// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/wasm/module-decoder.h" #include "src/base/functional.h" #include "src/base/platform/platform.h" #include "src/base/platform/wrappers.h" #include "src/flags/flags.h" #include "src/init/v8.h" #include "src/logging/counters.h" #include "src/logging/metrics.h" #include "src/objects/objects-inl.h" #include "src/utils/ostreams.h" #include "src/wasm/canonical-types.h" #include "src/wasm/decoder.h" #include "src/wasm/function-body-decoder-impl.h" #include "src/wasm/init-expr-interface.h" #include "src/wasm/struct-types.h" #include "src/wasm/wasm-constants.h" #include "src/wasm/wasm-engine.h" #include "src/wasm/wasm-limits.h" #include "src/wasm/wasm-opcodes-inl.h" namespace v8 { namespace internal { namespace wasm { #define TRACE(...) \ do { \ if (FLAG_trace_wasm_decoder) PrintF(__VA_ARGS__); \ } while (false) namespace { constexpr char kNameString[] = "name"; constexpr char kSourceMappingURLString[] = "sourceMappingURL"; constexpr char kCompilationHintsString[] = "compilationHints"; constexpr char kBranchHintsString[] = "metadata.code.branch_hint"; constexpr char kDebugInfoString[] = ".debug_info"; constexpr char kExternalDebugInfoString[] = "external_debug_info"; const char* ExternalKindName(ImportExportKindCode kind) { switch (kind) { case kExternalFunction: return "function"; case kExternalTable: return "table"; case kExternalMemory: return "memory"; case kExternalGlobal: return "global"; case kExternalTag: return "tag"; } return "unknown"; } } // namespace const char* SectionName(SectionCode code) { switch (code) { case kUnknownSectionCode: return "Unknown"; case kTypeSectionCode: return "Type"; case kImportSectionCode: return "Import"; case kFunctionSectionCode: return "Function"; case kTableSectionCode: return "Table"; case kMemorySectionCode: return "Memory"; case kGlobalSectionCode: return "Global"; case kExportSectionCode: return "Export"; case kStartSectionCode: return "Start"; case kCodeSectionCode: return "Code"; case kElementSectionCode: return "Element"; case kDataSectionCode: return "Data"; case kTagSectionCode: return "Tag"; case kDataCountSectionCode: return "DataCount"; case kNameSectionCode: return kNameString; case kSourceMappingURLSectionCode: return kSourceMappingURLString; case kDebugInfoSectionCode: return kDebugInfoString; case kExternalDebugInfoSectionCode: return kExternalDebugInfoString; case kCompilationHintsSectionCode: return kCompilationHintsString; case kBranchHintsSectionCode: return kBranchHintsString; default: return ""; } } namespace { bool validate_utf8(Decoder* decoder, WireBytesRef string) { return unibrow::Utf8::ValidateEncoding( decoder->start() + decoder->GetBufferRelativeOffset(string.offset()), string.length()); } // Reads a length-prefixed string, checking that it is within bounds. Returns // the offset of the string, and the length as an out parameter. WireBytesRef consume_string(Decoder* decoder, bool validate_utf8, const char* name) { uint32_t length = decoder->consume_u32v("string length"); uint32_t offset = decoder->pc_offset(); const byte* string_start = decoder->pc(); // Consume bytes before validation to guarantee that the string is not oob. if (length > 0) { decoder->consume_bytes(length, name); if (decoder->ok() && validate_utf8 && !unibrow::Utf8::ValidateEncoding(string_start, length)) { decoder->errorf(string_start, "%s: no valid UTF-8 string", name); } } return {offset, decoder->failed() ? 0 : length}; } namespace { SectionCode IdentifyUnknownSectionInternal(Decoder* decoder) { WireBytesRef string = consume_string(decoder, true, "section name"); if (decoder->failed()) { return kUnknownSectionCode; } const byte* section_name_start = decoder->start() + decoder->GetBufferRelativeOffset(string.offset()); TRACE(" +%d section name : \"%.*s\"\n", static_cast(section_name_start - decoder->start()), string.length() < 20 ? string.length() : 20, section_name_start); using SpecialSectionPair = std::pair, SectionCode>; static constexpr SpecialSectionPair kSpecialSections[]{ {base::StaticCharVector(kNameString), kNameSectionCode}, {base::StaticCharVector(kSourceMappingURLString), kSourceMappingURLSectionCode}, {base::StaticCharVector(kCompilationHintsString), kCompilationHintsSectionCode}, {base::StaticCharVector(kBranchHintsString), kBranchHintsSectionCode}, {base::StaticCharVector(kDebugInfoString), kDebugInfoSectionCode}, {base::StaticCharVector(kExternalDebugInfoString), kExternalDebugInfoSectionCode}}; auto name_vec = base::Vector::cast( base::VectorOf(section_name_start, string.length())); for (auto& special_section : kSpecialSections) { if (name_vec == special_section.first) return special_section.second; } return kUnknownSectionCode; } } // namespace // An iterator over the sections in a wasm binary module. // Automatically skips all unknown sections. class WasmSectionIterator { public: explicit WasmSectionIterator(Decoder* decoder) : decoder_(decoder), section_code_(kUnknownSectionCode), section_start_(decoder->pc()), section_end_(decoder->pc()) { next(); } bool more() const { return decoder_->ok() && decoder_->more(); } SectionCode section_code() const { return section_code_; } const byte* section_start() const { return section_start_; } uint32_t section_length() const { return static_cast(section_end_ - section_start_); } base::Vector payload() const { return {payload_start_, payload_length()}; } const byte* payload_start() const { return payload_start_; } uint32_t payload_length() const { return static_cast(section_end_ - payload_start_); } const byte* section_end() const { return section_end_; } // Advances to the next section, checking that decoding the current section // stopped at {section_end_}. void advance(bool move_to_section_end = false) { if (move_to_section_end && decoder_->pc() < section_end_) { decoder_->consume_bytes( static_cast(section_end_ - decoder_->pc())); } if (decoder_->pc() != section_end_) { const char* msg = decoder_->pc() < section_end_ ? "shorter" : "longer"; decoder_->errorf(decoder_->pc(), "section was %s than expected size " "(%u bytes expected, %zu decoded)", msg, section_length(), static_cast(decoder_->pc() - section_start_)); } next(); } private: Decoder* decoder_; SectionCode section_code_; const byte* section_start_; const byte* payload_start_; const byte* section_end_; // Reads the section code/name at the current position and sets up // the embedder fields. void next() { if (!decoder_->more()) { section_code_ = kUnknownSectionCode; return; } section_start_ = decoder_->pc(); uint8_t section_code = decoder_->consume_u8("section code"); // Read and check the section size. uint32_t section_length = decoder_->consume_u32v("section length"); payload_start_ = decoder_->pc(); if (decoder_->checkAvailable(section_length)) { // Get the limit of the section within the module. section_end_ = payload_start_ + section_length; } else { // The section would extend beyond the end of the module. section_end_ = payload_start_; } if (section_code == kUnknownSectionCode) { // Check for the known "name", "sourceMappingURL", or "compilationHints" // section. // To identify the unknown section we set the end of the decoder bytes to // the end of the custom section, so that we do not read the section name // beyond the end of the section. const byte* module_end = decoder_->end(); decoder_->set_end(section_end_); section_code = IdentifyUnknownSectionInternal(decoder_); if (decoder_->ok()) decoder_->set_end(module_end); // As a side effect, the above function will forward the decoder to after // the identifier string. payload_start_ = decoder_->pc(); } else if (!IsValidSectionCode(section_code)) { decoder_->errorf(decoder_->pc(), "unknown section code #0x%02x", section_code); section_code = kUnknownSectionCode; } section_code_ = decoder_->failed() ? kUnknownSectionCode : static_cast(section_code); if (section_code_ == kUnknownSectionCode && section_end_ > decoder_->pc()) { // skip to the end of the unknown section. uint32_t remaining = static_cast(section_end_ - decoder_->pc()); decoder_->consume_bytes(remaining, "section payload"); } } }; } // namespace // The main logic for decoding the bytes of a module. class ModuleDecoderImpl : public Decoder { public: explicit ModuleDecoderImpl(const WasmFeatures& enabled, ModuleOrigin origin) : Decoder(nullptr, nullptr), enabled_features_(enabled), origin_(origin) {} ModuleDecoderImpl(const WasmFeatures& enabled, const byte* module_start, const byte* module_end, ModuleOrigin origin) : Decoder(module_start, module_end), enabled_features_(enabled), module_start_(module_start), module_end_(module_end), origin_(origin) { if (end_ < start_) { error(start_, "end is less than start"); end_ = start_; } } void onFirstError() override { pc_ = end_; // On error, terminate section decoding loop. } void DumpModule(const base::Vector module_bytes) { std::string path; if (FLAG_dump_wasm_module_path) { path = FLAG_dump_wasm_module_path; if (path.size() && !base::OS::isDirectorySeparator(path[path.size() - 1])) { path += base::OS::DirectorySeparator(); } } // File are named `HASH.{ok,failed}.wasm`. size_t hash = base::hash_range(module_bytes.begin(), module_bytes.end()); base::EmbeddedVector buf; SNPrintF(buf, "%016zx.%s.wasm", hash, ok() ? "ok" : "failed"); path += buf.begin(); size_t rv = 0; if (FILE* file = base::OS::FOpen(path.c_str(), "wb")) { rv = fwrite(module_bytes.begin(), module_bytes.length(), 1, file); base::Fclose(file); } if (rv != 1) { OFStream os(stderr); os << "Error while dumping wasm file to " << path << std::endl; } } void StartDecoding(Counters* counters, AccountingAllocator* allocator) { CHECK_NULL(module_); SetCounters(counters); module_.reset( new WasmModule(std::make_unique(allocator, "signatures"))); module_->initial_pages = 0; module_->maximum_pages = 0; module_->mem_export = false; module_->origin = origin_; } void DecodeModuleHeader(base::Vector bytes, uint8_t offset) { if (failed()) return; Reset(bytes, offset); const byte* pos = pc_; uint32_t magic_word = consume_u32("wasm magic"); #define BYTES(x) (x & 0xFF), (x >> 8) & 0xFF, (x >> 16) & 0xFF, (x >> 24) & 0xFF if (magic_word != kWasmMagic) { errorf(pos, "expected magic word %02x %02x %02x %02x, " "found %02x %02x %02x %02x", BYTES(kWasmMagic), BYTES(magic_word)); } pos = pc_; { uint32_t magic_version = consume_u32("wasm version"); if (magic_version != kWasmVersion) { errorf(pos, "expected version %02x %02x %02x %02x, " "found %02x %02x %02x %02x", BYTES(kWasmVersion), BYTES(magic_version)); } } #undef BYTES } bool CheckSectionOrder(SectionCode section_code, SectionCode prev_section_code, SectionCode next_section_code) { if (next_ordered_section_ > next_section_code) { errorf(pc(), "The %s section must appear before the %s section", SectionName(section_code), SectionName(next_section_code)); return false; } if (next_ordered_section_ <= prev_section_code) { next_ordered_section_ = prev_section_code + 1; } return true; } bool CheckUnorderedSection(SectionCode section_code) { if (has_seen_unordered_section(section_code)) { errorf(pc(), "Multiple %s sections not allowed", SectionName(section_code)); return false; } set_seen_unordered_section(section_code); return true; } void DecodeSection(SectionCode section_code, base::Vector bytes, uint32_t offset, bool verify_functions = true) { if (failed()) return; Reset(bytes, offset); TRACE("Section: %s\n", SectionName(section_code)); TRACE("Decode Section %p - %p\n", bytes.begin(), bytes.end()); // Check if the section is out-of-order. if (section_code < next_ordered_section_ && section_code < kFirstUnorderedSection) { errorf(pc(), "unexpected section <%s>", SectionName(section_code)); return; } switch (section_code) { case kUnknownSectionCode: break; case kDataCountSectionCode: if (!CheckUnorderedSection(section_code)) return; // If wasm-gc is enabled, we allow the data cound section anywhere in // the module. if (!enabled_features_.has_gc() && !CheckSectionOrder(section_code, kElementSectionCode, kCodeSectionCode)) { return; } break; case kTagSectionCode: if (!CheckUnorderedSection(section_code)) return; if (!CheckSectionOrder(section_code, kMemorySectionCode, kGlobalSectionCode)) { return; } break; case kNameSectionCode: // TODO(titzer): report out of place name section as a warning. // Be lenient with placement of name section. All except first // occurrence are ignored. case kSourceMappingURLSectionCode: // sourceMappingURL is a custom section and currently can occur anywhere // in the module. In case of multiple sourceMappingURL sections, all // except the first occurrence are ignored. case kDebugInfoSectionCode: // .debug_info is a custom section containing core DWARF information // if produced by compiler. Its presence likely means that Wasm was // built in a debug mode. case kExternalDebugInfoSectionCode: // external_debug_info is a custom section containing a reference to an // external symbol file. case kCompilationHintsSectionCode: // TODO(frgossen): report out of place compilation hints section as a // warning. // Be lenient with placement of compilation hints section. All except // first occurrence after function section and before code section are // ignored. break; case kBranchHintsSectionCode: // TODO(yuri): report out of place branch hints section as a // warning. // Be lenient with placement of compilation hints section. All except // first occurrence after function section and before code section are // ignored. break; default: next_ordered_section_ = section_code + 1; break; } switch (section_code) { case kUnknownSectionCode: break; case kTypeSectionCode: DecodeTypeSection(); break; case kImportSectionCode: DecodeImportSection(); break; case kFunctionSectionCode: DecodeFunctionSection(); break; case kTableSectionCode: DecodeTableSection(); break; case kMemorySectionCode: DecodeMemorySection(); break; case kGlobalSectionCode: DecodeGlobalSection(); break; case kExportSectionCode: DecodeExportSection(); break; case kStartSectionCode: DecodeStartSection(); break; case kCodeSectionCode: DecodeCodeSection(verify_functions); break; case kElementSectionCode: DecodeElementSection(); break; case kDataSectionCode: DecodeDataSection(); break; case kNameSectionCode: DecodeNameSection(); break; case kSourceMappingURLSectionCode: DecodeSourceMappingURLSection(); break; case kDebugInfoSectionCode: // If there is an explicit source map, prefer it over DWARF info. if (module_->debug_symbols.type == WasmDebugSymbols::Type::None) { module_->debug_symbols = {WasmDebugSymbols::Type::EmbeddedDWARF, {}}; } consume_bytes(static_cast(end_ - start_), ".debug_info"); break; case kExternalDebugInfoSectionCode: DecodeExternalDebugInfoSection(); break; case kCompilationHintsSectionCode: if (enabled_features_.has_compilation_hints()) { DecodeCompilationHintsSection(); } else { // Ignore this section when feature was disabled. It is an optional // custom section anyways. consume_bytes(static_cast(end_ - start_), nullptr); } break; case kBranchHintsSectionCode: if (enabled_features_.has_branch_hinting()) { DecodeBranchHintsSection(); } else { // Ignore this section when feature was disabled. It is an optional // custom section anyways. consume_bytes(static_cast(end_ - start_), nullptr); } break; case kDataCountSectionCode: DecodeDataCountSection(); break; case kTagSectionCode: if (enabled_features_.has_eh()) { DecodeTagSection(); } else { errorf(pc(), "unexpected section <%s> (enable with --experimental-wasm-eh)", SectionName(section_code)); } break; default: errorf(pc(), "unexpected section <%s>", SectionName(section_code)); return; } if (pc() != bytes.end()) { const char* msg = pc() < bytes.end() ? "shorter" : "longer"; errorf(pc(), "section was %s than expected size " "(%zu bytes expected, %zu decoded)", msg, bytes.size(), static_cast(pc() - bytes.begin())); } } TypeDefinition consume_base_type_definition() { DCHECK(enabled_features_.has_gc()); uint8_t kind = consume_u8("type kind"); switch (kind) { case kWasmFunctionTypeCode: { const FunctionSig* sig = consume_sig(module_->signature_zone.get()); return {sig, kNoSuperType}; } case kWasmStructTypeCode: { const StructType* type = consume_struct(module_->signature_zone.get()); return {type, kNoSuperType}; } case kWasmArrayTypeCode: { const ArrayType* type = consume_array(module_->signature_zone.get()); return {type, kNoSuperType}; } case kWasmFunctionNominalCode: case kWasmArrayNominalCode: case kWasmStructNominalCode: errorf(pc() - 1, "mixing nominal and isorecursive types is not allowed"); return {}; default: errorf(pc() - 1, "unknown type form: %d", kind); return {}; } } bool check_supertype(uint32_t supertype) { if (V8_UNLIKELY(supertype >= module_->types.size())) { errorf(pc(), "type %zu: forward-declared supertype %d", module_->types.size(), supertype); return false; } return true; } TypeDefinition consume_nominal_type_definition() { DCHECK(enabled_features_.has_gc()); size_t num_types = module_->types.size(); uint8_t kind = consume_u8("type kind"); switch (kind) { case kWasmFunctionNominalCode: { const FunctionSig* sig = consume_sig(module_->signature_zone.get()); uint32_t super_index = kNoSuperType; HeapType super_type = consume_super_type(); if (super_type.is_index()) { super_index = super_type.representation(); } else if (V8_UNLIKELY(super_type != HeapType::kFunc)) { errorf(pc() - 1, "type %zu: invalid supertype %d", num_types, super_type.code()); return {}; } return {sig, super_index}; } case kWasmStructNominalCode: { const StructType* type = consume_struct(module_->signature_zone.get()); uint32_t super_index = kNoSuperType; HeapType super_type = consume_super_type(); if (super_type.is_index()) { super_index = super_type.representation(); } else if (V8_UNLIKELY(super_type != HeapType::kData)) { errorf(pc() - 1, "type %zu: invalid supertype %d", num_types, super_type.code()); return {}; } return {type, super_index}; } case kWasmArrayNominalCode: { const ArrayType* type = consume_array(module_->signature_zone.get()); uint32_t super_index = kNoSuperType; HeapType super_type = consume_super_type(); if (super_type.is_index()) { super_index = super_type.representation(); } else if (V8_UNLIKELY(super_type != HeapType::kData)) { errorf(pc() - 1, "type %zu: invalid supertype %d", num_types, super_type.code()); return {}; } return {type, super_index}; } case kWasmFunctionTypeCode: case kWasmArrayTypeCode: case kWasmStructTypeCode: case kWasmSubtypeCode: case kWasmRecursiveTypeGroupCode: errorf(pc() - 1, "mixing nominal and isorecursive types is not allowed"); return {}; default: errorf(pc() - 1, "unknown type form: %d", kind); return {}; } } TypeDefinition consume_subtype_definition() { DCHECK(enabled_features_.has_gc()); uint8_t kind = read_u8(pc(), "type kind"); if (kind == kWasmSubtypeCode) { consume_bytes(1, "subtype definition"); constexpr uint32_t kMaximumSupertypes = 1; uint32_t supertype_count = consume_count("supertype count", kMaximumSupertypes); uint32_t supertype = supertype_count == 1 ? consume_u32v("supertype") : kNoSuperType; if (!check_supertype(supertype)) return {}; TypeDefinition type = consume_base_type_definition(); type.supertype = supertype; return type; } else { return consume_base_type_definition(); } } void DecodeTypeSection() { TypeCanonicalizer* type_canon = GetTypeCanonicalizer(); uint32_t types_count = consume_count("types count", kV8MaxWasmTypes); // Non wasm-gc type section decoding. if (!enabled_features_.has_gc()) { module_->types.reserve(types_count); for (uint32_t i = 0; i < types_count; ++i) { TRACE("DecodeSignature[%d] module+%d\n", i, static_cast(pc_ - start_)); expect_u8("signature definition", kWasmFunctionTypeCode); const FunctionSig* sig = consume_sig(module_->signature_zone.get()); if (!ok()) break; module_->add_signature(sig, kNoSuperType); if (FLAG_wasm_type_canonicalization) { type_canon->AddRecursiveGroup(module_.get(), 1); } } return; } if (types_count > 0) { uint8_t first_type_opcode = this->read_u8(pc()); if (first_type_opcode == kWasmFunctionNominalCode || first_type_opcode == kWasmStructNominalCode || first_type_opcode == kWasmArrayNominalCode) { // wasm-gc nominal type section decoding. // In a nominal module, all types belong in the same recursive group. We // use the type vector's capacity to mark the end of the current // recursive group. module_->types.reserve(types_count); for (uint32_t i = 0; ok() && i < types_count; ++i) { TRACE("DecodeType[%d] module+%d\n", i, static_cast(pc_ - start_)); TypeDefinition type = consume_nominal_type_definition(); if (ok()) module_->add_type(type); } if (ok() && FLAG_wasm_type_canonicalization) { type_canon->AddRecursiveGroup(module_.get(), types_count); } } else { // wasm-gc isorecursive type section decoding. for (uint32_t i = 0; ok() && i < types_count; ++i) { TRACE("DecodeType[%d] module+%d\n", i, static_cast(pc_ - start_)); uint8_t kind = read_u8(pc(), "type kind"); if (kind == kWasmRecursiveTypeGroupCode) { consume_bytes(1, "rec. group definition"); uint32_t group_size = consume_count("recursive group size", kV8MaxWasmTypes); if (module_->types.size() + group_size > kV8MaxWasmTypes) { errorf(pc(), "Type definition count exeeds maximum %zu", kV8MaxWasmTypes); return; } // Reserve space for the current recursive group, so we are // allowed to reference its elements. module_->types.reserve(module_->types.size() + group_size); for (uint32_t i = 0; i < group_size; i++) { TypeDefinition type = consume_subtype_definition(); if (ok()) module_->add_type(type); } if (ok() && FLAG_wasm_type_canonicalization) { type_canon->AddRecursiveGroup(module_.get(), group_size); } } else { TypeDefinition type = consume_subtype_definition(); if (ok()) { module_->add_type(type); if (FLAG_wasm_type_canonicalization) { type_canon->AddRecursiveGroup(module_.get(), 1); } } } } } } // Check validity of explicitly defined supertypes. const WasmModule* module = module_.get(); for (uint32_t i = 0; ok() && i < types_count; ++i) { uint32_t explicit_super = module_->supertype(i); if (explicit_super == kNoSuperType) continue; DCHECK_LT(explicit_super, types_count); // {consume_super_type} checks. int depth = GetSubtypingDepth(module, i); if (depth > static_cast(kV8MaxRttSubtypingDepth)) { errorf("type %d: subtyping depth is greater than allowed", i); continue; } // TODO(7748): Replace this with a DCHECK once we reject inheritance // cycles for nominal modules. if (depth == -1) { errorf("type %d: cyclic inheritance", i); continue; } if (!ValidSubtypeDefinition(i, explicit_super, module, module)) { errorf("type %d has invalid explicit supertype %d", i, explicit_super); continue; } } module_->signature_map.Freeze(); } void DecodeImportSection() { uint32_t import_table_count = consume_count("imports count", kV8MaxWasmImports); module_->import_table.reserve(import_table_count); for (uint32_t i = 0; ok() && i < import_table_count; ++i) { TRACE("DecodeImportTable[%d] module+%d\n", i, static_cast(pc_ - start_)); module_->import_table.push_back({ {0, 0}, // module_name {0, 0}, // field_name kExternalFunction, // kind 0 // index }); WasmImport* import = &module_->import_table.back(); const byte* pos = pc_; import->module_name = consume_string(this, true, "module name"); import->field_name = consume_string(this, true, "field name"); import->kind = static_cast(consume_u8("import kind")); switch (import->kind) { case kExternalFunction: { // ===== Imported function =========================================== import->index = static_cast(module_->functions.size()); module_->num_imported_functions++; module_->functions.push_back({nullptr, // sig import->index, // func_index 0, // sig_index {0, 0}, // code 0, // feedback slots true, // imported false, // exported false}); // declared WasmFunction* function = &module_->functions.back(); function->sig_index = consume_sig_index(module_.get(), &function->sig); break; } case kExternalTable: { // ===== Imported table ============================================== import->index = static_cast(module_->tables.size()); module_->num_imported_tables++; module_->tables.emplace_back(); WasmTable* table = &module_->tables.back(); table->imported = true; const byte* type_position = pc(); ValueType type = consume_reference_type(); if (!WasmTable::IsValidTableType(type, module_.get())) { errorf(type_position, "Invalid table type %s", type.name().c_str()); break; } table->type = type; uint8_t flags = validate_table_flags("element count"); consume_resizable_limits( "element count", "elements", std::numeric_limits::max(), &table->initial_size, &table->has_maximum_size, std::numeric_limits::max(), &table->maximum_size, flags); break; } case kExternalMemory: { // ===== Imported memory ============================================= if (!AddMemory(module_.get())) break; uint8_t flags = validate_memory_flags(&module_->has_shared_memory, &module_->is_memory64); consume_resizable_limits( "memory", "pages", kSpecMaxMemoryPages, &module_->initial_pages, &module_->has_maximum_pages, kSpecMaxMemoryPages, &module_->maximum_pages, flags); break; } case kExternalGlobal: { // ===== Imported global ============================================= import->index = static_cast(module_->globals.size()); module_->globals.push_back({kWasmVoid, false, {}, {0}, true, false}); WasmGlobal* global = &module_->globals.back(); global->type = consume_value_type(); global->mutability = consume_mutability(); if (global->mutability) { module_->num_imported_mutable_globals++; } break; } case kExternalTag: { // ===== Imported tag ================================================ if (!enabled_features_.has_eh()) { errorf(pos, "unknown import kind 0x%02x", import->kind); break; } import->index = static_cast(module_->tags.size()); const WasmTagSig* tag_sig = nullptr; consume_exception_attribute(); // Attribute ignored for now. consume_tag_sig_index(module_.get(), &tag_sig); module_->tags.emplace_back(tag_sig); break; } default: errorf(pos, "unknown import kind 0x%02x", import->kind); break; } } } void DecodeFunctionSection() { uint32_t functions_count = consume_count("functions count", kV8MaxWasmFunctions); auto counter = SELECT_WASM_COUNTER(GetCounters(), origin_, wasm_functions_per, module); counter->AddSample(static_cast(functions_count)); DCHECK_EQ(module_->functions.size(), module_->num_imported_functions); uint32_t total_function_count = module_->num_imported_functions + functions_count; module_->functions.reserve(total_function_count); module_->num_declared_functions = functions_count; for (uint32_t i = 0; i < functions_count; ++i) { uint32_t func_index = static_cast(module_->functions.size()); module_->functions.push_back({nullptr, // sig func_index, // func_index 0, // sig_index {0, 0}, // code 0, // feedback slots false, // imported false, // exported false}); // declared WasmFunction* function = &module_->functions.back(); function->sig_index = consume_sig_index(module_.get(), &function->sig); if (!ok()) return; } DCHECK_EQ(module_->functions.size(), total_function_count); } void DecodeTableSection() { uint32_t table_count = consume_count("table count", kV8MaxWasmTables); for (uint32_t i = 0; ok() && i < table_count; i++) { module_->tables.emplace_back(); WasmTable* table = &module_->tables.back(); const byte* type_position = pc(); ValueType table_type = consume_reference_type(); if (!WasmTable::IsValidTableType(table_type, module_.get())) { error(type_position, "Currently, only externref and function references are allowed " "as table types"); continue; } table->type = table_type; uint8_t flags = validate_table_flags("table elements"); consume_resizable_limits( "table elements", "elements", std::numeric_limits::max(), &table->initial_size, &table->has_maximum_size, std::numeric_limits::max(), &table->maximum_size, flags); if (!table_type.is_defaultable()) { table->initial_value = consume_init_expr(module_.get(), table_type); } } } void DecodeMemorySection() { uint32_t memory_count = consume_count("memory count", kV8MaxWasmMemories); for (uint32_t i = 0; ok() && i < memory_count; i++) { if (!AddMemory(module_.get())) break; uint8_t flags = validate_memory_flags(&module_->has_shared_memory, &module_->is_memory64); consume_resizable_limits("memory", "pages", kSpecMaxMemoryPages, &module_->initial_pages, &module_->has_maximum_pages, kSpecMaxMemoryPages, &module_->maximum_pages, flags); } } void DecodeGlobalSection() { uint32_t globals_count = consume_count("globals count", kV8MaxWasmGlobals); uint32_t imported_globals = static_cast(module_->globals.size()); // It is important to not resize the globals vector from the beginning, // because we use its current size when decoding the initializer. module_->globals.reserve(imported_globals + globals_count); for (uint32_t i = 0; ok() && i < globals_count; ++i) { TRACE("DecodeGlobal[%d] module+%d\n", i, static_cast(pc_ - start_)); ValueType type = consume_value_type(); bool mutability = consume_mutability(); if (failed()) break; ConstantExpression init = consume_init_expr(module_.get(), type); module_->globals.push_back({type, mutability, init, {0}, false, false}); } if (ok()) CalculateGlobalOffsets(module_.get()); } void DecodeExportSection() { uint32_t export_table_count = consume_count("exports count", kV8MaxWasmExports); module_->export_table.reserve(export_table_count); for (uint32_t i = 0; ok() && i < export_table_count; ++i) { TRACE("DecodeExportTable[%d] module+%d\n", i, static_cast(pc_ - start_)); module_->export_table.push_back({ {0, 0}, // name kExternalFunction, // kind 0 // index }); WasmExport* exp = &module_->export_table.back(); exp->name = consume_string(this, true, "field name"); const byte* pos = pc(); exp->kind = static_cast(consume_u8("export kind")); switch (exp->kind) { case kExternalFunction: { WasmFunction* func = nullptr; exp->index = consume_func_index(module_.get(), &func, "export function index"); if (failed()) break; DCHECK_NOT_NULL(func); module_->num_exported_functions++; func->exported = true; // Exported functions are considered "declared". func->declared = true; break; } case kExternalTable: { WasmTable* table = nullptr; exp->index = consume_table_index(module_.get(), &table); if (table) table->exported = true; break; } case kExternalMemory: { uint32_t index = consume_u32v("memory index"); // TODO(titzer): This should become more regular // once we support multiple memories. if (!module_->has_memory || index != 0) { error("invalid memory index != 0"); } module_->mem_export = true; break; } case kExternalGlobal: { WasmGlobal* global = nullptr; exp->index = consume_global_index(module_.get(), &global); if (global) { global->exported = true; } break; } case kExternalTag: { if (!enabled_features_.has_eh()) { errorf(pos, "invalid export kind 0x%02x", exp->kind); break; } WasmTag* tag = nullptr; exp->index = consume_tag_index(module_.get(), &tag); break; } default: errorf(pos, "invalid export kind 0x%02x", exp->kind); break; } } // Check for duplicate exports (except for asm.js). if (ok() && origin_ == kWasmOrigin && module_->export_table.size() > 1) { std::vector sorted_exports(module_->export_table); auto cmp_less = [this](const WasmExport& a, const WasmExport& b) { // Return true if a < b. if (a.name.length() != b.name.length()) { return a.name.length() < b.name.length(); } const byte* left = start() + GetBufferRelativeOffset(a.name.offset()); const byte* right = start() + GetBufferRelativeOffset(b.name.offset()); return memcmp(left, right, a.name.length()) < 0; }; std::stable_sort(sorted_exports.begin(), sorted_exports.end(), cmp_less); auto it = sorted_exports.begin(); WasmExport* last = &*it++; for (auto end = sorted_exports.end(); it != end; last = &*it++) { DCHECK(!cmp_less(*it, *last)); // Vector must be sorted. if (!cmp_less(*last, *it)) { const byte* pc = start() + GetBufferRelativeOffset(it->name.offset()); TruncatedUserString<> name(pc, it->name.length()); errorf(pc, "Duplicate export name '%.*s' for %s %d and %s %d", name.length(), name.start(), ExternalKindName(last->kind), last->index, ExternalKindName(it->kind), it->index); break; } } } } void DecodeStartSection() { WasmFunction* func; const byte* pos = pc_; module_->start_function_index = consume_func_index(module_.get(), &func, "start function index"); if (func && (func->sig->parameter_count() > 0 || func->sig->return_count() > 0)) { error(pos, "invalid start function: non-zero parameter or return count"); } } void DecodeElementSection() { uint32_t element_count = consume_count("element count", FLAG_wasm_max_table_size); for (uint32_t i = 0; i < element_count; ++i) { WasmElemSegment segment = consume_element_segment_header(); if (failed()) return; DCHECK_NE(segment.type, kWasmBottom); uint32_t num_elem = consume_count("number of elements", max_table_init_entries()); for (uint32_t j = 0; j < num_elem; j++) { ConstantExpression entry = segment.element_type == WasmElemSegment::kExpressionElements ? consume_init_expr(module_.get(), segment.type) : ConstantExpression::RefFunc( consume_element_func_index(segment.type)); if (failed()) return; segment.entries.push_back(entry); } module_->elem_segments.push_back(std::move(segment)); } } void DecodeCodeSection(bool verify_functions) { StartCodeSection(); uint32_t code_section_start = pc_offset(); uint32_t functions_count = consume_u32v("functions count"); CheckFunctionsCount(functions_count, code_section_start); for (uint32_t i = 0; ok() && i < functions_count; ++i) { const byte* pos = pc(); uint32_t size = consume_u32v("body size"); if (size > kV8MaxWasmFunctionSize) { errorf(pos, "size %u > maximum function size %zu", size, kV8MaxWasmFunctionSize); return; } uint32_t offset = pc_offset(); consume_bytes(size, "function body"); if (failed()) break; DecodeFunctionBody(i, size, offset, verify_functions); } DCHECK_GE(pc_offset(), code_section_start); set_code_section(code_section_start, pc_offset() - code_section_start); } void StartCodeSection() { if (ok()) { // Make sure global offset were calculated before they get accessed during // function compilation. CalculateGlobalOffsets(module_.get()); } } bool CheckFunctionsCount(uint32_t functions_count, uint32_t error_offset) { if (functions_count != module_->num_declared_functions) { errorf(error_offset, "function body count %u mismatch (%u expected)", functions_count, module_->num_declared_functions); return false; } return true; } void DecodeFunctionBody(uint32_t index, uint32_t length, uint32_t offset, bool verify_functions) { WasmFunction* function = &module_->functions[index + module_->num_imported_functions]; function->code = {offset, length}; if (verify_functions) { ModuleWireBytes bytes(module_start_, module_end_); VerifyFunctionBody(module_->signature_zone->allocator(), index + module_->num_imported_functions, bytes, module_.get(), function); } } bool CheckDataSegmentsCount(uint32_t data_segments_count) { if (has_seen_unordered_section(kDataCountSectionCode) && data_segments_count != module_->num_declared_data_segments) { errorf(pc(), "data segments count %u mismatch (%u expected)", data_segments_count, module_->num_declared_data_segments); return false; } return true; } void DecodeDataSection() { uint32_t data_segments_count = consume_count("data segments count", kV8MaxWasmDataSegments); if (!CheckDataSegmentsCount(data_segments_count)) return; module_->data_segments.reserve(data_segments_count); for (uint32_t i = 0; ok() && i < data_segments_count; ++i) { const byte* pos = pc(); TRACE("DecodeDataSegment[%d] module+%d\n", i, static_cast(pc_ - start_)); bool is_active; uint32_t memory_index; ConstantExpression dest_addr; consume_data_segment_header(&is_active, &memory_index, &dest_addr); if (failed()) break; if (is_active) { if (!module_->has_memory) { error("cannot load data without memory"); break; } if (memory_index != 0) { errorf(pos, "illegal memory index %u != 0", memory_index); break; } } uint32_t source_length = consume_u32v("source size"); uint32_t source_offset = pc_offset(); if (is_active) { module_->data_segments.emplace_back(std::move(dest_addr)); } else { module_->data_segments.emplace_back(); } WasmDataSegment* segment = &module_->data_segments.back(); consume_bytes(source_length, "segment data"); if (failed()) break; segment->source = {source_offset, source_length}; } } void DecodeNameSection() { // TODO(titzer): find a way to report name errors as warnings. // Ignore all but the first occurrence of name section. if (!has_seen_unordered_section(kNameSectionCode)) { set_seen_unordered_section(kNameSectionCode); // Use an inner decoder so that errors don't fail the outer decoder. Decoder inner(start_, pc_, end_, buffer_offset_); // Decode all name subsections. // Be lenient with their order. while (inner.ok() && inner.more()) { uint8_t name_type = inner.consume_u8("name type"); if (name_type & 0x80) inner.error("name type if not varuint7"); uint32_t name_payload_len = inner.consume_u32v("name payload length"); if (!inner.checkAvailable(name_payload_len)) break; // Decode module name, ignore the rest. // Function and local names will be decoded when needed. if (name_type == NameSectionKindCode::kModuleCode) { WireBytesRef name = consume_string(&inner, false, "module name"); if (inner.ok() && validate_utf8(&inner, name)) { module_->name = name; } } else { inner.consume_bytes(name_payload_len, "name subsection payload"); } } } // Skip the whole names section in the outer decoder. consume_bytes(static_cast(end_ - start_), nullptr); } void DecodeSourceMappingURLSection() { Decoder inner(start_, pc_, end_, buffer_offset_); WireBytesRef url = wasm::consume_string(&inner, true, "module name"); if (inner.ok() && module_->debug_symbols.type != WasmDebugSymbols::Type::SourceMap) { module_->debug_symbols = {WasmDebugSymbols::Type::SourceMap, url}; } set_seen_unordered_section(kSourceMappingURLSectionCode); consume_bytes(static_cast(end_ - start_), nullptr); } void DecodeExternalDebugInfoSection() { Decoder inner(start_, pc_, end_, buffer_offset_); WireBytesRef url = wasm::consume_string(&inner, true, "external symbol file"); // If there is an explicit source map, prefer it over DWARF info. if (inner.ok() && module_->debug_symbols.type != WasmDebugSymbols::Type::SourceMap) { module_->debug_symbols = {WasmDebugSymbols::Type::ExternalDWARF, url}; set_seen_unordered_section(kExternalDebugInfoSectionCode); } consume_bytes(static_cast(end_ - start_), nullptr); } void DecodeCompilationHintsSection() { TRACE("DecodeCompilationHints module+%d\n", static_cast(pc_ - start_)); // TODO(frgossen): Find a way to report compilation hint errors as warnings. // All except first occurrence after function section and before code // section are ignored. const bool before_function_section = next_ordered_section_ <= kFunctionSectionCode; const bool after_code_section = next_ordered_section_ > kCodeSectionCode; if (before_function_section || after_code_section || has_seen_unordered_section(kCompilationHintsSectionCode)) { return; } set_seen_unordered_section(kCompilationHintsSectionCode); // TODO(frgossen) Propagate errors to outer decoder in experimental phase. // We should use an inner decoder later and propagate its errors as // warnings. Decoder& decoder = *this; // Decoder decoder(start_, pc_, end_, buffer_offset_); // Ensure exactly one compilation hint per function. uint32_t hint_count = decoder.consume_u32v("compilation hint count"); if (hint_count != module_->num_declared_functions) { decoder.errorf(decoder.pc(), "Expected %u compilation hints (%u found)", module_->num_declared_functions, hint_count); } // Decode sequence of compilation hints. if (decoder.ok()) { module_->compilation_hints.reserve(hint_count); } for (uint32_t i = 0; decoder.ok() && i < hint_count; i++) { TRACE("DecodeCompilationHints[%d] module+%d\n", i, static_cast(pc_ - start_)); // Compilation hints are encoded in one byte each. // +-------+----------+---------------+----------+ // | 2 bit | 2 bit | 2 bit | 2 bit | // | ... | Top tier | Baseline tier | Strategy | // +-------+----------+---------------+----------+ uint8_t hint_byte = decoder.consume_u8("compilation hint"); if (!decoder.ok()) break; // Validate the hint_byte. // For the compilation strategy, all 2-bit values are valid. For the tier, // only 0x0, 0x1, and 0x2 are allowed. static_assert( static_cast(WasmCompilationHintTier::kDefault) == 0 && static_cast(WasmCompilationHintTier::kBaseline) == 1 && static_cast(WasmCompilationHintTier::kOptimized) == 2, "The check below assumes that 0x03 is the only invalid 2-bit number " "for a compilation tier"); if (((hint_byte >> 2) & 0x03) == 0x03 || ((hint_byte >> 4) & 0x03) == 0x03) { decoder.errorf(decoder.pc(), "Invalid compilation hint %#04x (invalid tier 0x03)", hint_byte); break; } // Decode compilation hint. WasmCompilationHint hint; hint.strategy = static_cast(hint_byte & 0x03); hint.baseline_tier = static_cast((hint_byte >> 2) & 0x03); hint.top_tier = static_cast((hint_byte >> 4) & 0x03); // Ensure that the top tier never downgrades a compilation result. If // baseline and top tier are the same compilation will be invoked only // once. if (hint.top_tier < hint.baseline_tier && hint.top_tier != WasmCompilationHintTier::kDefault) { decoder.errorf(decoder.pc(), "Invalid compilation hint %#04x (forbidden downgrade)", hint_byte); } // Happily accept compilation hint. if (decoder.ok()) { module_->compilation_hints.push_back(std::move(hint)); } } // If section was invalid reset compilation hints. if (decoder.failed()) { module_->compilation_hints.clear(); } // @TODO(frgossen) Skip the whole compilation hints section in the outer // decoder if inner decoder was used. // consume_bytes(static_cast(end_ - start_), nullptr); } void DecodeBranchHintsSection() { TRACE("DecodeBranchHints module+%d\n", static_cast(pc_ - start_)); if (!has_seen_unordered_section(kBranchHintsSectionCode)) { set_seen_unordered_section(kBranchHintsSectionCode); // Use an inner decoder so that errors don't fail the outer decoder. Decoder inner(start_, pc_, end_, buffer_offset_); BranchHintInfo branch_hints; uint32_t func_count = inner.consume_u32v("number of functions"); // Keep track of the previous function index to validate the ordering int64_t last_func_idx = -1; for (uint32_t i = 0; i < func_count; i++) { uint32_t func_idx = inner.consume_u32v("function index"); if (int64_t(func_idx) <= last_func_idx) { inner.errorf("Invalid function index: %d", func_idx); break; } last_func_idx = func_idx; uint32_t num_hints = inner.consume_u32v("number of hints"); BranchHintMap func_branch_hints; TRACE("DecodeBranchHints[%d] module+%d\n", func_idx, static_cast(inner.pc() - inner.start())); // Keep track of the previous branch offset to validate the ordering int64_t last_br_off = -1; for (uint32_t j = 0; j < num_hints; ++j) { uint32_t br_off = inner.consume_u32v("branch instruction offset"); if (int64_t(br_off) <= last_br_off) { inner.errorf("Invalid branch offset: %d", br_off); break; } last_br_off = br_off; uint32_t data_size = inner.consume_u32v("data size"); if (data_size != 1) { inner.errorf("Invalid data size: %#x. Expected 1.", data_size); break; } uint32_t br_dir = inner.consume_u8("branch direction"); TRACE("DecodeBranchHints[%d][%d] module+%d\n", func_idx, br_off, static_cast(inner.pc() - inner.start())); WasmBranchHint hint; switch (br_dir) { case 0: hint = WasmBranchHint::kUnlikely; break; case 1: hint = WasmBranchHint::kLikely; break; default: hint = WasmBranchHint::kNoHint; inner.errorf(inner.pc(), "Invalid branch hint %#x", br_dir); break; } if (!inner.ok()) { break; } func_branch_hints.insert(br_off, hint); } if (!inner.ok()) { break; } branch_hints.emplace(func_idx, std::move(func_branch_hints)); } // Extra unexpected bytes are an error. if (inner.more()) { inner.errorf("Unexpected extra bytes: %d\n", static_cast(inner.pc() - inner.start())); } // If everything went well, accept the hints for the module. if (inner.ok()) { module_->branch_hints = std::move(branch_hints); } } // Skip the whole branch hints section in the outer decoder. consume_bytes(static_cast(end_ - start_), nullptr); } void DecodeDataCountSection() { module_->num_declared_data_segments = consume_count("data segments count", kV8MaxWasmDataSegments); } void DecodeTagSection() { uint32_t tag_count = consume_count("tag count", kV8MaxWasmTags); for (uint32_t i = 0; ok() && i < tag_count; ++i) { TRACE("DecodeTag[%d] module+%d\n", i, static_cast(pc_ - start_)); const WasmTagSig* tag_sig = nullptr; consume_exception_attribute(); // Attribute ignored for now. consume_tag_sig_index(module_.get(), &tag_sig); module_->tags.emplace_back(tag_sig); } } bool CheckMismatchedCounts() { // The declared vs. defined function count is normally checked when // decoding the code section, but we have to check it here too in case the // code section is absent. if (module_->num_declared_functions != 0) { DCHECK_LT(module_->num_imported_functions, module_->functions.size()); // We know that the code section has been decoded if the first // non-imported function has its code set. if (!module_->functions[module_->num_imported_functions].code.is_set()) { errorf(pc(), "function count is %u, but code section is absent", module_->num_declared_functions); return false; } } // Perform a similar check for the DataCount and Data sections, where data // segments are declared but the Data section is absent. if (!CheckDataSegmentsCount( static_cast(module_->data_segments.size()))) { return false; } return true; } ModuleResult FinishDecoding(bool verify_functions = true) { if (ok() && CheckMismatchedCounts()) { // We calculate the global offsets here, because there may not be a // global section and code section that would have triggered the // calculation before. Even without the globals section the calculation // is needed because globals can also be defined in the import section. CalculateGlobalOffsets(module_.get()); } ModuleResult result = toResult(std::move(module_)); if (verify_functions && result.ok() && intermediate_error_.has_error()) { // Copy error message and location. return ModuleResult{std::move(intermediate_error_)}; } return result; } void set_code_section(uint32_t offset, uint32_t size) { module_->code = {offset, size}; } // Decodes an entire module. ModuleResult DecodeModule(Counters* counters, AccountingAllocator* allocator, bool verify_functions = true) { StartDecoding(counters, allocator); uint32_t offset = 0; base::Vector orig_bytes(start(), end() - start()); DecodeModuleHeader(base::VectorOf(start(), end() - start()), offset); if (failed()) { return FinishDecoding(verify_functions); } // Size of the module header. offset += 8; Decoder decoder(start_ + offset, end_, offset); WasmSectionIterator section_iter(&decoder); while (ok()) { // Shift the offset by the section header length offset += section_iter.payload_start() - section_iter.section_start(); if (section_iter.section_code() != SectionCode::kUnknownSectionCode) { DecodeSection(section_iter.section_code(), section_iter.payload(), offset, verify_functions); } // Shift the offset by the remaining section payload offset += section_iter.payload_length(); if (!section_iter.more()) break; section_iter.advance(true); } if (FLAG_dump_wasm_module) DumpModule(orig_bytes); if (decoder.failed()) { return decoder.toResult>(nullptr); } return FinishDecoding(verify_functions); } // Decodes a single anonymous function starting at {start_}. FunctionResult DecodeSingleFunction(Zone* zone, const ModuleWireBytes& wire_bytes, const WasmModule* module, std::unique_ptr function) { pc_ = start_; expect_u8("type form", kWasmFunctionTypeCode); if (!ok()) return FunctionResult{std::move(intermediate_error_)}; function->sig = consume_sig(zone); function->code = {off(pc_), static_cast(end_ - pc_)}; if (ok()) VerifyFunctionBody(zone->allocator(), 0, wire_bytes, module, function.get()); if (intermediate_error_.has_error()) { return FunctionResult{std::move(intermediate_error_)}; } return FunctionResult(std::move(function)); } // Decodes a single function signature at {start}. const FunctionSig* DecodeFunctionSignature(Zone* zone, const byte* start) { pc_ = start; if (!expect_u8("type form", kWasmFunctionTypeCode)) return nullptr; const FunctionSig* result = consume_sig(zone); return ok() ? result : nullptr; } ConstantExpression DecodeInitExprForTesting(ValueType expected) { return consume_init_expr(module_.get(), expected); } const std::shared_ptr& shared_module() const { return module_; } Counters* GetCounters() const { DCHECK_NOT_NULL(counters_); return counters_; } void SetCounters(Counters* counters) { DCHECK_NULL(counters_); counters_ = counters; } private: const WasmFeatures enabled_features_; std::shared_ptr module_; const byte* module_start_ = nullptr; const byte* module_end_ = nullptr; Counters* counters_ = nullptr; // The type section is the first section in a module. uint8_t next_ordered_section_ = kFirstSectionInModule; // We store next_ordered_section_ as uint8_t instead of SectionCode so that // we can increment it. This static_assert should make sure that SectionCode // does not get bigger than uint8_t accidentially. static_assert(sizeof(ModuleDecoderImpl::next_ordered_section_) == sizeof(SectionCode), "type mismatch"); uint32_t seen_unordered_sections_ = 0; static_assert(kBitsPerByte * sizeof(ModuleDecoderImpl::seen_unordered_sections_) > kLastKnownModuleSection, "not enough bits"); WasmError intermediate_error_; ModuleOrigin origin_; AccountingAllocator allocator_; Zone init_expr_zone_{&allocator_, "initializer expression zone"}; bool has_seen_unordered_section(SectionCode section_code) { return seen_unordered_sections_ & (1 << section_code); } void set_seen_unordered_section(SectionCode section_code) { seen_unordered_sections_ |= 1 << section_code; } uint32_t off(const byte* ptr) { return static_cast(ptr - start_) + buffer_offset_; } bool AddMemory(WasmModule* module) { if (module->has_memory) { error("At most one memory is supported"); return false; } else { module->has_memory = true; return true; } } // Calculate individual global offsets and total size of globals table. This // function should be called after all globals have been defined, which is // after the import section and the global section, but before the global // offsets are accessed, e.g. by the function compilers. The moment when this // function should be called is not well-defined, as the global section may // not exist. Therefore this function is called multiple times. void CalculateGlobalOffsets(WasmModule* module) { if (module->globals.empty() || module->untagged_globals_buffer_size != 0 || module->tagged_globals_buffer_size != 0) { // This function has already been executed before, so we don't have to // execute it again. return; } uint32_t untagged_offset = 0; uint32_t tagged_offset = 0; uint32_t num_imported_mutable_globals = 0; for (WasmGlobal& global : module->globals) { if (global.mutability && global.imported) { global.index = num_imported_mutable_globals++; } else if (global.type.is_reference()) { global.offset = tagged_offset; // All entries in the tagged_globals_buffer have size 1. tagged_offset++; } else { int size = global.type.value_kind_size(); untagged_offset = (untagged_offset + size - 1) & ~(size - 1); // align global.offset = untagged_offset; untagged_offset += size; } } module->untagged_globals_buffer_size = untagged_offset; module->tagged_globals_buffer_size = tagged_offset; } // Verifies the body (code) of a given function. void VerifyFunctionBody(AccountingAllocator* allocator, uint32_t func_num, const ModuleWireBytes& wire_bytes, const WasmModule* module, WasmFunction* function) { WasmFunctionName func_name(function, wire_bytes.GetNameOrNull(function, module)); if (FLAG_trace_wasm_decoder) { StdoutStream{} << "Verifying wasm function " << func_name << std::endl; } FunctionBody body = { function->sig, function->code.offset(), start_ + GetBufferRelativeOffset(function->code.offset()), start_ + GetBufferRelativeOffset(function->code.end_offset())}; WasmFeatures unused_detected_features = WasmFeatures::None(); DecodeResult result = VerifyWasmCode(allocator, enabled_features_, module, &unused_detected_features, body); // If the decode failed and this is the first error, set error code and // location. if (result.failed() && intermediate_error_.empty()) { // Wrap the error message from the function decoder. std::ostringstream error_msg; error_msg << "in function " << func_name << ": " << result.error().message(); intermediate_error_ = WasmError{result.error().offset(), error_msg.str()}; } } uint32_t consume_sig_index(WasmModule* module, const FunctionSig** sig) { const byte* pos = pc_; uint32_t sig_index = consume_u32v("signature index"); if (!module->has_signature(sig_index)) { errorf(pos, "signature index %u out of bounds (%d signatures)", sig_index, static_cast(module->types.size())); *sig = nullptr; return 0; } *sig = module->signature(sig_index); return sig_index; } uint32_t consume_tag_sig_index(WasmModule* module, const FunctionSig** sig) { const byte* pos = pc_; uint32_t sig_index = consume_sig_index(module, sig); if (*sig && (*sig)->return_count() != 0) { errorf(pos, "tag signature %u has non-void return", sig_index); *sig = nullptr; return 0; } return sig_index; } uint32_t consume_count(const char* name, size_t maximum) { const byte* p = pc_; uint32_t count = consume_u32v(name); if (count > maximum) { errorf(p, "%s of %u exceeds internal limit of %zu", name, count, maximum); return static_cast(maximum); } return count; } uint32_t consume_func_index(WasmModule* module, WasmFunction** func, const char* name) { return consume_index(name, &module->functions, func); } uint32_t consume_global_index(WasmModule* module, WasmGlobal** global) { return consume_index("global index", &module->globals, global); } uint32_t consume_table_index(WasmModule* module, WasmTable** table) { return consume_index("table index", &module->tables, table); } uint32_t consume_tag_index(WasmModule* module, WasmTag** tag) { return consume_index("tag index", &module->tags, tag); } template uint32_t consume_index(const char* name, std::vector* vector, T** ptr) { const byte* pos = pc_; uint32_t index = consume_u32v(name); if (index >= vector->size()) { errorf(pos, "%s %u out of bounds (%d entr%s)", name, index, static_cast(vector->size()), vector->size() == 1 ? "y" : "ies"); *ptr = nullptr; return 0; } *ptr = &(*vector)[index]; return index; } uint8_t validate_table_flags(const char* name) { uint8_t flags = consume_u8("table limits flags"); STATIC_ASSERT(kNoMaximum < kWithMaximum); if (V8_UNLIKELY(flags > kWithMaximum)) { errorf(pc() - 1, "invalid %s limits flags", name); } return flags; } uint8_t validate_memory_flags(bool* has_shared_memory, bool* is_memory64) { uint8_t flags = consume_u8("memory limits flags"); *has_shared_memory = false; switch (flags) { case kNoMaximum: case kWithMaximum: break; case kSharedNoMaximum: case kSharedWithMaximum: if (!enabled_features_.has_threads()) { errorf(pc() - 1, "invalid memory limits flags 0x%x (enable via " "--experimental-wasm-threads)", flags); } *has_shared_memory = true; // V8 does not support shared memory without a maximum. if (flags == kSharedNoMaximum) { errorf(pc() - 1, "memory limits flags must have maximum defined if shared is " "true"); } break; case kMemory64NoMaximum: case kMemory64WithMaximum: if (!enabled_features_.has_memory64()) { errorf(pc() - 1, "invalid memory limits flags 0x%x (enable via " "--experimental-wasm-memory64)", flags); } *is_memory64 = true; break; default: errorf(pc() - 1, "invalid memory limits flags 0x%x", flags); break; } return flags; } void consume_resizable_limits(const char* name, const char* units, uint32_t max_initial, uint32_t* initial, bool* has_max, uint32_t max_maximum, uint32_t* maximum, uint8_t flags) { const byte* pos = pc(); // For memory64 we need to read the numbers as LEB-encoded 64-bit unsigned // integer. All V8 limits are still within uint32_t range though. const bool is_memory64 = flags == kMemory64NoMaximum || flags == kMemory64WithMaximum; uint64_t initial_64 = is_memory64 ? consume_u64v("initial size") : consume_u32v("initial size"); if (initial_64 > max_initial) { errorf(pos, "initial %s size (%" PRIu64 " %s) is larger than implementation limit (%u)", name, initial_64, units, max_initial); } *initial = static_cast(initial_64); if (flags & 1) { *has_max = true; pos = pc(); uint64_t maximum_64 = is_memory64 ? consume_u64v("maximum size") : consume_u32v("maximum size"); if (maximum_64 > max_maximum) { errorf(pos, "maximum %s size (%" PRIu64 " %s) is larger than implementation limit (%u)", name, maximum_64, units, max_maximum); } if (maximum_64 < *initial) { errorf(pos, "maximum %s size (%" PRIu64 " %s) is less than initial (%u %s)", name, maximum_64, units, *initial, units); } *maximum = static_cast(maximum_64); } else { *has_max = false; *maximum = max_initial; } } // Consumes a byte, and emits an error if it does not equal {expected}. bool expect_u8(const char* name, uint8_t expected) { const byte* pos = pc(); uint8_t value = consume_u8(name); if (value != expected) { errorf(pos, "expected %s 0x%02x, got 0x%02x", name, expected, value); return false; } return true; } ConstantExpression consume_init_expr(WasmModule* module, ValueType expected) { uint32_t length; // The error message mimics the one generated by the {WasmFullDecoder}. #define TYPE_CHECK(found) \ if (V8_UNLIKELY(!IsSubtypeOf(found, expected, module_.get()))) { \ errorf(pc() + 1, \ "type error in init. expression[0] (expected %s, got %s)", \ expected.name().c_str(), found.name().c_str()); \ return {}; \ } // To avoid initializing a {WasmFullDecoder} for the most common // expressions, we replicate their decoding and validation here. The // manually handled cases correspond to {ConstantExpression}'s kinds. // We need to make sure to check that the expression ends in {kExprEnd}; // otherwise, it is just the first operand of a composite expression, and we // fall back to the default case. if (!more()) { error("Beyond end of code"); return {}; } switch (static_cast(*pc())) { case kExprI32Const: { int32_t value = read_i32v(pc() + 1, &length, "i32.const"); if (V8_UNLIKELY(failed())) return {}; if (V8_LIKELY(lookahead(1 + length, kExprEnd))) { TYPE_CHECK(kWasmI32) consume_bytes(length + 2); return ConstantExpression::I32Const(value); } break; } case kExprRefFunc: { uint32_t index = read_u32v(pc() + 1, &length, "ref.func"); if (V8_UNLIKELY(failed())) return {}; if (V8_LIKELY(lookahead(1 + length, kExprEnd))) { if (V8_UNLIKELY(index >= module_->functions.size())) { errorf(pc() + 1, "function index %u out of bounds", index); return {}; } ValueType type = enabled_features_.has_typed_funcref() ? ValueType::Ref(module_->functions[index].sig_index, kNonNullable) : kWasmFuncRef; TYPE_CHECK(type) module_->functions[index].declared = true; consume_bytes(length + 2); return ConstantExpression::RefFunc(index); } break; } case kExprRefNull: { HeapType type = value_type_reader::read_heap_type( this, pc() + 1, &length, module_.get(), enabled_features_); if (V8_UNLIKELY(failed())) return {}; if (V8_LIKELY(lookahead(1 + length, kExprEnd))) { TYPE_CHECK(ValueType::Ref(type, kNullable)) consume_bytes(length + 2); return ConstantExpression::RefNull(type.representation()); } break; } default: break; } #undef TYPE_CHECK auto sig = FixedSizeSignature::Returns(expected); FunctionBody body(&sig, buffer_offset_, pc_, end_); WasmFeatures detected; WasmFullDecoder decoder(&init_expr_zone_, module, enabled_features_, &detected, body, module); uint32_t offset = this->pc_offset(); decoder.DecodeFunctionBody(); this->pc_ = decoder.end(); if (decoder.failed()) { error(decoder.error().offset(), decoder.error().message().c_str()); return {}; } if (!decoder.interface().end_found()) { error("Initializer expression is missing 'end'"); return {}; } return ConstantExpression::WireBytes( offset, static_cast(decoder.end() - decoder.start())); } // Read a mutability flag bool consume_mutability() { byte val = consume_u8("mutability"); if (val > 1) error(pc_ - 1, "invalid mutability"); return val != 0; } ValueType consume_value_type() { uint32_t type_length; ValueType result = value_type_reader::read_value_type( this, this->pc(), &type_length, module_.get(), origin_ == kWasmOrigin ? enabled_features_ : WasmFeatures::None()); consume_bytes(type_length, "value type"); return result; } HeapType consume_super_type() { return value_type_reader::consume_heap_type(this, module_.get(), enabled_features_); } ValueType consume_storage_type() { uint8_t opcode = read_u8(this->pc()); switch (opcode) { case kI8Code: consume_bytes(1, "i8"); return kWasmI8; case kI16Code: consume_bytes(1, "i16"); return kWasmI16; default: // It is not a packed type, so it has to be a value type. return consume_value_type(); } } // Reads a reference type for tables and element segment headers. ValueType consume_reference_type() { const byte* position = pc(); ValueType result = consume_value_type(); if (!result.is_reference()) { error(position, "expected reference type"); } return result; } const FunctionSig* consume_sig(Zone* zone) { // Parse parameter types. uint32_t param_count = consume_count("param count", kV8MaxWasmFunctionParams); if (failed()) return nullptr; std::vector params; for (uint32_t i = 0; ok() && i < param_count; ++i) { params.push_back(consume_value_type()); } std::vector returns; // Parse return types. uint32_t return_count = consume_count("return count", kV8MaxWasmFunctionReturns); if (failed()) return nullptr; for (uint32_t i = 0; ok() && i < return_count; ++i) { returns.push_back(consume_value_type()); } if (failed()) return nullptr; // FunctionSig stores the return types first. ValueType* buffer = zone->NewArray(param_count + return_count); uint32_t b = 0; for (uint32_t i = 0; i < return_count; ++i) buffer[b++] = returns[i]; for (uint32_t i = 0; i < param_count; ++i) buffer[b++] = params[i]; return zone->New(return_count, param_count, buffer); } const StructType* consume_struct(Zone* zone) { uint32_t field_count = consume_count("field count", kV8MaxWasmStructFields); if (failed()) return nullptr; ValueType* fields = zone->NewArray(field_count); bool* mutabilities = zone->NewArray(field_count); for (uint32_t i = 0; ok() && i < field_count; ++i) { fields[i] = consume_storage_type(); mutabilities[i] = consume_mutability(); } if (failed()) return nullptr; uint32_t* offsets = zone->NewArray(field_count); return zone->New(field_count, offsets, fields, mutabilities); } const ArrayType* consume_array(Zone* zone) { ValueType element_type = consume_storage_type(); bool mutability = consume_mutability(); if (failed()) return nullptr; return zone->New(element_type, mutability); } // Consume the attribute field of an exception. uint32_t consume_exception_attribute() { const byte* pos = pc_; uint32_t attribute = consume_u32v("exception attribute"); if (attribute != kExceptionAttribute) { errorf(pos, "exception attribute %u not supported", attribute); return 0; } return attribute; } WasmElemSegment consume_element_segment_header() { const byte* pos = pc(); // The mask for the bit in the flag which indicates if the segment is // active or not (0 is active). constexpr uint8_t kNonActiveMask = 1 << 0; // The mask for the bit in the flag which indicates: // - for active tables, if the segment has an explicit table index field. // - for non-active tables, whether the table is declarative (vs. passive). constexpr uint8_t kHasTableIndexOrIsDeclarativeMask = 1 << 1; // The mask for the bit in the flag which indicates if the functions of this // segment are defined as function indices (0) or init. expressions (1). constexpr uint8_t kExpressionsAsElementsMask = 1 << 2; constexpr uint8_t kFullMask = kNonActiveMask | kHasTableIndexOrIsDeclarativeMask | kExpressionsAsElementsMask; uint32_t flag = consume_u32v("flag"); if ((flag & kFullMask) != flag) { errorf(pos, "illegal flag value %u. Must be between 0 and 7", flag); return {}; } const WasmElemSegment::Status status = (flag & kNonActiveMask) ? (flag & kHasTableIndexOrIsDeclarativeMask) ? WasmElemSegment::kStatusDeclarative : WasmElemSegment::kStatusPassive : WasmElemSegment::kStatusActive; const bool is_active = status == WasmElemSegment::kStatusActive; WasmElemSegment::ElementType element_type = flag & kExpressionsAsElementsMask ? WasmElemSegment::kExpressionElements : WasmElemSegment::kFunctionIndexElements; const bool has_table_index = is_active && (flag & kHasTableIndexOrIsDeclarativeMask); uint32_t table_index = has_table_index ? consume_u32v("table index") : 0; if (is_active && table_index >= module_->tables.size()) { errorf(pos, "out of bounds%s table index %u", has_table_index ? " implicit" : "", table_index); return {}; } ValueType table_type = is_active ? module_->tables[table_index].type : kWasmBottom; ConstantExpression offset; if (is_active) { offset = consume_init_expr(module_.get(), kWasmI32); // Failed to parse offset initializer, return early. if (failed()) return {}; } // Denotes an active segment without table index, type, or element kind. const bool backwards_compatible_mode = is_active && !(flag & kHasTableIndexOrIsDeclarativeMask); ValueType type; if (element_type == WasmElemSegment::kExpressionElements) { type = backwards_compatible_mode ? kWasmFuncRef : consume_reference_type(); if (is_active && !IsSubtypeOf(type, table_type, this->module_.get())) { errorf(pos, "Element segment of type %s is not a subtype of referenced " "table %u (of type %s)", type.name().c_str(), table_index, table_type.name().c_str()); return {}; } } else { if (!backwards_compatible_mode) { // We have to check that there is an element kind of type Function. All // other element kinds are not valid yet. uint8_t val = consume_u8("element kind"); if (static_cast(val) != kExternalFunction) { errorf(pos, "illegal element kind 0x%x. Must be 0x%x", val, kExternalFunction); return {}; } } if (!is_active) { // Declarative and passive segments without explicit type are funcref. type = kWasmFuncRef; } else { type = table_type; // Active segments with function indices must reference a function // table. TODO(7748): Add support for anyref tables when we have them. if (!IsSubtypeOf(table_type, kWasmFuncRef, this->module_.get())) { errorf(pos, "An active element segment with function indices as elements " "must reference a table of %s. Instead, table %u of type %s " "is referenced.", enabled_features_.has_typed_funcref() ? "a subtype of type funcref" : "type funcref", table_index, table_type.name().c_str()); return {}; } } } if (is_active) { return {type, table_index, std::move(offset), element_type}; } else { return {type, status, element_type}; } } void consume_data_segment_header(bool* is_active, uint32_t* index, ConstantExpression* offset) { const byte* pos = pc(); uint32_t flag = consume_u32v("flag"); // Some flag values are only valid for specific proposals. if (flag != SegmentFlags::kActiveNoIndex && flag != SegmentFlags::kPassive && flag != SegmentFlags::kActiveWithIndex) { errorf(pos, "illegal flag value %u. Must be 0, 1, or 2", flag); return; } // We know now that the flag is valid. Time to read the rest. ValueType expected_type = module_->is_memory64 ? kWasmI64 : kWasmI32; if (flag == SegmentFlags::kActiveNoIndex) { *is_active = true; *index = 0; *offset = consume_init_expr(module_.get(), expected_type); return; } if (flag == SegmentFlags::kPassive) { *is_active = false; return; } if (flag == SegmentFlags::kActiveWithIndex) { *is_active = true; *index = consume_u32v("memory index"); *offset = consume_init_expr(module_.get(), expected_type); } } uint32_t consume_element_func_index(ValueType expected) { WasmFunction* func = nullptr; const byte* initial_pc = pc(); uint32_t index = consume_func_index(module_.get(), &func, "element function index"); if (failed()) return index; DCHECK_NOT_NULL(func); DCHECK_EQ(index, func->func_index); ValueType entry_type = ValueType::Ref(func->sig_index, kNonNullable); if (V8_UNLIKELY(!IsSubtypeOf(entry_type, expected, module_.get()))) { errorf(initial_pc, "Invalid type in element entry: expected %s, got %s instead.", expected.name().c_str(), entry_type.name().c_str()); return index; } func->declared = true; return index; } }; ModuleResult DecodeWasmModule( const WasmFeatures& enabled, const byte* module_start, const byte* module_end, bool verify_functions, ModuleOrigin origin, Counters* counters, std::shared_ptr metrics_recorder, v8::metrics::Recorder::ContextId context_id, DecodingMethod decoding_method, AccountingAllocator* allocator) { size_t size = module_end - module_start; CHECK_LE(module_start, module_end); size_t max_size = max_module_size(); if (size > max_size) { return ModuleResult{ WasmError{0, "size > maximum module size (%zu): %zu", max_size, size}}; } // TODO(bradnelson): Improve histogram handling of size_t. auto size_counter = SELECT_WASM_COUNTER(counters, origin, wasm, module_size_bytes); size_counter->AddSample(static_cast(size)); // Signatures are stored in zone memory, which have the same lifetime // as the {module}. ModuleDecoderImpl decoder(enabled, module_start, module_end, origin); v8::metrics::WasmModuleDecoded metrics_event; base::ElapsedTimer timer; timer.Start(); base::ThreadTicks thread_ticks = base::ThreadTicks::IsSupported() ? base::ThreadTicks::Now() : base::ThreadTicks(); ModuleResult result = decoder.DecodeModule(counters, allocator, verify_functions); // Record event metrics. metrics_event.wall_clock_duration_in_us = timer.Elapsed().InMicroseconds(); timer.Stop(); if (!thread_ticks.IsNull()) { metrics_event.cpu_duration_in_us = (base::ThreadTicks::Now() - thread_ticks).InMicroseconds(); } metrics_event.success = decoder.ok() && result.ok(); metrics_event.async = decoding_method == DecodingMethod::kAsync || decoding_method == DecodingMethod::kAsyncStream; metrics_event.streamed = decoding_method == DecodingMethod::kSyncStream || decoding_method == DecodingMethod::kAsyncStream; if (result.ok()) { metrics_event.function_count = result.value()->num_declared_functions; } else if (auto&& module = decoder.shared_module()) { metrics_event.function_count = module->num_declared_functions; } metrics_event.module_size_in_bytes = size; metrics_recorder->DelayMainThreadEvent(metrics_event, context_id); return result; } ModuleDecoder::ModuleDecoder(const WasmFeatures& enabled) : enabled_features_(enabled) {} ModuleDecoder::~ModuleDecoder() = default; const std::shared_ptr& ModuleDecoder::shared_module() const { return impl_->shared_module(); } void ModuleDecoder::StartDecoding( Counters* counters, std::shared_ptr metrics_recorder, v8::metrics::Recorder::ContextId context_id, AccountingAllocator* allocator, ModuleOrigin origin) { DCHECK_NULL(impl_); impl_.reset(new ModuleDecoderImpl(enabled_features_, origin)); impl_->StartDecoding(counters, allocator); } void ModuleDecoder::DecodeModuleHeader(base::Vector bytes, uint32_t offset) { impl_->DecodeModuleHeader(bytes, offset); } void ModuleDecoder::DecodeSection(SectionCode section_code, base::Vector bytes, uint32_t offset, bool verify_functions) { impl_->DecodeSection(section_code, bytes, offset, verify_functions); } void ModuleDecoder::DecodeFunctionBody(uint32_t index, uint32_t length, uint32_t offset, bool verify_functions) { impl_->DecodeFunctionBody(index, length, offset, verify_functions); } void ModuleDecoder::StartCodeSection() { impl_->StartCodeSection(); } bool ModuleDecoder::CheckFunctionsCount(uint32_t functions_count, uint32_t error_offset) { return impl_->CheckFunctionsCount(functions_count, error_offset); } ModuleResult ModuleDecoder::FinishDecoding(bool verify_functions) { return impl_->FinishDecoding(verify_functions); } void ModuleDecoder::set_code_section(uint32_t offset, uint32_t size) { return impl_->set_code_section(offset, size); } size_t ModuleDecoder::IdentifyUnknownSection(ModuleDecoder* decoder, base::Vector bytes, uint32_t offset, SectionCode* result) { if (!decoder->ok()) return 0; decoder->impl_->Reset(bytes, offset); *result = IdentifyUnknownSectionInternal(decoder->impl_.get()); return decoder->impl_->pc() - bytes.begin(); } bool ModuleDecoder::ok() { return impl_->ok(); } const FunctionSig* DecodeWasmSignatureForTesting(const WasmFeatures& enabled, Zone* zone, const byte* start, const byte* end) { ModuleDecoderImpl decoder(enabled, start, end, kWasmOrigin); return decoder.DecodeFunctionSignature(zone, start); } ConstantExpression DecodeWasmInitExprForTesting(const WasmFeatures& enabled, const byte* start, const byte* end, ValueType expected) { ModuleDecoderImpl decoder(enabled, start, end, kWasmOrigin); AccountingAllocator allocator; decoder.StartDecoding(nullptr, &allocator); return decoder.DecodeInitExprForTesting(expected); } FunctionResult DecodeWasmFunctionForTesting( const WasmFeatures& enabled, Zone* zone, const ModuleWireBytes& wire_bytes, const WasmModule* module, const byte* function_start, const byte* function_end, Counters* counters) { size_t size = function_end - function_start; CHECK_LE(function_start, function_end); if (size > kV8MaxWasmFunctionSize) { return FunctionResult{WasmError{0, "size > maximum function size (%zu): %zu", kV8MaxWasmFunctionSize, size}}; } ModuleDecoderImpl decoder(enabled, function_start, function_end, kWasmOrigin); decoder.SetCounters(counters); return decoder.DecodeSingleFunction(zone, wire_bytes, module, std::make_unique()); } AsmJsOffsetsResult DecodeAsmJsOffsets( base::Vector encoded_offsets) { std::vector functions; Decoder decoder(encoded_offsets); uint32_t functions_count = decoder.consume_u32v("functions count"); // Consistency check. DCHECK_GE(encoded_offsets.size(), functions_count); functions.reserve(functions_count); for (uint32_t i = 0; i < functions_count; ++i) { uint32_t size = decoder.consume_u32v("table size"); if (size == 0) { functions.emplace_back(); continue; } DCHECK(decoder.checkAvailable(size)); const byte* table_end = decoder.pc() + size; uint32_t locals_size = decoder.consume_u32v("locals size"); int function_start_position = decoder.consume_u32v("function start pos"); int function_end_position = function_start_position; int last_byte_offset = locals_size; int last_asm_position = function_start_position; std::vector func_asm_offsets; func_asm_offsets.reserve(size / 4); // conservative estimation // Add an entry for the stack check, associated with position 0. func_asm_offsets.push_back( {0, function_start_position, function_start_position}); while (decoder.pc() < table_end) { DCHECK(decoder.ok()); last_byte_offset += decoder.consume_u32v("byte offset delta"); int call_position = last_asm_position + decoder.consume_i32v("call position delta"); int to_number_position = call_position + decoder.consume_i32v("to_number position delta"); last_asm_position = to_number_position; if (decoder.pc() == table_end) { // The last entry is the function end marker. DCHECK_EQ(call_position, to_number_position); function_end_position = call_position; } else { func_asm_offsets.push_back( {last_byte_offset, call_position, to_number_position}); } } DCHECK_EQ(decoder.pc(), table_end); functions.emplace_back(AsmJsOffsetFunctionEntries{ function_start_position, function_end_position, std::move(func_asm_offsets)}); } DCHECK(decoder.ok()); DCHECK(!decoder.more()); return decoder.toResult(AsmJsOffsets{std::move(functions)}); } std::vector DecodeCustomSections(const byte* start, const byte* end) { Decoder decoder(start, end); decoder.consume_bytes(4, "wasm magic"); decoder.consume_bytes(4, "wasm version"); std::vector result; while (decoder.more()) { byte section_code = decoder.consume_u8("section code"); uint32_t section_length = decoder.consume_u32v("section length"); uint32_t section_start = decoder.pc_offset(); if (section_code != 0) { // Skip known sections. decoder.consume_bytes(section_length, "section bytes"); continue; } uint32_t name_length = decoder.consume_u32v("name length"); uint32_t name_offset = decoder.pc_offset(); decoder.consume_bytes(name_length, "section name"); uint32_t payload_offset = decoder.pc_offset(); if (section_length < (payload_offset - section_start)) { decoder.error("invalid section length"); break; } uint32_t payload_length = section_length - (payload_offset - section_start); decoder.consume_bytes(payload_length); if (decoder.failed()) break; result.push_back({{section_start, section_length}, {name_offset, name_length}, {payload_offset, payload_length}}); } return result; } namespace { bool FindNameSection(Decoder* decoder) { static constexpr int kModuleHeaderSize = 8; decoder->consume_bytes(kModuleHeaderSize, "module header"); WasmSectionIterator section_iter(decoder); while (decoder->ok() && section_iter.more() && section_iter.section_code() != kNameSectionCode) { section_iter.advance(true); } if (!section_iter.more()) return false; // Reset the decoder to not read beyond the name section end. decoder->Reset(section_iter.payload(), decoder->pc_offset()); return true; } } // namespace void DecodeFunctionNames(const byte* module_start, const byte* module_end, std::unordered_map* names) { DCHECK_NOT_NULL(names); DCHECK(names->empty()); Decoder decoder(module_start, module_end); if (FindNameSection(&decoder)) { while (decoder.ok() && decoder.more()) { uint8_t name_type = decoder.consume_u8("name type"); if (name_type & 0x80) break; // no varuint7 uint32_t name_payload_len = decoder.consume_u32v("name payload length"); if (!decoder.checkAvailable(name_payload_len)) break; if (name_type != NameSectionKindCode::kFunctionCode) { decoder.consume_bytes(name_payload_len, "name subsection payload"); continue; } uint32_t functions_count = decoder.consume_u32v("functions count"); for (; decoder.ok() && functions_count > 0; --functions_count) { uint32_t function_index = decoder.consume_u32v("function index"); WireBytesRef name = consume_string(&decoder, false, "function name"); // Be lenient with errors in the name section: Ignore non-UTF8 names. // You can even assign to the same function multiple times (last valid // one wins). if (decoder.ok() && validate_utf8(&decoder, name)) { names->insert(std::make_pair(function_index, name)); } } } } } NameMap DecodeNameMap(base::Vector module_bytes, uint8_t name_section_kind) { Decoder decoder(module_bytes); if (!FindNameSection(&decoder)) return NameMap{{}}; std::vector names; while (decoder.ok() && decoder.more()) { uint8_t name_type = decoder.consume_u8("name type"); if (name_type & 0x80) break; // no varuint7 uint32_t name_payload_len = decoder.consume_u32v("name payload length"); if (!decoder.checkAvailable(name_payload_len)) break; if (name_type != name_section_kind) { decoder.consume_bytes(name_payload_len, "name subsection payload"); continue; } uint32_t count = decoder.consume_u32v("names count"); for (uint32_t i = 0; i < count; i++) { uint32_t index = decoder.consume_u32v("index"); WireBytesRef name = consume_string(&decoder, false, "name"); if (!decoder.ok()) break; if (index > kMaxInt) continue; if (!validate_utf8(&decoder, name)) continue; names.emplace_back(static_cast(index), name); } } std::stable_sort(names.begin(), names.end(), NameAssoc::IndexLess{}); return NameMap{std::move(names)}; } IndirectNameMap DecodeIndirectNameMap(base::Vector module_bytes, uint8_t name_section_kind) { Decoder decoder(module_bytes); if (!FindNameSection(&decoder)) return IndirectNameMap{{}}; std::vector entries; while (decoder.ok() && decoder.more()) { uint8_t name_type = decoder.consume_u8("name type"); if (name_type & 0x80) break; // no varuint7 uint32_t name_payload_len = decoder.consume_u32v("name payload length"); if (!decoder.checkAvailable(name_payload_len)) break; if (name_type != name_section_kind) { decoder.consume_bytes(name_payload_len, "name subsection payload"); continue; } uint32_t outer_count = decoder.consume_u32v("outer count"); for (uint32_t i = 0; i < outer_count; ++i) { uint32_t outer_index = decoder.consume_u32v("outer index"); if (outer_index > kMaxInt) continue; std::vector names; uint32_t inner_count = decoder.consume_u32v("inner count"); for (uint32_t k = 0; k < inner_count; ++k) { uint32_t inner_index = decoder.consume_u32v("inner index"); WireBytesRef name = consume_string(&decoder, false, "name"); if (!decoder.ok()) break; if (inner_index > kMaxInt) continue; // Ignore non-utf8 names. if (!validate_utf8(&decoder, name)) continue; names.emplace_back(static_cast(inner_index), name); } // Use stable sort to get deterministic names (the first one declared) // even in the presence of duplicates. std::stable_sort(names.begin(), names.end(), NameAssoc::IndexLess{}); entries.emplace_back(static_cast(outer_index), std::move(names)); } } std::stable_sort(entries.begin(), entries.end(), IndirectNameMapEntry::IndexLess{}); return IndirectNameMap{std::move(entries)}; } #undef TRACE } // namespace wasm } // namespace internal } // namespace v8