1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * hosting IBM Z kernel virtual machines (s390x)
4 *
5 * Copyright IBM Corp. 2008, 2020
6 *
7 * Author(s): Carsten Otte <cotte@de.ibm.com>
8 * Christian Borntraeger <borntraeger@de.ibm.com>
9 * Christian Ehrhardt <ehrhardt@de.ibm.com>
10 * Jason J. Herne <jjherne@us.ibm.com>
11 */
12
13 #define KMSG_COMPONENT "kvm-s390"
14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
15
16 #include <linux/compiler.h>
17 #include <linux/err.h>
18 #include <linux/fs.h>
19 #include <linux/hrtimer.h>
20 #include <linux/init.h>
21 #include <linux/kvm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/mman.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/random.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/vmalloc.h>
30 #include <linux/bitmap.h>
31 #include <linux/sched/signal.h>
32 #include <linux/string.h>
33 #include <linux/pgtable.h>
34 #include <linux/mmu_notifier.h>
35
36 #include <asm/asm-offsets.h>
37 #include <asm/lowcore.h>
38 #include <asm/stp.h>
39 #include <asm/gmap.h>
40 #include <asm/nmi.h>
41 #include <asm/switch_to.h>
42 #include <asm/isc.h>
43 #include <asm/sclp.h>
44 #include <asm/cpacf.h>
45 #include <asm/timex.h>
46 #include <asm/ap.h>
47 #include <asm/uv.h>
48 #include <asm/fpu/api.h>
49 #include "kvm-s390.h"
50 #include "gaccess.h"
51 #include "pci.h"
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55 #include "trace-s390.h"
56
57 #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */
58 #define LOCAL_IRQS 32
59 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
60 (KVM_MAX_VCPUS + LOCAL_IRQS))
61
62 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
63 KVM_GENERIC_VM_STATS(),
64 STATS_DESC_COUNTER(VM, inject_io),
65 STATS_DESC_COUNTER(VM, inject_float_mchk),
66 STATS_DESC_COUNTER(VM, inject_pfault_done),
67 STATS_DESC_COUNTER(VM, inject_service_signal),
68 STATS_DESC_COUNTER(VM, inject_virtio),
69 STATS_DESC_COUNTER(VM, aen_forward),
70 STATS_DESC_COUNTER(VM, gmap_shadow_reuse),
71 STATS_DESC_COUNTER(VM, gmap_shadow_create),
72 STATS_DESC_COUNTER(VM, gmap_shadow_r1_entry),
73 STATS_DESC_COUNTER(VM, gmap_shadow_r2_entry),
74 STATS_DESC_COUNTER(VM, gmap_shadow_r3_entry),
75 STATS_DESC_COUNTER(VM, gmap_shadow_sg_entry),
76 STATS_DESC_COUNTER(VM, gmap_shadow_pg_entry),
77 };
78
79 const struct kvm_stats_header kvm_vm_stats_header = {
80 .name_size = KVM_STATS_NAME_SIZE,
81 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
82 .id_offset = sizeof(struct kvm_stats_header),
83 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
84 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
85 sizeof(kvm_vm_stats_desc),
86 };
87
88 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
89 KVM_GENERIC_VCPU_STATS(),
90 STATS_DESC_COUNTER(VCPU, exit_userspace),
91 STATS_DESC_COUNTER(VCPU, exit_null),
92 STATS_DESC_COUNTER(VCPU, exit_external_request),
93 STATS_DESC_COUNTER(VCPU, exit_io_request),
94 STATS_DESC_COUNTER(VCPU, exit_external_interrupt),
95 STATS_DESC_COUNTER(VCPU, exit_stop_request),
96 STATS_DESC_COUNTER(VCPU, exit_validity),
97 STATS_DESC_COUNTER(VCPU, exit_instruction),
98 STATS_DESC_COUNTER(VCPU, exit_pei),
99 STATS_DESC_COUNTER(VCPU, halt_no_poll_steal),
100 STATS_DESC_COUNTER(VCPU, instruction_lctl),
101 STATS_DESC_COUNTER(VCPU, instruction_lctlg),
102 STATS_DESC_COUNTER(VCPU, instruction_stctl),
103 STATS_DESC_COUNTER(VCPU, instruction_stctg),
104 STATS_DESC_COUNTER(VCPU, exit_program_interruption),
105 STATS_DESC_COUNTER(VCPU, exit_instr_and_program),
106 STATS_DESC_COUNTER(VCPU, exit_operation_exception),
107 STATS_DESC_COUNTER(VCPU, deliver_ckc),
108 STATS_DESC_COUNTER(VCPU, deliver_cputm),
109 STATS_DESC_COUNTER(VCPU, deliver_external_call),
110 STATS_DESC_COUNTER(VCPU, deliver_emergency_signal),
111 STATS_DESC_COUNTER(VCPU, deliver_service_signal),
112 STATS_DESC_COUNTER(VCPU, deliver_virtio),
113 STATS_DESC_COUNTER(VCPU, deliver_stop_signal),
114 STATS_DESC_COUNTER(VCPU, deliver_prefix_signal),
115 STATS_DESC_COUNTER(VCPU, deliver_restart_signal),
116 STATS_DESC_COUNTER(VCPU, deliver_program),
117 STATS_DESC_COUNTER(VCPU, deliver_io),
118 STATS_DESC_COUNTER(VCPU, deliver_machine_check),
119 STATS_DESC_COUNTER(VCPU, exit_wait_state),
120 STATS_DESC_COUNTER(VCPU, inject_ckc),
121 STATS_DESC_COUNTER(VCPU, inject_cputm),
122 STATS_DESC_COUNTER(VCPU, inject_external_call),
123 STATS_DESC_COUNTER(VCPU, inject_emergency_signal),
124 STATS_DESC_COUNTER(VCPU, inject_mchk),
125 STATS_DESC_COUNTER(VCPU, inject_pfault_init),
126 STATS_DESC_COUNTER(VCPU, inject_program),
127 STATS_DESC_COUNTER(VCPU, inject_restart),
128 STATS_DESC_COUNTER(VCPU, inject_set_prefix),
129 STATS_DESC_COUNTER(VCPU, inject_stop_signal),
130 STATS_DESC_COUNTER(VCPU, instruction_epsw),
131 STATS_DESC_COUNTER(VCPU, instruction_gs),
132 STATS_DESC_COUNTER(VCPU, instruction_io_other),
133 STATS_DESC_COUNTER(VCPU, instruction_lpsw),
134 STATS_DESC_COUNTER(VCPU, instruction_lpswe),
135 STATS_DESC_COUNTER(VCPU, instruction_pfmf),
136 STATS_DESC_COUNTER(VCPU, instruction_ptff),
137 STATS_DESC_COUNTER(VCPU, instruction_sck),
138 STATS_DESC_COUNTER(VCPU, instruction_sckpf),
139 STATS_DESC_COUNTER(VCPU, instruction_stidp),
140 STATS_DESC_COUNTER(VCPU, instruction_spx),
141 STATS_DESC_COUNTER(VCPU, instruction_stpx),
142 STATS_DESC_COUNTER(VCPU, instruction_stap),
143 STATS_DESC_COUNTER(VCPU, instruction_iske),
144 STATS_DESC_COUNTER(VCPU, instruction_ri),
145 STATS_DESC_COUNTER(VCPU, instruction_rrbe),
146 STATS_DESC_COUNTER(VCPU, instruction_sske),
147 STATS_DESC_COUNTER(VCPU, instruction_ipte_interlock),
148 STATS_DESC_COUNTER(VCPU, instruction_stsi),
149 STATS_DESC_COUNTER(VCPU, instruction_stfl),
150 STATS_DESC_COUNTER(VCPU, instruction_tb),
151 STATS_DESC_COUNTER(VCPU, instruction_tpi),
152 STATS_DESC_COUNTER(VCPU, instruction_tprot),
153 STATS_DESC_COUNTER(VCPU, instruction_tsch),
154 STATS_DESC_COUNTER(VCPU, instruction_sie),
155 STATS_DESC_COUNTER(VCPU, instruction_essa),
156 STATS_DESC_COUNTER(VCPU, instruction_sthyi),
157 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense),
158 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense_running),
159 STATS_DESC_COUNTER(VCPU, instruction_sigp_external_call),
160 STATS_DESC_COUNTER(VCPU, instruction_sigp_emergency),
161 STATS_DESC_COUNTER(VCPU, instruction_sigp_cond_emergency),
162 STATS_DESC_COUNTER(VCPU, instruction_sigp_start),
163 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop),
164 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop_store_status),
165 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_status),
166 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_adtl_status),
167 STATS_DESC_COUNTER(VCPU, instruction_sigp_arch),
168 STATS_DESC_COUNTER(VCPU, instruction_sigp_prefix),
169 STATS_DESC_COUNTER(VCPU, instruction_sigp_restart),
170 STATS_DESC_COUNTER(VCPU, instruction_sigp_init_cpu_reset),
171 STATS_DESC_COUNTER(VCPU, instruction_sigp_cpu_reset),
172 STATS_DESC_COUNTER(VCPU, instruction_sigp_unknown),
173 STATS_DESC_COUNTER(VCPU, instruction_diagnose_10),
174 STATS_DESC_COUNTER(VCPU, instruction_diagnose_44),
175 STATS_DESC_COUNTER(VCPU, instruction_diagnose_9c),
176 STATS_DESC_COUNTER(VCPU, diag_9c_ignored),
177 STATS_DESC_COUNTER(VCPU, diag_9c_forward),
178 STATS_DESC_COUNTER(VCPU, instruction_diagnose_258),
179 STATS_DESC_COUNTER(VCPU, instruction_diagnose_308),
180 STATS_DESC_COUNTER(VCPU, instruction_diagnose_500),
181 STATS_DESC_COUNTER(VCPU, instruction_diagnose_other),
182 STATS_DESC_COUNTER(VCPU, pfault_sync)
183 };
184
185 const struct kvm_stats_header kvm_vcpu_stats_header = {
186 .name_size = KVM_STATS_NAME_SIZE,
187 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
188 .id_offset = sizeof(struct kvm_stats_header),
189 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
190 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
191 sizeof(kvm_vcpu_stats_desc),
192 };
193
194 /* allow nested virtualization in KVM (if enabled by user space) */
195 static int nested;
196 module_param(nested, int, S_IRUGO);
197 MODULE_PARM_DESC(nested, "Nested virtualization support");
198
199 /* allow 1m huge page guest backing, if !nested */
200 static int hpage;
201 module_param(hpage, int, 0444);
202 MODULE_PARM_DESC(hpage, "1m huge page backing support");
203
204 /* maximum percentage of steal time for polling. >100 is treated like 100 */
205 static u8 halt_poll_max_steal = 10;
206 module_param(halt_poll_max_steal, byte, 0644);
207 MODULE_PARM_DESC(halt_poll_max_steal, "Maximum percentage of steal time to allow polling");
208
209 /* if set to true, the GISA will be initialized and used if available */
210 static bool use_gisa = true;
211 module_param(use_gisa, bool, 0644);
212 MODULE_PARM_DESC(use_gisa, "Use the GISA if the host supports it.");
213
214 /* maximum diag9c forwarding per second */
215 unsigned int diag9c_forwarding_hz;
216 module_param(diag9c_forwarding_hz, uint, 0644);
217 MODULE_PARM_DESC(diag9c_forwarding_hz, "Maximum diag9c forwarding per second, 0 to turn off");
218
219 /*
220 * allow asynchronous deinit for protected guests; enable by default since
221 * the feature is opt-in anyway
222 */
223 static int async_destroy = 1;
224 module_param(async_destroy, int, 0444);
225 MODULE_PARM_DESC(async_destroy, "Asynchronous destroy for protected guests");
226
227 /*
228 * For now we handle at most 16 double words as this is what the s390 base
229 * kernel handles and stores in the prefix page. If we ever need to go beyond
230 * this, this requires changes to code, but the external uapi can stay.
231 */
232 #define SIZE_INTERNAL 16
233
234 /*
235 * Base feature mask that defines default mask for facilities. Consists of the
236 * defines in FACILITIES_KVM and the non-hypervisor managed bits.
237 */
238 static unsigned long kvm_s390_fac_base[SIZE_INTERNAL] = { FACILITIES_KVM };
239 /*
240 * Extended feature mask. Consists of the defines in FACILITIES_KVM_CPUMODEL
241 * and defines the facilities that can be enabled via a cpu model.
242 */
243 static unsigned long kvm_s390_fac_ext[SIZE_INTERNAL] = { FACILITIES_KVM_CPUMODEL };
244
kvm_s390_fac_size(void)245 static unsigned long kvm_s390_fac_size(void)
246 {
247 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_MASK_SIZE_U64);
248 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_LIST_SIZE_U64);
249 BUILD_BUG_ON(SIZE_INTERNAL * sizeof(unsigned long) >
250 sizeof(stfle_fac_list));
251
252 return SIZE_INTERNAL;
253 }
254
255 /* available cpu features supported by kvm */
256 static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
257 /* available subfunctions indicated via query / "test bit" */
258 static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
259
260 static struct gmap_notifier gmap_notifier;
261 static struct gmap_notifier vsie_gmap_notifier;
262 debug_info_t *kvm_s390_dbf;
263 debug_info_t *kvm_s390_dbf_uv;
264
265 /* Section: not file related */
266 /* forward declarations */
267 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
268 unsigned long end);
269 static int sca_switch_to_extended(struct kvm *kvm);
270
kvm_clock_sync_scb(struct kvm_s390_sie_block * scb,u64 delta)271 static void kvm_clock_sync_scb(struct kvm_s390_sie_block *scb, u64 delta)
272 {
273 u8 delta_idx = 0;
274
275 /*
276 * The TOD jumps by delta, we have to compensate this by adding
277 * -delta to the epoch.
278 */
279 delta = -delta;
280
281 /* sign-extension - we're adding to signed values below */
282 if ((s64)delta < 0)
283 delta_idx = -1;
284
285 scb->epoch += delta;
286 if (scb->ecd & ECD_MEF) {
287 scb->epdx += delta_idx;
288 if (scb->epoch < delta)
289 scb->epdx += 1;
290 }
291 }
292
293 /*
294 * This callback is executed during stop_machine(). All CPUs are therefore
295 * temporarily stopped. In order not to change guest behavior, we have to
296 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
297 * so a CPU won't be stopped while calculating with the epoch.
298 */
kvm_clock_sync(struct notifier_block * notifier,unsigned long val,void * v)299 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
300 void *v)
301 {
302 struct kvm *kvm;
303 struct kvm_vcpu *vcpu;
304 unsigned long i;
305 unsigned long long *delta = v;
306
307 list_for_each_entry(kvm, &vm_list, vm_list) {
308 kvm_for_each_vcpu(i, vcpu, kvm) {
309 kvm_clock_sync_scb(vcpu->arch.sie_block, *delta);
310 if (i == 0) {
311 kvm->arch.epoch = vcpu->arch.sie_block->epoch;
312 kvm->arch.epdx = vcpu->arch.sie_block->epdx;
313 }
314 if (vcpu->arch.cputm_enabled)
315 vcpu->arch.cputm_start += *delta;
316 if (vcpu->arch.vsie_block)
317 kvm_clock_sync_scb(vcpu->arch.vsie_block,
318 *delta);
319 }
320 }
321 return NOTIFY_OK;
322 }
323
324 static struct notifier_block kvm_clock_notifier = {
325 .notifier_call = kvm_clock_sync,
326 };
327
allow_cpu_feat(unsigned long nr)328 static void allow_cpu_feat(unsigned long nr)
329 {
330 set_bit_inv(nr, kvm_s390_available_cpu_feat);
331 }
332
plo_test_bit(unsigned char nr)333 static inline int plo_test_bit(unsigned char nr)
334 {
335 unsigned long function = (unsigned long)nr | 0x100;
336 int cc;
337
338 asm volatile(
339 " lgr 0,%[function]\n"
340 /* Parameter registers are ignored for "test bit" */
341 " plo 0,0,0,0(0)\n"
342 " ipm %0\n"
343 " srl %0,28\n"
344 : "=d" (cc)
345 : [function] "d" (function)
346 : "cc", "0");
347 return cc == 0;
348 }
349
__insn32_query(unsigned int opcode,u8 * query)350 static __always_inline void __insn32_query(unsigned int opcode, u8 *query)
351 {
352 asm volatile(
353 " lghi 0,0\n"
354 " lgr 1,%[query]\n"
355 /* Parameter registers are ignored */
356 " .insn rrf,%[opc] << 16,2,4,6,0\n"
357 :
358 : [query] "d" ((unsigned long)query), [opc] "i" (opcode)
359 : "cc", "memory", "0", "1");
360 }
361
362 #define INSN_SORTL 0xb938
363 #define INSN_DFLTCC 0xb939
364
kvm_s390_cpu_feat_init(void)365 static void __init kvm_s390_cpu_feat_init(void)
366 {
367 int i;
368
369 for (i = 0; i < 256; ++i) {
370 if (plo_test_bit(i))
371 kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
372 }
373
374 if (test_facility(28)) /* TOD-clock steering */
375 ptff(kvm_s390_available_subfunc.ptff,
376 sizeof(kvm_s390_available_subfunc.ptff),
377 PTFF_QAF);
378
379 if (test_facility(17)) { /* MSA */
380 __cpacf_query(CPACF_KMAC, (cpacf_mask_t *)
381 kvm_s390_available_subfunc.kmac);
382 __cpacf_query(CPACF_KMC, (cpacf_mask_t *)
383 kvm_s390_available_subfunc.kmc);
384 __cpacf_query(CPACF_KM, (cpacf_mask_t *)
385 kvm_s390_available_subfunc.km);
386 __cpacf_query(CPACF_KIMD, (cpacf_mask_t *)
387 kvm_s390_available_subfunc.kimd);
388 __cpacf_query(CPACF_KLMD, (cpacf_mask_t *)
389 kvm_s390_available_subfunc.klmd);
390 }
391 if (test_facility(76)) /* MSA3 */
392 __cpacf_query(CPACF_PCKMO, (cpacf_mask_t *)
393 kvm_s390_available_subfunc.pckmo);
394 if (test_facility(77)) { /* MSA4 */
395 __cpacf_query(CPACF_KMCTR, (cpacf_mask_t *)
396 kvm_s390_available_subfunc.kmctr);
397 __cpacf_query(CPACF_KMF, (cpacf_mask_t *)
398 kvm_s390_available_subfunc.kmf);
399 __cpacf_query(CPACF_KMO, (cpacf_mask_t *)
400 kvm_s390_available_subfunc.kmo);
401 __cpacf_query(CPACF_PCC, (cpacf_mask_t *)
402 kvm_s390_available_subfunc.pcc);
403 }
404 if (test_facility(57)) /* MSA5 */
405 __cpacf_query(CPACF_PRNO, (cpacf_mask_t *)
406 kvm_s390_available_subfunc.ppno);
407
408 if (test_facility(146)) /* MSA8 */
409 __cpacf_query(CPACF_KMA, (cpacf_mask_t *)
410 kvm_s390_available_subfunc.kma);
411
412 if (test_facility(155)) /* MSA9 */
413 __cpacf_query(CPACF_KDSA, (cpacf_mask_t *)
414 kvm_s390_available_subfunc.kdsa);
415
416 if (test_facility(150)) /* SORTL */
417 __insn32_query(INSN_SORTL, kvm_s390_available_subfunc.sortl);
418
419 if (test_facility(151)) /* DFLTCC */
420 __insn32_query(INSN_DFLTCC, kvm_s390_available_subfunc.dfltcc);
421
422 if (MACHINE_HAS_ESOP)
423 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
424 /*
425 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
426 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
427 */
428 if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
429 !test_facility(3) || !nested)
430 return;
431 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
432 if (sclp.has_64bscao)
433 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
434 if (sclp.has_siif)
435 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
436 if (sclp.has_gpere)
437 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
438 if (sclp.has_gsls)
439 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
440 if (sclp.has_ib)
441 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
442 if (sclp.has_cei)
443 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
444 if (sclp.has_ibs)
445 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
446 if (sclp.has_kss)
447 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS);
448 /*
449 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make
450 * all skey handling functions read/set the skey from the PGSTE
451 * instead of the real storage key.
452 *
453 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make
454 * pages being detected as preserved although they are resident.
455 *
456 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will
457 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY.
458 *
459 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and
460 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be
461 * correctly shadowed. We can do that for the PGSTE but not for PTE.I.
462 *
463 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We
464 * cannot easily shadow the SCA because of the ipte lock.
465 */
466 }
467
__kvm_s390_init(void)468 static int __init __kvm_s390_init(void)
469 {
470 int rc = -ENOMEM;
471
472 kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
473 if (!kvm_s390_dbf)
474 return -ENOMEM;
475
476 kvm_s390_dbf_uv = debug_register("kvm-uv", 32, 1, 7 * sizeof(long));
477 if (!kvm_s390_dbf_uv)
478 goto err_kvm_uv;
479
480 if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view) ||
481 debug_register_view(kvm_s390_dbf_uv, &debug_sprintf_view))
482 goto err_debug_view;
483
484 kvm_s390_cpu_feat_init();
485
486 /* Register floating interrupt controller interface. */
487 rc = kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
488 if (rc) {
489 pr_err("A FLIC registration call failed with rc=%d\n", rc);
490 goto err_flic;
491 }
492
493 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) {
494 rc = kvm_s390_pci_init();
495 if (rc) {
496 pr_err("Unable to allocate AIFT for PCI\n");
497 goto err_pci;
498 }
499 }
500
501 rc = kvm_s390_gib_init(GAL_ISC);
502 if (rc)
503 goto err_gib;
504
505 gmap_notifier.notifier_call = kvm_gmap_notifier;
506 gmap_register_pte_notifier(&gmap_notifier);
507 vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
508 gmap_register_pte_notifier(&vsie_gmap_notifier);
509 atomic_notifier_chain_register(&s390_epoch_delta_notifier,
510 &kvm_clock_notifier);
511
512 return 0;
513
514 err_gib:
515 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
516 kvm_s390_pci_exit();
517 err_pci:
518 err_flic:
519 err_debug_view:
520 debug_unregister(kvm_s390_dbf_uv);
521 err_kvm_uv:
522 debug_unregister(kvm_s390_dbf);
523 return rc;
524 }
525
__kvm_s390_exit(void)526 static void __kvm_s390_exit(void)
527 {
528 gmap_unregister_pte_notifier(&gmap_notifier);
529 gmap_unregister_pte_notifier(&vsie_gmap_notifier);
530 atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
531 &kvm_clock_notifier);
532
533 kvm_s390_gib_destroy();
534 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
535 kvm_s390_pci_exit();
536 debug_unregister(kvm_s390_dbf);
537 debug_unregister(kvm_s390_dbf_uv);
538 }
539
540 /* Section: device related */
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)541 long kvm_arch_dev_ioctl(struct file *filp,
542 unsigned int ioctl, unsigned long arg)
543 {
544 if (ioctl == KVM_S390_ENABLE_SIE)
545 return s390_enable_sie();
546 return -EINVAL;
547 }
548
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)549 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
550 {
551 int r;
552
553 switch (ext) {
554 case KVM_CAP_S390_PSW:
555 case KVM_CAP_S390_GMAP:
556 case KVM_CAP_SYNC_MMU:
557 #ifdef CONFIG_KVM_S390_UCONTROL
558 case KVM_CAP_S390_UCONTROL:
559 #endif
560 case KVM_CAP_ASYNC_PF:
561 case KVM_CAP_SYNC_REGS:
562 case KVM_CAP_ONE_REG:
563 case KVM_CAP_ENABLE_CAP:
564 case KVM_CAP_S390_CSS_SUPPORT:
565 case KVM_CAP_IOEVENTFD:
566 case KVM_CAP_DEVICE_CTRL:
567 case KVM_CAP_S390_IRQCHIP:
568 case KVM_CAP_VM_ATTRIBUTES:
569 case KVM_CAP_MP_STATE:
570 case KVM_CAP_IMMEDIATE_EXIT:
571 case KVM_CAP_S390_INJECT_IRQ:
572 case KVM_CAP_S390_USER_SIGP:
573 case KVM_CAP_S390_USER_STSI:
574 case KVM_CAP_S390_SKEYS:
575 case KVM_CAP_S390_IRQ_STATE:
576 case KVM_CAP_S390_USER_INSTR0:
577 case KVM_CAP_S390_CMMA_MIGRATION:
578 case KVM_CAP_S390_AIS:
579 case KVM_CAP_S390_AIS_MIGRATION:
580 case KVM_CAP_S390_VCPU_RESETS:
581 case KVM_CAP_SET_GUEST_DEBUG:
582 case KVM_CAP_S390_DIAG318:
583 case KVM_CAP_IRQFD_RESAMPLE:
584 r = 1;
585 break;
586 case KVM_CAP_SET_GUEST_DEBUG2:
587 r = KVM_GUESTDBG_VALID_MASK;
588 break;
589 case KVM_CAP_S390_HPAGE_1M:
590 r = 0;
591 if (hpage && !kvm_is_ucontrol(kvm))
592 r = 1;
593 break;
594 case KVM_CAP_S390_MEM_OP:
595 r = MEM_OP_MAX_SIZE;
596 break;
597 case KVM_CAP_S390_MEM_OP_EXTENSION:
598 /*
599 * Flag bits indicating which extensions are supported.
600 * If r > 0, the base extension must also be supported/indicated,
601 * in order to maintain backwards compatibility.
602 */
603 r = KVM_S390_MEMOP_EXTENSION_CAP_BASE |
604 KVM_S390_MEMOP_EXTENSION_CAP_CMPXCHG;
605 break;
606 case KVM_CAP_NR_VCPUS:
607 case KVM_CAP_MAX_VCPUS:
608 case KVM_CAP_MAX_VCPU_ID:
609 r = KVM_S390_BSCA_CPU_SLOTS;
610 if (!kvm_s390_use_sca_entries())
611 r = KVM_MAX_VCPUS;
612 else if (sclp.has_esca && sclp.has_64bscao)
613 r = KVM_S390_ESCA_CPU_SLOTS;
614 if (ext == KVM_CAP_NR_VCPUS)
615 r = min_t(unsigned int, num_online_cpus(), r);
616 break;
617 case KVM_CAP_S390_COW:
618 r = MACHINE_HAS_ESOP;
619 break;
620 case KVM_CAP_S390_VECTOR_REGISTERS:
621 r = MACHINE_HAS_VX;
622 break;
623 case KVM_CAP_S390_RI:
624 r = test_facility(64);
625 break;
626 case KVM_CAP_S390_GS:
627 r = test_facility(133);
628 break;
629 case KVM_CAP_S390_BPB:
630 r = test_facility(82);
631 break;
632 case KVM_CAP_S390_PROTECTED_ASYNC_DISABLE:
633 r = async_destroy && is_prot_virt_host();
634 break;
635 case KVM_CAP_S390_PROTECTED:
636 r = is_prot_virt_host();
637 break;
638 case KVM_CAP_S390_PROTECTED_DUMP: {
639 u64 pv_cmds_dump[] = {
640 BIT_UVC_CMD_DUMP_INIT,
641 BIT_UVC_CMD_DUMP_CONFIG_STOR_STATE,
642 BIT_UVC_CMD_DUMP_CPU,
643 BIT_UVC_CMD_DUMP_COMPLETE,
644 };
645 int i;
646
647 r = is_prot_virt_host();
648
649 for (i = 0; i < ARRAY_SIZE(pv_cmds_dump); i++) {
650 if (!test_bit_inv(pv_cmds_dump[i],
651 (unsigned long *)&uv_info.inst_calls_list)) {
652 r = 0;
653 break;
654 }
655 }
656 break;
657 }
658 case KVM_CAP_S390_ZPCI_OP:
659 r = kvm_s390_pci_interp_allowed();
660 break;
661 case KVM_CAP_S390_CPU_TOPOLOGY:
662 r = test_facility(11);
663 break;
664 default:
665 r = 0;
666 }
667 return r;
668 }
669
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)670 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
671 {
672 int i;
673 gfn_t cur_gfn, last_gfn;
674 unsigned long gaddr, vmaddr;
675 struct gmap *gmap = kvm->arch.gmap;
676 DECLARE_BITMAP(bitmap, _PAGE_ENTRIES);
677
678 /* Loop over all guest segments */
679 cur_gfn = memslot->base_gfn;
680 last_gfn = memslot->base_gfn + memslot->npages;
681 for (; cur_gfn <= last_gfn; cur_gfn += _PAGE_ENTRIES) {
682 gaddr = gfn_to_gpa(cur_gfn);
683 vmaddr = gfn_to_hva_memslot(memslot, cur_gfn);
684 if (kvm_is_error_hva(vmaddr))
685 continue;
686
687 bitmap_zero(bitmap, _PAGE_ENTRIES);
688 gmap_sync_dirty_log_pmd(gmap, bitmap, gaddr, vmaddr);
689 for (i = 0; i < _PAGE_ENTRIES; i++) {
690 if (test_bit(i, bitmap))
691 mark_page_dirty(kvm, cur_gfn + i);
692 }
693
694 if (fatal_signal_pending(current))
695 return;
696 cond_resched();
697 }
698 }
699
700 /* Section: vm related */
701 static void sca_del_vcpu(struct kvm_vcpu *vcpu);
702
703 /*
704 * Get (and clear) the dirty memory log for a memory slot.
705 */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)706 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
707 struct kvm_dirty_log *log)
708 {
709 int r;
710 unsigned long n;
711 struct kvm_memory_slot *memslot;
712 int is_dirty;
713
714 if (kvm_is_ucontrol(kvm))
715 return -EINVAL;
716
717 mutex_lock(&kvm->slots_lock);
718
719 r = -EINVAL;
720 if (log->slot >= KVM_USER_MEM_SLOTS)
721 goto out;
722
723 r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot);
724 if (r)
725 goto out;
726
727 /* Clear the dirty log */
728 if (is_dirty) {
729 n = kvm_dirty_bitmap_bytes(memslot);
730 memset(memslot->dirty_bitmap, 0, n);
731 }
732 r = 0;
733 out:
734 mutex_unlock(&kvm->slots_lock);
735 return r;
736 }
737
icpt_operexc_on_all_vcpus(struct kvm * kvm)738 static void icpt_operexc_on_all_vcpus(struct kvm *kvm)
739 {
740 unsigned long i;
741 struct kvm_vcpu *vcpu;
742
743 kvm_for_each_vcpu(i, vcpu, kvm) {
744 kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu);
745 }
746 }
747
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)748 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
749 {
750 int r;
751
752 if (cap->flags)
753 return -EINVAL;
754
755 switch (cap->cap) {
756 case KVM_CAP_S390_IRQCHIP:
757 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
758 kvm->arch.use_irqchip = 1;
759 r = 0;
760 break;
761 case KVM_CAP_S390_USER_SIGP:
762 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
763 kvm->arch.user_sigp = 1;
764 r = 0;
765 break;
766 case KVM_CAP_S390_VECTOR_REGISTERS:
767 mutex_lock(&kvm->lock);
768 if (kvm->created_vcpus) {
769 r = -EBUSY;
770 } else if (MACHINE_HAS_VX) {
771 set_kvm_facility(kvm->arch.model.fac_mask, 129);
772 set_kvm_facility(kvm->arch.model.fac_list, 129);
773 if (test_facility(134)) {
774 set_kvm_facility(kvm->arch.model.fac_mask, 134);
775 set_kvm_facility(kvm->arch.model.fac_list, 134);
776 }
777 if (test_facility(135)) {
778 set_kvm_facility(kvm->arch.model.fac_mask, 135);
779 set_kvm_facility(kvm->arch.model.fac_list, 135);
780 }
781 if (test_facility(148)) {
782 set_kvm_facility(kvm->arch.model.fac_mask, 148);
783 set_kvm_facility(kvm->arch.model.fac_list, 148);
784 }
785 if (test_facility(152)) {
786 set_kvm_facility(kvm->arch.model.fac_mask, 152);
787 set_kvm_facility(kvm->arch.model.fac_list, 152);
788 }
789 if (test_facility(192)) {
790 set_kvm_facility(kvm->arch.model.fac_mask, 192);
791 set_kvm_facility(kvm->arch.model.fac_list, 192);
792 }
793 r = 0;
794 } else
795 r = -EINVAL;
796 mutex_unlock(&kvm->lock);
797 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
798 r ? "(not available)" : "(success)");
799 break;
800 case KVM_CAP_S390_RI:
801 r = -EINVAL;
802 mutex_lock(&kvm->lock);
803 if (kvm->created_vcpus) {
804 r = -EBUSY;
805 } else if (test_facility(64)) {
806 set_kvm_facility(kvm->arch.model.fac_mask, 64);
807 set_kvm_facility(kvm->arch.model.fac_list, 64);
808 r = 0;
809 }
810 mutex_unlock(&kvm->lock);
811 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
812 r ? "(not available)" : "(success)");
813 break;
814 case KVM_CAP_S390_AIS:
815 mutex_lock(&kvm->lock);
816 if (kvm->created_vcpus) {
817 r = -EBUSY;
818 } else {
819 set_kvm_facility(kvm->arch.model.fac_mask, 72);
820 set_kvm_facility(kvm->arch.model.fac_list, 72);
821 r = 0;
822 }
823 mutex_unlock(&kvm->lock);
824 VM_EVENT(kvm, 3, "ENABLE: AIS %s",
825 r ? "(not available)" : "(success)");
826 break;
827 case KVM_CAP_S390_GS:
828 r = -EINVAL;
829 mutex_lock(&kvm->lock);
830 if (kvm->created_vcpus) {
831 r = -EBUSY;
832 } else if (test_facility(133)) {
833 set_kvm_facility(kvm->arch.model.fac_mask, 133);
834 set_kvm_facility(kvm->arch.model.fac_list, 133);
835 r = 0;
836 }
837 mutex_unlock(&kvm->lock);
838 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s",
839 r ? "(not available)" : "(success)");
840 break;
841 case KVM_CAP_S390_HPAGE_1M:
842 mutex_lock(&kvm->lock);
843 if (kvm->created_vcpus)
844 r = -EBUSY;
845 else if (!hpage || kvm->arch.use_cmma || kvm_is_ucontrol(kvm))
846 r = -EINVAL;
847 else {
848 r = 0;
849 mmap_write_lock(kvm->mm);
850 kvm->mm->context.allow_gmap_hpage_1m = 1;
851 mmap_write_unlock(kvm->mm);
852 /*
853 * We might have to create fake 4k page
854 * tables. To avoid that the hardware works on
855 * stale PGSTEs, we emulate these instructions.
856 */
857 kvm->arch.use_skf = 0;
858 kvm->arch.use_pfmfi = 0;
859 }
860 mutex_unlock(&kvm->lock);
861 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_HPAGE %s",
862 r ? "(not available)" : "(success)");
863 break;
864 case KVM_CAP_S390_USER_STSI:
865 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
866 kvm->arch.user_stsi = 1;
867 r = 0;
868 break;
869 case KVM_CAP_S390_USER_INSTR0:
870 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0");
871 kvm->arch.user_instr0 = 1;
872 icpt_operexc_on_all_vcpus(kvm);
873 r = 0;
874 break;
875 case KVM_CAP_S390_CPU_TOPOLOGY:
876 r = -EINVAL;
877 mutex_lock(&kvm->lock);
878 if (kvm->created_vcpus) {
879 r = -EBUSY;
880 } else if (test_facility(11)) {
881 set_kvm_facility(kvm->arch.model.fac_mask, 11);
882 set_kvm_facility(kvm->arch.model.fac_list, 11);
883 r = 0;
884 }
885 mutex_unlock(&kvm->lock);
886 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_CPU_TOPOLOGY %s",
887 r ? "(not available)" : "(success)");
888 break;
889 default:
890 r = -EINVAL;
891 break;
892 }
893 return r;
894 }
895
kvm_s390_get_mem_control(struct kvm * kvm,struct kvm_device_attr * attr)896 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
897 {
898 int ret;
899
900 switch (attr->attr) {
901 case KVM_S390_VM_MEM_LIMIT_SIZE:
902 ret = 0;
903 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
904 kvm->arch.mem_limit);
905 if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
906 ret = -EFAULT;
907 break;
908 default:
909 ret = -ENXIO;
910 break;
911 }
912 return ret;
913 }
914
kvm_s390_set_mem_control(struct kvm * kvm,struct kvm_device_attr * attr)915 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
916 {
917 int ret;
918 unsigned int idx;
919 switch (attr->attr) {
920 case KVM_S390_VM_MEM_ENABLE_CMMA:
921 ret = -ENXIO;
922 if (!sclp.has_cmma)
923 break;
924
925 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
926 mutex_lock(&kvm->lock);
927 if (kvm->created_vcpus)
928 ret = -EBUSY;
929 else if (kvm->mm->context.allow_gmap_hpage_1m)
930 ret = -EINVAL;
931 else {
932 kvm->arch.use_cmma = 1;
933 /* Not compatible with cmma. */
934 kvm->arch.use_pfmfi = 0;
935 ret = 0;
936 }
937 mutex_unlock(&kvm->lock);
938 break;
939 case KVM_S390_VM_MEM_CLR_CMMA:
940 ret = -ENXIO;
941 if (!sclp.has_cmma)
942 break;
943 ret = -EINVAL;
944 if (!kvm->arch.use_cmma)
945 break;
946
947 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
948 mutex_lock(&kvm->lock);
949 idx = srcu_read_lock(&kvm->srcu);
950 s390_reset_cmma(kvm->arch.gmap->mm);
951 srcu_read_unlock(&kvm->srcu, idx);
952 mutex_unlock(&kvm->lock);
953 ret = 0;
954 break;
955 case KVM_S390_VM_MEM_LIMIT_SIZE: {
956 unsigned long new_limit;
957
958 if (kvm_is_ucontrol(kvm))
959 return -EINVAL;
960
961 if (get_user(new_limit, (u64 __user *)attr->addr))
962 return -EFAULT;
963
964 if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
965 new_limit > kvm->arch.mem_limit)
966 return -E2BIG;
967
968 if (!new_limit)
969 return -EINVAL;
970
971 /* gmap_create takes last usable address */
972 if (new_limit != KVM_S390_NO_MEM_LIMIT)
973 new_limit -= 1;
974
975 ret = -EBUSY;
976 mutex_lock(&kvm->lock);
977 if (!kvm->created_vcpus) {
978 /* gmap_create will round the limit up */
979 struct gmap *new = gmap_create(current->mm, new_limit);
980
981 if (!new) {
982 ret = -ENOMEM;
983 } else {
984 gmap_remove(kvm->arch.gmap);
985 new->private = kvm;
986 kvm->arch.gmap = new;
987 ret = 0;
988 }
989 }
990 mutex_unlock(&kvm->lock);
991 VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
992 VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
993 (void *) kvm->arch.gmap->asce);
994 break;
995 }
996 default:
997 ret = -ENXIO;
998 break;
999 }
1000 return ret;
1001 }
1002
1003 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);
1004
kvm_s390_vcpu_crypto_reset_all(struct kvm * kvm)1005 void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm)
1006 {
1007 struct kvm_vcpu *vcpu;
1008 unsigned long i;
1009
1010 kvm_s390_vcpu_block_all(kvm);
1011
1012 kvm_for_each_vcpu(i, vcpu, kvm) {
1013 kvm_s390_vcpu_crypto_setup(vcpu);
1014 /* recreate the shadow crycb by leaving the VSIE handler */
1015 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu);
1016 }
1017
1018 kvm_s390_vcpu_unblock_all(kvm);
1019 }
1020
kvm_s390_vm_set_crypto(struct kvm * kvm,struct kvm_device_attr * attr)1021 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
1022 {
1023 mutex_lock(&kvm->lock);
1024 switch (attr->attr) {
1025 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
1026 if (!test_kvm_facility(kvm, 76)) {
1027 mutex_unlock(&kvm->lock);
1028 return -EINVAL;
1029 }
1030 get_random_bytes(
1031 kvm->arch.crypto.crycb->aes_wrapping_key_mask,
1032 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
1033 kvm->arch.crypto.aes_kw = 1;
1034 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
1035 break;
1036 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
1037 if (!test_kvm_facility(kvm, 76)) {
1038 mutex_unlock(&kvm->lock);
1039 return -EINVAL;
1040 }
1041 get_random_bytes(
1042 kvm->arch.crypto.crycb->dea_wrapping_key_mask,
1043 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1044 kvm->arch.crypto.dea_kw = 1;
1045 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
1046 break;
1047 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
1048 if (!test_kvm_facility(kvm, 76)) {
1049 mutex_unlock(&kvm->lock);
1050 return -EINVAL;
1051 }
1052 kvm->arch.crypto.aes_kw = 0;
1053 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
1054 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
1055 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
1056 break;
1057 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
1058 if (!test_kvm_facility(kvm, 76)) {
1059 mutex_unlock(&kvm->lock);
1060 return -EINVAL;
1061 }
1062 kvm->arch.crypto.dea_kw = 0;
1063 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
1064 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1065 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
1066 break;
1067 case KVM_S390_VM_CRYPTO_ENABLE_APIE:
1068 if (!ap_instructions_available()) {
1069 mutex_unlock(&kvm->lock);
1070 return -EOPNOTSUPP;
1071 }
1072 kvm->arch.crypto.apie = 1;
1073 break;
1074 case KVM_S390_VM_CRYPTO_DISABLE_APIE:
1075 if (!ap_instructions_available()) {
1076 mutex_unlock(&kvm->lock);
1077 return -EOPNOTSUPP;
1078 }
1079 kvm->arch.crypto.apie = 0;
1080 break;
1081 default:
1082 mutex_unlock(&kvm->lock);
1083 return -ENXIO;
1084 }
1085
1086 kvm_s390_vcpu_crypto_reset_all(kvm);
1087 mutex_unlock(&kvm->lock);
1088 return 0;
1089 }
1090
kvm_s390_vcpu_pci_setup(struct kvm_vcpu * vcpu)1091 static void kvm_s390_vcpu_pci_setup(struct kvm_vcpu *vcpu)
1092 {
1093 /* Only set the ECB bits after guest requests zPCI interpretation */
1094 if (!vcpu->kvm->arch.use_zpci_interp)
1095 return;
1096
1097 vcpu->arch.sie_block->ecb2 |= ECB2_ZPCI_LSI;
1098 vcpu->arch.sie_block->ecb3 |= ECB3_AISII + ECB3_AISI;
1099 }
1100
kvm_s390_vcpu_pci_enable_interp(struct kvm * kvm)1101 void kvm_s390_vcpu_pci_enable_interp(struct kvm *kvm)
1102 {
1103 struct kvm_vcpu *vcpu;
1104 unsigned long i;
1105
1106 lockdep_assert_held(&kvm->lock);
1107
1108 if (!kvm_s390_pci_interp_allowed())
1109 return;
1110
1111 /*
1112 * If host is configured for PCI and the necessary facilities are
1113 * available, turn on interpretation for the life of this guest
1114 */
1115 kvm->arch.use_zpci_interp = 1;
1116
1117 kvm_s390_vcpu_block_all(kvm);
1118
1119 kvm_for_each_vcpu(i, vcpu, kvm) {
1120 kvm_s390_vcpu_pci_setup(vcpu);
1121 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu);
1122 }
1123
1124 kvm_s390_vcpu_unblock_all(kvm);
1125 }
1126
kvm_s390_sync_request_broadcast(struct kvm * kvm,int req)1127 static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req)
1128 {
1129 unsigned long cx;
1130 struct kvm_vcpu *vcpu;
1131
1132 kvm_for_each_vcpu(cx, vcpu, kvm)
1133 kvm_s390_sync_request(req, vcpu);
1134 }
1135
1136 /*
1137 * Must be called with kvm->srcu held to avoid races on memslots, and with
1138 * kvm->slots_lock to avoid races with ourselves and kvm_s390_vm_stop_migration.
1139 */
kvm_s390_vm_start_migration(struct kvm * kvm)1140 static int kvm_s390_vm_start_migration(struct kvm *kvm)
1141 {
1142 struct kvm_memory_slot *ms;
1143 struct kvm_memslots *slots;
1144 unsigned long ram_pages = 0;
1145 int bkt;
1146
1147 /* migration mode already enabled */
1148 if (kvm->arch.migration_mode)
1149 return 0;
1150 slots = kvm_memslots(kvm);
1151 if (!slots || kvm_memslots_empty(slots))
1152 return -EINVAL;
1153
1154 if (!kvm->arch.use_cmma) {
1155 kvm->arch.migration_mode = 1;
1156 return 0;
1157 }
1158 /* mark all the pages in active slots as dirty */
1159 kvm_for_each_memslot(ms, bkt, slots) {
1160 if (!ms->dirty_bitmap)
1161 return -EINVAL;
1162 /*
1163 * The second half of the bitmap is only used on x86,
1164 * and would be wasted otherwise, so we put it to good
1165 * use here to keep track of the state of the storage
1166 * attributes.
1167 */
1168 memset(kvm_second_dirty_bitmap(ms), 0xff, kvm_dirty_bitmap_bytes(ms));
1169 ram_pages += ms->npages;
1170 }
1171 atomic64_set(&kvm->arch.cmma_dirty_pages, ram_pages);
1172 kvm->arch.migration_mode = 1;
1173 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION);
1174 return 0;
1175 }
1176
1177 /*
1178 * Must be called with kvm->slots_lock to avoid races with ourselves and
1179 * kvm_s390_vm_start_migration.
1180 */
kvm_s390_vm_stop_migration(struct kvm * kvm)1181 static int kvm_s390_vm_stop_migration(struct kvm *kvm)
1182 {
1183 /* migration mode already disabled */
1184 if (!kvm->arch.migration_mode)
1185 return 0;
1186 kvm->arch.migration_mode = 0;
1187 if (kvm->arch.use_cmma)
1188 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION);
1189 return 0;
1190 }
1191
kvm_s390_vm_set_migration(struct kvm * kvm,struct kvm_device_attr * attr)1192 static int kvm_s390_vm_set_migration(struct kvm *kvm,
1193 struct kvm_device_attr *attr)
1194 {
1195 int res = -ENXIO;
1196
1197 mutex_lock(&kvm->slots_lock);
1198 switch (attr->attr) {
1199 case KVM_S390_VM_MIGRATION_START:
1200 res = kvm_s390_vm_start_migration(kvm);
1201 break;
1202 case KVM_S390_VM_MIGRATION_STOP:
1203 res = kvm_s390_vm_stop_migration(kvm);
1204 break;
1205 default:
1206 break;
1207 }
1208 mutex_unlock(&kvm->slots_lock);
1209
1210 return res;
1211 }
1212
kvm_s390_vm_get_migration(struct kvm * kvm,struct kvm_device_attr * attr)1213 static int kvm_s390_vm_get_migration(struct kvm *kvm,
1214 struct kvm_device_attr *attr)
1215 {
1216 u64 mig = kvm->arch.migration_mode;
1217
1218 if (attr->attr != KVM_S390_VM_MIGRATION_STATUS)
1219 return -ENXIO;
1220
1221 if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig)))
1222 return -EFAULT;
1223 return 0;
1224 }
1225
1226 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod);
1227
kvm_s390_set_tod_ext(struct kvm * kvm,struct kvm_device_attr * attr)1228 static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
1229 {
1230 struct kvm_s390_vm_tod_clock gtod;
1231
1232 if (copy_from_user(>od, (void __user *)attr->addr, sizeof(gtod)))
1233 return -EFAULT;
1234
1235 if (!test_kvm_facility(kvm, 139) && gtod.epoch_idx)
1236 return -EINVAL;
1237 __kvm_s390_set_tod_clock(kvm, >od);
1238
1239 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx",
1240 gtod.epoch_idx, gtod.tod);
1241
1242 return 0;
1243 }
1244
kvm_s390_set_tod_high(struct kvm * kvm,struct kvm_device_attr * attr)1245 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
1246 {
1247 u8 gtod_high;
1248
1249 if (copy_from_user(>od_high, (void __user *)attr->addr,
1250 sizeof(gtod_high)))
1251 return -EFAULT;
1252
1253 if (gtod_high != 0)
1254 return -EINVAL;
1255 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
1256
1257 return 0;
1258 }
1259
kvm_s390_set_tod_low(struct kvm * kvm,struct kvm_device_attr * attr)1260 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
1261 {
1262 struct kvm_s390_vm_tod_clock gtod = { 0 };
1263
1264 if (copy_from_user(>od.tod, (void __user *)attr->addr,
1265 sizeof(gtod.tod)))
1266 return -EFAULT;
1267
1268 __kvm_s390_set_tod_clock(kvm, >od);
1269 VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod.tod);
1270 return 0;
1271 }
1272
kvm_s390_set_tod(struct kvm * kvm,struct kvm_device_attr * attr)1273 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
1274 {
1275 int ret;
1276
1277 if (attr->flags)
1278 return -EINVAL;
1279
1280 mutex_lock(&kvm->lock);
1281 /*
1282 * For protected guests, the TOD is managed by the ultravisor, so trying
1283 * to change it will never bring the expected results.
1284 */
1285 if (kvm_s390_pv_is_protected(kvm)) {
1286 ret = -EOPNOTSUPP;
1287 goto out_unlock;
1288 }
1289
1290 switch (attr->attr) {
1291 case KVM_S390_VM_TOD_EXT:
1292 ret = kvm_s390_set_tod_ext(kvm, attr);
1293 break;
1294 case KVM_S390_VM_TOD_HIGH:
1295 ret = kvm_s390_set_tod_high(kvm, attr);
1296 break;
1297 case KVM_S390_VM_TOD_LOW:
1298 ret = kvm_s390_set_tod_low(kvm, attr);
1299 break;
1300 default:
1301 ret = -ENXIO;
1302 break;
1303 }
1304
1305 out_unlock:
1306 mutex_unlock(&kvm->lock);
1307 return ret;
1308 }
1309
kvm_s390_get_tod_clock(struct kvm * kvm,struct kvm_s390_vm_tod_clock * gtod)1310 static void kvm_s390_get_tod_clock(struct kvm *kvm,
1311 struct kvm_s390_vm_tod_clock *gtod)
1312 {
1313 union tod_clock clk;
1314
1315 preempt_disable();
1316
1317 store_tod_clock_ext(&clk);
1318
1319 gtod->tod = clk.tod + kvm->arch.epoch;
1320 gtod->epoch_idx = 0;
1321 if (test_kvm_facility(kvm, 139)) {
1322 gtod->epoch_idx = clk.ei + kvm->arch.epdx;
1323 if (gtod->tod < clk.tod)
1324 gtod->epoch_idx += 1;
1325 }
1326
1327 preempt_enable();
1328 }
1329
kvm_s390_get_tod_ext(struct kvm * kvm,struct kvm_device_attr * attr)1330 static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
1331 {
1332 struct kvm_s390_vm_tod_clock gtod;
1333
1334 memset(>od, 0, sizeof(gtod));
1335 kvm_s390_get_tod_clock(kvm, >od);
1336 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod)))
1337 return -EFAULT;
1338
1339 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx",
1340 gtod.epoch_idx, gtod.tod);
1341 return 0;
1342 }
1343
kvm_s390_get_tod_high(struct kvm * kvm,struct kvm_device_attr * attr)1344 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
1345 {
1346 u8 gtod_high = 0;
1347
1348 if (copy_to_user((void __user *)attr->addr, >od_high,
1349 sizeof(gtod_high)))
1350 return -EFAULT;
1351 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
1352
1353 return 0;
1354 }
1355
kvm_s390_get_tod_low(struct kvm * kvm,struct kvm_device_attr * attr)1356 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
1357 {
1358 u64 gtod;
1359
1360 gtod = kvm_s390_get_tod_clock_fast(kvm);
1361 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod)))
1362 return -EFAULT;
1363 VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
1364
1365 return 0;
1366 }
1367
kvm_s390_get_tod(struct kvm * kvm,struct kvm_device_attr * attr)1368 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
1369 {
1370 int ret;
1371
1372 if (attr->flags)
1373 return -EINVAL;
1374
1375 switch (attr->attr) {
1376 case KVM_S390_VM_TOD_EXT:
1377 ret = kvm_s390_get_tod_ext(kvm, attr);
1378 break;
1379 case KVM_S390_VM_TOD_HIGH:
1380 ret = kvm_s390_get_tod_high(kvm, attr);
1381 break;
1382 case KVM_S390_VM_TOD_LOW:
1383 ret = kvm_s390_get_tod_low(kvm, attr);
1384 break;
1385 default:
1386 ret = -ENXIO;
1387 break;
1388 }
1389 return ret;
1390 }
1391
kvm_s390_set_processor(struct kvm * kvm,struct kvm_device_attr * attr)1392 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
1393 {
1394 struct kvm_s390_vm_cpu_processor *proc;
1395 u16 lowest_ibc, unblocked_ibc;
1396 int ret = 0;
1397
1398 mutex_lock(&kvm->lock);
1399 if (kvm->created_vcpus) {
1400 ret = -EBUSY;
1401 goto out;
1402 }
1403 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT);
1404 if (!proc) {
1405 ret = -ENOMEM;
1406 goto out;
1407 }
1408 if (!copy_from_user(proc, (void __user *)attr->addr,
1409 sizeof(*proc))) {
1410 kvm->arch.model.cpuid = proc->cpuid;
1411 lowest_ibc = sclp.ibc >> 16 & 0xfff;
1412 unblocked_ibc = sclp.ibc & 0xfff;
1413 if (lowest_ibc && proc->ibc) {
1414 if (proc->ibc > unblocked_ibc)
1415 kvm->arch.model.ibc = unblocked_ibc;
1416 else if (proc->ibc < lowest_ibc)
1417 kvm->arch.model.ibc = lowest_ibc;
1418 else
1419 kvm->arch.model.ibc = proc->ibc;
1420 }
1421 memcpy(kvm->arch.model.fac_list, proc->fac_list,
1422 S390_ARCH_FAC_LIST_SIZE_BYTE);
1423 VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
1424 kvm->arch.model.ibc,
1425 kvm->arch.model.cpuid);
1426 VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
1427 kvm->arch.model.fac_list[0],
1428 kvm->arch.model.fac_list[1],
1429 kvm->arch.model.fac_list[2]);
1430 } else
1431 ret = -EFAULT;
1432 kfree(proc);
1433 out:
1434 mutex_unlock(&kvm->lock);
1435 return ret;
1436 }
1437
kvm_s390_set_processor_feat(struct kvm * kvm,struct kvm_device_attr * attr)1438 static int kvm_s390_set_processor_feat(struct kvm *kvm,
1439 struct kvm_device_attr *attr)
1440 {
1441 struct kvm_s390_vm_cpu_feat data;
1442
1443 if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
1444 return -EFAULT;
1445 if (!bitmap_subset((unsigned long *) data.feat,
1446 kvm_s390_available_cpu_feat,
1447 KVM_S390_VM_CPU_FEAT_NR_BITS))
1448 return -EINVAL;
1449
1450 mutex_lock(&kvm->lock);
1451 if (kvm->created_vcpus) {
1452 mutex_unlock(&kvm->lock);
1453 return -EBUSY;
1454 }
1455 bitmap_from_arr64(kvm->arch.cpu_feat, data.feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
1456 mutex_unlock(&kvm->lock);
1457 VM_EVENT(kvm, 3, "SET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
1458 data.feat[0],
1459 data.feat[1],
1460 data.feat[2]);
1461 return 0;
1462 }
1463
kvm_s390_set_processor_subfunc(struct kvm * kvm,struct kvm_device_attr * attr)1464 static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
1465 struct kvm_device_attr *attr)
1466 {
1467 mutex_lock(&kvm->lock);
1468 if (kvm->created_vcpus) {
1469 mutex_unlock(&kvm->lock);
1470 return -EBUSY;
1471 }
1472
1473 if (copy_from_user(&kvm->arch.model.subfuncs, (void __user *)attr->addr,
1474 sizeof(struct kvm_s390_vm_cpu_subfunc))) {
1475 mutex_unlock(&kvm->lock);
1476 return -EFAULT;
1477 }
1478 mutex_unlock(&kvm->lock);
1479
1480 VM_EVENT(kvm, 3, "SET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1481 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0],
1482 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1],
1483 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2],
1484 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]);
1485 VM_EVENT(kvm, 3, "SET: guest PTFF subfunc 0x%16.16lx.%16.16lx",
1486 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0],
1487 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]);
1488 VM_EVENT(kvm, 3, "SET: guest KMAC subfunc 0x%16.16lx.%16.16lx",
1489 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0],
1490 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]);
1491 VM_EVENT(kvm, 3, "SET: guest KMC subfunc 0x%16.16lx.%16.16lx",
1492 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0],
1493 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]);
1494 VM_EVENT(kvm, 3, "SET: guest KM subfunc 0x%16.16lx.%16.16lx",
1495 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0],
1496 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]);
1497 VM_EVENT(kvm, 3, "SET: guest KIMD subfunc 0x%16.16lx.%16.16lx",
1498 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0],
1499 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]);
1500 VM_EVENT(kvm, 3, "SET: guest KLMD subfunc 0x%16.16lx.%16.16lx",
1501 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0],
1502 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]);
1503 VM_EVENT(kvm, 3, "SET: guest PCKMO subfunc 0x%16.16lx.%16.16lx",
1504 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0],
1505 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]);
1506 VM_EVENT(kvm, 3, "SET: guest KMCTR subfunc 0x%16.16lx.%16.16lx",
1507 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0],
1508 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]);
1509 VM_EVENT(kvm, 3, "SET: guest KMF subfunc 0x%16.16lx.%16.16lx",
1510 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0],
1511 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]);
1512 VM_EVENT(kvm, 3, "SET: guest KMO subfunc 0x%16.16lx.%16.16lx",
1513 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0],
1514 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]);
1515 VM_EVENT(kvm, 3, "SET: guest PCC subfunc 0x%16.16lx.%16.16lx",
1516 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0],
1517 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]);
1518 VM_EVENT(kvm, 3, "SET: guest PPNO subfunc 0x%16.16lx.%16.16lx",
1519 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0],
1520 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]);
1521 VM_EVENT(kvm, 3, "SET: guest KMA subfunc 0x%16.16lx.%16.16lx",
1522 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0],
1523 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]);
1524 VM_EVENT(kvm, 3, "SET: guest KDSA subfunc 0x%16.16lx.%16.16lx",
1525 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0],
1526 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]);
1527 VM_EVENT(kvm, 3, "SET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1528 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0],
1529 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1],
1530 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2],
1531 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]);
1532 VM_EVENT(kvm, 3, "SET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1533 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0],
1534 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1],
1535 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2],
1536 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]);
1537
1538 return 0;
1539 }
1540
1541 #define KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK \
1542 ( \
1543 ((struct kvm_s390_vm_cpu_uv_feat){ \
1544 .ap = 1, \
1545 .ap_intr = 1, \
1546 }) \
1547 .feat \
1548 )
1549
kvm_s390_set_uv_feat(struct kvm * kvm,struct kvm_device_attr * attr)1550 static int kvm_s390_set_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr)
1551 {
1552 struct kvm_s390_vm_cpu_uv_feat __user *ptr = (void __user *)attr->addr;
1553 unsigned long data, filter;
1554
1555 filter = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK;
1556 if (get_user(data, &ptr->feat))
1557 return -EFAULT;
1558 if (!bitmap_subset(&data, &filter, KVM_S390_VM_CPU_UV_FEAT_NR_BITS))
1559 return -EINVAL;
1560
1561 mutex_lock(&kvm->lock);
1562 if (kvm->created_vcpus) {
1563 mutex_unlock(&kvm->lock);
1564 return -EBUSY;
1565 }
1566 kvm->arch.model.uv_feat_guest.feat = data;
1567 mutex_unlock(&kvm->lock);
1568
1569 VM_EVENT(kvm, 3, "SET: guest UV-feat: 0x%16.16lx", data);
1570
1571 return 0;
1572 }
1573
kvm_s390_set_cpu_model(struct kvm * kvm,struct kvm_device_attr * attr)1574 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
1575 {
1576 int ret = -ENXIO;
1577
1578 switch (attr->attr) {
1579 case KVM_S390_VM_CPU_PROCESSOR:
1580 ret = kvm_s390_set_processor(kvm, attr);
1581 break;
1582 case KVM_S390_VM_CPU_PROCESSOR_FEAT:
1583 ret = kvm_s390_set_processor_feat(kvm, attr);
1584 break;
1585 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1586 ret = kvm_s390_set_processor_subfunc(kvm, attr);
1587 break;
1588 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST:
1589 ret = kvm_s390_set_uv_feat(kvm, attr);
1590 break;
1591 }
1592 return ret;
1593 }
1594
kvm_s390_get_processor(struct kvm * kvm,struct kvm_device_attr * attr)1595 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
1596 {
1597 struct kvm_s390_vm_cpu_processor *proc;
1598 int ret = 0;
1599
1600 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT);
1601 if (!proc) {
1602 ret = -ENOMEM;
1603 goto out;
1604 }
1605 proc->cpuid = kvm->arch.model.cpuid;
1606 proc->ibc = kvm->arch.model.ibc;
1607 memcpy(&proc->fac_list, kvm->arch.model.fac_list,
1608 S390_ARCH_FAC_LIST_SIZE_BYTE);
1609 VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
1610 kvm->arch.model.ibc,
1611 kvm->arch.model.cpuid);
1612 VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
1613 kvm->arch.model.fac_list[0],
1614 kvm->arch.model.fac_list[1],
1615 kvm->arch.model.fac_list[2]);
1616 if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
1617 ret = -EFAULT;
1618 kfree(proc);
1619 out:
1620 return ret;
1621 }
1622
kvm_s390_get_machine(struct kvm * kvm,struct kvm_device_attr * attr)1623 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
1624 {
1625 struct kvm_s390_vm_cpu_machine *mach;
1626 int ret = 0;
1627
1628 mach = kzalloc(sizeof(*mach), GFP_KERNEL_ACCOUNT);
1629 if (!mach) {
1630 ret = -ENOMEM;
1631 goto out;
1632 }
1633 get_cpu_id((struct cpuid *) &mach->cpuid);
1634 mach->ibc = sclp.ibc;
1635 memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
1636 S390_ARCH_FAC_LIST_SIZE_BYTE);
1637 memcpy((unsigned long *)&mach->fac_list, stfle_fac_list,
1638 sizeof(stfle_fac_list));
1639 VM_EVENT(kvm, 3, "GET: host ibc: 0x%4.4x, host cpuid: 0x%16.16llx",
1640 kvm->arch.model.ibc,
1641 kvm->arch.model.cpuid);
1642 VM_EVENT(kvm, 3, "GET: host facmask: 0x%16.16llx.%16.16llx.%16.16llx",
1643 mach->fac_mask[0],
1644 mach->fac_mask[1],
1645 mach->fac_mask[2]);
1646 VM_EVENT(kvm, 3, "GET: host faclist: 0x%16.16llx.%16.16llx.%16.16llx",
1647 mach->fac_list[0],
1648 mach->fac_list[1],
1649 mach->fac_list[2]);
1650 if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
1651 ret = -EFAULT;
1652 kfree(mach);
1653 out:
1654 return ret;
1655 }
1656
kvm_s390_get_processor_feat(struct kvm * kvm,struct kvm_device_attr * attr)1657 static int kvm_s390_get_processor_feat(struct kvm *kvm,
1658 struct kvm_device_attr *attr)
1659 {
1660 struct kvm_s390_vm_cpu_feat data;
1661
1662 bitmap_to_arr64(data.feat, kvm->arch.cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
1663 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
1664 return -EFAULT;
1665 VM_EVENT(kvm, 3, "GET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
1666 data.feat[0],
1667 data.feat[1],
1668 data.feat[2]);
1669 return 0;
1670 }
1671
kvm_s390_get_machine_feat(struct kvm * kvm,struct kvm_device_attr * attr)1672 static int kvm_s390_get_machine_feat(struct kvm *kvm,
1673 struct kvm_device_attr *attr)
1674 {
1675 struct kvm_s390_vm_cpu_feat data;
1676
1677 bitmap_to_arr64(data.feat, kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
1678 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
1679 return -EFAULT;
1680 VM_EVENT(kvm, 3, "GET: host feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
1681 data.feat[0],
1682 data.feat[1],
1683 data.feat[2]);
1684 return 0;
1685 }
1686
kvm_s390_get_processor_subfunc(struct kvm * kvm,struct kvm_device_attr * attr)1687 static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
1688 struct kvm_device_attr *attr)
1689 {
1690 if (copy_to_user((void __user *)attr->addr, &kvm->arch.model.subfuncs,
1691 sizeof(struct kvm_s390_vm_cpu_subfunc)))
1692 return -EFAULT;
1693
1694 VM_EVENT(kvm, 3, "GET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1695 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0],
1696 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1],
1697 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2],
1698 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]);
1699 VM_EVENT(kvm, 3, "GET: guest PTFF subfunc 0x%16.16lx.%16.16lx",
1700 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0],
1701 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]);
1702 VM_EVENT(kvm, 3, "GET: guest KMAC subfunc 0x%16.16lx.%16.16lx",
1703 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0],
1704 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]);
1705 VM_EVENT(kvm, 3, "GET: guest KMC subfunc 0x%16.16lx.%16.16lx",
1706 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0],
1707 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]);
1708 VM_EVENT(kvm, 3, "GET: guest KM subfunc 0x%16.16lx.%16.16lx",
1709 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0],
1710 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]);
1711 VM_EVENT(kvm, 3, "GET: guest KIMD subfunc 0x%16.16lx.%16.16lx",
1712 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0],
1713 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]);
1714 VM_EVENT(kvm, 3, "GET: guest KLMD subfunc 0x%16.16lx.%16.16lx",
1715 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0],
1716 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]);
1717 VM_EVENT(kvm, 3, "GET: guest PCKMO subfunc 0x%16.16lx.%16.16lx",
1718 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0],
1719 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]);
1720 VM_EVENT(kvm, 3, "GET: guest KMCTR subfunc 0x%16.16lx.%16.16lx",
1721 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0],
1722 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]);
1723 VM_EVENT(kvm, 3, "GET: guest KMF subfunc 0x%16.16lx.%16.16lx",
1724 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0],
1725 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]);
1726 VM_EVENT(kvm, 3, "GET: guest KMO subfunc 0x%16.16lx.%16.16lx",
1727 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0],
1728 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]);
1729 VM_EVENT(kvm, 3, "GET: guest PCC subfunc 0x%16.16lx.%16.16lx",
1730 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0],
1731 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]);
1732 VM_EVENT(kvm, 3, "GET: guest PPNO subfunc 0x%16.16lx.%16.16lx",
1733 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0],
1734 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]);
1735 VM_EVENT(kvm, 3, "GET: guest KMA subfunc 0x%16.16lx.%16.16lx",
1736 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0],
1737 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]);
1738 VM_EVENT(kvm, 3, "GET: guest KDSA subfunc 0x%16.16lx.%16.16lx",
1739 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0],
1740 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]);
1741 VM_EVENT(kvm, 3, "GET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1742 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0],
1743 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1],
1744 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2],
1745 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]);
1746 VM_EVENT(kvm, 3, "GET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1747 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0],
1748 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1],
1749 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2],
1750 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]);
1751
1752 return 0;
1753 }
1754
kvm_s390_get_machine_subfunc(struct kvm * kvm,struct kvm_device_attr * attr)1755 static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
1756 struct kvm_device_attr *attr)
1757 {
1758 if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
1759 sizeof(struct kvm_s390_vm_cpu_subfunc)))
1760 return -EFAULT;
1761
1762 VM_EVENT(kvm, 3, "GET: host PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1763 ((unsigned long *) &kvm_s390_available_subfunc.plo)[0],
1764 ((unsigned long *) &kvm_s390_available_subfunc.plo)[1],
1765 ((unsigned long *) &kvm_s390_available_subfunc.plo)[2],
1766 ((unsigned long *) &kvm_s390_available_subfunc.plo)[3]);
1767 VM_EVENT(kvm, 3, "GET: host PTFF subfunc 0x%16.16lx.%16.16lx",
1768 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[0],
1769 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[1]);
1770 VM_EVENT(kvm, 3, "GET: host KMAC subfunc 0x%16.16lx.%16.16lx",
1771 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[0],
1772 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[1]);
1773 VM_EVENT(kvm, 3, "GET: host KMC subfunc 0x%16.16lx.%16.16lx",
1774 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[0],
1775 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[1]);
1776 VM_EVENT(kvm, 3, "GET: host KM subfunc 0x%16.16lx.%16.16lx",
1777 ((unsigned long *) &kvm_s390_available_subfunc.km)[0],
1778 ((unsigned long *) &kvm_s390_available_subfunc.km)[1]);
1779 VM_EVENT(kvm, 3, "GET: host KIMD subfunc 0x%16.16lx.%16.16lx",
1780 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[0],
1781 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[1]);
1782 VM_EVENT(kvm, 3, "GET: host KLMD subfunc 0x%16.16lx.%16.16lx",
1783 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[0],
1784 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[1]);
1785 VM_EVENT(kvm, 3, "GET: host PCKMO subfunc 0x%16.16lx.%16.16lx",
1786 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[0],
1787 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[1]);
1788 VM_EVENT(kvm, 3, "GET: host KMCTR subfunc 0x%16.16lx.%16.16lx",
1789 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[0],
1790 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[1]);
1791 VM_EVENT(kvm, 3, "GET: host KMF subfunc 0x%16.16lx.%16.16lx",
1792 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[0],
1793 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[1]);
1794 VM_EVENT(kvm, 3, "GET: host KMO subfunc 0x%16.16lx.%16.16lx",
1795 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[0],
1796 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[1]);
1797 VM_EVENT(kvm, 3, "GET: host PCC subfunc 0x%16.16lx.%16.16lx",
1798 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[0],
1799 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[1]);
1800 VM_EVENT(kvm, 3, "GET: host PPNO subfunc 0x%16.16lx.%16.16lx",
1801 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[0],
1802 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[1]);
1803 VM_EVENT(kvm, 3, "GET: host KMA subfunc 0x%16.16lx.%16.16lx",
1804 ((unsigned long *) &kvm_s390_available_subfunc.kma)[0],
1805 ((unsigned long *) &kvm_s390_available_subfunc.kma)[1]);
1806 VM_EVENT(kvm, 3, "GET: host KDSA subfunc 0x%16.16lx.%16.16lx",
1807 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[0],
1808 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[1]);
1809 VM_EVENT(kvm, 3, "GET: host SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1810 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[0],
1811 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[1],
1812 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[2],
1813 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[3]);
1814 VM_EVENT(kvm, 3, "GET: host DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1815 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[0],
1816 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[1],
1817 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[2],
1818 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[3]);
1819
1820 return 0;
1821 }
1822
kvm_s390_get_processor_uv_feat(struct kvm * kvm,struct kvm_device_attr * attr)1823 static int kvm_s390_get_processor_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr)
1824 {
1825 struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr;
1826 unsigned long feat = kvm->arch.model.uv_feat_guest.feat;
1827
1828 if (put_user(feat, &dst->feat))
1829 return -EFAULT;
1830 VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat);
1831
1832 return 0;
1833 }
1834
kvm_s390_get_machine_uv_feat(struct kvm * kvm,struct kvm_device_attr * attr)1835 static int kvm_s390_get_machine_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr)
1836 {
1837 struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr;
1838 unsigned long feat;
1839
1840 BUILD_BUG_ON(sizeof(*dst) != sizeof(uv_info.uv_feature_indications));
1841
1842 feat = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK;
1843 if (put_user(feat, &dst->feat))
1844 return -EFAULT;
1845 VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat);
1846
1847 return 0;
1848 }
1849
kvm_s390_get_cpu_model(struct kvm * kvm,struct kvm_device_attr * attr)1850 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
1851 {
1852 int ret = -ENXIO;
1853
1854 switch (attr->attr) {
1855 case KVM_S390_VM_CPU_PROCESSOR:
1856 ret = kvm_s390_get_processor(kvm, attr);
1857 break;
1858 case KVM_S390_VM_CPU_MACHINE:
1859 ret = kvm_s390_get_machine(kvm, attr);
1860 break;
1861 case KVM_S390_VM_CPU_PROCESSOR_FEAT:
1862 ret = kvm_s390_get_processor_feat(kvm, attr);
1863 break;
1864 case KVM_S390_VM_CPU_MACHINE_FEAT:
1865 ret = kvm_s390_get_machine_feat(kvm, attr);
1866 break;
1867 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1868 ret = kvm_s390_get_processor_subfunc(kvm, attr);
1869 break;
1870 case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1871 ret = kvm_s390_get_machine_subfunc(kvm, attr);
1872 break;
1873 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST:
1874 ret = kvm_s390_get_processor_uv_feat(kvm, attr);
1875 break;
1876 case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST:
1877 ret = kvm_s390_get_machine_uv_feat(kvm, attr);
1878 break;
1879 }
1880 return ret;
1881 }
1882
1883 /**
1884 * kvm_s390_update_topology_change_report - update CPU topology change report
1885 * @kvm: guest KVM description
1886 * @val: set or clear the MTCR bit
1887 *
1888 * Updates the Multiprocessor Topology-Change-Report bit to signal
1889 * the guest with a topology change.
1890 * This is only relevant if the topology facility is present.
1891 *
1892 * The SCA version, bsca or esca, doesn't matter as offset is the same.
1893 */
kvm_s390_update_topology_change_report(struct kvm * kvm,bool val)1894 static void kvm_s390_update_topology_change_report(struct kvm *kvm, bool val)
1895 {
1896 union sca_utility new, old;
1897 struct bsca_block *sca;
1898
1899 read_lock(&kvm->arch.sca_lock);
1900 sca = kvm->arch.sca;
1901 do {
1902 old = READ_ONCE(sca->utility);
1903 new = old;
1904 new.mtcr = val;
1905 } while (cmpxchg(&sca->utility.val, old.val, new.val) != old.val);
1906 read_unlock(&kvm->arch.sca_lock);
1907 }
1908
kvm_s390_set_topo_change_indication(struct kvm * kvm,struct kvm_device_attr * attr)1909 static int kvm_s390_set_topo_change_indication(struct kvm *kvm,
1910 struct kvm_device_attr *attr)
1911 {
1912 if (!test_kvm_facility(kvm, 11))
1913 return -ENXIO;
1914
1915 kvm_s390_update_topology_change_report(kvm, !!attr->attr);
1916 return 0;
1917 }
1918
kvm_s390_get_topo_change_indication(struct kvm * kvm,struct kvm_device_attr * attr)1919 static int kvm_s390_get_topo_change_indication(struct kvm *kvm,
1920 struct kvm_device_attr *attr)
1921 {
1922 u8 topo;
1923
1924 if (!test_kvm_facility(kvm, 11))
1925 return -ENXIO;
1926
1927 read_lock(&kvm->arch.sca_lock);
1928 topo = ((struct bsca_block *)kvm->arch.sca)->utility.mtcr;
1929 read_unlock(&kvm->arch.sca_lock);
1930
1931 return put_user(topo, (u8 __user *)attr->addr);
1932 }
1933
kvm_s390_vm_set_attr(struct kvm * kvm,struct kvm_device_attr * attr)1934 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1935 {
1936 int ret;
1937
1938 switch (attr->group) {
1939 case KVM_S390_VM_MEM_CTRL:
1940 ret = kvm_s390_set_mem_control(kvm, attr);
1941 break;
1942 case KVM_S390_VM_TOD:
1943 ret = kvm_s390_set_tod(kvm, attr);
1944 break;
1945 case KVM_S390_VM_CPU_MODEL:
1946 ret = kvm_s390_set_cpu_model(kvm, attr);
1947 break;
1948 case KVM_S390_VM_CRYPTO:
1949 ret = kvm_s390_vm_set_crypto(kvm, attr);
1950 break;
1951 case KVM_S390_VM_MIGRATION:
1952 ret = kvm_s390_vm_set_migration(kvm, attr);
1953 break;
1954 case KVM_S390_VM_CPU_TOPOLOGY:
1955 ret = kvm_s390_set_topo_change_indication(kvm, attr);
1956 break;
1957 default:
1958 ret = -ENXIO;
1959 break;
1960 }
1961
1962 return ret;
1963 }
1964
kvm_s390_vm_get_attr(struct kvm * kvm,struct kvm_device_attr * attr)1965 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1966 {
1967 int ret;
1968
1969 switch (attr->group) {
1970 case KVM_S390_VM_MEM_CTRL:
1971 ret = kvm_s390_get_mem_control(kvm, attr);
1972 break;
1973 case KVM_S390_VM_TOD:
1974 ret = kvm_s390_get_tod(kvm, attr);
1975 break;
1976 case KVM_S390_VM_CPU_MODEL:
1977 ret = kvm_s390_get_cpu_model(kvm, attr);
1978 break;
1979 case KVM_S390_VM_MIGRATION:
1980 ret = kvm_s390_vm_get_migration(kvm, attr);
1981 break;
1982 case KVM_S390_VM_CPU_TOPOLOGY:
1983 ret = kvm_s390_get_topo_change_indication(kvm, attr);
1984 break;
1985 default:
1986 ret = -ENXIO;
1987 break;
1988 }
1989
1990 return ret;
1991 }
1992
kvm_s390_vm_has_attr(struct kvm * kvm,struct kvm_device_attr * attr)1993 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1994 {
1995 int ret;
1996
1997 switch (attr->group) {
1998 case KVM_S390_VM_MEM_CTRL:
1999 switch (attr->attr) {
2000 case KVM_S390_VM_MEM_ENABLE_CMMA:
2001 case KVM_S390_VM_MEM_CLR_CMMA:
2002 ret = sclp.has_cmma ? 0 : -ENXIO;
2003 break;
2004 case KVM_S390_VM_MEM_LIMIT_SIZE:
2005 ret = 0;
2006 break;
2007 default:
2008 ret = -ENXIO;
2009 break;
2010 }
2011 break;
2012 case KVM_S390_VM_TOD:
2013 switch (attr->attr) {
2014 case KVM_S390_VM_TOD_LOW:
2015 case KVM_S390_VM_TOD_HIGH:
2016 ret = 0;
2017 break;
2018 default:
2019 ret = -ENXIO;
2020 break;
2021 }
2022 break;
2023 case KVM_S390_VM_CPU_MODEL:
2024 switch (attr->attr) {
2025 case KVM_S390_VM_CPU_PROCESSOR:
2026 case KVM_S390_VM_CPU_MACHINE:
2027 case KVM_S390_VM_CPU_PROCESSOR_FEAT:
2028 case KVM_S390_VM_CPU_MACHINE_FEAT:
2029 case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
2030 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
2031 case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST:
2032 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST:
2033 ret = 0;
2034 break;
2035 default:
2036 ret = -ENXIO;
2037 break;
2038 }
2039 break;
2040 case KVM_S390_VM_CRYPTO:
2041 switch (attr->attr) {
2042 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
2043 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
2044 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
2045 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
2046 ret = 0;
2047 break;
2048 case KVM_S390_VM_CRYPTO_ENABLE_APIE:
2049 case KVM_S390_VM_CRYPTO_DISABLE_APIE:
2050 ret = ap_instructions_available() ? 0 : -ENXIO;
2051 break;
2052 default:
2053 ret = -ENXIO;
2054 break;
2055 }
2056 break;
2057 case KVM_S390_VM_MIGRATION:
2058 ret = 0;
2059 break;
2060 case KVM_S390_VM_CPU_TOPOLOGY:
2061 ret = test_kvm_facility(kvm, 11) ? 0 : -ENXIO;
2062 break;
2063 default:
2064 ret = -ENXIO;
2065 break;
2066 }
2067
2068 return ret;
2069 }
2070
kvm_s390_get_skeys(struct kvm * kvm,struct kvm_s390_skeys * args)2071 static int kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
2072 {
2073 uint8_t *keys;
2074 uint64_t hva;
2075 int srcu_idx, i, r = 0;
2076
2077 if (args->flags != 0)
2078 return -EINVAL;
2079
2080 /* Is this guest using storage keys? */
2081 if (!mm_uses_skeys(current->mm))
2082 return KVM_S390_GET_SKEYS_NONE;
2083
2084 /* Enforce sane limit on memory allocation */
2085 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
2086 return -EINVAL;
2087
2088 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT);
2089 if (!keys)
2090 return -ENOMEM;
2091
2092 mmap_read_lock(current->mm);
2093 srcu_idx = srcu_read_lock(&kvm->srcu);
2094 for (i = 0; i < args->count; i++) {
2095 hva = gfn_to_hva(kvm, args->start_gfn + i);
2096 if (kvm_is_error_hva(hva)) {
2097 r = -EFAULT;
2098 break;
2099 }
2100
2101 r = get_guest_storage_key(current->mm, hva, &keys[i]);
2102 if (r)
2103 break;
2104 }
2105 srcu_read_unlock(&kvm->srcu, srcu_idx);
2106 mmap_read_unlock(current->mm);
2107
2108 if (!r) {
2109 r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
2110 sizeof(uint8_t) * args->count);
2111 if (r)
2112 r = -EFAULT;
2113 }
2114
2115 kvfree(keys);
2116 return r;
2117 }
2118
kvm_s390_set_skeys(struct kvm * kvm,struct kvm_s390_skeys * args)2119 static int kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
2120 {
2121 uint8_t *keys;
2122 uint64_t hva;
2123 int srcu_idx, i, r = 0;
2124 bool unlocked;
2125
2126 if (args->flags != 0)
2127 return -EINVAL;
2128
2129 /* Enforce sane limit on memory allocation */
2130 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
2131 return -EINVAL;
2132
2133 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT);
2134 if (!keys)
2135 return -ENOMEM;
2136
2137 r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
2138 sizeof(uint8_t) * args->count);
2139 if (r) {
2140 r = -EFAULT;
2141 goto out;
2142 }
2143
2144 /* Enable storage key handling for the guest */
2145 r = s390_enable_skey();
2146 if (r)
2147 goto out;
2148
2149 i = 0;
2150 mmap_read_lock(current->mm);
2151 srcu_idx = srcu_read_lock(&kvm->srcu);
2152 while (i < args->count) {
2153 unlocked = false;
2154 hva = gfn_to_hva(kvm, args->start_gfn + i);
2155 if (kvm_is_error_hva(hva)) {
2156 r = -EFAULT;
2157 break;
2158 }
2159
2160 /* Lowest order bit is reserved */
2161 if (keys[i] & 0x01) {
2162 r = -EINVAL;
2163 break;
2164 }
2165
2166 r = set_guest_storage_key(current->mm, hva, keys[i], 0);
2167 if (r) {
2168 r = fixup_user_fault(current->mm, hva,
2169 FAULT_FLAG_WRITE, &unlocked);
2170 if (r)
2171 break;
2172 }
2173 if (!r)
2174 i++;
2175 }
2176 srcu_read_unlock(&kvm->srcu, srcu_idx);
2177 mmap_read_unlock(current->mm);
2178 out:
2179 kvfree(keys);
2180 return r;
2181 }
2182
2183 /*
2184 * Base address and length must be sent at the start of each block, therefore
2185 * it's cheaper to send some clean data, as long as it's less than the size of
2186 * two longs.
2187 */
2188 #define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *))
2189 /* for consistency */
2190 #define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX)
2191
kvm_s390_peek_cmma(struct kvm * kvm,struct kvm_s390_cmma_log * args,u8 * res,unsigned long bufsize)2192 static int kvm_s390_peek_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args,
2193 u8 *res, unsigned long bufsize)
2194 {
2195 unsigned long pgstev, hva, cur_gfn = args->start_gfn;
2196
2197 args->count = 0;
2198 while (args->count < bufsize) {
2199 hva = gfn_to_hva(kvm, cur_gfn);
2200 /*
2201 * We return an error if the first value was invalid, but we
2202 * return successfully if at least one value was copied.
2203 */
2204 if (kvm_is_error_hva(hva))
2205 return args->count ? 0 : -EFAULT;
2206 if (get_pgste(kvm->mm, hva, &pgstev) < 0)
2207 pgstev = 0;
2208 res[args->count++] = (pgstev >> 24) & 0x43;
2209 cur_gfn++;
2210 }
2211
2212 return 0;
2213 }
2214
gfn_to_memslot_approx(struct kvm_memslots * slots,gfn_t gfn)2215 static struct kvm_memory_slot *gfn_to_memslot_approx(struct kvm_memslots *slots,
2216 gfn_t gfn)
2217 {
2218 return ____gfn_to_memslot(slots, gfn, true);
2219 }
2220
kvm_s390_next_dirty_cmma(struct kvm_memslots * slots,unsigned long cur_gfn)2221 static unsigned long kvm_s390_next_dirty_cmma(struct kvm_memslots *slots,
2222 unsigned long cur_gfn)
2223 {
2224 struct kvm_memory_slot *ms = gfn_to_memslot_approx(slots, cur_gfn);
2225 unsigned long ofs = cur_gfn - ms->base_gfn;
2226 struct rb_node *mnode = &ms->gfn_node[slots->node_idx];
2227
2228 if (ms->base_gfn + ms->npages <= cur_gfn) {
2229 mnode = rb_next(mnode);
2230 /* If we are above the highest slot, wrap around */
2231 if (!mnode)
2232 mnode = rb_first(&slots->gfn_tree);
2233
2234 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]);
2235 ofs = 0;
2236 }
2237
2238 if (cur_gfn < ms->base_gfn)
2239 ofs = 0;
2240
2241 ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, ofs);
2242 while (ofs >= ms->npages && (mnode = rb_next(mnode))) {
2243 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]);
2244 ofs = find_first_bit(kvm_second_dirty_bitmap(ms), ms->npages);
2245 }
2246 return ms->base_gfn + ofs;
2247 }
2248
kvm_s390_get_cmma(struct kvm * kvm,struct kvm_s390_cmma_log * args,u8 * res,unsigned long bufsize)2249 static int kvm_s390_get_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args,
2250 u8 *res, unsigned long bufsize)
2251 {
2252 unsigned long mem_end, cur_gfn, next_gfn, hva, pgstev;
2253 struct kvm_memslots *slots = kvm_memslots(kvm);
2254 struct kvm_memory_slot *ms;
2255
2256 if (unlikely(kvm_memslots_empty(slots)))
2257 return 0;
2258
2259 cur_gfn = kvm_s390_next_dirty_cmma(slots, args->start_gfn);
2260 ms = gfn_to_memslot(kvm, cur_gfn);
2261 args->count = 0;
2262 args->start_gfn = cur_gfn;
2263 if (!ms)
2264 return 0;
2265 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1);
2266 mem_end = kvm_s390_get_gfn_end(slots);
2267
2268 while (args->count < bufsize) {
2269 hva = gfn_to_hva(kvm, cur_gfn);
2270 if (kvm_is_error_hva(hva))
2271 return 0;
2272 /* Decrement only if we actually flipped the bit to 0 */
2273 if (test_and_clear_bit(cur_gfn - ms->base_gfn, kvm_second_dirty_bitmap(ms)))
2274 atomic64_dec(&kvm->arch.cmma_dirty_pages);
2275 if (get_pgste(kvm->mm, hva, &pgstev) < 0)
2276 pgstev = 0;
2277 /* Save the value */
2278 res[args->count++] = (pgstev >> 24) & 0x43;
2279 /* If the next bit is too far away, stop. */
2280 if (next_gfn > cur_gfn + KVM_S390_MAX_BIT_DISTANCE)
2281 return 0;
2282 /* If we reached the previous "next", find the next one */
2283 if (cur_gfn == next_gfn)
2284 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1);
2285 /* Reached the end of memory or of the buffer, stop */
2286 if ((next_gfn >= mem_end) ||
2287 (next_gfn - args->start_gfn >= bufsize))
2288 return 0;
2289 cur_gfn++;
2290 /* Reached the end of the current memslot, take the next one. */
2291 if (cur_gfn - ms->base_gfn >= ms->npages) {
2292 ms = gfn_to_memslot(kvm, cur_gfn);
2293 if (!ms)
2294 return 0;
2295 }
2296 }
2297 return 0;
2298 }
2299
2300 /*
2301 * This function searches for the next page with dirty CMMA attributes, and
2302 * saves the attributes in the buffer up to either the end of the buffer or
2303 * until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found;
2304 * no trailing clean bytes are saved.
2305 * In case no dirty bits were found, or if CMMA was not enabled or used, the
2306 * output buffer will indicate 0 as length.
2307 */
kvm_s390_get_cmma_bits(struct kvm * kvm,struct kvm_s390_cmma_log * args)2308 static int kvm_s390_get_cmma_bits(struct kvm *kvm,
2309 struct kvm_s390_cmma_log *args)
2310 {
2311 unsigned long bufsize;
2312 int srcu_idx, peek, ret;
2313 u8 *values;
2314
2315 if (!kvm->arch.use_cmma)
2316 return -ENXIO;
2317 /* Invalid/unsupported flags were specified */
2318 if (args->flags & ~KVM_S390_CMMA_PEEK)
2319 return -EINVAL;
2320 /* Migration mode query, and we are not doing a migration */
2321 peek = !!(args->flags & KVM_S390_CMMA_PEEK);
2322 if (!peek && !kvm->arch.migration_mode)
2323 return -EINVAL;
2324 /* CMMA is disabled or was not used, or the buffer has length zero */
2325 bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX);
2326 if (!bufsize || !kvm->mm->context.uses_cmm) {
2327 memset(args, 0, sizeof(*args));
2328 return 0;
2329 }
2330 /* We are not peeking, and there are no dirty pages */
2331 if (!peek && !atomic64_read(&kvm->arch.cmma_dirty_pages)) {
2332 memset(args, 0, sizeof(*args));
2333 return 0;
2334 }
2335
2336 values = vmalloc(bufsize);
2337 if (!values)
2338 return -ENOMEM;
2339
2340 mmap_read_lock(kvm->mm);
2341 srcu_idx = srcu_read_lock(&kvm->srcu);
2342 if (peek)
2343 ret = kvm_s390_peek_cmma(kvm, args, values, bufsize);
2344 else
2345 ret = kvm_s390_get_cmma(kvm, args, values, bufsize);
2346 srcu_read_unlock(&kvm->srcu, srcu_idx);
2347 mmap_read_unlock(kvm->mm);
2348
2349 if (kvm->arch.migration_mode)
2350 args->remaining = atomic64_read(&kvm->arch.cmma_dirty_pages);
2351 else
2352 args->remaining = 0;
2353
2354 if (copy_to_user((void __user *)args->values, values, args->count))
2355 ret = -EFAULT;
2356
2357 vfree(values);
2358 return ret;
2359 }
2360
2361 /*
2362 * This function sets the CMMA attributes for the given pages. If the input
2363 * buffer has zero length, no action is taken, otherwise the attributes are
2364 * set and the mm->context.uses_cmm flag is set.
2365 */
kvm_s390_set_cmma_bits(struct kvm * kvm,const struct kvm_s390_cmma_log * args)2366 static int kvm_s390_set_cmma_bits(struct kvm *kvm,
2367 const struct kvm_s390_cmma_log *args)
2368 {
2369 unsigned long hva, mask, pgstev, i;
2370 uint8_t *bits;
2371 int srcu_idx, r = 0;
2372
2373 mask = args->mask;
2374
2375 if (!kvm->arch.use_cmma)
2376 return -ENXIO;
2377 /* invalid/unsupported flags */
2378 if (args->flags != 0)
2379 return -EINVAL;
2380 /* Enforce sane limit on memory allocation */
2381 if (args->count > KVM_S390_CMMA_SIZE_MAX)
2382 return -EINVAL;
2383 /* Nothing to do */
2384 if (args->count == 0)
2385 return 0;
2386
2387 bits = vmalloc(array_size(sizeof(*bits), args->count));
2388 if (!bits)
2389 return -ENOMEM;
2390
2391 r = copy_from_user(bits, (void __user *)args->values, args->count);
2392 if (r) {
2393 r = -EFAULT;
2394 goto out;
2395 }
2396
2397 mmap_read_lock(kvm->mm);
2398 srcu_idx = srcu_read_lock(&kvm->srcu);
2399 for (i = 0; i < args->count; i++) {
2400 hva = gfn_to_hva(kvm, args->start_gfn + i);
2401 if (kvm_is_error_hva(hva)) {
2402 r = -EFAULT;
2403 break;
2404 }
2405
2406 pgstev = bits[i];
2407 pgstev = pgstev << 24;
2408 mask &= _PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT;
2409 set_pgste_bits(kvm->mm, hva, mask, pgstev);
2410 }
2411 srcu_read_unlock(&kvm->srcu, srcu_idx);
2412 mmap_read_unlock(kvm->mm);
2413
2414 if (!kvm->mm->context.uses_cmm) {
2415 mmap_write_lock(kvm->mm);
2416 kvm->mm->context.uses_cmm = 1;
2417 mmap_write_unlock(kvm->mm);
2418 }
2419 out:
2420 vfree(bits);
2421 return r;
2422 }
2423
2424 /**
2425 * kvm_s390_cpus_from_pv - Convert all protected vCPUs in a protected VM to
2426 * non protected.
2427 * @kvm: the VM whose protected vCPUs are to be converted
2428 * @rc: return value for the RC field of the UVC (in case of error)
2429 * @rrc: return value for the RRC field of the UVC (in case of error)
2430 *
2431 * Does not stop in case of error, tries to convert as many
2432 * CPUs as possible. In case of error, the RC and RRC of the last error are
2433 * returned.
2434 *
2435 * Return: 0 in case of success, otherwise -EIO
2436 */
kvm_s390_cpus_from_pv(struct kvm * kvm,u16 * rc,u16 * rrc)2437 int kvm_s390_cpus_from_pv(struct kvm *kvm, u16 *rc, u16 *rrc)
2438 {
2439 struct kvm_vcpu *vcpu;
2440 unsigned long i;
2441 u16 _rc, _rrc;
2442 int ret = 0;
2443
2444 /*
2445 * We ignore failures and try to destroy as many CPUs as possible.
2446 * At the same time we must not free the assigned resources when
2447 * this fails, as the ultravisor has still access to that memory.
2448 * So kvm_s390_pv_destroy_cpu can leave a "wanted" memory leak
2449 * behind.
2450 * We want to return the first failure rc and rrc, though.
2451 */
2452 kvm_for_each_vcpu(i, vcpu, kvm) {
2453 mutex_lock(&vcpu->mutex);
2454 if (kvm_s390_pv_destroy_cpu(vcpu, &_rc, &_rrc) && !ret) {
2455 *rc = _rc;
2456 *rrc = _rrc;
2457 ret = -EIO;
2458 }
2459 mutex_unlock(&vcpu->mutex);
2460 }
2461 /* Ensure that we re-enable gisa if the non-PV guest used it but the PV guest did not. */
2462 if (use_gisa)
2463 kvm_s390_gisa_enable(kvm);
2464 return ret;
2465 }
2466
2467 /**
2468 * kvm_s390_cpus_to_pv - Convert all non-protected vCPUs in a protected VM
2469 * to protected.
2470 * @kvm: the VM whose protected vCPUs are to be converted
2471 * @rc: return value for the RC field of the UVC (in case of error)
2472 * @rrc: return value for the RRC field of the UVC (in case of error)
2473 *
2474 * Tries to undo the conversion in case of error.
2475 *
2476 * Return: 0 in case of success, otherwise -EIO
2477 */
kvm_s390_cpus_to_pv(struct kvm * kvm,u16 * rc,u16 * rrc)2478 static int kvm_s390_cpus_to_pv(struct kvm *kvm, u16 *rc, u16 *rrc)
2479 {
2480 unsigned long i;
2481 int r = 0;
2482 u16 dummy;
2483
2484 struct kvm_vcpu *vcpu;
2485
2486 /* Disable the GISA if the ultravisor does not support AIV. */
2487 if (!uv_has_feature(BIT_UV_FEAT_AIV))
2488 kvm_s390_gisa_disable(kvm);
2489
2490 kvm_for_each_vcpu(i, vcpu, kvm) {
2491 mutex_lock(&vcpu->mutex);
2492 r = kvm_s390_pv_create_cpu(vcpu, rc, rrc);
2493 mutex_unlock(&vcpu->mutex);
2494 if (r)
2495 break;
2496 }
2497 if (r)
2498 kvm_s390_cpus_from_pv(kvm, &dummy, &dummy);
2499 return r;
2500 }
2501
2502 /*
2503 * Here we provide user space with a direct interface to query UV
2504 * related data like UV maxima and available features as well as
2505 * feature specific data.
2506 *
2507 * To facilitate future extension of the data structures we'll try to
2508 * write data up to the maximum requested length.
2509 */
kvm_s390_handle_pv_info(struct kvm_s390_pv_info * info)2510 static ssize_t kvm_s390_handle_pv_info(struct kvm_s390_pv_info *info)
2511 {
2512 ssize_t len_min;
2513
2514 switch (info->header.id) {
2515 case KVM_PV_INFO_VM: {
2516 len_min = sizeof(info->header) + sizeof(info->vm);
2517
2518 if (info->header.len_max < len_min)
2519 return -EINVAL;
2520
2521 memcpy(info->vm.inst_calls_list,
2522 uv_info.inst_calls_list,
2523 sizeof(uv_info.inst_calls_list));
2524
2525 /* It's max cpuid not max cpus, so it's off by one */
2526 info->vm.max_cpus = uv_info.max_guest_cpu_id + 1;
2527 info->vm.max_guests = uv_info.max_num_sec_conf;
2528 info->vm.max_guest_addr = uv_info.max_sec_stor_addr;
2529 info->vm.feature_indication = uv_info.uv_feature_indications;
2530
2531 return len_min;
2532 }
2533 case KVM_PV_INFO_DUMP: {
2534 len_min = sizeof(info->header) + sizeof(info->dump);
2535
2536 if (info->header.len_max < len_min)
2537 return -EINVAL;
2538
2539 info->dump.dump_cpu_buffer_len = uv_info.guest_cpu_stor_len;
2540 info->dump.dump_config_mem_buffer_per_1m = uv_info.conf_dump_storage_state_len;
2541 info->dump.dump_config_finalize_len = uv_info.conf_dump_finalize_len;
2542 return len_min;
2543 }
2544 default:
2545 return -EINVAL;
2546 }
2547 }
2548
kvm_s390_pv_dmp(struct kvm * kvm,struct kvm_pv_cmd * cmd,struct kvm_s390_pv_dmp dmp)2549 static int kvm_s390_pv_dmp(struct kvm *kvm, struct kvm_pv_cmd *cmd,
2550 struct kvm_s390_pv_dmp dmp)
2551 {
2552 int r = -EINVAL;
2553 void __user *result_buff = (void __user *)dmp.buff_addr;
2554
2555 switch (dmp.subcmd) {
2556 case KVM_PV_DUMP_INIT: {
2557 if (kvm->arch.pv.dumping)
2558 break;
2559
2560 /*
2561 * Block SIE entry as concurrent dump UVCs could lead
2562 * to validities.
2563 */
2564 kvm_s390_vcpu_block_all(kvm);
2565
2566 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2567 UVC_CMD_DUMP_INIT, &cmd->rc, &cmd->rrc);
2568 KVM_UV_EVENT(kvm, 3, "PROTVIRT DUMP INIT: rc %x rrc %x",
2569 cmd->rc, cmd->rrc);
2570 if (!r) {
2571 kvm->arch.pv.dumping = true;
2572 } else {
2573 kvm_s390_vcpu_unblock_all(kvm);
2574 r = -EINVAL;
2575 }
2576 break;
2577 }
2578 case KVM_PV_DUMP_CONFIG_STOR_STATE: {
2579 if (!kvm->arch.pv.dumping)
2580 break;
2581
2582 /*
2583 * gaddr is an output parameter since we might stop
2584 * early. As dmp will be copied back in our caller, we
2585 * don't need to do it ourselves.
2586 */
2587 r = kvm_s390_pv_dump_stor_state(kvm, result_buff, &dmp.gaddr, dmp.buff_len,
2588 &cmd->rc, &cmd->rrc);
2589 break;
2590 }
2591 case KVM_PV_DUMP_COMPLETE: {
2592 if (!kvm->arch.pv.dumping)
2593 break;
2594
2595 r = -EINVAL;
2596 if (dmp.buff_len < uv_info.conf_dump_finalize_len)
2597 break;
2598
2599 r = kvm_s390_pv_dump_complete(kvm, result_buff,
2600 &cmd->rc, &cmd->rrc);
2601 break;
2602 }
2603 default:
2604 r = -ENOTTY;
2605 break;
2606 }
2607
2608 return r;
2609 }
2610
kvm_s390_handle_pv(struct kvm * kvm,struct kvm_pv_cmd * cmd)2611 static int kvm_s390_handle_pv(struct kvm *kvm, struct kvm_pv_cmd *cmd)
2612 {
2613 const bool need_lock = (cmd->cmd != KVM_PV_ASYNC_CLEANUP_PERFORM);
2614 void __user *argp = (void __user *)cmd->data;
2615 int r = 0;
2616 u16 dummy;
2617
2618 if (need_lock)
2619 mutex_lock(&kvm->lock);
2620
2621 switch (cmd->cmd) {
2622 case KVM_PV_ENABLE: {
2623 r = -EINVAL;
2624 if (kvm_s390_pv_is_protected(kvm))
2625 break;
2626
2627 /*
2628 * FMT 4 SIE needs esca. As we never switch back to bsca from
2629 * esca, we need no cleanup in the error cases below
2630 */
2631 r = sca_switch_to_extended(kvm);
2632 if (r)
2633 break;
2634
2635 mmap_write_lock(current->mm);
2636 r = gmap_mark_unmergeable();
2637 mmap_write_unlock(current->mm);
2638 if (r)
2639 break;
2640
2641 r = kvm_s390_pv_init_vm(kvm, &cmd->rc, &cmd->rrc);
2642 if (r)
2643 break;
2644
2645 r = kvm_s390_cpus_to_pv(kvm, &cmd->rc, &cmd->rrc);
2646 if (r)
2647 kvm_s390_pv_deinit_vm(kvm, &dummy, &dummy);
2648
2649 /* we need to block service interrupts from now on */
2650 set_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
2651 break;
2652 }
2653 case KVM_PV_ASYNC_CLEANUP_PREPARE:
2654 r = -EINVAL;
2655 if (!kvm_s390_pv_is_protected(kvm) || !async_destroy)
2656 break;
2657
2658 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc);
2659 /*
2660 * If a CPU could not be destroyed, destroy VM will also fail.
2661 * There is no point in trying to destroy it. Instead return
2662 * the rc and rrc from the first CPU that failed destroying.
2663 */
2664 if (r)
2665 break;
2666 r = kvm_s390_pv_set_aside(kvm, &cmd->rc, &cmd->rrc);
2667
2668 /* no need to block service interrupts any more */
2669 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
2670 break;
2671 case KVM_PV_ASYNC_CLEANUP_PERFORM:
2672 r = -EINVAL;
2673 if (!async_destroy)
2674 break;
2675 /* kvm->lock must not be held; this is asserted inside the function. */
2676 r = kvm_s390_pv_deinit_aside_vm(kvm, &cmd->rc, &cmd->rrc);
2677 break;
2678 case KVM_PV_DISABLE: {
2679 r = -EINVAL;
2680 if (!kvm_s390_pv_is_protected(kvm))
2681 break;
2682
2683 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc);
2684 /*
2685 * If a CPU could not be destroyed, destroy VM will also fail.
2686 * There is no point in trying to destroy it. Instead return
2687 * the rc and rrc from the first CPU that failed destroying.
2688 */
2689 if (r)
2690 break;
2691 r = kvm_s390_pv_deinit_cleanup_all(kvm, &cmd->rc, &cmd->rrc);
2692
2693 /* no need to block service interrupts any more */
2694 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
2695 break;
2696 }
2697 case KVM_PV_SET_SEC_PARMS: {
2698 struct kvm_s390_pv_sec_parm parms = {};
2699 void *hdr;
2700
2701 r = -EINVAL;
2702 if (!kvm_s390_pv_is_protected(kvm))
2703 break;
2704
2705 r = -EFAULT;
2706 if (copy_from_user(&parms, argp, sizeof(parms)))
2707 break;
2708
2709 /* Currently restricted to 8KB */
2710 r = -EINVAL;
2711 if (parms.length > PAGE_SIZE * 2)
2712 break;
2713
2714 r = -ENOMEM;
2715 hdr = vmalloc(parms.length);
2716 if (!hdr)
2717 break;
2718
2719 r = -EFAULT;
2720 if (!copy_from_user(hdr, (void __user *)parms.origin,
2721 parms.length))
2722 r = kvm_s390_pv_set_sec_parms(kvm, hdr, parms.length,
2723 &cmd->rc, &cmd->rrc);
2724
2725 vfree(hdr);
2726 break;
2727 }
2728 case KVM_PV_UNPACK: {
2729 struct kvm_s390_pv_unp unp = {};
2730
2731 r = -EINVAL;
2732 if (!kvm_s390_pv_is_protected(kvm) || !mm_is_protected(kvm->mm))
2733 break;
2734
2735 r = -EFAULT;
2736 if (copy_from_user(&unp, argp, sizeof(unp)))
2737 break;
2738
2739 r = kvm_s390_pv_unpack(kvm, unp.addr, unp.size, unp.tweak,
2740 &cmd->rc, &cmd->rrc);
2741 break;
2742 }
2743 case KVM_PV_VERIFY: {
2744 r = -EINVAL;
2745 if (!kvm_s390_pv_is_protected(kvm))
2746 break;
2747
2748 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2749 UVC_CMD_VERIFY_IMG, &cmd->rc, &cmd->rrc);
2750 KVM_UV_EVENT(kvm, 3, "PROTVIRT VERIFY: rc %x rrc %x", cmd->rc,
2751 cmd->rrc);
2752 break;
2753 }
2754 case KVM_PV_PREP_RESET: {
2755 r = -EINVAL;
2756 if (!kvm_s390_pv_is_protected(kvm))
2757 break;
2758
2759 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2760 UVC_CMD_PREPARE_RESET, &cmd->rc, &cmd->rrc);
2761 KVM_UV_EVENT(kvm, 3, "PROTVIRT PREP RESET: rc %x rrc %x",
2762 cmd->rc, cmd->rrc);
2763 break;
2764 }
2765 case KVM_PV_UNSHARE_ALL: {
2766 r = -EINVAL;
2767 if (!kvm_s390_pv_is_protected(kvm))
2768 break;
2769
2770 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2771 UVC_CMD_SET_UNSHARE_ALL, &cmd->rc, &cmd->rrc);
2772 KVM_UV_EVENT(kvm, 3, "PROTVIRT UNSHARE: rc %x rrc %x",
2773 cmd->rc, cmd->rrc);
2774 break;
2775 }
2776 case KVM_PV_INFO: {
2777 struct kvm_s390_pv_info info = {};
2778 ssize_t data_len;
2779
2780 /*
2781 * No need to check the VM protection here.
2782 *
2783 * Maybe user space wants to query some of the data
2784 * when the VM is still unprotected. If we see the
2785 * need to fence a new data command we can still
2786 * return an error in the info handler.
2787 */
2788
2789 r = -EFAULT;
2790 if (copy_from_user(&info, argp, sizeof(info.header)))
2791 break;
2792
2793 r = -EINVAL;
2794 if (info.header.len_max < sizeof(info.header))
2795 break;
2796
2797 data_len = kvm_s390_handle_pv_info(&info);
2798 if (data_len < 0) {
2799 r = data_len;
2800 break;
2801 }
2802 /*
2803 * If a data command struct is extended (multiple
2804 * times) this can be used to determine how much of it
2805 * is valid.
2806 */
2807 info.header.len_written = data_len;
2808
2809 r = -EFAULT;
2810 if (copy_to_user(argp, &info, data_len))
2811 break;
2812
2813 r = 0;
2814 break;
2815 }
2816 case KVM_PV_DUMP: {
2817 struct kvm_s390_pv_dmp dmp;
2818
2819 r = -EINVAL;
2820 if (!kvm_s390_pv_is_protected(kvm))
2821 break;
2822
2823 r = -EFAULT;
2824 if (copy_from_user(&dmp, argp, sizeof(dmp)))
2825 break;
2826
2827 r = kvm_s390_pv_dmp(kvm, cmd, dmp);
2828 if (r)
2829 break;
2830
2831 if (copy_to_user(argp, &dmp, sizeof(dmp))) {
2832 r = -EFAULT;
2833 break;
2834 }
2835
2836 break;
2837 }
2838 default:
2839 r = -ENOTTY;
2840 }
2841 if (need_lock)
2842 mutex_unlock(&kvm->lock);
2843
2844 return r;
2845 }
2846
mem_op_validate_common(struct kvm_s390_mem_op * mop,u64 supported_flags)2847 static int mem_op_validate_common(struct kvm_s390_mem_op *mop, u64 supported_flags)
2848 {
2849 if (mop->flags & ~supported_flags || !mop->size)
2850 return -EINVAL;
2851 if (mop->size > MEM_OP_MAX_SIZE)
2852 return -E2BIG;
2853 if (mop->flags & KVM_S390_MEMOP_F_SKEY_PROTECTION) {
2854 if (mop->key > 0xf)
2855 return -EINVAL;
2856 } else {
2857 mop->key = 0;
2858 }
2859 return 0;
2860 }
2861
kvm_s390_vm_mem_op_abs(struct kvm * kvm,struct kvm_s390_mem_op * mop)2862 static int kvm_s390_vm_mem_op_abs(struct kvm *kvm, struct kvm_s390_mem_op *mop)
2863 {
2864 void __user *uaddr = (void __user *)mop->buf;
2865 enum gacc_mode acc_mode;
2866 void *tmpbuf = NULL;
2867 int r, srcu_idx;
2868
2869 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION |
2870 KVM_S390_MEMOP_F_CHECK_ONLY);
2871 if (r)
2872 return r;
2873
2874 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
2875 tmpbuf = vmalloc(mop->size);
2876 if (!tmpbuf)
2877 return -ENOMEM;
2878 }
2879
2880 srcu_idx = srcu_read_lock(&kvm->srcu);
2881
2882 if (kvm_is_error_gpa(kvm, mop->gaddr)) {
2883 r = PGM_ADDRESSING;
2884 goto out_unlock;
2885 }
2886
2887 acc_mode = mop->op == KVM_S390_MEMOP_ABSOLUTE_READ ? GACC_FETCH : GACC_STORE;
2888 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2889 r = check_gpa_range(kvm, mop->gaddr, mop->size, acc_mode, mop->key);
2890 goto out_unlock;
2891 }
2892 if (acc_mode == GACC_FETCH) {
2893 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf,
2894 mop->size, GACC_FETCH, mop->key);
2895 if (r)
2896 goto out_unlock;
2897 if (copy_to_user(uaddr, tmpbuf, mop->size))
2898 r = -EFAULT;
2899 } else {
2900 if (copy_from_user(tmpbuf, uaddr, mop->size)) {
2901 r = -EFAULT;
2902 goto out_unlock;
2903 }
2904 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf,
2905 mop->size, GACC_STORE, mop->key);
2906 }
2907
2908 out_unlock:
2909 srcu_read_unlock(&kvm->srcu, srcu_idx);
2910
2911 vfree(tmpbuf);
2912 return r;
2913 }
2914
kvm_s390_vm_mem_op_cmpxchg(struct kvm * kvm,struct kvm_s390_mem_op * mop)2915 static int kvm_s390_vm_mem_op_cmpxchg(struct kvm *kvm, struct kvm_s390_mem_op *mop)
2916 {
2917 void __user *uaddr = (void __user *)mop->buf;
2918 void __user *old_addr = (void __user *)mop->old_addr;
2919 union {
2920 __uint128_t quad;
2921 char raw[sizeof(__uint128_t)];
2922 } old = { .quad = 0}, new = { .quad = 0 };
2923 unsigned int off_in_quad = sizeof(new) - mop->size;
2924 int r, srcu_idx;
2925 bool success;
2926
2927 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION);
2928 if (r)
2929 return r;
2930 /*
2931 * This validates off_in_quad. Checking that size is a power
2932 * of two is not necessary, as cmpxchg_guest_abs_with_key
2933 * takes care of that
2934 */
2935 if (mop->size > sizeof(new))
2936 return -EINVAL;
2937 if (copy_from_user(&new.raw[off_in_quad], uaddr, mop->size))
2938 return -EFAULT;
2939 if (copy_from_user(&old.raw[off_in_quad], old_addr, mop->size))
2940 return -EFAULT;
2941
2942 srcu_idx = srcu_read_lock(&kvm->srcu);
2943
2944 if (kvm_is_error_gpa(kvm, mop->gaddr)) {
2945 r = PGM_ADDRESSING;
2946 goto out_unlock;
2947 }
2948
2949 r = cmpxchg_guest_abs_with_key(kvm, mop->gaddr, mop->size, &old.quad,
2950 new.quad, mop->key, &success);
2951 if (!success && copy_to_user(old_addr, &old.raw[off_in_quad], mop->size))
2952 r = -EFAULT;
2953
2954 out_unlock:
2955 srcu_read_unlock(&kvm->srcu, srcu_idx);
2956 return r;
2957 }
2958
kvm_s390_vm_mem_op(struct kvm * kvm,struct kvm_s390_mem_op * mop)2959 static int kvm_s390_vm_mem_op(struct kvm *kvm, struct kvm_s390_mem_op *mop)
2960 {
2961 /*
2962 * This is technically a heuristic only, if the kvm->lock is not
2963 * taken, it is not guaranteed that the vm is/remains non-protected.
2964 * This is ok from a kernel perspective, wrongdoing is detected
2965 * on the access, -EFAULT is returned and the vm may crash the
2966 * next time it accesses the memory in question.
2967 * There is no sane usecase to do switching and a memop on two
2968 * different CPUs at the same time.
2969 */
2970 if (kvm_s390_pv_get_handle(kvm))
2971 return -EINVAL;
2972
2973 switch (mop->op) {
2974 case KVM_S390_MEMOP_ABSOLUTE_READ:
2975 case KVM_S390_MEMOP_ABSOLUTE_WRITE:
2976 return kvm_s390_vm_mem_op_abs(kvm, mop);
2977 case KVM_S390_MEMOP_ABSOLUTE_CMPXCHG:
2978 return kvm_s390_vm_mem_op_cmpxchg(kvm, mop);
2979 default:
2980 return -EINVAL;
2981 }
2982 }
2983
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2984 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
2985 {
2986 struct kvm *kvm = filp->private_data;
2987 void __user *argp = (void __user *)arg;
2988 struct kvm_device_attr attr;
2989 int r;
2990
2991 switch (ioctl) {
2992 case KVM_S390_INTERRUPT: {
2993 struct kvm_s390_interrupt s390int;
2994
2995 r = -EFAULT;
2996 if (copy_from_user(&s390int, argp, sizeof(s390int)))
2997 break;
2998 r = kvm_s390_inject_vm(kvm, &s390int);
2999 break;
3000 }
3001 case KVM_CREATE_IRQCHIP: {
3002 struct kvm_irq_routing_entry routing;
3003
3004 r = -EINVAL;
3005 if (kvm->arch.use_irqchip) {
3006 /* Set up dummy routing. */
3007 memset(&routing, 0, sizeof(routing));
3008 r = kvm_set_irq_routing(kvm, &routing, 0, 0);
3009 }
3010 break;
3011 }
3012 case KVM_SET_DEVICE_ATTR: {
3013 r = -EFAULT;
3014 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3015 break;
3016 r = kvm_s390_vm_set_attr(kvm, &attr);
3017 break;
3018 }
3019 case KVM_GET_DEVICE_ATTR: {
3020 r = -EFAULT;
3021 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3022 break;
3023 r = kvm_s390_vm_get_attr(kvm, &attr);
3024 break;
3025 }
3026 case KVM_HAS_DEVICE_ATTR: {
3027 r = -EFAULT;
3028 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3029 break;
3030 r = kvm_s390_vm_has_attr(kvm, &attr);
3031 break;
3032 }
3033 case KVM_S390_GET_SKEYS: {
3034 struct kvm_s390_skeys args;
3035
3036 r = -EFAULT;
3037 if (copy_from_user(&args, argp,
3038 sizeof(struct kvm_s390_skeys)))
3039 break;
3040 r = kvm_s390_get_skeys(kvm, &args);
3041 break;
3042 }
3043 case KVM_S390_SET_SKEYS: {
3044 struct kvm_s390_skeys args;
3045
3046 r = -EFAULT;
3047 if (copy_from_user(&args, argp,
3048 sizeof(struct kvm_s390_skeys)))
3049 break;
3050 r = kvm_s390_set_skeys(kvm, &args);
3051 break;
3052 }
3053 case KVM_S390_GET_CMMA_BITS: {
3054 struct kvm_s390_cmma_log args;
3055
3056 r = -EFAULT;
3057 if (copy_from_user(&args, argp, sizeof(args)))
3058 break;
3059 mutex_lock(&kvm->slots_lock);
3060 r = kvm_s390_get_cmma_bits(kvm, &args);
3061 mutex_unlock(&kvm->slots_lock);
3062 if (!r) {
3063 r = copy_to_user(argp, &args, sizeof(args));
3064 if (r)
3065 r = -EFAULT;
3066 }
3067 break;
3068 }
3069 case KVM_S390_SET_CMMA_BITS: {
3070 struct kvm_s390_cmma_log args;
3071
3072 r = -EFAULT;
3073 if (copy_from_user(&args, argp, sizeof(args)))
3074 break;
3075 mutex_lock(&kvm->slots_lock);
3076 r = kvm_s390_set_cmma_bits(kvm, &args);
3077 mutex_unlock(&kvm->slots_lock);
3078 break;
3079 }
3080 case KVM_S390_PV_COMMAND: {
3081 struct kvm_pv_cmd args;
3082
3083 /* protvirt means user cpu state */
3084 kvm_s390_set_user_cpu_state_ctrl(kvm);
3085 r = 0;
3086 if (!is_prot_virt_host()) {
3087 r = -EINVAL;
3088 break;
3089 }
3090 if (copy_from_user(&args, argp, sizeof(args))) {
3091 r = -EFAULT;
3092 break;
3093 }
3094 if (args.flags) {
3095 r = -EINVAL;
3096 break;
3097 }
3098 /* must be called without kvm->lock */
3099 r = kvm_s390_handle_pv(kvm, &args);
3100 if (copy_to_user(argp, &args, sizeof(args))) {
3101 r = -EFAULT;
3102 break;
3103 }
3104 break;
3105 }
3106 case KVM_S390_MEM_OP: {
3107 struct kvm_s390_mem_op mem_op;
3108
3109 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
3110 r = kvm_s390_vm_mem_op(kvm, &mem_op);
3111 else
3112 r = -EFAULT;
3113 break;
3114 }
3115 case KVM_S390_ZPCI_OP: {
3116 struct kvm_s390_zpci_op args;
3117
3118 r = -EINVAL;
3119 if (!IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
3120 break;
3121 if (copy_from_user(&args, argp, sizeof(args))) {
3122 r = -EFAULT;
3123 break;
3124 }
3125 r = kvm_s390_pci_zpci_op(kvm, &args);
3126 break;
3127 }
3128 default:
3129 r = -ENOTTY;
3130 }
3131
3132 return r;
3133 }
3134
kvm_s390_apxa_installed(void)3135 static int kvm_s390_apxa_installed(void)
3136 {
3137 struct ap_config_info info;
3138
3139 if (ap_instructions_available()) {
3140 if (ap_qci(&info) == 0)
3141 return info.apxa;
3142 }
3143
3144 return 0;
3145 }
3146
3147 /*
3148 * The format of the crypto control block (CRYCB) is specified in the 3 low
3149 * order bits of the CRYCB designation (CRYCBD) field as follows:
3150 * Format 0: Neither the message security assist extension 3 (MSAX3) nor the
3151 * AP extended addressing (APXA) facility are installed.
3152 * Format 1: The APXA facility is not installed but the MSAX3 facility is.
3153 * Format 2: Both the APXA and MSAX3 facilities are installed
3154 */
kvm_s390_set_crycb_format(struct kvm * kvm)3155 static void kvm_s390_set_crycb_format(struct kvm *kvm)
3156 {
3157 kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;
3158
3159 /* Clear the CRYCB format bits - i.e., set format 0 by default */
3160 kvm->arch.crypto.crycbd &= ~(CRYCB_FORMAT_MASK);
3161
3162 /* Check whether MSAX3 is installed */
3163 if (!test_kvm_facility(kvm, 76))
3164 return;
3165
3166 if (kvm_s390_apxa_installed())
3167 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
3168 else
3169 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
3170 }
3171
3172 /*
3173 * kvm_arch_crypto_set_masks
3174 *
3175 * @kvm: pointer to the target guest's KVM struct containing the crypto masks
3176 * to be set.
3177 * @apm: the mask identifying the accessible AP adapters
3178 * @aqm: the mask identifying the accessible AP domains
3179 * @adm: the mask identifying the accessible AP control domains
3180 *
3181 * Set the masks that identify the adapters, domains and control domains to
3182 * which the KVM guest is granted access.
3183 *
3184 * Note: The kvm->lock mutex must be locked by the caller before invoking this
3185 * function.
3186 */
kvm_arch_crypto_set_masks(struct kvm * kvm,unsigned long * apm,unsigned long * aqm,unsigned long * adm)3187 void kvm_arch_crypto_set_masks(struct kvm *kvm, unsigned long *apm,
3188 unsigned long *aqm, unsigned long *adm)
3189 {
3190 struct kvm_s390_crypto_cb *crycb = kvm->arch.crypto.crycb;
3191
3192 kvm_s390_vcpu_block_all(kvm);
3193
3194 switch (kvm->arch.crypto.crycbd & CRYCB_FORMAT_MASK) {
3195 case CRYCB_FORMAT2: /* APCB1 use 256 bits */
3196 memcpy(crycb->apcb1.apm, apm, 32);
3197 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx %016lx %016lx %016lx",
3198 apm[0], apm[1], apm[2], apm[3]);
3199 memcpy(crycb->apcb1.aqm, aqm, 32);
3200 VM_EVENT(kvm, 3, "SET CRYCB: aqm %016lx %016lx %016lx %016lx",
3201 aqm[0], aqm[1], aqm[2], aqm[3]);
3202 memcpy(crycb->apcb1.adm, adm, 32);
3203 VM_EVENT(kvm, 3, "SET CRYCB: adm %016lx %016lx %016lx %016lx",
3204 adm[0], adm[1], adm[2], adm[3]);
3205 break;
3206 case CRYCB_FORMAT1:
3207 case CRYCB_FORMAT0: /* Fall through both use APCB0 */
3208 memcpy(crycb->apcb0.apm, apm, 8);
3209 memcpy(crycb->apcb0.aqm, aqm, 2);
3210 memcpy(crycb->apcb0.adm, adm, 2);
3211 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx aqm %04x adm %04x",
3212 apm[0], *((unsigned short *)aqm),
3213 *((unsigned short *)adm));
3214 break;
3215 default: /* Can not happen */
3216 break;
3217 }
3218
3219 /* recreate the shadow crycb for each vcpu */
3220 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART);
3221 kvm_s390_vcpu_unblock_all(kvm);
3222 }
3223 EXPORT_SYMBOL_GPL(kvm_arch_crypto_set_masks);
3224
3225 /*
3226 * kvm_arch_crypto_clear_masks
3227 *
3228 * @kvm: pointer to the target guest's KVM struct containing the crypto masks
3229 * to be cleared.
3230 *
3231 * Clear the masks that identify the adapters, domains and control domains to
3232 * which the KVM guest is granted access.
3233 *
3234 * Note: The kvm->lock mutex must be locked by the caller before invoking this
3235 * function.
3236 */
kvm_arch_crypto_clear_masks(struct kvm * kvm)3237 void kvm_arch_crypto_clear_masks(struct kvm *kvm)
3238 {
3239 kvm_s390_vcpu_block_all(kvm);
3240
3241 memset(&kvm->arch.crypto.crycb->apcb0, 0,
3242 sizeof(kvm->arch.crypto.crycb->apcb0));
3243 memset(&kvm->arch.crypto.crycb->apcb1, 0,
3244 sizeof(kvm->arch.crypto.crycb->apcb1));
3245
3246 VM_EVENT(kvm, 3, "%s", "CLR CRYCB:");
3247 /* recreate the shadow crycb for each vcpu */
3248 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART);
3249 kvm_s390_vcpu_unblock_all(kvm);
3250 }
3251 EXPORT_SYMBOL_GPL(kvm_arch_crypto_clear_masks);
3252
kvm_s390_get_initial_cpuid(void)3253 static u64 kvm_s390_get_initial_cpuid(void)
3254 {
3255 struct cpuid cpuid;
3256
3257 get_cpu_id(&cpuid);
3258 cpuid.version = 0xff;
3259 return *((u64 *) &cpuid);
3260 }
3261
kvm_s390_crypto_init(struct kvm * kvm)3262 static void kvm_s390_crypto_init(struct kvm *kvm)
3263 {
3264 kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
3265 kvm_s390_set_crycb_format(kvm);
3266 init_rwsem(&kvm->arch.crypto.pqap_hook_rwsem);
3267
3268 if (!test_kvm_facility(kvm, 76))
3269 return;
3270
3271 /* Enable AES/DEA protected key functions by default */
3272 kvm->arch.crypto.aes_kw = 1;
3273 kvm->arch.crypto.dea_kw = 1;
3274 get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
3275 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
3276 get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
3277 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
3278 }
3279
sca_dispose(struct kvm * kvm)3280 static void sca_dispose(struct kvm *kvm)
3281 {
3282 if (kvm->arch.use_esca)
3283 free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
3284 else
3285 free_page((unsigned long)(kvm->arch.sca));
3286 kvm->arch.sca = NULL;
3287 }
3288
kvm_arch_free_vm(struct kvm * kvm)3289 void kvm_arch_free_vm(struct kvm *kvm)
3290 {
3291 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
3292 kvm_s390_pci_clear_list(kvm);
3293
3294 __kvm_arch_free_vm(kvm);
3295 }
3296
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)3297 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
3298 {
3299 gfp_t alloc_flags = GFP_KERNEL_ACCOUNT;
3300 int i, rc;
3301 char debug_name[16];
3302 static unsigned long sca_offset;
3303
3304 rc = -EINVAL;
3305 #ifdef CONFIG_KVM_S390_UCONTROL
3306 if (type & ~KVM_VM_S390_UCONTROL)
3307 goto out_err;
3308 if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
3309 goto out_err;
3310 #else
3311 if (type)
3312 goto out_err;
3313 #endif
3314
3315 rc = s390_enable_sie();
3316 if (rc)
3317 goto out_err;
3318
3319 rc = -ENOMEM;
3320
3321 if (!sclp.has_64bscao)
3322 alloc_flags |= GFP_DMA;
3323 rwlock_init(&kvm->arch.sca_lock);
3324 /* start with basic SCA */
3325 kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
3326 if (!kvm->arch.sca)
3327 goto out_err;
3328 mutex_lock(&kvm_lock);
3329 sca_offset += 16;
3330 if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
3331 sca_offset = 0;
3332 kvm->arch.sca = (struct bsca_block *)
3333 ((char *) kvm->arch.sca + sca_offset);
3334 mutex_unlock(&kvm_lock);
3335
3336 sprintf(debug_name, "kvm-%u", current->pid);
3337
3338 kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
3339 if (!kvm->arch.dbf)
3340 goto out_err;
3341
3342 BUILD_BUG_ON(sizeof(struct sie_page2) != 4096);
3343 kvm->arch.sie_page2 =
3344 (struct sie_page2 *) get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA);
3345 if (!kvm->arch.sie_page2)
3346 goto out_err;
3347
3348 kvm->arch.sie_page2->kvm = kvm;
3349 kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
3350
3351 for (i = 0; i < kvm_s390_fac_size(); i++) {
3352 kvm->arch.model.fac_mask[i] = stfle_fac_list[i] &
3353 (kvm_s390_fac_base[i] |
3354 kvm_s390_fac_ext[i]);
3355 kvm->arch.model.fac_list[i] = stfle_fac_list[i] &
3356 kvm_s390_fac_base[i];
3357 }
3358 kvm->arch.model.subfuncs = kvm_s390_available_subfunc;
3359
3360 /* we are always in czam mode - even on pre z14 machines */
3361 set_kvm_facility(kvm->arch.model.fac_mask, 138);
3362 set_kvm_facility(kvm->arch.model.fac_list, 138);
3363 /* we emulate STHYI in kvm */
3364 set_kvm_facility(kvm->arch.model.fac_mask, 74);
3365 set_kvm_facility(kvm->arch.model.fac_list, 74);
3366 if (MACHINE_HAS_TLB_GUEST) {
3367 set_kvm_facility(kvm->arch.model.fac_mask, 147);
3368 set_kvm_facility(kvm->arch.model.fac_list, 147);
3369 }
3370
3371 if (css_general_characteristics.aiv && test_facility(65))
3372 set_kvm_facility(kvm->arch.model.fac_mask, 65);
3373
3374 kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
3375 kvm->arch.model.ibc = sclp.ibc & 0x0fff;
3376
3377 kvm->arch.model.uv_feat_guest.feat = 0;
3378
3379 kvm_s390_crypto_init(kvm);
3380
3381 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) {
3382 mutex_lock(&kvm->lock);
3383 kvm_s390_pci_init_list(kvm);
3384 kvm_s390_vcpu_pci_enable_interp(kvm);
3385 mutex_unlock(&kvm->lock);
3386 }
3387
3388 mutex_init(&kvm->arch.float_int.ais_lock);
3389 spin_lock_init(&kvm->arch.float_int.lock);
3390 for (i = 0; i < FIRQ_LIST_COUNT; i++)
3391 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
3392 init_waitqueue_head(&kvm->arch.ipte_wq);
3393 mutex_init(&kvm->arch.ipte_mutex);
3394
3395 debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
3396 VM_EVENT(kvm, 3, "vm created with type %lu", type);
3397
3398 if (type & KVM_VM_S390_UCONTROL) {
3399 kvm->arch.gmap = NULL;
3400 kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
3401 } else {
3402 if (sclp.hamax == U64_MAX)
3403 kvm->arch.mem_limit = TASK_SIZE_MAX;
3404 else
3405 kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX,
3406 sclp.hamax + 1);
3407 kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
3408 if (!kvm->arch.gmap)
3409 goto out_err;
3410 kvm->arch.gmap->private = kvm;
3411 kvm->arch.gmap->pfault_enabled = 0;
3412 }
3413
3414 kvm->arch.use_pfmfi = sclp.has_pfmfi;
3415 kvm->arch.use_skf = sclp.has_skey;
3416 spin_lock_init(&kvm->arch.start_stop_lock);
3417 kvm_s390_vsie_init(kvm);
3418 if (use_gisa)
3419 kvm_s390_gisa_init(kvm);
3420 INIT_LIST_HEAD(&kvm->arch.pv.need_cleanup);
3421 kvm->arch.pv.set_aside = NULL;
3422 KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
3423
3424 return 0;
3425 out_err:
3426 free_page((unsigned long)kvm->arch.sie_page2);
3427 debug_unregister(kvm->arch.dbf);
3428 sca_dispose(kvm);
3429 KVM_EVENT(3, "creation of vm failed: %d", rc);
3430 return rc;
3431 }
3432
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)3433 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3434 {
3435 u16 rc, rrc;
3436
3437 VCPU_EVENT(vcpu, 3, "%s", "free cpu");
3438 trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
3439 kvm_s390_clear_local_irqs(vcpu);
3440 kvm_clear_async_pf_completion_queue(vcpu);
3441 if (!kvm_is_ucontrol(vcpu->kvm))
3442 sca_del_vcpu(vcpu);
3443 kvm_s390_update_topology_change_report(vcpu->kvm, 1);
3444
3445 if (kvm_is_ucontrol(vcpu->kvm))
3446 gmap_remove(vcpu->arch.gmap);
3447
3448 if (vcpu->kvm->arch.use_cmma)
3449 kvm_s390_vcpu_unsetup_cmma(vcpu);
3450 /* We can not hold the vcpu mutex here, we are already dying */
3451 if (kvm_s390_pv_cpu_get_handle(vcpu))
3452 kvm_s390_pv_destroy_cpu(vcpu, &rc, &rrc);
3453 free_page((unsigned long)(vcpu->arch.sie_block));
3454 }
3455
kvm_arch_destroy_vm(struct kvm * kvm)3456 void kvm_arch_destroy_vm(struct kvm *kvm)
3457 {
3458 u16 rc, rrc;
3459
3460 kvm_destroy_vcpus(kvm);
3461 sca_dispose(kvm);
3462 kvm_s390_gisa_destroy(kvm);
3463 /*
3464 * We are already at the end of life and kvm->lock is not taken.
3465 * This is ok as the file descriptor is closed by now and nobody
3466 * can mess with the pv state.
3467 */
3468 kvm_s390_pv_deinit_cleanup_all(kvm, &rc, &rrc);
3469 /*
3470 * Remove the mmu notifier only when the whole KVM VM is torn down,
3471 * and only if one was registered to begin with. If the VM is
3472 * currently not protected, but has been previously been protected,
3473 * then it's possible that the notifier is still registered.
3474 */
3475 if (kvm->arch.pv.mmu_notifier.ops)
3476 mmu_notifier_unregister(&kvm->arch.pv.mmu_notifier, kvm->mm);
3477
3478 debug_unregister(kvm->arch.dbf);
3479 free_page((unsigned long)kvm->arch.sie_page2);
3480 if (!kvm_is_ucontrol(kvm))
3481 gmap_remove(kvm->arch.gmap);
3482 kvm_s390_destroy_adapters(kvm);
3483 kvm_s390_clear_float_irqs(kvm);
3484 kvm_s390_vsie_destroy(kvm);
3485 KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
3486 }
3487
3488 /* Section: vcpu related */
__kvm_ucontrol_vcpu_init(struct kvm_vcpu * vcpu)3489 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
3490 {
3491 vcpu->arch.gmap = gmap_create(current->mm, -1UL);
3492 if (!vcpu->arch.gmap)
3493 return -ENOMEM;
3494 vcpu->arch.gmap->private = vcpu->kvm;
3495
3496 return 0;
3497 }
3498
sca_del_vcpu(struct kvm_vcpu * vcpu)3499 static void sca_del_vcpu(struct kvm_vcpu *vcpu)
3500 {
3501 if (!kvm_s390_use_sca_entries())
3502 return;
3503 read_lock(&vcpu->kvm->arch.sca_lock);
3504 if (vcpu->kvm->arch.use_esca) {
3505 struct esca_block *sca = vcpu->kvm->arch.sca;
3506
3507 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
3508 sca->cpu[vcpu->vcpu_id].sda = 0;
3509 } else {
3510 struct bsca_block *sca = vcpu->kvm->arch.sca;
3511
3512 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
3513 sca->cpu[vcpu->vcpu_id].sda = 0;
3514 }
3515 read_unlock(&vcpu->kvm->arch.sca_lock);
3516 }
3517
sca_add_vcpu(struct kvm_vcpu * vcpu)3518 static void sca_add_vcpu(struct kvm_vcpu *vcpu)
3519 {
3520 if (!kvm_s390_use_sca_entries()) {
3521 phys_addr_t sca_phys = virt_to_phys(vcpu->kvm->arch.sca);
3522
3523 /* we still need the basic sca for the ipte control */
3524 vcpu->arch.sie_block->scaoh = sca_phys >> 32;
3525 vcpu->arch.sie_block->scaol = sca_phys;
3526 return;
3527 }
3528 read_lock(&vcpu->kvm->arch.sca_lock);
3529 if (vcpu->kvm->arch.use_esca) {
3530 struct esca_block *sca = vcpu->kvm->arch.sca;
3531 phys_addr_t sca_phys = virt_to_phys(sca);
3532
3533 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block);
3534 vcpu->arch.sie_block->scaoh = sca_phys >> 32;
3535 vcpu->arch.sie_block->scaol = sca_phys & ESCA_SCAOL_MASK;
3536 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
3537 set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
3538 } else {
3539 struct bsca_block *sca = vcpu->kvm->arch.sca;
3540 phys_addr_t sca_phys = virt_to_phys(sca);
3541
3542 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block);
3543 vcpu->arch.sie_block->scaoh = sca_phys >> 32;
3544 vcpu->arch.sie_block->scaol = sca_phys;
3545 set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
3546 }
3547 read_unlock(&vcpu->kvm->arch.sca_lock);
3548 }
3549
3550 /* Basic SCA to Extended SCA data copy routines */
sca_copy_entry(struct esca_entry * d,struct bsca_entry * s)3551 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
3552 {
3553 d->sda = s->sda;
3554 d->sigp_ctrl.c = s->sigp_ctrl.c;
3555 d->sigp_ctrl.scn = s->sigp_ctrl.scn;
3556 }
3557
sca_copy_b_to_e(struct esca_block * d,struct bsca_block * s)3558 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
3559 {
3560 int i;
3561
3562 d->ipte_control = s->ipte_control;
3563 d->mcn[0] = s->mcn;
3564 for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
3565 sca_copy_entry(&d->cpu[i], &s->cpu[i]);
3566 }
3567
sca_switch_to_extended(struct kvm * kvm)3568 static int sca_switch_to_extended(struct kvm *kvm)
3569 {
3570 struct bsca_block *old_sca = kvm->arch.sca;
3571 struct esca_block *new_sca;
3572 struct kvm_vcpu *vcpu;
3573 unsigned long vcpu_idx;
3574 u32 scaol, scaoh;
3575 phys_addr_t new_sca_phys;
3576
3577 if (kvm->arch.use_esca)
3578 return 0;
3579
3580 new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3581 if (!new_sca)
3582 return -ENOMEM;
3583
3584 new_sca_phys = virt_to_phys(new_sca);
3585 scaoh = new_sca_phys >> 32;
3586 scaol = new_sca_phys & ESCA_SCAOL_MASK;
3587
3588 kvm_s390_vcpu_block_all(kvm);
3589 write_lock(&kvm->arch.sca_lock);
3590
3591 sca_copy_b_to_e(new_sca, old_sca);
3592
3593 kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
3594 vcpu->arch.sie_block->scaoh = scaoh;
3595 vcpu->arch.sie_block->scaol = scaol;
3596 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
3597 }
3598 kvm->arch.sca = new_sca;
3599 kvm->arch.use_esca = 1;
3600
3601 write_unlock(&kvm->arch.sca_lock);
3602 kvm_s390_vcpu_unblock_all(kvm);
3603
3604 free_page((unsigned long)old_sca);
3605
3606 VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
3607 old_sca, kvm->arch.sca);
3608 return 0;
3609 }
3610
sca_can_add_vcpu(struct kvm * kvm,unsigned int id)3611 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
3612 {
3613 int rc;
3614
3615 if (!kvm_s390_use_sca_entries()) {
3616 if (id < KVM_MAX_VCPUS)
3617 return true;
3618 return false;
3619 }
3620 if (id < KVM_S390_BSCA_CPU_SLOTS)
3621 return true;
3622 if (!sclp.has_esca || !sclp.has_64bscao)
3623 return false;
3624
3625 rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
3626
3627 return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
3628 }
3629
3630 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
__start_cpu_timer_accounting(struct kvm_vcpu * vcpu)3631 static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3632 {
3633 WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
3634 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
3635 vcpu->arch.cputm_start = get_tod_clock_fast();
3636 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
3637 }
3638
3639 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
__stop_cpu_timer_accounting(struct kvm_vcpu * vcpu)3640 static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3641 {
3642 WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
3643 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
3644 vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
3645 vcpu->arch.cputm_start = 0;
3646 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
3647 }
3648
3649 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
__enable_cpu_timer_accounting(struct kvm_vcpu * vcpu)3650 static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3651 {
3652 WARN_ON_ONCE(vcpu->arch.cputm_enabled);
3653 vcpu->arch.cputm_enabled = true;
3654 __start_cpu_timer_accounting(vcpu);
3655 }
3656
3657 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
__disable_cpu_timer_accounting(struct kvm_vcpu * vcpu)3658 static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3659 {
3660 WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
3661 __stop_cpu_timer_accounting(vcpu);
3662 vcpu->arch.cputm_enabled = false;
3663 }
3664
enable_cpu_timer_accounting(struct kvm_vcpu * vcpu)3665 static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3666 {
3667 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3668 __enable_cpu_timer_accounting(vcpu);
3669 preempt_enable();
3670 }
3671
disable_cpu_timer_accounting(struct kvm_vcpu * vcpu)3672 static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3673 {
3674 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3675 __disable_cpu_timer_accounting(vcpu);
3676 preempt_enable();
3677 }
3678
3679 /* set the cpu timer - may only be called from the VCPU thread itself */
kvm_s390_set_cpu_timer(struct kvm_vcpu * vcpu,__u64 cputm)3680 void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
3681 {
3682 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3683 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
3684 if (vcpu->arch.cputm_enabled)
3685 vcpu->arch.cputm_start = get_tod_clock_fast();
3686 vcpu->arch.sie_block->cputm = cputm;
3687 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
3688 preempt_enable();
3689 }
3690
3691 /* update and get the cpu timer - can also be called from other VCPU threads */
kvm_s390_get_cpu_timer(struct kvm_vcpu * vcpu)3692 __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
3693 {
3694 unsigned int seq;
3695 __u64 value;
3696
3697 if (unlikely(!vcpu->arch.cputm_enabled))
3698 return vcpu->arch.sie_block->cputm;
3699
3700 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3701 do {
3702 seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
3703 /*
3704 * If the writer would ever execute a read in the critical
3705 * section, e.g. in irq context, we have a deadlock.
3706 */
3707 WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
3708 value = vcpu->arch.sie_block->cputm;
3709 /* if cputm_start is 0, accounting is being started/stopped */
3710 if (likely(vcpu->arch.cputm_start))
3711 value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
3712 } while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
3713 preempt_enable();
3714 return value;
3715 }
3716
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)3717 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3718 {
3719
3720 gmap_enable(vcpu->arch.enabled_gmap);
3721 kvm_s390_set_cpuflags(vcpu, CPUSTAT_RUNNING);
3722 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
3723 __start_cpu_timer_accounting(vcpu);
3724 vcpu->cpu = cpu;
3725 }
3726
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)3727 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3728 {
3729 vcpu->cpu = -1;
3730 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
3731 __stop_cpu_timer_accounting(vcpu);
3732 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_RUNNING);
3733 vcpu->arch.enabled_gmap = gmap_get_enabled();
3734 gmap_disable(vcpu->arch.enabled_gmap);
3735
3736 }
3737
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)3738 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
3739 {
3740 mutex_lock(&vcpu->kvm->lock);
3741 preempt_disable();
3742 vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
3743 vcpu->arch.sie_block->epdx = vcpu->kvm->arch.epdx;
3744 preempt_enable();
3745 mutex_unlock(&vcpu->kvm->lock);
3746 if (!kvm_is_ucontrol(vcpu->kvm)) {
3747 vcpu->arch.gmap = vcpu->kvm->arch.gmap;
3748 sca_add_vcpu(vcpu);
3749 }
3750 if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0)
3751 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
3752 /* make vcpu_load load the right gmap on the first trigger */
3753 vcpu->arch.enabled_gmap = vcpu->arch.gmap;
3754 }
3755
kvm_has_pckmo_subfunc(struct kvm * kvm,unsigned long nr)3756 static bool kvm_has_pckmo_subfunc(struct kvm *kvm, unsigned long nr)
3757 {
3758 if (test_bit_inv(nr, (unsigned long *)&kvm->arch.model.subfuncs.pckmo) &&
3759 test_bit_inv(nr, (unsigned long *)&kvm_s390_available_subfunc.pckmo))
3760 return true;
3761 return false;
3762 }
3763
kvm_has_pckmo_ecc(struct kvm * kvm)3764 static bool kvm_has_pckmo_ecc(struct kvm *kvm)
3765 {
3766 /* At least one ECC subfunction must be present */
3767 return kvm_has_pckmo_subfunc(kvm, 32) ||
3768 kvm_has_pckmo_subfunc(kvm, 33) ||
3769 kvm_has_pckmo_subfunc(kvm, 34) ||
3770 kvm_has_pckmo_subfunc(kvm, 40) ||
3771 kvm_has_pckmo_subfunc(kvm, 41);
3772
3773 }
3774
kvm_s390_vcpu_crypto_setup(struct kvm_vcpu * vcpu)3775 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
3776 {
3777 /*
3778 * If the AP instructions are not being interpreted and the MSAX3
3779 * facility is not configured for the guest, there is nothing to set up.
3780 */
3781 if (!vcpu->kvm->arch.crypto.apie && !test_kvm_facility(vcpu->kvm, 76))
3782 return;
3783
3784 vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
3785 vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);
3786 vcpu->arch.sie_block->eca &= ~ECA_APIE;
3787 vcpu->arch.sie_block->ecd &= ~ECD_ECC;
3788
3789 if (vcpu->kvm->arch.crypto.apie)
3790 vcpu->arch.sie_block->eca |= ECA_APIE;
3791
3792 /* Set up protected key support */
3793 if (vcpu->kvm->arch.crypto.aes_kw) {
3794 vcpu->arch.sie_block->ecb3 |= ECB3_AES;
3795 /* ecc is also wrapped with AES key */
3796 if (kvm_has_pckmo_ecc(vcpu->kvm))
3797 vcpu->arch.sie_block->ecd |= ECD_ECC;
3798 }
3799
3800 if (vcpu->kvm->arch.crypto.dea_kw)
3801 vcpu->arch.sie_block->ecb3 |= ECB3_DEA;
3802 }
3803
kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu * vcpu)3804 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
3805 {
3806 free_page((unsigned long)phys_to_virt(vcpu->arch.sie_block->cbrlo));
3807 vcpu->arch.sie_block->cbrlo = 0;
3808 }
3809
kvm_s390_vcpu_setup_cmma(struct kvm_vcpu * vcpu)3810 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
3811 {
3812 void *cbrlo_page = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3813
3814 if (!cbrlo_page)
3815 return -ENOMEM;
3816
3817 vcpu->arch.sie_block->cbrlo = virt_to_phys(cbrlo_page);
3818 return 0;
3819 }
3820
kvm_s390_vcpu_setup_model(struct kvm_vcpu * vcpu)3821 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
3822 {
3823 struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;
3824
3825 vcpu->arch.sie_block->ibc = model->ibc;
3826 if (test_kvm_facility(vcpu->kvm, 7))
3827 vcpu->arch.sie_block->fac = virt_to_phys(model->fac_list);
3828 }
3829
kvm_s390_vcpu_setup(struct kvm_vcpu * vcpu)3830 static int kvm_s390_vcpu_setup(struct kvm_vcpu *vcpu)
3831 {
3832 int rc = 0;
3833 u16 uvrc, uvrrc;
3834
3835 atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
3836 CPUSTAT_SM |
3837 CPUSTAT_STOPPED);
3838
3839 if (test_kvm_facility(vcpu->kvm, 78))
3840 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED2);
3841 else if (test_kvm_facility(vcpu->kvm, 8))
3842 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED);
3843
3844 kvm_s390_vcpu_setup_model(vcpu);
3845
3846 /* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
3847 if (MACHINE_HAS_ESOP)
3848 vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT;
3849 if (test_kvm_facility(vcpu->kvm, 9))
3850 vcpu->arch.sie_block->ecb |= ECB_SRSI;
3851 if (test_kvm_facility(vcpu->kvm, 11))
3852 vcpu->arch.sie_block->ecb |= ECB_PTF;
3853 if (test_kvm_facility(vcpu->kvm, 73))
3854 vcpu->arch.sie_block->ecb |= ECB_TE;
3855 if (!kvm_is_ucontrol(vcpu->kvm))
3856 vcpu->arch.sie_block->ecb |= ECB_SPECI;
3857
3858 if (test_kvm_facility(vcpu->kvm, 8) && vcpu->kvm->arch.use_pfmfi)
3859 vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI;
3860 if (test_kvm_facility(vcpu->kvm, 130))
3861 vcpu->arch.sie_block->ecb2 |= ECB2_IEP;
3862 vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI;
3863 if (sclp.has_cei)
3864 vcpu->arch.sie_block->eca |= ECA_CEI;
3865 if (sclp.has_ib)
3866 vcpu->arch.sie_block->eca |= ECA_IB;
3867 if (sclp.has_siif)
3868 vcpu->arch.sie_block->eca |= ECA_SII;
3869 if (sclp.has_sigpif)
3870 vcpu->arch.sie_block->eca |= ECA_SIGPI;
3871 if (test_kvm_facility(vcpu->kvm, 129)) {
3872 vcpu->arch.sie_block->eca |= ECA_VX;
3873 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
3874 }
3875 if (test_kvm_facility(vcpu->kvm, 139))
3876 vcpu->arch.sie_block->ecd |= ECD_MEF;
3877 if (test_kvm_facility(vcpu->kvm, 156))
3878 vcpu->arch.sie_block->ecd |= ECD_ETOKENF;
3879 if (vcpu->arch.sie_block->gd) {
3880 vcpu->arch.sie_block->eca |= ECA_AIV;
3881 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u",
3882 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id);
3883 }
3884 vcpu->arch.sie_block->sdnxo = virt_to_phys(&vcpu->run->s.regs.sdnx) | SDNXC;
3885 vcpu->arch.sie_block->riccbd = virt_to_phys(&vcpu->run->s.regs.riccb);
3886
3887 if (sclp.has_kss)
3888 kvm_s390_set_cpuflags(vcpu, CPUSTAT_KSS);
3889 else
3890 vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
3891
3892 if (vcpu->kvm->arch.use_cmma) {
3893 rc = kvm_s390_vcpu_setup_cmma(vcpu);
3894 if (rc)
3895 return rc;
3896 }
3897 hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3898 vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
3899
3900 vcpu->arch.sie_block->hpid = HPID_KVM;
3901
3902 kvm_s390_vcpu_crypto_setup(vcpu);
3903
3904 kvm_s390_vcpu_pci_setup(vcpu);
3905
3906 mutex_lock(&vcpu->kvm->lock);
3907 if (kvm_s390_pv_is_protected(vcpu->kvm)) {
3908 rc = kvm_s390_pv_create_cpu(vcpu, &uvrc, &uvrrc);
3909 if (rc)
3910 kvm_s390_vcpu_unsetup_cmma(vcpu);
3911 }
3912 mutex_unlock(&vcpu->kvm->lock);
3913
3914 return rc;
3915 }
3916
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)3917 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
3918 {
3919 if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
3920 return -EINVAL;
3921 return 0;
3922 }
3923
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)3924 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
3925 {
3926 struct sie_page *sie_page;
3927 int rc;
3928
3929 BUILD_BUG_ON(sizeof(struct sie_page) != 4096);
3930 sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL_ACCOUNT);
3931 if (!sie_page)
3932 return -ENOMEM;
3933
3934 vcpu->arch.sie_block = &sie_page->sie_block;
3935 vcpu->arch.sie_block->itdba = virt_to_phys(&sie_page->itdb);
3936
3937 /* the real guest size will always be smaller than msl */
3938 vcpu->arch.sie_block->mso = 0;
3939 vcpu->arch.sie_block->msl = sclp.hamax;
3940
3941 vcpu->arch.sie_block->icpua = vcpu->vcpu_id;
3942 spin_lock_init(&vcpu->arch.local_int.lock);
3943 vcpu->arch.sie_block->gd = kvm_s390_get_gisa_desc(vcpu->kvm);
3944 seqcount_init(&vcpu->arch.cputm_seqcount);
3945
3946 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
3947 kvm_clear_async_pf_completion_queue(vcpu);
3948 vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
3949 KVM_SYNC_GPRS |
3950 KVM_SYNC_ACRS |
3951 KVM_SYNC_CRS |
3952 KVM_SYNC_ARCH0 |
3953 KVM_SYNC_PFAULT |
3954 KVM_SYNC_DIAG318;
3955 kvm_s390_set_prefix(vcpu, 0);
3956 if (test_kvm_facility(vcpu->kvm, 64))
3957 vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
3958 if (test_kvm_facility(vcpu->kvm, 82))
3959 vcpu->run->kvm_valid_regs |= KVM_SYNC_BPBC;
3960 if (test_kvm_facility(vcpu->kvm, 133))
3961 vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB;
3962 if (test_kvm_facility(vcpu->kvm, 156))
3963 vcpu->run->kvm_valid_regs |= KVM_SYNC_ETOKEN;
3964 /* fprs can be synchronized via vrs, even if the guest has no vx. With
3965 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
3966 */
3967 if (MACHINE_HAS_VX)
3968 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
3969 else
3970 vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
3971
3972 if (kvm_is_ucontrol(vcpu->kvm)) {
3973 rc = __kvm_ucontrol_vcpu_init(vcpu);
3974 if (rc)
3975 goto out_free_sie_block;
3976 }
3977
3978 VM_EVENT(vcpu->kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK",
3979 vcpu->vcpu_id, vcpu, vcpu->arch.sie_block);
3980 trace_kvm_s390_create_vcpu(vcpu->vcpu_id, vcpu, vcpu->arch.sie_block);
3981
3982 rc = kvm_s390_vcpu_setup(vcpu);
3983 if (rc)
3984 goto out_ucontrol_uninit;
3985
3986 kvm_s390_update_topology_change_report(vcpu->kvm, 1);
3987 return 0;
3988
3989 out_ucontrol_uninit:
3990 if (kvm_is_ucontrol(vcpu->kvm))
3991 gmap_remove(vcpu->arch.gmap);
3992 out_free_sie_block:
3993 free_page((unsigned long)(vcpu->arch.sie_block));
3994 return rc;
3995 }
3996
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)3997 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
3998 {
3999 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask);
4000 return kvm_s390_vcpu_has_irq(vcpu, 0);
4001 }
4002
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)4003 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
4004 {
4005 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE);
4006 }
4007
kvm_s390_vcpu_block(struct kvm_vcpu * vcpu)4008 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
4009 {
4010 atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
4011 exit_sie(vcpu);
4012 }
4013
kvm_s390_vcpu_unblock(struct kvm_vcpu * vcpu)4014 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
4015 {
4016 atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
4017 }
4018
kvm_s390_vcpu_request(struct kvm_vcpu * vcpu)4019 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
4020 {
4021 atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
4022 exit_sie(vcpu);
4023 }
4024
kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu * vcpu)4025 bool kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu *vcpu)
4026 {
4027 return atomic_read(&vcpu->arch.sie_block->prog20) &
4028 (PROG_BLOCK_SIE | PROG_REQUEST);
4029 }
4030
kvm_s390_vcpu_request_handled(struct kvm_vcpu * vcpu)4031 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
4032 {
4033 atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
4034 }
4035
4036 /*
4037 * Kick a guest cpu out of (v)SIE and wait until (v)SIE is not running.
4038 * If the CPU is not running (e.g. waiting as idle) the function will
4039 * return immediately. */
exit_sie(struct kvm_vcpu * vcpu)4040 void exit_sie(struct kvm_vcpu *vcpu)
4041 {
4042 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
4043 kvm_s390_vsie_kick(vcpu);
4044 while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
4045 cpu_relax();
4046 }
4047
4048 /* Kick a guest cpu out of SIE to process a request synchronously */
kvm_s390_sync_request(int req,struct kvm_vcpu * vcpu)4049 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
4050 {
4051 __kvm_make_request(req, vcpu);
4052 kvm_s390_vcpu_request(vcpu);
4053 }
4054
kvm_gmap_notifier(struct gmap * gmap,unsigned long start,unsigned long end)4055 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
4056 unsigned long end)
4057 {
4058 struct kvm *kvm = gmap->private;
4059 struct kvm_vcpu *vcpu;
4060 unsigned long prefix;
4061 unsigned long i;
4062
4063 if (gmap_is_shadow(gmap))
4064 return;
4065 if (start >= 1UL << 31)
4066 /* We are only interested in prefix pages */
4067 return;
4068 kvm_for_each_vcpu(i, vcpu, kvm) {
4069 /* match against both prefix pages */
4070 prefix = kvm_s390_get_prefix(vcpu);
4071 if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
4072 VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
4073 start, end);
4074 kvm_s390_sync_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu);
4075 }
4076 }
4077 }
4078
kvm_arch_no_poll(struct kvm_vcpu * vcpu)4079 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
4080 {
4081 /* do not poll with more than halt_poll_max_steal percent of steal time */
4082 if (S390_lowcore.avg_steal_timer * 100 / (TICK_USEC << 12) >=
4083 READ_ONCE(halt_poll_max_steal)) {
4084 vcpu->stat.halt_no_poll_steal++;
4085 return true;
4086 }
4087 return false;
4088 }
4089
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)4090 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
4091 {
4092 /* kvm common code refers to this, but never calls it */
4093 BUG();
4094 return 0;
4095 }
4096
kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)4097 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
4098 struct kvm_one_reg *reg)
4099 {
4100 int r = -EINVAL;
4101
4102 switch (reg->id) {
4103 case KVM_REG_S390_TODPR:
4104 r = put_user(vcpu->arch.sie_block->todpr,
4105 (u32 __user *)reg->addr);
4106 break;
4107 case KVM_REG_S390_EPOCHDIFF:
4108 r = put_user(vcpu->arch.sie_block->epoch,
4109 (u64 __user *)reg->addr);
4110 break;
4111 case KVM_REG_S390_CPU_TIMER:
4112 r = put_user(kvm_s390_get_cpu_timer(vcpu),
4113 (u64 __user *)reg->addr);
4114 break;
4115 case KVM_REG_S390_CLOCK_COMP:
4116 r = put_user(vcpu->arch.sie_block->ckc,
4117 (u64 __user *)reg->addr);
4118 break;
4119 case KVM_REG_S390_PFTOKEN:
4120 r = put_user(vcpu->arch.pfault_token,
4121 (u64 __user *)reg->addr);
4122 break;
4123 case KVM_REG_S390_PFCOMPARE:
4124 r = put_user(vcpu->arch.pfault_compare,
4125 (u64 __user *)reg->addr);
4126 break;
4127 case KVM_REG_S390_PFSELECT:
4128 r = put_user(vcpu->arch.pfault_select,
4129 (u64 __user *)reg->addr);
4130 break;
4131 case KVM_REG_S390_PP:
4132 r = put_user(vcpu->arch.sie_block->pp,
4133 (u64 __user *)reg->addr);
4134 break;
4135 case KVM_REG_S390_GBEA:
4136 r = put_user(vcpu->arch.sie_block->gbea,
4137 (u64 __user *)reg->addr);
4138 break;
4139 default:
4140 break;
4141 }
4142
4143 return r;
4144 }
4145
kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)4146 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
4147 struct kvm_one_reg *reg)
4148 {
4149 int r = -EINVAL;
4150 __u64 val;
4151
4152 switch (reg->id) {
4153 case KVM_REG_S390_TODPR:
4154 r = get_user(vcpu->arch.sie_block->todpr,
4155 (u32 __user *)reg->addr);
4156 break;
4157 case KVM_REG_S390_EPOCHDIFF:
4158 r = get_user(vcpu->arch.sie_block->epoch,
4159 (u64 __user *)reg->addr);
4160 break;
4161 case KVM_REG_S390_CPU_TIMER:
4162 r = get_user(val, (u64 __user *)reg->addr);
4163 if (!r)
4164 kvm_s390_set_cpu_timer(vcpu, val);
4165 break;
4166 case KVM_REG_S390_CLOCK_COMP:
4167 r = get_user(vcpu->arch.sie_block->ckc,
4168 (u64 __user *)reg->addr);
4169 break;
4170 case KVM_REG_S390_PFTOKEN:
4171 r = get_user(vcpu->arch.pfault_token,
4172 (u64 __user *)reg->addr);
4173 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
4174 kvm_clear_async_pf_completion_queue(vcpu);
4175 break;
4176 case KVM_REG_S390_PFCOMPARE:
4177 r = get_user(vcpu->arch.pfault_compare,
4178 (u64 __user *)reg->addr);
4179 break;
4180 case KVM_REG_S390_PFSELECT:
4181 r = get_user(vcpu->arch.pfault_select,
4182 (u64 __user *)reg->addr);
4183 break;
4184 case KVM_REG_S390_PP:
4185 r = get_user(vcpu->arch.sie_block->pp,
4186 (u64 __user *)reg->addr);
4187 break;
4188 case KVM_REG_S390_GBEA:
4189 r = get_user(vcpu->arch.sie_block->gbea,
4190 (u64 __user *)reg->addr);
4191 break;
4192 default:
4193 break;
4194 }
4195
4196 return r;
4197 }
4198
kvm_arch_vcpu_ioctl_normal_reset(struct kvm_vcpu * vcpu)4199 static void kvm_arch_vcpu_ioctl_normal_reset(struct kvm_vcpu *vcpu)
4200 {
4201 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_RI;
4202 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
4203 memset(vcpu->run->s.regs.riccb, 0, sizeof(vcpu->run->s.regs.riccb));
4204
4205 kvm_clear_async_pf_completion_queue(vcpu);
4206 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
4207 kvm_s390_vcpu_stop(vcpu);
4208 kvm_s390_clear_local_irqs(vcpu);
4209 }
4210
kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu * vcpu)4211 static void kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
4212 {
4213 /* Initial reset is a superset of the normal reset */
4214 kvm_arch_vcpu_ioctl_normal_reset(vcpu);
4215
4216 /*
4217 * This equals initial cpu reset in pop, but we don't switch to ESA.
4218 * We do not only reset the internal data, but also ...
4219 */
4220 vcpu->arch.sie_block->gpsw.mask = 0;
4221 vcpu->arch.sie_block->gpsw.addr = 0;
4222 kvm_s390_set_prefix(vcpu, 0);
4223 kvm_s390_set_cpu_timer(vcpu, 0);
4224 vcpu->arch.sie_block->ckc = 0;
4225 memset(vcpu->arch.sie_block->gcr, 0, sizeof(vcpu->arch.sie_block->gcr));
4226 vcpu->arch.sie_block->gcr[0] = CR0_INITIAL_MASK;
4227 vcpu->arch.sie_block->gcr[14] = CR14_INITIAL_MASK;
4228
4229 /* ... the data in sync regs */
4230 memset(vcpu->run->s.regs.crs, 0, sizeof(vcpu->run->s.regs.crs));
4231 vcpu->run->s.regs.ckc = 0;
4232 vcpu->run->s.regs.crs[0] = CR0_INITIAL_MASK;
4233 vcpu->run->s.regs.crs[14] = CR14_INITIAL_MASK;
4234 vcpu->run->psw_addr = 0;
4235 vcpu->run->psw_mask = 0;
4236 vcpu->run->s.regs.todpr = 0;
4237 vcpu->run->s.regs.cputm = 0;
4238 vcpu->run->s.regs.ckc = 0;
4239 vcpu->run->s.regs.pp = 0;
4240 vcpu->run->s.regs.gbea = 1;
4241 vcpu->run->s.regs.fpc = 0;
4242 /*
4243 * Do not reset these registers in the protected case, as some of
4244 * them are overlaid and they are not accessible in this case
4245 * anyway.
4246 */
4247 if (!kvm_s390_pv_cpu_is_protected(vcpu)) {
4248 vcpu->arch.sie_block->gbea = 1;
4249 vcpu->arch.sie_block->pp = 0;
4250 vcpu->arch.sie_block->fpf &= ~FPF_BPBC;
4251 vcpu->arch.sie_block->todpr = 0;
4252 }
4253 }
4254
kvm_arch_vcpu_ioctl_clear_reset(struct kvm_vcpu * vcpu)4255 static void kvm_arch_vcpu_ioctl_clear_reset(struct kvm_vcpu *vcpu)
4256 {
4257 struct kvm_sync_regs *regs = &vcpu->run->s.regs;
4258
4259 /* Clear reset is a superset of the initial reset */
4260 kvm_arch_vcpu_ioctl_initial_reset(vcpu);
4261
4262 memset(®s->gprs, 0, sizeof(regs->gprs));
4263 memset(®s->vrs, 0, sizeof(regs->vrs));
4264 memset(®s->acrs, 0, sizeof(regs->acrs));
4265 memset(®s->gscb, 0, sizeof(regs->gscb));
4266
4267 regs->etoken = 0;
4268 regs->etoken_extension = 0;
4269 }
4270
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)4271 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4272 {
4273 vcpu_load(vcpu);
4274 memcpy(&vcpu->run->s.regs.gprs, ®s->gprs, sizeof(regs->gprs));
4275 vcpu_put(vcpu);
4276 return 0;
4277 }
4278
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)4279 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4280 {
4281 vcpu_load(vcpu);
4282 memcpy(®s->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
4283 vcpu_put(vcpu);
4284 return 0;
4285 }
4286
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)4287 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4288 struct kvm_sregs *sregs)
4289 {
4290 vcpu_load(vcpu);
4291
4292 memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
4293 memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
4294
4295 vcpu_put(vcpu);
4296 return 0;
4297 }
4298
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)4299 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4300 struct kvm_sregs *sregs)
4301 {
4302 vcpu_load(vcpu);
4303
4304 memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
4305 memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
4306
4307 vcpu_put(vcpu);
4308 return 0;
4309 }
4310
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)4311 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4312 {
4313 int ret = 0;
4314
4315 vcpu_load(vcpu);
4316
4317 vcpu->run->s.regs.fpc = fpu->fpc;
4318 if (MACHINE_HAS_VX)
4319 convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs,
4320 (freg_t *) fpu->fprs);
4321 else
4322 memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs));
4323
4324 vcpu_put(vcpu);
4325 return ret;
4326 }
4327
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)4328 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4329 {
4330 vcpu_load(vcpu);
4331
4332 /* make sure we have the latest values */
4333 save_fpu_regs();
4334 if (MACHINE_HAS_VX)
4335 convert_vx_to_fp((freg_t *) fpu->fprs,
4336 (__vector128 *) vcpu->run->s.regs.vrs);
4337 else
4338 memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs));
4339 fpu->fpc = vcpu->run->s.regs.fpc;
4340
4341 vcpu_put(vcpu);
4342 return 0;
4343 }
4344
kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu * vcpu,psw_t psw)4345 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
4346 {
4347 int rc = 0;
4348
4349 if (!is_vcpu_stopped(vcpu))
4350 rc = -EBUSY;
4351 else {
4352 vcpu->run->psw_mask = psw.mask;
4353 vcpu->run->psw_addr = psw.addr;
4354 }
4355 return rc;
4356 }
4357
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)4358 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4359 struct kvm_translation *tr)
4360 {
4361 return -EINVAL; /* not implemented yet */
4362 }
4363
4364 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
4365 KVM_GUESTDBG_USE_HW_BP | \
4366 KVM_GUESTDBG_ENABLE)
4367
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)4368 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4369 struct kvm_guest_debug *dbg)
4370 {
4371 int rc = 0;
4372
4373 vcpu_load(vcpu);
4374
4375 vcpu->guest_debug = 0;
4376 kvm_s390_clear_bp_data(vcpu);
4377
4378 if (dbg->control & ~VALID_GUESTDBG_FLAGS) {
4379 rc = -EINVAL;
4380 goto out;
4381 }
4382 if (!sclp.has_gpere) {
4383 rc = -EINVAL;
4384 goto out;
4385 }
4386
4387 if (dbg->control & KVM_GUESTDBG_ENABLE) {
4388 vcpu->guest_debug = dbg->control;
4389 /* enforce guest PER */
4390 kvm_s390_set_cpuflags(vcpu, CPUSTAT_P);
4391
4392 if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
4393 rc = kvm_s390_import_bp_data(vcpu, dbg);
4394 } else {
4395 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P);
4396 vcpu->arch.guestdbg.last_bp = 0;
4397 }
4398
4399 if (rc) {
4400 vcpu->guest_debug = 0;
4401 kvm_s390_clear_bp_data(vcpu);
4402 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P);
4403 }
4404
4405 out:
4406 vcpu_put(vcpu);
4407 return rc;
4408 }
4409
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)4410 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4411 struct kvm_mp_state *mp_state)
4412 {
4413 int ret;
4414
4415 vcpu_load(vcpu);
4416
4417 /* CHECK_STOP and LOAD are not supported yet */
4418 ret = is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
4419 KVM_MP_STATE_OPERATING;
4420
4421 vcpu_put(vcpu);
4422 return ret;
4423 }
4424
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)4425 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4426 struct kvm_mp_state *mp_state)
4427 {
4428 int rc = 0;
4429
4430 vcpu_load(vcpu);
4431
4432 /* user space knows about this interface - let it control the state */
4433 kvm_s390_set_user_cpu_state_ctrl(vcpu->kvm);
4434
4435 switch (mp_state->mp_state) {
4436 case KVM_MP_STATE_STOPPED:
4437 rc = kvm_s390_vcpu_stop(vcpu);
4438 break;
4439 case KVM_MP_STATE_OPERATING:
4440 rc = kvm_s390_vcpu_start(vcpu);
4441 break;
4442 case KVM_MP_STATE_LOAD:
4443 if (!kvm_s390_pv_cpu_is_protected(vcpu)) {
4444 rc = -ENXIO;
4445 break;
4446 }
4447 rc = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR_LOAD);
4448 break;
4449 case KVM_MP_STATE_CHECK_STOP:
4450 fallthrough; /* CHECK_STOP and LOAD are not supported yet */
4451 default:
4452 rc = -ENXIO;
4453 }
4454
4455 vcpu_put(vcpu);
4456 return rc;
4457 }
4458
ibs_enabled(struct kvm_vcpu * vcpu)4459 static bool ibs_enabled(struct kvm_vcpu *vcpu)
4460 {
4461 return kvm_s390_test_cpuflags(vcpu, CPUSTAT_IBS);
4462 }
4463
kvm_s390_handle_requests(struct kvm_vcpu * vcpu)4464 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
4465 {
4466 retry:
4467 kvm_s390_vcpu_request_handled(vcpu);
4468 if (!kvm_request_pending(vcpu))
4469 return 0;
4470 /*
4471 * If the guest prefix changed, re-arm the ipte notifier for the
4472 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
4473 * This ensures that the ipte instruction for this request has
4474 * already finished. We might race against a second unmapper that
4475 * wants to set the blocking bit. Lets just retry the request loop.
4476 */
4477 if (kvm_check_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu)) {
4478 int rc;
4479 rc = gmap_mprotect_notify(vcpu->arch.gmap,
4480 kvm_s390_get_prefix(vcpu),
4481 PAGE_SIZE * 2, PROT_WRITE);
4482 if (rc) {
4483 kvm_make_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu);
4484 return rc;
4485 }
4486 goto retry;
4487 }
4488
4489 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
4490 vcpu->arch.sie_block->ihcpu = 0xffff;
4491 goto retry;
4492 }
4493
4494 if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
4495 if (!ibs_enabled(vcpu)) {
4496 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
4497 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IBS);
4498 }
4499 goto retry;
4500 }
4501
4502 if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
4503 if (ibs_enabled(vcpu)) {
4504 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
4505 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IBS);
4506 }
4507 goto retry;
4508 }
4509
4510 if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) {
4511 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
4512 goto retry;
4513 }
4514
4515 if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) {
4516 /*
4517 * Disable CMM virtualization; we will emulate the ESSA
4518 * instruction manually, in order to provide additional
4519 * functionalities needed for live migration.
4520 */
4521 vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA;
4522 goto retry;
4523 }
4524
4525 if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) {
4526 /*
4527 * Re-enable CMM virtualization if CMMA is available and
4528 * CMM has been used.
4529 */
4530 if ((vcpu->kvm->arch.use_cmma) &&
4531 (vcpu->kvm->mm->context.uses_cmm))
4532 vcpu->arch.sie_block->ecb2 |= ECB2_CMMA;
4533 goto retry;
4534 }
4535
4536 /* we left the vsie handler, nothing to do, just clear the request */
4537 kvm_clear_request(KVM_REQ_VSIE_RESTART, vcpu);
4538
4539 return 0;
4540 }
4541
__kvm_s390_set_tod_clock(struct kvm * kvm,const struct kvm_s390_vm_tod_clock * gtod)4542 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod)
4543 {
4544 struct kvm_vcpu *vcpu;
4545 union tod_clock clk;
4546 unsigned long i;
4547
4548 preempt_disable();
4549
4550 store_tod_clock_ext(&clk);
4551
4552 kvm->arch.epoch = gtod->tod - clk.tod;
4553 kvm->arch.epdx = 0;
4554 if (test_kvm_facility(kvm, 139)) {
4555 kvm->arch.epdx = gtod->epoch_idx - clk.ei;
4556 if (kvm->arch.epoch > gtod->tod)
4557 kvm->arch.epdx -= 1;
4558 }
4559
4560 kvm_s390_vcpu_block_all(kvm);
4561 kvm_for_each_vcpu(i, vcpu, kvm) {
4562 vcpu->arch.sie_block->epoch = kvm->arch.epoch;
4563 vcpu->arch.sie_block->epdx = kvm->arch.epdx;
4564 }
4565
4566 kvm_s390_vcpu_unblock_all(kvm);
4567 preempt_enable();
4568 }
4569
kvm_s390_try_set_tod_clock(struct kvm * kvm,const struct kvm_s390_vm_tod_clock * gtod)4570 int kvm_s390_try_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod)
4571 {
4572 if (!mutex_trylock(&kvm->lock))
4573 return 0;
4574 __kvm_s390_set_tod_clock(kvm, gtod);
4575 mutex_unlock(&kvm->lock);
4576 return 1;
4577 }
4578
4579 /**
4580 * kvm_arch_fault_in_page - fault-in guest page if necessary
4581 * @vcpu: The corresponding virtual cpu
4582 * @gpa: Guest physical address
4583 * @writable: Whether the page should be writable or not
4584 *
4585 * Make sure that a guest page has been faulted-in on the host.
4586 *
4587 * Return: Zero on success, negative error code otherwise.
4588 */
kvm_arch_fault_in_page(struct kvm_vcpu * vcpu,gpa_t gpa,int writable)4589 long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
4590 {
4591 return gmap_fault(vcpu->arch.gmap, gpa,
4592 writable ? FAULT_FLAG_WRITE : 0);
4593 }
4594
__kvm_inject_pfault_token(struct kvm_vcpu * vcpu,bool start_token,unsigned long token)4595 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
4596 unsigned long token)
4597 {
4598 struct kvm_s390_interrupt inti;
4599 struct kvm_s390_irq irq;
4600
4601 if (start_token) {
4602 irq.u.ext.ext_params2 = token;
4603 irq.type = KVM_S390_INT_PFAULT_INIT;
4604 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
4605 } else {
4606 inti.type = KVM_S390_INT_PFAULT_DONE;
4607 inti.parm64 = token;
4608 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
4609 }
4610 }
4611
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)4612 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
4613 struct kvm_async_pf *work)
4614 {
4615 trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
4616 __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
4617
4618 return true;
4619 }
4620
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)4621 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
4622 struct kvm_async_pf *work)
4623 {
4624 trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
4625 __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
4626 }
4627
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)4628 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
4629 struct kvm_async_pf *work)
4630 {
4631 /* s390 will always inject the page directly */
4632 }
4633
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)4634 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
4635 {
4636 /*
4637 * s390 will always inject the page directly,
4638 * but we still want check_async_completion to cleanup
4639 */
4640 return true;
4641 }
4642
kvm_arch_setup_async_pf(struct kvm_vcpu * vcpu)4643 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
4644 {
4645 hva_t hva;
4646 struct kvm_arch_async_pf arch;
4647
4648 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
4649 return false;
4650 if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
4651 vcpu->arch.pfault_compare)
4652 return false;
4653 if (psw_extint_disabled(vcpu))
4654 return false;
4655 if (kvm_s390_vcpu_has_irq(vcpu, 0))
4656 return false;
4657 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK))
4658 return false;
4659 if (!vcpu->arch.gmap->pfault_enabled)
4660 return false;
4661
4662 hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
4663 hva += current->thread.gmap_addr & ~PAGE_MASK;
4664 if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
4665 return false;
4666
4667 return kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
4668 }
4669
vcpu_pre_run(struct kvm_vcpu * vcpu)4670 static int vcpu_pre_run(struct kvm_vcpu *vcpu)
4671 {
4672 int rc, cpuflags;
4673
4674 /*
4675 * On s390 notifications for arriving pages will be delivered directly
4676 * to the guest but the house keeping for completed pfaults is
4677 * handled outside the worker.
4678 */
4679 kvm_check_async_pf_completion(vcpu);
4680
4681 vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
4682 vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
4683
4684 if (need_resched())
4685 schedule();
4686
4687 if (!kvm_is_ucontrol(vcpu->kvm)) {
4688 rc = kvm_s390_deliver_pending_interrupts(vcpu);
4689 if (rc || guestdbg_exit_pending(vcpu))
4690 return rc;
4691 }
4692
4693 rc = kvm_s390_handle_requests(vcpu);
4694 if (rc)
4695 return rc;
4696
4697 if (guestdbg_enabled(vcpu)) {
4698 kvm_s390_backup_guest_per_regs(vcpu);
4699 kvm_s390_patch_guest_per_regs(vcpu);
4700 }
4701
4702 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask);
4703
4704 vcpu->arch.sie_block->icptcode = 0;
4705 cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
4706 VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
4707 trace_kvm_s390_sie_enter(vcpu, cpuflags);
4708
4709 return 0;
4710 }
4711
vcpu_post_run_fault_in_sie(struct kvm_vcpu * vcpu)4712 static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
4713 {
4714 struct kvm_s390_pgm_info pgm_info = {
4715 .code = PGM_ADDRESSING,
4716 };
4717 u8 opcode, ilen;
4718 int rc;
4719
4720 VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
4721 trace_kvm_s390_sie_fault(vcpu);
4722
4723 /*
4724 * We want to inject an addressing exception, which is defined as a
4725 * suppressing or terminating exception. However, since we came here
4726 * by a DAT access exception, the PSW still points to the faulting
4727 * instruction since DAT exceptions are nullifying. So we've got
4728 * to look up the current opcode to get the length of the instruction
4729 * to be able to forward the PSW.
4730 */
4731 rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1);
4732 ilen = insn_length(opcode);
4733 if (rc < 0) {
4734 return rc;
4735 } else if (rc) {
4736 /* Instruction-Fetching Exceptions - we can't detect the ilen.
4737 * Forward by arbitrary ilc, injection will take care of
4738 * nullification if necessary.
4739 */
4740 pgm_info = vcpu->arch.pgm;
4741 ilen = 4;
4742 }
4743 pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
4744 kvm_s390_forward_psw(vcpu, ilen);
4745 return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
4746 }
4747
vcpu_post_run(struct kvm_vcpu * vcpu,int exit_reason)4748 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
4749 {
4750 struct mcck_volatile_info *mcck_info;
4751 struct sie_page *sie_page;
4752
4753 VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
4754 vcpu->arch.sie_block->icptcode);
4755 trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);
4756
4757 if (guestdbg_enabled(vcpu))
4758 kvm_s390_restore_guest_per_regs(vcpu);
4759
4760 vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
4761 vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
4762
4763 if (exit_reason == -EINTR) {
4764 VCPU_EVENT(vcpu, 3, "%s", "machine check");
4765 sie_page = container_of(vcpu->arch.sie_block,
4766 struct sie_page, sie_block);
4767 mcck_info = &sie_page->mcck_info;
4768 kvm_s390_reinject_machine_check(vcpu, mcck_info);
4769 return 0;
4770 }
4771
4772 if (vcpu->arch.sie_block->icptcode > 0) {
4773 int rc = kvm_handle_sie_intercept(vcpu);
4774
4775 if (rc != -EOPNOTSUPP)
4776 return rc;
4777 vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
4778 vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
4779 vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
4780 vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
4781 return -EREMOTE;
4782 } else if (exit_reason != -EFAULT) {
4783 vcpu->stat.exit_null++;
4784 return 0;
4785 } else if (kvm_is_ucontrol(vcpu->kvm)) {
4786 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
4787 vcpu->run->s390_ucontrol.trans_exc_code =
4788 current->thread.gmap_addr;
4789 vcpu->run->s390_ucontrol.pgm_code = 0x10;
4790 return -EREMOTE;
4791 } else if (current->thread.gmap_pfault) {
4792 trace_kvm_s390_major_guest_pfault(vcpu);
4793 current->thread.gmap_pfault = 0;
4794 if (kvm_arch_setup_async_pf(vcpu))
4795 return 0;
4796 vcpu->stat.pfault_sync++;
4797 return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
4798 }
4799 return vcpu_post_run_fault_in_sie(vcpu);
4800 }
4801
4802 #define PSW_INT_MASK (PSW_MASK_EXT | PSW_MASK_IO | PSW_MASK_MCHECK)
__vcpu_run(struct kvm_vcpu * vcpu)4803 static int __vcpu_run(struct kvm_vcpu *vcpu)
4804 {
4805 int rc, exit_reason;
4806 struct sie_page *sie_page = (struct sie_page *)vcpu->arch.sie_block;
4807
4808 /*
4809 * We try to hold kvm->srcu during most of vcpu_run (except when run-
4810 * ning the guest), so that memslots (and other stuff) are protected
4811 */
4812 kvm_vcpu_srcu_read_lock(vcpu);
4813
4814 do {
4815 rc = vcpu_pre_run(vcpu);
4816 if (rc || guestdbg_exit_pending(vcpu))
4817 break;
4818
4819 kvm_vcpu_srcu_read_unlock(vcpu);
4820 /*
4821 * As PF_VCPU will be used in fault handler, between
4822 * guest_enter and guest_exit should be no uaccess.
4823 */
4824 local_irq_disable();
4825 guest_enter_irqoff();
4826 __disable_cpu_timer_accounting(vcpu);
4827 local_irq_enable();
4828 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
4829 memcpy(sie_page->pv_grregs,
4830 vcpu->run->s.regs.gprs,
4831 sizeof(sie_page->pv_grregs));
4832 }
4833 if (test_cpu_flag(CIF_FPU))
4834 load_fpu_regs();
4835 exit_reason = sie64a(vcpu->arch.sie_block,
4836 vcpu->run->s.regs.gprs);
4837 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
4838 memcpy(vcpu->run->s.regs.gprs,
4839 sie_page->pv_grregs,
4840 sizeof(sie_page->pv_grregs));
4841 /*
4842 * We're not allowed to inject interrupts on intercepts
4843 * that leave the guest state in an "in-between" state
4844 * where the next SIE entry will do a continuation.
4845 * Fence interrupts in our "internal" PSW.
4846 */
4847 if (vcpu->arch.sie_block->icptcode == ICPT_PV_INSTR ||
4848 vcpu->arch.sie_block->icptcode == ICPT_PV_PREF) {
4849 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK;
4850 }
4851 }
4852 local_irq_disable();
4853 __enable_cpu_timer_accounting(vcpu);
4854 guest_exit_irqoff();
4855 local_irq_enable();
4856 kvm_vcpu_srcu_read_lock(vcpu);
4857
4858 rc = vcpu_post_run(vcpu, exit_reason);
4859 } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
4860
4861 kvm_vcpu_srcu_read_unlock(vcpu);
4862 return rc;
4863 }
4864
sync_regs_fmt2(struct kvm_vcpu * vcpu)4865 static void sync_regs_fmt2(struct kvm_vcpu *vcpu)
4866 {
4867 struct kvm_run *kvm_run = vcpu->run;
4868 struct runtime_instr_cb *riccb;
4869 struct gs_cb *gscb;
4870
4871 riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb;
4872 gscb = (struct gs_cb *) &kvm_run->s.regs.gscb;
4873 vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
4874 vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
4875 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
4876 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
4877 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
4878 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
4879 }
4880 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
4881 vcpu->arch.pfault_token = kvm_run->s.regs.pft;
4882 vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
4883 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
4884 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
4885 kvm_clear_async_pf_completion_queue(vcpu);
4886 }
4887 if (kvm_run->kvm_dirty_regs & KVM_SYNC_DIAG318) {
4888 vcpu->arch.diag318_info.val = kvm_run->s.regs.diag318;
4889 vcpu->arch.sie_block->cpnc = vcpu->arch.diag318_info.cpnc;
4890 VCPU_EVENT(vcpu, 3, "setting cpnc to %d", vcpu->arch.diag318_info.cpnc);
4891 }
4892 /*
4893 * If userspace sets the riccb (e.g. after migration) to a valid state,
4894 * we should enable RI here instead of doing the lazy enablement.
4895 */
4896 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) &&
4897 test_kvm_facility(vcpu->kvm, 64) &&
4898 riccb->v &&
4899 !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) {
4900 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)");
4901 vcpu->arch.sie_block->ecb3 |= ECB3_RI;
4902 }
4903 /*
4904 * If userspace sets the gscb (e.g. after migration) to non-zero,
4905 * we should enable GS here instead of doing the lazy enablement.
4906 */
4907 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) &&
4908 test_kvm_facility(vcpu->kvm, 133) &&
4909 gscb->gssm &&
4910 !vcpu->arch.gs_enabled) {
4911 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)");
4912 vcpu->arch.sie_block->ecb |= ECB_GS;
4913 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
4914 vcpu->arch.gs_enabled = 1;
4915 }
4916 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_BPBC) &&
4917 test_kvm_facility(vcpu->kvm, 82)) {
4918 vcpu->arch.sie_block->fpf &= ~FPF_BPBC;
4919 vcpu->arch.sie_block->fpf |= kvm_run->s.regs.bpbc ? FPF_BPBC : 0;
4920 }
4921 if (MACHINE_HAS_GS) {
4922 preempt_disable();
4923 __ctl_set_bit(2, 4);
4924 if (current->thread.gs_cb) {
4925 vcpu->arch.host_gscb = current->thread.gs_cb;
4926 save_gs_cb(vcpu->arch.host_gscb);
4927 }
4928 if (vcpu->arch.gs_enabled) {
4929 current->thread.gs_cb = (struct gs_cb *)
4930 &vcpu->run->s.regs.gscb;
4931 restore_gs_cb(current->thread.gs_cb);
4932 }
4933 preempt_enable();
4934 }
4935 /* SIE will load etoken directly from SDNX and therefore kvm_run */
4936 }
4937
sync_regs(struct kvm_vcpu * vcpu)4938 static void sync_regs(struct kvm_vcpu *vcpu)
4939 {
4940 struct kvm_run *kvm_run = vcpu->run;
4941
4942 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
4943 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
4944 if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
4945 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
4946 /* some control register changes require a tlb flush */
4947 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4948 }
4949 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
4950 kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
4951 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
4952 }
4953 save_access_regs(vcpu->arch.host_acrs);
4954 restore_access_regs(vcpu->run->s.regs.acrs);
4955 /* save host (userspace) fprs/vrs */
4956 save_fpu_regs();
4957 vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
4958 vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
4959 if (MACHINE_HAS_VX)
4960 current->thread.fpu.regs = vcpu->run->s.regs.vrs;
4961 else
4962 current->thread.fpu.regs = vcpu->run->s.regs.fprs;
4963 current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
4964 if (test_fp_ctl(current->thread.fpu.fpc))
4965 /* User space provided an invalid FPC, let's clear it */
4966 current->thread.fpu.fpc = 0;
4967
4968 /* Sync fmt2 only data */
4969 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) {
4970 sync_regs_fmt2(vcpu);
4971 } else {
4972 /*
4973 * In several places we have to modify our internal view to
4974 * not do things that are disallowed by the ultravisor. For
4975 * example we must not inject interrupts after specific exits
4976 * (e.g. 112 prefix page not secure). We do this by turning
4977 * off the machine check, external and I/O interrupt bits
4978 * of our PSW copy. To avoid getting validity intercepts, we
4979 * do only accept the condition code from userspace.
4980 */
4981 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_CC;
4982 vcpu->arch.sie_block->gpsw.mask |= kvm_run->psw_mask &
4983 PSW_MASK_CC;
4984 }
4985
4986 kvm_run->kvm_dirty_regs = 0;
4987 }
4988
store_regs_fmt2(struct kvm_vcpu * vcpu)4989 static void store_regs_fmt2(struct kvm_vcpu *vcpu)
4990 {
4991 struct kvm_run *kvm_run = vcpu->run;
4992
4993 kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
4994 kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
4995 kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
4996 kvm_run->s.regs.bpbc = (vcpu->arch.sie_block->fpf & FPF_BPBC) == FPF_BPBC;
4997 kvm_run->s.regs.diag318 = vcpu->arch.diag318_info.val;
4998 if (MACHINE_HAS_GS) {
4999 preempt_disable();
5000 __ctl_set_bit(2, 4);
5001 if (vcpu->arch.gs_enabled)
5002 save_gs_cb(current->thread.gs_cb);
5003 current->thread.gs_cb = vcpu->arch.host_gscb;
5004 restore_gs_cb(vcpu->arch.host_gscb);
5005 if (!vcpu->arch.host_gscb)
5006 __ctl_clear_bit(2, 4);
5007 vcpu->arch.host_gscb = NULL;
5008 preempt_enable();
5009 }
5010 /* SIE will save etoken directly into SDNX and therefore kvm_run */
5011 }
5012
store_regs(struct kvm_vcpu * vcpu)5013 static void store_regs(struct kvm_vcpu *vcpu)
5014 {
5015 struct kvm_run *kvm_run = vcpu->run;
5016
5017 kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
5018 kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
5019 kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
5020 memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
5021 kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
5022 kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
5023 kvm_run->s.regs.pft = vcpu->arch.pfault_token;
5024 kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
5025 kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
5026 save_access_regs(vcpu->run->s.regs.acrs);
5027 restore_access_regs(vcpu->arch.host_acrs);
5028 /* Save guest register state */
5029 save_fpu_regs();
5030 vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
5031 /* Restore will be done lazily at return */
5032 current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
5033 current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
5034 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu)))
5035 store_regs_fmt2(vcpu);
5036 }
5037
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)5038 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
5039 {
5040 struct kvm_run *kvm_run = vcpu->run;
5041 int rc;
5042
5043 /*
5044 * Running a VM while dumping always has the potential to
5045 * produce inconsistent dump data. But for PV vcpus a SIE
5046 * entry while dumping could also lead to a fatal validity
5047 * intercept which we absolutely want to avoid.
5048 */
5049 if (vcpu->kvm->arch.pv.dumping)
5050 return -EINVAL;
5051
5052 if (kvm_run->immediate_exit)
5053 return -EINTR;
5054
5055 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_S390_VALID_FIELDS ||
5056 kvm_run->kvm_dirty_regs & ~KVM_SYNC_S390_VALID_FIELDS)
5057 return -EINVAL;
5058
5059 vcpu_load(vcpu);
5060
5061 if (guestdbg_exit_pending(vcpu)) {
5062 kvm_s390_prepare_debug_exit(vcpu);
5063 rc = 0;
5064 goto out;
5065 }
5066
5067 kvm_sigset_activate(vcpu);
5068
5069 /*
5070 * no need to check the return value of vcpu_start as it can only have
5071 * an error for protvirt, but protvirt means user cpu state
5072 */
5073 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
5074 kvm_s390_vcpu_start(vcpu);
5075 } else if (is_vcpu_stopped(vcpu)) {
5076 pr_err_ratelimited("can't run stopped vcpu %d\n",
5077 vcpu->vcpu_id);
5078 rc = -EINVAL;
5079 goto out;
5080 }
5081
5082 sync_regs(vcpu);
5083 enable_cpu_timer_accounting(vcpu);
5084
5085 might_fault();
5086 rc = __vcpu_run(vcpu);
5087
5088 if (signal_pending(current) && !rc) {
5089 kvm_run->exit_reason = KVM_EXIT_INTR;
5090 rc = -EINTR;
5091 }
5092
5093 if (guestdbg_exit_pending(vcpu) && !rc) {
5094 kvm_s390_prepare_debug_exit(vcpu);
5095 rc = 0;
5096 }
5097
5098 if (rc == -EREMOTE) {
5099 /* userspace support is needed, kvm_run has been prepared */
5100 rc = 0;
5101 }
5102
5103 disable_cpu_timer_accounting(vcpu);
5104 store_regs(vcpu);
5105
5106 kvm_sigset_deactivate(vcpu);
5107
5108 vcpu->stat.exit_userspace++;
5109 out:
5110 vcpu_put(vcpu);
5111 return rc;
5112 }
5113
5114 /*
5115 * store status at address
5116 * we use have two special cases:
5117 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
5118 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
5119 */
kvm_s390_store_status_unloaded(struct kvm_vcpu * vcpu,unsigned long gpa)5120 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
5121 {
5122 unsigned char archmode = 1;
5123 freg_t fprs[NUM_FPRS];
5124 unsigned int px;
5125 u64 clkcomp, cputm;
5126 int rc;
5127
5128 px = kvm_s390_get_prefix(vcpu);
5129 if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
5130 if (write_guest_abs(vcpu, 163, &archmode, 1))
5131 return -EFAULT;
5132 gpa = 0;
5133 } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
5134 if (write_guest_real(vcpu, 163, &archmode, 1))
5135 return -EFAULT;
5136 gpa = px;
5137 } else
5138 gpa -= __LC_FPREGS_SAVE_AREA;
5139
5140 /* manually convert vector registers if necessary */
5141 if (MACHINE_HAS_VX) {
5142 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
5143 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
5144 fprs, 128);
5145 } else {
5146 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
5147 vcpu->run->s.regs.fprs, 128);
5148 }
5149 rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
5150 vcpu->run->s.regs.gprs, 128);
5151 rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
5152 &vcpu->arch.sie_block->gpsw, 16);
5153 rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
5154 &px, 4);
5155 rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
5156 &vcpu->run->s.regs.fpc, 4);
5157 rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
5158 &vcpu->arch.sie_block->todpr, 4);
5159 cputm = kvm_s390_get_cpu_timer(vcpu);
5160 rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
5161 &cputm, 8);
5162 clkcomp = vcpu->arch.sie_block->ckc >> 8;
5163 rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
5164 &clkcomp, 8);
5165 rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
5166 &vcpu->run->s.regs.acrs, 64);
5167 rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
5168 &vcpu->arch.sie_block->gcr, 128);
5169 return rc ? -EFAULT : 0;
5170 }
5171
kvm_s390_vcpu_store_status(struct kvm_vcpu * vcpu,unsigned long addr)5172 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
5173 {
5174 /*
5175 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
5176 * switch in the run ioctl. Let's update our copies before we save
5177 * it into the save area
5178 */
5179 save_fpu_regs();
5180 vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
5181 save_access_regs(vcpu->run->s.regs.acrs);
5182
5183 return kvm_s390_store_status_unloaded(vcpu, addr);
5184 }
5185
__disable_ibs_on_vcpu(struct kvm_vcpu * vcpu)5186 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
5187 {
5188 kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
5189 kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
5190 }
5191
__disable_ibs_on_all_vcpus(struct kvm * kvm)5192 static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
5193 {
5194 unsigned long i;
5195 struct kvm_vcpu *vcpu;
5196
5197 kvm_for_each_vcpu(i, vcpu, kvm) {
5198 __disable_ibs_on_vcpu(vcpu);
5199 }
5200 }
5201
__enable_ibs_on_vcpu(struct kvm_vcpu * vcpu)5202 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
5203 {
5204 if (!sclp.has_ibs)
5205 return;
5206 kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
5207 kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
5208 }
5209
kvm_s390_vcpu_start(struct kvm_vcpu * vcpu)5210 int kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
5211 {
5212 int i, online_vcpus, r = 0, started_vcpus = 0;
5213
5214 if (!is_vcpu_stopped(vcpu))
5215 return 0;
5216
5217 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
5218 /* Only one cpu at a time may enter/leave the STOPPED state. */
5219 spin_lock(&vcpu->kvm->arch.start_stop_lock);
5220 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
5221
5222 /* Let's tell the UV that we want to change into the operating state */
5223 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5224 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR);
5225 if (r) {
5226 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5227 return r;
5228 }
5229 }
5230
5231 for (i = 0; i < online_vcpus; i++) {
5232 if (!is_vcpu_stopped(kvm_get_vcpu(vcpu->kvm, i)))
5233 started_vcpus++;
5234 }
5235
5236 if (started_vcpus == 0) {
5237 /* we're the only active VCPU -> speed it up */
5238 __enable_ibs_on_vcpu(vcpu);
5239 } else if (started_vcpus == 1) {
5240 /*
5241 * As we are starting a second VCPU, we have to disable
5242 * the IBS facility on all VCPUs to remove potentially
5243 * outstanding ENABLE requests.
5244 */
5245 __disable_ibs_on_all_vcpus(vcpu->kvm);
5246 }
5247
5248 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_STOPPED);
5249 /*
5250 * The real PSW might have changed due to a RESTART interpreted by the
5251 * ultravisor. We block all interrupts and let the next sie exit
5252 * refresh our view.
5253 */
5254 if (kvm_s390_pv_cpu_is_protected(vcpu))
5255 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK;
5256 /*
5257 * Another VCPU might have used IBS while we were offline.
5258 * Let's play safe and flush the VCPU at startup.
5259 */
5260 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5261 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5262 return 0;
5263 }
5264
kvm_s390_vcpu_stop(struct kvm_vcpu * vcpu)5265 int kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
5266 {
5267 int i, online_vcpus, r = 0, started_vcpus = 0;
5268 struct kvm_vcpu *started_vcpu = NULL;
5269
5270 if (is_vcpu_stopped(vcpu))
5271 return 0;
5272
5273 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
5274 /* Only one cpu at a time may enter/leave the STOPPED state. */
5275 spin_lock(&vcpu->kvm->arch.start_stop_lock);
5276 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
5277
5278 /* Let's tell the UV that we want to change into the stopped state */
5279 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5280 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_STP);
5281 if (r) {
5282 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5283 return r;
5284 }
5285 }
5286
5287 /*
5288 * Set the VCPU to STOPPED and THEN clear the interrupt flag,
5289 * now that the SIGP STOP and SIGP STOP AND STORE STATUS orders
5290 * have been fully processed. This will ensure that the VCPU
5291 * is kept BUSY if another VCPU is inquiring with SIGP SENSE.
5292 */
5293 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOPPED);
5294 kvm_s390_clear_stop_irq(vcpu);
5295
5296 __disable_ibs_on_vcpu(vcpu);
5297
5298 for (i = 0; i < online_vcpus; i++) {
5299 struct kvm_vcpu *tmp = kvm_get_vcpu(vcpu->kvm, i);
5300
5301 if (!is_vcpu_stopped(tmp)) {
5302 started_vcpus++;
5303 started_vcpu = tmp;
5304 }
5305 }
5306
5307 if (started_vcpus == 1) {
5308 /*
5309 * As we only have one VCPU left, we want to enable the
5310 * IBS facility for that VCPU to speed it up.
5311 */
5312 __enable_ibs_on_vcpu(started_vcpu);
5313 }
5314
5315 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5316 return 0;
5317 }
5318
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5319 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5320 struct kvm_enable_cap *cap)
5321 {
5322 int r;
5323
5324 if (cap->flags)
5325 return -EINVAL;
5326
5327 switch (cap->cap) {
5328 case KVM_CAP_S390_CSS_SUPPORT:
5329 if (!vcpu->kvm->arch.css_support) {
5330 vcpu->kvm->arch.css_support = 1;
5331 VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
5332 trace_kvm_s390_enable_css(vcpu->kvm);
5333 }
5334 r = 0;
5335 break;
5336 default:
5337 r = -EINVAL;
5338 break;
5339 }
5340 return r;
5341 }
5342
kvm_s390_vcpu_sida_op(struct kvm_vcpu * vcpu,struct kvm_s390_mem_op * mop)5343 static long kvm_s390_vcpu_sida_op(struct kvm_vcpu *vcpu,
5344 struct kvm_s390_mem_op *mop)
5345 {
5346 void __user *uaddr = (void __user *)mop->buf;
5347 void *sida_addr;
5348 int r = 0;
5349
5350 if (mop->flags || !mop->size)
5351 return -EINVAL;
5352 if (mop->size + mop->sida_offset < mop->size)
5353 return -EINVAL;
5354 if (mop->size + mop->sida_offset > sida_size(vcpu->arch.sie_block))
5355 return -E2BIG;
5356 if (!kvm_s390_pv_cpu_is_protected(vcpu))
5357 return -EINVAL;
5358
5359 sida_addr = (char *)sida_addr(vcpu->arch.sie_block) + mop->sida_offset;
5360
5361 switch (mop->op) {
5362 case KVM_S390_MEMOP_SIDA_READ:
5363 if (copy_to_user(uaddr, sida_addr, mop->size))
5364 r = -EFAULT;
5365
5366 break;
5367 case KVM_S390_MEMOP_SIDA_WRITE:
5368 if (copy_from_user(sida_addr, uaddr, mop->size))
5369 r = -EFAULT;
5370 break;
5371 }
5372 return r;
5373 }
5374
kvm_s390_vcpu_mem_op(struct kvm_vcpu * vcpu,struct kvm_s390_mem_op * mop)5375 static long kvm_s390_vcpu_mem_op(struct kvm_vcpu *vcpu,
5376 struct kvm_s390_mem_op *mop)
5377 {
5378 void __user *uaddr = (void __user *)mop->buf;
5379 enum gacc_mode acc_mode;
5380 void *tmpbuf = NULL;
5381 int r;
5382
5383 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_INJECT_EXCEPTION |
5384 KVM_S390_MEMOP_F_CHECK_ONLY |
5385 KVM_S390_MEMOP_F_SKEY_PROTECTION);
5386 if (r)
5387 return r;
5388 if (mop->ar >= NUM_ACRS)
5389 return -EINVAL;
5390 if (kvm_s390_pv_cpu_is_protected(vcpu))
5391 return -EINVAL;
5392 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
5393 tmpbuf = vmalloc(mop->size);
5394 if (!tmpbuf)
5395 return -ENOMEM;
5396 }
5397
5398 acc_mode = mop->op == KVM_S390_MEMOP_LOGICAL_READ ? GACC_FETCH : GACC_STORE;
5399 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
5400 r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size,
5401 acc_mode, mop->key);
5402 goto out_inject;
5403 }
5404 if (acc_mode == GACC_FETCH) {
5405 r = read_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf,
5406 mop->size, mop->key);
5407 if (r)
5408 goto out_inject;
5409 if (copy_to_user(uaddr, tmpbuf, mop->size)) {
5410 r = -EFAULT;
5411 goto out_free;
5412 }
5413 } else {
5414 if (copy_from_user(tmpbuf, uaddr, mop->size)) {
5415 r = -EFAULT;
5416 goto out_free;
5417 }
5418 r = write_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf,
5419 mop->size, mop->key);
5420 }
5421
5422 out_inject:
5423 if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
5424 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);
5425
5426 out_free:
5427 vfree(tmpbuf);
5428 return r;
5429 }
5430
kvm_s390_vcpu_memsida_op(struct kvm_vcpu * vcpu,struct kvm_s390_mem_op * mop)5431 static long kvm_s390_vcpu_memsida_op(struct kvm_vcpu *vcpu,
5432 struct kvm_s390_mem_op *mop)
5433 {
5434 int r, srcu_idx;
5435
5436 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5437
5438 switch (mop->op) {
5439 case KVM_S390_MEMOP_LOGICAL_READ:
5440 case KVM_S390_MEMOP_LOGICAL_WRITE:
5441 r = kvm_s390_vcpu_mem_op(vcpu, mop);
5442 break;
5443 case KVM_S390_MEMOP_SIDA_READ:
5444 case KVM_S390_MEMOP_SIDA_WRITE:
5445 /* we are locked against sida going away by the vcpu->mutex */
5446 r = kvm_s390_vcpu_sida_op(vcpu, mop);
5447 break;
5448 default:
5449 r = -EINVAL;
5450 }
5451
5452 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
5453 return r;
5454 }
5455
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5456 long kvm_arch_vcpu_async_ioctl(struct file *filp,
5457 unsigned int ioctl, unsigned long arg)
5458 {
5459 struct kvm_vcpu *vcpu = filp->private_data;
5460 void __user *argp = (void __user *)arg;
5461 int rc;
5462
5463 switch (ioctl) {
5464 case KVM_S390_IRQ: {
5465 struct kvm_s390_irq s390irq;
5466
5467 if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
5468 return -EFAULT;
5469 rc = kvm_s390_inject_vcpu(vcpu, &s390irq);
5470 break;
5471 }
5472 case KVM_S390_INTERRUPT: {
5473 struct kvm_s390_interrupt s390int;
5474 struct kvm_s390_irq s390irq = {};
5475
5476 if (copy_from_user(&s390int, argp, sizeof(s390int)))
5477 return -EFAULT;
5478 if (s390int_to_s390irq(&s390int, &s390irq))
5479 return -EINVAL;
5480 rc = kvm_s390_inject_vcpu(vcpu, &s390irq);
5481 break;
5482 }
5483 default:
5484 rc = -ENOIOCTLCMD;
5485 break;
5486 }
5487
5488 /*
5489 * To simplify single stepping of userspace-emulated instructions,
5490 * KVM_EXIT_S390_SIEIC exit sets KVM_GUESTDBG_EXIT_PENDING (see
5491 * should_handle_per_ifetch()). However, if userspace emulation injects
5492 * an interrupt, it needs to be cleared, so that KVM_EXIT_DEBUG happens
5493 * after (and not before) the interrupt delivery.
5494 */
5495 if (!rc)
5496 vcpu->guest_debug &= ~KVM_GUESTDBG_EXIT_PENDING;
5497
5498 return rc;
5499 }
5500
kvm_s390_handle_pv_vcpu_dump(struct kvm_vcpu * vcpu,struct kvm_pv_cmd * cmd)5501 static int kvm_s390_handle_pv_vcpu_dump(struct kvm_vcpu *vcpu,
5502 struct kvm_pv_cmd *cmd)
5503 {
5504 struct kvm_s390_pv_dmp dmp;
5505 void *data;
5506 int ret;
5507
5508 /* Dump initialization is a prerequisite */
5509 if (!vcpu->kvm->arch.pv.dumping)
5510 return -EINVAL;
5511
5512 if (copy_from_user(&dmp, (__u8 __user *)cmd->data, sizeof(dmp)))
5513 return -EFAULT;
5514
5515 /* We only handle this subcmd right now */
5516 if (dmp.subcmd != KVM_PV_DUMP_CPU)
5517 return -EINVAL;
5518
5519 /* CPU dump length is the same as create cpu storage donation. */
5520 if (dmp.buff_len != uv_info.guest_cpu_stor_len)
5521 return -EINVAL;
5522
5523 data = kvzalloc(uv_info.guest_cpu_stor_len, GFP_KERNEL);
5524 if (!data)
5525 return -ENOMEM;
5526
5527 ret = kvm_s390_pv_dump_cpu(vcpu, data, &cmd->rc, &cmd->rrc);
5528
5529 VCPU_EVENT(vcpu, 3, "PROTVIRT DUMP CPU %d rc %x rrc %x",
5530 vcpu->vcpu_id, cmd->rc, cmd->rrc);
5531
5532 if (ret)
5533 ret = -EINVAL;
5534
5535 /* On success copy over the dump data */
5536 if (!ret && copy_to_user((__u8 __user *)dmp.buff_addr, data, uv_info.guest_cpu_stor_len))
5537 ret = -EFAULT;
5538
5539 kvfree(data);
5540 return ret;
5541 }
5542
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5543 long kvm_arch_vcpu_ioctl(struct file *filp,
5544 unsigned int ioctl, unsigned long arg)
5545 {
5546 struct kvm_vcpu *vcpu = filp->private_data;
5547 void __user *argp = (void __user *)arg;
5548 int idx;
5549 long r;
5550 u16 rc, rrc;
5551
5552 vcpu_load(vcpu);
5553
5554 switch (ioctl) {
5555 case KVM_S390_STORE_STATUS:
5556 idx = srcu_read_lock(&vcpu->kvm->srcu);
5557 r = kvm_s390_store_status_unloaded(vcpu, arg);
5558 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5559 break;
5560 case KVM_S390_SET_INITIAL_PSW: {
5561 psw_t psw;
5562
5563 r = -EFAULT;
5564 if (copy_from_user(&psw, argp, sizeof(psw)))
5565 break;
5566 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
5567 break;
5568 }
5569 case KVM_S390_CLEAR_RESET:
5570 r = 0;
5571 kvm_arch_vcpu_ioctl_clear_reset(vcpu);
5572 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5573 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
5574 UVC_CMD_CPU_RESET_CLEAR, &rc, &rrc);
5575 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET CLEAR VCPU: rc %x rrc %x",
5576 rc, rrc);
5577 }
5578 break;
5579 case KVM_S390_INITIAL_RESET:
5580 r = 0;
5581 kvm_arch_vcpu_ioctl_initial_reset(vcpu);
5582 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5583 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
5584 UVC_CMD_CPU_RESET_INITIAL,
5585 &rc, &rrc);
5586 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET INITIAL VCPU: rc %x rrc %x",
5587 rc, rrc);
5588 }
5589 break;
5590 case KVM_S390_NORMAL_RESET:
5591 r = 0;
5592 kvm_arch_vcpu_ioctl_normal_reset(vcpu);
5593 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5594 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
5595 UVC_CMD_CPU_RESET, &rc, &rrc);
5596 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET NORMAL VCPU: rc %x rrc %x",
5597 rc, rrc);
5598 }
5599 break;
5600 case KVM_SET_ONE_REG:
5601 case KVM_GET_ONE_REG: {
5602 struct kvm_one_reg reg;
5603 r = -EINVAL;
5604 if (kvm_s390_pv_cpu_is_protected(vcpu))
5605 break;
5606 r = -EFAULT;
5607 if (copy_from_user(®, argp, sizeof(reg)))
5608 break;
5609 if (ioctl == KVM_SET_ONE_REG)
5610 r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, ®);
5611 else
5612 r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, ®);
5613 break;
5614 }
5615 #ifdef CONFIG_KVM_S390_UCONTROL
5616 case KVM_S390_UCAS_MAP: {
5617 struct kvm_s390_ucas_mapping ucasmap;
5618
5619 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
5620 r = -EFAULT;
5621 break;
5622 }
5623
5624 if (!kvm_is_ucontrol(vcpu->kvm)) {
5625 r = -EINVAL;
5626 break;
5627 }
5628
5629 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
5630 ucasmap.vcpu_addr, ucasmap.length);
5631 break;
5632 }
5633 case KVM_S390_UCAS_UNMAP: {
5634 struct kvm_s390_ucas_mapping ucasmap;
5635
5636 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
5637 r = -EFAULT;
5638 break;
5639 }
5640
5641 if (!kvm_is_ucontrol(vcpu->kvm)) {
5642 r = -EINVAL;
5643 break;
5644 }
5645
5646 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
5647 ucasmap.length);
5648 break;
5649 }
5650 #endif
5651 case KVM_S390_VCPU_FAULT: {
5652 r = gmap_fault(vcpu->arch.gmap, arg, 0);
5653 break;
5654 }
5655 case KVM_ENABLE_CAP:
5656 {
5657 struct kvm_enable_cap cap;
5658 r = -EFAULT;
5659 if (copy_from_user(&cap, argp, sizeof(cap)))
5660 break;
5661 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5662 break;
5663 }
5664 case KVM_S390_MEM_OP: {
5665 struct kvm_s390_mem_op mem_op;
5666
5667 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
5668 r = kvm_s390_vcpu_memsida_op(vcpu, &mem_op);
5669 else
5670 r = -EFAULT;
5671 break;
5672 }
5673 case KVM_S390_SET_IRQ_STATE: {
5674 struct kvm_s390_irq_state irq_state;
5675
5676 r = -EFAULT;
5677 if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
5678 break;
5679 if (irq_state.len > VCPU_IRQS_MAX_BUF ||
5680 irq_state.len == 0 ||
5681 irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
5682 r = -EINVAL;
5683 break;
5684 }
5685 /* do not use irq_state.flags, it will break old QEMUs */
5686 r = kvm_s390_set_irq_state(vcpu,
5687 (void __user *) irq_state.buf,
5688 irq_state.len);
5689 break;
5690 }
5691 case KVM_S390_GET_IRQ_STATE: {
5692 struct kvm_s390_irq_state irq_state;
5693
5694 r = -EFAULT;
5695 if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
5696 break;
5697 if (irq_state.len == 0) {
5698 r = -EINVAL;
5699 break;
5700 }
5701 /* do not use irq_state.flags, it will break old QEMUs */
5702 r = kvm_s390_get_irq_state(vcpu,
5703 (__u8 __user *) irq_state.buf,
5704 irq_state.len);
5705 break;
5706 }
5707 case KVM_S390_PV_CPU_COMMAND: {
5708 struct kvm_pv_cmd cmd;
5709
5710 r = -EINVAL;
5711 if (!is_prot_virt_host())
5712 break;
5713
5714 r = -EFAULT;
5715 if (copy_from_user(&cmd, argp, sizeof(cmd)))
5716 break;
5717
5718 r = -EINVAL;
5719 if (cmd.flags)
5720 break;
5721
5722 /* We only handle this cmd right now */
5723 if (cmd.cmd != KVM_PV_DUMP)
5724 break;
5725
5726 r = kvm_s390_handle_pv_vcpu_dump(vcpu, &cmd);
5727
5728 /* Always copy over UV rc / rrc data */
5729 if (copy_to_user((__u8 __user *)argp, &cmd.rc,
5730 sizeof(cmd.rc) + sizeof(cmd.rrc)))
5731 r = -EFAULT;
5732 break;
5733 }
5734 default:
5735 r = -ENOTTY;
5736 }
5737
5738 vcpu_put(vcpu);
5739 return r;
5740 }
5741
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)5742 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5743 {
5744 #ifdef CONFIG_KVM_S390_UCONTROL
5745 if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
5746 && (kvm_is_ucontrol(vcpu->kvm))) {
5747 vmf->page = virt_to_page(vcpu->arch.sie_block);
5748 get_page(vmf->page);
5749 return 0;
5750 }
5751 #endif
5752 return VM_FAULT_SIGBUS;
5753 }
5754
kvm_arch_irqchip_in_kernel(struct kvm * kvm)5755 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
5756 {
5757 return true;
5758 }
5759
5760 /* Section: memory related */
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)5761 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5762 const struct kvm_memory_slot *old,
5763 struct kvm_memory_slot *new,
5764 enum kvm_mr_change change)
5765 {
5766 gpa_t size;
5767
5768 /* When we are protected, we should not change the memory slots */
5769 if (kvm_s390_pv_get_handle(kvm))
5770 return -EINVAL;
5771
5772 if (change != KVM_MR_DELETE && change != KVM_MR_FLAGS_ONLY) {
5773 /*
5774 * A few sanity checks. We can have memory slots which have to be
5775 * located/ended at a segment boundary (1MB). The memory in userland is
5776 * ok to be fragmented into various different vmas. It is okay to mmap()
5777 * and munmap() stuff in this slot after doing this call at any time
5778 */
5779
5780 if (new->userspace_addr & 0xffffful)
5781 return -EINVAL;
5782
5783 size = new->npages * PAGE_SIZE;
5784 if (size & 0xffffful)
5785 return -EINVAL;
5786
5787 if ((new->base_gfn * PAGE_SIZE) + size > kvm->arch.mem_limit)
5788 return -EINVAL;
5789 }
5790
5791 if (!kvm->arch.migration_mode)
5792 return 0;
5793
5794 /*
5795 * Turn off migration mode when:
5796 * - userspace creates a new memslot with dirty logging off,
5797 * - userspace modifies an existing memslot (MOVE or FLAGS_ONLY) and
5798 * dirty logging is turned off.
5799 * Migration mode expects dirty page logging being enabled to store
5800 * its dirty bitmap.
5801 */
5802 if (change != KVM_MR_DELETE &&
5803 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
5804 WARN(kvm_s390_vm_stop_migration(kvm),
5805 "Failed to stop migration mode");
5806
5807 return 0;
5808 }
5809
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)5810 void kvm_arch_commit_memory_region(struct kvm *kvm,
5811 struct kvm_memory_slot *old,
5812 const struct kvm_memory_slot *new,
5813 enum kvm_mr_change change)
5814 {
5815 int rc = 0;
5816
5817 switch (change) {
5818 case KVM_MR_DELETE:
5819 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE,
5820 old->npages * PAGE_SIZE);
5821 break;
5822 case KVM_MR_MOVE:
5823 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE,
5824 old->npages * PAGE_SIZE);
5825 if (rc)
5826 break;
5827 fallthrough;
5828 case KVM_MR_CREATE:
5829 rc = gmap_map_segment(kvm->arch.gmap, new->userspace_addr,
5830 new->base_gfn * PAGE_SIZE,
5831 new->npages * PAGE_SIZE);
5832 break;
5833 case KVM_MR_FLAGS_ONLY:
5834 break;
5835 default:
5836 WARN(1, "Unknown KVM MR CHANGE: %d\n", change);
5837 }
5838 if (rc)
5839 pr_warn("failed to commit memory region\n");
5840 return;
5841 }
5842
nonhyp_mask(int i)5843 static inline unsigned long nonhyp_mask(int i)
5844 {
5845 unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;
5846
5847 return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
5848 }
5849
kvm_s390_init(void)5850 static int __init kvm_s390_init(void)
5851 {
5852 int i, r;
5853
5854 if (!sclp.has_sief2) {
5855 pr_info("SIE is not available\n");
5856 return -ENODEV;
5857 }
5858
5859 if (nested && hpage) {
5860 pr_info("A KVM host that supports nesting cannot back its KVM guests with huge pages\n");
5861 return -EINVAL;
5862 }
5863
5864 for (i = 0; i < 16; i++)
5865 kvm_s390_fac_base[i] |=
5866 stfle_fac_list[i] & nonhyp_mask(i);
5867
5868 r = __kvm_s390_init();
5869 if (r)
5870 return r;
5871
5872 r = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
5873 if (r) {
5874 __kvm_s390_exit();
5875 return r;
5876 }
5877 return 0;
5878 }
5879
kvm_s390_exit(void)5880 static void __exit kvm_s390_exit(void)
5881 {
5882 kvm_exit();
5883
5884 __kvm_s390_exit();
5885 }
5886
5887 module_init(kvm_s390_init);
5888 module_exit(kvm_s390_exit);
5889
5890 /*
5891 * Enable autoloading of the kvm module.
5892 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
5893 * since x86 takes a different approach.
5894 */
5895 #include <linux/miscdevice.h>
5896 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5897 MODULE_ALIAS("devname:kvm");
5898