// Copyright 2020 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/heap/cppgc/object-allocator.h" #include "include/cppgc/allocation.h" #include "src/base/logging.h" #include "src/base/macros.h" #include "src/heap/cppgc/free-list.h" #include "src/heap/cppgc/globals.h" #include "src/heap/cppgc/heap-object-header.h" #include "src/heap/cppgc/heap-page.h" #include "src/heap/cppgc/heap-space.h" #include "src/heap/cppgc/heap-visitor.h" #include "src/heap/cppgc/heap.h" #include "src/heap/cppgc/memory.h" #include "src/heap/cppgc/object-start-bitmap.h" #include "src/heap/cppgc/page-memory.h" #include "src/heap/cppgc/prefinalizer-handler.h" #include "src/heap/cppgc/stats-collector.h" #include "src/heap/cppgc/sweeper.h" namespace cppgc { namespace internal { namespace { void MarkRangeAsYoung(BasePage* page, Address begin, Address end) { #if defined(CPPGC_YOUNG_GENERATION) DCHECK_LT(begin, end); static constexpr auto kEntrySize = AgeTable::kCardSizeInBytes; const uintptr_t offset_begin = CagedHeap::OffsetFromAddress(begin); const uintptr_t offset_end = CagedHeap::OffsetFromAddress(end); const uintptr_t young_offset_begin = (begin == page->PayloadStart()) ? RoundDown(offset_begin, kEntrySize) : RoundUp(offset_begin, kEntrySize); const uintptr_t young_offset_end = (end == page->PayloadEnd()) ? RoundUp(offset_end, kEntrySize) : RoundDown(offset_end, kEntrySize); auto& age_table = page->heap().caged_heap().local_data().age_table; for (auto offset = young_offset_begin; offset < young_offset_end; offset += AgeTable::kCardSizeInBytes) { age_table.SetAge(offset, AgeTable::Age::kYoung); } // Set to kUnknown the first and the last regions of the newly allocated // linear buffer. if (begin != page->PayloadStart() && !IsAligned(offset_begin, kEntrySize)) age_table.SetAge(offset_begin, AgeTable::Age::kMixed); if (end != page->PayloadEnd() && !IsAligned(offset_end, kEntrySize)) age_table.SetAge(offset_end, AgeTable::Age::kMixed); #endif } void AddToFreeList(NormalPageSpace& space, Address start, size_t size) { // No need for SetMemoryInaccessible() as LAB memory is retrieved as free // inaccessible memory. space.free_list().Add({start, size}); // Concurrent marking may be running while the LAB is set up next to a live // object sharing the same cell in the bitmap. NormalPage::From(BasePage::FromPayload(start)) ->object_start_bitmap() .SetBit(start); } void ReplaceLinearAllocationBuffer(NormalPageSpace& space, StatsCollector& stats_collector, Address new_buffer, size_t new_size) { auto& lab = space.linear_allocation_buffer(); if (lab.size()) { AddToFreeList(space, lab.start(), lab.size()); stats_collector.NotifyExplicitFree(lab.size()); } lab.Set(new_buffer, new_size); if (new_size) { DCHECK_NOT_NULL(new_buffer); stats_collector.NotifyAllocation(new_size); auto* page = NormalPage::From(BasePage::FromPayload(new_buffer)); // Concurrent marking may be running while the LAB is set up next to a live // object sharing the same cell in the bitmap. page->object_start_bitmap().ClearBit(new_buffer); MarkRangeAsYoung(page, new_buffer, new_buffer + new_size); } } void* AllocateLargeObject(PageBackend& page_backend, LargePageSpace& space, StatsCollector& stats_collector, size_t size, GCInfoIndex gcinfo) { LargePage* page = LargePage::Create(page_backend, space, size); space.AddPage(page); auto* header = new (page->ObjectHeader()) HeapObjectHeader(HeapObjectHeader::kLargeObjectSizeInHeader, gcinfo); stats_collector.NotifyAllocation(size); MarkRangeAsYoung(page, page->PayloadStart(), page->PayloadEnd()); return header->ObjectStart(); } } // namespace constexpr size_t ObjectAllocator::kSmallestSpaceSize; ObjectAllocator::ObjectAllocator(RawHeap& heap, PageBackend& page_backend, StatsCollector& stats_collector, PreFinalizerHandler& prefinalizer_handler) : raw_heap_(heap), page_backend_(page_backend), stats_collector_(stats_collector), prefinalizer_handler_(prefinalizer_handler) {} void* ObjectAllocator::OutOfLineAllocate(NormalPageSpace& space, size_t size, AlignVal alignment, GCInfoIndex gcinfo) { void* memory = OutOfLineAllocateImpl(space, size, alignment, gcinfo); stats_collector_.NotifySafePointForConservativeCollection(); if (prefinalizer_handler_.IsInvokingPreFinalizers()) { // Objects allocated during pre finalizers should be allocated as black // since marking is already done. Atomics are not needed because there is // no concurrent marking in the background. HeapObjectHeader::FromObject(memory).MarkNonAtomic(); // Resetting the allocation buffer forces all further allocations in pre // finalizers to go through this slow path. ReplaceLinearAllocationBuffer(space, stats_collector_, nullptr, 0); prefinalizer_handler_.NotifyAllocationInPrefinalizer(size); } return memory; } void* ObjectAllocator::OutOfLineAllocateImpl(NormalPageSpace& space, size_t size, AlignVal alignment, GCInfoIndex gcinfo) { DCHECK_EQ(0, size & kAllocationMask); DCHECK_LE(kFreeListEntrySize, size); // Out-of-line allocation allows for checking this is all situations. CHECK(!in_disallow_gc_scope()); // If this allocation is big enough, allocate a large object. if (size >= kLargeObjectSizeThreshold) { auto& large_space = LargePageSpace::From( *raw_heap_.Space(RawHeap::RegularSpaceType::kLarge)); // LargePage has a natural alignment that already satisfies // `kMaxSupportedAlignment`. return AllocateLargeObject(page_backend_, large_space, stats_collector_, size, gcinfo); } size_t request_size = size; // Adjust size to be able to accommodate alignment. const size_t dynamic_alignment = static_cast(alignment); if (dynamic_alignment != kAllocationGranularity) { CHECK_EQ(2 * sizeof(HeapObjectHeader), dynamic_alignment); request_size += kAllocationGranularity; } RefillLinearAllocationBuffer(space, request_size); // The allocation must succeed, as we just refilled the LAB. void* result = (dynamic_alignment == kAllocationGranularity) ? AllocateObjectOnSpace(space, size, gcinfo) : AllocateObjectOnSpace(space, size, alignment, gcinfo); CHECK(result); return result; } void ObjectAllocator::RefillLinearAllocationBuffer(NormalPageSpace& space, size_t size) { // Try to allocate from the freelist. if (RefillLinearAllocationBufferFromFreeList(space, size)) return; // Lazily sweep pages of this heap until we find a freed area for this // allocation or we finish sweeping all pages of this heap. Sweeper& sweeper = raw_heap_.heap()->sweeper(); // TODO(chromium:1056170): Investigate whether this should be a loop which // would result in more agressive re-use of memory at the expense of // potentially larger allocation time. if (sweeper.SweepForAllocationIfRunning(&space, size)) { // Sweeper found a block of at least `size` bytes. Allocation from the // free list may still fail as actual buckets are not exhaustively // searched for a suitable block. Instead, buckets are tested from larger // sizes that are guaranteed to fit the block to smaller bucket sizes that // may only potentially fit the block. For the bucket that may exactly fit // the allocation of `size` bytes (no overallocation), only the first // entry is checked. if (RefillLinearAllocationBufferFromFreeList(space, size)) return; } sweeper.FinishIfRunning(); // TODO(chromium:1056170): Make use of the synchronously freed memory. auto* new_page = NormalPage::Create(page_backend_, space); space.AddPage(new_page); // Set linear allocation buffer to new page. ReplaceLinearAllocationBuffer(space, stats_collector_, new_page->PayloadStart(), new_page->PayloadSize()); } bool ObjectAllocator::RefillLinearAllocationBufferFromFreeList( NormalPageSpace& space, size_t size) { const FreeList::Block entry = space.free_list().Allocate(size); if (!entry.address) return false; // Assume discarded memory on that page is now zero. auto& page = *NormalPage::From(BasePage::FromPayload(entry.address)); if (page.discarded_memory()) { stats_collector_.DecrementDiscardedMemory(page.discarded_memory()); page.ResetDiscardedMemory(); } ReplaceLinearAllocationBuffer( space, stats_collector_, static_cast
(entry.address), entry.size); return true; } void ObjectAllocator::ResetLinearAllocationBuffers() { class Resetter : public HeapVisitor { public: explicit Resetter(StatsCollector& stats) : stats_collector_(stats) {} bool VisitLargePageSpace(LargePageSpace&) { return true; } bool VisitNormalPageSpace(NormalPageSpace& space) { ReplaceLinearAllocationBuffer(space, stats_collector_, nullptr, 0); return true; } private: StatsCollector& stats_collector_; } visitor(stats_collector_); visitor.Traverse(raw_heap_); } void ObjectAllocator::Terminate() { ResetLinearAllocationBuffers(); } bool ObjectAllocator::in_disallow_gc_scope() const { return raw_heap_.heap()->in_disallow_gc_scope(); } } // namespace internal } // namespace cppgc