1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/delayacct.h>
55 #include <asm/div64.h>
56 #include "internal.h"
57 #include "shuffle.h"
58 #include "page_reporting.h"
59
60 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
61 typedef int __bitwise fpi_t;
62
63 /* No special request */
64 #define FPI_NONE ((__force fpi_t)0)
65
66 /*
67 * Skip free page reporting notification for the (possibly merged) page.
68 * This does not hinder free page reporting from grabbing the page,
69 * reporting it and marking it "reported" - it only skips notifying
70 * the free page reporting infrastructure about a newly freed page. For
71 * example, used when temporarily pulling a page from a freelist and
72 * putting it back unmodified.
73 */
74 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
75
76 /*
77 * Place the (possibly merged) page to the tail of the freelist. Will ignore
78 * page shuffling (relevant code - e.g., memory onlining - is expected to
79 * shuffle the whole zone).
80 *
81 * Note: No code should rely on this flag for correctness - it's purely
82 * to allow for optimizations when handing back either fresh pages
83 * (memory onlining) or untouched pages (page isolation, free page
84 * reporting).
85 */
86 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
87
88 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
89 static DEFINE_MUTEX(pcp_batch_high_lock);
90 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
91
92 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
93 /*
94 * On SMP, spin_trylock is sufficient protection.
95 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
96 */
97 #define pcp_trylock_prepare(flags) do { } while (0)
98 #define pcp_trylock_finish(flag) do { } while (0)
99 #else
100
101 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
102 #define pcp_trylock_prepare(flags) local_irq_save(flags)
103 #define pcp_trylock_finish(flags) local_irq_restore(flags)
104 #endif
105
106 /*
107 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
108 * a migration causing the wrong PCP to be locked and remote memory being
109 * potentially allocated, pin the task to the CPU for the lookup+lock.
110 * preempt_disable is used on !RT because it is faster than migrate_disable.
111 * migrate_disable is used on RT because otherwise RT spinlock usage is
112 * interfered with and a high priority task cannot preempt the allocator.
113 */
114 #ifndef CONFIG_PREEMPT_RT
115 #define pcpu_task_pin() preempt_disable()
116 #define pcpu_task_unpin() preempt_enable()
117 #else
118 #define pcpu_task_pin() migrate_disable()
119 #define pcpu_task_unpin() migrate_enable()
120 #endif
121
122 /*
123 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
124 * Return value should be used with equivalent unlock helper.
125 */
126 #define pcpu_spin_lock(type, member, ptr) \
127 ({ \
128 type *_ret; \
129 pcpu_task_pin(); \
130 _ret = this_cpu_ptr(ptr); \
131 spin_lock(&_ret->member); \
132 _ret; \
133 })
134
135 #define pcpu_spin_trylock(type, member, ptr) \
136 ({ \
137 type *_ret; \
138 pcpu_task_pin(); \
139 _ret = this_cpu_ptr(ptr); \
140 if (!spin_trylock(&_ret->member)) { \
141 pcpu_task_unpin(); \
142 _ret = NULL; \
143 } \
144 _ret; \
145 })
146
147 #define pcpu_spin_unlock(member, ptr) \
148 ({ \
149 spin_unlock(&ptr->member); \
150 pcpu_task_unpin(); \
151 })
152
153 /* struct per_cpu_pages specific helpers. */
154 #define pcp_spin_lock(ptr) \
155 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
156
157 #define pcp_spin_trylock(ptr) \
158 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
159
160 #define pcp_spin_unlock(ptr) \
161 pcpu_spin_unlock(lock, ptr)
162
163 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
164 DEFINE_PER_CPU(int, numa_node);
165 EXPORT_PER_CPU_SYMBOL(numa_node);
166 #endif
167
168 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
169
170 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
171 /*
172 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
173 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
174 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
175 * defined in <linux/topology.h>.
176 */
177 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
178 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
179 #endif
180
181 static DEFINE_MUTEX(pcpu_drain_mutex);
182
183 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
184 volatile unsigned long latent_entropy __latent_entropy;
185 EXPORT_SYMBOL(latent_entropy);
186 #endif
187
188 /*
189 * Array of node states.
190 */
191 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
192 [N_POSSIBLE] = NODE_MASK_ALL,
193 [N_ONLINE] = { { [0] = 1UL } },
194 #ifndef CONFIG_NUMA
195 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
196 #ifdef CONFIG_HIGHMEM
197 [N_HIGH_MEMORY] = { { [0] = 1UL } },
198 #endif
199 [N_MEMORY] = { { [0] = 1UL } },
200 [N_CPU] = { { [0] = 1UL } },
201 #endif /* NUMA */
202 };
203 EXPORT_SYMBOL(node_states);
204
205 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
206
207 /*
208 * A cached value of the page's pageblock's migratetype, used when the page is
209 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
210 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
211 * Also the migratetype set in the page does not necessarily match the pcplist
212 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
213 * other index - this ensures that it will be put on the correct CMA freelist.
214 */
get_pcppage_migratetype(struct page * page)215 static inline int get_pcppage_migratetype(struct page *page)
216 {
217 return page->index;
218 }
219
set_pcppage_migratetype(struct page * page,int migratetype)220 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
221 {
222 page->index = migratetype;
223 }
224
225 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
226 unsigned int pageblock_order __read_mostly;
227 #endif
228
229 static void __free_pages_ok(struct page *page, unsigned int order,
230 fpi_t fpi_flags);
231
232 /*
233 * results with 256, 32 in the lowmem_reserve sysctl:
234 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
235 * 1G machine -> (16M dma, 784M normal, 224M high)
236 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
237 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
238 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
239 *
240 * TBD: should special case ZONE_DMA32 machines here - in those we normally
241 * don't need any ZONE_NORMAL reservation
242 */
243 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
244 #ifdef CONFIG_ZONE_DMA
245 [ZONE_DMA] = 256,
246 #endif
247 #ifdef CONFIG_ZONE_DMA32
248 [ZONE_DMA32] = 256,
249 #endif
250 [ZONE_NORMAL] = 32,
251 #ifdef CONFIG_HIGHMEM
252 [ZONE_HIGHMEM] = 0,
253 #endif
254 [ZONE_MOVABLE] = 0,
255 };
256
257 char * const zone_names[MAX_NR_ZONES] = {
258 #ifdef CONFIG_ZONE_DMA
259 "DMA",
260 #endif
261 #ifdef CONFIG_ZONE_DMA32
262 "DMA32",
263 #endif
264 "Normal",
265 #ifdef CONFIG_HIGHMEM
266 "HighMem",
267 #endif
268 "Movable",
269 #ifdef CONFIG_ZONE_DEVICE
270 "Device",
271 #endif
272 };
273
274 const char * const migratetype_names[MIGRATE_TYPES] = {
275 "Unmovable",
276 "Movable",
277 "Reclaimable",
278 #ifdef CONFIG_CMA_REUSE
279 "CMA",
280 #endif
281 "HighAtomic",
282 #if defined(CONFIG_CMA) && !defined(CONFIG_CMA_REUSE)
283 "CMA",
284 #endif
285 #ifdef CONFIG_MEMORY_ISOLATION
286 "Isolate",
287 #endif
288 };
289
290 int min_free_kbytes = 1024;
291 int user_min_free_kbytes = -1;
292 static int watermark_boost_factor __read_mostly = 15000;
293 static int watermark_scale_factor = 10;
294
295 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
296 int movable_zone;
297 EXPORT_SYMBOL(movable_zone);
298
299 #if MAX_NUMNODES > 1
300 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
301 unsigned int nr_online_nodes __read_mostly = 1;
302 EXPORT_SYMBOL(nr_node_ids);
303 EXPORT_SYMBOL(nr_online_nodes);
304 #endif
305
306 static bool page_contains_unaccepted(struct page *page, unsigned int order);
307 static void accept_page(struct page *page, unsigned int order);
308 static bool try_to_accept_memory(struct zone *zone, unsigned int order);
309 static inline bool has_unaccepted_memory(void);
310 static bool __free_unaccepted(struct page *page);
311
312 int page_group_by_mobility_disabled __read_mostly;
313
314 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
315 /*
316 * During boot we initialize deferred pages on-demand, as needed, but once
317 * page_alloc_init_late() has finished, the deferred pages are all initialized,
318 * and we can permanently disable that path.
319 */
320 DEFINE_STATIC_KEY_TRUE(deferred_pages);
321
deferred_pages_enabled(void)322 static inline bool deferred_pages_enabled(void)
323 {
324 return static_branch_unlikely(&deferred_pages);
325 }
326
327 /*
328 * deferred_grow_zone() is __init, but it is called from
329 * get_page_from_freelist() during early boot until deferred_pages permanently
330 * disables this call. This is why we have refdata wrapper to avoid warning,
331 * and to ensure that the function body gets unloaded.
332 */
333 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)334 _deferred_grow_zone(struct zone *zone, unsigned int order)
335 {
336 return deferred_grow_zone(zone, order);
337 }
338 #else
deferred_pages_enabled(void)339 static inline bool deferred_pages_enabled(void)
340 {
341 return false;
342 }
343 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
344
345 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(const struct page * page,unsigned long pfn)346 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
347 unsigned long pfn)
348 {
349 #ifdef CONFIG_SPARSEMEM
350 return section_to_usemap(__pfn_to_section(pfn));
351 #else
352 return page_zone(page)->pageblock_flags;
353 #endif /* CONFIG_SPARSEMEM */
354 }
355
pfn_to_bitidx(const struct page * page,unsigned long pfn)356 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
357 {
358 #ifdef CONFIG_SPARSEMEM
359 pfn &= (PAGES_PER_SECTION-1);
360 #else
361 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
362 #endif /* CONFIG_SPARSEMEM */
363 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
364 }
365
366 /**
367 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
368 * @page: The page within the block of interest
369 * @pfn: The target page frame number
370 * @mask: mask of bits that the caller is interested in
371 *
372 * Return: pageblock_bits flags
373 */
get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)374 unsigned long get_pfnblock_flags_mask(const struct page *page,
375 unsigned long pfn, unsigned long mask)
376 {
377 unsigned long *bitmap;
378 unsigned long bitidx, word_bitidx;
379 unsigned long word;
380
381 bitmap = get_pageblock_bitmap(page, pfn);
382 bitidx = pfn_to_bitidx(page, pfn);
383 word_bitidx = bitidx / BITS_PER_LONG;
384 bitidx &= (BITS_PER_LONG-1);
385 /*
386 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
387 * a consistent read of the memory array, so that results, even though
388 * racy, are not corrupted.
389 */
390 word = READ_ONCE(bitmap[word_bitidx]);
391 return (word >> bitidx) & mask;
392 }
393
get_pfnblock_migratetype(const struct page * page,unsigned long pfn)394 static __always_inline int get_pfnblock_migratetype(const struct page *page,
395 unsigned long pfn)
396 {
397 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
398 }
399
400 /**
401 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
402 * @page: The page within the block of interest
403 * @flags: The flags to set
404 * @pfn: The target page frame number
405 * @mask: mask of bits that the caller is interested in
406 */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)407 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
408 unsigned long pfn,
409 unsigned long mask)
410 {
411 unsigned long *bitmap;
412 unsigned long bitidx, word_bitidx;
413 unsigned long word;
414
415 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
416 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
417
418 bitmap = get_pageblock_bitmap(page, pfn);
419 bitidx = pfn_to_bitidx(page, pfn);
420 word_bitidx = bitidx / BITS_PER_LONG;
421 bitidx &= (BITS_PER_LONG-1);
422
423 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
424
425 mask <<= bitidx;
426 flags <<= bitidx;
427
428 word = READ_ONCE(bitmap[word_bitidx]);
429 do {
430 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
431 }
432
set_pageblock_migratetype(struct page * page,int migratetype)433 void set_pageblock_migratetype(struct page *page, int migratetype)
434 {
435 if (unlikely(page_group_by_mobility_disabled &&
436 migratetype < MIGRATE_PCPTYPES))
437 migratetype = MIGRATE_UNMOVABLE;
438
439 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
440 page_to_pfn(page), MIGRATETYPE_MASK);
441 }
442
443 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)444 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
445 {
446 int ret;
447 unsigned seq;
448 unsigned long pfn = page_to_pfn(page);
449 unsigned long sp, start_pfn;
450
451 do {
452 seq = zone_span_seqbegin(zone);
453 start_pfn = zone->zone_start_pfn;
454 sp = zone->spanned_pages;
455 ret = !zone_spans_pfn(zone, pfn);
456 } while (zone_span_seqretry(zone, seq));
457
458 if (ret)
459 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
460 pfn, zone_to_nid(zone), zone->name,
461 start_pfn, start_pfn + sp);
462
463 return ret;
464 }
465
466 /*
467 * Temporary debugging check for pages not lying within a given zone.
468 */
bad_range(struct zone * zone,struct page * page)469 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
470 {
471 if (page_outside_zone_boundaries(zone, page))
472 return 1;
473 if (zone != page_zone(page))
474 return 1;
475
476 return 0;
477 }
478 #else
bad_range(struct zone * zone,struct page * page)479 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
480 {
481 return 0;
482 }
483 #endif
484
bad_page(struct page * page,const char * reason)485 static void bad_page(struct page *page, const char *reason)
486 {
487 static unsigned long resume;
488 static unsigned long nr_shown;
489 static unsigned long nr_unshown;
490
491 /*
492 * Allow a burst of 60 reports, then keep quiet for that minute;
493 * or allow a steady drip of one report per second.
494 */
495 if (nr_shown == 60) {
496 if (time_before(jiffies, resume)) {
497 nr_unshown++;
498 goto out;
499 }
500 if (nr_unshown) {
501 pr_alert(
502 "BUG: Bad page state: %lu messages suppressed\n",
503 nr_unshown);
504 nr_unshown = 0;
505 }
506 nr_shown = 0;
507 }
508 if (nr_shown++ == 0)
509 resume = jiffies + 60 * HZ;
510
511 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
512 current->comm, page_to_pfn(page));
513 dump_page(page, reason);
514
515 print_modules();
516 dump_stack();
517 out:
518 /* Leave bad fields for debug, except PageBuddy could make trouble */
519 page_mapcount_reset(page); /* remove PageBuddy */
520 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
521 }
522
order_to_pindex(int migratetype,int order)523 static inline unsigned int order_to_pindex(int migratetype, int order)
524 {
525 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
526 if (order > PAGE_ALLOC_COSTLY_ORDER) {
527 VM_BUG_ON(order != pageblock_order);
528 return NR_LOWORDER_PCP_LISTS;
529 }
530 #else
531 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
532 #endif
533
534 return (MIGRATE_PCPTYPES * order) + migratetype;
535 }
536
pindex_to_order(unsigned int pindex)537 static inline int pindex_to_order(unsigned int pindex)
538 {
539 int order = pindex / MIGRATE_PCPTYPES;
540
541 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
542 if (pindex == NR_LOWORDER_PCP_LISTS)
543 order = pageblock_order;
544 #else
545 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
546 #endif
547
548 return order;
549 }
550
pcp_allowed_order(unsigned int order)551 static inline bool pcp_allowed_order(unsigned int order)
552 {
553 if (order <= PAGE_ALLOC_COSTLY_ORDER)
554 return true;
555 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
556 if (order == pageblock_order)
557 return true;
558 #endif
559 return false;
560 }
561
free_the_page(struct page * page,unsigned int order)562 static inline void free_the_page(struct page *page, unsigned int order)
563 {
564 if (pcp_allowed_order(order)) /* Via pcp? */
565 free_unref_page(page, order);
566 else
567 __free_pages_ok(page, order, FPI_NONE);
568 }
569
570 /*
571 * Higher-order pages are called "compound pages". They are structured thusly:
572 *
573 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
574 *
575 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
576 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
577 *
578 * The first tail page's ->compound_order holds the order of allocation.
579 * This usage means that zero-order pages may not be compound.
580 */
581
prep_compound_page(struct page * page,unsigned int order)582 void prep_compound_page(struct page *page, unsigned int order)
583 {
584 int i;
585 int nr_pages = 1 << order;
586
587 __SetPageHead(page);
588 for (i = 1; i < nr_pages; i++)
589 prep_compound_tail(page, i);
590
591 prep_compound_head(page, order);
592 }
593
destroy_large_folio(struct folio * folio)594 void destroy_large_folio(struct folio *folio)
595 {
596 if (folio_test_hugetlb(folio)) {
597 free_huge_folio(folio);
598 return;
599 }
600
601 if (folio_test_large_rmappable(folio))
602 folio_undo_large_rmappable(folio);
603
604 mem_cgroup_uncharge(folio);
605 free_the_page(&folio->page, folio_order(folio));
606 }
607
set_buddy_order(struct page * page,unsigned int order)608 static inline void set_buddy_order(struct page *page, unsigned int order)
609 {
610 set_page_private(page, order);
611 __SetPageBuddy(page);
612 }
613
614 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)615 static inline struct capture_control *task_capc(struct zone *zone)
616 {
617 struct capture_control *capc = current->capture_control;
618
619 return unlikely(capc) &&
620 !(current->flags & PF_KTHREAD) &&
621 !capc->page &&
622 capc->cc->zone == zone ? capc : NULL;
623 }
624
625 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)626 compaction_capture(struct capture_control *capc, struct page *page,
627 int order, int migratetype)
628 {
629 if (!capc || order != capc->cc->order)
630 return false;
631
632 /* Do not accidentally pollute CMA or isolated regions*/
633 if (is_migrate_cma(migratetype) ||
634 is_migrate_isolate(migratetype))
635 return false;
636
637 /*
638 * Do not let lower order allocations pollute a movable pageblock.
639 * This might let an unmovable request use a reclaimable pageblock
640 * and vice-versa but no more than normal fallback logic which can
641 * have trouble finding a high-order free page.
642 */
643 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
644 return false;
645
646 capc->page = page;
647 return true;
648 }
649
650 #else
task_capc(struct zone * zone)651 static inline struct capture_control *task_capc(struct zone *zone)
652 {
653 return NULL;
654 }
655
656 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)657 compaction_capture(struct capture_control *capc, struct page *page,
658 int order, int migratetype)
659 {
660 return false;
661 }
662 #endif /* CONFIG_COMPACTION */
663
664 /* Used for pages not on another list */
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)665 static inline void add_to_free_list(struct page *page, struct zone *zone,
666 unsigned int order, int migratetype)
667 {
668 struct free_area *area = &zone->free_area[order];
669
670 list_add(&page->buddy_list, &area->free_list[migratetype]);
671 area->nr_free++;
672 }
673
674 /* Used for pages not on another list */
add_to_free_list_tail(struct page * page,struct zone * zone,unsigned int order,int migratetype)675 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
676 unsigned int order, int migratetype)
677 {
678 struct free_area *area = &zone->free_area[order];
679
680 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
681 area->nr_free++;
682 }
683
684 /*
685 * Used for pages which are on another list. Move the pages to the tail
686 * of the list - so the moved pages won't immediately be considered for
687 * allocation again (e.g., optimization for memory onlining).
688 */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)689 static inline void move_to_free_list(struct page *page, struct zone *zone,
690 unsigned int order, int migratetype)
691 {
692 struct free_area *area = &zone->free_area[order];
693
694 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
695 }
696
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order)697 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
698 unsigned int order)
699 {
700 /* clear reported state and update reported page count */
701 if (page_reported(page))
702 __ClearPageReported(page);
703
704 list_del(&page->buddy_list);
705 __ClearPageBuddy(page);
706 set_page_private(page, 0);
707 zone->free_area[order].nr_free--;
708 }
709
get_page_from_free_area(struct free_area * area,int migratetype)710 static inline struct page *get_page_from_free_area(struct free_area *area,
711 int migratetype)
712 {
713 return list_first_entry_or_null(&area->free_list[migratetype],
714 struct page, buddy_list);
715 }
716
717 /*
718 * If this is not the largest possible page, check if the buddy
719 * of the next-highest order is free. If it is, it's possible
720 * that pages are being freed that will coalesce soon. In case,
721 * that is happening, add the free page to the tail of the list
722 * so it's less likely to be used soon and more likely to be merged
723 * as a higher order page
724 */
725 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)726 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
727 struct page *page, unsigned int order)
728 {
729 unsigned long higher_page_pfn;
730 struct page *higher_page;
731
732 if (order >= MAX_ORDER - 1)
733 return false;
734
735 higher_page_pfn = buddy_pfn & pfn;
736 higher_page = page + (higher_page_pfn - pfn);
737
738 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
739 NULL) != NULL;
740 }
741
742 /*
743 * Freeing function for a buddy system allocator.
744 *
745 * The concept of a buddy system is to maintain direct-mapped table
746 * (containing bit values) for memory blocks of various "orders".
747 * The bottom level table contains the map for the smallest allocatable
748 * units of memory (here, pages), and each level above it describes
749 * pairs of units from the levels below, hence, "buddies".
750 * At a high level, all that happens here is marking the table entry
751 * at the bottom level available, and propagating the changes upward
752 * as necessary, plus some accounting needed to play nicely with other
753 * parts of the VM system.
754 * At each level, we keep a list of pages, which are heads of continuous
755 * free pages of length of (1 << order) and marked with PageBuddy.
756 * Page's order is recorded in page_private(page) field.
757 * So when we are allocating or freeing one, we can derive the state of the
758 * other. That is, if we allocate a small block, and both were
759 * free, the remainder of the region must be split into blocks.
760 * If a block is freed, and its buddy is also free, then this
761 * triggers coalescing into a block of larger size.
762 *
763 * -- nyc
764 */
765
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)766 static inline void __free_one_page(struct page *page,
767 unsigned long pfn,
768 struct zone *zone, unsigned int order,
769 int migratetype, fpi_t fpi_flags)
770 {
771 struct capture_control *capc = task_capc(zone);
772 unsigned long buddy_pfn = 0;
773 unsigned long combined_pfn;
774 struct page *buddy;
775 bool to_tail;
776
777 VM_BUG_ON(!zone_is_initialized(zone));
778 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
779
780 VM_BUG_ON(migratetype == -1);
781 if (likely(!is_migrate_isolate(migratetype)))
782 __mod_zone_freepage_state(zone, 1 << order, migratetype);
783
784 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
785 VM_BUG_ON_PAGE(bad_range(zone, page), page);
786
787 while (order < MAX_ORDER) {
788 if (compaction_capture(capc, page, order, migratetype)) {
789 __mod_zone_freepage_state(zone, -(1 << order),
790 migratetype);
791 return;
792 }
793
794 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
795 if (!buddy)
796 goto done_merging;
797
798 if (unlikely(order >= pageblock_order)) {
799 /*
800 * We want to prevent merge between freepages on pageblock
801 * without fallbacks and normal pageblock. Without this,
802 * pageblock isolation could cause incorrect freepage or CMA
803 * accounting or HIGHATOMIC accounting.
804 */
805 int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
806
807 if (migratetype != buddy_mt
808 && (!migratetype_is_mergeable(migratetype) ||
809 !migratetype_is_mergeable(buddy_mt)))
810 goto done_merging;
811 }
812
813 /*
814 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
815 * merge with it and move up one order.
816 */
817 if (page_is_guard(buddy))
818 clear_page_guard(zone, buddy, order, migratetype);
819 else
820 del_page_from_free_list(buddy, zone, order);
821 combined_pfn = buddy_pfn & pfn;
822 page = page + (combined_pfn - pfn);
823 pfn = combined_pfn;
824 order++;
825 }
826
827 done_merging:
828 set_buddy_order(page, order);
829
830 if (fpi_flags & FPI_TO_TAIL)
831 to_tail = true;
832 else if (is_shuffle_order(order))
833 to_tail = shuffle_pick_tail();
834 else
835 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
836
837 if (to_tail)
838 add_to_free_list_tail(page, zone, order, migratetype);
839 else
840 add_to_free_list(page, zone, order, migratetype);
841
842 /* Notify page reporting subsystem of freed page */
843 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
844 page_reporting_notify_free(order);
845 }
846
847 /**
848 * split_free_page() -- split a free page at split_pfn_offset
849 * @free_page: the original free page
850 * @order: the order of the page
851 * @split_pfn_offset: split offset within the page
852 *
853 * Return -ENOENT if the free page is changed, otherwise 0
854 *
855 * It is used when the free page crosses two pageblocks with different migratetypes
856 * at split_pfn_offset within the page. The split free page will be put into
857 * separate migratetype lists afterwards. Otherwise, the function achieves
858 * nothing.
859 */
split_free_page(struct page * free_page,unsigned int order,unsigned long split_pfn_offset)860 int split_free_page(struct page *free_page,
861 unsigned int order, unsigned long split_pfn_offset)
862 {
863 struct zone *zone = page_zone(free_page);
864 unsigned long free_page_pfn = page_to_pfn(free_page);
865 unsigned long pfn;
866 unsigned long flags;
867 int free_page_order;
868 int mt;
869 int ret = 0;
870
871 if (split_pfn_offset == 0)
872 return ret;
873
874 spin_lock_irqsave(&zone->lock, flags);
875
876 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
877 ret = -ENOENT;
878 goto out;
879 }
880
881 mt = get_pfnblock_migratetype(free_page, free_page_pfn);
882 if (likely(!is_migrate_isolate(mt)))
883 __mod_zone_freepage_state(zone, -(1UL << order), mt);
884
885 del_page_from_free_list(free_page, zone, order);
886 for (pfn = free_page_pfn;
887 pfn < free_page_pfn + (1UL << order);) {
888 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
889
890 free_page_order = min_t(unsigned int,
891 pfn ? __ffs(pfn) : order,
892 __fls(split_pfn_offset));
893 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
894 mt, FPI_NONE);
895 pfn += 1UL << free_page_order;
896 split_pfn_offset -= (1UL << free_page_order);
897 /* we have done the first part, now switch to second part */
898 if (split_pfn_offset == 0)
899 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
900 }
901 out:
902 spin_unlock_irqrestore(&zone->lock, flags);
903 return ret;
904 }
905 /*
906 * A bad page could be due to a number of fields. Instead of multiple branches,
907 * try and check multiple fields with one check. The caller must do a detailed
908 * check if necessary.
909 */
page_expected_state(struct page * page,unsigned long check_flags)910 static inline bool page_expected_state(struct page *page,
911 unsigned long check_flags)
912 {
913 if (unlikely(atomic_read(&page->_mapcount) != -1))
914 return false;
915
916 if (unlikely((unsigned long)page->mapping |
917 page_ref_count(page) |
918 #ifdef CONFIG_MEMCG
919 page->memcg_data |
920 #endif
921 (page->flags & check_flags)))
922 return false;
923
924 return true;
925 }
926
page_bad_reason(struct page * page,unsigned long flags)927 static const char *page_bad_reason(struct page *page, unsigned long flags)
928 {
929 const char *bad_reason = NULL;
930
931 if (unlikely(atomic_read(&page->_mapcount) != -1))
932 bad_reason = "nonzero mapcount";
933 if (unlikely(page->mapping != NULL))
934 bad_reason = "non-NULL mapping";
935 if (unlikely(page_ref_count(page) != 0))
936 bad_reason = "nonzero _refcount";
937 if (unlikely(page->flags & flags)) {
938 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
939 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
940 else
941 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
942 }
943 #ifdef CONFIG_MEMCG
944 if (unlikely(page->memcg_data))
945 bad_reason = "page still charged to cgroup";
946 #endif
947 return bad_reason;
948 }
949
free_page_is_bad_report(struct page * page)950 static void free_page_is_bad_report(struct page *page)
951 {
952 bad_page(page,
953 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
954 }
955
free_page_is_bad(struct page * page)956 static inline bool free_page_is_bad(struct page *page)
957 {
958 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
959 return false;
960
961 /* Something has gone sideways, find it */
962 free_page_is_bad_report(page);
963 return true;
964 }
965
is_check_pages_enabled(void)966 static inline bool is_check_pages_enabled(void)
967 {
968 return static_branch_unlikely(&check_pages_enabled);
969 }
970
free_tail_page_prepare(struct page * head_page,struct page * page)971 static int free_tail_page_prepare(struct page *head_page, struct page *page)
972 {
973 struct folio *folio = (struct folio *)head_page;
974 int ret = 1;
975
976 /*
977 * We rely page->lru.next never has bit 0 set, unless the page
978 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
979 */
980 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
981
982 if (!is_check_pages_enabled()) {
983 ret = 0;
984 goto out;
985 }
986 switch (page - head_page) {
987 case 1:
988 /* the first tail page: these may be in place of ->mapping */
989 if (unlikely(folio_entire_mapcount(folio))) {
990 bad_page(page, "nonzero entire_mapcount");
991 goto out;
992 }
993 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
994 bad_page(page, "nonzero nr_pages_mapped");
995 goto out;
996 }
997 if (unlikely(atomic_read(&folio->_pincount))) {
998 bad_page(page, "nonzero pincount");
999 goto out;
1000 }
1001 break;
1002 case 2:
1003 /*
1004 * the second tail page: ->mapping is
1005 * deferred_list.next -- ignore value.
1006 */
1007 break;
1008 default:
1009 if (page->mapping != TAIL_MAPPING) {
1010 bad_page(page, "corrupted mapping in tail page");
1011 goto out;
1012 }
1013 break;
1014 }
1015 if (unlikely(!PageTail(page))) {
1016 bad_page(page, "PageTail not set");
1017 goto out;
1018 }
1019 if (unlikely(compound_head(page) != head_page)) {
1020 bad_page(page, "compound_head not consistent");
1021 goto out;
1022 }
1023 ret = 0;
1024 out:
1025 page->mapping = NULL;
1026 clear_compound_head(page);
1027 return ret;
1028 }
1029
1030 /*
1031 * Skip KASAN memory poisoning when either:
1032 *
1033 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1034 * Tag-based KASAN modes skip pages freed via deferred memory initialization
1035 * using page tags instead (see below).
1036 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1037 * that error detection is disabled for accesses via the page address.
1038 *
1039 * Pages will have match-all tags in the following circumstances:
1040 *
1041 * 1. Pages are being initialized for the first time, including during deferred
1042 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1043 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1044 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1045 * 3. The allocation was excluded from being checked due to sampling,
1046 * see the call to kasan_unpoison_pages.
1047 *
1048 * Poisoning pages during deferred memory init will greatly lengthen the
1049 * process and cause problem in large memory systems as the deferred pages
1050 * initialization is done with interrupt disabled.
1051 *
1052 * Assuming that there will be no reference to those newly initialized
1053 * pages before they are ever allocated, this should have no effect on
1054 * KASAN memory tracking as the poison will be properly inserted at page
1055 * allocation time. The only corner case is when pages are allocated by
1056 * on-demand allocation and then freed again before the deferred pages
1057 * initialization is done, but this is not likely to happen.
1058 */
should_skip_kasan_poison(struct page * page,fpi_t fpi_flags)1059 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1060 {
1061 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1062 return deferred_pages_enabled();
1063
1064 return page_kasan_tag(page) == 0xff;
1065 }
1066
kernel_init_pages(struct page * page,int numpages)1067 static void kernel_init_pages(struct page *page, int numpages)
1068 {
1069 int i;
1070
1071 /* s390's use of memset() could override KASAN redzones. */
1072 kasan_disable_current();
1073 for (i = 0; i < numpages; i++)
1074 clear_highpage_kasan_tagged(page + i);
1075 kasan_enable_current();
1076 }
1077
free_pages_prepare(struct page * page,unsigned int order,fpi_t fpi_flags)1078 static __always_inline bool free_pages_prepare(struct page *page,
1079 unsigned int order, fpi_t fpi_flags)
1080 {
1081 int bad = 0;
1082 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1083 bool init = want_init_on_free();
1084
1085 VM_BUG_ON_PAGE(PageTail(page), page);
1086
1087 trace_mm_page_free(page, order);
1088 kmsan_free_page(page, order);
1089
1090 if (unlikely(PageHWPoison(page)) && !order) {
1091 /*
1092 * Do not let hwpoison pages hit pcplists/buddy
1093 * Untie memcg state and reset page's owner
1094 */
1095 if (memcg_kmem_online() && PageMemcgKmem(page))
1096 __memcg_kmem_uncharge_page(page, order);
1097 reset_page_owner(page, order);
1098 page_table_check_free(page, order);
1099 return false;
1100 }
1101
1102 /*
1103 * Check tail pages before head page information is cleared to
1104 * avoid checking PageCompound for order-0 pages.
1105 */
1106 if (unlikely(order)) {
1107 bool compound = PageCompound(page);
1108 int i;
1109
1110 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1111
1112 if (compound)
1113 page[1].flags &= ~PAGE_FLAGS_SECOND;
1114 for (i = 1; i < (1 << order); i++) {
1115 if (compound)
1116 bad += free_tail_page_prepare(page, page + i);
1117 if (is_check_pages_enabled()) {
1118 if (free_page_is_bad(page + i)) {
1119 bad++;
1120 continue;
1121 }
1122 }
1123 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1124 }
1125 }
1126 if (PageMappingFlags(page))
1127 page->mapping = NULL;
1128 if (memcg_kmem_online() && PageMemcgKmem(page))
1129 __memcg_kmem_uncharge_page(page, order);
1130 if (is_check_pages_enabled()) {
1131 if (free_page_is_bad(page))
1132 bad++;
1133 if (bad)
1134 return false;
1135 }
1136
1137 page_cpupid_reset_last(page);
1138 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1139 reset_page_owner(page, order);
1140 page_table_check_free(page, order);
1141
1142 if (!PageHighMem(page)) {
1143 debug_check_no_locks_freed(page_address(page),
1144 PAGE_SIZE << order);
1145 debug_check_no_obj_freed(page_address(page),
1146 PAGE_SIZE << order);
1147 }
1148
1149 kernel_poison_pages(page, 1 << order);
1150
1151 /*
1152 * As memory initialization might be integrated into KASAN,
1153 * KASAN poisoning and memory initialization code must be
1154 * kept together to avoid discrepancies in behavior.
1155 *
1156 * With hardware tag-based KASAN, memory tags must be set before the
1157 * page becomes unavailable via debug_pagealloc or arch_free_page.
1158 */
1159 if (!skip_kasan_poison) {
1160 kasan_poison_pages(page, order, init);
1161
1162 /* Memory is already initialized if KASAN did it internally. */
1163 if (kasan_has_integrated_init())
1164 init = false;
1165 }
1166 if (init)
1167 kernel_init_pages(page, 1 << order);
1168
1169 /*
1170 * arch_free_page() can make the page's contents inaccessible. s390
1171 * does this. So nothing which can access the page's contents should
1172 * happen after this.
1173 */
1174 arch_free_page(page, order);
1175
1176 debug_pagealloc_unmap_pages(page, 1 << order);
1177
1178 return true;
1179 }
1180
1181 /*
1182 * Frees a number of pages from the PCP lists
1183 * Assumes all pages on list are in same zone.
1184 * count is the number of pages to free.
1185 */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp,int pindex)1186 static void free_pcppages_bulk(struct zone *zone, int count,
1187 struct per_cpu_pages *pcp,
1188 int pindex)
1189 {
1190 unsigned long flags;
1191 unsigned int order;
1192 bool isolated_pageblocks;
1193 struct page *page;
1194
1195 /*
1196 * Ensure proper count is passed which otherwise would stuck in the
1197 * below while (list_empty(list)) loop.
1198 */
1199 count = min(pcp->count, count);
1200
1201 /* Ensure requested pindex is drained first. */
1202 pindex = pindex - 1;
1203
1204 spin_lock_irqsave(&zone->lock, flags);
1205 isolated_pageblocks = has_isolate_pageblock(zone);
1206
1207 while (count > 0) {
1208 struct list_head *list;
1209 int nr_pages;
1210
1211 /* Remove pages from lists in a round-robin fashion. */
1212 do {
1213 if (++pindex > NR_PCP_LISTS - 1)
1214 pindex = 0;
1215 list = &pcp->lists[pindex];
1216 } while (list_empty(list));
1217
1218 order = pindex_to_order(pindex);
1219 nr_pages = 1 << order;
1220 do {
1221 int mt;
1222
1223 page = list_last_entry(list, struct page, pcp_list);
1224 mt = get_pcppage_migratetype(page);
1225
1226 /* must delete to avoid corrupting pcp list */
1227 list_del(&page->pcp_list);
1228 count -= nr_pages;
1229 pcp->count -= nr_pages;
1230
1231 /* MIGRATE_ISOLATE page should not go to pcplists */
1232 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1233 /* Pageblock could have been isolated meanwhile */
1234 if (unlikely(isolated_pageblocks))
1235 mt = get_pageblock_migratetype(page);
1236
1237 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1238 trace_mm_page_pcpu_drain(page, order, mt);
1239 } while (count > 0 && !list_empty(list));
1240 }
1241
1242 spin_unlock_irqrestore(&zone->lock, flags);
1243 }
1244
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype,fpi_t fpi_flags)1245 static void free_one_page(struct zone *zone,
1246 struct page *page, unsigned long pfn,
1247 unsigned int order,
1248 int migratetype, fpi_t fpi_flags)
1249 {
1250 unsigned long flags;
1251
1252 spin_lock_irqsave(&zone->lock, flags);
1253 if (unlikely(has_isolate_pageblock(zone) ||
1254 is_migrate_isolate(migratetype))) {
1255 migratetype = get_pfnblock_migratetype(page, pfn);
1256 }
1257 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1258 spin_unlock_irqrestore(&zone->lock, flags);
1259 }
1260
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1261 static void __free_pages_ok(struct page *page, unsigned int order,
1262 fpi_t fpi_flags)
1263 {
1264 unsigned long flags;
1265 int migratetype;
1266 unsigned long pfn = page_to_pfn(page);
1267 struct zone *zone = page_zone(page);
1268
1269 if (!free_pages_prepare(page, order, fpi_flags))
1270 return;
1271
1272 /*
1273 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1274 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1275 * This will reduce the lock holding time.
1276 */
1277 migratetype = get_pfnblock_migratetype(page, pfn);
1278
1279 spin_lock_irqsave(&zone->lock, flags);
1280 if (unlikely(has_isolate_pageblock(zone) ||
1281 is_migrate_isolate(migratetype))) {
1282 migratetype = get_pfnblock_migratetype(page, pfn);
1283 }
1284 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1285 spin_unlock_irqrestore(&zone->lock, flags);
1286
1287 __count_vm_events(PGFREE, 1 << order);
1288 }
1289
__free_pages_core(struct page * page,unsigned int order)1290 void __free_pages_core(struct page *page, unsigned int order)
1291 {
1292 unsigned int nr_pages = 1 << order;
1293 struct page *p = page;
1294 unsigned int loop;
1295
1296 /*
1297 * When initializing the memmap, __init_single_page() sets the refcount
1298 * of all pages to 1 ("allocated"/"not free"). We have to set the
1299 * refcount of all involved pages to 0.
1300 */
1301 prefetchw(p);
1302 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1303 prefetchw(p + 1);
1304 __ClearPageReserved(p);
1305 set_page_count(p, 0);
1306 }
1307 __ClearPageReserved(p);
1308 set_page_count(p, 0);
1309
1310 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1311
1312 if (page_contains_unaccepted(page, order)) {
1313 if (order == MAX_ORDER && __free_unaccepted(page))
1314 return;
1315
1316 accept_page(page, order);
1317 }
1318
1319 /*
1320 * Bypass PCP and place fresh pages right to the tail, primarily
1321 * relevant for memory onlining.
1322 */
1323 __free_pages_ok(page, order, FPI_TO_TAIL);
1324 }
1325
1326 /*
1327 * Check that the whole (or subset of) a pageblock given by the interval of
1328 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1329 * with the migration of free compaction scanner.
1330 *
1331 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1332 *
1333 * It's possible on some configurations to have a setup like node0 node1 node0
1334 * i.e. it's possible that all pages within a zones range of pages do not
1335 * belong to a single zone. We assume that a border between node0 and node1
1336 * can occur within a single pageblock, but not a node0 node1 node0
1337 * interleaving within a single pageblock. It is therefore sufficient to check
1338 * the first and last page of a pageblock and avoid checking each individual
1339 * page in a pageblock.
1340 *
1341 * Note: the function may return non-NULL struct page even for a page block
1342 * which contains a memory hole (i.e. there is no physical memory for a subset
1343 * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1344 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1345 * even though the start pfn is online and valid. This should be safe most of
1346 * the time because struct pages are still initialized via init_unavailable_range()
1347 * and pfn walkers shouldn't touch any physical memory range for which they do
1348 * not recognize any specific metadata in struct pages.
1349 */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1350 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1351 unsigned long end_pfn, struct zone *zone)
1352 {
1353 struct page *start_page;
1354 struct page *end_page;
1355
1356 /* end_pfn is one past the range we are checking */
1357 end_pfn--;
1358
1359 if (!pfn_valid(end_pfn))
1360 return NULL;
1361
1362 start_page = pfn_to_online_page(start_pfn);
1363 if (!start_page)
1364 return NULL;
1365
1366 if (page_zone(start_page) != zone)
1367 return NULL;
1368
1369 end_page = pfn_to_page(end_pfn);
1370
1371 /* This gives a shorter code than deriving page_zone(end_page) */
1372 if (page_zone_id(start_page) != page_zone_id(end_page))
1373 return NULL;
1374
1375 return start_page;
1376 }
1377
1378 /*
1379 * The order of subdivision here is critical for the IO subsystem.
1380 * Please do not alter this order without good reasons and regression
1381 * testing. Specifically, as large blocks of memory are subdivided,
1382 * the order in which smaller blocks are delivered depends on the order
1383 * they're subdivided in this function. This is the primary factor
1384 * influencing the order in which pages are delivered to the IO
1385 * subsystem according to empirical testing, and this is also justified
1386 * by considering the behavior of a buddy system containing a single
1387 * large block of memory acted on by a series of small allocations.
1388 * This behavior is a critical factor in sglist merging's success.
1389 *
1390 * -- nyc
1391 */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1392 static inline void expand(struct zone *zone, struct page *page,
1393 int low, int high, int migratetype)
1394 {
1395 unsigned long size = 1 << high;
1396
1397 while (high > low) {
1398 high--;
1399 size >>= 1;
1400 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1401
1402 /*
1403 * Mark as guard pages (or page), that will allow to
1404 * merge back to allocator when buddy will be freed.
1405 * Corresponding page table entries will not be touched,
1406 * pages will stay not present in virtual address space
1407 */
1408 if (set_page_guard(zone, &page[size], high, migratetype))
1409 continue;
1410
1411 add_to_free_list(&page[size], zone, high, migratetype);
1412 set_buddy_order(&page[size], high);
1413 }
1414 }
1415
check_new_page_bad(struct page * page)1416 static void check_new_page_bad(struct page *page)
1417 {
1418 if (unlikely(page->flags & __PG_HWPOISON)) {
1419 /* Don't complain about hwpoisoned pages */
1420 page_mapcount_reset(page); /* remove PageBuddy */
1421 return;
1422 }
1423
1424 bad_page(page,
1425 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1426 }
1427
1428 /*
1429 * This page is about to be returned from the page allocator
1430 */
check_new_page(struct page * page)1431 static int check_new_page(struct page *page)
1432 {
1433 if (likely(page_expected_state(page,
1434 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1435 return 0;
1436
1437 check_new_page_bad(page);
1438 return 1;
1439 }
1440
check_new_pages(struct page * page,unsigned int order)1441 static inline bool check_new_pages(struct page *page, unsigned int order)
1442 {
1443 if (is_check_pages_enabled()) {
1444 for (int i = 0; i < (1 << order); i++) {
1445 struct page *p = page + i;
1446
1447 if (check_new_page(p))
1448 return true;
1449 }
1450 }
1451
1452 return false;
1453 }
1454
should_skip_kasan_unpoison(gfp_t flags)1455 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1456 {
1457 /* Don't skip if a software KASAN mode is enabled. */
1458 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1459 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1460 return false;
1461
1462 /* Skip, if hardware tag-based KASAN is not enabled. */
1463 if (!kasan_hw_tags_enabled())
1464 return true;
1465
1466 /*
1467 * With hardware tag-based KASAN enabled, skip if this has been
1468 * requested via __GFP_SKIP_KASAN.
1469 */
1470 return flags & __GFP_SKIP_KASAN;
1471 }
1472
should_skip_init(gfp_t flags)1473 static inline bool should_skip_init(gfp_t flags)
1474 {
1475 /* Don't skip, if hardware tag-based KASAN is not enabled. */
1476 if (!kasan_hw_tags_enabled())
1477 return false;
1478
1479 /* For hardware tag-based KASAN, skip if requested. */
1480 return (flags & __GFP_SKIP_ZERO);
1481 }
1482
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)1483 inline void post_alloc_hook(struct page *page, unsigned int order,
1484 gfp_t gfp_flags)
1485 {
1486 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1487 !should_skip_init(gfp_flags);
1488 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1489 int i;
1490
1491 set_page_private(page, 0);
1492 set_page_refcounted(page);
1493
1494 arch_alloc_page(page, order);
1495 debug_pagealloc_map_pages(page, 1 << order);
1496
1497 /*
1498 * Page unpoisoning must happen before memory initialization.
1499 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1500 * allocations and the page unpoisoning code will complain.
1501 */
1502 kernel_unpoison_pages(page, 1 << order);
1503
1504 /*
1505 * As memory initialization might be integrated into KASAN,
1506 * KASAN unpoisoning and memory initializion code must be
1507 * kept together to avoid discrepancies in behavior.
1508 */
1509
1510 /*
1511 * If memory tags should be zeroed
1512 * (which happens only when memory should be initialized as well).
1513 */
1514 if (zero_tags) {
1515 /* Initialize both memory and memory tags. */
1516 for (i = 0; i != 1 << order; ++i)
1517 tag_clear_highpage(page + i);
1518
1519 /* Take note that memory was initialized by the loop above. */
1520 init = false;
1521 }
1522 if (!should_skip_kasan_unpoison(gfp_flags) &&
1523 kasan_unpoison_pages(page, order, init)) {
1524 /* Take note that memory was initialized by KASAN. */
1525 if (kasan_has_integrated_init())
1526 init = false;
1527 } else {
1528 /*
1529 * If memory tags have not been set by KASAN, reset the page
1530 * tags to ensure page_address() dereferencing does not fault.
1531 */
1532 for (i = 0; i != 1 << order; ++i)
1533 page_kasan_tag_reset(page + i);
1534 }
1535 /* If memory is still not initialized, initialize it now. */
1536 if (init)
1537 kernel_init_pages(page, 1 << order);
1538
1539 set_page_owner(page, order, gfp_flags);
1540 page_table_check_alloc(page, order);
1541 }
1542
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)1543 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1544 unsigned int alloc_flags)
1545 {
1546 post_alloc_hook(page, order, gfp_flags);
1547
1548 if (order && (gfp_flags & __GFP_COMP))
1549 prep_compound_page(page, order);
1550
1551 /*
1552 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1553 * allocate the page. The expectation is that the caller is taking
1554 * steps that will free more memory. The caller should avoid the page
1555 * being used for !PFMEMALLOC purposes.
1556 */
1557 if (alloc_flags & ALLOC_NO_WATERMARKS)
1558 set_page_pfmemalloc(page);
1559 else
1560 clear_page_pfmemalloc(page);
1561 }
1562
1563 /*
1564 * Go through the free lists for the given migratetype and remove
1565 * the smallest available page from the freelists
1566 */
1567 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1568 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1569 int migratetype)
1570 {
1571 unsigned int current_order;
1572 struct free_area *area;
1573 struct page *page;
1574
1575 /* Find a page of the appropriate size in the preferred list */
1576 for (current_order = order; current_order <= MAX_ORDER; ++current_order) {
1577 area = &(zone->free_area[current_order]);
1578 page = get_page_from_free_area(area, migratetype);
1579 if (!page)
1580 continue;
1581 del_page_from_free_list(page, zone, current_order);
1582 expand(zone, page, order, current_order, migratetype);
1583 set_pcppage_migratetype(page, migratetype);
1584 trace_mm_page_alloc_zone_locked(page, order, migratetype,
1585 pcp_allowed_order(order) &&
1586 migratetype < MIGRATE_PCPTYPES);
1587 return page;
1588 }
1589
1590 return NULL;
1591 }
1592
1593
1594 /*
1595 * This array describes the order lists are fallen back to when
1596 * the free lists for the desirable migrate type are depleted
1597 *
1598 * The other migratetypes do not have fallbacks.
1599 */
1600 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1601 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
1602 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1603 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
1604 };
1605
1606 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1607 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1608 unsigned int order)
1609 {
1610 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1611 }
1612 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1613 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1614 unsigned int order) { return NULL; }
1615 #endif
1616
1617 /*
1618 * Move the free pages in a range to the freelist tail of the requested type.
1619 * Note that start_page and end_pages are not aligned on a pageblock
1620 * boundary. If alignment is required, use move_freepages_block()
1621 */
move_freepages(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,int migratetype,int * num_movable)1622 static int move_freepages(struct zone *zone,
1623 unsigned long start_pfn, unsigned long end_pfn,
1624 int migratetype, int *num_movable)
1625 {
1626 struct page *page;
1627 unsigned long pfn;
1628 unsigned int order;
1629 int pages_moved = 0;
1630
1631 for (pfn = start_pfn; pfn <= end_pfn;) {
1632 page = pfn_to_page(pfn);
1633 if (!PageBuddy(page)) {
1634 /*
1635 * We assume that pages that could be isolated for
1636 * migration are movable. But we don't actually try
1637 * isolating, as that would be expensive.
1638 */
1639 if (num_movable &&
1640 (PageLRU(page) || __PageMovable(page)))
1641 (*num_movable)++;
1642 pfn++;
1643 continue;
1644 }
1645
1646 /* Make sure we are not inadvertently changing nodes */
1647 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1648 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1649
1650 order = buddy_order(page);
1651 move_to_free_list(page, zone, order, migratetype);
1652 pfn += 1 << order;
1653 pages_moved += 1 << order;
1654 }
1655
1656 return pages_moved;
1657 }
1658
move_freepages_block(struct zone * zone,struct page * page,int migratetype,int * num_movable)1659 int move_freepages_block(struct zone *zone, struct page *page,
1660 int migratetype, int *num_movable)
1661 {
1662 unsigned long start_pfn, end_pfn, pfn;
1663
1664 if (num_movable)
1665 *num_movable = 0;
1666
1667 pfn = page_to_pfn(page);
1668 start_pfn = pageblock_start_pfn(pfn);
1669 end_pfn = pageblock_end_pfn(pfn) - 1;
1670
1671 /* Do not cross zone boundaries */
1672 if (!zone_spans_pfn(zone, start_pfn))
1673 start_pfn = pfn;
1674 if (!zone_spans_pfn(zone, end_pfn))
1675 return 0;
1676
1677 return move_freepages(zone, start_pfn, end_pfn, migratetype,
1678 num_movable);
1679 }
1680
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)1681 static void change_pageblock_range(struct page *pageblock_page,
1682 int start_order, int migratetype)
1683 {
1684 int nr_pageblocks = 1 << (start_order - pageblock_order);
1685
1686 while (nr_pageblocks--) {
1687 set_pageblock_migratetype(pageblock_page, migratetype);
1688 pageblock_page += pageblock_nr_pages;
1689 }
1690 }
1691
1692 /*
1693 * When we are falling back to another migratetype during allocation, try to
1694 * steal extra free pages from the same pageblocks to satisfy further
1695 * allocations, instead of polluting multiple pageblocks.
1696 *
1697 * If we are stealing a relatively large buddy page, it is likely there will
1698 * be more free pages in the pageblock, so try to steal them all. For
1699 * reclaimable and unmovable allocations, we steal regardless of page size,
1700 * as fragmentation caused by those allocations polluting movable pageblocks
1701 * is worse than movable allocations stealing from unmovable and reclaimable
1702 * pageblocks.
1703 */
can_steal_fallback(unsigned int order,int start_mt)1704 static bool can_steal_fallback(unsigned int order, int start_mt)
1705 {
1706 /*
1707 * Leaving this order check is intended, although there is
1708 * relaxed order check in next check. The reason is that
1709 * we can actually steal whole pageblock if this condition met,
1710 * but, below check doesn't guarantee it and that is just heuristic
1711 * so could be changed anytime.
1712 */
1713 if (order >= pageblock_order)
1714 return true;
1715
1716 if (order >= pageblock_order / 2 ||
1717 start_mt == MIGRATE_RECLAIMABLE ||
1718 start_mt == MIGRATE_UNMOVABLE ||
1719 page_group_by_mobility_disabled)
1720 return true;
1721
1722 return false;
1723 }
1724
boost_watermark(struct zone * zone)1725 static inline bool boost_watermark(struct zone *zone)
1726 {
1727 unsigned long max_boost;
1728
1729 if (!watermark_boost_factor)
1730 return false;
1731 /*
1732 * Don't bother in zones that are unlikely to produce results.
1733 * On small machines, including kdump capture kernels running
1734 * in a small area, boosting the watermark can cause an out of
1735 * memory situation immediately.
1736 */
1737 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1738 return false;
1739
1740 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1741 watermark_boost_factor, 10000);
1742
1743 /*
1744 * high watermark may be uninitialised if fragmentation occurs
1745 * very early in boot so do not boost. We do not fall
1746 * through and boost by pageblock_nr_pages as failing
1747 * allocations that early means that reclaim is not going
1748 * to help and it may even be impossible to reclaim the
1749 * boosted watermark resulting in a hang.
1750 */
1751 if (!max_boost)
1752 return false;
1753
1754 max_boost = max(pageblock_nr_pages, max_boost);
1755
1756 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1757 max_boost);
1758
1759 return true;
1760 }
1761
1762 /*
1763 * This function implements actual steal behaviour. If order is large enough,
1764 * we can steal whole pageblock. If not, we first move freepages in this
1765 * pageblock to our migratetype and determine how many already-allocated pages
1766 * are there in the pageblock with a compatible migratetype. If at least half
1767 * of pages are free or compatible, we can change migratetype of the pageblock
1768 * itself, so pages freed in the future will be put on the correct free list.
1769 */
steal_suitable_fallback(struct zone * zone,struct page * page,unsigned int alloc_flags,int start_type,bool whole_block)1770 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1771 unsigned int alloc_flags, int start_type, bool whole_block)
1772 {
1773 unsigned int current_order = buddy_order(page);
1774 int free_pages, movable_pages, alike_pages;
1775 int old_block_type;
1776
1777 old_block_type = get_pageblock_migratetype(page);
1778
1779 /*
1780 * This can happen due to races and we want to prevent broken
1781 * highatomic accounting.
1782 */
1783 if (is_migrate_highatomic(old_block_type))
1784 goto single_page;
1785
1786 /* Take ownership for orders >= pageblock_order */
1787 if (current_order >= pageblock_order) {
1788 change_pageblock_range(page, current_order, start_type);
1789 goto single_page;
1790 }
1791
1792 /*
1793 * Boost watermarks to increase reclaim pressure to reduce the
1794 * likelihood of future fallbacks. Wake kswapd now as the node
1795 * may be balanced overall and kswapd will not wake naturally.
1796 */
1797 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1798 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1799
1800 /* We are not allowed to try stealing from the whole block */
1801 if (!whole_block)
1802 goto single_page;
1803
1804 free_pages = move_freepages_block(zone, page, start_type,
1805 &movable_pages);
1806 /* moving whole block can fail due to zone boundary conditions */
1807 if (!free_pages)
1808 goto single_page;
1809
1810 /*
1811 * Determine how many pages are compatible with our allocation.
1812 * For movable allocation, it's the number of movable pages which
1813 * we just obtained. For other types it's a bit more tricky.
1814 */
1815 if (start_type == MIGRATE_MOVABLE) {
1816 alike_pages = movable_pages;
1817 } else {
1818 /*
1819 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1820 * to MOVABLE pageblock, consider all non-movable pages as
1821 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1822 * vice versa, be conservative since we can't distinguish the
1823 * exact migratetype of non-movable pages.
1824 */
1825 if (old_block_type == MIGRATE_MOVABLE)
1826 alike_pages = pageblock_nr_pages
1827 - (free_pages + movable_pages);
1828 else
1829 alike_pages = 0;
1830 }
1831 /*
1832 * If a sufficient number of pages in the block are either free or of
1833 * compatible migratability as our allocation, claim the whole block.
1834 */
1835 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1836 page_group_by_mobility_disabled)
1837 set_pageblock_migratetype(page, start_type);
1838
1839 return;
1840
1841 single_page:
1842 move_to_free_list(page, zone, current_order, start_type);
1843 }
1844
1845 /*
1846 * Check whether there is a suitable fallback freepage with requested order.
1847 * If only_stealable is true, this function returns fallback_mt only if
1848 * we can steal other freepages all together. This would help to reduce
1849 * fragmentation due to mixed migratetype pages in one pageblock.
1850 */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)1851 int find_suitable_fallback(struct free_area *area, unsigned int order,
1852 int migratetype, bool only_stealable, bool *can_steal)
1853 {
1854 int i;
1855 int fallback_mt;
1856
1857 if (area->nr_free == 0)
1858 return -1;
1859
1860 *can_steal = false;
1861 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1862 fallback_mt = fallbacks[migratetype][i];
1863 if (free_area_empty(area, fallback_mt))
1864 continue;
1865
1866 if (can_steal_fallback(order, migratetype))
1867 *can_steal = true;
1868
1869 if (!only_stealable)
1870 return fallback_mt;
1871
1872 if (*can_steal)
1873 return fallback_mt;
1874 }
1875
1876 return -1;
1877 }
1878
1879 /*
1880 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1881 * there are no empty page blocks that contain a page with a suitable order
1882 */
reserve_highatomic_pageblock(struct page * page,struct zone * zone)1883 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1884 {
1885 int mt;
1886 unsigned long max_managed, flags;
1887
1888 /*
1889 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1890 * Check is race-prone but harmless.
1891 */
1892 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
1893 if (zone->nr_reserved_highatomic >= max_managed)
1894 return;
1895
1896 spin_lock_irqsave(&zone->lock, flags);
1897
1898 /* Recheck the nr_reserved_highatomic limit under the lock */
1899 if (zone->nr_reserved_highatomic >= max_managed)
1900 goto out_unlock;
1901
1902 /* Yoink! */
1903 mt = get_pageblock_migratetype(page);
1904 /* Only reserve normal pageblocks (i.e., they can merge with others) */
1905 if (migratetype_is_mergeable(mt)) {
1906 zone->nr_reserved_highatomic += pageblock_nr_pages;
1907 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1908 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1909 }
1910
1911 out_unlock:
1912 spin_unlock_irqrestore(&zone->lock, flags);
1913 }
1914
1915 /*
1916 * Used when an allocation is about to fail under memory pressure. This
1917 * potentially hurts the reliability of high-order allocations when under
1918 * intense memory pressure but failed atomic allocations should be easier
1919 * to recover from than an OOM.
1920 *
1921 * If @force is true, try to unreserve a pageblock even though highatomic
1922 * pageblock is exhausted.
1923 */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)1924 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1925 bool force)
1926 {
1927 struct zonelist *zonelist = ac->zonelist;
1928 unsigned long flags;
1929 struct zoneref *z;
1930 struct zone *zone;
1931 struct page *page;
1932 int order;
1933 bool ret;
1934
1935 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1936 ac->nodemask) {
1937 /*
1938 * Preserve at least one pageblock unless memory pressure
1939 * is really high.
1940 */
1941 if (!force && zone->nr_reserved_highatomic <=
1942 pageblock_nr_pages)
1943 continue;
1944
1945 spin_lock_irqsave(&zone->lock, flags);
1946 for (order = 0; order <= MAX_ORDER; order++) {
1947 struct free_area *area = &(zone->free_area[order]);
1948
1949 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1950 if (!page)
1951 continue;
1952
1953 /*
1954 * In page freeing path, migratetype change is racy so
1955 * we can counter several free pages in a pageblock
1956 * in this loop although we changed the pageblock type
1957 * from highatomic to ac->migratetype. So we should
1958 * adjust the count once.
1959 */
1960 if (is_migrate_highatomic_page(page)) {
1961 /*
1962 * It should never happen but changes to
1963 * locking could inadvertently allow a per-cpu
1964 * drain to add pages to MIGRATE_HIGHATOMIC
1965 * while unreserving so be safe and watch for
1966 * underflows.
1967 */
1968 zone->nr_reserved_highatomic -= min(
1969 pageblock_nr_pages,
1970 zone->nr_reserved_highatomic);
1971 }
1972
1973 /*
1974 * Convert to ac->migratetype and avoid the normal
1975 * pageblock stealing heuristics. Minimally, the caller
1976 * is doing the work and needs the pages. More
1977 * importantly, if the block was always converted to
1978 * MIGRATE_UNMOVABLE or another type then the number
1979 * of pageblocks that cannot be completely freed
1980 * may increase.
1981 */
1982 set_pageblock_migratetype(page, ac->migratetype);
1983 ret = move_freepages_block(zone, page, ac->migratetype,
1984 NULL);
1985 if (ret) {
1986 spin_unlock_irqrestore(&zone->lock, flags);
1987 return ret;
1988 }
1989 }
1990 spin_unlock_irqrestore(&zone->lock, flags);
1991 }
1992
1993 return false;
1994 }
1995
1996 /*
1997 * Try finding a free buddy page on the fallback list and put it on the free
1998 * list of requested migratetype, possibly along with other pages from the same
1999 * block, depending on fragmentation avoidance heuristics. Returns true if
2000 * fallback was found so that __rmqueue_smallest() can grab it.
2001 *
2002 * The use of signed ints for order and current_order is a deliberate
2003 * deviation from the rest of this file, to make the for loop
2004 * condition simpler.
2005 */
2006 static __always_inline bool
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2007 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2008 unsigned int alloc_flags)
2009 {
2010 struct free_area *area;
2011 int current_order;
2012 int min_order = order;
2013 struct page *page;
2014 int fallback_mt;
2015 bool can_steal;
2016
2017 /*
2018 * Do not steal pages from freelists belonging to other pageblocks
2019 * i.e. orders < pageblock_order. If there are no local zones free,
2020 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2021 */
2022 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2023 min_order = pageblock_order;
2024
2025 /*
2026 * Find the largest available free page in the other list. This roughly
2027 * approximates finding the pageblock with the most free pages, which
2028 * would be too costly to do exactly.
2029 */
2030 for (current_order = MAX_ORDER; current_order >= min_order;
2031 --current_order) {
2032 area = &(zone->free_area[current_order]);
2033 fallback_mt = find_suitable_fallback(area, current_order,
2034 start_migratetype, false, &can_steal);
2035 if (fallback_mt == -1)
2036 continue;
2037
2038 /*
2039 * We cannot steal all free pages from the pageblock and the
2040 * requested migratetype is movable. In that case it's better to
2041 * steal and split the smallest available page instead of the
2042 * largest available page, because even if the next movable
2043 * allocation falls back into a different pageblock than this
2044 * one, it won't cause permanent fragmentation.
2045 */
2046 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2047 && current_order > order)
2048 goto find_smallest;
2049
2050 goto do_steal;
2051 }
2052
2053 return false;
2054
2055 find_smallest:
2056 for (current_order = order; current_order <= MAX_ORDER;
2057 current_order++) {
2058 area = &(zone->free_area[current_order]);
2059 fallback_mt = find_suitable_fallback(area, current_order,
2060 start_migratetype, false, &can_steal);
2061 if (fallback_mt != -1)
2062 break;
2063 }
2064
2065 /*
2066 * This should not happen - we already found a suitable fallback
2067 * when looking for the largest page.
2068 */
2069 VM_BUG_ON(current_order > MAX_ORDER);
2070
2071 do_steal:
2072 page = get_page_from_free_area(area, fallback_mt);
2073
2074 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2075 can_steal);
2076
2077 trace_mm_page_alloc_extfrag(page, order, current_order,
2078 start_migratetype, fallback_mt);
2079
2080 return true;
2081
2082 }
2083
2084 static __always_inline struct page *
__rmqueue_with_cma_reuse(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2085 __rmqueue_with_cma_reuse(struct zone *zone, unsigned int order,
2086 int migratetype, unsigned int alloc_flags)
2087 {
2088 struct page *page = NULL;
2089 retry:
2090 page = __rmqueue_smallest(zone, order, migratetype);
2091
2092 if (unlikely(!page) && is_migrate_cma(migratetype)) {
2093 migratetype = MIGRATE_MOVABLE;
2094 alloc_flags &= ~ALLOC_CMA;
2095 page = __rmqueue_smallest(zone, order, migratetype);
2096 }
2097
2098 if (unlikely(!page) &&
2099 __rmqueue_fallback(zone, order, migratetype, alloc_flags))
2100 goto retry;
2101
2102 return page;
2103 }
2104
2105 /*
2106 * Do the hard work of removing an element from the buddy allocator.
2107 * Call me with the zone->lock already held.
2108 */
2109 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2110 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2111 unsigned int alloc_flags)
2112 {
2113 struct page *page;
2114
2115 #ifdef CONFIG_CMA_REUSE
2116 page = __rmqueue_with_cma_reuse(zone, order, migratetype, alloc_flags);
2117 if (page)
2118 return page;
2119 #endif
2120
2121 if (IS_ENABLED(CONFIG_CMA)) {
2122 /*
2123 * Balance movable allocations between regular and CMA areas by
2124 * allocating from CMA when over half of the zone's free memory
2125 * is in the CMA area.
2126 */
2127 if (alloc_flags & ALLOC_CMA &&
2128 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2129 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2130 page = __rmqueue_cma_fallback(zone, order);
2131 if (page)
2132 return page;
2133 }
2134 }
2135 retry:
2136 page = __rmqueue_smallest(zone, order, migratetype);
2137 if (unlikely(!page)) {
2138 if (alloc_flags & ALLOC_CMA)
2139 page = __rmqueue_cma_fallback(zone, order);
2140
2141 if (!page && __rmqueue_fallback(zone, order, migratetype,
2142 alloc_flags))
2143 goto retry;
2144 }
2145 return page;
2146 }
2147
2148 /*
2149 * Obtain a specified number of elements from the buddy allocator, all under
2150 * a single hold of the lock, for efficiency. Add them to the supplied list.
2151 * Returns the number of new pages which were placed at *list.
2152 */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2153 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2154 unsigned long count, struct list_head *list,
2155 int migratetype, unsigned int alloc_flags)
2156 {
2157 unsigned long flags;
2158 int i;
2159
2160 spin_lock_irqsave(&zone->lock, flags);
2161 for (i = 0; i < count; ++i) {
2162 struct page *page = __rmqueue(zone, order, migratetype,
2163 alloc_flags);
2164 if (unlikely(page == NULL))
2165 break;
2166
2167 /*
2168 * Split buddy pages returned by expand() are received here in
2169 * physical page order. The page is added to the tail of
2170 * caller's list. From the callers perspective, the linked list
2171 * is ordered by page number under some conditions. This is
2172 * useful for IO devices that can forward direction from the
2173 * head, thus also in the physical page order. This is useful
2174 * for IO devices that can merge IO requests if the physical
2175 * pages are ordered properly.
2176 */
2177 list_add_tail(&page->pcp_list, list);
2178 if (is_migrate_cma(get_pcppage_migratetype(page)))
2179 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2180 -(1 << order));
2181 }
2182
2183 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2184 spin_unlock_irqrestore(&zone->lock, flags);
2185
2186 return i;
2187 }
2188
2189 #ifdef CONFIG_NUMA
2190 /*
2191 * Called from the vmstat counter updater to drain pagesets of this
2192 * currently executing processor on remote nodes after they have
2193 * expired.
2194 */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2195 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2196 {
2197 int to_drain, batch;
2198
2199 batch = READ_ONCE(pcp->batch);
2200 to_drain = min(pcp->count, batch);
2201 if (to_drain > 0) {
2202 spin_lock(&pcp->lock);
2203 free_pcppages_bulk(zone, to_drain, pcp, 0);
2204 spin_unlock(&pcp->lock);
2205 }
2206 }
2207 #endif
2208
2209 /*
2210 * Drain pcplists of the indicated processor and zone.
2211 */
drain_pages_zone(unsigned int cpu,struct zone * zone)2212 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2213 {
2214 struct per_cpu_pages *pcp;
2215
2216 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2217 if (pcp->count) {
2218 spin_lock(&pcp->lock);
2219 free_pcppages_bulk(zone, pcp->count, pcp, 0);
2220 spin_unlock(&pcp->lock);
2221 }
2222 }
2223
2224 /*
2225 * Drain pcplists of all zones on the indicated processor.
2226 */
drain_pages(unsigned int cpu)2227 static void drain_pages(unsigned int cpu)
2228 {
2229 struct zone *zone;
2230
2231 for_each_populated_zone(zone) {
2232 drain_pages_zone(cpu, zone);
2233 }
2234 }
2235
2236 /*
2237 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2238 */
drain_local_pages(struct zone * zone)2239 void drain_local_pages(struct zone *zone)
2240 {
2241 int cpu = smp_processor_id();
2242
2243 if (zone)
2244 drain_pages_zone(cpu, zone);
2245 else
2246 drain_pages(cpu);
2247 }
2248
2249 /*
2250 * The implementation of drain_all_pages(), exposing an extra parameter to
2251 * drain on all cpus.
2252 *
2253 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2254 * not empty. The check for non-emptiness can however race with a free to
2255 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2256 * that need the guarantee that every CPU has drained can disable the
2257 * optimizing racy check.
2258 */
__drain_all_pages(struct zone * zone,bool force_all_cpus)2259 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2260 {
2261 int cpu;
2262
2263 /*
2264 * Allocate in the BSS so we won't require allocation in
2265 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2266 */
2267 static cpumask_t cpus_with_pcps;
2268
2269 /*
2270 * Do not drain if one is already in progress unless it's specific to
2271 * a zone. Such callers are primarily CMA and memory hotplug and need
2272 * the drain to be complete when the call returns.
2273 */
2274 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2275 if (!zone)
2276 return;
2277 mutex_lock(&pcpu_drain_mutex);
2278 }
2279
2280 /*
2281 * We don't care about racing with CPU hotplug event
2282 * as offline notification will cause the notified
2283 * cpu to drain that CPU pcps and on_each_cpu_mask
2284 * disables preemption as part of its processing
2285 */
2286 for_each_online_cpu(cpu) {
2287 struct per_cpu_pages *pcp;
2288 struct zone *z;
2289 bool has_pcps = false;
2290
2291 if (force_all_cpus) {
2292 /*
2293 * The pcp.count check is racy, some callers need a
2294 * guarantee that no cpu is missed.
2295 */
2296 has_pcps = true;
2297 } else if (zone) {
2298 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2299 if (pcp->count)
2300 has_pcps = true;
2301 } else {
2302 for_each_populated_zone(z) {
2303 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2304 if (pcp->count) {
2305 has_pcps = true;
2306 break;
2307 }
2308 }
2309 }
2310
2311 if (has_pcps)
2312 cpumask_set_cpu(cpu, &cpus_with_pcps);
2313 else
2314 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2315 }
2316
2317 for_each_cpu(cpu, &cpus_with_pcps) {
2318 if (zone)
2319 drain_pages_zone(cpu, zone);
2320 else
2321 drain_pages(cpu);
2322 }
2323
2324 mutex_unlock(&pcpu_drain_mutex);
2325 }
2326
2327 /*
2328 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2329 *
2330 * When zone parameter is non-NULL, spill just the single zone's pages.
2331 */
drain_all_pages(struct zone * zone)2332 void drain_all_pages(struct zone *zone)
2333 {
2334 __drain_all_pages(zone, false);
2335 }
2336
free_unref_page_prepare(struct page * page,unsigned long pfn,unsigned int order)2337 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2338 unsigned int order)
2339 {
2340 int migratetype;
2341
2342 if (!free_pages_prepare(page, order, FPI_NONE))
2343 return false;
2344
2345 migratetype = get_pfnblock_migratetype(page, pfn);
2346 set_pcppage_migratetype(page, migratetype);
2347 return true;
2348 }
2349
nr_pcp_free(struct per_cpu_pages * pcp,int high,bool free_high)2350 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, bool free_high)
2351 {
2352 int min_nr_free, max_nr_free;
2353 int batch = READ_ONCE(pcp->batch);
2354
2355 /* Free everything if batch freeing high-order pages. */
2356 if (unlikely(free_high))
2357 return pcp->count;
2358
2359 /* Check for PCP disabled or boot pageset */
2360 if (unlikely(high < batch))
2361 return 1;
2362
2363 /* Leave at least pcp->batch pages on the list */
2364 min_nr_free = batch;
2365 max_nr_free = high - batch;
2366
2367 /*
2368 * Double the number of pages freed each time there is subsequent
2369 * freeing of pages without any allocation.
2370 */
2371 batch <<= pcp->free_factor;
2372 if (batch < max_nr_free)
2373 pcp->free_factor++;
2374 batch = clamp(batch, min_nr_free, max_nr_free);
2375
2376 return batch;
2377 }
2378
nr_pcp_high(struct per_cpu_pages * pcp,struct zone * zone,bool free_high)2379 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2380 bool free_high)
2381 {
2382 int high = READ_ONCE(pcp->high);
2383
2384 if (unlikely(!high || free_high))
2385 return 0;
2386
2387 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2388 return high;
2389
2390 /*
2391 * If reclaim is active, limit the number of pages that can be
2392 * stored on pcp lists
2393 */
2394 return min(READ_ONCE(pcp->batch) << 2, high);
2395 }
2396
free_unref_page_commit(struct zone * zone,struct per_cpu_pages * pcp,struct page * page,int migratetype,unsigned int order)2397 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2398 struct page *page, int migratetype,
2399 unsigned int order)
2400 {
2401 int high;
2402 int pindex;
2403 bool free_high;
2404
2405 __count_vm_events(PGFREE, 1 << order);
2406 pindex = order_to_pindex(migratetype, order);
2407 list_add(&page->pcp_list, &pcp->lists[pindex]);
2408 pcp->count += 1 << order;
2409
2410 /*
2411 * As high-order pages other than THP's stored on PCP can contribute
2412 * to fragmentation, limit the number stored when PCP is heavily
2413 * freeing without allocation. The remainder after bulk freeing
2414 * stops will be drained from vmstat refresh context.
2415 */
2416 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2417
2418 high = nr_pcp_high(pcp, zone, free_high);
2419 if (pcp->count >= high) {
2420 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, free_high), pcp, pindex);
2421 }
2422 }
2423
2424 /*
2425 * Free a pcp page
2426 */
free_unref_page(struct page * page,unsigned int order)2427 void free_unref_page(struct page *page, unsigned int order)
2428 {
2429 unsigned long __maybe_unused UP_flags;
2430 struct per_cpu_pages *pcp;
2431 struct zone *zone;
2432 unsigned long pfn = page_to_pfn(page);
2433 int migratetype, pcpmigratetype;
2434
2435 if (!free_unref_page_prepare(page, pfn, order))
2436 return;
2437
2438 /*
2439 * We only track unmovable, reclaimable and movable on pcp lists.
2440 * Place ISOLATE pages on the isolated list because they are being
2441 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2442 * get those areas back if necessary. Otherwise, we may have to free
2443 * excessively into the page allocator
2444 */
2445 migratetype = pcpmigratetype = get_pcppage_migratetype(page);
2446 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2447 if (unlikely(is_migrate_isolate(migratetype))) {
2448 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2449 return;
2450 }
2451 pcpmigratetype = MIGRATE_MOVABLE;
2452 }
2453
2454 zone = page_zone(page);
2455 pcp_trylock_prepare(UP_flags);
2456 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2457 if (pcp) {
2458 free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
2459 pcp_spin_unlock(pcp);
2460 } else {
2461 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2462 }
2463 pcp_trylock_finish(UP_flags);
2464 }
2465
2466 /*
2467 * Free a list of 0-order pages
2468 */
free_unref_page_list(struct list_head * list)2469 void free_unref_page_list(struct list_head *list)
2470 {
2471 unsigned long __maybe_unused UP_flags;
2472 struct page *page, *next;
2473 struct per_cpu_pages *pcp = NULL;
2474 struct zone *locked_zone = NULL;
2475 int batch_count = 0;
2476 int migratetype;
2477
2478 /* Prepare pages for freeing */
2479 list_for_each_entry_safe(page, next, list, lru) {
2480 unsigned long pfn = page_to_pfn(page);
2481 if (!free_unref_page_prepare(page, pfn, 0)) {
2482 list_del(&page->lru);
2483 continue;
2484 }
2485
2486 /*
2487 * Free isolated pages directly to the allocator, see
2488 * comment in free_unref_page.
2489 */
2490 migratetype = get_pcppage_migratetype(page);
2491 if (unlikely(is_migrate_isolate(migratetype))) {
2492 list_del(&page->lru);
2493 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2494 continue;
2495 }
2496 }
2497
2498 list_for_each_entry_safe(page, next, list, lru) {
2499 struct zone *zone = page_zone(page);
2500
2501 list_del(&page->lru);
2502 migratetype = get_pcppage_migratetype(page);
2503
2504 /*
2505 * Either different zone requiring a different pcp lock or
2506 * excessive lock hold times when freeing a large list of
2507 * pages.
2508 */
2509 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2510 if (pcp) {
2511 pcp_spin_unlock(pcp);
2512 pcp_trylock_finish(UP_flags);
2513 }
2514
2515 batch_count = 0;
2516
2517 /*
2518 * trylock is necessary as pages may be getting freed
2519 * from IRQ or SoftIRQ context after an IO completion.
2520 */
2521 pcp_trylock_prepare(UP_flags);
2522 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2523 if (unlikely(!pcp)) {
2524 pcp_trylock_finish(UP_flags);
2525 free_one_page(zone, page, page_to_pfn(page),
2526 0, migratetype, FPI_NONE);
2527 locked_zone = NULL;
2528 continue;
2529 }
2530 locked_zone = zone;
2531 }
2532
2533 /*
2534 * Non-isolated types over MIGRATE_PCPTYPES get added
2535 * to the MIGRATE_MOVABLE pcp list.
2536 */
2537 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2538 migratetype = MIGRATE_MOVABLE;
2539
2540 trace_mm_page_free_batched(page);
2541 free_unref_page_commit(zone, pcp, page, migratetype, 0);
2542 batch_count++;
2543 }
2544
2545 if (pcp) {
2546 pcp_spin_unlock(pcp);
2547 pcp_trylock_finish(UP_flags);
2548 }
2549 }
2550
2551 /*
2552 * split_page takes a non-compound higher-order page, and splits it into
2553 * n (1<<order) sub-pages: page[0..n]
2554 * Each sub-page must be freed individually.
2555 *
2556 * Note: this is probably too low level an operation for use in drivers.
2557 * Please consult with lkml before using this in your driver.
2558 */
split_page(struct page * page,unsigned int order)2559 void split_page(struct page *page, unsigned int order)
2560 {
2561 int i;
2562
2563 VM_BUG_ON_PAGE(PageCompound(page), page);
2564 VM_BUG_ON_PAGE(!page_count(page), page);
2565
2566 for (i = 1; i < (1 << order); i++)
2567 set_page_refcounted(page + i);
2568 split_page_owner(page, 1 << order);
2569 split_page_memcg(page, 1 << order);
2570 }
2571 EXPORT_SYMBOL_GPL(split_page);
2572
__isolate_free_page(struct page * page,unsigned int order)2573 int __isolate_free_page(struct page *page, unsigned int order)
2574 {
2575 struct zone *zone = page_zone(page);
2576 int mt = get_pageblock_migratetype(page);
2577
2578 if (!is_migrate_isolate(mt)) {
2579 unsigned long watermark;
2580 /*
2581 * Obey watermarks as if the page was being allocated. We can
2582 * emulate a high-order watermark check with a raised order-0
2583 * watermark, because we already know our high-order page
2584 * exists.
2585 */
2586 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2587 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2588 return 0;
2589
2590 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2591 }
2592
2593 del_page_from_free_list(page, zone, order);
2594
2595 /*
2596 * Set the pageblock if the isolated page is at least half of a
2597 * pageblock
2598 */
2599 if (order >= pageblock_order - 1) {
2600 struct page *endpage = page + (1 << order) - 1;
2601 for (; page < endpage; page += pageblock_nr_pages) {
2602 int mt = get_pageblock_migratetype(page);
2603 /*
2604 * Only change normal pageblocks (i.e., they can merge
2605 * with others)
2606 */
2607 if (migratetype_is_mergeable(mt))
2608 set_pageblock_migratetype(page,
2609 MIGRATE_MOVABLE);
2610 }
2611 }
2612
2613 return 1UL << order;
2614 }
2615
2616 /**
2617 * __putback_isolated_page - Return a now-isolated page back where we got it
2618 * @page: Page that was isolated
2619 * @order: Order of the isolated page
2620 * @mt: The page's pageblock's migratetype
2621 *
2622 * This function is meant to return a page pulled from the free lists via
2623 * __isolate_free_page back to the free lists they were pulled from.
2624 */
__putback_isolated_page(struct page * page,unsigned int order,int mt)2625 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2626 {
2627 struct zone *zone = page_zone(page);
2628
2629 /* zone lock should be held when this function is called */
2630 lockdep_assert_held(&zone->lock);
2631
2632 /* Return isolated page to tail of freelist. */
2633 __free_one_page(page, page_to_pfn(page), zone, order, mt,
2634 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2635 }
2636
2637 /*
2638 * Update NUMA hit/miss statistics
2639 */
zone_statistics(struct zone * preferred_zone,struct zone * z,long nr_account)2640 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2641 long nr_account)
2642 {
2643 #ifdef CONFIG_NUMA
2644 enum numa_stat_item local_stat = NUMA_LOCAL;
2645
2646 /* skip numa counters update if numa stats is disabled */
2647 if (!static_branch_likely(&vm_numa_stat_key))
2648 return;
2649
2650 if (zone_to_nid(z) != numa_node_id())
2651 local_stat = NUMA_OTHER;
2652
2653 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2654 __count_numa_events(z, NUMA_HIT, nr_account);
2655 else {
2656 __count_numa_events(z, NUMA_MISS, nr_account);
2657 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2658 }
2659 __count_numa_events(z, local_stat, nr_account);
2660 #endif
2661 }
2662
2663 static __always_inline
rmqueue_buddy(struct zone * preferred_zone,struct zone * zone,unsigned int order,unsigned int alloc_flags,int migratetype)2664 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2665 unsigned int order, unsigned int alloc_flags,
2666 int migratetype)
2667 {
2668 struct page *page;
2669 unsigned long flags;
2670
2671 do {
2672 page = NULL;
2673 spin_lock_irqsave(&zone->lock, flags);
2674 if (alloc_flags & ALLOC_HIGHATOMIC)
2675 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2676 if (!page) {
2677 page = __rmqueue(zone, order, migratetype, alloc_flags);
2678
2679 /*
2680 * If the allocation fails, allow OOM handling access
2681 * to HIGHATOMIC reserves as failing now is worse than
2682 * failing a high-order atomic allocation in the
2683 * future.
2684 */
2685 if (!page && (alloc_flags & ALLOC_OOM))
2686 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2687
2688 if (!page) {
2689 spin_unlock_irqrestore(&zone->lock, flags);
2690 return NULL;
2691 }
2692 }
2693 __mod_zone_freepage_state(zone, -(1 << order),
2694 get_pcppage_migratetype(page));
2695 spin_unlock_irqrestore(&zone->lock, flags);
2696 } while (check_new_pages(page, order));
2697
2698 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2699 zone_statistics(preferred_zone, zone, 1);
2700
2701 return page;
2702 }
2703
2704 /* Remove page from the per-cpu list, caller must protect the list */
2705 static inline
__rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)2706 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2707 int migratetype,
2708 unsigned int alloc_flags,
2709 struct per_cpu_pages *pcp,
2710 struct list_head *list)
2711 {
2712 struct page *page;
2713
2714 do {
2715 if (list_empty(list)) {
2716 int batch = READ_ONCE(pcp->batch);
2717 int alloced;
2718
2719 /*
2720 * Scale batch relative to order if batch implies
2721 * free pages can be stored on the PCP. Batch can
2722 * be 1 for small zones or for boot pagesets which
2723 * should never store free pages as the pages may
2724 * belong to arbitrary zones.
2725 */
2726 if (batch > 1)
2727 batch = max(batch >> order, 2);
2728 alloced = rmqueue_bulk(zone, order,
2729 batch, list,
2730 migratetype, alloc_flags);
2731
2732 pcp->count += alloced << order;
2733 if (unlikely(list_empty(list)))
2734 return NULL;
2735 }
2736
2737 page = list_first_entry(list, struct page, pcp_list);
2738 list_del(&page->pcp_list);
2739 pcp->count -= 1 << order;
2740 } while (check_new_pages(page, order));
2741
2742 return page;
2743 }
2744
2745 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2746 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2747 struct zone *zone, unsigned int order,
2748 int migratetype, unsigned int alloc_flags)
2749 {
2750 struct per_cpu_pages *pcp;
2751 struct list_head *list;
2752 struct page *page;
2753 unsigned long __maybe_unused UP_flags;
2754
2755 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2756 pcp_trylock_prepare(UP_flags);
2757 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2758 if (!pcp) {
2759 pcp_trylock_finish(UP_flags);
2760 return NULL;
2761 }
2762
2763 /*
2764 * On allocation, reduce the number of pages that are batch freed.
2765 * See nr_pcp_free() where free_factor is increased for subsequent
2766 * frees.
2767 */
2768 pcp->free_factor >>= 1;
2769 list = &pcp->lists[order_to_pindex(migratetype, order)];
2770 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2771 pcp_spin_unlock(pcp);
2772 pcp_trylock_finish(UP_flags);
2773 if (page) {
2774 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2775 zone_statistics(preferred_zone, zone, 1);
2776 }
2777 return page;
2778 }
2779
2780 /*
2781 * Allocate a page from the given zone.
2782 * Use pcplists for THP or "cheap" high-order allocations.
2783 */
2784
2785 /*
2786 * Do not instrument rmqueue() with KMSAN. This function may call
2787 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2788 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2789 * may call rmqueue() again, which will result in a deadlock.
2790 */
2791 __no_sanitize_memory
2792 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)2793 struct page *rmqueue(struct zone *preferred_zone,
2794 struct zone *zone, unsigned int order,
2795 gfp_t gfp_flags, unsigned int alloc_flags,
2796 int migratetype)
2797 {
2798 struct page *page;
2799
2800 /*
2801 * We most definitely don't want callers attempting to
2802 * allocate greater than order-1 page units with __GFP_NOFAIL.
2803 */
2804 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2805
2806 if (likely(pcp_allowed_order(order))) {
2807 page = rmqueue_pcplist(preferred_zone, zone, order,
2808 migratetype, alloc_flags);
2809 if (likely(page))
2810 goto out;
2811 }
2812
2813 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2814 migratetype);
2815
2816 out:
2817 /* Separate test+clear to avoid unnecessary atomics */
2818 if ((alloc_flags & ALLOC_KSWAPD) &&
2819 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2820 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2821 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2822 }
2823
2824 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2825 return page;
2826 }
2827
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)2828 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2829 {
2830 return __should_fail_alloc_page(gfp_mask, order);
2831 }
2832 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2833
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)2834 static inline long __zone_watermark_unusable_free(struct zone *z,
2835 unsigned int order, unsigned int alloc_flags)
2836 {
2837 long unusable_free = (1 << order) - 1;
2838
2839 /*
2840 * If the caller does not have rights to reserves below the min
2841 * watermark then subtract the high-atomic reserves. This will
2842 * over-estimate the size of the atomic reserve but it avoids a search.
2843 */
2844 if (likely(!(alloc_flags & ALLOC_RESERVES)))
2845 unusable_free += z->nr_reserved_highatomic;
2846
2847 #ifdef CONFIG_CMA
2848 /* If allocation can't use CMA areas don't use free CMA pages */
2849 if (!(alloc_flags & ALLOC_CMA))
2850 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2851 #endif
2852 #ifdef CONFIG_UNACCEPTED_MEMORY
2853 unusable_free += zone_page_state(z, NR_UNACCEPTED);
2854 #endif
2855
2856 return unusable_free;
2857 }
2858
2859 /*
2860 * Return true if free base pages are above 'mark'. For high-order checks it
2861 * will return true of the order-0 watermark is reached and there is at least
2862 * one free page of a suitable size. Checking now avoids taking the zone lock
2863 * to check in the allocation paths if no pages are free.
2864 */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)2865 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2866 int highest_zoneidx, unsigned int alloc_flags,
2867 long free_pages)
2868 {
2869 long min = mark;
2870 int o;
2871
2872 /* free_pages may go negative - that's OK */
2873 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2874
2875 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2876 /*
2877 * __GFP_HIGH allows access to 50% of the min reserve as well
2878 * as OOM.
2879 */
2880 if (alloc_flags & ALLOC_MIN_RESERVE) {
2881 min -= min / 2;
2882
2883 /*
2884 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2885 * access more reserves than just __GFP_HIGH. Other
2886 * non-blocking allocations requests such as GFP_NOWAIT
2887 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2888 * access to the min reserve.
2889 */
2890 if (alloc_flags & ALLOC_NON_BLOCK)
2891 min -= min / 4;
2892 }
2893
2894 /*
2895 * OOM victims can try even harder than the normal reserve
2896 * users on the grounds that it's definitely going to be in
2897 * the exit path shortly and free memory. Any allocation it
2898 * makes during the free path will be small and short-lived.
2899 */
2900 if (alloc_flags & ALLOC_OOM)
2901 min -= min / 2;
2902 }
2903
2904 /*
2905 * Check watermarks for an order-0 allocation request. If these
2906 * are not met, then a high-order request also cannot go ahead
2907 * even if a suitable page happened to be free.
2908 */
2909 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
2910 return false;
2911
2912 /* If this is an order-0 request then the watermark is fine */
2913 if (!order)
2914 return true;
2915
2916 /* For a high-order request, check at least one suitable page is free */
2917 for (o = order; o <= MAX_ORDER; o++) {
2918 struct free_area *area = &z->free_area[o];
2919 int mt;
2920
2921 if (!area->nr_free)
2922 continue;
2923
2924 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2925 if (!free_area_empty(area, mt))
2926 return true;
2927 }
2928
2929 #ifdef CONFIG_CMA
2930 if ((alloc_flags & ALLOC_CMA) &&
2931 !free_area_empty(area, MIGRATE_CMA)) {
2932 return true;
2933 }
2934 #endif
2935 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
2936 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
2937 return true;
2938 }
2939 }
2940 return false;
2941 }
2942
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)2943 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2944 int highest_zoneidx, unsigned int alloc_flags)
2945 {
2946 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2947 zone_page_state(z, NR_FREE_PAGES));
2948 }
2949
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)2950 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2951 unsigned long mark, int highest_zoneidx,
2952 unsigned int alloc_flags, gfp_t gfp_mask)
2953 {
2954 long free_pages;
2955
2956 free_pages = zone_page_state(z, NR_FREE_PAGES);
2957
2958 /*
2959 * Fast check for order-0 only. If this fails then the reserves
2960 * need to be calculated.
2961 */
2962 if (!order) {
2963 long usable_free;
2964 long reserved;
2965
2966 usable_free = free_pages;
2967 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
2968
2969 /* reserved may over estimate high-atomic reserves. */
2970 usable_free -= min(usable_free, reserved);
2971 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
2972 return true;
2973 }
2974
2975 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2976 free_pages))
2977 return true;
2978
2979 /*
2980 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
2981 * when checking the min watermark. The min watermark is the
2982 * point where boosting is ignored so that kswapd is woken up
2983 * when below the low watermark.
2984 */
2985 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
2986 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
2987 mark = z->_watermark[WMARK_MIN];
2988 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
2989 alloc_flags, free_pages);
2990 }
2991
2992 return false;
2993 }
2994
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)2995 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2996 unsigned long mark, int highest_zoneidx)
2997 {
2998 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2999
3000 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3001 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3002
3003 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3004 free_pages);
3005 }
3006
3007 #ifdef CONFIG_NUMA
3008 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3009
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3010 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3011 {
3012 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3013 node_reclaim_distance;
3014 }
3015 #else /* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3016 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3017 {
3018 return true;
3019 }
3020 #endif /* CONFIG_NUMA */
3021
3022 /*
3023 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3024 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3025 * premature use of a lower zone may cause lowmem pressure problems that
3026 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3027 * probably too small. It only makes sense to spread allocations to avoid
3028 * fragmentation between the Normal and DMA32 zones.
3029 */
3030 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3031 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3032 {
3033 unsigned int alloc_flags;
3034
3035 /*
3036 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3037 * to save a branch.
3038 */
3039 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3040
3041 #ifdef CONFIG_ZONE_DMA32
3042 if (!zone)
3043 return alloc_flags;
3044
3045 if (zone_idx(zone) != ZONE_NORMAL)
3046 return alloc_flags;
3047
3048 /*
3049 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3050 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3051 * on UMA that if Normal is populated then so is DMA32.
3052 */
3053 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3054 if (nr_online_nodes > 1 && !populated_zone(--zone))
3055 return alloc_flags;
3056
3057 alloc_flags |= ALLOC_NOFRAGMENT;
3058 #endif /* CONFIG_ZONE_DMA32 */
3059 return alloc_flags;
3060 }
3061
3062 /* Must be called after current_gfp_context() which can change gfp_mask */
gfp_to_alloc_flags_cma(gfp_t gfp_mask,unsigned int alloc_flags)3063 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3064 unsigned int alloc_flags)
3065 {
3066 #ifdef CONFIG_CMA
3067 if (gfp_migratetype(gfp_mask) == get_cma_migratetype())
3068 alloc_flags |= ALLOC_CMA;
3069 #endif
3070 return alloc_flags;
3071 }
3072
3073 /*
3074 * get_page_from_freelist goes through the zonelist trying to allocate
3075 * a page.
3076 */
3077 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3078 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3079 const struct alloc_context *ac)
3080 {
3081 struct zoneref *z;
3082 struct zone *zone;
3083 struct pglist_data *last_pgdat = NULL;
3084 bool last_pgdat_dirty_ok = false;
3085 bool no_fallback;
3086
3087 retry:
3088 /*
3089 * Scan zonelist, looking for a zone with enough free.
3090 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3091 */
3092 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3093 z = ac->preferred_zoneref;
3094 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3095 ac->nodemask) {
3096 struct page *page;
3097 unsigned long mark;
3098
3099 if (cpusets_enabled() &&
3100 (alloc_flags & ALLOC_CPUSET) &&
3101 !__cpuset_zone_allowed(zone, gfp_mask))
3102 continue;
3103 /*
3104 * When allocating a page cache page for writing, we
3105 * want to get it from a node that is within its dirty
3106 * limit, such that no single node holds more than its
3107 * proportional share of globally allowed dirty pages.
3108 * The dirty limits take into account the node's
3109 * lowmem reserves and high watermark so that kswapd
3110 * should be able to balance it without having to
3111 * write pages from its LRU list.
3112 *
3113 * XXX: For now, allow allocations to potentially
3114 * exceed the per-node dirty limit in the slowpath
3115 * (spread_dirty_pages unset) before going into reclaim,
3116 * which is important when on a NUMA setup the allowed
3117 * nodes are together not big enough to reach the
3118 * global limit. The proper fix for these situations
3119 * will require awareness of nodes in the
3120 * dirty-throttling and the flusher threads.
3121 */
3122 if (ac->spread_dirty_pages) {
3123 if (last_pgdat != zone->zone_pgdat) {
3124 last_pgdat = zone->zone_pgdat;
3125 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3126 }
3127
3128 if (!last_pgdat_dirty_ok)
3129 continue;
3130 }
3131
3132 if (no_fallback && nr_online_nodes > 1 &&
3133 zone != ac->preferred_zoneref->zone) {
3134 int local_nid;
3135
3136 /*
3137 * If moving to a remote node, retry but allow
3138 * fragmenting fallbacks. Locality is more important
3139 * than fragmentation avoidance.
3140 */
3141 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3142 if (zone_to_nid(zone) != local_nid) {
3143 alloc_flags &= ~ALLOC_NOFRAGMENT;
3144 goto retry;
3145 }
3146 }
3147
3148 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3149 if (!zone_watermark_fast(zone, order, mark,
3150 ac->highest_zoneidx, alloc_flags,
3151 gfp_mask)) {
3152 int ret;
3153
3154 if (has_unaccepted_memory()) {
3155 if (try_to_accept_memory(zone, order))
3156 goto try_this_zone;
3157 }
3158
3159 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3160 /*
3161 * Watermark failed for this zone, but see if we can
3162 * grow this zone if it contains deferred pages.
3163 */
3164 if (deferred_pages_enabled()) {
3165 if (_deferred_grow_zone(zone, order))
3166 goto try_this_zone;
3167 }
3168 #endif
3169 /* Checked here to keep the fast path fast */
3170 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3171 if (alloc_flags & ALLOC_NO_WATERMARKS)
3172 goto try_this_zone;
3173
3174 if (!node_reclaim_enabled() ||
3175 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3176 continue;
3177
3178 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3179 switch (ret) {
3180 case NODE_RECLAIM_NOSCAN:
3181 /* did not scan */
3182 continue;
3183 case NODE_RECLAIM_FULL:
3184 /* scanned but unreclaimable */
3185 continue;
3186 default:
3187 /* did we reclaim enough */
3188 if (zone_watermark_ok(zone, order, mark,
3189 ac->highest_zoneidx, alloc_flags))
3190 goto try_this_zone;
3191
3192 continue;
3193 }
3194 }
3195
3196 try_this_zone:
3197 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3198 gfp_mask, alloc_flags, ac->migratetype);
3199 if (page) {
3200 prep_new_page(page, order, gfp_mask, alloc_flags);
3201
3202 /*
3203 * If this is a high-order atomic allocation then check
3204 * if the pageblock should be reserved for the future
3205 */
3206 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3207 reserve_highatomic_pageblock(page, zone);
3208
3209 return page;
3210 } else {
3211 if (has_unaccepted_memory()) {
3212 if (try_to_accept_memory(zone, order))
3213 goto try_this_zone;
3214 }
3215
3216 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3217 /* Try again if zone has deferred pages */
3218 if (deferred_pages_enabled()) {
3219 if (_deferred_grow_zone(zone, order))
3220 goto try_this_zone;
3221 }
3222 #endif
3223 }
3224 }
3225
3226 /*
3227 * It's possible on a UMA machine to get through all zones that are
3228 * fragmented. If avoiding fragmentation, reset and try again.
3229 */
3230 if (no_fallback) {
3231 alloc_flags &= ~ALLOC_NOFRAGMENT;
3232 goto retry;
3233 }
3234
3235 return NULL;
3236 }
3237
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3238 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3239 {
3240 unsigned int filter = SHOW_MEM_FILTER_NODES;
3241
3242 /*
3243 * This documents exceptions given to allocations in certain
3244 * contexts that are allowed to allocate outside current's set
3245 * of allowed nodes.
3246 */
3247 if (!(gfp_mask & __GFP_NOMEMALLOC))
3248 if (tsk_is_oom_victim(current) ||
3249 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3250 filter &= ~SHOW_MEM_FILTER_NODES;
3251 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3252 filter &= ~SHOW_MEM_FILTER_NODES;
3253
3254 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
3255 }
3256
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3257 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3258 {
3259 struct va_format vaf;
3260 va_list args;
3261 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3262
3263 if ((gfp_mask & __GFP_NOWARN) ||
3264 !__ratelimit(&nopage_rs) ||
3265 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3266 return;
3267
3268 va_start(args, fmt);
3269 vaf.fmt = fmt;
3270 vaf.va = &args;
3271 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3272 current->comm, &vaf, gfp_mask, &gfp_mask,
3273 nodemask_pr_args(nodemask));
3274 va_end(args);
3275
3276 cpuset_print_current_mems_allowed();
3277 pr_cont("\n");
3278 dump_stack();
3279 warn_alloc_show_mem(gfp_mask, nodemask);
3280 }
3281
3282 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)3283 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3284 unsigned int alloc_flags,
3285 const struct alloc_context *ac)
3286 {
3287 struct page *page;
3288
3289 page = get_page_from_freelist(gfp_mask, order,
3290 alloc_flags|ALLOC_CPUSET, ac);
3291 /*
3292 * fallback to ignore cpuset restriction if our nodes
3293 * are depleted
3294 */
3295 if (!page)
3296 page = get_page_from_freelist(gfp_mask, order,
3297 alloc_flags, ac);
3298
3299 return page;
3300 }
3301
3302 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)3303 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3304 const struct alloc_context *ac, unsigned long *did_some_progress)
3305 {
3306 struct oom_control oc = {
3307 .zonelist = ac->zonelist,
3308 .nodemask = ac->nodemask,
3309 .memcg = NULL,
3310 .gfp_mask = gfp_mask,
3311 .order = order,
3312 };
3313 struct page *page;
3314
3315 *did_some_progress = 0;
3316
3317 /*
3318 * Acquire the oom lock. If that fails, somebody else is
3319 * making progress for us.
3320 */
3321 if (!mutex_trylock(&oom_lock)) {
3322 *did_some_progress = 1;
3323 schedule_timeout_uninterruptible(1);
3324 return NULL;
3325 }
3326
3327 /*
3328 * Go through the zonelist yet one more time, keep very high watermark
3329 * here, this is only to catch a parallel oom killing, we must fail if
3330 * we're still under heavy pressure. But make sure that this reclaim
3331 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3332 * allocation which will never fail due to oom_lock already held.
3333 */
3334 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3335 ~__GFP_DIRECT_RECLAIM, order,
3336 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3337 if (page)
3338 goto out;
3339
3340 /* Coredumps can quickly deplete all memory reserves */
3341 if (current->flags & PF_DUMPCORE)
3342 goto out;
3343 /* The OOM killer will not help higher order allocs */
3344 if (order > PAGE_ALLOC_COSTLY_ORDER)
3345 goto out;
3346 /*
3347 * We have already exhausted all our reclaim opportunities without any
3348 * success so it is time to admit defeat. We will skip the OOM killer
3349 * because it is very likely that the caller has a more reasonable
3350 * fallback than shooting a random task.
3351 *
3352 * The OOM killer may not free memory on a specific node.
3353 */
3354 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3355 goto out;
3356 /* The OOM killer does not needlessly kill tasks for lowmem */
3357 if (ac->highest_zoneidx < ZONE_NORMAL)
3358 goto out;
3359 if (pm_suspended_storage())
3360 goto out;
3361 /*
3362 * XXX: GFP_NOFS allocations should rather fail than rely on
3363 * other request to make a forward progress.
3364 * We are in an unfortunate situation where out_of_memory cannot
3365 * do much for this context but let's try it to at least get
3366 * access to memory reserved if the current task is killed (see
3367 * out_of_memory). Once filesystems are ready to handle allocation
3368 * failures more gracefully we should just bail out here.
3369 */
3370
3371 /* Exhausted what can be done so it's blame time */
3372 if (out_of_memory(&oc) ||
3373 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3374 *did_some_progress = 1;
3375
3376 /*
3377 * Help non-failing allocations by giving them access to memory
3378 * reserves
3379 */
3380 if (gfp_mask & __GFP_NOFAIL)
3381 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3382 ALLOC_NO_WATERMARKS, ac);
3383 }
3384 out:
3385 mutex_unlock(&oom_lock);
3386 return page;
3387 }
3388
3389 /*
3390 * Maximum number of compaction retries with a progress before OOM
3391 * killer is consider as the only way to move forward.
3392 */
3393 #define MAX_COMPACT_RETRIES 16
3394
3395 #ifdef CONFIG_COMPACTION
3396 /* Try memory compaction for high-order allocations before reclaim */
3397 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3398 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3399 unsigned int alloc_flags, const struct alloc_context *ac,
3400 enum compact_priority prio, enum compact_result *compact_result)
3401 {
3402 struct page *page = NULL;
3403 unsigned long pflags;
3404 unsigned int noreclaim_flag;
3405
3406 if (!order)
3407 return NULL;
3408
3409 psi_memstall_enter(&pflags);
3410 delayacct_compact_start();
3411 noreclaim_flag = memalloc_noreclaim_save();
3412
3413 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3414 prio, &page);
3415
3416 memalloc_noreclaim_restore(noreclaim_flag);
3417 psi_memstall_leave(&pflags);
3418 delayacct_compact_end();
3419
3420 if (*compact_result == COMPACT_SKIPPED)
3421 return NULL;
3422 /*
3423 * At least in one zone compaction wasn't deferred or skipped, so let's
3424 * count a compaction stall
3425 */
3426 count_vm_event(COMPACTSTALL);
3427
3428 /* Prep a captured page if available */
3429 if (page)
3430 prep_new_page(page, order, gfp_mask, alloc_flags);
3431
3432 /* Try get a page from the freelist if available */
3433 if (!page)
3434 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3435
3436 if (page) {
3437 struct zone *zone = page_zone(page);
3438
3439 zone->compact_blockskip_flush = false;
3440 compaction_defer_reset(zone, order, true);
3441 count_vm_event(COMPACTSUCCESS);
3442 return page;
3443 }
3444
3445 /*
3446 * It's bad if compaction run occurs and fails. The most likely reason
3447 * is that pages exist, but not enough to satisfy watermarks.
3448 */
3449 count_vm_event(COMPACTFAIL);
3450
3451 cond_resched();
3452
3453 return NULL;
3454 }
3455
3456 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3457 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3458 enum compact_result compact_result,
3459 enum compact_priority *compact_priority,
3460 int *compaction_retries)
3461 {
3462 int max_retries = MAX_COMPACT_RETRIES;
3463 int min_priority;
3464 bool ret = false;
3465 int retries = *compaction_retries;
3466 enum compact_priority priority = *compact_priority;
3467
3468 if (!order)
3469 return false;
3470
3471 if (fatal_signal_pending(current))
3472 return false;
3473
3474 /*
3475 * Compaction was skipped due to a lack of free order-0
3476 * migration targets. Continue if reclaim can help.
3477 */
3478 if (compact_result == COMPACT_SKIPPED) {
3479 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3480 goto out;
3481 }
3482
3483 /*
3484 * Compaction managed to coalesce some page blocks, but the
3485 * allocation failed presumably due to a race. Retry some.
3486 */
3487 if (compact_result == COMPACT_SUCCESS) {
3488 /*
3489 * !costly requests are much more important than
3490 * __GFP_RETRY_MAYFAIL costly ones because they are de
3491 * facto nofail and invoke OOM killer to move on while
3492 * costly can fail and users are ready to cope with
3493 * that. 1/4 retries is rather arbitrary but we would
3494 * need much more detailed feedback from compaction to
3495 * make a better decision.
3496 */
3497 if (order > PAGE_ALLOC_COSTLY_ORDER)
3498 max_retries /= 4;
3499
3500 if (++(*compaction_retries) <= max_retries) {
3501 ret = true;
3502 goto out;
3503 }
3504 }
3505
3506 /*
3507 * Compaction failed. Retry with increasing priority.
3508 */
3509 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3510 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3511
3512 if (*compact_priority > min_priority) {
3513 (*compact_priority)--;
3514 *compaction_retries = 0;
3515 ret = true;
3516 }
3517 out:
3518 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3519 return ret;
3520 }
3521 #else
3522 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3523 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3524 unsigned int alloc_flags, const struct alloc_context *ac,
3525 enum compact_priority prio, enum compact_result *compact_result)
3526 {
3527 *compact_result = COMPACT_SKIPPED;
3528 return NULL;
3529 }
3530
3531 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3532 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3533 enum compact_result compact_result,
3534 enum compact_priority *compact_priority,
3535 int *compaction_retries)
3536 {
3537 struct zone *zone;
3538 struct zoneref *z;
3539
3540 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3541 return false;
3542
3543 /*
3544 * There are setups with compaction disabled which would prefer to loop
3545 * inside the allocator rather than hit the oom killer prematurely.
3546 * Let's give them a good hope and keep retrying while the order-0
3547 * watermarks are OK.
3548 */
3549 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3550 ac->highest_zoneidx, ac->nodemask) {
3551 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3552 ac->highest_zoneidx, alloc_flags))
3553 return true;
3554 }
3555 return false;
3556 }
3557 #endif /* CONFIG_COMPACTION */
3558
3559 #ifdef CONFIG_LOCKDEP
3560 static struct lockdep_map __fs_reclaim_map =
3561 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3562
__need_reclaim(gfp_t gfp_mask)3563 static bool __need_reclaim(gfp_t gfp_mask)
3564 {
3565 /* no reclaim without waiting on it */
3566 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3567 return false;
3568
3569 /* this guy won't enter reclaim */
3570 if (current->flags & PF_MEMALLOC)
3571 return false;
3572
3573 if (gfp_mask & __GFP_NOLOCKDEP)
3574 return false;
3575
3576 return true;
3577 }
3578
__fs_reclaim_acquire(unsigned long ip)3579 void __fs_reclaim_acquire(unsigned long ip)
3580 {
3581 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3582 }
3583
__fs_reclaim_release(unsigned long ip)3584 void __fs_reclaim_release(unsigned long ip)
3585 {
3586 lock_release(&__fs_reclaim_map, ip);
3587 }
3588
fs_reclaim_acquire(gfp_t gfp_mask)3589 void fs_reclaim_acquire(gfp_t gfp_mask)
3590 {
3591 gfp_mask = current_gfp_context(gfp_mask);
3592
3593 if (__need_reclaim(gfp_mask)) {
3594 if (gfp_mask & __GFP_FS)
3595 __fs_reclaim_acquire(_RET_IP_);
3596
3597 #ifdef CONFIG_MMU_NOTIFIER
3598 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3599 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3600 #endif
3601
3602 }
3603 }
3604 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3605
fs_reclaim_release(gfp_t gfp_mask)3606 void fs_reclaim_release(gfp_t gfp_mask)
3607 {
3608 gfp_mask = current_gfp_context(gfp_mask);
3609
3610 if (__need_reclaim(gfp_mask)) {
3611 if (gfp_mask & __GFP_FS)
3612 __fs_reclaim_release(_RET_IP_);
3613 }
3614 }
3615 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3616 #endif
3617
3618 /*
3619 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3620 * have been rebuilt so allocation retries. Reader side does not lock and
3621 * retries the allocation if zonelist changes. Writer side is protected by the
3622 * embedded spin_lock.
3623 */
3624 static DEFINE_SEQLOCK(zonelist_update_seq);
3625
zonelist_iter_begin(void)3626 static unsigned int zonelist_iter_begin(void)
3627 {
3628 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3629 return read_seqbegin(&zonelist_update_seq);
3630
3631 return 0;
3632 }
3633
check_retry_zonelist(unsigned int seq)3634 static unsigned int check_retry_zonelist(unsigned int seq)
3635 {
3636 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3637 return read_seqretry(&zonelist_update_seq, seq);
3638
3639 return seq;
3640 }
3641
3642 /* Perform direct synchronous page reclaim */
3643 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)3644 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3645 const struct alloc_context *ac)
3646 {
3647 unsigned int noreclaim_flag;
3648 unsigned long progress;
3649
3650 cond_resched();
3651
3652 /* We now go into synchronous reclaim */
3653 cpuset_memory_pressure_bump();
3654 fs_reclaim_acquire(gfp_mask);
3655 noreclaim_flag = memalloc_noreclaim_save();
3656
3657 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3658 ac->nodemask);
3659
3660 memalloc_noreclaim_restore(noreclaim_flag);
3661 fs_reclaim_release(gfp_mask);
3662
3663 cond_resched();
3664
3665 return progress;
3666 }
3667
3668 /* The really slow allocator path where we enter direct reclaim */
3669 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)3670 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3671 unsigned int alloc_flags, const struct alloc_context *ac,
3672 unsigned long *did_some_progress)
3673 {
3674 struct page *page = NULL;
3675 unsigned long pflags;
3676 bool drained = false;
3677
3678 psi_memstall_enter(&pflags);
3679 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3680 if (unlikely(!(*did_some_progress)))
3681 goto out;
3682
3683 retry:
3684 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3685
3686 /*
3687 * If an allocation failed after direct reclaim, it could be because
3688 * pages are pinned on the per-cpu lists or in high alloc reserves.
3689 * Shrink them and try again
3690 */
3691 if (!page && !drained) {
3692 unreserve_highatomic_pageblock(ac, false);
3693 drain_all_pages(NULL);
3694 drained = true;
3695 goto retry;
3696 }
3697 out:
3698 psi_memstall_leave(&pflags);
3699
3700 return page;
3701 }
3702
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)3703 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3704 const struct alloc_context *ac)
3705 {
3706 struct zoneref *z;
3707 struct zone *zone;
3708 pg_data_t *last_pgdat = NULL;
3709 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3710
3711 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3712 ac->nodemask) {
3713 if (!managed_zone(zone))
3714 continue;
3715 if (last_pgdat != zone->zone_pgdat) {
3716 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3717 last_pgdat = zone->zone_pgdat;
3718 }
3719 }
3720 }
3721
3722 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask,unsigned int order)3723 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3724 {
3725 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3726
3727 /*
3728 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3729 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3730 * to save two branches.
3731 */
3732 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3733 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3734
3735 /*
3736 * The caller may dip into page reserves a bit more if the caller
3737 * cannot run direct reclaim, or if the caller has realtime scheduling
3738 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3739 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3740 */
3741 alloc_flags |= (__force int)
3742 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3743
3744 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3745 /*
3746 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3747 * if it can't schedule.
3748 */
3749 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3750 alloc_flags |= ALLOC_NON_BLOCK;
3751
3752 if (order > 0)
3753 alloc_flags |= ALLOC_HIGHATOMIC;
3754 }
3755
3756 /*
3757 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3758 * GFP_ATOMIC) rather than fail, see the comment for
3759 * cpuset_node_allowed().
3760 */
3761 if (alloc_flags & ALLOC_MIN_RESERVE)
3762 alloc_flags &= ~ALLOC_CPUSET;
3763 } else if (unlikely(rt_task(current)) && in_task())
3764 alloc_flags |= ALLOC_MIN_RESERVE;
3765
3766 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3767
3768 return alloc_flags;
3769 }
3770
oom_reserves_allowed(struct task_struct * tsk)3771 static bool oom_reserves_allowed(struct task_struct *tsk)
3772 {
3773 if (!tsk_is_oom_victim(tsk))
3774 return false;
3775
3776 /*
3777 * !MMU doesn't have oom reaper so give access to memory reserves
3778 * only to the thread with TIF_MEMDIE set
3779 */
3780 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3781 return false;
3782
3783 return true;
3784 }
3785
3786 /*
3787 * Distinguish requests which really need access to full memory
3788 * reserves from oom victims which can live with a portion of it
3789 */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)3790 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3791 {
3792 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3793 return 0;
3794 if (gfp_mask & __GFP_MEMALLOC)
3795 return ALLOC_NO_WATERMARKS;
3796 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3797 return ALLOC_NO_WATERMARKS;
3798 if (!in_interrupt()) {
3799 if (current->flags & PF_MEMALLOC)
3800 return ALLOC_NO_WATERMARKS;
3801 else if (oom_reserves_allowed(current))
3802 return ALLOC_OOM;
3803 }
3804
3805 return 0;
3806 }
3807
gfp_pfmemalloc_allowed(gfp_t gfp_mask)3808 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3809 {
3810 return !!__gfp_pfmemalloc_flags(gfp_mask);
3811 }
3812
3813 /*
3814 * Checks whether it makes sense to retry the reclaim to make a forward progress
3815 * for the given allocation request.
3816 *
3817 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3818 * without success, or when we couldn't even meet the watermark if we
3819 * reclaimed all remaining pages on the LRU lists.
3820 *
3821 * Returns true if a retry is viable or false to enter the oom path.
3822 */
3823 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)3824 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3825 struct alloc_context *ac, int alloc_flags,
3826 bool did_some_progress, int *no_progress_loops)
3827 {
3828 struct zone *zone;
3829 struct zoneref *z;
3830 bool ret = false;
3831
3832 /*
3833 * Costly allocations might have made a progress but this doesn't mean
3834 * their order will become available due to high fragmentation so
3835 * always increment the no progress counter for them
3836 */
3837 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3838 *no_progress_loops = 0;
3839 else
3840 (*no_progress_loops)++;
3841
3842 if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3843 goto out;
3844
3845
3846 /*
3847 * Keep reclaiming pages while there is a chance this will lead
3848 * somewhere. If none of the target zones can satisfy our allocation
3849 * request even if all reclaimable pages are considered then we are
3850 * screwed and have to go OOM.
3851 */
3852 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3853 ac->highest_zoneidx, ac->nodemask) {
3854 unsigned long available;
3855 unsigned long reclaimable;
3856 unsigned long min_wmark = min_wmark_pages(zone);
3857 bool wmark;
3858
3859 available = reclaimable = zone_reclaimable_pages(zone);
3860 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3861
3862 /*
3863 * Would the allocation succeed if we reclaimed all
3864 * reclaimable pages?
3865 */
3866 wmark = __zone_watermark_ok(zone, order, min_wmark,
3867 ac->highest_zoneidx, alloc_flags, available);
3868 trace_reclaim_retry_zone(z, order, reclaimable,
3869 available, min_wmark, *no_progress_loops, wmark);
3870 if (wmark) {
3871 ret = true;
3872 break;
3873 }
3874 }
3875
3876 /*
3877 * Memory allocation/reclaim might be called from a WQ context and the
3878 * current implementation of the WQ concurrency control doesn't
3879 * recognize that a particular WQ is congested if the worker thread is
3880 * looping without ever sleeping. Therefore we have to do a short sleep
3881 * here rather than calling cond_resched().
3882 */
3883 if (current->flags & PF_WQ_WORKER)
3884 schedule_timeout_uninterruptible(1);
3885 else
3886 cond_resched();
3887 out:
3888 /* Before OOM, exhaust highatomic_reserve */
3889 if (!ret)
3890 return unreserve_highatomic_pageblock(ac, true);
3891
3892 return ret;
3893 }
3894
3895 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)3896 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3897 {
3898 /*
3899 * It's possible that cpuset's mems_allowed and the nodemask from
3900 * mempolicy don't intersect. This should be normally dealt with by
3901 * policy_nodemask(), but it's possible to race with cpuset update in
3902 * such a way the check therein was true, and then it became false
3903 * before we got our cpuset_mems_cookie here.
3904 * This assumes that for all allocations, ac->nodemask can come only
3905 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3906 * when it does not intersect with the cpuset restrictions) or the
3907 * caller can deal with a violated nodemask.
3908 */
3909 if (cpusets_enabled() && ac->nodemask &&
3910 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3911 ac->nodemask = NULL;
3912 return true;
3913 }
3914
3915 /*
3916 * When updating a task's mems_allowed or mempolicy nodemask, it is
3917 * possible to race with parallel threads in such a way that our
3918 * allocation can fail while the mask is being updated. If we are about
3919 * to fail, check if the cpuset changed during allocation and if so,
3920 * retry.
3921 */
3922 if (read_mems_allowed_retry(cpuset_mems_cookie))
3923 return true;
3924
3925 return false;
3926 }
3927
3928 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)3929 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3930 struct alloc_context *ac)
3931 {
3932 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3933 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3934 struct page *page = NULL;
3935 unsigned int alloc_flags;
3936 unsigned long did_some_progress;
3937 enum compact_priority compact_priority;
3938 enum compact_result compact_result;
3939 int compaction_retries;
3940 int no_progress_loops;
3941 unsigned int cpuset_mems_cookie;
3942 unsigned int zonelist_iter_cookie;
3943 int reserve_flags;
3944
3945 restart:
3946 compaction_retries = 0;
3947 no_progress_loops = 0;
3948 compact_priority = DEF_COMPACT_PRIORITY;
3949 cpuset_mems_cookie = read_mems_allowed_begin();
3950 zonelist_iter_cookie = zonelist_iter_begin();
3951
3952 /*
3953 * The fast path uses conservative alloc_flags to succeed only until
3954 * kswapd needs to be woken up, and to avoid the cost of setting up
3955 * alloc_flags precisely. So we do that now.
3956 */
3957 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
3958
3959 /*
3960 * We need to recalculate the starting point for the zonelist iterator
3961 * because we might have used different nodemask in the fast path, or
3962 * there was a cpuset modification and we are retrying - otherwise we
3963 * could end up iterating over non-eligible zones endlessly.
3964 */
3965 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3966 ac->highest_zoneidx, ac->nodemask);
3967 if (!ac->preferred_zoneref->zone)
3968 goto nopage;
3969
3970 /*
3971 * Check for insane configurations where the cpuset doesn't contain
3972 * any suitable zone to satisfy the request - e.g. non-movable
3973 * GFP_HIGHUSER allocations from MOVABLE nodes only.
3974 */
3975 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
3976 struct zoneref *z = first_zones_zonelist(ac->zonelist,
3977 ac->highest_zoneidx,
3978 &cpuset_current_mems_allowed);
3979 if (!z->zone)
3980 goto nopage;
3981 }
3982
3983 if (alloc_flags & ALLOC_KSWAPD)
3984 wake_all_kswapds(order, gfp_mask, ac);
3985
3986 /*
3987 * The adjusted alloc_flags might result in immediate success, so try
3988 * that first
3989 */
3990 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3991 if (page)
3992 goto got_pg;
3993
3994 /*
3995 * For costly allocations, try direct compaction first, as it's likely
3996 * that we have enough base pages and don't need to reclaim. For non-
3997 * movable high-order allocations, do that as well, as compaction will
3998 * try prevent permanent fragmentation by migrating from blocks of the
3999 * same migratetype.
4000 * Don't try this for allocations that are allowed to ignore
4001 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4002 */
4003 if (can_direct_reclaim &&
4004 (costly_order ||
4005 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4006 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4007 page = __alloc_pages_direct_compact(gfp_mask, order,
4008 alloc_flags, ac,
4009 INIT_COMPACT_PRIORITY,
4010 &compact_result);
4011 if (page)
4012 goto got_pg;
4013
4014 /*
4015 * Checks for costly allocations with __GFP_NORETRY, which
4016 * includes some THP page fault allocations
4017 */
4018 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4019 /*
4020 * If allocating entire pageblock(s) and compaction
4021 * failed because all zones are below low watermarks
4022 * or is prohibited because it recently failed at this
4023 * order, fail immediately unless the allocator has
4024 * requested compaction and reclaim retry.
4025 *
4026 * Reclaim is
4027 * - potentially very expensive because zones are far
4028 * below their low watermarks or this is part of very
4029 * bursty high order allocations,
4030 * - not guaranteed to help because isolate_freepages()
4031 * may not iterate over freed pages as part of its
4032 * linear scan, and
4033 * - unlikely to make entire pageblocks free on its
4034 * own.
4035 */
4036 if (compact_result == COMPACT_SKIPPED ||
4037 compact_result == COMPACT_DEFERRED)
4038 goto nopage;
4039
4040 /*
4041 * Looks like reclaim/compaction is worth trying, but
4042 * sync compaction could be very expensive, so keep
4043 * using async compaction.
4044 */
4045 compact_priority = INIT_COMPACT_PRIORITY;
4046 }
4047 }
4048
4049 retry:
4050 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4051 if (alloc_flags & ALLOC_KSWAPD)
4052 wake_all_kswapds(order, gfp_mask, ac);
4053
4054 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4055 if (reserve_flags)
4056 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4057 (alloc_flags & ALLOC_KSWAPD);
4058
4059 /*
4060 * Reset the nodemask and zonelist iterators if memory policies can be
4061 * ignored. These allocations are high priority and system rather than
4062 * user oriented.
4063 */
4064 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4065 ac->nodemask = NULL;
4066 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4067 ac->highest_zoneidx, ac->nodemask);
4068 }
4069
4070 /* Attempt with potentially adjusted zonelist and alloc_flags */
4071 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4072 if (page)
4073 goto got_pg;
4074
4075 /* Caller is not willing to reclaim, we can't balance anything */
4076 if (!can_direct_reclaim)
4077 goto nopage;
4078
4079 /* Avoid recursion of direct reclaim */
4080 if (current->flags & PF_MEMALLOC)
4081 goto nopage;
4082
4083 /* Try direct reclaim and then allocating */
4084 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4085 &did_some_progress);
4086 if (page)
4087 goto got_pg;
4088
4089 /* Try direct compaction and then allocating */
4090 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4091 compact_priority, &compact_result);
4092 if (page)
4093 goto got_pg;
4094
4095 /* Do not loop if specifically requested */
4096 if (gfp_mask & __GFP_NORETRY)
4097 goto nopage;
4098
4099 /*
4100 * Do not retry costly high order allocations unless they are
4101 * __GFP_RETRY_MAYFAIL
4102 */
4103 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4104 goto nopage;
4105
4106 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4107 did_some_progress > 0, &no_progress_loops))
4108 goto retry;
4109
4110 /*
4111 * It doesn't make any sense to retry for the compaction if the order-0
4112 * reclaim is not able to make any progress because the current
4113 * implementation of the compaction depends on the sufficient amount
4114 * of free memory (see __compaction_suitable)
4115 */
4116 if (did_some_progress > 0 &&
4117 should_compact_retry(ac, order, alloc_flags,
4118 compact_result, &compact_priority,
4119 &compaction_retries))
4120 goto retry;
4121
4122
4123 /*
4124 * Deal with possible cpuset update races or zonelist updates to avoid
4125 * a unnecessary OOM kill.
4126 */
4127 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4128 check_retry_zonelist(zonelist_iter_cookie))
4129 goto restart;
4130
4131 /* Reclaim has failed us, start killing things */
4132 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4133 if (page)
4134 goto got_pg;
4135
4136 /* Avoid allocations with no watermarks from looping endlessly */
4137 if (tsk_is_oom_victim(current) &&
4138 (alloc_flags & ALLOC_OOM ||
4139 (gfp_mask & __GFP_NOMEMALLOC)))
4140 goto nopage;
4141
4142 /* Retry as long as the OOM killer is making progress */
4143 if (did_some_progress) {
4144 no_progress_loops = 0;
4145 goto retry;
4146 }
4147
4148 nopage:
4149 /*
4150 * Deal with possible cpuset update races or zonelist updates to avoid
4151 * a unnecessary OOM kill.
4152 */
4153 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4154 check_retry_zonelist(zonelist_iter_cookie))
4155 goto restart;
4156
4157 /*
4158 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4159 * we always retry
4160 */
4161 if (gfp_mask & __GFP_NOFAIL) {
4162 /*
4163 * All existing users of the __GFP_NOFAIL are blockable, so warn
4164 * of any new users that actually require GFP_NOWAIT
4165 */
4166 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4167 goto fail;
4168
4169 /*
4170 * PF_MEMALLOC request from this context is rather bizarre
4171 * because we cannot reclaim anything and only can loop waiting
4172 * for somebody to do a work for us
4173 */
4174 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4175
4176 /*
4177 * non failing costly orders are a hard requirement which we
4178 * are not prepared for much so let's warn about these users
4179 * so that we can identify them and convert them to something
4180 * else.
4181 */
4182 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4183
4184 /*
4185 * Help non-failing allocations by giving some access to memory
4186 * reserves normally used for high priority non-blocking
4187 * allocations but do not use ALLOC_NO_WATERMARKS because this
4188 * could deplete whole memory reserves which would just make
4189 * the situation worse.
4190 */
4191 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4192 if (page)
4193 goto got_pg;
4194
4195 cond_resched();
4196 goto retry;
4197 }
4198 fail:
4199 warn_alloc(gfp_mask, ac->nodemask,
4200 "page allocation failure: order:%u", order);
4201 got_pg:
4202 return page;
4203 }
4204
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_gfp,unsigned int * alloc_flags)4205 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4206 int preferred_nid, nodemask_t *nodemask,
4207 struct alloc_context *ac, gfp_t *alloc_gfp,
4208 unsigned int *alloc_flags)
4209 {
4210 ac->highest_zoneidx = gfp_zone(gfp_mask);
4211 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4212 ac->nodemask = nodemask;
4213 ac->migratetype = gfp_migratetype(gfp_mask);
4214
4215 if (cpusets_enabled()) {
4216 *alloc_gfp |= __GFP_HARDWALL;
4217 /*
4218 * When we are in the interrupt context, it is irrelevant
4219 * to the current task context. It means that any node ok.
4220 */
4221 if (in_task() && !ac->nodemask)
4222 ac->nodemask = &cpuset_current_mems_allowed;
4223 else
4224 *alloc_flags |= ALLOC_CPUSET;
4225 }
4226
4227 might_alloc(gfp_mask);
4228
4229 if (should_fail_alloc_page(gfp_mask, order))
4230 return false;
4231
4232 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4233
4234 /* Dirty zone balancing only done in the fast path */
4235 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4236
4237 /*
4238 * The preferred zone is used for statistics but crucially it is
4239 * also used as the starting point for the zonelist iterator. It
4240 * may get reset for allocations that ignore memory policies.
4241 */
4242 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4243 ac->highest_zoneidx, ac->nodemask);
4244
4245 return true;
4246 }
4247
4248 /*
4249 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4250 * @gfp: GFP flags for the allocation
4251 * @preferred_nid: The preferred NUMA node ID to allocate from
4252 * @nodemask: Set of nodes to allocate from, may be NULL
4253 * @nr_pages: The number of pages desired on the list or array
4254 * @page_list: Optional list to store the allocated pages
4255 * @page_array: Optional array to store the pages
4256 *
4257 * This is a batched version of the page allocator that attempts to
4258 * allocate nr_pages quickly. Pages are added to page_list if page_list
4259 * is not NULL, otherwise it is assumed that the page_array is valid.
4260 *
4261 * For lists, nr_pages is the number of pages that should be allocated.
4262 *
4263 * For arrays, only NULL elements are populated with pages and nr_pages
4264 * is the maximum number of pages that will be stored in the array.
4265 *
4266 * Returns the number of pages on the list or array.
4267 */
__alloc_pages_bulk(gfp_t gfp,int preferred_nid,nodemask_t * nodemask,int nr_pages,struct list_head * page_list,struct page ** page_array)4268 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4269 nodemask_t *nodemask, int nr_pages,
4270 struct list_head *page_list,
4271 struct page **page_array)
4272 {
4273 struct page *page;
4274 unsigned long __maybe_unused UP_flags;
4275 struct zone *zone;
4276 struct zoneref *z;
4277 struct per_cpu_pages *pcp;
4278 struct list_head *pcp_list;
4279 struct alloc_context ac;
4280 gfp_t alloc_gfp;
4281 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4282 int nr_populated = 0, nr_account = 0;
4283
4284 /*
4285 * Skip populated array elements to determine if any pages need
4286 * to be allocated before disabling IRQs.
4287 */
4288 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4289 nr_populated++;
4290
4291 /* No pages requested? */
4292 if (unlikely(nr_pages <= 0))
4293 goto out;
4294
4295 /* Already populated array? */
4296 if (unlikely(page_array && nr_pages - nr_populated == 0))
4297 goto out;
4298
4299 /* Bulk allocator does not support memcg accounting. */
4300 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4301 goto failed;
4302
4303 /* Use the single page allocator for one page. */
4304 if (nr_pages - nr_populated == 1)
4305 goto failed;
4306
4307 #ifdef CONFIG_PAGE_OWNER
4308 /*
4309 * PAGE_OWNER may recurse into the allocator to allocate space to
4310 * save the stack with pagesets.lock held. Releasing/reacquiring
4311 * removes much of the performance benefit of bulk allocation so
4312 * force the caller to allocate one page at a time as it'll have
4313 * similar performance to added complexity to the bulk allocator.
4314 */
4315 if (static_branch_unlikely(&page_owner_inited))
4316 goto failed;
4317 #endif
4318
4319 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4320 gfp &= gfp_allowed_mask;
4321 alloc_gfp = gfp;
4322 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4323 goto out;
4324 gfp = alloc_gfp;
4325
4326 /* Find an allowed local zone that meets the low watermark. */
4327 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4328 unsigned long mark;
4329
4330 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4331 !__cpuset_zone_allowed(zone, gfp)) {
4332 continue;
4333 }
4334
4335 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4336 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4337 goto failed;
4338 }
4339
4340 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4341 if (zone_watermark_fast(zone, 0, mark,
4342 zonelist_zone_idx(ac.preferred_zoneref),
4343 alloc_flags, gfp)) {
4344 break;
4345 }
4346 }
4347
4348 /*
4349 * If there are no allowed local zones that meets the watermarks then
4350 * try to allocate a single page and reclaim if necessary.
4351 */
4352 if (unlikely(!zone))
4353 goto failed;
4354
4355 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4356 pcp_trylock_prepare(UP_flags);
4357 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4358 if (!pcp)
4359 goto failed_irq;
4360
4361 /* Attempt the batch allocation */
4362 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4363 while (nr_populated < nr_pages) {
4364
4365 /* Skip existing pages */
4366 if (page_array && page_array[nr_populated]) {
4367 nr_populated++;
4368 continue;
4369 }
4370
4371 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4372 pcp, pcp_list);
4373 if (unlikely(!page)) {
4374 /* Try and allocate at least one page */
4375 if (!nr_account) {
4376 pcp_spin_unlock(pcp);
4377 goto failed_irq;
4378 }
4379 break;
4380 }
4381 nr_account++;
4382
4383 prep_new_page(page, 0, gfp, 0);
4384 if (page_list)
4385 list_add(&page->lru, page_list);
4386 else
4387 page_array[nr_populated] = page;
4388 nr_populated++;
4389 }
4390
4391 pcp_spin_unlock(pcp);
4392 pcp_trylock_finish(UP_flags);
4393
4394 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4395 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4396
4397 out:
4398 return nr_populated;
4399
4400 failed_irq:
4401 pcp_trylock_finish(UP_flags);
4402
4403 failed:
4404 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4405 if (page) {
4406 if (page_list)
4407 list_add(&page->lru, page_list);
4408 else
4409 page_array[nr_populated] = page;
4410 nr_populated++;
4411 }
4412
4413 goto out;
4414 }
4415 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4416
4417 /*
4418 * This is the 'heart' of the zoned buddy allocator.
4419 */
__alloc_pages(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4420 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4421 nodemask_t *nodemask)
4422 {
4423 struct page *page;
4424 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4425 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4426 struct alloc_context ac = { };
4427
4428 /*
4429 * There are several places where we assume that the order value is sane
4430 * so bail out early if the request is out of bound.
4431 */
4432 if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4433 return NULL;
4434
4435 gfp &= gfp_allowed_mask;
4436 /*
4437 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4438 * resp. GFP_NOIO which has to be inherited for all allocation requests
4439 * from a particular context which has been marked by
4440 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4441 * movable zones are not used during allocation.
4442 */
4443 gfp = current_gfp_context(gfp);
4444 alloc_gfp = gfp;
4445 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4446 &alloc_gfp, &alloc_flags))
4447 return NULL;
4448
4449 /*
4450 * Forbid the first pass from falling back to types that fragment
4451 * memory until all local zones are considered.
4452 */
4453 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4454
4455 /* First allocation attempt */
4456 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4457 if (likely(page))
4458 goto out;
4459
4460 alloc_gfp = gfp;
4461 ac.spread_dirty_pages = false;
4462
4463 /*
4464 * Restore the original nodemask if it was potentially replaced with
4465 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4466 */
4467 ac.nodemask = nodemask;
4468
4469 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4470
4471 out:
4472 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4473 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4474 __free_pages(page, order);
4475 page = NULL;
4476 }
4477
4478 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4479 kmsan_alloc_page(page, order, alloc_gfp);
4480
4481 return page;
4482 }
4483 EXPORT_SYMBOL(__alloc_pages);
4484
__folio_alloc(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4485 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4486 nodemask_t *nodemask)
4487 {
4488 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4489 preferred_nid, nodemask);
4490 struct folio *folio = (struct folio *)page;
4491
4492 if (folio && order > 1)
4493 folio_prep_large_rmappable(folio);
4494 return folio;
4495 }
4496 EXPORT_SYMBOL(__folio_alloc);
4497
4498 /*
4499 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4500 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4501 * you need to access high mem.
4502 */
__get_free_pages(gfp_t gfp_mask,unsigned int order)4503 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4504 {
4505 struct page *page;
4506
4507 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4508 if (!page)
4509 return 0;
4510 return (unsigned long) page_address(page);
4511 }
4512 EXPORT_SYMBOL(__get_free_pages);
4513
get_zeroed_page(gfp_t gfp_mask)4514 unsigned long get_zeroed_page(gfp_t gfp_mask)
4515 {
4516 return __get_free_page(gfp_mask | __GFP_ZERO);
4517 }
4518 EXPORT_SYMBOL(get_zeroed_page);
4519
4520 /**
4521 * __free_pages - Free pages allocated with alloc_pages().
4522 * @page: The page pointer returned from alloc_pages().
4523 * @order: The order of the allocation.
4524 *
4525 * This function can free multi-page allocations that are not compound
4526 * pages. It does not check that the @order passed in matches that of
4527 * the allocation, so it is easy to leak memory. Freeing more memory
4528 * than was allocated will probably emit a warning.
4529 *
4530 * If the last reference to this page is speculative, it will be released
4531 * by put_page() which only frees the first page of a non-compound
4532 * allocation. To prevent the remaining pages from being leaked, we free
4533 * the subsequent pages here. If you want to use the page's reference
4534 * count to decide when to free the allocation, you should allocate a
4535 * compound page, and use put_page() instead of __free_pages().
4536 *
4537 * Context: May be called in interrupt context or while holding a normal
4538 * spinlock, but not in NMI context or while holding a raw spinlock.
4539 */
__free_pages(struct page * page,unsigned int order)4540 void __free_pages(struct page *page, unsigned int order)
4541 {
4542 /* get PageHead before we drop reference */
4543 int head = PageHead(page);
4544
4545 if (put_page_testzero(page))
4546 free_the_page(page, order);
4547 else if (!head)
4548 while (order-- > 0)
4549 free_the_page(page + (1 << order), order);
4550 }
4551 EXPORT_SYMBOL(__free_pages);
4552
free_pages(unsigned long addr,unsigned int order)4553 void free_pages(unsigned long addr, unsigned int order)
4554 {
4555 if (addr != 0) {
4556 VM_BUG_ON(!virt_addr_valid((void *)addr));
4557 __free_pages(virt_to_page((void *)addr), order);
4558 }
4559 }
4560
4561 EXPORT_SYMBOL(free_pages);
4562
4563 /*
4564 * Page Fragment:
4565 * An arbitrary-length arbitrary-offset area of memory which resides
4566 * within a 0 or higher order page. Multiple fragments within that page
4567 * are individually refcounted, in the page's reference counter.
4568 *
4569 * The page_frag functions below provide a simple allocation framework for
4570 * page fragments. This is used by the network stack and network device
4571 * drivers to provide a backing region of memory for use as either an
4572 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4573 */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)4574 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4575 gfp_t gfp_mask)
4576 {
4577 struct page *page = NULL;
4578 gfp_t gfp = gfp_mask;
4579
4580 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4581 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4582 __GFP_NOMEMALLOC;
4583 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4584 PAGE_FRAG_CACHE_MAX_ORDER);
4585 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4586 #endif
4587 if (unlikely(!page))
4588 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4589
4590 nc->va = page ? page_address(page) : NULL;
4591
4592 return page;
4593 }
4594
__page_frag_cache_drain(struct page * page,unsigned int count)4595 void __page_frag_cache_drain(struct page *page, unsigned int count)
4596 {
4597 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4598
4599 if (page_ref_sub_and_test(page, count))
4600 free_the_page(page, compound_order(page));
4601 }
4602 EXPORT_SYMBOL(__page_frag_cache_drain);
4603
page_frag_alloc_align(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask,unsigned int align_mask)4604 void *page_frag_alloc_align(struct page_frag_cache *nc,
4605 unsigned int fragsz, gfp_t gfp_mask,
4606 unsigned int align_mask)
4607 {
4608 unsigned int size = PAGE_SIZE;
4609 struct page *page;
4610 int offset;
4611
4612 if (unlikely(!nc->va)) {
4613 refill:
4614 page = __page_frag_cache_refill(nc, gfp_mask);
4615 if (!page)
4616 return NULL;
4617
4618 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4619 /* if size can vary use size else just use PAGE_SIZE */
4620 size = nc->size;
4621 #endif
4622 /* Even if we own the page, we do not use atomic_set().
4623 * This would break get_page_unless_zero() users.
4624 */
4625 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4626
4627 /* reset page count bias and offset to start of new frag */
4628 nc->pfmemalloc = page_is_pfmemalloc(page);
4629 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4630 nc->offset = size;
4631 }
4632
4633 offset = nc->offset - fragsz;
4634 if (unlikely(offset < 0)) {
4635 page = virt_to_page(nc->va);
4636
4637 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4638 goto refill;
4639
4640 if (unlikely(nc->pfmemalloc)) {
4641 free_the_page(page, compound_order(page));
4642 goto refill;
4643 }
4644
4645 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4646 /* if size can vary use size else just use PAGE_SIZE */
4647 size = nc->size;
4648 #endif
4649 /* OK, page count is 0, we can safely set it */
4650 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4651
4652 /* reset page count bias and offset to start of new frag */
4653 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4654 offset = size - fragsz;
4655 if (unlikely(offset < 0)) {
4656 /*
4657 * The caller is trying to allocate a fragment
4658 * with fragsz > PAGE_SIZE but the cache isn't big
4659 * enough to satisfy the request, this may
4660 * happen in low memory conditions.
4661 * We don't release the cache page because
4662 * it could make memory pressure worse
4663 * so we simply return NULL here.
4664 */
4665 return NULL;
4666 }
4667 }
4668
4669 nc->pagecnt_bias--;
4670 offset &= align_mask;
4671 nc->offset = offset;
4672
4673 return nc->va + offset;
4674 }
4675 EXPORT_SYMBOL(page_frag_alloc_align);
4676
4677 /*
4678 * Frees a page fragment allocated out of either a compound or order 0 page.
4679 */
page_frag_free(void * addr)4680 void page_frag_free(void *addr)
4681 {
4682 struct page *page = virt_to_head_page(addr);
4683
4684 if (unlikely(put_page_testzero(page)))
4685 free_the_page(page, compound_order(page));
4686 }
4687 EXPORT_SYMBOL(page_frag_free);
4688
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)4689 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4690 size_t size)
4691 {
4692 if (addr) {
4693 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4694 struct page *page = virt_to_page((void *)addr);
4695 struct page *last = page + nr;
4696
4697 split_page_owner(page, 1 << order);
4698 split_page_memcg(page, 1 << order);
4699 while (page < --last)
4700 set_page_refcounted(last);
4701
4702 last = page + (1UL << order);
4703 for (page += nr; page < last; page++)
4704 __free_pages_ok(page, 0, FPI_TO_TAIL);
4705 }
4706 return (void *)addr;
4707 }
4708
4709 /**
4710 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4711 * @size: the number of bytes to allocate
4712 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4713 *
4714 * This function is similar to alloc_pages(), except that it allocates the
4715 * minimum number of pages to satisfy the request. alloc_pages() can only
4716 * allocate memory in power-of-two pages.
4717 *
4718 * This function is also limited by MAX_ORDER.
4719 *
4720 * Memory allocated by this function must be released by free_pages_exact().
4721 *
4722 * Return: pointer to the allocated area or %NULL in case of error.
4723 */
alloc_pages_exact(size_t size,gfp_t gfp_mask)4724 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4725 {
4726 unsigned int order = get_order(size);
4727 unsigned long addr;
4728
4729 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4730 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4731
4732 addr = __get_free_pages(gfp_mask, order);
4733 return make_alloc_exact(addr, order, size);
4734 }
4735 EXPORT_SYMBOL(alloc_pages_exact);
4736
4737 /**
4738 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4739 * pages on a node.
4740 * @nid: the preferred node ID where memory should be allocated
4741 * @size: the number of bytes to allocate
4742 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4743 *
4744 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4745 * back.
4746 *
4747 * Return: pointer to the allocated area or %NULL in case of error.
4748 */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)4749 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4750 {
4751 unsigned int order = get_order(size);
4752 struct page *p;
4753
4754 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4755 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4756
4757 p = alloc_pages_node(nid, gfp_mask, order);
4758 if (!p)
4759 return NULL;
4760 return make_alloc_exact((unsigned long)page_address(p), order, size);
4761 }
4762
4763 /**
4764 * free_pages_exact - release memory allocated via alloc_pages_exact()
4765 * @virt: the value returned by alloc_pages_exact.
4766 * @size: size of allocation, same value as passed to alloc_pages_exact().
4767 *
4768 * Release the memory allocated by a previous call to alloc_pages_exact.
4769 */
free_pages_exact(void * virt,size_t size)4770 void free_pages_exact(void *virt, size_t size)
4771 {
4772 unsigned long addr = (unsigned long)virt;
4773 unsigned long end = addr + PAGE_ALIGN(size);
4774
4775 while (addr < end) {
4776 free_page(addr);
4777 addr += PAGE_SIZE;
4778 }
4779 }
4780 EXPORT_SYMBOL(free_pages_exact);
4781
4782 /**
4783 * nr_free_zone_pages - count number of pages beyond high watermark
4784 * @offset: The zone index of the highest zone
4785 *
4786 * nr_free_zone_pages() counts the number of pages which are beyond the
4787 * high watermark within all zones at or below a given zone index. For each
4788 * zone, the number of pages is calculated as:
4789 *
4790 * nr_free_zone_pages = managed_pages - high_pages
4791 *
4792 * Return: number of pages beyond high watermark.
4793 */
nr_free_zone_pages(int offset)4794 static unsigned long nr_free_zone_pages(int offset)
4795 {
4796 struct zoneref *z;
4797 struct zone *zone;
4798
4799 /* Just pick one node, since fallback list is circular */
4800 unsigned long sum = 0;
4801
4802 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4803
4804 for_each_zone_zonelist(zone, z, zonelist, offset) {
4805 unsigned long size = zone_managed_pages(zone);
4806 unsigned long high = high_wmark_pages(zone);
4807 if (size > high)
4808 sum += size - high;
4809 }
4810
4811 return sum;
4812 }
4813
4814 /**
4815 * nr_free_buffer_pages - count number of pages beyond high watermark
4816 *
4817 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4818 * watermark within ZONE_DMA and ZONE_NORMAL.
4819 *
4820 * Return: number of pages beyond high watermark within ZONE_DMA and
4821 * ZONE_NORMAL.
4822 */
nr_free_buffer_pages(void)4823 unsigned long nr_free_buffer_pages(void)
4824 {
4825 return nr_free_zone_pages(gfp_zone(GFP_USER));
4826 }
4827 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4828
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)4829 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4830 {
4831 zoneref->zone = zone;
4832 zoneref->zone_idx = zone_idx(zone);
4833 }
4834
4835 /*
4836 * Builds allocation fallback zone lists.
4837 *
4838 * Add all populated zones of a node to the zonelist.
4839 */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)4840 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4841 {
4842 struct zone *zone;
4843 enum zone_type zone_type = MAX_NR_ZONES;
4844 int nr_zones = 0;
4845
4846 do {
4847 zone_type--;
4848 zone = pgdat->node_zones + zone_type;
4849 if (populated_zone(zone)) {
4850 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4851 check_highest_zone(zone_type);
4852 }
4853 } while (zone_type);
4854
4855 return nr_zones;
4856 }
4857
4858 #ifdef CONFIG_NUMA
4859
__parse_numa_zonelist_order(char * s)4860 static int __parse_numa_zonelist_order(char *s)
4861 {
4862 /*
4863 * We used to support different zonelists modes but they turned
4864 * out to be just not useful. Let's keep the warning in place
4865 * if somebody still use the cmd line parameter so that we do
4866 * not fail it silently
4867 */
4868 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4869 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
4870 return -EINVAL;
4871 }
4872 return 0;
4873 }
4874
4875 static char numa_zonelist_order[] = "Node";
4876 #define NUMA_ZONELIST_ORDER_LEN 16
4877 /*
4878 * sysctl handler for numa_zonelist_order
4879 */
numa_zonelist_order_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4880 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4881 void *buffer, size_t *length, loff_t *ppos)
4882 {
4883 if (write)
4884 return __parse_numa_zonelist_order(buffer);
4885 return proc_dostring(table, write, buffer, length, ppos);
4886 }
4887
4888 static int node_load[MAX_NUMNODES];
4889
4890 /**
4891 * find_next_best_node - find the next node that should appear in a given node's fallback list
4892 * @node: node whose fallback list we're appending
4893 * @used_node_mask: nodemask_t of already used nodes
4894 *
4895 * We use a number of factors to determine which is the next node that should
4896 * appear on a given node's fallback list. The node should not have appeared
4897 * already in @node's fallback list, and it should be the next closest node
4898 * according to the distance array (which contains arbitrary distance values
4899 * from each node to each node in the system), and should also prefer nodes
4900 * with no CPUs, since presumably they'll have very little allocation pressure
4901 * on them otherwise.
4902 *
4903 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
4904 */
find_next_best_node(int node,nodemask_t * used_node_mask)4905 int find_next_best_node(int node, nodemask_t *used_node_mask)
4906 {
4907 int n, val;
4908 int min_val = INT_MAX;
4909 int best_node = NUMA_NO_NODE;
4910
4911 /* Use the local node if we haven't already */
4912 if (!node_isset(node, *used_node_mask)) {
4913 node_set(node, *used_node_mask);
4914 return node;
4915 }
4916
4917 for_each_node_state(n, N_MEMORY) {
4918
4919 /* Don't want a node to appear more than once */
4920 if (node_isset(n, *used_node_mask))
4921 continue;
4922
4923 /* Use the distance array to find the distance */
4924 val = node_distance(node, n);
4925
4926 /* Penalize nodes under us ("prefer the next node") */
4927 val += (n < node);
4928
4929 /* Give preference to headless and unused nodes */
4930 if (!cpumask_empty(cpumask_of_node(n)))
4931 val += PENALTY_FOR_NODE_WITH_CPUS;
4932
4933 /* Slight preference for less loaded node */
4934 val *= MAX_NUMNODES;
4935 val += node_load[n];
4936
4937 if (val < min_val) {
4938 min_val = val;
4939 best_node = n;
4940 }
4941 }
4942
4943 if (best_node >= 0)
4944 node_set(best_node, *used_node_mask);
4945
4946 return best_node;
4947 }
4948
4949
4950 /*
4951 * Build zonelists ordered by node and zones within node.
4952 * This results in maximum locality--normal zone overflows into local
4953 * DMA zone, if any--but risks exhausting DMA zone.
4954 */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)4955 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
4956 unsigned nr_nodes)
4957 {
4958 struct zoneref *zonerefs;
4959 int i;
4960
4961 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
4962
4963 for (i = 0; i < nr_nodes; i++) {
4964 int nr_zones;
4965
4966 pg_data_t *node = NODE_DATA(node_order[i]);
4967
4968 nr_zones = build_zonerefs_node(node, zonerefs);
4969 zonerefs += nr_zones;
4970 }
4971 zonerefs->zone = NULL;
4972 zonerefs->zone_idx = 0;
4973 }
4974
4975 /*
4976 * Build gfp_thisnode zonelists
4977 */
build_thisnode_zonelists(pg_data_t * pgdat)4978 static void build_thisnode_zonelists(pg_data_t *pgdat)
4979 {
4980 struct zoneref *zonerefs;
4981 int nr_zones;
4982
4983 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
4984 nr_zones = build_zonerefs_node(pgdat, zonerefs);
4985 zonerefs += nr_zones;
4986 zonerefs->zone = NULL;
4987 zonerefs->zone_idx = 0;
4988 }
4989
4990 /*
4991 * Build zonelists ordered by zone and nodes within zones.
4992 * This results in conserving DMA zone[s] until all Normal memory is
4993 * exhausted, but results in overflowing to remote node while memory
4994 * may still exist in local DMA zone.
4995 */
4996
build_zonelists(pg_data_t * pgdat)4997 static void build_zonelists(pg_data_t *pgdat)
4998 {
4999 static int node_order[MAX_NUMNODES];
5000 int node, nr_nodes = 0;
5001 nodemask_t used_mask = NODE_MASK_NONE;
5002 int local_node, prev_node;
5003
5004 /* NUMA-aware ordering of nodes */
5005 local_node = pgdat->node_id;
5006 prev_node = local_node;
5007
5008 memset(node_order, 0, sizeof(node_order));
5009 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5010 /*
5011 * We don't want to pressure a particular node.
5012 * So adding penalty to the first node in same
5013 * distance group to make it round-robin.
5014 */
5015 if (node_distance(local_node, node) !=
5016 node_distance(local_node, prev_node))
5017 node_load[node] += 1;
5018
5019 node_order[nr_nodes++] = node;
5020 prev_node = node;
5021 }
5022
5023 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5024 build_thisnode_zonelists(pgdat);
5025 pr_info("Fallback order for Node %d: ", local_node);
5026 for (node = 0; node < nr_nodes; node++)
5027 pr_cont("%d ", node_order[node]);
5028 pr_cont("\n");
5029 }
5030
5031 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5032 /*
5033 * Return node id of node used for "local" allocations.
5034 * I.e., first node id of first zone in arg node's generic zonelist.
5035 * Used for initializing percpu 'numa_mem', which is used primarily
5036 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5037 */
local_memory_node(int node)5038 int local_memory_node(int node)
5039 {
5040 struct zoneref *z;
5041
5042 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5043 gfp_zone(GFP_KERNEL),
5044 NULL);
5045 return zone_to_nid(z->zone);
5046 }
5047 #endif
5048
5049 static void setup_min_unmapped_ratio(void);
5050 static void setup_min_slab_ratio(void);
5051 #else /* CONFIG_NUMA */
5052
build_zonelists(pg_data_t * pgdat)5053 static void build_zonelists(pg_data_t *pgdat)
5054 {
5055 int node, local_node;
5056 struct zoneref *zonerefs;
5057 int nr_zones;
5058
5059 local_node = pgdat->node_id;
5060
5061 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5062 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5063 zonerefs += nr_zones;
5064
5065 /*
5066 * Now we build the zonelist so that it contains the zones
5067 * of all the other nodes.
5068 * We don't want to pressure a particular node, so when
5069 * building the zones for node N, we make sure that the
5070 * zones coming right after the local ones are those from
5071 * node N+1 (modulo N)
5072 */
5073 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5074 if (!node_online(node))
5075 continue;
5076 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5077 zonerefs += nr_zones;
5078 }
5079 for (node = 0; node < local_node; node++) {
5080 if (!node_online(node))
5081 continue;
5082 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5083 zonerefs += nr_zones;
5084 }
5085
5086 zonerefs->zone = NULL;
5087 zonerefs->zone_idx = 0;
5088 }
5089
5090 #endif /* CONFIG_NUMA */
5091
5092 /*
5093 * Boot pageset table. One per cpu which is going to be used for all
5094 * zones and all nodes. The parameters will be set in such a way
5095 * that an item put on a list will immediately be handed over to
5096 * the buddy list. This is safe since pageset manipulation is done
5097 * with interrupts disabled.
5098 *
5099 * The boot_pagesets must be kept even after bootup is complete for
5100 * unused processors and/or zones. They do play a role for bootstrapping
5101 * hotplugged processors.
5102 *
5103 * zoneinfo_show() and maybe other functions do
5104 * not check if the processor is online before following the pageset pointer.
5105 * Other parts of the kernel may not check if the zone is available.
5106 */
5107 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5108 /* These effectively disable the pcplists in the boot pageset completely */
5109 #define BOOT_PAGESET_HIGH 0
5110 #define BOOT_PAGESET_BATCH 1
5111 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5112 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5113
__build_all_zonelists(void * data)5114 static void __build_all_zonelists(void *data)
5115 {
5116 int nid;
5117 int __maybe_unused cpu;
5118 pg_data_t *self = data;
5119 unsigned long flags;
5120
5121 /*
5122 * The zonelist_update_seq must be acquired with irqsave because the
5123 * reader can be invoked from IRQ with GFP_ATOMIC.
5124 */
5125 write_seqlock_irqsave(&zonelist_update_seq, flags);
5126 /*
5127 * Also disable synchronous printk() to prevent any printk() from
5128 * trying to hold port->lock, for
5129 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5130 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5131 */
5132 printk_deferred_enter();
5133
5134 #ifdef CONFIG_NUMA
5135 memset(node_load, 0, sizeof(node_load));
5136 #endif
5137
5138 /*
5139 * This node is hotadded and no memory is yet present. So just
5140 * building zonelists is fine - no need to touch other nodes.
5141 */
5142 if (self && !node_online(self->node_id)) {
5143 build_zonelists(self);
5144 } else {
5145 /*
5146 * All possible nodes have pgdat preallocated
5147 * in free_area_init
5148 */
5149 for_each_node(nid) {
5150 pg_data_t *pgdat = NODE_DATA(nid);
5151
5152 build_zonelists(pgdat);
5153 }
5154
5155 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5156 /*
5157 * We now know the "local memory node" for each node--
5158 * i.e., the node of the first zone in the generic zonelist.
5159 * Set up numa_mem percpu variable for on-line cpus. During
5160 * boot, only the boot cpu should be on-line; we'll init the
5161 * secondary cpus' numa_mem as they come on-line. During
5162 * node/memory hotplug, we'll fixup all on-line cpus.
5163 */
5164 for_each_online_cpu(cpu)
5165 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5166 #endif
5167 }
5168
5169 printk_deferred_exit();
5170 write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5171 }
5172
5173 static noinline void __init
build_all_zonelists_init(void)5174 build_all_zonelists_init(void)
5175 {
5176 int cpu;
5177
5178 __build_all_zonelists(NULL);
5179
5180 /*
5181 * Initialize the boot_pagesets that are going to be used
5182 * for bootstrapping processors. The real pagesets for
5183 * each zone will be allocated later when the per cpu
5184 * allocator is available.
5185 *
5186 * boot_pagesets are used also for bootstrapping offline
5187 * cpus if the system is already booted because the pagesets
5188 * are needed to initialize allocators on a specific cpu too.
5189 * F.e. the percpu allocator needs the page allocator which
5190 * needs the percpu allocator in order to allocate its pagesets
5191 * (a chicken-egg dilemma).
5192 */
5193 for_each_possible_cpu(cpu)
5194 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5195
5196 mminit_verify_zonelist();
5197 cpuset_init_current_mems_allowed();
5198 }
5199
5200 /*
5201 * unless system_state == SYSTEM_BOOTING.
5202 *
5203 * __ref due to call of __init annotated helper build_all_zonelists_init
5204 * [protected by SYSTEM_BOOTING].
5205 */
build_all_zonelists(pg_data_t * pgdat)5206 void __ref build_all_zonelists(pg_data_t *pgdat)
5207 {
5208 unsigned long vm_total_pages;
5209
5210 if (system_state == SYSTEM_BOOTING) {
5211 build_all_zonelists_init();
5212 } else {
5213 __build_all_zonelists(pgdat);
5214 /* cpuset refresh routine should be here */
5215 }
5216 /* Get the number of free pages beyond high watermark in all zones. */
5217 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5218 /*
5219 * Disable grouping by mobility if the number of pages in the
5220 * system is too low to allow the mechanism to work. It would be
5221 * more accurate, but expensive to check per-zone. This check is
5222 * made on memory-hotadd so a system can start with mobility
5223 * disabled and enable it later
5224 */
5225 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5226 page_group_by_mobility_disabled = 1;
5227 else
5228 page_group_by_mobility_disabled = 0;
5229
5230 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5231 nr_online_nodes,
5232 page_group_by_mobility_disabled ? "off" : "on",
5233 vm_total_pages);
5234 #ifdef CONFIG_NUMA
5235 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5236 #endif
5237 }
5238
zone_batchsize(struct zone * zone)5239 static int zone_batchsize(struct zone *zone)
5240 {
5241 #ifdef CONFIG_MMU
5242 int batch;
5243
5244 /*
5245 * The number of pages to batch allocate is either ~0.1%
5246 * of the zone or 1MB, whichever is smaller. The batch
5247 * size is striking a balance between allocation latency
5248 * and zone lock contention.
5249 */
5250 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5251 batch /= 4; /* We effectively *= 4 below */
5252 if (batch < 1)
5253 batch = 1;
5254
5255 /*
5256 * Clamp the batch to a 2^n - 1 value. Having a power
5257 * of 2 value was found to be more likely to have
5258 * suboptimal cache aliasing properties in some cases.
5259 *
5260 * For example if 2 tasks are alternately allocating
5261 * batches of pages, one task can end up with a lot
5262 * of pages of one half of the possible page colors
5263 * and the other with pages of the other colors.
5264 */
5265 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5266
5267 return batch;
5268
5269 #else
5270 /* The deferral and batching of frees should be suppressed under NOMMU
5271 * conditions.
5272 *
5273 * The problem is that NOMMU needs to be able to allocate large chunks
5274 * of contiguous memory as there's no hardware page translation to
5275 * assemble apparent contiguous memory from discontiguous pages.
5276 *
5277 * Queueing large contiguous runs of pages for batching, however,
5278 * causes the pages to actually be freed in smaller chunks. As there
5279 * can be a significant delay between the individual batches being
5280 * recycled, this leads to the once large chunks of space being
5281 * fragmented and becoming unavailable for high-order allocations.
5282 */
5283 return 0;
5284 #endif
5285 }
5286
5287 static int percpu_pagelist_high_fraction;
zone_highsize(struct zone * zone,int batch,int cpu_online)5288 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
5289 {
5290 #ifdef CONFIG_MMU
5291 int high;
5292 int nr_split_cpus;
5293 unsigned long total_pages;
5294
5295 if (!percpu_pagelist_high_fraction) {
5296 /*
5297 * By default, the high value of the pcp is based on the zone
5298 * low watermark so that if they are full then background
5299 * reclaim will not be started prematurely.
5300 */
5301 total_pages = low_wmark_pages(zone);
5302 } else {
5303 /*
5304 * If percpu_pagelist_high_fraction is configured, the high
5305 * value is based on a fraction of the managed pages in the
5306 * zone.
5307 */
5308 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
5309 }
5310
5311 /*
5312 * Split the high value across all online CPUs local to the zone. Note
5313 * that early in boot that CPUs may not be online yet and that during
5314 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5315 * onlined. For memory nodes that have no CPUs, split pcp->high across
5316 * all online CPUs to mitigate the risk that reclaim is triggered
5317 * prematurely due to pages stored on pcp lists.
5318 */
5319 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5320 if (!nr_split_cpus)
5321 nr_split_cpus = num_online_cpus();
5322 high = total_pages / nr_split_cpus;
5323
5324 /*
5325 * Ensure high is at least batch*4. The multiple is based on the
5326 * historical relationship between high and batch.
5327 */
5328 high = max(high, batch << 2);
5329
5330 return high;
5331 #else
5332 return 0;
5333 #endif
5334 }
5335
5336 /*
5337 * pcp->high and pcp->batch values are related and generally batch is lower
5338 * than high. They are also related to pcp->count such that count is lower
5339 * than high, and as soon as it reaches high, the pcplist is flushed.
5340 *
5341 * However, guaranteeing these relations at all times would require e.g. write
5342 * barriers here but also careful usage of read barriers at the read side, and
5343 * thus be prone to error and bad for performance. Thus the update only prevents
5344 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
5345 * can cope with those fields changing asynchronously, and fully trust only the
5346 * pcp->count field on the local CPU with interrupts disabled.
5347 *
5348 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5349 * outside of boot time (or some other assurance that no concurrent updaters
5350 * exist).
5351 */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)5352 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5353 unsigned long batch)
5354 {
5355 WRITE_ONCE(pcp->batch, batch);
5356 WRITE_ONCE(pcp->high, high);
5357 }
5358
per_cpu_pages_init(struct per_cpu_pages * pcp,struct per_cpu_zonestat * pzstats)5359 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5360 {
5361 int pindex;
5362
5363 memset(pcp, 0, sizeof(*pcp));
5364 memset(pzstats, 0, sizeof(*pzstats));
5365
5366 spin_lock_init(&pcp->lock);
5367 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5368 INIT_LIST_HEAD(&pcp->lists[pindex]);
5369
5370 /*
5371 * Set batch and high values safe for a boot pageset. A true percpu
5372 * pageset's initialization will update them subsequently. Here we don't
5373 * need to be as careful as pageset_update() as nobody can access the
5374 * pageset yet.
5375 */
5376 pcp->high = BOOT_PAGESET_HIGH;
5377 pcp->batch = BOOT_PAGESET_BATCH;
5378 pcp->free_factor = 0;
5379 }
5380
__zone_set_pageset_high_and_batch(struct zone * zone,unsigned long high,unsigned long batch)5381 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
5382 unsigned long batch)
5383 {
5384 struct per_cpu_pages *pcp;
5385 int cpu;
5386
5387 for_each_possible_cpu(cpu) {
5388 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5389 pageset_update(pcp, high, batch);
5390 }
5391 }
5392
5393 /*
5394 * Calculate and set new high and batch values for all per-cpu pagesets of a
5395 * zone based on the zone's size.
5396 */
zone_set_pageset_high_and_batch(struct zone * zone,int cpu_online)5397 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5398 {
5399 int new_high, new_batch;
5400
5401 new_batch = max(1, zone_batchsize(zone));
5402 new_high = zone_highsize(zone, new_batch, cpu_online);
5403
5404 if (zone->pageset_high == new_high &&
5405 zone->pageset_batch == new_batch)
5406 return;
5407
5408 zone->pageset_high = new_high;
5409 zone->pageset_batch = new_batch;
5410
5411 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
5412 }
5413
setup_zone_pageset(struct zone * zone)5414 void __meminit setup_zone_pageset(struct zone *zone)
5415 {
5416 int cpu;
5417
5418 /* Size may be 0 on !SMP && !NUMA */
5419 if (sizeof(struct per_cpu_zonestat) > 0)
5420 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5421
5422 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5423 for_each_possible_cpu(cpu) {
5424 struct per_cpu_pages *pcp;
5425 struct per_cpu_zonestat *pzstats;
5426
5427 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5428 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5429 per_cpu_pages_init(pcp, pzstats);
5430 }
5431
5432 zone_set_pageset_high_and_batch(zone, 0);
5433 }
5434
5435 /*
5436 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5437 * page high values need to be recalculated.
5438 */
zone_pcp_update(struct zone * zone,int cpu_online)5439 static void zone_pcp_update(struct zone *zone, int cpu_online)
5440 {
5441 mutex_lock(&pcp_batch_high_lock);
5442 zone_set_pageset_high_and_batch(zone, cpu_online);
5443 mutex_unlock(&pcp_batch_high_lock);
5444 }
5445
5446 /*
5447 * Allocate per cpu pagesets and initialize them.
5448 * Before this call only boot pagesets were available.
5449 */
setup_per_cpu_pageset(void)5450 void __init setup_per_cpu_pageset(void)
5451 {
5452 struct pglist_data *pgdat;
5453 struct zone *zone;
5454 int __maybe_unused cpu;
5455
5456 for_each_populated_zone(zone)
5457 setup_zone_pageset(zone);
5458
5459 #ifdef CONFIG_NUMA
5460 /*
5461 * Unpopulated zones continue using the boot pagesets.
5462 * The numa stats for these pagesets need to be reset.
5463 * Otherwise, they will end up skewing the stats of
5464 * the nodes these zones are associated with.
5465 */
5466 for_each_possible_cpu(cpu) {
5467 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5468 memset(pzstats->vm_numa_event, 0,
5469 sizeof(pzstats->vm_numa_event));
5470 }
5471 #endif
5472
5473 for_each_online_pgdat(pgdat)
5474 pgdat->per_cpu_nodestats =
5475 alloc_percpu(struct per_cpu_nodestat);
5476 }
5477
zone_pcp_init(struct zone * zone)5478 __meminit void zone_pcp_init(struct zone *zone)
5479 {
5480 /*
5481 * per cpu subsystem is not up at this point. The following code
5482 * relies on the ability of the linker to provide the
5483 * offset of a (static) per cpu variable into the per cpu area.
5484 */
5485 zone->per_cpu_pageset = &boot_pageset;
5486 zone->per_cpu_zonestats = &boot_zonestats;
5487 zone->pageset_high = BOOT_PAGESET_HIGH;
5488 zone->pageset_batch = BOOT_PAGESET_BATCH;
5489
5490 if (populated_zone(zone))
5491 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5492 zone->present_pages, zone_batchsize(zone));
5493 }
5494
adjust_managed_page_count(struct page * page,long count)5495 void adjust_managed_page_count(struct page *page, long count)
5496 {
5497 atomic_long_add(count, &page_zone(page)->managed_pages);
5498 totalram_pages_add(count);
5499 #ifdef CONFIG_HIGHMEM
5500 if (PageHighMem(page))
5501 totalhigh_pages_add(count);
5502 #endif
5503 }
5504 EXPORT_SYMBOL(adjust_managed_page_count);
5505
free_reserved_area(void * start,void * end,int poison,const char * s)5506 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5507 {
5508 void *pos;
5509 unsigned long pages = 0;
5510
5511 start = (void *)PAGE_ALIGN((unsigned long)start);
5512 end = (void *)((unsigned long)end & PAGE_MASK);
5513 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5514 struct page *page = virt_to_page(pos);
5515 void *direct_map_addr;
5516
5517 /*
5518 * 'direct_map_addr' might be different from 'pos'
5519 * because some architectures' virt_to_page()
5520 * work with aliases. Getting the direct map
5521 * address ensures that we get a _writeable_
5522 * alias for the memset().
5523 */
5524 direct_map_addr = page_address(page);
5525 /*
5526 * Perform a kasan-unchecked memset() since this memory
5527 * has not been initialized.
5528 */
5529 direct_map_addr = kasan_reset_tag(direct_map_addr);
5530 if ((unsigned int)poison <= 0xFF)
5531 memset(direct_map_addr, poison, PAGE_SIZE);
5532
5533 free_reserved_page(page);
5534 }
5535
5536 if (pages && s)
5537 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5538
5539 return pages;
5540 }
5541
page_alloc_cpu_dead(unsigned int cpu)5542 static int page_alloc_cpu_dead(unsigned int cpu)
5543 {
5544 struct zone *zone;
5545
5546 lru_add_drain_cpu(cpu);
5547 mlock_drain_remote(cpu);
5548 drain_pages(cpu);
5549
5550 /*
5551 * Spill the event counters of the dead processor
5552 * into the current processors event counters.
5553 * This artificially elevates the count of the current
5554 * processor.
5555 */
5556 vm_events_fold_cpu(cpu);
5557
5558 /*
5559 * Zero the differential counters of the dead processor
5560 * so that the vm statistics are consistent.
5561 *
5562 * This is only okay since the processor is dead and cannot
5563 * race with what we are doing.
5564 */
5565 cpu_vm_stats_fold(cpu);
5566
5567 for_each_populated_zone(zone)
5568 zone_pcp_update(zone, 0);
5569
5570 return 0;
5571 }
5572
page_alloc_cpu_online(unsigned int cpu)5573 static int page_alloc_cpu_online(unsigned int cpu)
5574 {
5575 struct zone *zone;
5576
5577 for_each_populated_zone(zone)
5578 zone_pcp_update(zone, 1);
5579 return 0;
5580 }
5581
page_alloc_init_cpuhp(void)5582 void __init page_alloc_init_cpuhp(void)
5583 {
5584 int ret;
5585
5586 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5587 "mm/page_alloc:pcp",
5588 page_alloc_cpu_online,
5589 page_alloc_cpu_dead);
5590 WARN_ON(ret < 0);
5591 }
5592
5593 /*
5594 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5595 * or min_free_kbytes changes.
5596 */
calculate_totalreserve_pages(void)5597 static void calculate_totalreserve_pages(void)
5598 {
5599 struct pglist_data *pgdat;
5600 unsigned long reserve_pages = 0;
5601 enum zone_type i, j;
5602
5603 for_each_online_pgdat(pgdat) {
5604
5605 pgdat->totalreserve_pages = 0;
5606
5607 for (i = 0; i < MAX_NR_ZONES; i++) {
5608 struct zone *zone = pgdat->node_zones + i;
5609 long max = 0;
5610 unsigned long managed_pages = zone_managed_pages(zone);
5611
5612 /* Find valid and maximum lowmem_reserve in the zone */
5613 for (j = i; j < MAX_NR_ZONES; j++) {
5614 if (zone->lowmem_reserve[j] > max)
5615 max = zone->lowmem_reserve[j];
5616 }
5617
5618 /* we treat the high watermark as reserved pages. */
5619 max += high_wmark_pages(zone);
5620
5621 if (max > managed_pages)
5622 max = managed_pages;
5623
5624 pgdat->totalreserve_pages += max;
5625
5626 reserve_pages += max;
5627 }
5628 }
5629 totalreserve_pages = reserve_pages;
5630 }
5631
5632 /*
5633 * setup_per_zone_lowmem_reserve - called whenever
5634 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
5635 * has a correct pages reserved value, so an adequate number of
5636 * pages are left in the zone after a successful __alloc_pages().
5637 */
setup_per_zone_lowmem_reserve(void)5638 static void setup_per_zone_lowmem_reserve(void)
5639 {
5640 struct pglist_data *pgdat;
5641 enum zone_type i, j;
5642
5643 for_each_online_pgdat(pgdat) {
5644 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5645 struct zone *zone = &pgdat->node_zones[i];
5646 int ratio = sysctl_lowmem_reserve_ratio[i];
5647 bool clear = !ratio || !zone_managed_pages(zone);
5648 unsigned long managed_pages = 0;
5649
5650 for (j = i + 1; j < MAX_NR_ZONES; j++) {
5651 struct zone *upper_zone = &pgdat->node_zones[j];
5652
5653 managed_pages += zone_managed_pages(upper_zone);
5654
5655 if (clear)
5656 zone->lowmem_reserve[j] = 0;
5657 else
5658 zone->lowmem_reserve[j] = managed_pages / ratio;
5659 }
5660 }
5661 }
5662
5663 /* update totalreserve_pages */
5664 calculate_totalreserve_pages();
5665 }
5666
__setup_per_zone_wmarks(void)5667 static void __setup_per_zone_wmarks(void)
5668 {
5669 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5670 unsigned long lowmem_pages = 0;
5671 struct zone *zone;
5672 unsigned long flags;
5673
5674 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5675 for_each_zone(zone) {
5676 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5677 lowmem_pages += zone_managed_pages(zone);
5678 }
5679
5680 for_each_zone(zone) {
5681 u64 tmp;
5682
5683 spin_lock_irqsave(&zone->lock, flags);
5684 tmp = (u64)pages_min * zone_managed_pages(zone);
5685 do_div(tmp, lowmem_pages);
5686 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5687 /*
5688 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5689 * need highmem and movable zones pages, so cap pages_min
5690 * to a small value here.
5691 *
5692 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5693 * deltas control async page reclaim, and so should
5694 * not be capped for highmem and movable zones.
5695 */
5696 unsigned long min_pages;
5697
5698 min_pages = zone_managed_pages(zone) / 1024;
5699 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5700 zone->_watermark[WMARK_MIN] = min_pages;
5701 } else {
5702 /*
5703 * If it's a lowmem zone, reserve a number of pages
5704 * proportionate to the zone's size.
5705 */
5706 zone->_watermark[WMARK_MIN] = tmp;
5707 }
5708
5709 /*
5710 * Set the kswapd watermarks distance according to the
5711 * scale factor in proportion to available memory, but
5712 * ensure a minimum size on small systems.
5713 */
5714 tmp = max_t(u64, tmp >> 2,
5715 mult_frac(zone_managed_pages(zone),
5716 watermark_scale_factor, 10000));
5717
5718 zone->watermark_boost = 0;
5719 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
5720 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5721 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5722
5723 spin_unlock_irqrestore(&zone->lock, flags);
5724 }
5725
5726 /* update totalreserve_pages */
5727 calculate_totalreserve_pages();
5728 }
5729
5730 /**
5731 * setup_per_zone_wmarks - called when min_free_kbytes changes
5732 * or when memory is hot-{added|removed}
5733 *
5734 * Ensures that the watermark[min,low,high] values for each zone are set
5735 * correctly with respect to min_free_kbytes.
5736 */
setup_per_zone_wmarks(void)5737 void setup_per_zone_wmarks(void)
5738 {
5739 struct zone *zone;
5740 static DEFINE_SPINLOCK(lock);
5741
5742 spin_lock(&lock);
5743 __setup_per_zone_wmarks();
5744 spin_unlock(&lock);
5745
5746 /*
5747 * The watermark size have changed so update the pcpu batch
5748 * and high limits or the limits may be inappropriate.
5749 */
5750 for_each_zone(zone)
5751 zone_pcp_update(zone, 0);
5752 }
5753
5754 /*
5755 * Initialise min_free_kbytes.
5756 *
5757 * For small machines we want it small (128k min). For large machines
5758 * we want it large (256MB max). But it is not linear, because network
5759 * bandwidth does not increase linearly with machine size. We use
5760 *
5761 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5762 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5763 *
5764 * which yields
5765 *
5766 * 16MB: 512k
5767 * 32MB: 724k
5768 * 64MB: 1024k
5769 * 128MB: 1448k
5770 * 256MB: 2048k
5771 * 512MB: 2896k
5772 * 1024MB: 4096k
5773 * 2048MB: 5792k
5774 * 4096MB: 8192k
5775 * 8192MB: 11584k
5776 * 16384MB: 16384k
5777 */
calculate_min_free_kbytes(void)5778 void calculate_min_free_kbytes(void)
5779 {
5780 unsigned long lowmem_kbytes;
5781 int new_min_free_kbytes;
5782
5783 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5784 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5785
5786 if (new_min_free_kbytes > user_min_free_kbytes)
5787 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5788 else
5789 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5790 new_min_free_kbytes, user_min_free_kbytes);
5791
5792 }
5793
init_per_zone_wmark_min(void)5794 int __meminit init_per_zone_wmark_min(void)
5795 {
5796 calculate_min_free_kbytes();
5797 setup_per_zone_wmarks();
5798 refresh_zone_stat_thresholds();
5799 setup_per_zone_lowmem_reserve();
5800
5801 #ifdef CONFIG_NUMA
5802 setup_min_unmapped_ratio();
5803 setup_min_slab_ratio();
5804 #endif
5805
5806 khugepaged_min_free_kbytes_update();
5807
5808 return 0;
5809 }
postcore_initcall(init_per_zone_wmark_min)5810 postcore_initcall(init_per_zone_wmark_min)
5811
5812 /*
5813 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5814 * that we can call two helper functions whenever min_free_kbytes
5815 * changes.
5816 */
5817 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5818 void *buffer, size_t *length, loff_t *ppos)
5819 {
5820 int rc;
5821
5822 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5823 if (rc)
5824 return rc;
5825
5826 if (write) {
5827 user_min_free_kbytes = min_free_kbytes;
5828 setup_per_zone_wmarks();
5829 }
5830 return 0;
5831 }
5832
watermark_scale_factor_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5833 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5834 void *buffer, size_t *length, loff_t *ppos)
5835 {
5836 int rc;
5837
5838 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5839 if (rc)
5840 return rc;
5841
5842 if (write)
5843 setup_per_zone_wmarks();
5844
5845 return 0;
5846 }
5847
5848 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)5849 static void setup_min_unmapped_ratio(void)
5850 {
5851 pg_data_t *pgdat;
5852 struct zone *zone;
5853
5854 for_each_online_pgdat(pgdat)
5855 pgdat->min_unmapped_pages = 0;
5856
5857 for_each_zone(zone)
5858 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
5859 sysctl_min_unmapped_ratio) / 100;
5860 }
5861
5862
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5863 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5864 void *buffer, size_t *length, loff_t *ppos)
5865 {
5866 int rc;
5867
5868 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5869 if (rc)
5870 return rc;
5871
5872 setup_min_unmapped_ratio();
5873
5874 return 0;
5875 }
5876
setup_min_slab_ratio(void)5877 static void setup_min_slab_ratio(void)
5878 {
5879 pg_data_t *pgdat;
5880 struct zone *zone;
5881
5882 for_each_online_pgdat(pgdat)
5883 pgdat->min_slab_pages = 0;
5884
5885 for_each_zone(zone)
5886 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
5887 sysctl_min_slab_ratio) / 100;
5888 }
5889
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5890 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5891 void *buffer, size_t *length, loff_t *ppos)
5892 {
5893 int rc;
5894
5895 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5896 if (rc)
5897 return rc;
5898
5899 setup_min_slab_ratio();
5900
5901 return 0;
5902 }
5903 #endif
5904
5905 /*
5906 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5907 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5908 * whenever sysctl_lowmem_reserve_ratio changes.
5909 *
5910 * The reserve ratio obviously has absolutely no relation with the
5911 * minimum watermarks. The lowmem reserve ratio can only make sense
5912 * if in function of the boot time zone sizes.
5913 */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5914 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
5915 int write, void *buffer, size_t *length, loff_t *ppos)
5916 {
5917 int i;
5918
5919 proc_dointvec_minmax(table, write, buffer, length, ppos);
5920
5921 for (i = 0; i < MAX_NR_ZONES; i++) {
5922 if (sysctl_lowmem_reserve_ratio[i] < 1)
5923 sysctl_lowmem_reserve_ratio[i] = 0;
5924 }
5925
5926 setup_per_zone_lowmem_reserve();
5927 return 0;
5928 }
5929
5930 /*
5931 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
5932 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5933 * pagelist can have before it gets flushed back to buddy allocator.
5934 */
percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5935 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
5936 int write, void *buffer, size_t *length, loff_t *ppos)
5937 {
5938 struct zone *zone;
5939 int old_percpu_pagelist_high_fraction;
5940 int ret;
5941
5942 mutex_lock(&pcp_batch_high_lock);
5943 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
5944
5945 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5946 if (!write || ret < 0)
5947 goto out;
5948
5949 /* Sanity checking to avoid pcp imbalance */
5950 if (percpu_pagelist_high_fraction &&
5951 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
5952 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
5953 ret = -EINVAL;
5954 goto out;
5955 }
5956
5957 /* No change? */
5958 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
5959 goto out;
5960
5961 for_each_populated_zone(zone)
5962 zone_set_pageset_high_and_batch(zone, 0);
5963 out:
5964 mutex_unlock(&pcp_batch_high_lock);
5965 return ret;
5966 }
5967
5968 static struct ctl_table page_alloc_sysctl_table[] = {
5969 {
5970 .procname = "min_free_kbytes",
5971 .data = &min_free_kbytes,
5972 .maxlen = sizeof(min_free_kbytes),
5973 .mode = 0644,
5974 .proc_handler = min_free_kbytes_sysctl_handler,
5975 .extra1 = SYSCTL_ZERO,
5976 },
5977 {
5978 .procname = "watermark_boost_factor",
5979 .data = &watermark_boost_factor,
5980 .maxlen = sizeof(watermark_boost_factor),
5981 .mode = 0644,
5982 .proc_handler = proc_dointvec_minmax,
5983 .extra1 = SYSCTL_ZERO,
5984 },
5985 {
5986 .procname = "watermark_scale_factor",
5987 .data = &watermark_scale_factor,
5988 .maxlen = sizeof(watermark_scale_factor),
5989 .mode = 0644,
5990 .proc_handler = watermark_scale_factor_sysctl_handler,
5991 .extra1 = SYSCTL_ONE,
5992 .extra2 = SYSCTL_THREE_THOUSAND,
5993 },
5994 {
5995 .procname = "percpu_pagelist_high_fraction",
5996 .data = &percpu_pagelist_high_fraction,
5997 .maxlen = sizeof(percpu_pagelist_high_fraction),
5998 .mode = 0644,
5999 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler,
6000 .extra1 = SYSCTL_ZERO,
6001 },
6002 {
6003 .procname = "lowmem_reserve_ratio",
6004 .data = &sysctl_lowmem_reserve_ratio,
6005 .maxlen = sizeof(sysctl_lowmem_reserve_ratio),
6006 .mode = 0644,
6007 .proc_handler = lowmem_reserve_ratio_sysctl_handler,
6008 },
6009 #ifdef CONFIG_NUMA
6010 {
6011 .procname = "numa_zonelist_order",
6012 .data = &numa_zonelist_order,
6013 .maxlen = NUMA_ZONELIST_ORDER_LEN,
6014 .mode = 0644,
6015 .proc_handler = numa_zonelist_order_handler,
6016 },
6017 {
6018 .procname = "min_unmapped_ratio",
6019 .data = &sysctl_min_unmapped_ratio,
6020 .maxlen = sizeof(sysctl_min_unmapped_ratio),
6021 .mode = 0644,
6022 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler,
6023 .extra1 = SYSCTL_ZERO,
6024 .extra2 = SYSCTL_ONE_HUNDRED,
6025 },
6026 {
6027 .procname = "min_slab_ratio",
6028 .data = &sysctl_min_slab_ratio,
6029 .maxlen = sizeof(sysctl_min_slab_ratio),
6030 .mode = 0644,
6031 .proc_handler = sysctl_min_slab_ratio_sysctl_handler,
6032 .extra1 = SYSCTL_ZERO,
6033 .extra2 = SYSCTL_ONE_HUNDRED,
6034 },
6035 #endif
6036 {}
6037 };
6038
page_alloc_sysctl_init(void)6039 void __init page_alloc_sysctl_init(void)
6040 {
6041 register_sysctl_init("vm", page_alloc_sysctl_table);
6042 }
6043
6044 #ifdef CONFIG_CONTIG_ALLOC
6045 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)6046 static void alloc_contig_dump_pages(struct list_head *page_list)
6047 {
6048 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6049
6050 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6051 struct page *page;
6052
6053 dump_stack();
6054 list_for_each_entry(page, page_list, lru)
6055 dump_page(page, "migration failure");
6056 }
6057 }
6058
6059 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)6060 int __alloc_contig_migrate_range(struct compact_control *cc,
6061 unsigned long start, unsigned long end)
6062 {
6063 /* This function is based on compact_zone() from compaction.c. */
6064 unsigned int nr_reclaimed;
6065 unsigned long pfn = start;
6066 unsigned int tries = 0;
6067 int ret = 0;
6068 struct migration_target_control mtc = {
6069 .nid = zone_to_nid(cc->zone),
6070 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6071 };
6072
6073 lru_cache_disable();
6074
6075 while (pfn < end || !list_empty(&cc->migratepages)) {
6076 if (fatal_signal_pending(current)) {
6077 ret = -EINTR;
6078 break;
6079 }
6080
6081 if (list_empty(&cc->migratepages)) {
6082 cc->nr_migratepages = 0;
6083 ret = isolate_migratepages_range(cc, pfn, end);
6084 if (ret && ret != -EAGAIN)
6085 break;
6086 pfn = cc->migrate_pfn;
6087 tries = 0;
6088 } else if (++tries == 5) {
6089 ret = -EBUSY;
6090 break;
6091 }
6092
6093 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6094 &cc->migratepages);
6095 cc->nr_migratepages -= nr_reclaimed;
6096
6097 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6098 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6099
6100 /*
6101 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6102 * to retry again over this error, so do the same here.
6103 */
6104 if (ret == -ENOMEM)
6105 break;
6106 }
6107
6108 lru_cache_enable();
6109 if (ret < 0) {
6110 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6111 alloc_contig_dump_pages(&cc->migratepages);
6112 putback_movable_pages(&cc->migratepages);
6113 return ret;
6114 }
6115 return 0;
6116 }
6117
6118 /**
6119 * alloc_contig_range() -- tries to allocate given range of pages
6120 * @start: start PFN to allocate
6121 * @end: one-past-the-last PFN to allocate
6122 * @migratetype: migratetype of the underlying pageblocks (either
6123 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6124 * in range must have the same migratetype and it must
6125 * be either of the two.
6126 * @gfp_mask: GFP mask to use during compaction
6127 *
6128 * The PFN range does not have to be pageblock aligned. The PFN range must
6129 * belong to a single zone.
6130 *
6131 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6132 * pageblocks in the range. Once isolated, the pageblocks should not
6133 * be modified by others.
6134 *
6135 * Return: zero on success or negative error code. On success all
6136 * pages which PFN is in [start, end) are allocated for the caller and
6137 * need to be freed with free_contig_range().
6138 */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)6139 int alloc_contig_range(unsigned long start, unsigned long end,
6140 unsigned migratetype, gfp_t gfp_mask)
6141 {
6142 unsigned long outer_start, outer_end;
6143 int order;
6144 int ret = 0;
6145
6146 struct compact_control cc = {
6147 .nr_migratepages = 0,
6148 .order = -1,
6149 .zone = page_zone(pfn_to_page(start)),
6150 .mode = MIGRATE_SYNC,
6151 .ignore_skip_hint = true,
6152 .no_set_skip_hint = true,
6153 .gfp_mask = current_gfp_context(gfp_mask),
6154 .alloc_contig = true,
6155 };
6156 INIT_LIST_HEAD(&cc.migratepages);
6157
6158 /*
6159 * What we do here is we mark all pageblocks in range as
6160 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6161 * have different sizes, and due to the way page allocator
6162 * work, start_isolate_page_range() has special handlings for this.
6163 *
6164 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6165 * migrate the pages from an unaligned range (ie. pages that
6166 * we are interested in). This will put all the pages in
6167 * range back to page allocator as MIGRATE_ISOLATE.
6168 *
6169 * When this is done, we take the pages in range from page
6170 * allocator removing them from the buddy system. This way
6171 * page allocator will never consider using them.
6172 *
6173 * This lets us mark the pageblocks back as
6174 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6175 * aligned range but not in the unaligned, original range are
6176 * put back to page allocator so that buddy can use them.
6177 */
6178
6179 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6180 if (ret)
6181 goto done;
6182
6183 drain_all_pages(cc.zone);
6184
6185 /*
6186 * In case of -EBUSY, we'd like to know which page causes problem.
6187 * So, just fall through. test_pages_isolated() has a tracepoint
6188 * which will report the busy page.
6189 *
6190 * It is possible that busy pages could become available before
6191 * the call to test_pages_isolated, and the range will actually be
6192 * allocated. So, if we fall through be sure to clear ret so that
6193 * -EBUSY is not accidentally used or returned to caller.
6194 */
6195 ret = __alloc_contig_migrate_range(&cc, start, end);
6196 if (ret && ret != -EBUSY)
6197 goto done;
6198 ret = 0;
6199
6200 /*
6201 * Pages from [start, end) are within a pageblock_nr_pages
6202 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6203 * more, all pages in [start, end) are free in page allocator.
6204 * What we are going to do is to allocate all pages from
6205 * [start, end) (that is remove them from page allocator).
6206 *
6207 * The only problem is that pages at the beginning and at the
6208 * end of interesting range may be not aligned with pages that
6209 * page allocator holds, ie. they can be part of higher order
6210 * pages. Because of this, we reserve the bigger range and
6211 * once this is done free the pages we are not interested in.
6212 *
6213 * We don't have to hold zone->lock here because the pages are
6214 * isolated thus they won't get removed from buddy.
6215 */
6216
6217 order = 0;
6218 outer_start = start;
6219 while (!PageBuddy(pfn_to_page(outer_start))) {
6220 if (++order > MAX_ORDER) {
6221 outer_start = start;
6222 break;
6223 }
6224 outer_start &= ~0UL << order;
6225 }
6226
6227 if (outer_start != start) {
6228 order = buddy_order(pfn_to_page(outer_start));
6229
6230 /*
6231 * outer_start page could be small order buddy page and
6232 * it doesn't include start page. Adjust outer_start
6233 * in this case to report failed page properly
6234 * on tracepoint in test_pages_isolated()
6235 */
6236 if (outer_start + (1UL << order) <= start)
6237 outer_start = start;
6238 }
6239
6240 /* Make sure the range is really isolated. */
6241 if (test_pages_isolated(outer_start, end, 0)) {
6242 ret = -EBUSY;
6243 goto done;
6244 }
6245
6246 /* Grab isolated pages from freelists. */
6247 outer_end = isolate_freepages_range(&cc, outer_start, end);
6248 if (!outer_end) {
6249 ret = -EBUSY;
6250 goto done;
6251 }
6252
6253 /* Free head and tail (if any) */
6254 if (start != outer_start)
6255 free_contig_range(outer_start, start - outer_start);
6256 if (end != outer_end)
6257 free_contig_range(end, outer_end - end);
6258
6259 done:
6260 undo_isolate_page_range(start, end, migratetype);
6261 return ret;
6262 }
6263 EXPORT_SYMBOL(alloc_contig_range);
6264
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)6265 static int __alloc_contig_pages(unsigned long start_pfn,
6266 unsigned long nr_pages, gfp_t gfp_mask)
6267 {
6268 unsigned long end_pfn = start_pfn + nr_pages;
6269
6270 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6271 gfp_mask);
6272 }
6273
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)6274 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6275 unsigned long nr_pages)
6276 {
6277 unsigned long i, end_pfn = start_pfn + nr_pages;
6278 struct page *page;
6279
6280 for (i = start_pfn; i < end_pfn; i++) {
6281 page = pfn_to_online_page(i);
6282 if (!page)
6283 return false;
6284
6285 if (page_zone(page) != z)
6286 return false;
6287
6288 if (PageReserved(page))
6289 return false;
6290
6291 if (PageHuge(page))
6292 return false;
6293 }
6294 return true;
6295 }
6296
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)6297 static bool zone_spans_last_pfn(const struct zone *zone,
6298 unsigned long start_pfn, unsigned long nr_pages)
6299 {
6300 unsigned long last_pfn = start_pfn + nr_pages - 1;
6301
6302 return zone_spans_pfn(zone, last_pfn);
6303 }
6304
6305 /**
6306 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6307 * @nr_pages: Number of contiguous pages to allocate
6308 * @gfp_mask: GFP mask to limit search and used during compaction
6309 * @nid: Target node
6310 * @nodemask: Mask for other possible nodes
6311 *
6312 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6313 * on an applicable zonelist to find a contiguous pfn range which can then be
6314 * tried for allocation with alloc_contig_range(). This routine is intended
6315 * for allocation requests which can not be fulfilled with the buddy allocator.
6316 *
6317 * The allocated memory is always aligned to a page boundary. If nr_pages is a
6318 * power of two, then allocated range is also guaranteed to be aligned to same
6319 * nr_pages (e.g. 1GB request would be aligned to 1GB).
6320 *
6321 * Allocated pages can be freed with free_contig_range() or by manually calling
6322 * __free_page() on each allocated page.
6323 *
6324 * Return: pointer to contiguous pages on success, or NULL if not successful.
6325 */
alloc_contig_pages(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)6326 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6327 int nid, nodemask_t *nodemask)
6328 {
6329 unsigned long ret, pfn, flags;
6330 struct zonelist *zonelist;
6331 struct zone *zone;
6332 struct zoneref *z;
6333
6334 zonelist = node_zonelist(nid, gfp_mask);
6335 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6336 gfp_zone(gfp_mask), nodemask) {
6337 spin_lock_irqsave(&zone->lock, flags);
6338
6339 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6340 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6341 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6342 /*
6343 * We release the zone lock here because
6344 * alloc_contig_range() will also lock the zone
6345 * at some point. If there's an allocation
6346 * spinning on this lock, it may win the race
6347 * and cause alloc_contig_range() to fail...
6348 */
6349 spin_unlock_irqrestore(&zone->lock, flags);
6350 ret = __alloc_contig_pages(pfn, nr_pages,
6351 gfp_mask);
6352 if (!ret)
6353 return pfn_to_page(pfn);
6354 spin_lock_irqsave(&zone->lock, flags);
6355 }
6356 pfn += nr_pages;
6357 }
6358 spin_unlock_irqrestore(&zone->lock, flags);
6359 }
6360 return NULL;
6361 }
6362 #endif /* CONFIG_CONTIG_ALLOC */
6363
free_contig_range(unsigned long pfn,unsigned long nr_pages)6364 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6365 {
6366 unsigned long count = 0;
6367
6368 for (; nr_pages--; pfn++) {
6369 struct page *page = pfn_to_page(pfn);
6370
6371 count += page_count(page) != 1;
6372 __free_page(page);
6373 }
6374 WARN(count != 0, "%lu pages are still in use!\n", count);
6375 }
6376 EXPORT_SYMBOL(free_contig_range);
6377
6378 /*
6379 * Effectively disable pcplists for the zone by setting the high limit to 0
6380 * and draining all cpus. A concurrent page freeing on another CPU that's about
6381 * to put the page on pcplist will either finish before the drain and the page
6382 * will be drained, or observe the new high limit and skip the pcplist.
6383 *
6384 * Must be paired with a call to zone_pcp_enable().
6385 */
zone_pcp_disable(struct zone * zone)6386 void zone_pcp_disable(struct zone *zone)
6387 {
6388 mutex_lock(&pcp_batch_high_lock);
6389 __zone_set_pageset_high_and_batch(zone, 0, 1);
6390 __drain_all_pages(zone, true);
6391 }
6392
zone_pcp_enable(struct zone * zone)6393 void zone_pcp_enable(struct zone *zone)
6394 {
6395 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
6396 mutex_unlock(&pcp_batch_high_lock);
6397 }
6398
zone_pcp_reset(struct zone * zone)6399 void zone_pcp_reset(struct zone *zone)
6400 {
6401 int cpu;
6402 struct per_cpu_zonestat *pzstats;
6403
6404 if (zone->per_cpu_pageset != &boot_pageset) {
6405 for_each_online_cpu(cpu) {
6406 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6407 drain_zonestat(zone, pzstats);
6408 }
6409 free_percpu(zone->per_cpu_pageset);
6410 zone->per_cpu_pageset = &boot_pageset;
6411 if (zone->per_cpu_zonestats != &boot_zonestats) {
6412 free_percpu(zone->per_cpu_zonestats);
6413 zone->per_cpu_zonestats = &boot_zonestats;
6414 }
6415 }
6416 }
6417
6418 #ifdef CONFIG_MEMORY_HOTREMOVE
6419 /*
6420 * All pages in the range must be in a single zone, must not contain holes,
6421 * must span full sections, and must be isolated before calling this function.
6422 */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)6423 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6424 {
6425 unsigned long pfn = start_pfn;
6426 struct page *page;
6427 struct zone *zone;
6428 unsigned int order;
6429 unsigned long flags;
6430
6431 offline_mem_sections(pfn, end_pfn);
6432 zone = page_zone(pfn_to_page(pfn));
6433 spin_lock_irqsave(&zone->lock, flags);
6434 while (pfn < end_pfn) {
6435 page = pfn_to_page(pfn);
6436 /*
6437 * The HWPoisoned page may be not in buddy system, and
6438 * page_count() is not 0.
6439 */
6440 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6441 pfn++;
6442 continue;
6443 }
6444 /*
6445 * At this point all remaining PageOffline() pages have a
6446 * reference count of 0 and can simply be skipped.
6447 */
6448 if (PageOffline(page)) {
6449 BUG_ON(page_count(page));
6450 BUG_ON(PageBuddy(page));
6451 pfn++;
6452 continue;
6453 }
6454
6455 BUG_ON(page_count(page));
6456 BUG_ON(!PageBuddy(page));
6457 order = buddy_order(page);
6458 del_page_from_free_list(page, zone, order);
6459 pfn += (1 << order);
6460 }
6461 spin_unlock_irqrestore(&zone->lock, flags);
6462 }
6463 #endif
6464
6465 /*
6466 * This function returns a stable result only if called under zone lock.
6467 */
is_free_buddy_page(struct page * page)6468 bool is_free_buddy_page(struct page *page)
6469 {
6470 unsigned long pfn = page_to_pfn(page);
6471 unsigned int order;
6472
6473 for (order = 0; order <= MAX_ORDER; order++) {
6474 struct page *page_head = page - (pfn & ((1 << order) - 1));
6475
6476 if (PageBuddy(page_head) &&
6477 buddy_order_unsafe(page_head) >= order)
6478 break;
6479 }
6480
6481 return order <= MAX_ORDER;
6482 }
6483 EXPORT_SYMBOL(is_free_buddy_page);
6484
6485 #ifdef CONFIG_MEMORY_FAILURE
6486 /*
6487 * Break down a higher-order page in sub-pages, and keep our target out of
6488 * buddy allocator.
6489 */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)6490 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6491 struct page *target, int low, int high,
6492 int migratetype)
6493 {
6494 unsigned long size = 1 << high;
6495 struct page *current_buddy, *next_page;
6496
6497 while (high > low) {
6498 high--;
6499 size >>= 1;
6500
6501 if (target >= &page[size]) {
6502 next_page = page + size;
6503 current_buddy = page;
6504 } else {
6505 next_page = page;
6506 current_buddy = page + size;
6507 }
6508 page = next_page;
6509
6510 if (set_page_guard(zone, current_buddy, high, migratetype))
6511 continue;
6512
6513 if (current_buddy != target) {
6514 add_to_free_list(current_buddy, zone, high, migratetype);
6515 set_buddy_order(current_buddy, high);
6516 }
6517 }
6518 }
6519
6520 /*
6521 * Take a page that will be marked as poisoned off the buddy allocator.
6522 */
take_page_off_buddy(struct page * page)6523 bool take_page_off_buddy(struct page *page)
6524 {
6525 struct zone *zone = page_zone(page);
6526 unsigned long pfn = page_to_pfn(page);
6527 unsigned long flags;
6528 unsigned int order;
6529 bool ret = false;
6530
6531 spin_lock_irqsave(&zone->lock, flags);
6532 for (order = 0; order <= MAX_ORDER; order++) {
6533 struct page *page_head = page - (pfn & ((1 << order) - 1));
6534 int page_order = buddy_order(page_head);
6535
6536 if (PageBuddy(page_head) && page_order >= order) {
6537 unsigned long pfn_head = page_to_pfn(page_head);
6538 int migratetype = get_pfnblock_migratetype(page_head,
6539 pfn_head);
6540
6541 del_page_from_free_list(page_head, zone, page_order);
6542 break_down_buddy_pages(zone, page_head, page, 0,
6543 page_order, migratetype);
6544 SetPageHWPoisonTakenOff(page);
6545 if (!is_migrate_isolate(migratetype))
6546 __mod_zone_freepage_state(zone, -1, migratetype);
6547 ret = true;
6548 break;
6549 }
6550 if (page_count(page_head) > 0)
6551 break;
6552 }
6553 spin_unlock_irqrestore(&zone->lock, flags);
6554 return ret;
6555 }
6556
6557 /*
6558 * Cancel takeoff done by take_page_off_buddy().
6559 */
put_page_back_buddy(struct page * page)6560 bool put_page_back_buddy(struct page *page)
6561 {
6562 struct zone *zone = page_zone(page);
6563 unsigned long pfn = page_to_pfn(page);
6564 unsigned long flags;
6565 int migratetype = get_pfnblock_migratetype(page, pfn);
6566 bool ret = false;
6567
6568 spin_lock_irqsave(&zone->lock, flags);
6569 if (put_page_testzero(page)) {
6570 ClearPageHWPoisonTakenOff(page);
6571 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6572 if (TestClearPageHWPoison(page)) {
6573 ret = true;
6574 }
6575 }
6576 spin_unlock_irqrestore(&zone->lock, flags);
6577
6578 return ret;
6579 }
6580 #endif
6581
6582 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)6583 bool has_managed_dma(void)
6584 {
6585 struct pglist_data *pgdat;
6586
6587 for_each_online_pgdat(pgdat) {
6588 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6589
6590 if (managed_zone(zone))
6591 return true;
6592 }
6593 return false;
6594 }
6595 #endif /* CONFIG_ZONE_DMA */
6596
6597 #ifdef CONFIG_UNACCEPTED_MEMORY
6598
6599 /* Counts number of zones with unaccepted pages. */
6600 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6601
6602 static bool lazy_accept = true;
6603
accept_memory_parse(char * p)6604 static int __init accept_memory_parse(char *p)
6605 {
6606 if (!strcmp(p, "lazy")) {
6607 lazy_accept = true;
6608 return 0;
6609 } else if (!strcmp(p, "eager")) {
6610 lazy_accept = false;
6611 return 0;
6612 } else {
6613 return -EINVAL;
6614 }
6615 }
6616 early_param("accept_memory", accept_memory_parse);
6617
page_contains_unaccepted(struct page * page,unsigned int order)6618 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6619 {
6620 phys_addr_t start = page_to_phys(page);
6621 phys_addr_t end = start + (PAGE_SIZE << order);
6622
6623 return range_contains_unaccepted_memory(start, end);
6624 }
6625
accept_page(struct page * page,unsigned int order)6626 static void accept_page(struct page *page, unsigned int order)
6627 {
6628 phys_addr_t start = page_to_phys(page);
6629
6630 accept_memory(start, start + (PAGE_SIZE << order));
6631 }
6632
try_to_accept_memory_one(struct zone * zone)6633 static bool try_to_accept_memory_one(struct zone *zone)
6634 {
6635 unsigned long flags;
6636 struct page *page;
6637 bool last;
6638
6639 if (list_empty(&zone->unaccepted_pages))
6640 return false;
6641
6642 spin_lock_irqsave(&zone->lock, flags);
6643 page = list_first_entry_or_null(&zone->unaccepted_pages,
6644 struct page, lru);
6645 if (!page) {
6646 spin_unlock_irqrestore(&zone->lock, flags);
6647 return false;
6648 }
6649
6650 list_del(&page->lru);
6651 last = list_empty(&zone->unaccepted_pages);
6652
6653 __mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6654 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6655 spin_unlock_irqrestore(&zone->lock, flags);
6656
6657 accept_page(page, MAX_ORDER);
6658
6659 __free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL);
6660
6661 if (last)
6662 static_branch_dec(&zones_with_unaccepted_pages);
6663
6664 return true;
6665 }
6666
try_to_accept_memory(struct zone * zone,unsigned int order)6667 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6668 {
6669 long to_accept;
6670 int ret = false;
6671
6672 /* How much to accept to get to high watermark? */
6673 to_accept = high_wmark_pages(zone) -
6674 (zone_page_state(zone, NR_FREE_PAGES) -
6675 __zone_watermark_unusable_free(zone, order, 0));
6676
6677 /* Accept at least one page */
6678 do {
6679 if (!try_to_accept_memory_one(zone))
6680 break;
6681 ret = true;
6682 to_accept -= MAX_ORDER_NR_PAGES;
6683 } while (to_accept > 0);
6684
6685 return ret;
6686 }
6687
has_unaccepted_memory(void)6688 static inline bool has_unaccepted_memory(void)
6689 {
6690 return static_branch_unlikely(&zones_with_unaccepted_pages);
6691 }
6692
__free_unaccepted(struct page * page)6693 static bool __free_unaccepted(struct page *page)
6694 {
6695 struct zone *zone = page_zone(page);
6696 unsigned long flags;
6697 bool first = false;
6698
6699 if (!lazy_accept)
6700 return false;
6701
6702 spin_lock_irqsave(&zone->lock, flags);
6703 first = list_empty(&zone->unaccepted_pages);
6704 list_add_tail(&page->lru, &zone->unaccepted_pages);
6705 __mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6706 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6707 spin_unlock_irqrestore(&zone->lock, flags);
6708
6709 if (first)
6710 static_branch_inc(&zones_with_unaccepted_pages);
6711
6712 return true;
6713 }
6714
6715 #else
6716
page_contains_unaccepted(struct page * page,unsigned int order)6717 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6718 {
6719 return false;
6720 }
6721
accept_page(struct page * page,unsigned int order)6722 static void accept_page(struct page *page, unsigned int order)
6723 {
6724 }
6725
try_to_accept_memory(struct zone * zone,unsigned int order)6726 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6727 {
6728 return false;
6729 }
6730
has_unaccepted_memory(void)6731 static inline bool has_unaccepted_memory(void)
6732 {
6733 return false;
6734 }
6735
__free_unaccepted(struct page * page)6736 static bool __free_unaccepted(struct page *page)
6737 {
6738 BUILD_BUG();
6739 return false;
6740 }
6741
6742 #endif /* CONFIG_UNACCEPTED_MEMORY */
6743