
2356 			continue;
2357 
2358 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2359 			goto found_fin_ok;
2360 		if (!(flags & MSG_PEEK))
2361 			sk_eat_skb(sk, skb);
2362 		continue;
2363 
2364 found_fin_ok:
2365 		/* Process the FIN. */
2366 		WRITE_ONCE(*seq, *seq + 1);
2367 		if (!(flags & MSG_PEEK))
2368 			sk_eat_skb(sk, skb);
2369 		break;
2370 	} while (len > 0);
2371 
2372 	/* According to UNIX98, msg_name/msg_namelen are ignored
2373 	 * on connected socket. I was just happy when found this 8) --ANK
2374 	 */
2375 
2376 	/* Clean up data we have read: This will do ACK frames. */
2377 	tcp_cleanup_rbuf(sk, copied);
2378 
2379 	release_sock(sk);
2380 
2381 	if (cmsg_flags) {
2382 		if (cmsg_flags & 2)
2383 			tcp_recv_timestamp(msg, sk, &tss);
2384 		if (cmsg_flags & 1) {
2385 			inq = tcp_inq_hint(sk);
2386 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2387 		}
2388 	}
2389 
2390 	return copied;
2391 
2392 out:
2393 	release_sock(sk);
2394 	return err;
2395 
2396 recv_urg:
2397 	err = tcp_recv_urg(sk, msg, len, flags);
2398 	goto out;
2399 
2400 recv_sndq:
2401 	err = tcp_peek_sndq(sk, msg, len);
2402 	goto out;
2403 }
2404 EXPORT_SYMBOL(tcp_recvmsg);
2405 
tcp_set_state(struct sock * sk,int state)2406 void tcp_set_state(struct sock *sk, int state)
2407 {
2408 	int oldstate = sk->sk_state;
2409 
2410 	/* We defined a new enum for TCP states that are exported in BPF
2411 	 * so as not force the internal TCP states to be frozen. The
2412 	 * following checks will detect if an internal state value ever
2413 	 * differs from the BPF value. If this ever happens, then we will
2414 	 * need to remap the internal value to the BPF value before calling
2415 	 * tcp_call_bpf_2arg.
2416 	 */
2417 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2418 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2419 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2420 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2421 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2422 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2423 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2424 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2425 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2426 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2427 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2428 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2429 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2430 
2431 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2432 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2433 
2434 	switch (state) {
2435 	case TCP_ESTABLISHED:
2436 		if (oldstate != TCP_ESTABLISHED)
2437 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2438 		break;
2439 
2440 	case TCP_CLOSE:
2441 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2442 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2443 
2444 		sk->sk_prot->unhash(sk);
2445 		if (inet_csk(sk)->icsk_bind_hash &&
2446 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2447 			inet_put_port(sk);
2448 		fallthrough;
2449 	default:
2450 		if (oldstate == TCP_ESTABLISHED)
2451 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2452 	}
2453 
2454 	/* Change state AFTER socket is unhashed to avoid closed
2455 	 * socket sitting in hash tables.
2456 	 */
2457 	inet_sk_state_store(sk, state);
2458 }
2459 EXPORT_SYMBOL_GPL(tcp_set_state);
2460 
2461 /*
2462  *	State processing on a close. This implements the state shift for
2463  *	sending our FIN frame. Note that we only send a FIN for some
2464  *	states. A shutdown() may have already sent the FIN, or we may be
2465  *	closed.
2466  */
2467 
2468 static const unsigned char new_state[16] = {
2469   /* current state:        new state:      action:	*/
2470   [0 /* (Invalid) */]	= TCP_CLOSE,
2471   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2472   [TCP_SYN_SENT]	= TCP_CLOSE,
2473   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2474   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2475   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2476   [TCP_TIME_WAIT]	= TCP_CLOSE,
2477   [TCP_CLOSE]		= TCP_CLOSE,
2478   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2479   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2480   [TCP_LISTEN]		= TCP_CLOSE,
2481   [TCP_CLOSING]		= TCP_CLOSING,
2482   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2483 };
2484 
tcp_close_state(struct sock * sk)2485 static int tcp_close_state(struct sock *sk)
2486 {
2487 	int next = (int)new_state[sk->sk_state];
2488 	int ns = next & TCP_STATE_MASK;
2489 
2490 	tcp_set_state(sk, ns);
2491 
2492 	return next & TCP_ACTION_FIN;
2493 }
2494 
2495 /*
2496  *	Shutdown the sending side of a connection. Much like close except
2497  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2498  */
2499 
tcp_shutdown(struct sock * sk,int how)2500 void tcp_shutdown(struct sock *sk, int how)
2501 {
2502 	/*	We need to grab some memory, and put together a FIN,
2503 	 *	and then put it into the queue to be sent.
2504 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2505 	 */
2506 	if (!(how & SEND_SHUTDOWN))
2507 		return;
2508 
2509 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2510 	if ((1 << sk->sk_state) &
2511 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2512 	     TCPF_CLOSE_WAIT)) {
2513 		/* Clear out any half completed packets.  FIN if needed. */
2514 		if (tcp_close_state(sk))
2515 			tcp_send_fin(sk);
2516 	}
2517 }
2518 EXPORT_SYMBOL(tcp_shutdown);
2519 
tcp_orphan_count_sum(void)2520 int tcp_orphan_count_sum(void)
2521 {
2522 	int i, total = 0;
2523 
2524 	for_each_possible_cpu(i)
2525 		total += per_cpu(tcp_orphan_count, i);
2526 
2527 	return max(total, 0);
2528 }
2529 
2530 static int tcp_orphan_cache;
2531 static struct timer_list tcp_orphan_timer;
2532 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2533 
tcp_orphan_update(struct timer_list * unused)2534 static void tcp_orphan_update(struct timer_list *unused)
2535 {
2536 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2537 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2538 }
2539 
tcp_too_many_orphans(int shift)2540 static bool tcp_too_many_orphans(int shift)
2541 {
2542 	return READ_ONCE(tcp_orphan_cache) << shift >
2543 		READ_ONCE(sysctl_tcp_max_orphans);
2544 }
2545 
tcp_check_oom(struct sock * sk,int shift)2546 bool tcp_check_oom(struct sock *sk, int shift)
2547 {
2548 	bool too_many_orphans, out_of_socket_memory;
2549 
2550 	too_many_orphans = tcp_too_many_orphans(shift);
2551 	out_of_socket_memory = tcp_out_of_memory(sk);
2552 
2553 	if (too_many_orphans)
2554 		net_info_ratelimited("too many orphaned sockets\n");
2555 	if (out_of_socket_memory)
2556 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2557 	return too_many_orphans || out_of_socket_memory;
2558 }
2559 
__tcp_close(struct sock * sk,long timeout)2560 void __tcp_close(struct sock *sk, long timeout)
2561 {
2562 	struct sk_buff *skb;
2563 	int data_was_unread = 0;
2564 	int state;
2565 
2566 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2567 
2568 	if (sk->sk_state == TCP_LISTEN) {
2569 		tcp_set_state(sk, TCP_CLOSE);
2570 
2571 		/* Special case. */
2572 		inet_csk_listen_stop(sk);
2573 
2574 		goto adjudge_to_death;
2575 	}
2576 
2577 	/*  We need to flush the recv. buffs.  We do this only on the
2578 	 *  descriptor close, not protocol-sourced closes, because the
2579 	 *  reader process may not have drained the data yet!
2580 	 */
2581 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2582 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2583 
2584 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2585 			len--;
2586 		data_was_unread += len;
2587 		__kfree_skb(skb);
2588 	}
2589 
2590 	sk_mem_reclaim(sk);
2591 
2592 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2593 	if (sk->sk_state == TCP_CLOSE)
2594 		goto adjudge_to_death;
2595 
2596 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2597 	 * data was lost. To witness the awful effects of the old behavior of
2598 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2599 	 * GET in an FTP client, suspend the process, wait for the client to
2600 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2601 	 * Note: timeout is always zero in such a case.
2602 	 */
2603 	if (unlikely(tcp_sk(sk)->repair)) {
2604 		sk->sk_prot->disconnect(sk, 0);
2605 	} else if (data_was_unread) {
2606 		/* Unread data was tossed, zap the connection. */
2607 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2608 		tcp_set_state(sk, TCP_CLOSE);
2609 		tcp_send_active_reset(sk, sk->sk_allocation);
2610 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2611 		/* Check zero linger _after_ checking for unread data. */
2612 		sk->sk_prot->disconnect(sk, 0);
2613 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2614 	} else if (tcp_close_state(sk)) {
2615 		/* We FIN if the application ate all the data before
2616 		 * zapping the connection.
2617 		 */
2618 
2619 		/* RED-PEN. Formally speaking, we have broken TCP state
2620 		 * machine. State transitions:
2621 		 *
2622 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2623 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (it is difficult)
2624 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2625 		 *
2626 		 * are legal only when FIN has been sent (i.e. in window),
2627 		 * rather than queued out of window. Purists blame.
2628 		 *
2629 		 * F.e. "RFC state" is ESTABLISHED,
2630 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2631 		 *
2632 		 * The visible declinations are that sometimes
2633 		 * we enter time-wait state, when it is not required really
2634 		 * (harmless), do not send active resets, when they are
2635 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2636 		 * they look as CLOSING or LAST_ACK for Linux)
2637 		 * Probably, I missed some more holelets.
2638 		 * 						--ANK
2639 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2640 		 * in a single packet! (May consider it later but will
2641 		 * probably need API support or TCP_CORK SYN-ACK until
2642 		 * data is written and socket is closed.)
2643 		 */
2644 		tcp_send_fin(sk);
2645 	}
2646 
2647 	sk_stream_wait_close(sk, timeout);
2648 
2649 adjudge_to_death:
2650 	state = sk->sk_state;
2651 	sock_hold(sk);
2652 	sock_orphan(sk);
2653 
2654 	local_bh_disable();
2655 	bh_lock_sock(sk);
2656 	/* remove backlog if any, without releasing ownership. */
2657 	__release_sock(sk);
2658 
2659 	this_cpu_inc(tcp_orphan_count);
2660 
2661 	/* Have we already been destroyed by a softirq or backlog? */
2662 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2663 		goto out;
2664 
2665 	/*	This is a (useful) BSD violating of the RFC. There is a
2666 	 *	problem with TCP as specified in that the other end could
2667 	 *	keep a socket open forever with no application left this end.
2668 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2669 	 *	our end. If they send after that then tough - BUT: long enough
2670 	 *	that we won't make the old 4*rto = almost no time - whoops
2671 	 *	reset mistake.
2672 	 *
2673 	 *	Nope, it was not mistake. It is really desired behaviour
2674 	 *	f.e. on http servers, when such sockets are useless, but
2675 	 *	consume significant resources. Let's do it with special
2676 	 *	linger2	option.					--ANK
2677 	 */
2678 
2679 	if (sk->sk_state == TCP_FIN_WAIT2) {
2680 		struct tcp_sock *tp = tcp_sk(sk);
2681 		if (tp->linger2 < 0) {
2682 			tcp_set_state(sk, TCP_CLOSE);
2683 			tcp_send_active_reset(sk, GFP_ATOMIC);
2684 			__NET_INC_STATS(sock_net(sk),
2685 					LINUX_MIB_TCPABORTONLINGER);
2686 		} else {
2687 			const int tmo = tcp_fin_time(sk);
2688 
2689 			if (tmo > TCP_TIMEWAIT_LEN) {
2690 				inet_csk_reset_keepalive_timer(sk,
2691 						tmo - TCP_TIMEWAIT_LEN);
2692 			} else {
2693 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2694 				goto out;
2695 			}
2696 		}
2697 	}
2698 	if (sk->sk_state != TCP_CLOSE) {
2699 		sk_mem_reclaim(sk);
2700 		if (tcp_check_oom(sk, 0)) {
2701 			tcp_set_state(sk, TCP_CLOSE);
2702 			tcp_send_active_reset(sk, GFP_ATOMIC);
2703 			__NET_INC_STATS(sock_net(sk),
2704 					LINUX_MIB_TCPABORTONMEMORY);
2705 		} else if (!check_net(sock_net(sk))) {
2706 			/* Not possible to send reset; just close */
2707 			tcp_set_state(sk, TCP_CLOSE);
2708 		}
2709 	}
2710 
2711 	if (sk->sk_state == TCP_CLOSE) {
2712 		struct request_sock *req;
2713 
2714 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2715 						lockdep_sock_is_held(sk));
2716 		/* We could get here with a non-NULL req if the socket is
2717 		 * aborted (e.g., closed with unread data) before 3WHS
2718 		 * finishes.
2719 		 */
2720 		if (req)
2721 			reqsk_fastopen_remove(sk, req, false);
2722 		inet_csk_destroy_sock(sk);
2723 	}
2724 	/* Otherwise, socket is reprieved until protocol close. */
2725 
2726 out:
2727 	bh_unlock_sock(sk);
2728 	local_bh_enable();
2729 }
2730 
tcp_close(struct sock * sk,long timeout)2731 void tcp_close(struct sock *sk, long timeout)
2732 {
2733 	lock_sock(sk);
2734 	__tcp_close(sk, timeout);
2735 	release_sock(sk);
2736 	if (!sk->sk_net_refcnt)
2737 		inet_csk_clear_xmit_timers_sync(sk);
2738 	sock_put(sk);
2739 }
2740 EXPORT_SYMBOL(tcp_close);
2741 
2742 /* These states need RST on ABORT according to RFC793 */
2743 
tcp_need_reset(int state)2744 static inline bool tcp_need_reset(int state)
2745 {
2746 	return (1 << state) &
2747 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2748 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2749 }
2750 
tcp_rtx_queue_purge(struct sock * sk)2751 static void tcp_rtx_queue_purge(struct sock *sk)
2752 {
2753 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2754 
2755 	tcp_sk(sk)->highest_sack = NULL;
2756 	while (p) {
2757 		struct sk_buff *skb = rb_to_skb(p);
2758 
2759 		p = rb_next(p);
2760 		/* Since we are deleting whole queue, no need to
2761 		 * list_del(&skb->tcp_tsorted_anchor)
2762 		 */
2763 		tcp_rtx_queue_unlink(skb, sk);
2764 		sk_wmem_free_skb(sk, skb);
2765 	}
2766 }
2767 
tcp_write_queue_purge(struct sock * sk)2768 void tcp_write_queue_purge(struct sock *sk)
2769 {
2770 	struct sk_buff *skb;
2771 
2772 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2773 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2774 		tcp_skb_tsorted_anchor_cleanup(skb);
2775 		sk_wmem_free_skb(sk, skb);
2776 	}
2777 	tcp_rtx_queue_purge(sk);
2778 	skb = sk->sk_tx_skb_cache;
2779 	if (skb) {
2780 		__kfree_skb(skb);
2781 		sk->sk_tx_skb_cache = NULL;
2782 	}
2783 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2784 	sk_mem_reclaim(sk);
2785 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2786 	tcp_sk(sk)->packets_out = 0;
2787 	inet_csk(sk)->icsk_backoff = 0;
2788 }
2789 
tcp_disconnect(struct sock * sk,int flags)2790 int tcp_disconnect(struct sock *sk, int flags)
2791 {
2792 	struct inet_sock *inet = inet_sk(sk);
2793 	struct inet_connection_sock *icsk = inet_csk(sk);
2794 	struct tcp_sock *tp = tcp_sk(sk);
2795 	int old_state = sk->sk_state;
2796 	u32 seq;
2797 
2798 	/* Deny disconnect if other threads are blocked in sk_wait_event()
2799 	 * or inet_wait_for_connect().
2800 	 */
2801 	if (sk->sk_wait_pending)
2802 		return -EBUSY;
2803 
2804 	if (old_state != TCP_CLOSE)
2805 		tcp_set_state(sk, TCP_CLOSE);
2806 
2807 	/* ABORT function of RFC793 */
2808 	if (old_state == TCP_LISTEN) {
2809 		inet_csk_listen_stop(sk);
2810 	} else if (unlikely(tp->repair)) {
2811 		sk->sk_err = ECONNABORTED;
2812 	} else if (tcp_need_reset(old_state) ||
2813 		   (tp->snd_nxt != tp->write_seq &&
2814 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2815 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2816 		 * states
2817 		 */
2818 		tcp_send_active_reset(sk, gfp_any());
2819 		sk->sk_err = ECONNRESET;
2820 	} else if (old_state == TCP_SYN_SENT)
2821 		sk->sk_err = ECONNRESET;
2822 
2823 	tcp_clear_xmit_timers(sk);
2824 	__skb_queue_purge(&sk->sk_receive_queue);
2825 	if (sk->sk_rx_skb_cache) {
2826 		__kfree_skb(sk->sk_rx_skb_cache);
2827 		sk->sk_rx_skb_cache = NULL;
2828 	}
2829 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2830 	tp->urg_data = 0;
2831 	tcp_write_queue_purge(sk);
2832 	tcp_fastopen_active_disable_ofo_check(sk);
2833 	skb_rbtree_purge(&tp->out_of_order_queue);
2834 
2835 	inet->inet_dport = 0;
2836 
2837 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2838 		inet_reset_saddr(sk);
2839 
2840 	WRITE_ONCE(sk->sk_shutdown, 0);
2841 	sock_reset_flag(sk, SOCK_DONE);
2842 	tp->srtt_us = 0;
2843 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2844 	tp->rcv_rtt_last_tsecr = 0;
2845 
2846 	seq = tp->write_seq + tp->max_window + 2;
2847 	if (!seq)
2848 		seq = 1;
2849 	WRITE_ONCE(tp->write_seq, seq);
2850 
2851 	icsk->icsk_backoff = 0;
2852 	icsk->icsk_probes_out = 0;
2853 	icsk->icsk_probes_tstamp = 0;
2854 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
2855 	icsk->icsk_rto_min = TCP_RTO_MIN;
2856 	icsk->icsk_delack_max = TCP_DELACK_MAX;
2857 #if defined(CONFIG_TCP_NATA_URC) || defined(CONFIG_TCP_NATA_STL)
2858 	icsk->nata_retries_enabled = 0;
2859 	icsk->nata_retries_type = NATA_NA;
2860 	icsk->nata_syn_rto = TCP_TIMEOUT_INIT;
2861 	icsk->nata_data_rto = TCP_TIMEOUT_INIT;
2862 	icsk->nata_data_retries = 0;
2863 #endif
2864 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2865 	tp->snd_cwnd = TCP_INIT_CWND;
2866 	tp->snd_cwnd_cnt = 0;
2867 	tp->is_cwnd_limited = 0;
2868 	tp->max_packets_out = 0;
2869 	tp->window_clamp = 0;
2870 	tp->delivered = 0;
2871 	tp->delivered_ce = 0;
2872 	if (icsk->icsk_ca_ops->release)
2873 		icsk->icsk_ca_ops->release(sk);
2874 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
2875 	icsk->icsk_ca_initialized = 0;
2876 	tcp_set_ca_state(sk, TCP_CA_Open);
2877 	tp->is_sack_reneg = 0;
2878 	tcp_clear_retrans(tp);
2879 	tp->total_retrans = 0;
2880 	inet_csk_delack_init(sk);
2881 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2882 	 * issue in __tcp_select_window()
2883 	 */
2884 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2885 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2886 	__sk_dst_reset(sk);
2887 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
2888 	tcp_saved_syn_free(tp);
2889 	tp->compressed_ack = 0;
2890 	tp->segs_in = 0;
2891 	tp->segs_out = 0;
2892 	tp->bytes_sent = 0;
2893 	tp->bytes_acked = 0;
2894 	tp->bytes_received = 0;
2895 	tp->bytes_retrans = 0;
2896 	tp->data_segs_in = 0;
2897 	tp->data_segs_out = 0;
2898 	tp->duplicate_sack[0].start_seq = 0;
2899 	tp->duplicate_sack[0].end_seq = 0;
2900 	tp->dsack_dups = 0;
2901 	tp->reord_seen = 0;
2902 	tp->retrans_out = 0;
2903 	tp->sacked_out = 0;
2904 	tp->tlp_high_seq = 0;
2905 	tp->last_oow_ack_time = 0;
2906 	/* There's a bubble in the pipe until at least the first ACK. */
2907 	tp->app_limited = ~0U;
2908 	tp->rate_app_limited = 1;
2909 	tp->rack.mstamp = 0;
2910 	tp->rack.advanced = 0;
2911 	tp->rack.reo_wnd_steps = 1;
2912 	tp->rack.last_delivered = 0;
2913 	tp->rack.reo_wnd_persist = 0;
2914 	tp->rack.dsack_seen = 0;
2915 	tp->syn_data_acked = 0;
2916 	tp->rx_opt.saw_tstamp = 0;
2917 	tp->rx_opt.dsack = 0;
2918 	tp->rx_opt.num_sacks = 0;
2919 	tp->rcv_ooopack = 0;
2920 
2921 
2922 	/* Clean up fastopen related fields */
2923 	tcp_free_fastopen_req(tp);
2924 	inet->defer_connect = 0;
2925 	tp->fastopen_client_fail = 0;
2926 
2927 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2928 
2929 	if (sk->sk_frag.page) {
2930 		put_page(sk->sk_frag.page);
2931 		sk->sk_frag.page = NULL;
2932 		sk->sk_frag.offset = 0;
2933 	}
2934 
2935 	sk->sk_error_report(sk);
2936 	return 0;
2937 }
2938 EXPORT_SYMBOL(tcp_disconnect);
2939 
tcp_can_repair_sock(const struct sock * sk)2940 static inline bool tcp_can_repair_sock(const struct sock *sk)
2941 {
2942 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2943 		(sk->sk_state != TCP_LISTEN);
2944 }
2945 
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)2946 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
2947 {
2948 	struct tcp_repair_window opt;
2949 
2950 	if (!tp->repair)
2951 		return -EPERM;
2952 
2953 	if (len != sizeof(opt))
2954 		return -EINVAL;
2955 
2956 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
2957 		return -EFAULT;
2958 
2959 	if (opt.max_window < opt.snd_wnd)
2960 		return -EINVAL;
2961 
2962 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2963 		return -EINVAL;
2964 
2965 	if (after(opt.rcv_wup, tp->rcv_nxt))
2966 		return -EINVAL;
2967 
2968 	tp->snd_wl1	= opt.snd_wl1;
2969 	tp->snd_wnd	= opt.snd_wnd;
2970 	tp->max_window	= opt.max_window;
2971 
2972 	tp->rcv_wnd	= opt.rcv_wnd;
2973 	tp->rcv_wup	= opt.rcv_wup;
2974 
2975 	return 0;
2976 }
2977 
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)2978 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
2979 		unsigned int len)
2980 {
2981 	struct tcp_sock *tp = tcp_sk(sk);
2982 	struct tcp_repair_opt opt;
2983 	size_t offset = 0;
2984 
2985 	while (len >= sizeof(opt)) {
2986 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
2987 			return -EFAULT;
2988 
2989 		offset += sizeof(opt);
2990 		len -= sizeof(opt);
2991 
2992 		switch (opt.opt_code) {
2993 		case TCPOPT_MSS:
2994 			tp->rx_opt.mss_clamp = opt.opt_val;
2995 			tcp_mtup_init(sk);
2996 			break;
2997 		case TCPOPT_WINDOW:
2998 			{
2999 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3000 				u16 rcv_wscale = opt.opt_val >> 16;
3001 
3002 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3003 					return -EFBIG;
3004 
3005 				tp->rx_opt.snd_wscale = snd_wscale;
3006 				tp->rx_opt.rcv_wscale = rcv_wscale;
3007 				tp->rx_opt.wscale_ok = 1;
3008 			}
3009 			break;
3010 		case TCPOPT_SACK_PERM:
3011 			if (opt.opt_val != 0)
3012 				return -EINVAL;
3013 
3014 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3015 			break;
3016 		case TCPOPT_TIMESTAMP:
3017 			if (opt.opt_val != 0)
3018 				return -EINVAL;
3019 
3020 			tp->rx_opt.tstamp_ok = 1;
3021 			break;
3022 		}
3023 	}
3024 
3025 	return 0;
3026 }
3027 
3028 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3029 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3030 
tcp_enable_tx_delay(void)3031 static void tcp_enable_tx_delay(void)
3032 {
3033 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3034 		static int __tcp_tx_delay_enabled = 0;
3035 
3036 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3037 			static_branch_enable(&tcp_tx_delay_enabled);
3038 			pr_info("TCP_TX_DELAY enabled\n");
3039 		}
3040 	}
3041 }
3042 
3043 /* When set indicates to always queue non-full frames.  Later the user clears
3044  * this option and we transmit any pending partial frames in the queue.  This is
3045  * meant to be used alongside sendfile() to get properly filled frames when the
3046  * user (for example) must write out headers with a write() call first and then
3047  * use sendfile to send out the data parts.
3048  *
3049  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3050  * TCP_NODELAY.
3051  */
__tcp_sock_set_cork(struct sock * sk,bool on)3052 static void __tcp_sock_set_cork(struct sock *sk, bool on)
3053 {
3054 	struct tcp_sock *tp = tcp_sk(sk);
3055 
3056 	if (on) {
3057 		tp->nonagle |= TCP_NAGLE_CORK;
3058 	} else {
3059 		tp->nonagle &= ~TCP_NAGLE_CORK;
3060 		if (tp->nonagle & TCP_NAGLE_OFF)
3061 			tp->nonagle |= TCP_NAGLE_PUSH;
3062 		tcp_push_pending_frames(sk);
3063 	}
3064 }
3065 
tcp_sock_set_cork(struct sock * sk,bool on)3066 void tcp_sock_set_cork(struct sock *sk, bool on)
3067 {
3068 	lock_sock(sk);
3069 	__tcp_sock_set_cork(sk, on);
3070 	release_sock(sk);
3071 }
3072 EXPORT_SYMBOL(tcp_sock_set_cork);
3073 
3074 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3075  * remembered, but it is not activated until cork is cleared.
3076  *
3077  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3078  * even TCP_CORK for currently queued segments.
3079  */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3080 static void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3081 {
3082 	if (on) {
3083 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3084 		tcp_push_pending_frames(sk);
3085 	} else {
3086 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3087 	}
3088 }
3089 
tcp_sock_set_nodelay(struct sock * sk)3090 void tcp_sock_set_nodelay(struct sock *sk)
3091 {
3092 	lock_sock(sk);
3093 	__tcp_sock_set_nodelay(sk, true);
3094 	release_sock(sk);
3095 }
3096 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3097 
__tcp_sock_set_quickack(struct sock * sk,int val)3098 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3099 {
3100 	if (!val) {
3101 		inet_csk_enter_pingpong_mode(sk);
3102 		return;
3103 	}
3104 
3105 	inet_csk_exit_pingpong_mode(sk);
3106 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3107 	    inet_csk_ack_scheduled(sk)) {
3108 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3109 		tcp_cleanup_rbuf(sk, 1);
3110 		if (!(val & 1))
3111 			inet_csk_enter_pingpong_mode(sk);
3112 	}
3113 }
3114 
tcp_sock_set_quickack(struct sock * sk,int val)3115 void tcp_sock_set_quickack(struct sock *sk, int val)
3116 {
3117 	lock_sock(sk);
3118 	__tcp_sock_set_quickack(sk, val);
3119 	release_sock(sk);
3120 }
3121 EXPORT_SYMBOL(tcp_sock_set_quickack);
3122 
tcp_sock_set_syncnt(struct sock * sk,int val)3123 int tcp_sock_set_syncnt(struct sock *sk, int val)
3124 {
3125 	if (val < 1 || val > MAX_TCP_SYNCNT)
3126 		return -EINVAL;
3127 
3128 	lock_sock(sk);
3129 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3130 	release_sock(sk);
3131 	return 0;
3132 }
3133 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3134 
tcp_sock_set_user_timeout(struct sock * sk,u32 val)3135 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3136 {
3137 	lock_sock(sk);
3138 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3139 	release_sock(sk);
3140 }
3141 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3142 
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3143 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3144 {
3145 	struct tcp_sock *tp = tcp_sk(sk);
3146 
3147 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3148 		return -EINVAL;
3149 
3150 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3151 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3152 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3153 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3154 		u32 elapsed = keepalive_time_elapsed(tp);
3155 
3156 		if (tp->keepalive_time > elapsed)
3157 			elapsed = tp->keepalive_time - elapsed;
3158 		else
3159 			elapsed = 0;
3160 		inet_csk_reset_keepalive_timer(sk, elapsed);
3161 	}
3162 
3163 	return 0;
3164 }
3165 
tcp_sock_set_keepidle(struct sock * sk,int val)3166 int tcp_sock_set_keepidle(struct sock *sk, int val)
3167 {
3168 	int err;
3169 
3170 	lock_sock(sk);
3171 	err = tcp_sock_set_keepidle_locked(sk, val);
3172 	release_sock(sk);
3173 	return err;
3174 }
3175 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3176 
tcp_sock_set_keepintvl(struct sock * sk,int val)3177 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3178 {
3179 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3180 		return -EINVAL;
3181 
3182 	lock_sock(sk);
3183 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3184 	release_sock(sk);
3185 	return 0;
3186 }
3187 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3188 
tcp_sock_set_keepcnt(struct sock * sk,int val)3189 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3190 {
3191 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3192 		return -EINVAL;
3193 
3194 	lock_sock(sk);
3195 	/* Paired with READ_ONCE() in keepalive_probes() */
3196 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3197 	release_sock(sk);
3198 	return 0;
3199 }
3200 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3201 
3202 /*
3203  *	Socket option code for TCP.
3204  */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3205 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3206 		sockptr_t optval, unsigned int optlen)
3207 {
3208 	struct tcp_sock *tp = tcp_sk(sk);
3209 	struct inet_connection_sock *icsk = inet_csk(sk);
3210 	struct net *net = sock_net(sk);
3211 	int val;
3212 	int err = 0;
3213 
3214 	/* These are data/string values, all the others are ints */
3215 	switch (optname) {
3216 	case TCP_CONGESTION: {
3217 		char name[TCP_CA_NAME_MAX];
3218 
3219 		if (optlen < 1)
3220 			return -EINVAL;
3221 
3222 		val = strncpy_from_sockptr(name, optval,
3223 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3224 		if (val < 0)
3225 			return -EFAULT;
3226 		name[val] = 0;
3227 
3228 		lock_sock(sk);
3229 		err = tcp_set_congestion_control(sk, name, true,
3230 						 ns_capable(sock_net(sk)->user_ns,
3231 							    CAP_NET_ADMIN));
3232 		release_sock(sk);
3233 		return err;
3234 	}
3235 	case TCP_ULP: {
3236 		char name[TCP_ULP_NAME_MAX];
3237 
3238 		if (optlen < 1)
3239 			return -EINVAL;
3240 
3241 		val = strncpy_from_sockptr(name, optval,
3242 					min_t(long, TCP_ULP_NAME_MAX - 1,
3243 					      optlen));
3244 		if (val < 0)
3245 			return -EFAULT;
3246 		name[val] = 0;
3247 
3248 		lock_sock(sk);
3249 		err = tcp_set_ulp(sk, name);
3250 		release_sock(sk);
3251 		return err;
3252 	}
3253 	case TCP_FASTOPEN_KEY: {
3254 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3255 		__u8 *backup_key = NULL;
3256 
3257 		/* Allow a backup key as well to facilitate key rotation
3258 		 * First key is the active one.
3259 		 */
3260 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3261 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3262 			return -EINVAL;
3263 
3264 		if (copy_from_sockptr(key, optval, optlen))
3265 			return -EFAULT;
3266 
3267 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3268 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3269 
3270 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3271 	}
3272 	default:
3273 		/* fallthru */
3274 		break;
3275 	}
3276 
3277 	if (optlen < sizeof(int))
3278 		return -EINVAL;
3279 
3280 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3281 		return -EFAULT;
3282 
3283 	lock_sock(sk);
3284 
3285 	switch (optname) {
3286 	case TCP_MAXSEG:
3287 		/* Values greater than interface MTU won't take effect. However
3288 		 * at the point when this call is done we typically don't yet
3289 		 * know which interface is going to be used
3290 		 */
3291 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3292 			err = -EINVAL;
3293 			break;
3294 		}
3295 		tp->rx_opt.user_mss = val;
3296 		break;
3297 
3298 	case TCP_NODELAY:
3299 		__tcp_sock_set_nodelay(sk, val);
3300 		break;
3301 
3302 	case TCP_THIN_LINEAR_TIMEOUTS:
3303 		if (val < 0 || val > 1)
3304 			err = -EINVAL;
3305 		else
3306 			tp->thin_lto = val;
3307 		break;
3308 
3309 	case TCP_THIN_DUPACK:
3310 		if (val < 0 || val > 1)
3311 			err = -EINVAL;
3312 		break;
3313 
3314 	case TCP_REPAIR:
3315 		if (!tcp_can_repair_sock(sk))
3316 			err = -EPERM;
3317 		else if (val == TCP_REPAIR_ON) {
3318 			tp->repair = 1;
3319 			sk->sk_reuse = SK_FORCE_REUSE;
3320 			tp->repair_queue = TCP_NO_QUEUE;
3321 		} else if (val == TCP_REPAIR_OFF) {
3322 			tp->repair = 0;
3323 			sk->sk_reuse = SK_NO_REUSE;
3324 			tcp_send_window_probe(sk);
3325 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3326 			tp->repair = 0;
3327 			sk->sk_reuse = SK_NO_REUSE;
3328 		} else
3329 			err = -EINVAL;
3330 
3331 		break;
3332 
3333 	case TCP_REPAIR_QUEUE:
3334 		if (!tp->repair)
3335 			err = -EPERM;
3336 		else if ((unsigned int)val < TCP_QUEUES_NR)
3337 			tp->repair_queue = val;
3338 		else
3339 			err = -EINVAL;
3340 		break;
3341 
3342 	case TCP_QUEUE_SEQ:
3343 		if (sk->sk_state != TCP_CLOSE) {
3344 			err = -EPERM;
3345 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3346 			if (!tcp_rtx_queue_empty(sk))
3347 				err = -EPERM;
3348 			else
3349 				WRITE_ONCE(tp->write_seq, val);
3350 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3351 			if (tp->rcv_nxt != tp->copied_seq) {
3352 				err = -EPERM;
3353 			} else {
3354 				WRITE_ONCE(tp->rcv_nxt, val);
3355 				WRITE_ONCE(tp->copied_seq, val);
3356 			}
3357 		} else {
3358 			err = -EINVAL;
3359 		}
3360 		break;
3361 
3362 	case TCP_REPAIR_OPTIONS:
3363 		if (!tp->repair)
3364 			err = -EINVAL;
3365 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3366 			err = tcp_repair_options_est(sk, optval, optlen);
3367 		else
3368 			err = -EPERM;
3369 		break;
3370 
3371 	case TCP_CORK:
3372 		__tcp_sock_set_cork(sk, val);
3373 		break;
3374 
3375 	case TCP_KEEPIDLE:
3376 		err = tcp_sock_set_keepidle_locked(sk, val);
3377 		break;
3378 	case TCP_KEEPINTVL:
3379 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3380 			err = -EINVAL;
3381 		else
3382 			WRITE_ONCE(tp->keepalive_intvl, val * HZ);
3383 		break;
3384 	case TCP_KEEPCNT:
3385 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3386 			err = -EINVAL;
3387 		else
3388 			WRITE_ONCE(tp->keepalive_probes, val);
3389 		break;
3390 	case TCP_SYNCNT:
3391 		if (val < 1 || val > MAX_TCP_SYNCNT)
3392 			err = -EINVAL;
3393 		else
3394 			WRITE_ONCE(icsk->icsk_syn_retries, val);
3395 		break;
3396 
3397 	case TCP_SAVE_SYN:
3398 		/* 0: disable, 1: enable, 2: start from ether_header */
3399 		if (val < 0 || val > 2)
3400 			err = -EINVAL;
3401 		else
3402 			tp->save_syn = val;
3403 		break;
3404 
3405 	case TCP_LINGER2:
3406 		if (val < 0)
3407 			WRITE_ONCE(tp->linger2, -1);
3408 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3409 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3410 		else
3411 			WRITE_ONCE(tp->linger2, val * HZ);
3412 		break;
3413 
3414 	case TCP_DEFER_ACCEPT:
3415 		/* Translate value in seconds to number of retransmits */
3416 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3417 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3418 					   TCP_RTO_MAX / HZ));
3419 		break;
3420 
3421 	case TCP_WINDOW_CLAMP:
3422 		if (!val) {
3423 			if (sk->sk_state != TCP_CLOSE) {
3424 				err = -EINVAL;
3425 				break;
3426 			}
3427 			tp->window_clamp = 0;
3428 		} else
3429 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3430 						SOCK_MIN_RCVBUF / 2 : val;
3431 		break;
3432 
3433 	case TCP_QUICKACK:
3434 		__tcp_sock_set_quickack(sk, val);
3435 		break;
3436 
3437 #ifdef CONFIG_TCP_MD5SIG
3438 	case TCP_MD5SIG:
3439 	case TCP_MD5SIG_EXT:
3440 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3441 		break;
3442 #endif
3443 	case TCP_USER_TIMEOUT:
3444 		/* Cap the max time in ms TCP will retry or probe the window
3445 		 * before giving up and aborting (ETIMEDOUT) a connection.
3446 		 */
3447 		if (val < 0)
3448 			err = -EINVAL;
3449 		else
3450 			WRITE_ONCE(icsk->icsk_user_timeout, val);
3451 		break;
3452 
3453 	case TCP_FASTOPEN:
3454 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3455 		    TCPF_LISTEN))) {
3456 			tcp_fastopen_init_key_once(net);
3457 
3458 			fastopen_queue_tune(sk, val);
3459 		} else {
3460 			err = -EINVAL;
3461 		}
3462 		break;
3463 	case TCP_FASTOPEN_CONNECT:
3464 		if (val > 1 || val < 0) {
3465 			err = -EINVAL;
3466 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3467 			   TFO_CLIENT_ENABLE) {
3468 			if (sk->sk_state == TCP_CLOSE)
3469 				tp->fastopen_connect = val;
3470 			else
3471 				err = -EINVAL;
3472 		} else {
3473 			err = -EOPNOTSUPP;
3474 		}
3475 		break;
3476 	case TCP_FASTOPEN_NO_COOKIE:
3477 		if (val > 1 || val < 0)
3478 			err = -EINVAL;
3479 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3480 			err = -EINVAL;
3481 		else
3482 			tp->fastopen_no_cookie = val;
3483 		break;
3484 	case TCP_TIMESTAMP:
3485 		if (!tp->repair)
3486 			err = -EPERM;
3487 		else
3488 			tp->tsoffset = val - tcp_time_stamp_raw();
3489 		break;
3490 	case TCP_REPAIR_WINDOW:
3491 		err = tcp_repair_set_window(tp, optval, optlen);
3492 		break;
3493 	case TCP_NOTSENT_LOWAT:
3494 		WRITE_ONCE(tp->notsent_lowat, val);
3495 		sk->sk_write_space(sk);
3496 		break;
3497 	case TCP_INQ:
3498 		if (val > 1 || val < 0)
3499 			err = -EINVAL;
3500 		else
3501 			tp->recvmsg_inq = val;
3502 		break;
3503 	case TCP_TX_DELAY:
3504 		if (val)
3505 			tcp_enable_tx_delay();
3506 		WRITE_ONCE(tp->tcp_tx_delay, val);
3507 		break;
3508 #ifdef CONFIG_TCP_NATA_URC
3509 	case TCP_NATA_URC:
3510 		err = tcp_set_nata_urc(sk, optval, optlen);
3511 		break;
3512 #endif
3513 #ifdef CONFIG_TCP_NATA_STL
3514 	case TCP_NATA_STL:
3515 		err = tcp_set_nata_stl(sk, optval, optlen);
3516 		break;
3517 #endif
3518 	default:
3519 		err = -ENOPROTOOPT;
3520 		break;
3521 	}
3522 
3523 	release_sock(sk);
3524 	return err;
3525 }
3526 
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3527 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3528 		   unsigned int optlen)
3529 {
3530 	const struct inet_connection_sock *icsk = inet_csk(sk);
3531 
3532 	if (level != SOL_TCP)
3533 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3534 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3535 								optval, optlen);
3536 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3537 }
3538 EXPORT_SYMBOL(tcp_setsockopt);
3539 
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3540 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3541 				      struct tcp_info *info)
3542 {
3543 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3544 	enum tcp_chrono i;
3545 
3546 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3547 		stats[i] = tp->chrono_stat[i - 1];
3548 		if (i == tp->chrono_type)
3549 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3550 		stats[i] *= USEC_PER_SEC / HZ;
3551 		total += stats[i];
3552 	}
3553 
3554 	info->tcpi_busy_time = total;
3555 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3556 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3557 }
3558 
3559 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3560 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3561 {
3562 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3563 	const struct inet_connection_sock *icsk = inet_csk(sk);
3564 	unsigned long rate;
3565 	u32 now;
3566 	u64 rate64;
3567 	bool slow;
3568 
3569 	memset(info, 0, sizeof(*info));
3570 	if (sk->sk_type != SOCK_STREAM)
3571 		return;
3572 
3573 	info->tcpi_state = inet_sk_state_load(sk);
3574 
3575 	/* Report meaningful fields for all TCP states, including listeners */
3576 	rate = READ_ONCE(sk->sk_pacing_rate);
3577 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3578 	info->tcpi_pacing_rate = rate64;
3579 
3580 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3581 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3582 	info->tcpi_max_pacing_rate = rate64;
3583 
3584 	info->tcpi_reordering = tp->reordering;
3585 	info->tcpi_snd_cwnd = tp->snd_cwnd;
3586 
3587 	if (info->tcpi_state == TCP_LISTEN) {
3588 		/* listeners aliased fields :
3589 		 * tcpi_unacked -> Number of children ready for accept()
3590 		 * tcpi_sacked  -> max backlog
3591 		 */
3592 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3593 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3594 		return;
3595 	}
3596 
3597 	slow = lock_sock_fast(sk);
3598 
3599 	info->tcpi_ca_state = icsk->icsk_ca_state;
3600 	info->tcpi_retransmits = icsk->icsk_retransmits;
3601 	info->tcpi_probes = icsk->icsk_probes_out;
3602 	info->tcpi_backoff = icsk->icsk_backoff;
3603 
3604 	if (tp->rx_opt.tstamp_ok)
3605 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3606 	if (tcp_is_sack(tp))
3607 		info->tcpi_options |= TCPI_OPT_SACK;
3608 	if (tp->rx_opt.wscale_ok) {
3609 		info->tcpi_options |= TCPI_OPT_WSCALE;
3610 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3611 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3612 	}
3613 
3614 	if (tp->ecn_flags & TCP_ECN_OK)
3615 		info->tcpi_options |= TCPI_OPT_ECN;
3616 	if (tp->ecn_flags & TCP_ECN_SEEN)
3617 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3618 	if (tp->syn_data_acked)
3619 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3620 
3621 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3622 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3623 	info->tcpi_snd_mss = tp->mss_cache;
3624 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3625 
3626 	info->tcpi_unacked = tp->packets_out;
3627 	info->tcpi_sacked = tp->sacked_out;
3628 
3629 	info->tcpi_lost = tp->lost_out;
3630 	info->tcpi_retrans = tp->retrans_out;
3631 
3632 	now = tcp_jiffies32;
3633 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3634 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3635 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3636 
3637 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3638 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3639 	info->tcpi_rtt = tp->srtt_us >> 3;
3640 	info->tcpi_rttvar = tp->mdev_us >> 2;
3641 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3642 	info->tcpi_advmss = tp->advmss;
3643 
3644 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3645 	info->tcpi_rcv_space = tp->rcvq_space.space;
3646 
3647 	info->tcpi_total_retrans = tp->total_retrans;
3648 
3649 	info->tcpi_bytes_acked = tp->bytes_acked;
3650 	info->tcpi_bytes_received = tp->bytes_received;
3651 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3652 	tcp_get_info_chrono_stats(tp, info);
3653 
3654 	info->tcpi_segs_out = tp->segs_out;
3655 	info->tcpi_segs_in = tp->segs_in;
3656 
3657 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3658 	info->tcpi_data_segs_in = tp->data_segs_in;
3659 	info->tcpi_data_segs_out = tp->data_segs_out;
3660 
3661 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3662 	rate64 = tcp_compute_delivery_rate(tp);
3663 	if (rate64)
3664 		info->tcpi_delivery_rate = rate64;
3665 	info->tcpi_delivered = tp->delivered;
3666 	info->tcpi_delivered_ce = tp->delivered_ce;
3667 	info->tcpi_bytes_sent = tp->bytes_sent;
3668 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3669 	info->tcpi_dsack_dups = tp->dsack_dups;
3670 	info->tcpi_reord_seen = tp->reord_seen;
3671 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3672 	info->tcpi_snd_wnd = tp->snd_wnd;
3673 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3674 	unlock_sock_fast(sk, slow);
3675 }
3676 EXPORT_SYMBOL_GPL(tcp_get_info);
3677 
tcp_opt_stats_get_size(void)3678 static size_t tcp_opt_stats_get_size(void)
3679 {
3680 	return
3681 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3682 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3683 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3684 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3685 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3686 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3687 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3688 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3689 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3690 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3691 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3692 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3693 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3694 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3695 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3696 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3697 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3698 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3699 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3700 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3701 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3702 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3703 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3704 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3705 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3706 		0;
3707 }
3708 
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb)3709 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3710 					       const struct sk_buff *orig_skb)
3711 {
3712 	const struct tcp_sock *tp = tcp_sk(sk);
3713 	struct sk_buff *stats;
3714 	struct tcp_info info;
3715 	unsigned long rate;
3716 	u64 rate64;
3717 
3718 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3719 	if (!stats)
3720 		return NULL;
3721 
3722 	tcp_get_info_chrono_stats(tp, &info);
3723 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3724 			  info.tcpi_busy_time, TCP_NLA_PAD);
3725 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3726 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3727 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3728 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3729 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3730 			  tp->data_segs_out, TCP_NLA_PAD);
3731 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3732 			  tp->total_retrans, TCP_NLA_PAD);
3733 
3734 	rate = READ_ONCE(sk->sk_pacing_rate);
3735 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3736 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3737 
3738 	rate64 = tcp_compute_delivery_rate(tp);
3739 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3740 
3741 	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3742 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3743 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3744 
3745 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3746 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3747 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3748 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3749 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3750 
3751 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3752 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3753 
3754 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3755 			  TCP_NLA_PAD);
3756 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3757 			  TCP_NLA_PAD);
3758 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3759 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3760 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3761 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3762 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3763 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3764 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3765 			  TCP_NLA_PAD);
3766 
3767 	return stats;
3768 }
3769 
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3770 static int do_tcp_getsockopt(struct sock *sk, int level,
3771 		int optname, char __user *optval, int __user *optlen)
3772 {
3773 	struct inet_connection_sock *icsk = inet_csk(sk);
3774 	struct tcp_sock *tp = tcp_sk(sk);
3775 	struct net *net = sock_net(sk);
3776 	int val, len;
3777 
3778 	if (get_user(len, optlen))
3779 		return -EFAULT;
3780 
3781 	len = min_t(unsigned int, len, sizeof(int));
3782 
3783 	if (len < 0)
3784 		return -EINVAL;
3785 
3786 	switch (optname) {
3787 	case TCP_MAXSEG:
3788 		val = tp->mss_cache;
3789 		if (tp->rx_opt.user_mss &&
3790 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3791 			val = tp->rx_opt.user_mss;
3792 		if (tp->repair)
3793 			val = tp->rx_opt.mss_clamp;
3794 		break;
3795 	case TCP_NODELAY:
3796 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3797 		break;
3798 	case TCP_CORK:
3799 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3800 		break;
3801 	case TCP_KEEPIDLE:
3802 		val = keepalive_time_when(tp) / HZ;
3803 		break;
3804 	case TCP_KEEPINTVL:
3805 		val = keepalive_intvl_when(tp) / HZ;
3806 		break;
3807 	case TCP_KEEPCNT:
3808 		val = keepalive_probes(tp);
3809 		break;
3810 	case TCP_SYNCNT:
3811 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
3812 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
3813 		break;
3814 	case TCP_LINGER2:
3815 		val = READ_ONCE(tp->linger2);
3816 		if (val >= 0)
3817 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
3818 		break;
3819 	case TCP_DEFER_ACCEPT:
3820 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
3821 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
3822 				      TCP_RTO_MAX / HZ);
3823 		break;
3824 	case TCP_WINDOW_CLAMP:
3825 		val = tp->window_clamp;
3826 		break;
3827 	case TCP_INFO: {
3828 		struct tcp_info info;
3829 
3830 		if (get_user(len, optlen))
3831 			return -EFAULT;
3832 
3833 		tcp_get_info(sk, &info);
3834 
3835 		len = min_t(unsigned int, len, sizeof(info));
3836 		if (put_user(len, optlen))
3837 			return -EFAULT;
3838 		if (copy_to_user(optval, &info, len))
3839 			return -EFAULT;
3840 		return 0;
3841 	}
3842 	case TCP_CC_INFO: {
3843 		const struct tcp_congestion_ops *ca_ops;
3844 		union tcp_cc_info info;
3845 		size_t sz = 0;
3846 		int attr;
3847 
3848 		if (get_user(len, optlen))
3849 			return -EFAULT;
3850 
3851 		ca_ops = icsk->icsk_ca_ops;
3852 		if (ca_ops && ca_ops->get_info)
3853 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3854 
3855 		len = min_t(unsigned int, len, sz);
3856 		if (put_user(len, optlen))
3857 			return -EFAULT;
3858 		if (copy_to_user(optval, &info, len))
3859 			return -EFAULT;
3860 		return 0;
3861 	}
3862 	case TCP_QUICKACK:
3863 		val = !inet_csk_in_pingpong_mode(sk);
3864 		break;
3865 
3866 	case TCP_CONGESTION:
3867 		if (get_user(len, optlen))
3868 			return -EFAULT;
3869 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3870 		if (put_user(len, optlen))
3871 			return -EFAULT;
3872 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3873 			return -EFAULT;
3874 		return 0;
3875 
3876 	case TCP_ULP:
3877 		if (get_user(len, optlen))
3878 			return -EFAULT;
3879 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3880 		if (!icsk->icsk_ulp_ops) {
3881 			if (put_user(0, optlen))
3882 				return -EFAULT;
3883 			return 0;
3884 		}
3885 		if (put_user(len, optlen))
3886 			return -EFAULT;
3887 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3888 			return -EFAULT;
3889 		return 0;
3890 
3891 	case TCP_FASTOPEN_KEY: {
3892 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
3893 		unsigned int key_len;
3894 
3895 		if (get_user(len, optlen))
3896 			return -EFAULT;
3897 
3898 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
3899 				TCP_FASTOPEN_KEY_LENGTH;
3900 		len = min_t(unsigned int, len, key_len);
3901 		if (put_user(len, optlen))
3902 			return -EFAULT;
3903 		if (copy_to_user(optval, key, len))
3904 			return -EFAULT;
3905 		return 0;
3906 	}
3907 	case TCP_THIN_LINEAR_TIMEOUTS:
3908 		val = tp->thin_lto;
3909 		break;
3910 
3911 	case TCP_THIN_DUPACK:
3912 		val = 0;
3913 		break;
3914 
3915 	case TCP_REPAIR:
3916 		val = tp->repair;
3917 		break;
3918 
3919 	case TCP_REPAIR_QUEUE:
3920 		if (tp->repair)
3921 			val = tp->repair_queue;
3922 		else
3923 			return -EINVAL;
3924 		break;
3925 
3926 	case TCP_REPAIR_WINDOW: {
3927 		struct tcp_repair_window opt;
3928 
3929 		if (get_user(len, optlen))
3930 			return -EFAULT;
3931 
3932 		if (len != sizeof(opt))
3933 			return -EINVAL;
3934 
3935 		if (!tp->repair)
3936 			return -EPERM;
3937 
3938 		opt.snd_wl1	= tp->snd_wl1;
3939 		opt.snd_wnd	= tp->snd_wnd;
3940 		opt.max_window	= tp->max_window;
3941 		opt.rcv_wnd	= tp->rcv_wnd;
3942 		opt.rcv_wup	= tp->rcv_wup;
3943 
3944 		if (copy_to_user(optval, &opt, len))
3945 			return -EFAULT;
3946 		return 0;
3947 	}
3948 	case TCP_QUEUE_SEQ:
3949 		if (tp->repair_queue == TCP_SEND_QUEUE)
3950 			val = tp->write_seq;
3951 		else if (tp->repair_queue == TCP_RECV_QUEUE)
3952 			val = tp->rcv_nxt;
3953 		else
3954 			return -EINVAL;
3955 		break;
3956 
3957 	case TCP_USER_TIMEOUT:
3958 		val = READ_ONCE(icsk->icsk_user_timeout);
3959 		break;
3960 
3961 	case TCP_FASTOPEN:
3962 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
3963 		break;
3964 
3965 	case TCP_FASTOPEN_CONNECT:
3966 		val = tp->fastopen_connect;
3967 		break;
3968 
3969 	case TCP_FASTOPEN_NO_COOKIE:
3970 		val = tp->fastopen_no_cookie;
3971 		break;
3972 
3973 	case TCP_TX_DELAY:
3974 		val = READ_ONCE(tp->tcp_tx_delay);
3975 		break;
3976 
3977 	case TCP_TIMESTAMP:
3978 		val = tcp_time_stamp_raw() + tp->tsoffset;
3979 		break;
3980 	case TCP_NOTSENT_LOWAT:
3981 		val = READ_ONCE(tp->notsent_lowat);
3982 		break;
3983 	case TCP_INQ:
3984 		val = tp->recvmsg_inq;
3985 		break;
3986 	case TCP_SAVE_SYN:
3987 		val = tp->save_syn;
3988 		break;
3989 	case TCP_SAVED_SYN: {
3990 		if (get_user(len, optlen))
3991 			return -EFAULT;
3992 
3993 		lock_sock(sk);
3994 		if (tp->saved_syn) {
3995 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
3996 				if (put_user(tcp_saved_syn_len(tp->saved_syn),
3997 					     optlen)) {
3998 					release_sock(sk);
3999 					return -EFAULT;
4000 				}
4001 				release_sock(sk);
4002 				return -EINVAL;
4003 			}
4004 			len = tcp_saved_syn_len(tp->saved_syn);
4005 			if (put_user(len, optlen)) {
4006 				release_sock(sk);
4007 				return -EFAULT;
4008 			}
4009 			if (copy_to_user(optval, tp->saved_syn->data, len)) {
4010 				release_sock(sk);
4011 				return -EFAULT;
4012 			}
4013 			tcp_saved_syn_free(tp);
4014 			release_sock(sk);
4015 		} else {
4016 			release_sock(sk);
4017 			len = 0;
4018 			if (put_user(len, optlen))
4019 				return -EFAULT;
4020 		}
4021 		return 0;
4022 	}
4023 #ifdef CONFIG_MMU
4024 	case TCP_ZEROCOPY_RECEIVE: {
4025 		struct tcp_zerocopy_receive zc = {};
4026 		int err;
4027 
4028 		if (get_user(len, optlen))
4029 			return -EFAULT;
4030 		if (len < 0 ||
4031 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4032 			return -EINVAL;
4033 		if (len > sizeof(zc)) {
4034 			len = sizeof(zc);
4035 			if (put_user(len, optlen))
4036 				return -EFAULT;
4037 		}
4038 		if (copy_from_user(&zc, optval, len))
4039 			return -EFAULT;
4040 		lock_sock(sk);
4041 		err = tcp_zerocopy_receive(sk, &zc);
4042 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4043 							  &zc, &len, err);
4044 		release_sock(sk);
4045 		if (len >= offsetofend(struct tcp_zerocopy_receive, err))
4046 			goto zerocopy_rcv_sk_err;
4047 		switch (len) {
4048 		case offsetofend(struct tcp_zerocopy_receive, err):
4049 			goto zerocopy_rcv_sk_err;
4050 		case offsetofend(struct tcp_zerocopy_receive, inq):
4051 			goto zerocopy_rcv_inq;
4052 		case offsetofend(struct tcp_zerocopy_receive, length):
4053 		default:
4054 			goto zerocopy_rcv_out;
4055 		}
4056 zerocopy_rcv_sk_err:
4057 		if (!err)
4058 			zc.err = sock_error(sk);
4059 zerocopy_rcv_inq:
4060 		zc.inq = tcp_inq_hint(sk);
4061 zerocopy_rcv_out:
4062 		if (!err && copy_to_user(optval, &zc, len))
4063 			err = -EFAULT;
4064 		return err;
4065 	}
4066 #endif
4067 	default:
4068 		return -ENOPROTOOPT;
4069 	}
4070 
4071 	if (put_user(len, optlen))
4072 		return -EFAULT;
4073 	if (copy_to_user(optval, &val, len))
4074 		return -EFAULT;
4075 	return 0;
4076 }
4077 
tcp_bpf_bypass_getsockopt(int level,int optname)4078 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4079 {
4080 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4081 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4082 	 */
4083 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4084 		return true;
4085 
4086 	return false;
4087 }
4088 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4089 
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4090 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4091 		   int __user *optlen)
4092 {
4093 	struct inet_connection_sock *icsk = inet_csk(sk);
4094 
4095 	if (level != SOL_TCP)
4096 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4097 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4098 								optval, optlen);
4099 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
4100 }
4101 EXPORT_SYMBOL(tcp_getsockopt);
4102 
4103 #ifdef CONFIG_TCP_MD5SIG
4104 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4105 static DEFINE_MUTEX(tcp_md5sig_mutex);
4106 static bool tcp_md5sig_pool_populated = false;
4107 
__tcp_alloc_md5sig_pool(void)4108 static void __tcp_alloc_md5sig_pool(void)
4109 {
4110 	struct crypto_ahash *hash;
4111 	int cpu;
4112 
4113 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4114 	if (IS_ERR(hash))
4115 		return;
4116 
4117 	for_each_possible_cpu(cpu) {
4118 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4119 		struct ahash_request *req;
4120 
4121 		if (!scratch) {
4122 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4123 					       sizeof(struct tcphdr),
4124 					       GFP_KERNEL,
4125 					       cpu_to_node(cpu));
4126 			if (!scratch)
4127 				return;
4128 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4129 		}
4130 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4131 			continue;
4132 
4133 		req = ahash_request_alloc(hash, GFP_KERNEL);
4134 		if (!req)
4135 			return;
4136 
4137 		ahash_request_set_callback(req, 0, NULL, NULL);
4138 
4139 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4140 	}
4141 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4142 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4143 	 */
4144 	smp_wmb();
4145 	/* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4146 	 * and tcp_get_md5sig_pool().
4147 	*/
4148 	WRITE_ONCE(tcp_md5sig_pool_populated, true);
4149 }
4150 
tcp_alloc_md5sig_pool(void)4151 bool tcp_alloc_md5sig_pool(void)
4152 {
4153 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4154 	if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4155 		mutex_lock(&tcp_md5sig_mutex);
4156 
4157 		if (!tcp_md5sig_pool_populated) {
4158 			__tcp_alloc_md5sig_pool();
4159 			if (tcp_md5sig_pool_populated)
4160 				static_branch_inc(&tcp_md5_needed);
4161 		}
4162 
4163 		mutex_unlock(&tcp_md5sig_mutex);
4164 	}
4165 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4166 	return READ_ONCE(tcp_md5sig_pool_populated);
4167 }
4168 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4169 
4170 
4171 /**
4172  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4173  *
4174  *	We use percpu structure, so if we succeed, we exit with preemption
4175  *	and BH disabled, to make sure another thread or softirq handling
4176  *	wont try to get same context.
4177  */
tcp_get_md5sig_pool(void)4178 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4179 {
4180 	local_bh_disable();
4181 
4182 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4183 	if (READ_ONCE(tcp_md5sig_pool_populated)) {
4184 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4185 		smp_rmb();
4186 		return this_cpu_ptr(&tcp_md5sig_pool);
4187 	}
4188 	local_bh_enable();
4189 	return NULL;
4190 }
4191 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4192 
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)4193 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4194 			  const struct sk_buff *skb, unsigned int header_len)
4195 {
4196 	struct scatterlist sg;
4197 	const struct tcphdr *tp = tcp_hdr(skb);
4198 	struct ahash_request *req = hp->md5_req;
4199 	unsigned int i;
4200 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4201 					   skb_headlen(skb) - header_len : 0;
4202 	const struct skb_shared_info *shi = skb_shinfo(skb);
4203 	struct sk_buff *frag_iter;
4204 
4205 	sg_init_table(&sg, 1);
4206 
4207 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4208 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4209 	if (crypto_ahash_update(req))
4210 		return 1;
4211 
4212 	for (i = 0; i < shi->nr_frags; ++i) {
4213 		const skb_frag_t *f = &shi->frags[i];
4214 		unsigned int offset = skb_frag_off(f);
4215 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4216 
4217 		sg_set_page(&sg, page, skb_frag_size(f),
4218 			    offset_in_page(offset));
4219 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4220 		if (crypto_ahash_update(req))
4221 			return 1;
4222 	}
4223 
4224 	skb_walk_frags(skb, frag_iter)
4225 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4226 			return 1;
4227 
4228 	return 0;
4229 }
4230 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4231 
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)4232 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4233 {
4234 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4235 	struct scatterlist sg;
4236 
4237 	sg_init_one(&sg, key->key, keylen);
4238 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4239 
4240 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4241 	return data_race(crypto_ahash_update(hp->md5_req));
4242 }
4243 EXPORT_SYMBOL(tcp_md5_hash_key);
4244 
4245 #endif
4246 
tcp_done(struct sock * sk)4247 void tcp_done(struct sock *sk)
4248 {
4249 	struct request_sock *req;
4250 
4251 	/* We might be called with a new socket, after
4252 	 * inet_csk_prepare_forced_close() has been called
4253 	 * so we can not use lockdep_sock_is_held(sk)
4254 	 */
4255 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4256 
4257 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4258 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4259 
4260 	tcp_set_state(sk, TCP_CLOSE);
4261 	tcp_clear_xmit_timers(sk);
4262 	if (req)
4263 		reqsk_fastopen_remove(sk, req, false);
4264 
4265 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4266 
4267 	if (!sock_flag(sk, SOCK_DEAD))
4268 		sk->sk_state_change(sk);
4269 	else
4270 		inet_csk_destroy_sock(sk);
4271 }
4272 EXPORT_SYMBOL_GPL(tcp_done);
4273 
tcp_abort(struct sock * sk,int err)4274 int tcp_abort(struct sock *sk, int err)
4275 {
4276 	if (!sk_fullsock(sk)) {
4277 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
4278 			struct request_sock *req = inet_reqsk(sk);
4279 
4280 			local_bh_disable();
4281 			inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4282 			local_bh_enable();
4283 			return 0;
4284 		}
4285 		return -EOPNOTSUPP;
4286 	}
4287 
4288 	/* Don't race with userspace socket closes such as tcp_close. */
4289 #ifdef CONFIG_TCP_SOCK_DESTROY
4290 	/* BPF context ensures sock locking. */
4291 	if (!has_current_bpf_ctx())
4292 #endif  /* CONFIG_TCP_SOCK_DESTROY */
4293 		lock_sock(sk);
4294 
4295 	if (sk->sk_state == TCP_LISTEN) {
4296 		tcp_set_state(sk, TCP_CLOSE);
4297 		inet_csk_listen_stop(sk);
4298 	}
4299 
4300 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4301 	local_bh_disable();
4302 	bh_lock_sock(sk);
4303 
4304 	if (!sock_flag(sk, SOCK_DEAD)) {
4305 		sk->sk_err = err;
4306 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4307 		smp_wmb();
4308 		sk->sk_error_report(sk);
4309 		if (tcp_need_reset(sk->sk_state))
4310 			tcp_send_active_reset(sk, GFP_ATOMIC);
4311 		tcp_done(sk);
4312 	}
4313 
4314 	bh_unlock_sock(sk);
4315 	local_bh_enable();
4316 	tcp_write_queue_purge(sk);
4317 #ifdef CONFIG_TCP_SOCK_DESTROY
4318 	if (!has_current_bpf_ctx())
4319 #endif  /* CONFIG_TCP_SOCK_DESTROY */
4320 		release_sock(sk);
4321 	return 0;
4322 }
4323 EXPORT_SYMBOL_GPL(tcp_abort);
4324 
4325 extern struct tcp_congestion_ops tcp_reno;
4326 
4327 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4328 static int __init set_thash_entries(char *str)
4329 {
4330 	ssize_t ret;
4331 
4332 	if (!str)
4333 		return 0;
4334 
4335 	ret = kstrtoul(str, 0, &thash_entries);
4336 	if (ret)
4337 		return 0;
4338 
4339 	return 1;
4340 }
4341 __setup("thash_entries=", set_thash_entries);
4342 
tcp_init_mem(void)4343 static void __init tcp_init_mem(void)
4344 {
4345 	unsigned long limit = nr_free_buffer_pages() / 16;
4346 
4347 	limit = max(limit, 128UL);
4348 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4349 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4350 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4351 }
4352 
tcp_init(void)4353 void __init tcp_init(void)
4354 {
4355 	int max_rshare, max_wshare, cnt;
4356 	unsigned long limit;
4357 	unsigned int i;
4358 
4359 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4360 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4361 		     sizeof_field(struct sk_buff, cb));
4362 
4363 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4364 
4365 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4366 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4367 
4368 	inet_hashinfo_init(&tcp_hashinfo);
4369 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4370 			    thash_entries, 21,  /* one slot per 2 MB*/
4371 			    0, 64 * 1024);
4372 	tcp_hashinfo.bind_bucket_cachep =
4373 		kmem_cache_create("tcp_bind_bucket",
4374 				  sizeof(struct inet_bind_bucket), 0,
4375 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
4376 
4377 	/* Size and allocate the main established and bind bucket
4378 	 * hash tables.
4379 	 *
4380 	 * The methodology is similar to that of the buffer cache.
4381 	 */
4382 	tcp_hashinfo.ehash =
4383 		alloc_large_system_hash("TCP established",
4384 					sizeof(struct inet_ehash_bucket),
4385 					thash_entries,
4386 					17, /* one slot per 128 KB of memory */
4387 					0,
4388 					NULL,
4389 					&tcp_hashinfo.ehash_mask,
4390 					0,
4391 					thash_entries ? 0 : 512 * 1024);
4392 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4393 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4394 
4395 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4396 		panic("TCP: failed to alloc ehash_locks");
4397 	tcp_hashinfo.bhash =
4398 		alloc_large_system_hash("TCP bind",
4399 					sizeof(struct inet_bind_hashbucket),
4400 					tcp_hashinfo.ehash_mask + 1,
4401 					17, /* one slot per 128 KB of memory */
4402 					0,
4403 					&tcp_hashinfo.bhash_size,
4404 					NULL,
4405 					0,
4406 					64 * 1024);
4407 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4408 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4409 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4410 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4411 	}
4412 
4413 
4414 	cnt = tcp_hashinfo.ehash_mask + 1;
4415 	sysctl_tcp_max_orphans = cnt / 2;
4416 
4417 	tcp_init_mem();
4418 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4419 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4420 	max_wshare = min(4UL*1024*1024, limit);
4421 	max_rshare = min(6UL*1024*1024, limit);
4422 
4423 	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4424 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4425 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4426 
4427 	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4428 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4429 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4430 
4431 	pr_info("Hash tables configured (established %u bind %u)\n",
4432 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4433 
4434 	tcp_v4_init();
4435 	tcp_metrics_init();
4436 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4437 	tcp_tasklet_init();
4438 	mptcp_init();
4439 }
4440