1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2020 Intel Corporation
9 */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include "core.h"
24 #include "nl80211.h"
25 #include "wext-compat.h"
26 #include "rdev-ops.h"
27
28 /**
29 * DOC: BSS tree/list structure
30 *
31 * At the top level, the BSS list is kept in both a list in each
32 * registered device (@bss_list) as well as an RB-tree for faster
33 * lookup. In the RB-tree, entries can be looked up using their
34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35 * for other BSSes.
36 *
37 * Due to the possibility of hidden SSIDs, there's a second level
38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39 * The hidden_list connects all BSSes belonging to a single AP
40 * that has a hidden SSID, and connects beacon and probe response
41 * entries. For a probe response entry for a hidden SSID, the
42 * hidden_beacon_bss pointer points to the BSS struct holding the
43 * beacon's information.
44 *
45 * Reference counting is done for all these references except for
46 * the hidden_list, so that a beacon BSS struct that is otherwise
47 * not referenced has one reference for being on the bss_list and
48 * one for each probe response entry that points to it using the
49 * hidden_beacon_bss pointer. When a BSS struct that has such a
50 * pointer is get/put, the refcount update is also propagated to
51 * the referenced struct, this ensure that it cannot get removed
52 * while somebody is using the probe response version.
53 *
54 * Note that the hidden_beacon_bss pointer never changes, due to
55 * the reference counting. Therefore, no locking is needed for
56 * it.
57 *
58 * Also note that the hidden_beacon_bss pointer is only relevant
59 * if the driver uses something other than the IEs, e.g. private
60 * data stored in the BSS struct, since the beacon IEs are
61 * also linked into the probe response struct.
62 */
63
64 /*
65 * Limit the number of BSS entries stored in mac80211. Each one is
66 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67 * If somebody wants to really attack this though, they'd likely
68 * use small beacons, and only one type of frame, limiting each of
69 * the entries to a much smaller size (in order to generate more
70 * entries in total, so overhead is bigger.)
71 */
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75 "limit to number of scan BSS entries (per wiphy, default 1000)");
76
77 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
78
79 /**
80 * struct cfg80211_colocated_ap - colocated AP information
81 *
82 * @list: linked list to all colocated aPS
83 * @bssid: BSSID of the reported AP
84 * @ssid: SSID of the reported AP
85 * @ssid_len: length of the ssid
86 * @center_freq: frequency the reported AP is on
87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88 * that operate in the same channel as the reported AP and that might be
89 * detected by a STA receiving this frame, are transmitting unsolicited
90 * Probe Response frames every 20 TUs
91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92 * @same_ssid: the reported AP has the same SSID as the reporting AP
93 * @multi_bss: the reported AP is part of a multiple BSSID set
94 * @transmitted_bssid: the reported AP is the transmitting BSSID
95 * @colocated_ess: all the APs that share the same ESS as the reported AP are
96 * colocated and can be discovered via legacy bands.
97 * @short_ssid_valid: short_ssid is valid and can be used
98 * @short_ssid: the short SSID for this SSID
99 */
100 struct cfg80211_colocated_ap {
101 struct list_head list;
102 u8 bssid[ETH_ALEN];
103 u8 ssid[IEEE80211_MAX_SSID_LEN];
104 size_t ssid_len;
105 u32 short_ssid;
106 u32 center_freq;
107 u8 unsolicited_probe:1,
108 oct_recommended:1,
109 same_ssid:1,
110 multi_bss:1,
111 transmitted_bssid:1,
112 colocated_ess:1,
113 short_ssid_valid:1;
114 };
115
bss_free(struct cfg80211_internal_bss * bss)116 static void bss_free(struct cfg80211_internal_bss *bss)
117 {
118 struct cfg80211_bss_ies *ies;
119
120 if (WARN_ON(atomic_read(&bss->hold)))
121 return;
122
123 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124 if (ies && !bss->pub.hidden_beacon_bss)
125 kfree_rcu(ies, rcu_head);
126 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
127 if (ies)
128 kfree_rcu(ies, rcu_head);
129
130 /*
131 * This happens when the module is removed, it doesn't
132 * really matter any more save for completeness
133 */
134 if (!list_empty(&bss->hidden_list))
135 list_del(&bss->hidden_list);
136
137 kfree(bss);
138 }
139
bss_ref_get(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141 struct cfg80211_internal_bss *bss)
142 {
143 lockdep_assert_held(&rdev->bss_lock);
144
145 bss->refcount++;
146
147 if (bss->pub.hidden_beacon_bss)
148 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
149
150 if (bss->pub.transmitted_bss)
151 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
152 }
153
bss_ref_put(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)154 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
155 struct cfg80211_internal_bss *bss)
156 {
157 lockdep_assert_held(&rdev->bss_lock);
158
159 if (bss->pub.hidden_beacon_bss) {
160 struct cfg80211_internal_bss *hbss;
161 hbss = container_of(bss->pub.hidden_beacon_bss,
162 struct cfg80211_internal_bss,
163 pub);
164 hbss->refcount--;
165 if (hbss->refcount == 0)
166 bss_free(hbss);
167 }
168
169 if (bss->pub.transmitted_bss) {
170 struct cfg80211_internal_bss *tbss;
171
172 tbss = container_of(bss->pub.transmitted_bss,
173 struct cfg80211_internal_bss,
174 pub);
175 tbss->refcount--;
176 if (tbss->refcount == 0)
177 bss_free(tbss);
178 }
179
180 bss->refcount--;
181 if (bss->refcount == 0)
182 bss_free(bss);
183 }
184
__cfg80211_unlink_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)185 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
186 struct cfg80211_internal_bss *bss)
187 {
188 lockdep_assert_held(&rdev->bss_lock);
189
190 if (!list_empty(&bss->hidden_list)) {
191 /*
192 * don't remove the beacon entry if it has
193 * probe responses associated with it
194 */
195 if (!bss->pub.hidden_beacon_bss)
196 return false;
197 /*
198 * if it's a probe response entry break its
199 * link to the other entries in the group
200 */
201 list_del_init(&bss->hidden_list);
202 }
203
204 list_del_init(&bss->list);
205 list_del_init(&bss->pub.nontrans_list);
206 rb_erase(&bss->rbn, &rdev->bss_tree);
207 rdev->bss_entries--;
208 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
209 "rdev bss entries[%d]/list[empty:%d] corruption\n",
210 rdev->bss_entries, list_empty(&rdev->bss_list));
211 bss_ref_put(rdev, bss);
212 return true;
213 }
214
cfg80211_is_element_inherited(const struct element * elem,const struct element * non_inherit_elem)215 bool cfg80211_is_element_inherited(const struct element *elem,
216 const struct element *non_inherit_elem)
217 {
218 u8 id_len, ext_id_len, i, loop_len, id;
219 const u8 *list;
220
221 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
222 return false;
223
224 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
225 return true;
226
227 /*
228 * non inheritance element format is:
229 * ext ID (56) | IDs list len | list | extension IDs list len | list
230 * Both lists are optional. Both lengths are mandatory.
231 * This means valid length is:
232 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
233 */
234 id_len = non_inherit_elem->data[1];
235 if (non_inherit_elem->datalen < 3 + id_len)
236 return true;
237
238 ext_id_len = non_inherit_elem->data[2 + id_len];
239 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
240 return true;
241
242 if (elem->id == WLAN_EID_EXTENSION) {
243 if (!ext_id_len)
244 return true;
245 loop_len = ext_id_len;
246 list = &non_inherit_elem->data[3 + id_len];
247 id = elem->data[0];
248 } else {
249 if (!id_len)
250 return true;
251 loop_len = id_len;
252 list = &non_inherit_elem->data[2];
253 id = elem->id;
254 }
255
256 for (i = 0; i < loop_len; i++) {
257 if (list[i] == id)
258 return false;
259 }
260
261 return true;
262 }
263 EXPORT_SYMBOL(cfg80211_is_element_inherited);
264
cfg80211_copy_elem_with_frags(const struct element * elem,const u8 * ie,size_t ie_len,u8 ** pos,u8 * buf,size_t buf_len)265 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
266 const u8 *ie, size_t ie_len,
267 u8 **pos, u8 *buf, size_t buf_len)
268 {
269 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
270 elem->data + elem->datalen > ie + ie_len))
271 return 0;
272
273 if (elem->datalen + 2 > buf + buf_len - *pos)
274 return 0;
275
276 memcpy(*pos, elem, elem->datalen + 2);
277 *pos += elem->datalen + 2;
278
279 /* Finish if it is not fragmented */
280 if (elem->datalen != 255)
281 return *pos - buf;
282
283 ie_len = ie + ie_len - elem->data - elem->datalen;
284 ie = (const u8 *)elem->data + elem->datalen;
285
286 for_each_element(elem, ie, ie_len) {
287 if (elem->id != WLAN_EID_FRAGMENT)
288 break;
289
290 if (elem->datalen + 2 > buf + buf_len - *pos)
291 return 0;
292
293 memcpy(*pos, elem, elem->datalen + 2);
294 *pos += elem->datalen + 2;
295
296 if (elem->datalen != 255)
297 break;
298 }
299
300 return *pos - buf;
301 }
302
cfg80211_gen_new_ie(const u8 * ie,size_t ielen,const u8 * subie,size_t subie_len,u8 * new_ie,size_t new_ie_len)303 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
304 const u8 *subie, size_t subie_len,
305 u8 *new_ie, size_t new_ie_len)
306 {
307 const struct element *non_inherit_elem, *parent, *sub;
308 u8 *pos = new_ie;
309 u8 id, ext_id;
310 unsigned int match_len;
311
312 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
313 subie, subie_len);
314
315 /* We copy the elements one by one from the parent to the generated
316 * elements.
317 * If they are not inherited (included in subie or in the non
318 * inheritance element), then we copy all occurrences the first time
319 * we see this element type.
320 */
321 for_each_element(parent, ie, ielen) {
322 if (parent->id == WLAN_EID_FRAGMENT)
323 continue;
324
325 if (parent->id == WLAN_EID_EXTENSION) {
326 if (parent->datalen < 1)
327 continue;
328
329 id = WLAN_EID_EXTENSION;
330 ext_id = parent->data[0];
331 match_len = 1;
332 } else {
333 id = parent->id;
334 match_len = 0;
335 }
336
337 /* Find first occurrence in subie */
338 sub = cfg80211_find_elem_match(id, subie, subie_len,
339 &ext_id, match_len, 0);
340
341 /* Copy from parent if not in subie and inherited */
342 if (!sub &&
343 cfg80211_is_element_inherited(parent, non_inherit_elem)) {
344 if (!cfg80211_copy_elem_with_frags(parent,
345 ie, ielen,
346 &pos, new_ie,
347 new_ie_len))
348 return 0;
349
350 continue;
351 }
352
353 /* Already copied if an earlier element had the same type */
354 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
355 &ext_id, match_len, 0))
356 continue;
357
358 /* Not inheriting, copy all similar elements from subie */
359 while (sub) {
360 if (!cfg80211_copy_elem_with_frags(sub,
361 subie, subie_len,
362 &pos, new_ie,
363 new_ie_len))
364 return 0;
365
366 sub = cfg80211_find_elem_match(id,
367 sub->data + sub->datalen,
368 subie_len + subie -
369 (sub->data +
370 sub->datalen),
371 &ext_id, match_len, 0);
372 }
373 }
374
375 /* The above misses elements that are included in subie but not in the
376 * parent, so do a pass over subie and append those.
377 * Skip the non-tx BSSID caps and non-inheritance element.
378 */
379 for_each_element(sub, subie, subie_len) {
380 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
381 continue;
382
383 if (sub->id == WLAN_EID_FRAGMENT)
384 continue;
385
386 if (sub->id == WLAN_EID_EXTENSION) {
387 if (sub->datalen < 1)
388 continue;
389
390 id = WLAN_EID_EXTENSION;
391 ext_id = sub->data[0];
392 match_len = 1;
393
394 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
395 continue;
396 } else {
397 id = sub->id;
398 match_len = 0;
399 }
400
401 /* Processed if one was included in the parent */
402 if (cfg80211_find_elem_match(id, ie, ielen,
403 &ext_id, match_len, 0))
404 continue;
405
406 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
407 &pos, new_ie, new_ie_len))
408 return 0;
409 }
410
411 return pos - new_ie;
412 }
413
is_bss(struct cfg80211_bss * a,const u8 * bssid,const u8 * ssid,size_t ssid_len)414 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
415 const u8 *ssid, size_t ssid_len)
416 {
417 const struct cfg80211_bss_ies *ies;
418 const u8 *ssidie;
419
420 if (bssid && !ether_addr_equal(a->bssid, bssid))
421 return false;
422
423 if (!ssid)
424 return true;
425
426 ies = rcu_access_pointer(a->ies);
427 if (!ies)
428 return false;
429 ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
430 if (!ssidie)
431 return false;
432 if (ssidie[1] != ssid_len)
433 return false;
434 return memcmp(ssidie + 2, ssid, ssid_len) == 0;
435 }
436
437 static int
cfg80211_add_nontrans_list(struct cfg80211_bss * trans_bss,struct cfg80211_bss * nontrans_bss)438 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
439 struct cfg80211_bss *nontrans_bss)
440 {
441 const u8 *ssid;
442 size_t ssid_len;
443 struct cfg80211_bss *bss = NULL;
444
445 rcu_read_lock();
446 ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
447 if (!ssid) {
448 rcu_read_unlock();
449 return -EINVAL;
450 }
451 ssid_len = ssid[1];
452 ssid = ssid + 2;
453
454 /* check if nontrans_bss is in the list */
455 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
456 if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len)) {
457 rcu_read_unlock();
458 return 0;
459 }
460 }
461
462 rcu_read_unlock();
463
464 /*
465 * This is a bit weird - it's not on the list, but already on another
466 * one! The only way that could happen is if there's some BSSID/SSID
467 * shared by multiple APs in their multi-BSSID profiles, potentially
468 * with hidden SSID mixed in ... ignore it.
469 */
470 if (!list_empty(&nontrans_bss->nontrans_list))
471 return -EINVAL;
472
473 /* add to the list */
474 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
475 return 0;
476 }
477
__cfg80211_bss_expire(struct cfg80211_registered_device * rdev,unsigned long expire_time)478 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
479 unsigned long expire_time)
480 {
481 struct cfg80211_internal_bss *bss, *tmp;
482 bool expired = false;
483
484 lockdep_assert_held(&rdev->bss_lock);
485
486 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
487 if (atomic_read(&bss->hold))
488 continue;
489 if (!time_after(expire_time, bss->ts))
490 continue;
491
492 if (__cfg80211_unlink_bss(rdev, bss))
493 expired = true;
494 }
495
496 if (expired)
497 rdev->bss_generation++;
498 }
499
cfg80211_bss_expire_oldest(struct cfg80211_registered_device * rdev)500 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
501 {
502 struct cfg80211_internal_bss *bss, *oldest = NULL;
503 bool ret;
504
505 lockdep_assert_held(&rdev->bss_lock);
506
507 list_for_each_entry(bss, &rdev->bss_list, list) {
508 if (atomic_read(&bss->hold))
509 continue;
510
511 if (!list_empty(&bss->hidden_list) &&
512 !bss->pub.hidden_beacon_bss)
513 continue;
514
515 if (oldest && time_before(oldest->ts, bss->ts))
516 continue;
517 oldest = bss;
518 }
519
520 if (WARN_ON(!oldest))
521 return false;
522
523 /*
524 * The callers make sure to increase rdev->bss_generation if anything
525 * gets removed (and a new entry added), so there's no need to also do
526 * it here.
527 */
528
529 ret = __cfg80211_unlink_bss(rdev, oldest);
530 WARN_ON(!ret);
531 return ret;
532 }
533
cfg80211_parse_bss_param(u8 data,struct cfg80211_colocated_ap * coloc_ap)534 static u8 cfg80211_parse_bss_param(u8 data,
535 struct cfg80211_colocated_ap *coloc_ap)
536 {
537 coloc_ap->oct_recommended =
538 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
539 coloc_ap->same_ssid =
540 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
541 coloc_ap->multi_bss =
542 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
543 coloc_ap->transmitted_bssid =
544 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
545 coloc_ap->unsolicited_probe =
546 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
547 coloc_ap->colocated_ess =
548 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
549
550 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
551 }
552
cfg80211_calc_short_ssid(const struct cfg80211_bss_ies * ies,const struct element ** elem,u32 * s_ssid)553 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
554 const struct element **elem, u32 *s_ssid)
555 {
556
557 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
558 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
559 return -EINVAL;
560
561 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
562 return 0;
563 }
564
cfg80211_free_coloc_ap_list(struct list_head * coloc_ap_list)565 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
566 {
567 struct cfg80211_colocated_ap *ap, *tmp_ap;
568
569 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
570 list_del(&ap->list);
571 kfree(ap);
572 }
573 }
574
cfg80211_parse_ap_info(struct cfg80211_colocated_ap * entry,const u8 * pos,u8 length,const struct element * ssid_elem,int s_ssid_tmp)575 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
576 const u8 *pos, u8 length,
577 const struct element *ssid_elem,
578 int s_ssid_tmp)
579 {
580 /* skip the TBTT offset */
581 pos++;
582
583 memcpy(entry->bssid, pos, ETH_ALEN);
584 pos += ETH_ALEN;
585
586 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
587 memcpy(&entry->short_ssid, pos,
588 sizeof(entry->short_ssid));
589 entry->short_ssid_valid = true;
590 pos += 4;
591 }
592
593 /* skip non colocated APs */
594 if (!cfg80211_parse_bss_param(*pos, entry))
595 return -EINVAL;
596 pos++;
597
598 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
599 /*
600 * no information about the short ssid. Consider the entry valid
601 * for now. It would later be dropped in case there are explicit
602 * SSIDs that need to be matched
603 */
604 if (!entry->same_ssid)
605 return 0;
606 }
607
608 if (entry->same_ssid) {
609 entry->short_ssid = s_ssid_tmp;
610 entry->short_ssid_valid = true;
611
612 /*
613 * This is safe because we validate datalen in
614 * cfg80211_parse_colocated_ap(), before calling this
615 * function.
616 */
617 memcpy(&entry->ssid, &ssid_elem->data,
618 ssid_elem->datalen);
619 entry->ssid_len = ssid_elem->datalen;
620 }
621 return 0;
622 }
623
cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies * ies,struct list_head * list)624 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
625 struct list_head *list)
626 {
627 struct ieee80211_neighbor_ap_info *ap_info;
628 const struct element *elem, *ssid_elem;
629 const u8 *pos, *end;
630 u32 s_ssid_tmp;
631 int n_coloc = 0, ret;
632 LIST_HEAD(ap_list);
633
634 elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
635 ies->len);
636 if (!elem || elem->datalen > IEEE80211_MAX_SSID_LEN)
637 return 0;
638
639 pos = elem->data;
640 end = pos + elem->datalen;
641
642 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
643 if (ret)
644 return 0;
645
646 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
647 while (pos + sizeof(*ap_info) <= end) {
648 enum nl80211_band band;
649 int freq;
650 u8 length, i, count;
651
652 ap_info = (void *)pos;
653 count = u8_get_bits(ap_info->tbtt_info_hdr,
654 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
655 length = ap_info->tbtt_info_len;
656
657 pos += sizeof(*ap_info);
658
659 if (!ieee80211_operating_class_to_band(ap_info->op_class,
660 &band))
661 break;
662
663 freq = ieee80211_channel_to_frequency(ap_info->channel, band);
664
665 if (end - pos < count * ap_info->tbtt_info_len)
666 break;
667
668 /*
669 * TBTT info must include bss param + BSSID +
670 * (short SSID or same_ssid bit to be set).
671 * ignore other options, and move to the
672 * next AP info
673 */
674 if (band != NL80211_BAND_6GHZ ||
675 (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
676 length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
677 pos += count * ap_info->tbtt_info_len;
678 continue;
679 }
680
681 for (i = 0; i < count; i++) {
682 struct cfg80211_colocated_ap *entry;
683
684 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
685 GFP_ATOMIC);
686
687 if (!entry)
688 break;
689
690 entry->center_freq = freq;
691
692 if (!cfg80211_parse_ap_info(entry, pos, length,
693 ssid_elem, s_ssid_tmp)) {
694 n_coloc++;
695 list_add_tail(&entry->list, &ap_list);
696 } else {
697 kfree(entry);
698 }
699
700 pos += ap_info->tbtt_info_len;
701 }
702 }
703
704 if (pos != end) {
705 cfg80211_free_coloc_ap_list(&ap_list);
706 return 0;
707 }
708
709 list_splice_tail(&ap_list, list);
710 return n_coloc;
711 }
712
cfg80211_scan_req_add_chan(struct cfg80211_scan_request * request,struct ieee80211_channel * chan,bool add_to_6ghz)713 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
714 struct ieee80211_channel *chan,
715 bool add_to_6ghz)
716 {
717 int i;
718 u32 n_channels = request->n_channels;
719 struct cfg80211_scan_6ghz_params *params =
720 &request->scan_6ghz_params[request->n_6ghz_params];
721
722 for (i = 0; i < n_channels; i++) {
723 if (request->channels[i] == chan) {
724 if (add_to_6ghz)
725 params->channel_idx = i;
726 return;
727 }
728 }
729
730 request->channels[n_channels] = chan;
731 if (add_to_6ghz)
732 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
733 n_channels;
734
735 request->n_channels++;
736 }
737
cfg80211_find_ssid_match(struct cfg80211_colocated_ap * ap,struct cfg80211_scan_request * request)738 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
739 struct cfg80211_scan_request *request)
740 {
741 int i;
742 u32 s_ssid;
743
744 for (i = 0; i < request->n_ssids; i++) {
745 /* wildcard ssid in the scan request */
746 if (!request->ssids[i].ssid_len) {
747 if (ap->multi_bss && !ap->transmitted_bssid)
748 continue;
749
750 return true;
751 }
752
753 if (ap->ssid_len &&
754 ap->ssid_len == request->ssids[i].ssid_len) {
755 if (!memcmp(request->ssids[i].ssid, ap->ssid,
756 ap->ssid_len))
757 return true;
758 } else if (ap->short_ssid_valid) {
759 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
760 request->ssids[i].ssid_len);
761
762 if (ap->short_ssid == s_ssid)
763 return true;
764 }
765 }
766
767 return false;
768 }
769
cfg80211_scan_6ghz(struct cfg80211_registered_device * rdev)770 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
771 {
772 u8 i;
773 struct cfg80211_colocated_ap *ap;
774 int n_channels, count = 0, err;
775 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
776 LIST_HEAD(coloc_ap_list);
777 bool need_scan_psc;
778 const struct ieee80211_sband_iftype_data *iftd;
779
780 rdev_req->scan_6ghz = true;
781
782 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
783 return -EOPNOTSUPP;
784
785 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
786 rdev_req->wdev->iftype);
787 if (!iftd || !iftd->he_cap.has_he)
788 return -EOPNOTSUPP;
789
790 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
791
792 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
793 struct cfg80211_internal_bss *intbss;
794
795 spin_lock_bh(&rdev->bss_lock);
796 list_for_each_entry(intbss, &rdev->bss_list, list) {
797 struct cfg80211_bss *res = &intbss->pub;
798 const struct cfg80211_bss_ies *ies;
799
800 ies = rcu_access_pointer(res->ies);
801 count += cfg80211_parse_colocated_ap(ies,
802 &coloc_ap_list);
803 }
804 spin_unlock_bh(&rdev->bss_lock);
805 }
806
807 request = kzalloc(struct_size(request, channels, n_channels) +
808 sizeof(*request->scan_6ghz_params) * count,
809 GFP_KERNEL);
810 if (!request) {
811 cfg80211_free_coloc_ap_list(&coloc_ap_list);
812 return -ENOMEM;
813 }
814
815 *request = *rdev_req;
816 request->n_channels = 0;
817 request->scan_6ghz_params =
818 (void *)&request->channels[n_channels];
819
820 /*
821 * PSC channels should not be scanned if all the reported co-located APs
822 * are indicating that all APs in the same ESS are co-located
823 */
824 if (count) {
825 need_scan_psc = false;
826
827 list_for_each_entry(ap, &coloc_ap_list, list) {
828 if (!ap->colocated_ess) {
829 need_scan_psc = true;
830 break;
831 }
832 }
833 } else {
834 need_scan_psc = true;
835 }
836
837 /*
838 * add to the scan request the channels that need to be scanned
839 * regardless of the collocated APs (PSC channels or all channels
840 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
841 */
842 for (i = 0; i < rdev_req->n_channels; i++) {
843 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
844 ((need_scan_psc &&
845 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
846 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
847 cfg80211_scan_req_add_chan(request,
848 rdev_req->channels[i],
849 false);
850 }
851 }
852
853 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
854 goto skip;
855
856 list_for_each_entry(ap, &coloc_ap_list, list) {
857 bool found = false;
858 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
859 &request->scan_6ghz_params[request->n_6ghz_params];
860 struct ieee80211_channel *chan =
861 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
862
863 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
864 continue;
865
866 for (i = 0; i < rdev_req->n_channels; i++) {
867 if (rdev_req->channels[i] == chan)
868 found = true;
869 }
870
871 if (!found)
872 continue;
873
874 if (request->n_ssids > 0 &&
875 !cfg80211_find_ssid_match(ap, request))
876 continue;
877
878 if (!is_broadcast_ether_addr(request->bssid) &&
879 !ether_addr_equal(request->bssid, ap->bssid))
880 continue;
881
882 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
883 continue;
884
885 cfg80211_scan_req_add_chan(request, chan, true);
886 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
887 scan_6ghz_params->short_ssid = ap->short_ssid;
888 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
889 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
890
891 /*
892 * If a PSC channel is added to the scan and 'need_scan_psc' is
893 * set to false, then all the APs that the scan logic is
894 * interested with on the channel are collocated and thus there
895 * is no need to perform the initial PSC channel listen.
896 */
897 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
898 scan_6ghz_params->psc_no_listen = true;
899
900 request->n_6ghz_params++;
901 }
902
903 skip:
904 cfg80211_free_coloc_ap_list(&coloc_ap_list);
905
906 if (request->n_channels) {
907 struct cfg80211_scan_request *old = rdev->int_scan_req;
908
909 rdev->int_scan_req = request;
910
911 /*
912 * If this scan follows a previous scan, save the scan start
913 * info from the first part of the scan
914 */
915 if (old)
916 rdev->int_scan_req->info = old->info;
917
918 err = rdev_scan(rdev, request);
919 if (err) {
920 rdev->int_scan_req = old;
921 kfree(request);
922 } else {
923 kfree(old);
924 }
925
926 return err;
927 }
928
929 kfree(request);
930 return -EINVAL;
931 }
932
cfg80211_scan(struct cfg80211_registered_device * rdev)933 int cfg80211_scan(struct cfg80211_registered_device *rdev)
934 {
935 struct cfg80211_scan_request *request;
936 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
937 u32 n_channels = 0, idx, i;
938
939 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
940 return rdev_scan(rdev, rdev_req);
941
942 for (i = 0; i < rdev_req->n_channels; i++) {
943 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
944 n_channels++;
945 }
946
947 if (!n_channels)
948 return cfg80211_scan_6ghz(rdev);
949
950 request = kzalloc(struct_size(request, channels, n_channels),
951 GFP_KERNEL);
952 if (!request)
953 return -ENOMEM;
954
955 *request = *rdev_req;
956 request->n_channels = n_channels;
957
958 for (i = idx = 0; i < rdev_req->n_channels; i++) {
959 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
960 request->channels[idx++] = rdev_req->channels[i];
961 }
962
963 rdev_req->scan_6ghz = false;
964 rdev->int_scan_req = request;
965 return rdev_scan(rdev, request);
966 }
967
___cfg80211_scan_done(struct cfg80211_registered_device * rdev,bool send_message)968 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
969 bool send_message)
970 {
971 struct cfg80211_scan_request *request, *rdev_req;
972 struct wireless_dev *wdev;
973 struct sk_buff *msg;
974 #ifdef CONFIG_CFG80211_WEXT
975 union iwreq_data wrqu;
976 #endif
977
978 ASSERT_RTNL();
979
980 if (rdev->scan_msg) {
981 nl80211_send_scan_msg(rdev, rdev->scan_msg);
982 rdev->scan_msg = NULL;
983 return;
984 }
985
986 rdev_req = rdev->scan_req;
987 if (!rdev_req)
988 return;
989
990 wdev = rdev_req->wdev;
991 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
992
993 if (wdev_running(wdev) &&
994 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
995 !rdev_req->scan_6ghz && !request->info.aborted &&
996 !cfg80211_scan_6ghz(rdev))
997 return;
998
999 /*
1000 * This must be before sending the other events!
1001 * Otherwise, wpa_supplicant gets completely confused with
1002 * wext events.
1003 */
1004 if (wdev->netdev)
1005 cfg80211_sme_scan_done(wdev->netdev);
1006
1007 if (!request->info.aborted &&
1008 request->flags & NL80211_SCAN_FLAG_FLUSH) {
1009 /* flush entries from previous scans */
1010 spin_lock_bh(&rdev->bss_lock);
1011 __cfg80211_bss_expire(rdev, request->scan_start);
1012 spin_unlock_bh(&rdev->bss_lock);
1013 }
1014
1015 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1016
1017 #ifdef CONFIG_CFG80211_WEXT
1018 if (wdev->netdev && !request->info.aborted) {
1019 memset(&wrqu, 0, sizeof(wrqu));
1020
1021 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1022 }
1023 #endif
1024
1025 if (wdev->netdev)
1026 dev_put(wdev->netdev);
1027
1028 kfree(rdev->int_scan_req);
1029 rdev->int_scan_req = NULL;
1030
1031 kfree(rdev->scan_req);
1032 rdev->scan_req = NULL;
1033
1034 if (!send_message)
1035 rdev->scan_msg = msg;
1036 else
1037 nl80211_send_scan_msg(rdev, msg);
1038 }
1039
__cfg80211_scan_done(struct work_struct * wk)1040 void __cfg80211_scan_done(struct work_struct *wk)
1041 {
1042 struct cfg80211_registered_device *rdev;
1043
1044 rdev = container_of(wk, struct cfg80211_registered_device,
1045 scan_done_wk);
1046
1047 rtnl_lock();
1048 ___cfg80211_scan_done(rdev, true);
1049 rtnl_unlock();
1050 }
1051
cfg80211_scan_done(struct cfg80211_scan_request * request,struct cfg80211_scan_info * info)1052 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1053 struct cfg80211_scan_info *info)
1054 {
1055 struct cfg80211_scan_info old_info = request->info;
1056
1057 trace_cfg80211_scan_done(request, info);
1058 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1059 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1060
1061 request->info = *info;
1062
1063 /*
1064 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1065 * be of the first part. In such a case old_info.scan_start_tsf should
1066 * be non zero.
1067 */
1068 if (request->scan_6ghz && old_info.scan_start_tsf) {
1069 request->info.scan_start_tsf = old_info.scan_start_tsf;
1070 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1071 sizeof(request->info.tsf_bssid));
1072 }
1073
1074 request->notified = true;
1075 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1076 }
1077 EXPORT_SYMBOL(cfg80211_scan_done);
1078
cfg80211_add_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1079 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1080 struct cfg80211_sched_scan_request *req)
1081 {
1082 ASSERT_RTNL();
1083
1084 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1085 }
1086
cfg80211_del_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1087 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1088 struct cfg80211_sched_scan_request *req)
1089 {
1090 ASSERT_RTNL();
1091
1092 list_del_rcu(&req->list);
1093 kfree_rcu(req, rcu_head);
1094 }
1095
1096 static struct cfg80211_sched_scan_request *
cfg80211_find_sched_scan_req(struct cfg80211_registered_device * rdev,u64 reqid)1097 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1098 {
1099 struct cfg80211_sched_scan_request *pos;
1100
1101 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1102 lockdep_rtnl_is_held()) {
1103 if (pos->reqid == reqid)
1104 return pos;
1105 }
1106 return NULL;
1107 }
1108
1109 /*
1110 * Determines if a scheduled scan request can be handled. When a legacy
1111 * scheduled scan is running no other scheduled scan is allowed regardless
1112 * whether the request is for legacy or multi-support scan. When a multi-support
1113 * scheduled scan is running a request for legacy scan is not allowed. In this
1114 * case a request for multi-support scan can be handled if resources are
1115 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1116 */
cfg80211_sched_scan_req_possible(struct cfg80211_registered_device * rdev,bool want_multi)1117 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1118 bool want_multi)
1119 {
1120 struct cfg80211_sched_scan_request *pos;
1121 int i = 0;
1122
1123 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1124 /* request id zero means legacy in progress */
1125 if (!i && !pos->reqid)
1126 return -EINPROGRESS;
1127 i++;
1128 }
1129
1130 if (i) {
1131 /* no legacy allowed when multi request(s) are active */
1132 if (!want_multi)
1133 return -EINPROGRESS;
1134
1135 /* resource limit reached */
1136 if (i == rdev->wiphy.max_sched_scan_reqs)
1137 return -ENOSPC;
1138 }
1139 return 0;
1140 }
1141
cfg80211_sched_scan_results_wk(struct work_struct * work)1142 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1143 {
1144 struct cfg80211_registered_device *rdev;
1145 struct cfg80211_sched_scan_request *req, *tmp;
1146
1147 rdev = container_of(work, struct cfg80211_registered_device,
1148 sched_scan_res_wk);
1149
1150 rtnl_lock();
1151 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1152 if (req->report_results) {
1153 req->report_results = false;
1154 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1155 /* flush entries from previous scans */
1156 spin_lock_bh(&rdev->bss_lock);
1157 __cfg80211_bss_expire(rdev, req->scan_start);
1158 spin_unlock_bh(&rdev->bss_lock);
1159 req->scan_start = jiffies;
1160 }
1161 nl80211_send_sched_scan(req,
1162 NL80211_CMD_SCHED_SCAN_RESULTS);
1163 }
1164 }
1165 rtnl_unlock();
1166 }
1167
cfg80211_sched_scan_results(struct wiphy * wiphy,u64 reqid)1168 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1169 {
1170 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1171 struct cfg80211_sched_scan_request *request;
1172
1173 trace_cfg80211_sched_scan_results(wiphy, reqid);
1174 /* ignore if we're not scanning */
1175
1176 rcu_read_lock();
1177 request = cfg80211_find_sched_scan_req(rdev, reqid);
1178 if (request) {
1179 request->report_results = true;
1180 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1181 }
1182 rcu_read_unlock();
1183 }
1184 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1185
cfg80211_sched_scan_stopped_rtnl(struct wiphy * wiphy,u64 reqid)1186 void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy, u64 reqid)
1187 {
1188 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1189
1190 ASSERT_RTNL();
1191
1192 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1193
1194 __cfg80211_stop_sched_scan(rdev, reqid, true);
1195 }
1196 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_rtnl);
1197
cfg80211_sched_scan_stopped(struct wiphy * wiphy,u64 reqid)1198 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1199 {
1200 rtnl_lock();
1201 cfg80211_sched_scan_stopped_rtnl(wiphy, reqid);
1202 rtnl_unlock();
1203 }
1204 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1205
cfg80211_stop_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req,bool driver_initiated)1206 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1207 struct cfg80211_sched_scan_request *req,
1208 bool driver_initiated)
1209 {
1210 ASSERT_RTNL();
1211
1212 if (!driver_initiated) {
1213 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1214 if (err)
1215 return err;
1216 }
1217
1218 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1219
1220 cfg80211_del_sched_scan_req(rdev, req);
1221
1222 return 0;
1223 }
1224
__cfg80211_stop_sched_scan(struct cfg80211_registered_device * rdev,u64 reqid,bool driver_initiated)1225 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1226 u64 reqid, bool driver_initiated)
1227 {
1228 struct cfg80211_sched_scan_request *sched_scan_req;
1229
1230 ASSERT_RTNL();
1231
1232 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1233 if (!sched_scan_req)
1234 return -ENOENT;
1235
1236 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1237 driver_initiated);
1238 }
1239
cfg80211_bss_age(struct cfg80211_registered_device * rdev,unsigned long age_secs)1240 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1241 unsigned long age_secs)
1242 {
1243 struct cfg80211_internal_bss *bss;
1244 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1245
1246 spin_lock_bh(&rdev->bss_lock);
1247 list_for_each_entry(bss, &rdev->bss_list, list)
1248 bss->ts -= age_jiffies;
1249 spin_unlock_bh(&rdev->bss_lock);
1250 }
1251
cfg80211_bss_expire(struct cfg80211_registered_device * rdev)1252 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1253 {
1254 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1255 }
1256
cfg80211_bss_flush(struct wiphy * wiphy)1257 void cfg80211_bss_flush(struct wiphy *wiphy)
1258 {
1259 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1260
1261 spin_lock_bh(&rdev->bss_lock);
1262 __cfg80211_bss_expire(rdev, jiffies);
1263 spin_unlock_bh(&rdev->bss_lock);
1264 }
1265 EXPORT_SYMBOL(cfg80211_bss_flush);
1266
1267 const struct element *
cfg80211_find_elem_match(u8 eid,const u8 * ies,unsigned int len,const u8 * match,unsigned int match_len,unsigned int match_offset)1268 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1269 const u8 *match, unsigned int match_len,
1270 unsigned int match_offset)
1271 {
1272 const struct element *elem;
1273
1274 for_each_element_id(elem, eid, ies, len) {
1275 if (elem->datalen >= match_offset + match_len &&
1276 !memcmp(elem->data + match_offset, match, match_len))
1277 return elem;
1278 }
1279
1280 return NULL;
1281 }
1282 EXPORT_SYMBOL(cfg80211_find_elem_match);
1283
cfg80211_find_vendor_elem(unsigned int oui,int oui_type,const u8 * ies,unsigned int len)1284 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1285 const u8 *ies,
1286 unsigned int len)
1287 {
1288 const struct element *elem;
1289 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1290 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1291
1292 if (WARN_ON(oui_type > 0xff))
1293 return NULL;
1294
1295 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1296 match, match_len, 0);
1297
1298 if (!elem || elem->datalen < 4)
1299 return NULL;
1300
1301 return elem;
1302 }
1303 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1304
1305 /**
1306 * enum bss_compare_mode - BSS compare mode
1307 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1308 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1309 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1310 */
1311 enum bss_compare_mode {
1312 BSS_CMP_REGULAR,
1313 BSS_CMP_HIDE_ZLEN,
1314 BSS_CMP_HIDE_NUL,
1315 };
1316
cmp_bss(struct cfg80211_bss * a,struct cfg80211_bss * b,enum bss_compare_mode mode)1317 static int cmp_bss(struct cfg80211_bss *a,
1318 struct cfg80211_bss *b,
1319 enum bss_compare_mode mode)
1320 {
1321 const struct cfg80211_bss_ies *a_ies, *b_ies;
1322 const u8 *ie1 = NULL;
1323 const u8 *ie2 = NULL;
1324 int i, r;
1325
1326 if (a->channel != b->channel)
1327 return b->channel->center_freq - a->channel->center_freq;
1328
1329 a_ies = rcu_access_pointer(a->ies);
1330 if (!a_ies)
1331 return -1;
1332 b_ies = rcu_access_pointer(b->ies);
1333 if (!b_ies)
1334 return 1;
1335
1336 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1337 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1338 a_ies->data, a_ies->len);
1339 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1340 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1341 b_ies->data, b_ies->len);
1342 if (ie1 && ie2) {
1343 int mesh_id_cmp;
1344
1345 if (ie1[1] == ie2[1])
1346 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1347 else
1348 mesh_id_cmp = ie2[1] - ie1[1];
1349
1350 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1351 a_ies->data, a_ies->len);
1352 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1353 b_ies->data, b_ies->len);
1354 if (ie1 && ie2) {
1355 if (mesh_id_cmp)
1356 return mesh_id_cmp;
1357 if (ie1[1] != ie2[1])
1358 return ie2[1] - ie1[1];
1359 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1360 }
1361 }
1362
1363 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1364 if (r)
1365 return r;
1366
1367 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1368 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1369
1370 if (!ie1 && !ie2)
1371 return 0;
1372
1373 /*
1374 * Note that with "hide_ssid", the function returns a match if
1375 * the already-present BSS ("b") is a hidden SSID beacon for
1376 * the new BSS ("a").
1377 */
1378
1379 /* sort missing IE before (left of) present IE */
1380 if (!ie1)
1381 return -1;
1382 if (!ie2)
1383 return 1;
1384
1385 switch (mode) {
1386 case BSS_CMP_HIDE_ZLEN:
1387 /*
1388 * In ZLEN mode we assume the BSS entry we're
1389 * looking for has a zero-length SSID. So if
1390 * the one we're looking at right now has that,
1391 * return 0. Otherwise, return the difference
1392 * in length, but since we're looking for the
1393 * 0-length it's really equivalent to returning
1394 * the length of the one we're looking at.
1395 *
1396 * No content comparison is needed as we assume
1397 * the content length is zero.
1398 */
1399 return ie2[1];
1400 case BSS_CMP_REGULAR:
1401 default:
1402 /* sort by length first, then by contents */
1403 if (ie1[1] != ie2[1])
1404 return ie2[1] - ie1[1];
1405 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1406 case BSS_CMP_HIDE_NUL:
1407 if (ie1[1] != ie2[1])
1408 return ie2[1] - ie1[1];
1409 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1410 for (i = 0; i < ie2[1]; i++)
1411 if (ie2[i + 2])
1412 return -1;
1413 return 0;
1414 }
1415 }
1416
cfg80211_bss_type_match(u16 capability,enum nl80211_band band,enum ieee80211_bss_type bss_type)1417 static bool cfg80211_bss_type_match(u16 capability,
1418 enum nl80211_band band,
1419 enum ieee80211_bss_type bss_type)
1420 {
1421 bool ret = true;
1422 u16 mask, val;
1423
1424 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1425 return ret;
1426
1427 if (band == NL80211_BAND_60GHZ) {
1428 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1429 switch (bss_type) {
1430 case IEEE80211_BSS_TYPE_ESS:
1431 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1432 break;
1433 case IEEE80211_BSS_TYPE_PBSS:
1434 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1435 break;
1436 case IEEE80211_BSS_TYPE_IBSS:
1437 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1438 break;
1439 default:
1440 return false;
1441 }
1442 } else {
1443 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1444 switch (bss_type) {
1445 case IEEE80211_BSS_TYPE_ESS:
1446 val = WLAN_CAPABILITY_ESS;
1447 break;
1448 case IEEE80211_BSS_TYPE_IBSS:
1449 val = WLAN_CAPABILITY_IBSS;
1450 break;
1451 case IEEE80211_BSS_TYPE_MBSS:
1452 val = 0;
1453 break;
1454 default:
1455 return false;
1456 }
1457 }
1458
1459 ret = ((capability & mask) == val);
1460 return ret;
1461 }
1462
1463 /* Returned bss is reference counted and must be cleaned up appropriately. */
cfg80211_get_bss(struct wiphy * wiphy,struct ieee80211_channel * channel,const u8 * bssid,const u8 * ssid,size_t ssid_len,enum ieee80211_bss_type bss_type,enum ieee80211_privacy privacy)1464 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1465 struct ieee80211_channel *channel,
1466 const u8 *bssid,
1467 const u8 *ssid, size_t ssid_len,
1468 enum ieee80211_bss_type bss_type,
1469 enum ieee80211_privacy privacy)
1470 {
1471 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1472 struct cfg80211_internal_bss *bss, *res = NULL;
1473 unsigned long now = jiffies;
1474 int bss_privacy;
1475
1476 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1477 privacy);
1478
1479 spin_lock_bh(&rdev->bss_lock);
1480
1481 list_for_each_entry(bss, &rdev->bss_list, list) {
1482 if (!cfg80211_bss_type_match(bss->pub.capability,
1483 bss->pub.channel->band, bss_type))
1484 continue;
1485
1486 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1487 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1488 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1489 continue;
1490 if (channel && bss->pub.channel != channel)
1491 continue;
1492 if (!is_valid_ether_addr(bss->pub.bssid))
1493 continue;
1494 /* Don't get expired BSS structs */
1495 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1496 !atomic_read(&bss->hold))
1497 continue;
1498 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1499 res = bss;
1500 bss_ref_get(rdev, res);
1501 break;
1502 }
1503 }
1504
1505 spin_unlock_bh(&rdev->bss_lock);
1506 if (!res)
1507 return NULL;
1508 trace_cfg80211_return_bss(&res->pub);
1509 return &res->pub;
1510 }
1511 EXPORT_SYMBOL(cfg80211_get_bss);
1512
rb_insert_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1513 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1514 struct cfg80211_internal_bss *bss)
1515 {
1516 struct rb_node **p = &rdev->bss_tree.rb_node;
1517 struct rb_node *parent = NULL;
1518 struct cfg80211_internal_bss *tbss;
1519 int cmp;
1520
1521 while (*p) {
1522 parent = *p;
1523 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1524
1525 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1526
1527 if (WARN_ON(!cmp)) {
1528 /* will sort of leak this BSS */
1529 return;
1530 }
1531
1532 if (cmp < 0)
1533 p = &(*p)->rb_left;
1534 else
1535 p = &(*p)->rb_right;
1536 }
1537
1538 rb_link_node(&bss->rbn, parent, p);
1539 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1540 }
1541
1542 static struct cfg80211_internal_bss *
rb_find_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * res,enum bss_compare_mode mode)1543 rb_find_bss(struct cfg80211_registered_device *rdev,
1544 struct cfg80211_internal_bss *res,
1545 enum bss_compare_mode mode)
1546 {
1547 struct rb_node *n = rdev->bss_tree.rb_node;
1548 struct cfg80211_internal_bss *bss;
1549 int r;
1550
1551 while (n) {
1552 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1553 r = cmp_bss(&res->pub, &bss->pub, mode);
1554
1555 if (r == 0)
1556 return bss;
1557 else if (r < 0)
1558 n = n->rb_left;
1559 else
1560 n = n->rb_right;
1561 }
1562
1563 return NULL;
1564 }
1565
cfg80211_combine_bsses(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * new)1566 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1567 struct cfg80211_internal_bss *new)
1568 {
1569 const struct cfg80211_bss_ies *ies;
1570 struct cfg80211_internal_bss *bss;
1571 const u8 *ie;
1572 int i, ssidlen;
1573 u8 fold = 0;
1574 u32 n_entries = 0;
1575
1576 ies = rcu_access_pointer(new->pub.beacon_ies);
1577 if (WARN_ON(!ies))
1578 return false;
1579
1580 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1581 if (!ie) {
1582 /* nothing to do */
1583 return true;
1584 }
1585
1586 ssidlen = ie[1];
1587 for (i = 0; i < ssidlen; i++)
1588 fold |= ie[2 + i];
1589
1590 if (fold) {
1591 /* not a hidden SSID */
1592 return true;
1593 }
1594
1595 /* This is the bad part ... */
1596
1597 list_for_each_entry(bss, &rdev->bss_list, list) {
1598 /*
1599 * we're iterating all the entries anyway, so take the
1600 * opportunity to validate the list length accounting
1601 */
1602 n_entries++;
1603
1604 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1605 continue;
1606 if (bss->pub.channel != new->pub.channel)
1607 continue;
1608 if (bss->pub.scan_width != new->pub.scan_width)
1609 continue;
1610 if (rcu_access_pointer(bss->pub.beacon_ies))
1611 continue;
1612 ies = rcu_access_pointer(bss->pub.ies);
1613 if (!ies)
1614 continue;
1615 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1616 if (!ie)
1617 continue;
1618 if (ssidlen && ie[1] != ssidlen)
1619 continue;
1620 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1621 continue;
1622 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1623 list_del(&bss->hidden_list);
1624 /* combine them */
1625 list_add(&bss->hidden_list, &new->hidden_list);
1626 bss->pub.hidden_beacon_bss = &new->pub;
1627 new->refcount += bss->refcount;
1628 rcu_assign_pointer(bss->pub.beacon_ies,
1629 new->pub.beacon_ies);
1630 }
1631
1632 WARN_ONCE(n_entries != rdev->bss_entries,
1633 "rdev bss entries[%d]/list[len:%d] corruption\n",
1634 rdev->bss_entries, n_entries);
1635
1636 return true;
1637 }
1638
1639 struct cfg80211_non_tx_bss {
1640 struct cfg80211_bss *tx_bss;
1641 u8 max_bssid_indicator;
1642 u8 bssid_index;
1643 };
1644
cfg80211_update_hidden_bsses(struct cfg80211_internal_bss * known,const struct cfg80211_bss_ies * new_ies,const struct cfg80211_bss_ies * old_ies)1645 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1646 const struct cfg80211_bss_ies *new_ies,
1647 const struct cfg80211_bss_ies *old_ies)
1648 {
1649 struct cfg80211_internal_bss *bss;
1650
1651 /* Assign beacon IEs to all sub entries */
1652 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1653 const struct cfg80211_bss_ies *ies;
1654
1655 ies = rcu_access_pointer(bss->pub.beacon_ies);
1656 WARN_ON(ies != old_ies);
1657
1658 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1659 }
1660 }
1661
1662 static bool
cfg80211_update_known_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * known,struct cfg80211_internal_bss * new,bool signal_valid)1663 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1664 struct cfg80211_internal_bss *known,
1665 struct cfg80211_internal_bss *new,
1666 bool signal_valid)
1667 {
1668 lockdep_assert_held(&rdev->bss_lock);
1669
1670 /* Update IEs */
1671 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1672 const struct cfg80211_bss_ies *old;
1673
1674 old = rcu_access_pointer(known->pub.proberesp_ies);
1675
1676 rcu_assign_pointer(known->pub.proberesp_ies,
1677 new->pub.proberesp_ies);
1678 /* Override possible earlier Beacon frame IEs */
1679 rcu_assign_pointer(known->pub.ies,
1680 new->pub.proberesp_ies);
1681 if (old)
1682 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1683 } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1684 const struct cfg80211_bss_ies *old;
1685
1686 if (known->pub.hidden_beacon_bss &&
1687 !list_empty(&known->hidden_list)) {
1688 const struct cfg80211_bss_ies *f;
1689
1690 /* The known BSS struct is one of the probe
1691 * response members of a group, but we're
1692 * receiving a beacon (beacon_ies in the new
1693 * bss is used). This can only mean that the
1694 * AP changed its beacon from not having an
1695 * SSID to showing it, which is confusing so
1696 * drop this information.
1697 */
1698
1699 f = rcu_access_pointer(new->pub.beacon_ies);
1700 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1701 return false;
1702 }
1703
1704 old = rcu_access_pointer(known->pub.beacon_ies);
1705
1706 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1707
1708 /* Override IEs if they were from a beacon before */
1709 if (old == rcu_access_pointer(known->pub.ies))
1710 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1711
1712 cfg80211_update_hidden_bsses(known,
1713 rcu_access_pointer(new->pub.beacon_ies),
1714 old);
1715
1716 if (old)
1717 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1718 }
1719
1720 known->pub.beacon_interval = new->pub.beacon_interval;
1721
1722 /* don't update the signal if beacon was heard on
1723 * adjacent channel.
1724 */
1725 if (signal_valid)
1726 known->pub.signal = new->pub.signal;
1727 known->pub.capability = new->pub.capability;
1728 known->ts = new->ts;
1729 known->ts_boottime = new->ts_boottime;
1730 known->parent_tsf = new->parent_tsf;
1731 known->pub.chains = new->pub.chains;
1732 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1733 IEEE80211_MAX_CHAINS);
1734 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1735 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1736 known->pub.bssid_index = new->pub.bssid_index;
1737
1738 return true;
1739 }
1740
1741 /* Returned bss is reference counted and must be cleaned up appropriately. */
1742 struct cfg80211_internal_bss *
cfg80211_bss_update(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * tmp,bool signal_valid,unsigned long ts)1743 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1744 struct cfg80211_internal_bss *tmp,
1745 bool signal_valid, unsigned long ts)
1746 {
1747 struct cfg80211_internal_bss *found = NULL;
1748
1749 if (WARN_ON(!tmp->pub.channel))
1750 return NULL;
1751
1752 tmp->ts = ts;
1753
1754 spin_lock_bh(&rdev->bss_lock);
1755
1756 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1757 spin_unlock_bh(&rdev->bss_lock);
1758 return NULL;
1759 }
1760
1761 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1762
1763 if (found) {
1764 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1765 goto drop;
1766 } else {
1767 struct cfg80211_internal_bss *new;
1768 struct cfg80211_internal_bss *hidden;
1769 struct cfg80211_bss_ies *ies;
1770
1771 /*
1772 * create a copy -- the "res" variable that is passed in
1773 * is allocated on the stack since it's not needed in the
1774 * more common case of an update
1775 */
1776 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1777 GFP_ATOMIC);
1778 if (!new) {
1779 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1780 if (ies)
1781 kfree_rcu(ies, rcu_head);
1782 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1783 if (ies)
1784 kfree_rcu(ies, rcu_head);
1785 goto drop;
1786 }
1787 memcpy(new, tmp, sizeof(*new));
1788 new->refcount = 1;
1789 INIT_LIST_HEAD(&new->hidden_list);
1790 INIT_LIST_HEAD(&new->pub.nontrans_list);
1791 /* we'll set this later if it was non-NULL */
1792 new->pub.transmitted_bss = NULL;
1793
1794 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1795 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1796 if (!hidden)
1797 hidden = rb_find_bss(rdev, tmp,
1798 BSS_CMP_HIDE_NUL);
1799 if (hidden) {
1800 new->pub.hidden_beacon_bss = &hidden->pub;
1801 list_add(&new->hidden_list,
1802 &hidden->hidden_list);
1803 hidden->refcount++;
1804 rcu_assign_pointer(new->pub.beacon_ies,
1805 hidden->pub.beacon_ies);
1806 }
1807 } else {
1808 /*
1809 * Ok so we found a beacon, and don't have an entry. If
1810 * it's a beacon with hidden SSID, we might be in for an
1811 * expensive search for any probe responses that should
1812 * be grouped with this beacon for updates ...
1813 */
1814 if (!cfg80211_combine_bsses(rdev, new)) {
1815 bss_ref_put(rdev, new);
1816 goto drop;
1817 }
1818 }
1819
1820 if (rdev->bss_entries >= bss_entries_limit &&
1821 !cfg80211_bss_expire_oldest(rdev)) {
1822 bss_ref_put(rdev, new);
1823 goto drop;
1824 }
1825
1826 /* This must be before the call to bss_ref_get */
1827 if (tmp->pub.transmitted_bss) {
1828 struct cfg80211_internal_bss *pbss =
1829 container_of(tmp->pub.transmitted_bss,
1830 struct cfg80211_internal_bss,
1831 pub);
1832
1833 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1834 bss_ref_get(rdev, pbss);
1835 }
1836
1837 list_add_tail(&new->list, &rdev->bss_list);
1838 rdev->bss_entries++;
1839 rb_insert_bss(rdev, new);
1840 found = new;
1841 }
1842
1843 rdev->bss_generation++;
1844 bss_ref_get(rdev, found);
1845 spin_unlock_bh(&rdev->bss_lock);
1846
1847 return found;
1848 drop:
1849 spin_unlock_bh(&rdev->bss_lock);
1850 return NULL;
1851 }
1852
1853 /*
1854 * Update RX channel information based on the available frame payload
1855 * information. This is mainly for the 2.4 GHz band where frames can be received
1856 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1857 * element to indicate the current (transmitting) channel, but this might also
1858 * be needed on other bands if RX frequency does not match with the actual
1859 * operating channel of a BSS.
1860 */
1861 static struct ieee80211_channel *
cfg80211_get_bss_channel(struct wiphy * wiphy,const u8 * ie,size_t ielen,struct ieee80211_channel * channel,enum nl80211_bss_scan_width scan_width)1862 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1863 struct ieee80211_channel *channel,
1864 enum nl80211_bss_scan_width scan_width)
1865 {
1866 const u8 *tmp;
1867 u32 freq;
1868 int channel_number = -1;
1869 struct ieee80211_channel *alt_channel;
1870
1871 if (channel->band == NL80211_BAND_S1GHZ) {
1872 tmp = cfg80211_find_ie(WLAN_EID_S1G_OPERATION, ie, ielen);
1873 if (tmp && tmp[1] >= sizeof(struct ieee80211_s1g_oper_ie)) {
1874 struct ieee80211_s1g_oper_ie *s1gop = (void *)(tmp + 2);
1875
1876 channel_number = s1gop->primary_ch;
1877 }
1878 } else {
1879 tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1880 if (tmp && tmp[1] == 1) {
1881 channel_number = tmp[2];
1882 } else {
1883 tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1884 if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1885 struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1886
1887 channel_number = htop->primary_chan;
1888 }
1889 }
1890 }
1891
1892 if (channel_number < 0) {
1893 /* No channel information in frame payload */
1894 return channel;
1895 }
1896
1897 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1898 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1899 if (!alt_channel) {
1900 if (channel->band == NL80211_BAND_2GHZ) {
1901 /*
1902 * Better not allow unexpected channels when that could
1903 * be going beyond the 1-11 range (e.g., discovering
1904 * BSS on channel 12 when radio is configured for
1905 * channel 11.
1906 */
1907 return NULL;
1908 }
1909
1910 /* No match for the payload channel number - ignore it */
1911 return channel;
1912 }
1913
1914 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1915 scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1916 /*
1917 * Ignore channel number in 5 and 10 MHz channels where there
1918 * may not be an n:1 or 1:n mapping between frequencies and
1919 * channel numbers.
1920 */
1921 return channel;
1922 }
1923
1924 /*
1925 * Use the channel determined through the payload channel number
1926 * instead of the RX channel reported by the driver.
1927 */
1928 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1929 return NULL;
1930 return alt_channel;
1931 }
1932
1933 /* Returned bss is reference counted and must be cleaned up appropriately. */
1934 static struct cfg80211_bss *
cfg80211_inform_single_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)1935 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1936 struct cfg80211_inform_bss *data,
1937 enum cfg80211_bss_frame_type ftype,
1938 const u8 *bssid, u64 tsf, u16 capability,
1939 u16 beacon_interval, const u8 *ie, size_t ielen,
1940 struct cfg80211_non_tx_bss *non_tx_data,
1941 gfp_t gfp)
1942 {
1943 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1944 struct cfg80211_bss_ies *ies;
1945 struct ieee80211_channel *channel;
1946 struct cfg80211_internal_bss tmp = {}, *res;
1947 int bss_type;
1948 bool signal_valid;
1949 unsigned long ts;
1950
1951 if (WARN_ON(!wiphy))
1952 return NULL;
1953
1954 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1955 (data->signal < 0 || data->signal > 100)))
1956 return NULL;
1957
1958 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1959 data->scan_width);
1960 if (!channel)
1961 return NULL;
1962
1963 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1964 tmp.pub.channel = channel;
1965 tmp.pub.scan_width = data->scan_width;
1966 tmp.pub.signal = data->signal;
1967 tmp.pub.beacon_interval = beacon_interval;
1968 tmp.pub.capability = capability;
1969 tmp.ts_boottime = data->boottime_ns;
1970 if (non_tx_data) {
1971 tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1972 ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1973 tmp.pub.bssid_index = non_tx_data->bssid_index;
1974 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1975 } else {
1976 ts = jiffies;
1977 }
1978
1979 /*
1980 * If we do not know here whether the IEs are from a Beacon or Probe
1981 * Response frame, we need to pick one of the options and only use it
1982 * with the driver that does not provide the full Beacon/Probe Response
1983 * frame. Use Beacon frame pointer to avoid indicating that this should
1984 * override the IEs pointer should we have received an earlier
1985 * indication of Probe Response data.
1986 */
1987 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1988 if (!ies)
1989 return NULL;
1990 ies->len = ielen;
1991 ies->tsf = tsf;
1992 ies->from_beacon = false;
1993 memcpy(ies->data, ie, ielen);
1994
1995 switch (ftype) {
1996 case CFG80211_BSS_FTYPE_BEACON:
1997 ies->from_beacon = true;
1998 fallthrough;
1999 case CFG80211_BSS_FTYPE_UNKNOWN:
2000 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2001 break;
2002 case CFG80211_BSS_FTYPE_PRESP:
2003 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2004 break;
2005 }
2006 rcu_assign_pointer(tmp.pub.ies, ies);
2007
2008 signal_valid = data->chan == channel;
2009 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
2010 if (!res)
2011 return NULL;
2012
2013 if (channel->band == NL80211_BAND_60GHZ) {
2014 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2015 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2016 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2017 regulatory_hint_found_beacon(wiphy, channel, gfp);
2018 } else {
2019 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2020 regulatory_hint_found_beacon(wiphy, channel, gfp);
2021 }
2022
2023 if (non_tx_data) {
2024 /* this is a nontransmitting bss, we need to add it to
2025 * transmitting bss' list if it is not there
2026 */
2027 spin_lock_bh(&rdev->bss_lock);
2028 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
2029 &res->pub)) {
2030 if (__cfg80211_unlink_bss(rdev, res)) {
2031 rdev->bss_generation++;
2032 res = NULL;
2033 }
2034 }
2035 spin_unlock_bh(&rdev->bss_lock);
2036
2037 if (!res)
2038 return NULL;
2039 }
2040
2041 trace_cfg80211_return_bss(&res->pub);
2042 /* cfg80211_bss_update gives us a referenced result */
2043 return &res->pub;
2044 }
2045
2046 static const struct element
cfg80211_get_profile_continuation(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem)2047 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2048 const struct element *mbssid_elem,
2049 const struct element *sub_elem)
2050 {
2051 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2052 const struct element *next_mbssid;
2053 const struct element *next_sub;
2054
2055 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2056 mbssid_end,
2057 ielen - (mbssid_end - ie));
2058
2059 /*
2060 * If it is not the last subelement in current MBSSID IE or there isn't
2061 * a next MBSSID IE - profile is complete.
2062 */
2063 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2064 !next_mbssid)
2065 return NULL;
2066
2067 /* For any length error, just return NULL */
2068
2069 if (next_mbssid->datalen < 4)
2070 return NULL;
2071
2072 next_sub = (void *)&next_mbssid->data[1];
2073
2074 if (next_mbssid->data + next_mbssid->datalen <
2075 next_sub->data + next_sub->datalen)
2076 return NULL;
2077
2078 if (next_sub->id != 0 || next_sub->datalen < 2)
2079 return NULL;
2080
2081 /*
2082 * Check if the first element in the next sub element is a start
2083 * of a new profile
2084 */
2085 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2086 NULL : next_mbssid;
2087 }
2088
cfg80211_merge_profile(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem,u8 * merged_ie,size_t max_copy_len)2089 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2090 const struct element *mbssid_elem,
2091 const struct element *sub_elem,
2092 u8 *merged_ie, size_t max_copy_len)
2093 {
2094 size_t copied_len = sub_elem->datalen;
2095 const struct element *next_mbssid;
2096
2097 if (sub_elem->datalen > max_copy_len)
2098 return 0;
2099
2100 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2101
2102 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2103 mbssid_elem,
2104 sub_elem))) {
2105 const struct element *next_sub = (void *)&next_mbssid->data[1];
2106
2107 if (copied_len + next_sub->datalen > max_copy_len)
2108 break;
2109 memcpy(merged_ie + copied_len, next_sub->data,
2110 next_sub->datalen);
2111 copied_len += next_sub->datalen;
2112 }
2113
2114 return copied_len;
2115 }
2116 EXPORT_SYMBOL(cfg80211_merge_profile);
2117
cfg80211_parse_mbssid_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 beacon_interval,const u8 * ie,size_t ielen,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)2118 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2119 struct cfg80211_inform_bss *data,
2120 enum cfg80211_bss_frame_type ftype,
2121 const u8 *bssid, u64 tsf,
2122 u16 beacon_interval, const u8 *ie,
2123 size_t ielen,
2124 struct cfg80211_non_tx_bss *non_tx_data,
2125 gfp_t gfp)
2126 {
2127 const u8 *mbssid_index_ie;
2128 const struct element *elem, *sub;
2129 size_t new_ie_len;
2130 u8 new_bssid[ETH_ALEN];
2131 u8 *new_ie, *profile;
2132 u64 seen_indices = 0;
2133 u16 capability;
2134 struct cfg80211_bss *bss;
2135
2136 if (!non_tx_data)
2137 return;
2138 if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2139 return;
2140 if (!wiphy->support_mbssid)
2141 return;
2142 if (wiphy->support_only_he_mbssid &&
2143 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2144 return;
2145
2146 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2147 if (!new_ie)
2148 return;
2149
2150 profile = kmalloc(ielen, gfp);
2151 if (!profile)
2152 goto out;
2153
2154 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2155 if (elem->datalen < 4)
2156 continue;
2157 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2158 continue;
2159 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2160 u8 profile_len;
2161
2162 if (sub->id != 0 || sub->datalen < 4) {
2163 /* not a valid BSS profile */
2164 continue;
2165 }
2166
2167 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2168 sub->data[1] != 2) {
2169 /* The first element within the Nontransmitted
2170 * BSSID Profile is not the Nontransmitted
2171 * BSSID Capability element.
2172 */
2173 continue;
2174 }
2175
2176 memset(profile, 0, ielen);
2177 profile_len = cfg80211_merge_profile(ie, ielen,
2178 elem,
2179 sub,
2180 profile,
2181 ielen);
2182
2183 /* found a Nontransmitted BSSID Profile */
2184 mbssid_index_ie = cfg80211_find_ie
2185 (WLAN_EID_MULTI_BSSID_IDX,
2186 profile, profile_len);
2187 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2188 mbssid_index_ie[2] == 0 ||
2189 mbssid_index_ie[2] > 46) {
2190 /* No valid Multiple BSSID-Index element */
2191 continue;
2192 }
2193
2194 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2195 /* We don't support legacy split of a profile */
2196 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2197 mbssid_index_ie[2]);
2198
2199 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2200
2201 non_tx_data->bssid_index = mbssid_index_ie[2];
2202 non_tx_data->max_bssid_indicator = elem->data[0];
2203
2204 cfg80211_gen_new_bssid(bssid,
2205 non_tx_data->max_bssid_indicator,
2206 non_tx_data->bssid_index,
2207 new_bssid);
2208 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2209 new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2210 profile,
2211 profile_len, new_ie,
2212 IEEE80211_MAX_DATA_LEN);
2213 if (!new_ie_len)
2214 continue;
2215
2216 capability = get_unaligned_le16(profile + 2);
2217 bss = cfg80211_inform_single_bss_data(wiphy, data,
2218 ftype,
2219 new_bssid, tsf,
2220 capability,
2221 beacon_interval,
2222 new_ie,
2223 new_ie_len,
2224 non_tx_data,
2225 gfp);
2226 if (!bss)
2227 break;
2228 cfg80211_put_bss(wiphy, bss);
2229 }
2230 }
2231
2232 out:
2233 kfree(new_ie);
2234 kfree(profile);
2235 }
2236
2237 struct cfg80211_bss *
cfg80211_inform_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,gfp_t gfp)2238 cfg80211_inform_bss_data(struct wiphy *wiphy,
2239 struct cfg80211_inform_bss *data,
2240 enum cfg80211_bss_frame_type ftype,
2241 const u8 *bssid, u64 tsf, u16 capability,
2242 u16 beacon_interval, const u8 *ie, size_t ielen,
2243 gfp_t gfp)
2244 {
2245 struct cfg80211_bss *res;
2246 struct cfg80211_non_tx_bss non_tx_data;
2247
2248 res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2249 capability, beacon_interval, ie,
2250 ielen, NULL, gfp);
2251 if (!res)
2252 return NULL;
2253 non_tx_data.tx_bss = res;
2254 cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2255 beacon_interval, ie, ielen, &non_tx_data,
2256 gfp);
2257 return res;
2258 }
2259 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2260
2261 static void
cfg80211_parse_mbssid_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)2262 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2263 struct cfg80211_inform_bss *data,
2264 struct ieee80211_mgmt *mgmt, size_t len,
2265 struct cfg80211_non_tx_bss *non_tx_data,
2266 gfp_t gfp)
2267 {
2268 enum cfg80211_bss_frame_type ftype;
2269 const u8 *ie = mgmt->u.probe_resp.variable;
2270 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2271 u.probe_resp.variable);
2272
2273 ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2274 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2275
2276 cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2277 le64_to_cpu(mgmt->u.probe_resp.timestamp),
2278 le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2279 ie, ielen, non_tx_data, gfp);
2280 }
2281
2282 static void
cfg80211_update_notlisted_nontrans(struct wiphy * wiphy,struct cfg80211_bss * nontrans_bss,struct ieee80211_mgmt * mgmt,size_t len)2283 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2284 struct cfg80211_bss *nontrans_bss,
2285 struct ieee80211_mgmt *mgmt, size_t len)
2286 {
2287 u8 *ie, *new_ie, *pos;
2288 const u8 *nontrans_ssid, *trans_ssid, *mbssid;
2289 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2290 u.probe_resp.variable);
2291 size_t new_ie_len;
2292 struct cfg80211_bss_ies *new_ies;
2293 const struct cfg80211_bss_ies *old;
2294 size_t cpy_len;
2295
2296 lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2297
2298 ie = mgmt->u.probe_resp.variable;
2299
2300 new_ie_len = ielen;
2301 trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2302 if (!trans_ssid)
2303 return;
2304 new_ie_len -= trans_ssid[1];
2305 mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2306 /*
2307 * It's not valid to have the MBSSID element before SSID
2308 * ignore if that happens - the code below assumes it is
2309 * after (while copying things inbetween).
2310 */
2311 if (!mbssid || mbssid < trans_ssid)
2312 return;
2313 new_ie_len -= mbssid[1];
2314
2315 nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
2316 if (!nontrans_ssid)
2317 return;
2318
2319 new_ie_len += nontrans_ssid[1];
2320
2321 /* generate new ie for nontrans BSS
2322 * 1. replace SSID with nontrans BSS' SSID
2323 * 2. skip MBSSID IE
2324 */
2325 new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2326 if (!new_ie)
2327 return;
2328
2329 new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2330 if (!new_ies)
2331 goto out_free;
2332
2333 pos = new_ie;
2334
2335 /* copy the nontransmitted SSID */
2336 cpy_len = nontrans_ssid[1] + 2;
2337 memcpy(pos, nontrans_ssid, cpy_len);
2338 pos += cpy_len;
2339 /* copy the IEs between SSID and MBSSID */
2340 cpy_len = trans_ssid[1] + 2;
2341 memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2342 pos += (mbssid - (trans_ssid + cpy_len));
2343 /* copy the IEs after MBSSID */
2344 cpy_len = mbssid[1] + 2;
2345 memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2346
2347 /* update ie */
2348 new_ies->len = new_ie_len;
2349 new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2350 new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2351 memcpy(new_ies->data, new_ie, new_ie_len);
2352 if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2353 old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2354 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2355 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2356 if (old)
2357 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2358 } else {
2359 old = rcu_access_pointer(nontrans_bss->beacon_ies);
2360 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2361 cfg80211_update_hidden_bsses(bss_from_pub(nontrans_bss),
2362 new_ies, old);
2363 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2364 if (old)
2365 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2366 }
2367
2368 out_free:
2369 kfree(new_ie);
2370 }
2371
2372 /* cfg80211_inform_bss_width_frame helper */
2373 static struct cfg80211_bss *
cfg80211_inform_single_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)2374 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2375 struct cfg80211_inform_bss *data,
2376 struct ieee80211_mgmt *mgmt, size_t len,
2377 gfp_t gfp)
2378 {
2379 struct cfg80211_internal_bss tmp = {}, *res;
2380 struct cfg80211_bss_ies *ies;
2381 struct ieee80211_channel *channel;
2382 bool signal_valid;
2383 struct ieee80211_ext *ext = NULL;
2384 u8 *bssid, *variable;
2385 u16 capability, beacon_int;
2386 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2387 u.probe_resp.variable);
2388 int bss_type;
2389
2390 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2391 offsetof(struct ieee80211_mgmt, u.beacon.variable));
2392
2393 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2394
2395 if (WARN_ON(!mgmt))
2396 return NULL;
2397
2398 if (WARN_ON(!wiphy))
2399 return NULL;
2400
2401 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2402 (data->signal < 0 || data->signal > 100)))
2403 return NULL;
2404
2405 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2406 ext = (void *) mgmt;
2407 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2408 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2409 min_hdr_len = offsetof(struct ieee80211_ext,
2410 u.s1g_short_beacon.variable);
2411 }
2412
2413 if (WARN_ON(len < min_hdr_len))
2414 return NULL;
2415
2416 ielen = len - min_hdr_len;
2417 variable = mgmt->u.probe_resp.variable;
2418 if (ext) {
2419 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2420 variable = ext->u.s1g_short_beacon.variable;
2421 else
2422 variable = ext->u.s1g_beacon.variable;
2423 }
2424
2425 channel = cfg80211_get_bss_channel(wiphy, variable,
2426 ielen, data->chan, data->scan_width);
2427 if (!channel)
2428 return NULL;
2429
2430 if (ext) {
2431 const struct ieee80211_s1g_bcn_compat_ie *compat;
2432 const struct element *elem;
2433
2434 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2435 variable, ielen);
2436 if (!elem)
2437 return NULL;
2438 if (elem->datalen < sizeof(*compat))
2439 return NULL;
2440 compat = (void *)elem->data;
2441 bssid = ext->u.s1g_beacon.sa;
2442 capability = le16_to_cpu(compat->compat_info);
2443 beacon_int = le16_to_cpu(compat->beacon_int);
2444 } else {
2445 bssid = mgmt->bssid;
2446 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2447 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2448 }
2449
2450 ies = kzalloc(sizeof(*ies) + ielen, gfp);
2451 if (!ies)
2452 return NULL;
2453 ies->len = ielen;
2454 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2455 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2456 ieee80211_is_s1g_beacon(mgmt->frame_control);
2457 memcpy(ies->data, variable, ielen);
2458
2459 if (ieee80211_is_probe_resp(mgmt->frame_control))
2460 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2461 else
2462 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2463 rcu_assign_pointer(tmp.pub.ies, ies);
2464
2465 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2466 tmp.pub.beacon_interval = beacon_int;
2467 tmp.pub.capability = capability;
2468 tmp.pub.channel = channel;
2469 tmp.pub.scan_width = data->scan_width;
2470 tmp.pub.signal = data->signal;
2471 tmp.ts_boottime = data->boottime_ns;
2472 tmp.parent_tsf = data->parent_tsf;
2473 tmp.pub.chains = data->chains;
2474 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2475 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2476
2477 signal_valid = data->chan == channel;
2478 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2479 jiffies);
2480 if (!res)
2481 return NULL;
2482
2483 if (channel->band == NL80211_BAND_60GHZ) {
2484 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2485 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2486 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2487 regulatory_hint_found_beacon(wiphy, channel, gfp);
2488 } else {
2489 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2490 regulatory_hint_found_beacon(wiphy, channel, gfp);
2491 }
2492
2493 trace_cfg80211_return_bss(&res->pub);
2494 /* cfg80211_bss_update gives us a referenced result */
2495 return &res->pub;
2496 }
2497
2498 struct cfg80211_bss *
cfg80211_inform_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)2499 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2500 struct cfg80211_inform_bss *data,
2501 struct ieee80211_mgmt *mgmt, size_t len,
2502 gfp_t gfp)
2503 {
2504 struct cfg80211_bss *res, *tmp_bss;
2505 const u8 *ie = mgmt->u.probe_resp.variable;
2506 const struct cfg80211_bss_ies *ies1, *ies2;
2507 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2508 u.probe_resp.variable);
2509 struct cfg80211_non_tx_bss non_tx_data = {};
2510
2511 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2512 len, gfp);
2513
2514 /* don't do any further MBSSID handling for S1G */
2515 if (ieee80211_is_s1g_beacon(mgmt->frame_control))
2516 return res;
2517
2518 if (!res || !wiphy->support_mbssid ||
2519 !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2520 return res;
2521 if (wiphy->support_only_he_mbssid &&
2522 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2523 return res;
2524
2525 non_tx_data.tx_bss = res;
2526 /* process each non-transmitting bss */
2527 cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2528 &non_tx_data, gfp);
2529
2530 spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2531
2532 /* check if the res has other nontransmitting bss which is not
2533 * in MBSSID IE
2534 */
2535 ies1 = rcu_access_pointer(res->ies);
2536
2537 /* go through nontrans_list, if the timestamp of the BSS is
2538 * earlier than the timestamp of the transmitting BSS then
2539 * update it
2540 */
2541 list_for_each_entry(tmp_bss, &res->nontrans_list,
2542 nontrans_list) {
2543 ies2 = rcu_access_pointer(tmp_bss->ies);
2544 if (ies2->tsf < ies1->tsf)
2545 cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2546 mgmt, len);
2547 }
2548 spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2549
2550 return res;
2551 }
2552 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2553
cfg80211_ref_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2554 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2555 {
2556 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2557 struct cfg80211_internal_bss *bss;
2558
2559 if (!pub)
2560 return;
2561
2562 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2563
2564 spin_lock_bh(&rdev->bss_lock);
2565 bss_ref_get(rdev, bss);
2566 spin_unlock_bh(&rdev->bss_lock);
2567 }
2568 EXPORT_SYMBOL(cfg80211_ref_bss);
2569
cfg80211_put_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2570 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2571 {
2572 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2573 struct cfg80211_internal_bss *bss;
2574
2575 if (!pub)
2576 return;
2577
2578 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2579
2580 spin_lock_bh(&rdev->bss_lock);
2581 bss_ref_put(rdev, bss);
2582 spin_unlock_bh(&rdev->bss_lock);
2583 }
2584 EXPORT_SYMBOL(cfg80211_put_bss);
2585
cfg80211_unlink_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2586 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2587 {
2588 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2589 struct cfg80211_internal_bss *bss, *tmp1;
2590 struct cfg80211_bss *nontrans_bss, *tmp;
2591
2592 if (WARN_ON(!pub))
2593 return;
2594
2595 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2596
2597 spin_lock_bh(&rdev->bss_lock);
2598 if (list_empty(&bss->list))
2599 goto out;
2600
2601 list_for_each_entry_safe(nontrans_bss, tmp,
2602 &pub->nontrans_list,
2603 nontrans_list) {
2604 tmp1 = container_of(nontrans_bss,
2605 struct cfg80211_internal_bss, pub);
2606 if (__cfg80211_unlink_bss(rdev, tmp1))
2607 rdev->bss_generation++;
2608 }
2609
2610 if (__cfg80211_unlink_bss(rdev, bss))
2611 rdev->bss_generation++;
2612 out:
2613 spin_unlock_bh(&rdev->bss_lock);
2614 }
2615 EXPORT_SYMBOL(cfg80211_unlink_bss);
2616
cfg80211_bss_iter(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,void (* iter)(struct wiphy * wiphy,struct cfg80211_bss * bss,void * data),void * iter_data)2617 void cfg80211_bss_iter(struct wiphy *wiphy,
2618 struct cfg80211_chan_def *chandef,
2619 void (*iter)(struct wiphy *wiphy,
2620 struct cfg80211_bss *bss,
2621 void *data),
2622 void *iter_data)
2623 {
2624 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2625 struct cfg80211_internal_bss *bss;
2626
2627 spin_lock_bh(&rdev->bss_lock);
2628
2629 list_for_each_entry(bss, &rdev->bss_list, list) {
2630 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel))
2631 iter(wiphy, &bss->pub, iter_data);
2632 }
2633
2634 spin_unlock_bh(&rdev->bss_lock);
2635 }
2636 EXPORT_SYMBOL(cfg80211_bss_iter);
2637
cfg80211_update_assoc_bss_entry(struct wireless_dev * wdev,struct ieee80211_channel * chan)2638 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2639 struct ieee80211_channel *chan)
2640 {
2641 struct wiphy *wiphy = wdev->wiphy;
2642 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2643 struct cfg80211_internal_bss *cbss = wdev->current_bss;
2644 struct cfg80211_internal_bss *new = NULL;
2645 struct cfg80211_internal_bss *bss;
2646 struct cfg80211_bss *nontrans_bss;
2647 struct cfg80211_bss *tmp;
2648
2649 spin_lock_bh(&rdev->bss_lock);
2650
2651 /*
2652 * Some APs use CSA also for bandwidth changes, i.e., without actually
2653 * changing the control channel, so no need to update in such a case.
2654 */
2655 if (cbss->pub.channel == chan)
2656 goto done;
2657
2658 /* use transmitting bss */
2659 if (cbss->pub.transmitted_bss)
2660 cbss = container_of(cbss->pub.transmitted_bss,
2661 struct cfg80211_internal_bss,
2662 pub);
2663
2664 cbss->pub.channel = chan;
2665
2666 list_for_each_entry(bss, &rdev->bss_list, list) {
2667 if (!cfg80211_bss_type_match(bss->pub.capability,
2668 bss->pub.channel->band,
2669 wdev->conn_bss_type))
2670 continue;
2671
2672 if (bss == cbss)
2673 continue;
2674
2675 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2676 new = bss;
2677 break;
2678 }
2679 }
2680
2681 if (new) {
2682 /* to save time, update IEs for transmitting bss only */
2683 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2684 new->pub.proberesp_ies = NULL;
2685 new->pub.beacon_ies = NULL;
2686 }
2687
2688 list_for_each_entry_safe(nontrans_bss, tmp,
2689 &new->pub.nontrans_list,
2690 nontrans_list) {
2691 bss = container_of(nontrans_bss,
2692 struct cfg80211_internal_bss, pub);
2693 if (__cfg80211_unlink_bss(rdev, bss))
2694 rdev->bss_generation++;
2695 }
2696
2697 WARN_ON(atomic_read(&new->hold));
2698 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2699 rdev->bss_generation++;
2700 }
2701
2702 rb_erase(&cbss->rbn, &rdev->bss_tree);
2703 rb_insert_bss(rdev, cbss);
2704 rdev->bss_generation++;
2705
2706 list_for_each_entry_safe(nontrans_bss, tmp,
2707 &cbss->pub.nontrans_list,
2708 nontrans_list) {
2709 bss = container_of(nontrans_bss,
2710 struct cfg80211_internal_bss, pub);
2711 bss->pub.channel = chan;
2712 rb_erase(&bss->rbn, &rdev->bss_tree);
2713 rb_insert_bss(rdev, bss);
2714 rdev->bss_generation++;
2715 }
2716
2717 done:
2718 spin_unlock_bh(&rdev->bss_lock);
2719 }
2720
2721 #ifdef CONFIG_CFG80211_WEXT
2722 static struct cfg80211_registered_device *
cfg80211_get_dev_from_ifindex(struct net * net,int ifindex)2723 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2724 {
2725 struct cfg80211_registered_device *rdev;
2726 struct net_device *dev;
2727
2728 ASSERT_RTNL();
2729
2730 dev = dev_get_by_index(net, ifindex);
2731 if (!dev)
2732 return ERR_PTR(-ENODEV);
2733 if (dev->ieee80211_ptr)
2734 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2735 else
2736 rdev = ERR_PTR(-ENODEV);
2737 dev_put(dev);
2738 return rdev;
2739 }
2740
cfg80211_wext_siwscan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)2741 int cfg80211_wext_siwscan(struct net_device *dev,
2742 struct iw_request_info *info,
2743 union iwreq_data *wrqu, char *extra)
2744 {
2745 struct cfg80211_registered_device *rdev;
2746 struct wiphy *wiphy;
2747 struct iw_scan_req *wreq = NULL;
2748 struct cfg80211_scan_request *creq = NULL;
2749 int i, err, n_channels = 0;
2750 enum nl80211_band band;
2751
2752 if (!netif_running(dev))
2753 return -ENETDOWN;
2754
2755 if (wrqu->data.length == sizeof(struct iw_scan_req))
2756 wreq = (struct iw_scan_req *)extra;
2757
2758 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2759
2760 if (IS_ERR(rdev))
2761 return PTR_ERR(rdev);
2762
2763 if (rdev->scan_req || rdev->scan_msg) {
2764 err = -EBUSY;
2765 goto out;
2766 }
2767
2768 wiphy = &rdev->wiphy;
2769
2770 /* Determine number of channels, needed to allocate creq */
2771 if (wreq && wreq->num_channels)
2772 n_channels = wreq->num_channels;
2773 else
2774 n_channels = ieee80211_get_num_supported_channels(wiphy);
2775
2776 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2777 n_channels * sizeof(void *),
2778 GFP_ATOMIC);
2779 if (!creq) {
2780 err = -ENOMEM;
2781 goto out;
2782 }
2783
2784 creq->wiphy = wiphy;
2785 creq->wdev = dev->ieee80211_ptr;
2786 /* SSIDs come after channels */
2787 creq->ssids = (void *)&creq->channels[n_channels];
2788 creq->n_channels = n_channels;
2789 creq->n_ssids = 1;
2790 creq->scan_start = jiffies;
2791
2792 /* translate "Scan on frequencies" request */
2793 i = 0;
2794 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2795 int j;
2796
2797 if (!wiphy->bands[band])
2798 continue;
2799
2800 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2801 /* ignore disabled channels */
2802 if (wiphy->bands[band]->channels[j].flags &
2803 IEEE80211_CHAN_DISABLED)
2804 continue;
2805
2806 /* If we have a wireless request structure and the
2807 * wireless request specifies frequencies, then search
2808 * for the matching hardware channel.
2809 */
2810 if (wreq && wreq->num_channels) {
2811 int k;
2812 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2813 for (k = 0; k < wreq->num_channels; k++) {
2814 struct iw_freq *freq =
2815 &wreq->channel_list[k];
2816 int wext_freq =
2817 cfg80211_wext_freq(freq);
2818
2819 if (wext_freq == wiphy_freq)
2820 goto wext_freq_found;
2821 }
2822 goto wext_freq_not_found;
2823 }
2824
2825 wext_freq_found:
2826 creq->channels[i] = &wiphy->bands[band]->channels[j];
2827 i++;
2828 wext_freq_not_found: ;
2829 }
2830 }
2831 /* No channels found? */
2832 if (!i) {
2833 err = -EINVAL;
2834 goto out;
2835 }
2836
2837 /* Set real number of channels specified in creq->channels[] */
2838 creq->n_channels = i;
2839
2840 /* translate "Scan for SSID" request */
2841 if (wreq) {
2842 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2843 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2844 err = -EINVAL;
2845 goto out;
2846 }
2847 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2848 creq->ssids[0].ssid_len = wreq->essid_len;
2849 }
2850 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2851 creq->n_ssids = 0;
2852 }
2853
2854 for (i = 0; i < NUM_NL80211_BANDS; i++)
2855 if (wiphy->bands[i])
2856 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2857
2858 eth_broadcast_addr(creq->bssid);
2859
2860 rdev->scan_req = creq;
2861 err = rdev_scan(rdev, creq);
2862 if (err) {
2863 rdev->scan_req = NULL;
2864 /* creq will be freed below */
2865 } else {
2866 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2867 /* creq now owned by driver */
2868 creq = NULL;
2869 dev_hold(dev);
2870 }
2871 out:
2872 kfree(creq);
2873 return err;
2874 }
2875 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2876
ieee80211_scan_add_ies(struct iw_request_info * info,const struct cfg80211_bss_ies * ies,char * current_ev,char * end_buf)2877 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2878 const struct cfg80211_bss_ies *ies,
2879 char *current_ev, char *end_buf)
2880 {
2881 const u8 *pos, *end, *next;
2882 struct iw_event iwe;
2883
2884 if (!ies)
2885 return current_ev;
2886
2887 /*
2888 * If needed, fragment the IEs buffer (at IE boundaries) into short
2889 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2890 */
2891 pos = ies->data;
2892 end = pos + ies->len;
2893
2894 while (end - pos > IW_GENERIC_IE_MAX) {
2895 next = pos + 2 + pos[1];
2896 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2897 next = next + 2 + next[1];
2898
2899 memset(&iwe, 0, sizeof(iwe));
2900 iwe.cmd = IWEVGENIE;
2901 iwe.u.data.length = next - pos;
2902 current_ev = iwe_stream_add_point_check(info, current_ev,
2903 end_buf, &iwe,
2904 (void *)pos);
2905 if (IS_ERR(current_ev))
2906 return current_ev;
2907 pos = next;
2908 }
2909
2910 if (end > pos) {
2911 memset(&iwe, 0, sizeof(iwe));
2912 iwe.cmd = IWEVGENIE;
2913 iwe.u.data.length = end - pos;
2914 current_ev = iwe_stream_add_point_check(info, current_ev,
2915 end_buf, &iwe,
2916 (void *)pos);
2917 if (IS_ERR(current_ev))
2918 return current_ev;
2919 }
2920
2921 return current_ev;
2922 }
2923
2924 static char *
ieee80211_bss(struct wiphy * wiphy,struct iw_request_info * info,struct cfg80211_internal_bss * bss,char * current_ev,char * end_buf)2925 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2926 struct cfg80211_internal_bss *bss, char *current_ev,
2927 char *end_buf)
2928 {
2929 const struct cfg80211_bss_ies *ies;
2930 struct iw_event iwe;
2931 const u8 *ie;
2932 u8 buf[50];
2933 u8 *cfg, *p, *tmp;
2934 int rem, i, sig;
2935 bool ismesh = false;
2936
2937 memset(&iwe, 0, sizeof(iwe));
2938 iwe.cmd = SIOCGIWAP;
2939 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2940 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2941 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2942 IW_EV_ADDR_LEN);
2943 if (IS_ERR(current_ev))
2944 return current_ev;
2945
2946 memset(&iwe, 0, sizeof(iwe));
2947 iwe.cmd = SIOCGIWFREQ;
2948 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2949 iwe.u.freq.e = 0;
2950 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2951 IW_EV_FREQ_LEN);
2952 if (IS_ERR(current_ev))
2953 return current_ev;
2954
2955 memset(&iwe, 0, sizeof(iwe));
2956 iwe.cmd = SIOCGIWFREQ;
2957 iwe.u.freq.m = bss->pub.channel->center_freq;
2958 iwe.u.freq.e = 6;
2959 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2960 IW_EV_FREQ_LEN);
2961 if (IS_ERR(current_ev))
2962 return current_ev;
2963
2964 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2965 memset(&iwe, 0, sizeof(iwe));
2966 iwe.cmd = IWEVQUAL;
2967 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2968 IW_QUAL_NOISE_INVALID |
2969 IW_QUAL_QUAL_UPDATED;
2970 switch (wiphy->signal_type) {
2971 case CFG80211_SIGNAL_TYPE_MBM:
2972 sig = bss->pub.signal / 100;
2973 iwe.u.qual.level = sig;
2974 iwe.u.qual.updated |= IW_QUAL_DBM;
2975 if (sig < -110) /* rather bad */
2976 sig = -110;
2977 else if (sig > -40) /* perfect */
2978 sig = -40;
2979 /* will give a range of 0 .. 70 */
2980 iwe.u.qual.qual = sig + 110;
2981 break;
2982 case CFG80211_SIGNAL_TYPE_UNSPEC:
2983 iwe.u.qual.level = bss->pub.signal;
2984 /* will give range 0 .. 100 */
2985 iwe.u.qual.qual = bss->pub.signal;
2986 break;
2987 default:
2988 /* not reached */
2989 break;
2990 }
2991 current_ev = iwe_stream_add_event_check(info, current_ev,
2992 end_buf, &iwe,
2993 IW_EV_QUAL_LEN);
2994 if (IS_ERR(current_ev))
2995 return current_ev;
2996 }
2997
2998 memset(&iwe, 0, sizeof(iwe));
2999 iwe.cmd = SIOCGIWENCODE;
3000 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3001 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3002 else
3003 iwe.u.data.flags = IW_ENCODE_DISABLED;
3004 iwe.u.data.length = 0;
3005 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3006 &iwe, "");
3007 if (IS_ERR(current_ev))
3008 return current_ev;
3009
3010 rcu_read_lock();
3011 ies = rcu_dereference(bss->pub.ies);
3012 rem = ies->len;
3013 ie = ies->data;
3014
3015 while (rem >= 2) {
3016 /* invalid data */
3017 if (ie[1] > rem - 2)
3018 break;
3019
3020 switch (ie[0]) {
3021 case WLAN_EID_SSID:
3022 memset(&iwe, 0, sizeof(iwe));
3023 iwe.cmd = SIOCGIWESSID;
3024 iwe.u.data.length = ie[1];
3025 iwe.u.data.flags = 1;
3026 current_ev = iwe_stream_add_point_check(info,
3027 current_ev,
3028 end_buf, &iwe,
3029 (u8 *)ie + 2);
3030 if (IS_ERR(current_ev))
3031 goto unlock;
3032 break;
3033 case WLAN_EID_MESH_ID:
3034 memset(&iwe, 0, sizeof(iwe));
3035 iwe.cmd = SIOCGIWESSID;
3036 iwe.u.data.length = ie[1];
3037 iwe.u.data.flags = 1;
3038 current_ev = iwe_stream_add_point_check(info,
3039 current_ev,
3040 end_buf, &iwe,
3041 (u8 *)ie + 2);
3042 if (IS_ERR(current_ev))
3043 goto unlock;
3044 break;
3045 case WLAN_EID_MESH_CONFIG:
3046 ismesh = true;
3047 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3048 break;
3049 cfg = (u8 *)ie + 2;
3050 memset(&iwe, 0, sizeof(iwe));
3051 iwe.cmd = IWEVCUSTOM;
3052 sprintf(buf, "Mesh Network Path Selection Protocol ID: "
3053 "0x%02X", cfg[0]);
3054 iwe.u.data.length = strlen(buf);
3055 current_ev = iwe_stream_add_point_check(info,
3056 current_ev,
3057 end_buf,
3058 &iwe, buf);
3059 if (IS_ERR(current_ev))
3060 goto unlock;
3061 sprintf(buf, "Path Selection Metric ID: 0x%02X",
3062 cfg[1]);
3063 iwe.u.data.length = strlen(buf);
3064 current_ev = iwe_stream_add_point_check(info,
3065 current_ev,
3066 end_buf,
3067 &iwe, buf);
3068 if (IS_ERR(current_ev))
3069 goto unlock;
3070 sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3071 cfg[2]);
3072 iwe.u.data.length = strlen(buf);
3073 current_ev = iwe_stream_add_point_check(info,
3074 current_ev,
3075 end_buf,
3076 &iwe, buf);
3077 if (IS_ERR(current_ev))
3078 goto unlock;
3079 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3080 iwe.u.data.length = strlen(buf);
3081 current_ev = iwe_stream_add_point_check(info,
3082 current_ev,
3083 end_buf,
3084 &iwe, buf);
3085 if (IS_ERR(current_ev))
3086 goto unlock;
3087 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3088 iwe.u.data.length = strlen(buf);
3089 current_ev = iwe_stream_add_point_check(info,
3090 current_ev,
3091 end_buf,
3092 &iwe, buf);
3093 if (IS_ERR(current_ev))
3094 goto unlock;
3095 sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3096 iwe.u.data.length = strlen(buf);
3097 current_ev = iwe_stream_add_point_check(info,
3098 current_ev,
3099 end_buf,
3100 &iwe, buf);
3101 if (IS_ERR(current_ev))
3102 goto unlock;
3103 sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3104 iwe.u.data.length = strlen(buf);
3105 current_ev = iwe_stream_add_point_check(info,
3106 current_ev,
3107 end_buf,
3108 &iwe, buf);
3109 if (IS_ERR(current_ev))
3110 goto unlock;
3111 break;
3112 case WLAN_EID_SUPP_RATES:
3113 case WLAN_EID_EXT_SUPP_RATES:
3114 /* display all supported rates in readable format */
3115 p = current_ev + iwe_stream_lcp_len(info);
3116
3117 memset(&iwe, 0, sizeof(iwe));
3118 iwe.cmd = SIOCGIWRATE;
3119 /* Those two flags are ignored... */
3120 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3121
3122 for (i = 0; i < ie[1]; i++) {
3123 iwe.u.bitrate.value =
3124 ((ie[i + 2] & 0x7f) * 500000);
3125 tmp = p;
3126 p = iwe_stream_add_value(info, current_ev, p,
3127 end_buf, &iwe,
3128 IW_EV_PARAM_LEN);
3129 if (p == tmp) {
3130 current_ev = ERR_PTR(-E2BIG);
3131 goto unlock;
3132 }
3133 }
3134 current_ev = p;
3135 break;
3136 }
3137 rem -= ie[1] + 2;
3138 ie += ie[1] + 2;
3139 }
3140
3141 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3142 ismesh) {
3143 memset(&iwe, 0, sizeof(iwe));
3144 iwe.cmd = SIOCGIWMODE;
3145 if (ismesh)
3146 iwe.u.mode = IW_MODE_MESH;
3147 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3148 iwe.u.mode = IW_MODE_MASTER;
3149 else
3150 iwe.u.mode = IW_MODE_ADHOC;
3151 current_ev = iwe_stream_add_event_check(info, current_ev,
3152 end_buf, &iwe,
3153 IW_EV_UINT_LEN);
3154 if (IS_ERR(current_ev))
3155 goto unlock;
3156 }
3157
3158 memset(&iwe, 0, sizeof(iwe));
3159 iwe.cmd = IWEVCUSTOM;
3160 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3161 iwe.u.data.length = strlen(buf);
3162 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3163 &iwe, buf);
3164 if (IS_ERR(current_ev))
3165 goto unlock;
3166 memset(&iwe, 0, sizeof(iwe));
3167 iwe.cmd = IWEVCUSTOM;
3168 sprintf(buf, " Last beacon: %ums ago",
3169 elapsed_jiffies_msecs(bss->ts));
3170 iwe.u.data.length = strlen(buf);
3171 current_ev = iwe_stream_add_point_check(info, current_ev,
3172 end_buf, &iwe, buf);
3173 if (IS_ERR(current_ev))
3174 goto unlock;
3175
3176 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3177
3178 unlock:
3179 rcu_read_unlock();
3180 return current_ev;
3181 }
3182
3183
ieee80211_scan_results(struct cfg80211_registered_device * rdev,struct iw_request_info * info,char * buf,size_t len)3184 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3185 struct iw_request_info *info,
3186 char *buf, size_t len)
3187 {
3188 char *current_ev = buf;
3189 char *end_buf = buf + len;
3190 struct cfg80211_internal_bss *bss;
3191 int err = 0;
3192
3193 spin_lock_bh(&rdev->bss_lock);
3194 cfg80211_bss_expire(rdev);
3195
3196 list_for_each_entry(bss, &rdev->bss_list, list) {
3197 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3198 err = -E2BIG;
3199 break;
3200 }
3201 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3202 current_ev, end_buf);
3203 if (IS_ERR(current_ev)) {
3204 err = PTR_ERR(current_ev);
3205 break;
3206 }
3207 }
3208 spin_unlock_bh(&rdev->bss_lock);
3209
3210 if (err)
3211 return err;
3212 return current_ev - buf;
3213 }
3214
3215
cfg80211_wext_giwscan(struct net_device * dev,struct iw_request_info * info,struct iw_point * data,char * extra)3216 int cfg80211_wext_giwscan(struct net_device *dev,
3217 struct iw_request_info *info,
3218 struct iw_point *data, char *extra)
3219 {
3220 struct cfg80211_registered_device *rdev;
3221 int res;
3222
3223 if (!netif_running(dev))
3224 return -ENETDOWN;
3225
3226 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3227
3228 if (IS_ERR(rdev))
3229 return PTR_ERR(rdev);
3230
3231 if (rdev->scan_req || rdev->scan_msg)
3232 return -EAGAIN;
3233
3234 res = ieee80211_scan_results(rdev, info, extra, data->length);
3235 data->length = 0;
3236 if (res >= 0) {
3237 data->length = res;
3238 res = 0;
3239 }
3240
3241 return res;
3242 }
3243 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3244 #endif
3245