1 /*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "include/core/SkBitmap.h"
9 #include "include/core/SkMaskFilter.h"
10 #include "include/core/SkPathBuilder.h"
11 #include "include/core/SkRRect.h"
12 #include "include/core/SkStrokeRec.h"
13 #include "include/core/SkVertices.h"
14 #include "src/core/SkBlurMask.h"
15 #include "src/core/SkGpuBlurUtils.h"
16 #include "src/core/SkMaskFilterBase.h"
17 #include "src/core/SkMathPriv.h"
18 #include "src/core/SkMatrixProvider.h"
19 #include "src/core/SkRRectPriv.h"
20 #include "src/core/SkReadBuffer.h"
21 #include "src/core/SkStringUtils.h"
22 #include "src/core/SkSDFFilter.h"
23 #include "src/core/SkWriteBuffer.h"
24
25 #if SK_SUPPORT_GPU
26 #include "include/gpu/GrRecordingContext.h"
27 #include "src/core/SkRuntimeEffectPriv.h"
28 #include "src/gpu/GrFragmentProcessor.h"
29 #include "src/gpu/GrRecordingContextPriv.h"
30 #include "src/gpu/GrResourceProvider.h"
31 #include "src/gpu/GrShaderCaps.h"
32 #include "src/gpu/GrStyle.h"
33 #include "src/gpu/GrTextureProxy.h"
34 #include "src/gpu/GrThreadSafeCache.h"
35 #include "src/gpu/SkGr.h"
36 #include "src/gpu/effects/GrMatrixEffect.h"
37 #include "src/gpu/effects/GrSkSLFP.h"
38 #include "src/gpu/effects/GrTextureEffect.h"
39 #include "src/gpu/geometry/GrStyledShape.h"
40 #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
41 #include "src/gpu/glsl/GrGLSLProgramDataManager.h"
42 #include "src/gpu/glsl/GrGLSLUniformHandler.h"
43 #if SK_GPU_V1
44 #include "src/gpu/v1/SurfaceDrawContext_v1.h"
45 #endif // SK_GPU_V1
46 #endif // SK_SUPPORT_GPU
47
48 class SkBlurMaskFilterImpl : public SkMaskFilterBase {
49 public:
50 SkBlurMaskFilterImpl(SkScalar sigma, SkBlurStyle, bool respectCTM);
51
52 // overrides from SkMaskFilter
53 SkMask::Format getFormat() const override;
54 bool filterMask(SkMask* dst, const SkMask& src, const SkMatrix&,
55 SkIPoint* margin) const override;
56
57 #if SK_SUPPORT_GPU && SK_GPU_V1
58 bool canFilterMaskGPU(const GrStyledShape& shape,
59 const SkIRect& devSpaceShapeBounds,
60 const SkIRect& clipBounds,
61 const SkMatrix& ctm,
62 SkIRect* maskRect,
63 const bool canUseSDFBlur = false) const override;
64 bool directFilterMaskGPU(GrRecordingContext*,
65 skgpu::v1::SurfaceDrawContext*,
66 GrPaint&&,
67 const GrClip*,
68 const SkMatrix& viewMatrix,
69 const GrStyledShape&) const override;
70 GrSurfaceProxyView filterMaskGPU(GrRecordingContext*,
71 GrSurfaceProxyView srcView,
72 GrColorType srcColorType,
73 SkAlphaType srcAlphaType,
74 const SkMatrix& ctm,
75 const SkIRect& maskRect) const override;
76
77 float getNoxFormedSigma3() const override;
78
79 GrSurfaceProxyView filterMaskGPUNoxFormed(GrRecordingContext*, GrSurfaceProxyView srcView,
80 GrColorType srcColorType, SkAlphaType srcAlphaType, const SkMatrix& viewMatrix, const SkIRect& maskRect,
81 const SkRRect& srcRRect) const override;
82 #endif
83
84 void computeFastBounds(const SkRect&, SkRect*) const override;
85 bool asABlur(BlurRec*) const override;
86
87
88 protected:
89 FilterReturn filterRectsToNine(const SkRect[], int count, const SkMatrix&,
90 const SkIRect& clipBounds,
91 NinePatch*) const override;
92
93 FilterReturn filterRRectToNine(const SkRRect&, const SkMatrix&,
94 const SkIRect& clipBounds,
95 NinePatch*) const override;
96
97 bool filterRectMask(SkMask* dstM, const SkRect& r, const SkMatrix& matrix,
98 SkIPoint* margin, SkMask::CreateMode createMode) const;
99 bool filterRRectMask(SkMask* dstM, const SkRRect& r, const SkMatrix& matrix,
100 SkIPoint* margin, SkMask::CreateMode createMode) const;
101
ignoreXform() const102 bool ignoreXform() const { return !fRespectCTM; }
103
104 private:
105 SK_FLATTENABLE_HOOKS(SkBlurMaskFilterImpl)
106 // To avoid unseemly allocation requests (esp. for finite platforms like
107 // handset) we limit the radius so something manageable. (as opposed to
108 // a request like 10,000)
109 static const SkScalar kMAX_BLUR_SIGMA;
110
111 SkScalar fSigma;
112 SkBlurStyle fBlurStyle;
113 bool fRespectCTM;
114
115 SkBlurMaskFilterImpl(SkReadBuffer&);
116 void flatten(SkWriteBuffer&) const override;
117
computeXformedSigma(const SkMatrix & ctm) const118 SkScalar computeXformedSigma(const SkMatrix& ctm) const {
119 SkScalar xformedSigma = this->ignoreXform() ? fSigma : ctm.mapRadius(fSigma);
120 return std::min(xformedSigma, kMAX_BLUR_SIGMA);
121 }
122
123 friend class SkBlurMaskFilter;
124
125 using INHERITED = SkMaskFilter;
126 friend void sk_register_blur_maskfilter_createproc();
127 };
128
129 const SkScalar SkBlurMaskFilterImpl::kMAX_BLUR_SIGMA = SkIntToScalar(128);
130
131 ///////////////////////////////////////////////////////////////////////////////
132
SkBlurMaskFilterImpl(SkScalar sigma,SkBlurStyle style,bool respectCTM)133 SkBlurMaskFilterImpl::SkBlurMaskFilterImpl(SkScalar sigma, SkBlurStyle style, bool respectCTM)
134 : fSigma(sigma)
135 , fBlurStyle(style)
136 , fRespectCTM(respectCTM) {
137 SkASSERT(fSigma > 0);
138 SkASSERT((unsigned)style <= kLastEnum_SkBlurStyle);
139 }
140
getFormat() const141 SkMask::Format SkBlurMaskFilterImpl::getFormat() const {
142 return SkMask::kA8_Format;
143 }
144
asABlur(BlurRec * rec) const145 bool SkBlurMaskFilterImpl::asABlur(BlurRec* rec) const {
146 if (this->ignoreXform()) {
147 return false;
148 }
149
150 if (rec) {
151 rec->fSigma = fSigma;
152 rec->fStyle = fBlurStyle;
153 }
154 return true;
155 }
156
filterMask(SkMask * dst,const SkMask & src,const SkMatrix & matrix,SkIPoint * margin) const157 bool SkBlurMaskFilterImpl::filterMask(SkMask* dst, const SkMask& src,
158 const SkMatrix& matrix,
159 SkIPoint* margin) const {
160 SkScalar sigma = this->computeXformedSigma(matrix);
161 return SkBlurMask::BoxBlur(dst, src, sigma, fBlurStyle, margin);
162 }
163
filterRectMask(SkMask * dst,const SkRect & r,const SkMatrix & matrix,SkIPoint * margin,SkMask::CreateMode createMode) const164 bool SkBlurMaskFilterImpl::filterRectMask(SkMask* dst, const SkRect& r,
165 const SkMatrix& matrix,
166 SkIPoint* margin, SkMask::CreateMode createMode) const {
167 SkScalar sigma = computeXformedSigma(matrix);
168
169 return SkBlurMask::BlurRect(sigma, dst, r, fBlurStyle, margin, createMode);
170 }
171
filterRRectMask(SkMask * dst,const SkRRect & r,const SkMatrix & matrix,SkIPoint * margin,SkMask::CreateMode createMode) const172 bool SkBlurMaskFilterImpl::filterRRectMask(SkMask* dst, const SkRRect& r,
173 const SkMatrix& matrix,
174 SkIPoint* margin, SkMask::CreateMode createMode) const {
175 SkScalar sigma = computeXformedSigma(matrix);
176
177 return SkBlurMask::BlurRRect(sigma, dst, r, fBlurStyle, margin, createMode);
178 }
179
180 #include "include/core/SkCanvas.h"
181
prepare_to_draw_into_mask(const SkRect & bounds,SkMask * mask)182 static bool prepare_to_draw_into_mask(const SkRect& bounds, SkMask* mask) {
183 SkASSERT(mask != nullptr);
184
185 mask->fBounds = bounds.roundOut();
186 mask->fRowBytes = SkAlign4(mask->fBounds.width());
187 mask->fFormat = SkMask::kA8_Format;
188 const size_t size = mask->computeImageSize();
189 mask->fImage = SkMask::AllocImage(size, SkMask::kZeroInit_Alloc);
190 if (nullptr == mask->fImage) {
191 return false;
192 }
193 return true;
194 }
195
draw_rrect_into_mask(const SkRRect rrect,SkMask * mask)196 static bool draw_rrect_into_mask(const SkRRect rrect, SkMask* mask) {
197 if (!prepare_to_draw_into_mask(rrect.rect(), mask)) {
198 return false;
199 }
200
201 // FIXME: This code duplicates code in draw_rects_into_mask, below. Is there a
202 // clean way to share more code?
203 SkBitmap bitmap;
204 bitmap.installMaskPixels(*mask);
205
206 SkCanvas canvas(bitmap);
207 canvas.translate(-SkIntToScalar(mask->fBounds.left()),
208 -SkIntToScalar(mask->fBounds.top()));
209
210 SkPaint paint;
211 paint.setAntiAlias(true);
212 canvas.drawRRect(rrect, paint);
213 return true;
214 }
215
draw_rects_into_mask(const SkRect rects[],int count,SkMask * mask)216 static bool draw_rects_into_mask(const SkRect rects[], int count, SkMask* mask) {
217 if (!prepare_to_draw_into_mask(rects[0], mask)) {
218 return false;
219 }
220
221 SkBitmap bitmap;
222 bitmap.installPixels(SkImageInfo::Make(mask->fBounds.width(),
223 mask->fBounds.height(),
224 kAlpha_8_SkColorType,
225 kPremul_SkAlphaType),
226 mask->fImage, mask->fRowBytes);
227
228 SkCanvas canvas(bitmap);
229 canvas.translate(-SkIntToScalar(mask->fBounds.left()),
230 -SkIntToScalar(mask->fBounds.top()));
231
232 SkPaint paint;
233 paint.setAntiAlias(true);
234
235 if (1 == count) {
236 canvas.drawRect(rects[0], paint);
237 } else {
238 // todo: do I need a fast way to do this?
239 SkPath path = SkPathBuilder().addRect(rects[0])
240 .addRect(rects[1])
241 .setFillType(SkPathFillType::kEvenOdd)
242 .detach();
243 canvas.drawPath(path, paint);
244 }
245 return true;
246 }
247
rect_exceeds(const SkRect & r,SkScalar v)248 static bool rect_exceeds(const SkRect& r, SkScalar v) {
249 return r.fLeft < -v || r.fTop < -v || r.fRight > v || r.fBottom > v ||
250 r.width() > v || r.height() > v;
251 }
252
253 #include "src/core/SkMaskCache.h"
254
copy_mask_to_cacheddata(SkMask * mask)255 static SkCachedData* copy_mask_to_cacheddata(SkMask* mask) {
256 const size_t size = mask->computeTotalImageSize();
257 SkCachedData* data = SkResourceCache::NewCachedData(size);
258 if (data) {
259 memcpy(data->writable_data(), mask->fImage, size);
260 SkMask::FreeImage(mask->fImage);
261 mask->fImage = (uint8_t*)data->data();
262 }
263 return data;
264 }
265
find_cached_rrect(SkMask * mask,SkScalar sigma,SkBlurStyle style,const SkRRect & rrect)266 static SkCachedData* find_cached_rrect(SkMask* mask, SkScalar sigma, SkBlurStyle style,
267 const SkRRect& rrect) {
268 return SkMaskCache::FindAndRef(sigma, style, rrect, mask);
269 }
270
add_cached_rrect(SkMask * mask,SkScalar sigma,SkBlurStyle style,const SkRRect & rrect)271 static SkCachedData* add_cached_rrect(SkMask* mask, SkScalar sigma, SkBlurStyle style,
272 const SkRRect& rrect) {
273 SkCachedData* cache = copy_mask_to_cacheddata(mask);
274 if (cache) {
275 SkMaskCache::Add(sigma, style, rrect, *mask, cache);
276 }
277 return cache;
278 }
279
find_cached_rects(SkMask * mask,SkScalar sigma,SkBlurStyle style,const SkRect rects[],int count)280 static SkCachedData* find_cached_rects(SkMask* mask, SkScalar sigma, SkBlurStyle style,
281 const SkRect rects[], int count) {
282 return SkMaskCache::FindAndRef(sigma, style, rects, count, mask);
283 }
284
add_cached_rects(SkMask * mask,SkScalar sigma,SkBlurStyle style,const SkRect rects[],int count)285 static SkCachedData* add_cached_rects(SkMask* mask, SkScalar sigma, SkBlurStyle style,
286 const SkRect rects[], int count) {
287 SkCachedData* cache = copy_mask_to_cacheddata(mask);
288 if (cache) {
289 SkMaskCache::Add(sigma, style, rects, count, *mask, cache);
290 }
291 return cache;
292 }
293
294 static const bool c_analyticBlurRRect{true};
295
296 SkMaskFilterBase::FilterReturn
filterRRectToNine(const SkRRect & rrect,const SkMatrix & matrix,const SkIRect & clipBounds,NinePatch * patch) const297 SkBlurMaskFilterImpl::filterRRectToNine(const SkRRect& rrect, const SkMatrix& matrix,
298 const SkIRect& clipBounds,
299 NinePatch* patch) const {
300 SkASSERT(patch != nullptr);
301 switch (rrect.getType()) {
302 case SkRRect::kEmpty_Type:
303 // Nothing to draw.
304 return kFalse_FilterReturn;
305
306 case SkRRect::kRect_Type:
307 // We should have caught this earlier.
308 SkASSERT(false);
309 [[fallthrough]];
310 case SkRRect::kOval_Type:
311 // The nine patch special case does not handle ovals, and we
312 // already have code for rectangles.
313 return kUnimplemented_FilterReturn;
314
315 // These three can take advantage of this fast path.
316 case SkRRect::kSimple_Type:
317 case SkRRect::kNinePatch_Type:
318 case SkRRect::kComplex_Type:
319 break;
320 }
321
322 // TODO: report correct metrics for innerstyle, where we do not grow the
323 // total bounds, but we do need an inset the size of our blur-radius
324 if (kInner_SkBlurStyle == fBlurStyle) {
325 return kUnimplemented_FilterReturn;
326 }
327
328 // TODO: take clipBounds into account to limit our coordinates up front
329 // for now, just skip too-large src rects (to take the old code path).
330 if (rect_exceeds(rrect.rect(), SkIntToScalar(32767))) {
331 return kUnimplemented_FilterReturn;
332 }
333
334 SkIPoint margin;
335 SkMask srcM, dstM;
336 srcM.fBounds = rrect.rect().roundOut();
337 srcM.fFormat = SkMask::kA8_Format;
338 srcM.fRowBytes = 0;
339
340 bool filterResult = false;
341 if (c_analyticBlurRRect) {
342 // special case for fast round rect blur
343 // don't actually do the blur the first time, just compute the correct size
344 filterResult = this->filterRRectMask(&dstM, rrect, matrix, &margin,
345 SkMask::kJustComputeBounds_CreateMode);
346 }
347
348 if (!filterResult) {
349 filterResult = this->filterMask(&dstM, srcM, matrix, &margin);
350 }
351
352 if (!filterResult) {
353 return kFalse_FilterReturn;
354 }
355
356 // Now figure out the appropriate width and height of the smaller round rectangle
357 // to stretch. It will take into account the larger radius per side as well as double
358 // the margin, to account for inner and outer blur.
359 const SkVector& UL = rrect.radii(SkRRect::kUpperLeft_Corner);
360 const SkVector& UR = rrect.radii(SkRRect::kUpperRight_Corner);
361 const SkVector& LR = rrect.radii(SkRRect::kLowerRight_Corner);
362 const SkVector& LL = rrect.radii(SkRRect::kLowerLeft_Corner);
363
364 const SkScalar leftUnstretched = std::max(UL.fX, LL.fX) + SkIntToScalar(2 * margin.fX);
365 const SkScalar rightUnstretched = std::max(UR.fX, LR.fX) + SkIntToScalar(2 * margin.fX);
366
367 // Extra space in the middle to ensure an unchanging piece for stretching. Use 3 to cover
368 // any fractional space on either side plus 1 for the part to stretch.
369 const SkScalar stretchSize = SkIntToScalar(3);
370
371 const SkScalar totalSmallWidth = leftUnstretched + rightUnstretched + stretchSize;
372 if (totalSmallWidth >= rrect.rect().width()) {
373 // There is no valid piece to stretch.
374 return kUnimplemented_FilterReturn;
375 }
376
377 const SkScalar topUnstretched = std::max(UL.fY, UR.fY) + SkIntToScalar(2 * margin.fY);
378 const SkScalar bottomUnstretched = std::max(LL.fY, LR.fY) + SkIntToScalar(2 * margin.fY);
379
380 const SkScalar totalSmallHeight = topUnstretched + bottomUnstretched + stretchSize;
381 if (totalSmallHeight >= rrect.rect().height()) {
382 // There is no valid piece to stretch.
383 return kUnimplemented_FilterReturn;
384 }
385
386 SkRect smallR = SkRect::MakeWH(totalSmallWidth, totalSmallHeight);
387
388 SkRRect smallRR;
389 SkVector radii[4];
390 radii[SkRRect::kUpperLeft_Corner] = UL;
391 radii[SkRRect::kUpperRight_Corner] = UR;
392 radii[SkRRect::kLowerRight_Corner] = LR;
393 radii[SkRRect::kLowerLeft_Corner] = LL;
394 smallRR.setRectRadii(smallR, radii);
395
396 const SkScalar sigma = this->computeXformedSigma(matrix);
397 SkCachedData* cache = find_cached_rrect(&patch->fMask, sigma, fBlurStyle, smallRR);
398 if (!cache) {
399 bool analyticBlurWorked = false;
400 if (c_analyticBlurRRect) {
401 analyticBlurWorked =
402 this->filterRRectMask(&patch->fMask, smallRR, matrix, &margin,
403 SkMask::kComputeBoundsAndRenderImage_CreateMode);
404 }
405
406 if (!analyticBlurWorked) {
407 if (!draw_rrect_into_mask(smallRR, &srcM)) {
408 return kFalse_FilterReturn;
409 }
410
411 SkAutoMaskFreeImage amf(srcM.fImage);
412
413 if (!this->filterMask(&patch->fMask, srcM, matrix, &margin)) {
414 return kFalse_FilterReturn;
415 }
416 }
417 cache = add_cached_rrect(&patch->fMask, sigma, fBlurStyle, smallRR);
418 }
419
420 patch->fMask.fBounds.offsetTo(0, 0);
421 patch->fOuterRect = dstM.fBounds;
422 patch->fCenter.fX = SkScalarCeilToInt(leftUnstretched) + 1;
423 patch->fCenter.fY = SkScalarCeilToInt(topUnstretched) + 1;
424 SkASSERT(nullptr == patch->fCache);
425 patch->fCache = cache; // transfer ownership to patch
426 return kTrue_FilterReturn;
427 }
428
429 // Use the faster analytic blur approach for ninepatch rects
430 static const bool c_analyticBlurNinepatch{true};
431
432 SkMaskFilterBase::FilterReturn
filterRectsToNine(const SkRect rects[],int count,const SkMatrix & matrix,const SkIRect & clipBounds,NinePatch * patch) const433 SkBlurMaskFilterImpl::filterRectsToNine(const SkRect rects[], int count,
434 const SkMatrix& matrix,
435 const SkIRect& clipBounds,
436 NinePatch* patch) const {
437 if (count < 1 || count > 2) {
438 return kUnimplemented_FilterReturn;
439 }
440
441 // TODO: report correct metrics for innerstyle, where we do not grow the
442 // total bounds, but we do need an inset the size of our blur-radius
443 if (kInner_SkBlurStyle == fBlurStyle || kOuter_SkBlurStyle == fBlurStyle) {
444 return kUnimplemented_FilterReturn;
445 }
446
447 // TODO: take clipBounds into account to limit our coordinates up front
448 // for now, just skip too-large src rects (to take the old code path).
449 if (rect_exceeds(rects[0], SkIntToScalar(32767))) {
450 return kUnimplemented_FilterReturn;
451 }
452
453 SkIPoint margin;
454 SkMask srcM, dstM;
455 srcM.fBounds = rects[0].roundOut();
456 srcM.fFormat = SkMask::kA8_Format;
457 srcM.fRowBytes = 0;
458
459 bool filterResult = false;
460 if (count == 1 && c_analyticBlurNinepatch) {
461 // special case for fast rect blur
462 // don't actually do the blur the first time, just compute the correct size
463 filterResult = this->filterRectMask(&dstM, rects[0], matrix, &margin,
464 SkMask::kJustComputeBounds_CreateMode);
465 } else {
466 filterResult = this->filterMask(&dstM, srcM, matrix, &margin);
467 }
468
469 if (!filterResult) {
470 return kFalse_FilterReturn;
471 }
472
473 /*
474 * smallR is the smallest version of 'rect' that will still guarantee that
475 * we get the same blur results on all edges, plus 1 center row/col that is
476 * representative of the extendible/stretchable edges of the ninepatch.
477 * Since our actual edge may be fractional we inset 1 more to be sure we
478 * don't miss any interior blur.
479 * x is an added pixel of blur, and { and } are the (fractional) edge
480 * pixels from the original rect.
481 *
482 * x x { x x .... x x } x x
483 *
484 * Thus, in this case, we inset by a total of 5 (on each side) beginning
485 * with our outer-rect (dstM.fBounds)
486 */
487 SkRect smallR[2];
488 SkIPoint center;
489
490 // +2 is from +1 for each edge (to account for possible fractional edges
491 int smallW = dstM.fBounds.width() - srcM.fBounds.width() + 2;
492 int smallH = dstM.fBounds.height() - srcM.fBounds.height() + 2;
493 SkIRect innerIR;
494
495 if (1 == count) {
496 innerIR = srcM.fBounds;
497 center.set(smallW, smallH);
498 } else {
499 SkASSERT(2 == count);
500 rects[1].roundIn(&innerIR);
501 center.set(smallW + (innerIR.left() - srcM.fBounds.left()),
502 smallH + (innerIR.top() - srcM.fBounds.top()));
503 }
504
505 // +1 so we get a clean, stretchable, center row/col
506 smallW += 1;
507 smallH += 1;
508
509 // we want the inset amounts to be integral, so we don't change any
510 // fractional phase on the fRight or fBottom of our smallR.
511 const SkScalar dx = SkIntToScalar(innerIR.width() - smallW);
512 const SkScalar dy = SkIntToScalar(innerIR.height() - smallH);
513 if (dx < 0 || dy < 0) {
514 // we're too small, relative to our blur, to break into nine-patch,
515 // so we ask to have our normal filterMask() be called.
516 return kUnimplemented_FilterReturn;
517 }
518
519 smallR[0].setLTRB(rects[0].left(), rects[0].top(),
520 rects[0].right() - dx, rects[0].bottom() - dy);
521 if (smallR[0].width() < 2 || smallR[0].height() < 2) {
522 return kUnimplemented_FilterReturn;
523 }
524 if (2 == count) {
525 smallR[1].setLTRB(rects[1].left(), rects[1].top(),
526 rects[1].right() - dx, rects[1].bottom() - dy);
527 SkASSERT(!smallR[1].isEmpty());
528 }
529
530 const SkScalar sigma = this->computeXformedSigma(matrix);
531 SkCachedData* cache = find_cached_rects(&patch->fMask, sigma, fBlurStyle, smallR, count);
532 if (!cache) {
533 if (count > 1 || !c_analyticBlurNinepatch) {
534 if (!draw_rects_into_mask(smallR, count, &srcM)) {
535 return kFalse_FilterReturn;
536 }
537
538 SkAutoMaskFreeImage amf(srcM.fImage);
539
540 if (!this->filterMask(&patch->fMask, srcM, matrix, &margin)) {
541 return kFalse_FilterReturn;
542 }
543 } else {
544 if (!this->filterRectMask(&patch->fMask, smallR[0], matrix, &margin,
545 SkMask::kComputeBoundsAndRenderImage_CreateMode)) {
546 return kFalse_FilterReturn;
547 }
548 }
549 cache = add_cached_rects(&patch->fMask, sigma, fBlurStyle, smallR, count);
550 }
551 patch->fMask.fBounds.offsetTo(0, 0);
552 patch->fOuterRect = dstM.fBounds;
553 patch->fCenter = center;
554 SkASSERT(nullptr == patch->fCache);
555 patch->fCache = cache; // transfer ownership to patch
556 return kTrue_FilterReturn;
557 }
558
computeFastBounds(const SkRect & src,SkRect * dst) const559 void SkBlurMaskFilterImpl::computeFastBounds(const SkRect& src,
560 SkRect* dst) const {
561 // TODO: if we're doing kInner blur, should we return a different outset?
562 // i.e. pad == 0 ?
563
564 SkScalar pad = 3.0f * fSigma;
565
566 dst->setLTRB(src.fLeft - pad, src.fTop - pad,
567 src.fRight + pad, src.fBottom + pad);
568 }
569
CreateProc(SkReadBuffer & buffer)570 sk_sp<SkFlattenable> SkBlurMaskFilterImpl::CreateProc(SkReadBuffer& buffer) {
571 const SkScalar sigma = buffer.readScalar();
572 SkBlurStyle style = buffer.read32LE(kLastEnum_SkBlurStyle);
573
574 uint32_t flags = buffer.read32LE(0x3); // historically we only recorded 2 bits
575 bool respectCTM = !(flags & 1); // historically we stored ignoreCTM in low bit
576
577 return SkMaskFilter::MakeBlur((SkBlurStyle)style, sigma, respectCTM);
578 }
579
flatten(SkWriteBuffer & buffer) const580 void SkBlurMaskFilterImpl::flatten(SkWriteBuffer& buffer) const {
581 buffer.writeScalar(fSigma);
582 buffer.writeUInt(fBlurStyle);
583 buffer.writeUInt(!fRespectCTM); // historically we recorded ignoreCTM
584 }
585
586
587 #if SK_SUPPORT_GPU && SK_GPU_V1
588
589 ///////////////////////////////////////////////////////////////////////////////
590 // Circle Blur
591 ///////////////////////////////////////////////////////////////////////////////
592
593 // Computes an unnormalized half kernel (right side). Returns the summation of all the half
594 // kernel values.
make_unnormalized_half_kernel(float * halfKernel,int halfKernelSize,float sigma)595 static float make_unnormalized_half_kernel(float* halfKernel, int halfKernelSize, float sigma) {
596 const float invSigma = 1.f / sigma;
597 const float b = -0.5f * invSigma * invSigma;
598 float tot = 0.0f;
599 // Compute half kernel values at half pixel steps out from the center.
600 float t = 0.5f;
601 for (int i = 0; i < halfKernelSize; ++i) {
602 float value = expf(t * t * b);
603 tot += value;
604 halfKernel[i] = value;
605 t += 1.f;
606 }
607 return tot;
608 }
609
610 // Create a Gaussian half-kernel (right side) and a summed area table given a sigma and number
611 // of discrete steps. The half kernel is normalized to sum to 0.5.
make_half_kernel_and_summed_table(float * halfKernel,float * summedHalfKernel,int halfKernelSize,float sigma)612 static void make_half_kernel_and_summed_table(float* halfKernel,
613 float* summedHalfKernel,
614 int halfKernelSize,
615 float sigma) {
616 // The half kernel should sum to 0.5 not 1.0.
617 const float tot = 2.f * make_unnormalized_half_kernel(halfKernel, halfKernelSize, sigma);
618 float sum = 0.f;
619 for (int i = 0; i < halfKernelSize; ++i) {
620 halfKernel[i] /= tot;
621 sum += halfKernel[i];
622 summedHalfKernel[i] = sum;
623 }
624 }
625
626 // Applies the 1D half kernel vertically at points along the x axis to a circle centered at the
627 // origin with radius circleR.
apply_kernel_in_y(float * results,int numSteps,float firstX,float circleR,int halfKernelSize,const float * summedHalfKernelTable)628 void apply_kernel_in_y(float* results,
629 int numSteps,
630 float firstX,
631 float circleR,
632 int halfKernelSize,
633 const float* summedHalfKernelTable) {
634 float x = firstX;
635 for (int i = 0; i < numSteps; ++i, x += 1.f) {
636 if (x < -circleR || x > circleR) {
637 results[i] = 0;
638 continue;
639 }
640 float y = sqrtf(circleR * circleR - x * x);
641 // In the column at x we exit the circle at +y and -y
642 // The summed table entry j is actually reflects an offset of j + 0.5.
643 y -= 0.5f;
644 int yInt = SkScalarFloorToInt(y);
645 SkASSERT(yInt >= -1);
646 if (y < 0) {
647 results[i] = (y + 0.5f) * summedHalfKernelTable[0];
648 } else if (yInt >= halfKernelSize - 1) {
649 results[i] = 0.5f;
650 } else {
651 float yFrac = y - yInt;
652 results[i] = (1.f - yFrac) * summedHalfKernelTable[yInt] +
653 yFrac * summedHalfKernelTable[yInt + 1];
654 }
655 }
656 }
657
658 // Apply a Gaussian at point (evalX, 0) to a circle centered at the origin with radius circleR.
659 // This relies on having a half kernel computed for the Gaussian and a table of applications of
660 // the half kernel in y to columns at (evalX - halfKernel, evalX - halfKernel + 1, ..., evalX +
661 // halfKernel) passed in as yKernelEvaluations.
eval_at(float evalX,float circleR,const float * halfKernel,int halfKernelSize,const float * yKernelEvaluations)662 static uint8_t eval_at(float evalX,
663 float circleR,
664 const float* halfKernel,
665 int halfKernelSize,
666 const float* yKernelEvaluations) {
667 float acc = 0;
668
669 float x = evalX - halfKernelSize;
670 for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
671 if (x < -circleR || x > circleR) {
672 continue;
673 }
674 float verticalEval = yKernelEvaluations[i];
675 acc += verticalEval * halfKernel[halfKernelSize - i - 1];
676 }
677 for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
678 if (x < -circleR || x > circleR) {
679 continue;
680 }
681 float verticalEval = yKernelEvaluations[i + halfKernelSize];
682 acc += verticalEval * halfKernel[i];
683 }
684 // Since we applied a half kernel in y we multiply acc by 2 (the circle is symmetric about
685 // the x axis).
686 return SkUnitScalarClampToByte(2.f * acc);
687 }
688
689 // This function creates a profile of a blurred circle. It does this by computing a kernel for
690 // half the Gaussian and a matching summed area table. The summed area table is used to compute
691 // an array of vertical applications of the half kernel to the circle along the x axis. The
692 // table of y evaluations has 2 * k + n entries where k is the size of the half kernel and n is
693 // the size of the profile being computed. Then for each of the n profile entries we walk out k
694 // steps in each horizontal direction multiplying the corresponding y evaluation by the half
695 // kernel entry and sum these values to compute the profile entry.
create_circle_profile(uint8_t * weights,float sigma,float circleR,int profileTextureWidth)696 static void create_circle_profile(uint8_t* weights,
697 float sigma,
698 float circleR,
699 int profileTextureWidth) {
700 const int numSteps = profileTextureWidth;
701
702 // The full kernel is 6 sigmas wide.
703 int halfKernelSize = SkScalarCeilToInt(6.0f * sigma);
704 // round up to next multiple of 2 and then divide by 2
705 halfKernelSize = ((halfKernelSize + 1) & ~1) >> 1;
706
707 // Number of x steps at which to apply kernel in y to cover all the profile samples in x.
708 int numYSteps = numSteps + 2 * halfKernelSize;
709
710 SkAutoTArray<float> bulkAlloc(halfKernelSize + halfKernelSize + numYSteps);
711 float* halfKernel = bulkAlloc.get();
712 float* summedKernel = bulkAlloc.get() + halfKernelSize;
713 float* yEvals = bulkAlloc.get() + 2 * halfKernelSize;
714 make_half_kernel_and_summed_table(halfKernel, summedKernel, halfKernelSize, sigma);
715
716 float firstX = -halfKernelSize + 0.5f;
717 apply_kernel_in_y(yEvals, numYSteps, firstX, circleR, halfKernelSize, summedKernel);
718
719 for (int i = 0; i < numSteps - 1; ++i) {
720 float evalX = i + 0.5f;
721 weights[i] = eval_at(evalX, circleR, halfKernel, halfKernelSize, yEvals + i);
722 }
723 // Ensure the tail of the Gaussian goes to zero.
724 weights[numSteps - 1] = 0;
725 }
726
create_half_plane_profile(uint8_t * profile,int profileWidth)727 static void create_half_plane_profile(uint8_t* profile, int profileWidth) {
728 SkASSERT(!(profileWidth & 0x1));
729 // The full kernel is 6 sigmas wide.
730 float sigma = profileWidth / 6.f;
731 int halfKernelSize = profileWidth / 2;
732
733 SkAutoTArray<float> halfKernel(halfKernelSize);
734
735 // The half kernel should sum to 0.5.
736 const float tot = 2.f * make_unnormalized_half_kernel(halfKernel.get(), halfKernelSize, sigma);
737 float sum = 0.f;
738 // Populate the profile from the right edge to the middle.
739 for (int i = 0; i < halfKernelSize; ++i) {
740 halfKernel[halfKernelSize - i - 1] /= tot;
741 sum += halfKernel[halfKernelSize - i - 1];
742 profile[profileWidth - i - 1] = SkUnitScalarClampToByte(sum);
743 }
744 // Populate the profile from the middle to the left edge (by flipping the half kernel and
745 // continuing the summation).
746 for (int i = 0; i < halfKernelSize; ++i) {
747 sum += halfKernel[i];
748 profile[halfKernelSize - i - 1] = SkUnitScalarClampToByte(sum);
749 }
750 // Ensure tail goes to 0.
751 profile[profileWidth - 1] = 0;
752 }
753
create_profile_effect(GrRecordingContext * rContext,const SkRect & circle,float sigma,float * solidRadius,float * textureRadius)754 static std::unique_ptr<GrFragmentProcessor> create_profile_effect(GrRecordingContext* rContext,
755 const SkRect& circle,
756 float sigma,
757 float* solidRadius,
758 float* textureRadius) {
759 float circleR = circle.width() / 2.0f;
760 if (!sk_float_isfinite(circleR) || circleR < SK_ScalarNearlyZero) {
761 return nullptr;
762 }
763
764 auto threadSafeCache = rContext->priv().threadSafeCache();
765
766 // Profile textures are cached by the ratio of sigma to circle radius and by the size of the
767 // profile texture (binned by powers of 2).
768 SkScalar sigmaToCircleRRatio = sigma / circleR;
769 // When sigma is really small this becomes a equivalent to convolving a Gaussian with a
770 // half-plane. Similarly, in the extreme high ratio cases circle becomes a point WRT to the
771 // Guassian and the profile texture is a just a Gaussian evaluation. However, we haven't yet
772 // implemented this latter optimization.
773 sigmaToCircleRRatio = std::min(sigmaToCircleRRatio, 8.f);
774 SkFixed sigmaToCircleRRatioFixed;
775 static const SkScalar kHalfPlaneThreshold = 0.1f;
776 bool useHalfPlaneApprox = false;
777 if (sigmaToCircleRRatio <= kHalfPlaneThreshold) {
778 useHalfPlaneApprox = true;
779 sigmaToCircleRRatioFixed = 0;
780 *solidRadius = circleR - 3 * sigma;
781 *textureRadius = 6 * sigma;
782 } else {
783 // Convert to fixed point for the key.
784 sigmaToCircleRRatioFixed = SkScalarToFixed(sigmaToCircleRRatio);
785 // We shave off some bits to reduce the number of unique entries. We could probably
786 // shave off more than we do.
787 sigmaToCircleRRatioFixed &= ~0xff;
788 sigmaToCircleRRatio = SkFixedToScalar(sigmaToCircleRRatioFixed);
789 sigma = circleR * sigmaToCircleRRatio;
790 *solidRadius = 0;
791 *textureRadius = circleR + 3 * sigma;
792 }
793
794 static constexpr int kProfileTextureWidth = 512;
795 // This would be kProfileTextureWidth/textureRadius if it weren't for the fact that we do
796 // the calculation of the profile coord in a coord space that has already been scaled by
797 // 1 / textureRadius. This is done to avoid overflow in length().
798 SkMatrix texM = SkMatrix::Scale(kProfileTextureWidth, 1.f);
799
800 static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
801 GrUniqueKey key;
802 GrUniqueKey::Builder builder(&key, kDomain, 1, "1-D Circular Blur");
803 builder[0] = sigmaToCircleRRatioFixed;
804 builder.finish();
805
806 GrSurfaceProxyView profileView = threadSafeCache->find(key);
807 if (profileView) {
808 SkASSERT(profileView.asTextureProxy());
809 SkASSERT(profileView.origin() == kTopLeft_GrSurfaceOrigin);
810 return GrTextureEffect::Make(std::move(profileView), kPremul_SkAlphaType, texM);
811 }
812
813 SkBitmap bm;
814 if (!bm.tryAllocPixels(SkImageInfo::MakeA8(kProfileTextureWidth, 1))) {
815 return nullptr;
816 }
817
818 if (useHalfPlaneApprox) {
819 create_half_plane_profile(bm.getAddr8(0, 0), kProfileTextureWidth);
820 } else {
821 // Rescale params to the size of the texture we're creating.
822 SkScalar scale = kProfileTextureWidth / *textureRadius;
823 create_circle_profile(
824 bm.getAddr8(0, 0), sigma * scale, circleR * scale, kProfileTextureWidth);
825 }
826 bm.setImmutable();
827
828 profileView = std::get<0>(GrMakeUncachedBitmapProxyView(rContext, bm));
829 if (!profileView) {
830 return nullptr;
831 }
832
833 profileView = threadSafeCache->add(key, profileView);
834 return GrTextureEffect::Make(std::move(profileView), kPremul_SkAlphaType, texM);
835 }
836
make_circle_blur(GrRecordingContext * context,const SkRect & circle,float sigma)837 static std::unique_ptr<GrFragmentProcessor> make_circle_blur(GrRecordingContext* context,
838 const SkRect& circle,
839 float sigma) {
840 if (SkGpuBlurUtils::IsEffectivelyZeroSigma(sigma)) {
841 return nullptr;
842 }
843
844 float solidRadius;
845 float textureRadius;
846 std::unique_ptr<GrFragmentProcessor> profile =
847 create_profile_effect(context, circle, sigma, &solidRadius, &textureRadius);
848 if (!profile) {
849 return nullptr;
850 }
851
852 static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, R"(
853 uniform shader blurProfile;
854 uniform float4 circleData;
855
856 half4 main(float2 xy, half4 inColor) {
857 // We just want to compute "(length(vec) - circleData.z + 0.5) * circleData.w" but need
858 // to rearrange to avoid passing large values to length() that would overflow.
859 half4 halfCircleData = circleData;
860 half2 vec = (sk_FragCoord.xy - halfCircleData.xy) * circleData.w;
861 half dist = length(vec) + (0.5 - halfCircleData.z) * halfCircleData.w;
862 return inColor * blurProfile.eval(half2(dist, 0.5)).a;
863 }
864 )");
865
866 SkV4 circleData = {circle.centerX(), circle.centerY(), solidRadius, 1.f / textureRadius};
867 return GrSkSLFP::Make(effect, "CircleBlur", /*inputFP=*/nullptr,
868 GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
869 "blurProfile", GrSkSLFP::IgnoreOptFlags(std::move(profile)),
870 "circleData", circleData);
871 }
872
873 ///////////////////////////////////////////////////////////////////////////////
874 // Rect Blur
875 ///////////////////////////////////////////////////////////////////////////////
876
make_rect_integral_fp(GrRecordingContext * rContext,float sixSigma)877 static std::unique_ptr<GrFragmentProcessor> make_rect_integral_fp(GrRecordingContext* rContext,
878 float sixSigma) {
879 SkASSERT(!SkGpuBlurUtils::IsEffectivelyZeroSigma(sixSigma / 6.f));
880 auto threadSafeCache = rContext->priv().threadSafeCache();
881
882 int width = SkGpuBlurUtils::CreateIntegralTable(sixSigma, nullptr);
883
884 static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
885 GrUniqueKey key;
886 GrUniqueKey::Builder builder(&key, kDomain, 1, "Rect Blur Mask");
887 builder[0] = width;
888 builder.finish();
889
890 SkMatrix m = SkMatrix::Scale(width / sixSigma, 1.f);
891
892 GrSurfaceProxyView view = threadSafeCache->find(key);
893
894 if (view) {
895 SkASSERT(view.origin() == kTopLeft_GrSurfaceOrigin);
896 return GrTextureEffect::Make(
897 std::move(view), kPremul_SkAlphaType, m, GrSamplerState::Filter::kLinear);
898 }
899
900 SkBitmap bitmap;
901 if (!SkGpuBlurUtils::CreateIntegralTable(sixSigma, &bitmap)) {
902 return {};
903 }
904
905 view = std::get<0>(GrMakeUncachedBitmapProxyView(rContext, bitmap));
906 if (!view) {
907 return {};
908 }
909
910 view = threadSafeCache->add(key, view);
911
912 SkASSERT(view.origin() == kTopLeft_GrSurfaceOrigin);
913 return GrTextureEffect::Make(
914 std::move(view), kPremul_SkAlphaType, m, GrSamplerState::Filter::kLinear);
915 }
916
make_rect_blur(GrRecordingContext * context,const GrShaderCaps & caps,const SkRect & srcRect,const SkMatrix & viewMatrix,float transformedSigma)917 static std::unique_ptr<GrFragmentProcessor> make_rect_blur(GrRecordingContext* context,
918 const GrShaderCaps& caps,
919 const SkRect& srcRect,
920 const SkMatrix& viewMatrix,
921 float transformedSigma) {
922 SkASSERT(viewMatrix.preservesRightAngles());
923 SkASSERT(srcRect.isSorted());
924
925 if (SkGpuBlurUtils::IsEffectivelyZeroSigma(transformedSigma)) {
926 // No need to blur the rect
927 return nullptr;
928 }
929
930 SkMatrix invM;
931 SkRect rect;
932 if (viewMatrix.rectStaysRect()) {
933 invM = SkMatrix::I();
934 // We can do everything in device space when the src rect projects to a rect in device space
935 SkAssertResult(viewMatrix.mapRect(&rect, srcRect));
936 } else {
937 // The view matrix may scale, perhaps anisotropically. But we want to apply our device space
938 // "transformedSigma" to the delta of frag coord from the rect edges. Factor out the scaling
939 // to define a space that is purely rotation/translation from device space (and scale from
940 // src space) We'll meet in the middle: pre-scale the src rect to be in this space and then
941 // apply the inverse of the rotation/translation portion to the frag coord.
942 SkMatrix m;
943 SkSize scale;
944 if (!viewMatrix.decomposeScale(&scale, &m)) {
945 return nullptr;
946 }
947 if (!m.invert(&invM)) {
948 return nullptr;
949 }
950 rect = {srcRect.left() * scale.width(),
951 srcRect.top() * scale.height(),
952 srcRect.right() * scale.width(),
953 srcRect.bottom() * scale.height()};
954 }
955
956 if (!caps.floatIs32Bits()) {
957 // We promote the math that gets us into the Gaussian space to full float when the rect
958 // coords are large. If we don't have full float then fail. We could probably clip the rect
959 // to an outset device bounds instead.
960 if (SkScalarAbs(rect.fLeft) > 16000.f || SkScalarAbs(rect.fTop) > 16000.f ||
961 SkScalarAbs(rect.fRight) > 16000.f || SkScalarAbs(rect.fBottom) > 16000.f) {
962 return nullptr;
963 }
964 }
965
966 const float sixSigma = 6 * transformedSigma;
967 std::unique_ptr<GrFragmentProcessor> integral = make_rect_integral_fp(context, sixSigma);
968 if (!integral) {
969 return nullptr;
970 }
971
972 // In the fast variant we think of the midpoint of the integral texture as aligning with the
973 // closest rect edge both in x and y. To simplify texture coord calculation we inset the rect so
974 // that the edge of the inset rect corresponds to t = 0 in the texture. It actually simplifies
975 // things a bit in the !isFast case, too.
976 float threeSigma = sixSigma / 2;
977 SkRect insetRect = {rect.left() + threeSigma,
978 rect.top() + threeSigma,
979 rect.right() - threeSigma,
980 rect.bottom() - threeSigma};
981
982 // In our fast variant we find the nearest horizontal and vertical edges and for each do a
983 // lookup in the integral texture for each and multiply them. When the rect is less than 6 sigma
984 // wide then things aren't so simple and we have to consider both the left and right edge of the
985 // rectangle (and similar in y).
986 bool isFast = insetRect.isSorted();
987
988 static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, R"(
989 // Effect that is a LUT for integral of normal distribution. The value at x:[0,6*sigma] is
990 // the integral from -inf to (3*sigma - x). I.e. x is mapped from [0, 6*sigma] to
991 // [3*sigma to -3*sigma]. The flip saves a reversal in the shader.
992 uniform shader integral;
993
994 uniform float4 rect;
995 uniform int isFast; // specialized
996
997 half4 main(float2 pos, half4 inColor) {
998 half xCoverage, yCoverage;
999 if (bool(isFast)) {
1000 // Get the smaller of the signed distance from the frag coord to the left and right
1001 // edges and similar for y.
1002 // The integral texture goes "backwards" (from 3*sigma to -3*sigma), So, the below
1003 // computations align the left edge of the integral texture with the inset rect's
1004 // edge extending outward 6 * sigma from the inset rect.
1005 half2 xy = max(half2(rect.LT - pos), half2(pos - rect.RB));
1006 xCoverage = integral.eval(half2(xy.x, 0.5)).a;
1007 yCoverage = integral.eval(half2(xy.y, 0.5)).a;
1008 } else {
1009 // We just consider just the x direction here. In practice we compute x and y
1010 // separately and multiply them together.
1011 // We define our coord system so that the point at which we're evaluating a kernel
1012 // defined by the normal distribution (K) at 0. In this coord system let L be left
1013 // edge and R be the right edge of the rectangle.
1014 // We can calculate C by integrating K with the half infinite ranges outside the
1015 // L to R range and subtracting from 1:
1016 // C = 1 - <integral of K from from -inf to L> - <integral of K from R to inf>
1017 // K is symmetric about x=0 so:
1018 // C = 1 - <integral of K from from -inf to L> - <integral of K from -inf to -R>
1019
1020 // The integral texture goes "backwards" (from 3*sigma to -3*sigma) which is
1021 // factored in to the below calculations.
1022 // Also, our rect uniform was pre-inset by 3 sigma from the actual rect being
1023 // blurred, also factored in.
1024 half4 rect = half4(half2(rect.LT - pos), half2(pos - rect.RB));
1025 xCoverage = 1 - integral.eval(half2(rect.L, 0.5)).a
1026 - integral.eval(half2(rect.R, 0.5)).a;
1027 yCoverage = 1 - integral.eval(half2(rect.T, 0.5)).a
1028 - integral.eval(half2(rect.B, 0.5)).a;
1029 }
1030 return inColor * xCoverage * yCoverage;
1031 }
1032 )");
1033
1034 std::unique_ptr<GrFragmentProcessor> fp =
1035 GrSkSLFP::Make(effect, "RectBlur", /*inputFP=*/nullptr,
1036 GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
1037 "integral", GrSkSLFP::IgnoreOptFlags(std::move(integral)),
1038 "rect", insetRect,
1039 "isFast", GrSkSLFP::Specialize<int>(isFast));
1040 if (!invM.isIdentity()) {
1041 fp = GrMatrixEffect::Make(invM, std::move(fp));
1042 }
1043 return GrFragmentProcessor::DeviceSpace(std::move(fp));
1044 }
1045
1046 ///////////////////////////////////////////////////////////////////////////////
1047 // RRect Blur
1048 ///////////////////////////////////////////////////////////////////////////////
1049
1050 static constexpr auto kBlurredRRectMaskOrigin = kTopLeft_GrSurfaceOrigin;
1051
make_blurred_rrect_key(GrUniqueKey * key,const SkRRect & rrectToDraw,float xformedSigma)1052 static void make_blurred_rrect_key(GrUniqueKey* key,
1053 const SkRRect& rrectToDraw,
1054 float xformedSigma) {
1055 SkASSERT(!SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma));
1056 static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
1057
1058 GrUniqueKey::Builder builder(key, kDomain, 9, "RoundRect Blur Mask");
1059 builder[0] = SkScalarCeilToInt(xformedSigma - 1 / 6.0f);
1060
1061 int index = 1;
1062 // TODO: this is overkill for _simple_ circular rrects
1063 for (auto c : {SkRRect::kUpperLeft_Corner,
1064 SkRRect::kUpperRight_Corner,
1065 SkRRect::kLowerRight_Corner,
1066 SkRRect::kLowerLeft_Corner}) {
1067 SkASSERT(SkScalarIsInt(rrectToDraw.radii(c).fX) && SkScalarIsInt(rrectToDraw.radii(c).fY));
1068 builder[index++] = SkScalarCeilToInt(rrectToDraw.radii(c).fX);
1069 builder[index++] = SkScalarCeilToInt(rrectToDraw.radii(c).fY);
1070 }
1071 builder.finish();
1072 }
1073
fillin_view_on_gpu(GrDirectContext * dContext,const GrSurfaceProxyView & lazyView,sk_sp<GrThreadSafeCache::Trampoline> trampoline,const SkRRect & rrectToDraw,const SkISize & dimensions,float xformedSigma)1074 static bool fillin_view_on_gpu(GrDirectContext* dContext,
1075 const GrSurfaceProxyView& lazyView,
1076 sk_sp<GrThreadSafeCache::Trampoline> trampoline,
1077 const SkRRect& rrectToDraw,
1078 const SkISize& dimensions,
1079 float xformedSigma) {
1080 #if SK_GPU_V1
1081 SkASSERT(!SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma));
1082
1083 // We cache blur masks. Use default surface props here so we can use the same cached mask
1084 // regardless of the final dst surface.
1085 SkSurfaceProps defaultSurfaceProps;
1086
1087 std::unique_ptr<skgpu::v1::SurfaceDrawContext> sdc =
1088 skgpu::v1::SurfaceDrawContext::MakeWithFallback(dContext,
1089 GrColorType::kAlpha_8,
1090 nullptr,
1091 SkBackingFit::kExact,
1092 dimensions,
1093 defaultSurfaceProps,
1094 1,
1095 GrMipmapped::kNo,
1096 GrProtected::kNo,
1097 kBlurredRRectMaskOrigin);
1098 if (!sdc) {
1099 return false;
1100 }
1101
1102 GrPaint paint;
1103
1104 sdc->clear(SK_PMColor4fTRANSPARENT);
1105 sdc->drawRRect(nullptr,
1106 std::move(paint),
1107 GrAA::kYes,
1108 SkMatrix::I(),
1109 rrectToDraw,
1110 GrStyle::SimpleFill());
1111
1112 GrSurfaceProxyView srcView = sdc->readSurfaceView();
1113 SkASSERT(srcView.asTextureProxy());
1114 auto rtc2 = SkGpuBlurUtils::GaussianBlur(dContext,
1115 std::move(srcView),
1116 sdc->colorInfo().colorType(),
1117 sdc->colorInfo().alphaType(),
1118 nullptr,
1119 SkIRect::MakeSize(dimensions),
1120 SkIRect::MakeSize(dimensions),
1121 xformedSigma,
1122 xformedSigma,
1123 SkTileMode::kClamp,
1124 SkBackingFit::kExact);
1125 if (!rtc2 || !rtc2->readSurfaceView()) {
1126 return false;
1127 }
1128
1129 auto view = rtc2->readSurfaceView();
1130 SkASSERT(view.swizzle() == lazyView.swizzle());
1131 SkASSERT(view.origin() == lazyView.origin());
1132 trampoline->fProxy = view.asTextureProxyRef();
1133
1134 return true;
1135 #else
1136 return false;
1137 #endif
1138 }
1139
1140 // Evaluate the vertical blur at the specified 'y' value given the location of the top of the
1141 // rrect.
eval_V(float top,int y,const uint8_t * integral,int integralSize,float sixSigma)1142 static uint8_t eval_V(float top, int y, const uint8_t* integral, int integralSize, float sixSigma) {
1143 if (top < 0) {
1144 return 0; // an empty column
1145 }
1146
1147 float fT = (top - y - 0.5f) * (integralSize / sixSigma);
1148 if (fT < 0) {
1149 return 255;
1150 } else if (fT >= integralSize - 1) {
1151 return 0;
1152 }
1153
1154 int lower = (int)fT;
1155 float frac = fT - lower;
1156
1157 SkASSERT(lower + 1 < integralSize);
1158
1159 return integral[lower] * (1.0f - frac) + integral[lower + 1] * frac;
1160 }
1161
1162 // Apply a gaussian 'kernel' horizontally at the specified 'x', 'y' location.
eval_H(int x,int y,const std::vector<float> & topVec,const float * kernel,int kernelSize,const uint8_t * integral,int integralSize,float sixSigma)1163 static uint8_t eval_H(int x,
1164 int y,
1165 const std::vector<float>& topVec,
1166 const float* kernel,
1167 int kernelSize,
1168 const uint8_t* integral,
1169 int integralSize,
1170 float sixSigma) {
1171 SkASSERT(0 <= x && x < (int)topVec.size());
1172 SkASSERT(kernelSize % 2);
1173
1174 float accum = 0.0f;
1175
1176 int xSampleLoc = x - (kernelSize / 2);
1177 for (int i = 0; i < kernelSize; ++i, ++xSampleLoc) {
1178 if (xSampleLoc < 0 || xSampleLoc >= (int)topVec.size()) {
1179 continue;
1180 }
1181
1182 accum += kernel[i] * eval_V(topVec[xSampleLoc], y, integral, integralSize, sixSigma);
1183 }
1184
1185 return accum + 0.5f;
1186 }
1187
1188 // Create a cpu-side blurred-rrect mask that is close to the version the gpu would've produced.
1189 // The match needs to be close bc the cpu- and gpu-generated version must be interchangeable.
create_mask_on_cpu(GrRecordingContext * rContext,const SkRRect & rrectToDraw,const SkISize & dimensions,float xformedSigma)1190 static GrSurfaceProxyView create_mask_on_cpu(GrRecordingContext* rContext,
1191 const SkRRect& rrectToDraw,
1192 const SkISize& dimensions,
1193 float xformedSigma) {
1194 SkASSERT(!SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma));
1195 int radius = SkGpuBlurUtils::SigmaRadius(xformedSigma);
1196 int kernelSize = 2 * radius + 1;
1197
1198 SkASSERT(kernelSize % 2);
1199 SkASSERT(dimensions.width() % 2);
1200 SkASSERT(dimensions.height() % 2);
1201
1202 SkVector radii = rrectToDraw.getSimpleRadii();
1203 SkASSERT(SkScalarNearlyEqual(radii.fX, radii.fY));
1204
1205 const int halfWidthPlus1 = (dimensions.width() / 2) + 1;
1206 const int halfHeightPlus1 = (dimensions.height() / 2) + 1;
1207
1208 std::unique_ptr<float[]> kernel(new float[kernelSize]);
1209
1210 SkGpuBlurUtils::Compute1DGaussianKernel(kernel.get(), xformedSigma, radius);
1211
1212 SkBitmap integral;
1213 if (!SkGpuBlurUtils::CreateIntegralTable(6 * xformedSigma, &integral)) {
1214 return {};
1215 }
1216
1217 SkBitmap result;
1218 if (!result.tryAllocPixels(SkImageInfo::MakeA8(dimensions.width(), dimensions.height()))) {
1219 return {};
1220 }
1221
1222 std::vector<float> topVec;
1223 topVec.reserve(dimensions.width());
1224 for (int x = 0; x < dimensions.width(); ++x) {
1225 if (x < rrectToDraw.rect().fLeft || x > rrectToDraw.rect().fRight) {
1226 topVec.push_back(-1);
1227 } else {
1228 if (x + 0.5f < rrectToDraw.rect().fLeft + radii.fX) { // in the circular section
1229 float xDist = rrectToDraw.rect().fLeft + radii.fX - x - 0.5f;
1230 float h = sqrtf(radii.fX * radii.fX - xDist * xDist);
1231 SkASSERT(0 <= h && h < radii.fY);
1232 topVec.push_back(rrectToDraw.rect().fTop + radii.fX - h + 3 * xformedSigma);
1233 } else {
1234 topVec.push_back(rrectToDraw.rect().fTop + 3 * xformedSigma);
1235 }
1236 }
1237 }
1238
1239 for (int y = 0; y < halfHeightPlus1; ++y) {
1240 uint8_t* scanline = result.getAddr8(0, y);
1241
1242 for (int x = 0; x < halfWidthPlus1; ++x) {
1243 scanline[x] = eval_H(x,
1244 y,
1245 topVec,
1246 kernel.get(),
1247 kernelSize,
1248 integral.getAddr8(0, 0),
1249 integral.width(),
1250 6 * xformedSigma);
1251 scanline[dimensions.width() - x - 1] = scanline[x];
1252 }
1253
1254 memcpy(result.getAddr8(0, dimensions.height() - y - 1), scanline, result.rowBytes());
1255 }
1256
1257 result.setImmutable();
1258
1259 auto view = std::get<0>(GrMakeUncachedBitmapProxyView(rContext, result));
1260 if (!view) {
1261 return {};
1262 }
1263
1264 SkASSERT(view.origin() == kBlurredRRectMaskOrigin);
1265 return view;
1266 }
1267
find_or_create_rrect_blur_mask_fp(GrRecordingContext * rContext,const SkRRect & rrectToDraw,const SkISize & dimensions,float xformedSigma)1268 static std::unique_ptr<GrFragmentProcessor> find_or_create_rrect_blur_mask_fp(
1269 GrRecordingContext* rContext,
1270 const SkRRect& rrectToDraw,
1271 const SkISize& dimensions,
1272 float xformedSigma) {
1273 SkASSERT(!SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma));
1274 GrUniqueKey key;
1275 make_blurred_rrect_key(&key, rrectToDraw, xformedSigma);
1276
1277 auto threadSafeCache = rContext->priv().threadSafeCache();
1278
1279 // It seems like we could omit this matrix and modify the shader code to not normalize
1280 // the coords used to sample the texture effect. However, the "proxyDims" value in the
1281 // shader is not always the actual the proxy dimensions. This is because 'dimensions' here
1282 // was computed using integer corner radii as determined in
1283 // SkComputeBlurredRRectParams whereas the shader code uses the float radius to compute
1284 // 'proxyDims'. Why it draws correctly with these unequal values is a mystery for the ages.
1285 auto m = SkMatrix::Scale(dimensions.width(), dimensions.height());
1286
1287 GrSurfaceProxyView view;
1288
1289 if (GrDirectContext* dContext = rContext->asDirectContext()) {
1290 // The gpu thread gets priority over the recording threads. If the gpu thread is first,
1291 // it crams a lazy proxy into the cache and then fills it in later.
1292 auto [lazyView, trampoline] = GrThreadSafeCache::CreateLazyView(dContext,
1293 GrColorType::kAlpha_8,
1294 dimensions,
1295 kBlurredRRectMaskOrigin,
1296 SkBackingFit::kExact);
1297 if (!lazyView) {
1298 return nullptr;
1299 }
1300
1301 view = threadSafeCache->findOrAdd(key, lazyView);
1302 if (view != lazyView) {
1303 SkASSERT(view.asTextureProxy());
1304 SkASSERT(view.origin() == kBlurredRRectMaskOrigin);
1305 return GrTextureEffect::Make(std::move(view), kPremul_SkAlphaType, m);
1306 }
1307
1308 if (!fillin_view_on_gpu(dContext,
1309 lazyView,
1310 std::move(trampoline),
1311 rrectToDraw,
1312 dimensions,
1313 xformedSigma)) {
1314 // In this case something has gone disastrously wrong so set up to drop the draw
1315 // that needed this resource and reduce future pollution of the cache.
1316 threadSafeCache->remove(key);
1317 return nullptr;
1318 }
1319 } else {
1320 view = threadSafeCache->find(key);
1321 if (view) {
1322 SkASSERT(view.asTextureProxy());
1323 SkASSERT(view.origin() == kBlurredRRectMaskOrigin);
1324 return GrTextureEffect::Make(std::move(view), kPremul_SkAlphaType, m);
1325 }
1326
1327 view = create_mask_on_cpu(rContext, rrectToDraw, dimensions, xformedSigma);
1328 if (!view) {
1329 return nullptr;
1330 }
1331
1332 view = threadSafeCache->add(key, view);
1333 }
1334
1335 SkASSERT(view.asTextureProxy());
1336 SkASSERT(view.origin() == kBlurredRRectMaskOrigin);
1337 return GrTextureEffect::Make(std::move(view), kPremul_SkAlphaType, m);
1338 }
1339
make_rrect_blur(GrRecordingContext * context,float sigma,float xformedSigma,const SkRRect & srcRRect,const SkRRect & devRRect)1340 static std::unique_ptr<GrFragmentProcessor> make_rrect_blur(GrRecordingContext* context,
1341 float sigma,
1342 float xformedSigma,
1343 const SkRRect& srcRRect,
1344 const SkRRect& devRRect) {
1345 // Should've been caught up-stream
1346 #ifdef SK_DEBUG
1347 SkASSERTF(!SkRRectPriv::IsCircle(devRRect),
1348 "Unexpected circle. %d\n\t%s\n\t%s",
1349 SkRRectPriv::IsCircle(srcRRect),
1350 srcRRect.dumpToString(true).c_str(),
1351 devRRect.dumpToString(true).c_str());
1352 SkASSERTF(!devRRect.isRect(),
1353 "Unexpected rect. %d\n\t%s\n\t%s",
1354 srcRRect.isRect(),
1355 srcRRect.dumpToString(true).c_str(),
1356 devRRect.dumpToString(true).c_str());
1357 #endif
1358
1359 // TODO: loosen this up
1360 if (!SkRRectPriv::IsSimpleCircular(devRRect)) {
1361 return nullptr;
1362 }
1363
1364 if (SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma)) {
1365 return nullptr;
1366 }
1367
1368 // Make sure we can successfully ninepatch this rrect -- the blur sigma has to be sufficiently
1369 // small relative to both the size of the corner radius and the width (and height) of the rrect.
1370 SkRRect rrectToDraw;
1371 SkISize dimensions;
1372 SkScalar ignored[SkGpuBlurUtils::kBlurRRectMaxDivisions];
1373
1374 bool ninePatchable = SkGpuBlurUtils::ComputeBlurredRRectParams(srcRRect,
1375 devRRect,
1376 sigma,
1377 xformedSigma,
1378 &rrectToDraw,
1379 &dimensions,
1380 ignored,
1381 ignored,
1382 ignored,
1383 ignored);
1384 if (!ninePatchable) {
1385 return nullptr;
1386 }
1387
1388 std::unique_ptr<GrFragmentProcessor> maskFP =
1389 find_or_create_rrect_blur_mask_fp(context, rrectToDraw, dimensions, xformedSigma);
1390 if (!maskFP) {
1391 return nullptr;
1392 }
1393
1394 static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, R"(
1395 uniform shader ninePatchFP;
1396
1397 uniform half cornerRadius;
1398 uniform float4 proxyRect;
1399 uniform half blurRadius;
1400
1401 half4 main(float2 xy, half4 inColor) {
1402 // Warp the fragment position to the appropriate part of the 9-patch blur texture by
1403 // snipping out the middle section of the proxy rect.
1404 float2 translatedFragPosFloat = sk_FragCoord.xy - proxyRect.LT;
1405 float2 proxyCenter = (proxyRect.RB - proxyRect.LT) * 0.5;
1406 half edgeSize = 2.0 * blurRadius + cornerRadius + 0.5;
1407
1408 // Position the fragment so that (0, 0) marks the center of the proxy rectangle.
1409 // Negative coordinates are on the left/top side and positive numbers are on the
1410 // right/bottom.
1411 translatedFragPosFloat -= proxyCenter;
1412
1413 // Temporarily strip off the fragment's sign. x/y are now strictly increasing as we
1414 // move away from the center.
1415 half2 fragDirection = half2(sign(translatedFragPosFloat));
1416 translatedFragPosFloat = abs(translatedFragPosFloat);
1417
1418 // Our goal is to snip out the "middle section" of the proxy rect (everything but the
1419 // edge). We've repositioned our fragment position so that (0, 0) is the centerpoint
1420 // and x/y are always positive, so we can subtract here and interpret negative results
1421 // as being within the middle section.
1422 half2 translatedFragPosHalf = half2(translatedFragPosFloat - (proxyCenter - edgeSize));
1423
1424 // Remove the middle section by clamping to zero.
1425 translatedFragPosHalf = max(translatedFragPosHalf, 0);
1426
1427 // Reapply the fragment's sign, so that negative coordinates once again mean left/top
1428 // side and positive means bottom/right side.
1429 translatedFragPosHalf *= fragDirection;
1430
1431 // Offset the fragment so that (0, 0) marks the upper-left again, instead of the center
1432 // point.
1433 translatedFragPosHalf += half2(edgeSize);
1434
1435 half2 proxyDims = half2(2.0 * edgeSize);
1436 half2 texCoord = translatedFragPosHalf / proxyDims;
1437
1438 return inColor * ninePatchFP.eval(texCoord).a;
1439 }
1440 )");
1441
1442 float cornerRadius = SkRRectPriv::GetSimpleRadii(devRRect).fX;
1443 float blurRadius = 3.f * SkScalarCeilToScalar(xformedSigma - 1 / 6.0f);
1444 SkRect proxyRect = devRRect.getBounds().makeOutset(blurRadius, blurRadius);
1445
1446 return GrSkSLFP::Make(effect, "RRectBlur", /*inputFP=*/nullptr,
1447 GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
1448 "ninePatchFP", GrSkSLFP::IgnoreOptFlags(std::move(maskFP)),
1449 "cornerRadius", cornerRadius,
1450 "proxyRect", proxyRect,
1451 "blurRadius", blurRadius);
1452 }
1453
1454 ///////////////////////////////////////////////////////////////////////////////
1455
directFilterMaskGPU(GrRecordingContext * context,skgpu::v1::SurfaceDrawContext * sdc,GrPaint && paint,const GrClip * clip,const SkMatrix & viewMatrix,const GrStyledShape & shape) const1456 bool SkBlurMaskFilterImpl::directFilterMaskGPU(GrRecordingContext* context,
1457 skgpu::v1::SurfaceDrawContext* sdc,
1458 GrPaint&& paint,
1459 const GrClip* clip,
1460 const SkMatrix& viewMatrix,
1461 const GrStyledShape& shape) const {
1462 SkASSERT(sdc);
1463
1464 if (fBlurStyle != kNormal_SkBlurStyle) {
1465 return false;
1466 }
1467
1468 // TODO: we could handle blurred stroked circles
1469 if (!shape.style().isSimpleFill()) {
1470 return false;
1471 }
1472
1473 SkScalar xformedSigma = this->computeXformedSigma(viewMatrix);
1474 if (SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma)) {
1475 sdc->drawShape(clip, std::move(paint), GrAA::kYes, viewMatrix, GrStyledShape(shape));
1476 return true;
1477 }
1478
1479 SkRRect srcRRect;
1480 bool inverted;
1481 if (!shape.asRRect(&srcRRect, nullptr, nullptr, &inverted) || inverted) {
1482 return false;
1483 }
1484
1485 std::unique_ptr<GrFragmentProcessor> fp;
1486
1487 SkRRect devRRect;
1488 bool devRRectIsValid = srcRRect.transform(viewMatrix, &devRRect);
1489
1490 bool devRRectIsCircle = devRRectIsValid && SkRRectPriv::IsCircle(devRRect);
1491
1492 bool canBeRect = srcRRect.isRect() && viewMatrix.preservesRightAngles();
1493 bool canBeCircle = (SkRRectPriv::IsCircle(srcRRect) && viewMatrix.isSimilarity()) ||
1494 devRRectIsCircle;
1495
1496 if (canBeRect || canBeCircle) {
1497 if (canBeRect) {
1498 fp = make_rect_blur(context, *context->priv().caps()->shaderCaps(),
1499 srcRRect.rect(), viewMatrix, xformedSigma);
1500 } else {
1501 SkRect devBounds;
1502 if (devRRectIsCircle) {
1503 devBounds = devRRect.getBounds();
1504 } else {
1505 SkPoint center = {srcRRect.getBounds().centerX(), srcRRect.getBounds().centerY()};
1506 viewMatrix.mapPoints(¢er, 1);
1507 SkScalar radius = viewMatrix.mapVector(0, srcRRect.width()/2.f).length();
1508 devBounds = {center.x() - radius,
1509 center.y() - radius,
1510 center.x() + radius,
1511 center.y() + radius};
1512 }
1513 fp = make_circle_blur(context, devBounds, xformedSigma);
1514 }
1515
1516 if (!fp) {
1517 return false;
1518 }
1519
1520 SkRect srcProxyRect = srcRRect.rect();
1521 // Determine how much to outset the src rect to ensure we hit pixels within three sigma.
1522 SkScalar outsetX = 3.0f*xformedSigma;
1523 SkScalar outsetY = 3.0f*xformedSigma;
1524 if (viewMatrix.isScaleTranslate()) {
1525 outsetX /= SkScalarAbs(viewMatrix.getScaleX());
1526 outsetY /= SkScalarAbs(viewMatrix.getScaleY());
1527 } else {
1528 SkSize scale;
1529 if (!viewMatrix.decomposeScale(&scale, nullptr)) {
1530 return false;
1531 }
1532 outsetX /= scale.width();
1533 outsetY /= scale.height();
1534 }
1535 srcProxyRect.outset(outsetX, outsetY);
1536
1537 paint.setCoverageFragmentProcessor(std::move(fp));
1538 sdc->drawRect(clip, std::move(paint), GrAA::kNo, viewMatrix, srcProxyRect);
1539 return true;
1540 }
1541 if (!viewMatrix.isScaleTranslate()) {
1542 return false;
1543 }
1544 if (!devRRectIsValid || !SkRRectPriv::AllCornersCircular(devRRect)) {
1545 return false;
1546 }
1547
1548 fp = make_rrect_blur(context, fSigma, xformedSigma, srcRRect, devRRect);
1549 if (!fp) {
1550 return false;
1551 }
1552
1553 if (!this->ignoreXform()) {
1554 SkRect srcProxyRect = srcRRect.rect();
1555 srcProxyRect.outset(3.0f*fSigma, 3.0f*fSigma);
1556 paint.setCoverageFragmentProcessor(std::move(fp));
1557 sdc->drawRect(clip, std::move(paint), GrAA::kNo, viewMatrix, srcProxyRect);
1558 } else {
1559 SkMatrix inverse;
1560 if (!viewMatrix.invert(&inverse)) {
1561 return false;
1562 }
1563
1564 SkIRect proxyBounds;
1565 float extra=3.f*SkScalarCeilToScalar(xformedSigma-1/6.0f);
1566 devRRect.rect().makeOutset(extra, extra).roundOut(&proxyBounds);
1567
1568 paint.setCoverageFragmentProcessor(std::move(fp));
1569 sdc->fillPixelsWithLocalMatrix(clip, std::move(paint), proxyBounds, inverse);
1570 }
1571
1572 return true;
1573 }
1574
canFilterMaskGPU(const GrStyledShape & shape,const SkIRect & devSpaceShapeBounds,const SkIRect & clipBounds,const SkMatrix & ctm,SkIRect * maskRect,const bool canUseSDFBlur) const1575 bool SkBlurMaskFilterImpl::canFilterMaskGPU(const GrStyledShape& shape,
1576 const SkIRect& devSpaceShapeBounds,
1577 const SkIRect& clipBounds,
1578 const SkMatrix& ctm,
1579 SkIRect* maskRect,
1580 const bool canUseSDFBlur) const {
1581 SkScalar xformedSigma = this->computeXformedSigma(ctm);
1582 if (SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma)) {
1583 *maskRect = devSpaceShapeBounds;
1584 return maskRect->intersect(clipBounds);
1585 }
1586
1587 if (maskRect) {
1588 float sigma3 = 3 * SkScalarToFloat(xformedSigma);
1589
1590 // Outset srcRect and clipRect by 3 * sigma, to compute affected blur area.
1591 SkIRect clipRect = clipBounds.makeOutset(sigma3, sigma3);
1592 SkIRect srcRect = devSpaceShapeBounds.makeOutset(sigma3, sigma3);
1593
1594 if (!canUseSDFBlur && !srcRect.intersect(clipRect)) {
1595 srcRect.setEmpty();
1596 }
1597 SkRRect srcRRect;
1598 bool inverted;
1599 if (canUseSDFBlur && shape.asRRect(&srcRRect, nullptr, nullptr, &inverted)) {
1600 SkScalar sx = ctm.getScaleX();
1601 SkScalar sy = ctm.getScaleY();
1602 float noxFormedSigma3 = this->getNoxFormedSigma3();
1603 int sigmaX = noxFormedSigma3 * sx;
1604 int sigmaY = noxFormedSigma3 * sy;
1605 srcRect = devSpaceShapeBounds.makeOutset(sigmaX, sigmaY);
1606 srcRect = SkIRect::MakeXYWH(srcRect.fLeft, srcRect.fTop,
1607 srcRect.width() + srcRRect.rect().fLeft * sx,
1608 srcRect.height() + srcRRect.rect().fTop * sy);
1609 }
1610 *maskRect = srcRect;
1611 }
1612
1613 // We prefer to blur paths with small blur radii on the CPU.
1614 static const SkScalar kMIN_GPU_BLUR_SIZE = SkIntToScalar(64);
1615 static const SkScalar kMIN_GPU_BLUR_SIGMA = SkIntToScalar(32);
1616
1617 if (devSpaceShapeBounds.width() <= kMIN_GPU_BLUR_SIZE &&
1618 devSpaceShapeBounds.height() <= kMIN_GPU_BLUR_SIZE &&
1619 xformedSigma <= kMIN_GPU_BLUR_SIGMA) {
1620 return false;
1621 }
1622
1623 return true;
1624 }
1625
filterMaskGPU(GrRecordingContext * context,GrSurfaceProxyView srcView,GrColorType srcColorType,SkAlphaType srcAlphaType,const SkMatrix & ctm,const SkIRect & maskRect) const1626 GrSurfaceProxyView SkBlurMaskFilterImpl::filterMaskGPU(GrRecordingContext* context,
1627 GrSurfaceProxyView srcView,
1628 GrColorType srcColorType,
1629 SkAlphaType srcAlphaType,
1630 const SkMatrix& ctm,
1631 const SkIRect& maskRect) const {
1632 // 'maskRect' isn't snapped to the UL corner but the mask in 'src' is.
1633 const SkIRect clipRect = SkIRect::MakeWH(maskRect.width(), maskRect.height());
1634
1635 SkScalar xformedSigma = this->computeXformedSigma(ctm);
1636
1637 // If we're doing a normal blur, we can clobber the pathTexture in the
1638 // gaussianBlur. Otherwise, we need to save it for later compositing.
1639 bool isNormalBlur = (kNormal_SkBlurStyle == fBlurStyle);
1640 auto srcBounds = SkIRect::MakeSize(srcView.proxy()->dimensions());
1641 auto surfaceDrawContext = SkGpuBlurUtils::GaussianBlur(context,
1642 srcView,
1643 srcColorType,
1644 srcAlphaType,
1645 nullptr,
1646 clipRect,
1647 srcBounds,
1648 xformedSigma,
1649 xformedSigma,
1650 SkTileMode::kClamp);
1651 if (!surfaceDrawContext || !surfaceDrawContext->asTextureProxy()) {
1652 return {};
1653 }
1654
1655 if (!isNormalBlur) {
1656 GrPaint paint;
1657 // Blend pathTexture over blurTexture.
1658 paint.setCoverageFragmentProcessor(GrTextureEffect::Make(std::move(srcView), srcAlphaType));
1659 if (kInner_SkBlurStyle == fBlurStyle) {
1660 // inner: dst = dst * src
1661 paint.setCoverageSetOpXPFactory(SkRegion::kIntersect_Op);
1662 } else if (kSolid_SkBlurStyle == fBlurStyle) {
1663 // solid: dst = src + dst - src * dst
1664 // = src + (1 - src) * dst
1665 paint.setCoverageSetOpXPFactory(SkRegion::kUnion_Op);
1666 } else if (kOuter_SkBlurStyle == fBlurStyle) {
1667 // outer: dst = dst * (1 - src)
1668 // = 0 * src + (1 - src) * dst
1669 paint.setCoverageSetOpXPFactory(SkRegion::kDifference_Op);
1670 } else {
1671 paint.setCoverageSetOpXPFactory(SkRegion::kReplace_Op);
1672 }
1673
1674 surfaceDrawContext->fillPixelsWithLocalMatrix(nullptr, std::move(paint), clipRect,
1675 SkMatrix::I());
1676 }
1677
1678 return surfaceDrawContext->readSurfaceView();
1679 }
1680
getNoxFormedSigma3() const1681 float SkBlurMaskFilterImpl::getNoxFormedSigma3() const
1682 {
1683 constexpr float kSigma_Factor = 3.f;
1684 return kSigma_Factor * fSigma;
1685 }
1686
filterMaskGPUNoxFormed(GrRecordingContext * context,GrSurfaceProxyView srcView,GrColorType srcColorType,SkAlphaType srcAlphaType,const SkMatrix & viewMatrix,const SkIRect & maskRect,const SkRRect & srcRRect) const1687 GrSurfaceProxyView SkBlurMaskFilterImpl::filterMaskGPUNoxFormed(GrRecordingContext* context,
1688 GrSurfaceProxyView srcView, GrColorType srcColorType, SkAlphaType srcAlphaType, const SkMatrix& viewMatrix,
1689 const SkIRect& maskRect, const SkRRect& srcRRect) const
1690 {
1691 const SkIRect clipRect = SkIRect::MakeWH(maskRect.width(), maskRect.height());
1692
1693 float noxFormedSigma = this->getNoxFormedSigma3();
1694
1695 bool isNormalBlur = (kNormal_SkBlurStyle == fBlurStyle);
1696 if (!isNormalBlur) {
1697 return {};
1698 }
1699 auto srcBounds = SkIRect::MakeSize(srcView.proxy()->dimensions());
1700 auto surfaceDrawContext = SDFBlur::SDFBlur(context, srcView, srcColorType, srcAlphaType, nullptr,
1701 clipRect, srcBounds, noxFormedSigma, SkTileMode::kClamp, viewMatrix, srcRRect);
1702 if (!surfaceDrawContext || !surfaceDrawContext->asTextureProxy()) {
1703 return {};
1704 }
1705
1706 return surfaceDrawContext->readSurfaceView();
1707 }
1708
1709 #endif // SK_SUPPORT_GPU && SK_GPU_V1
1710
sk_register_blur_maskfilter_createproc()1711 void sk_register_blur_maskfilter_createproc() { SK_REGISTER_FLATTENABLE(SkBlurMaskFilterImpl); }
1712
MakeBlur(SkBlurStyle style,SkScalar sigma,bool respectCTM)1713 sk_sp<SkMaskFilter> SkMaskFilter::MakeBlur(SkBlurStyle style, SkScalar sigma, bool respectCTM) {
1714 if (SkScalarIsFinite(sigma) && sigma > 0) {
1715 return sk_sp<SkMaskFilter>(new SkBlurMaskFilterImpl(sigma, style, respectCTM));
1716 }
1717 return nullptr;
1718 }
1719