• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel scheduler code and related syscalls
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39 
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67 
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 #  include <linux/entry-common.h>
71 # endif
72 #endif
73 
74 #include <uapi/linux/sched/types.h>
75 
76 #include <asm/irq_regs.h>
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 
80 #define CREATE_TRACE_POINTS
81 #include <linux/sched/rseq_api.h>
82 #include <trace/events/sched.h>
83 #include <trace/events/ipi.h>
84 #undef CREATE_TRACE_POINTS
85 
86 #include "sched.h"
87 #include "stats.h"
88 #include "autogroup.h"
89 
90 #include "autogroup.h"
91 #include "pelt.h"
92 #include "smp.h"
93 #include "stats.h"
94 
95 #include "../workqueue_internal.h"
96 #include "../../io_uring/io-wq.h"
97 #include "../smpboot.h"
98 
99 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
101 
102 /*
103  * Export tracepoints that act as a bare tracehook (ie: have no trace event
104  * associated with them) to allow external modules to probe them.
105  */
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
117 
118 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
119 
120 #ifdef CONFIG_SCHED_DEBUG
121 /*
122  * Debugging: various feature bits
123  *
124  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
125  * sysctl_sched_features, defined in sched.h, to allow constants propagation
126  * at compile time and compiler optimization based on features default.
127  */
128 #define SCHED_FEAT(name, enabled)	\
129 	(1UL << __SCHED_FEAT_##name) * enabled |
130 const_debug unsigned int sysctl_sched_features =
131 #include "features.h"
132 	0;
133 #undef SCHED_FEAT
134 
135 /*
136  * Print a warning if need_resched is set for the given duration (if
137  * LATENCY_WARN is enabled).
138  *
139  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
140  * per boot.
141  */
142 __read_mostly int sysctl_resched_latency_warn_ms = 100;
143 __read_mostly int sysctl_resched_latency_warn_once = 1;
144 #endif /* CONFIG_SCHED_DEBUG */
145 
146 /*
147  * Number of tasks to iterate in a single balance run.
148  * Limited because this is done with IRQs disabled.
149  */
150 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
151 
152 __read_mostly int scheduler_running;
153 
154 #ifdef CONFIG_SCHED_CORE
155 
156 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
157 
158 /* kernel prio, less is more */
__task_prio(const struct task_struct * p)159 static inline int __task_prio(const struct task_struct *p)
160 {
161 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
162 		return -2;
163 
164 	if (rt_prio(p->prio)) /* includes deadline */
165 		return p->prio; /* [-1, 99] */
166 
167 	if (p->sched_class == &idle_sched_class)
168 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
169 
170 	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
171 }
172 
173 /*
174  * l(a,b)
175  * le(a,b) := !l(b,a)
176  * g(a,b)  := l(b,a)
177  * ge(a,b) := !l(a,b)
178  */
179 
180 /* real prio, less is less */
prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)181 static inline bool prio_less(const struct task_struct *a,
182 			     const struct task_struct *b, bool in_fi)
183 {
184 
185 	int pa = __task_prio(a), pb = __task_prio(b);
186 
187 	if (-pa < -pb)
188 		return true;
189 
190 	if (-pb < -pa)
191 		return false;
192 
193 	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
194 		return !dl_time_before(a->dl.deadline, b->dl.deadline);
195 
196 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
197 		return cfs_prio_less(a, b, in_fi);
198 
199 	return false;
200 }
201 
__sched_core_less(const struct task_struct * a,const struct task_struct * b)202 static inline bool __sched_core_less(const struct task_struct *a,
203 				     const struct task_struct *b)
204 {
205 	if (a->core_cookie < b->core_cookie)
206 		return true;
207 
208 	if (a->core_cookie > b->core_cookie)
209 		return false;
210 
211 	/* flip prio, so high prio is leftmost */
212 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
213 		return true;
214 
215 	return false;
216 }
217 
218 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
219 
rb_sched_core_less(struct rb_node * a,const struct rb_node * b)220 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
221 {
222 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
223 }
224 
rb_sched_core_cmp(const void * key,const struct rb_node * node)225 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
226 {
227 	const struct task_struct *p = __node_2_sc(node);
228 	unsigned long cookie = (unsigned long)key;
229 
230 	if (cookie < p->core_cookie)
231 		return -1;
232 
233 	if (cookie > p->core_cookie)
234 		return 1;
235 
236 	return 0;
237 }
238 
sched_core_enqueue(struct rq * rq,struct task_struct * p)239 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
240 {
241 	rq->core->core_task_seq++;
242 
243 	if (!p->core_cookie)
244 		return;
245 
246 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
247 }
248 
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)249 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
250 {
251 	rq->core->core_task_seq++;
252 
253 	if (sched_core_enqueued(p)) {
254 		rb_erase(&p->core_node, &rq->core_tree);
255 		RB_CLEAR_NODE(&p->core_node);
256 	}
257 
258 	/*
259 	 * Migrating the last task off the cpu, with the cpu in forced idle
260 	 * state. Reschedule to create an accounting edge for forced idle,
261 	 * and re-examine whether the core is still in forced idle state.
262 	 */
263 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
264 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
265 		resched_curr(rq);
266 }
267 
sched_task_is_throttled(struct task_struct * p,int cpu)268 static int sched_task_is_throttled(struct task_struct *p, int cpu)
269 {
270 	if (p->sched_class->task_is_throttled)
271 		return p->sched_class->task_is_throttled(p, cpu);
272 
273 	return 0;
274 }
275 
sched_core_next(struct task_struct * p,unsigned long cookie)276 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
277 {
278 	struct rb_node *node = &p->core_node;
279 	int cpu = task_cpu(p);
280 
281 	do {
282 		node = rb_next(node);
283 		if (!node)
284 			return NULL;
285 
286 		p = __node_2_sc(node);
287 		if (p->core_cookie != cookie)
288 			return NULL;
289 
290 	} while (sched_task_is_throttled(p, cpu));
291 
292 	return p;
293 }
294 
295 /*
296  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
297  * If no suitable task is found, NULL will be returned.
298  */
sched_core_find(struct rq * rq,unsigned long cookie)299 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
300 {
301 	struct task_struct *p;
302 	struct rb_node *node;
303 
304 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
305 	if (!node)
306 		return NULL;
307 
308 	p = __node_2_sc(node);
309 	if (!sched_task_is_throttled(p, rq->cpu))
310 		return p;
311 
312 	return sched_core_next(p, cookie);
313 }
314 
315 /*
316  * Magic required such that:
317  *
318  *	raw_spin_rq_lock(rq);
319  *	...
320  *	raw_spin_rq_unlock(rq);
321  *
322  * ends up locking and unlocking the _same_ lock, and all CPUs
323  * always agree on what rq has what lock.
324  *
325  * XXX entirely possible to selectively enable cores, don't bother for now.
326  */
327 
328 static DEFINE_MUTEX(sched_core_mutex);
329 static atomic_t sched_core_count;
330 static struct cpumask sched_core_mask;
331 
sched_core_lock(int cpu,unsigned long * flags)332 static void sched_core_lock(int cpu, unsigned long *flags)
333 {
334 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
335 	int t, i = 0;
336 
337 	local_irq_save(*flags);
338 	for_each_cpu(t, smt_mask)
339 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
340 }
341 
sched_core_unlock(int cpu,unsigned long * flags)342 static void sched_core_unlock(int cpu, unsigned long *flags)
343 {
344 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
345 	int t;
346 
347 	for_each_cpu(t, smt_mask)
348 		raw_spin_unlock(&cpu_rq(t)->__lock);
349 	local_irq_restore(*flags);
350 }
351 
__sched_core_flip(bool enabled)352 static void __sched_core_flip(bool enabled)
353 {
354 	unsigned long flags;
355 	int cpu, t;
356 
357 	cpus_read_lock();
358 
359 	/*
360 	 * Toggle the online cores, one by one.
361 	 */
362 	cpumask_copy(&sched_core_mask, cpu_online_mask);
363 	for_each_cpu(cpu, &sched_core_mask) {
364 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
365 
366 		sched_core_lock(cpu, &flags);
367 
368 		for_each_cpu(t, smt_mask)
369 			cpu_rq(t)->core_enabled = enabled;
370 
371 		cpu_rq(cpu)->core->core_forceidle_start = 0;
372 
373 		sched_core_unlock(cpu, &flags);
374 
375 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
376 	}
377 
378 	/*
379 	 * Toggle the offline CPUs.
380 	 */
381 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
382 		cpu_rq(cpu)->core_enabled = enabled;
383 
384 	cpus_read_unlock();
385 }
386 
sched_core_assert_empty(void)387 static void sched_core_assert_empty(void)
388 {
389 	int cpu;
390 
391 	for_each_possible_cpu(cpu)
392 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
393 }
394 
__sched_core_enable(void)395 static void __sched_core_enable(void)
396 {
397 	static_branch_enable(&__sched_core_enabled);
398 	/*
399 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
400 	 * and future ones will observe !sched_core_disabled().
401 	 */
402 	synchronize_rcu();
403 	__sched_core_flip(true);
404 	sched_core_assert_empty();
405 }
406 
__sched_core_disable(void)407 static void __sched_core_disable(void)
408 {
409 	sched_core_assert_empty();
410 	__sched_core_flip(false);
411 	static_branch_disable(&__sched_core_enabled);
412 }
413 
sched_core_get(void)414 void sched_core_get(void)
415 {
416 	if (atomic_inc_not_zero(&sched_core_count))
417 		return;
418 
419 	mutex_lock(&sched_core_mutex);
420 	if (!atomic_read(&sched_core_count))
421 		__sched_core_enable();
422 
423 	smp_mb__before_atomic();
424 	atomic_inc(&sched_core_count);
425 	mutex_unlock(&sched_core_mutex);
426 }
427 
__sched_core_put(struct work_struct * work)428 static void __sched_core_put(struct work_struct *work)
429 {
430 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
431 		__sched_core_disable();
432 		mutex_unlock(&sched_core_mutex);
433 	}
434 }
435 
sched_core_put(void)436 void sched_core_put(void)
437 {
438 	static DECLARE_WORK(_work, __sched_core_put);
439 
440 	/*
441 	 * "There can be only one"
442 	 *
443 	 * Either this is the last one, or we don't actually need to do any
444 	 * 'work'. If it is the last *again*, we rely on
445 	 * WORK_STRUCT_PENDING_BIT.
446 	 */
447 	if (!atomic_add_unless(&sched_core_count, -1, 1))
448 		schedule_work(&_work);
449 }
450 
451 #else /* !CONFIG_SCHED_CORE */
452 
sched_core_enqueue(struct rq * rq,struct task_struct * p)453 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
454 static inline void
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)455 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
456 
457 #endif /* CONFIG_SCHED_CORE */
458 
459 /*
460  * Serialization rules:
461  *
462  * Lock order:
463  *
464  *   p->pi_lock
465  *     rq->lock
466  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
467  *
468  *  rq1->lock
469  *    rq2->lock  where: rq1 < rq2
470  *
471  * Regular state:
472  *
473  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
474  * local CPU's rq->lock, it optionally removes the task from the runqueue and
475  * always looks at the local rq data structures to find the most eligible task
476  * to run next.
477  *
478  * Task enqueue is also under rq->lock, possibly taken from another CPU.
479  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
480  * the local CPU to avoid bouncing the runqueue state around [ see
481  * ttwu_queue_wakelist() ]
482  *
483  * Task wakeup, specifically wakeups that involve migration, are horribly
484  * complicated to avoid having to take two rq->locks.
485  *
486  * Special state:
487  *
488  * System-calls and anything external will use task_rq_lock() which acquires
489  * both p->pi_lock and rq->lock. As a consequence the state they change is
490  * stable while holding either lock:
491  *
492  *  - sched_setaffinity()/
493  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
494  *  - set_user_nice():		p->se.load, p->*prio
495  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
496  *				p->se.load, p->rt_priority,
497  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
498  *  - sched_setnuma():		p->numa_preferred_nid
499  *  - sched_move_task():	p->sched_task_group
500  *  - uclamp_update_active()	p->uclamp*
501  *
502  * p->state <- TASK_*:
503  *
504  *   is changed locklessly using set_current_state(), __set_current_state() or
505  *   set_special_state(), see their respective comments, or by
506  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
507  *   concurrent self.
508  *
509  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
510  *
511  *   is set by activate_task() and cleared by deactivate_task(), under
512  *   rq->lock. Non-zero indicates the task is runnable, the special
513  *   ON_RQ_MIGRATING state is used for migration without holding both
514  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
515  *
516  * p->on_cpu <- { 0, 1 }:
517  *
518  *   is set by prepare_task() and cleared by finish_task() such that it will be
519  *   set before p is scheduled-in and cleared after p is scheduled-out, both
520  *   under rq->lock. Non-zero indicates the task is running on its CPU.
521  *
522  *   [ The astute reader will observe that it is possible for two tasks on one
523  *     CPU to have ->on_cpu = 1 at the same time. ]
524  *
525  * task_cpu(p): is changed by set_task_cpu(), the rules are:
526  *
527  *  - Don't call set_task_cpu() on a blocked task:
528  *
529  *    We don't care what CPU we're not running on, this simplifies hotplug,
530  *    the CPU assignment of blocked tasks isn't required to be valid.
531  *
532  *  - for try_to_wake_up(), called under p->pi_lock:
533  *
534  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
535  *
536  *  - for migration called under rq->lock:
537  *    [ see task_on_rq_migrating() in task_rq_lock() ]
538  *
539  *    o move_queued_task()
540  *    o detach_task()
541  *
542  *  - for migration called under double_rq_lock():
543  *
544  *    o __migrate_swap_task()
545  *    o push_rt_task() / pull_rt_task()
546  *    o push_dl_task() / pull_dl_task()
547  *    o dl_task_offline_migration()
548  *
549  */
550 
raw_spin_rq_lock_nested(struct rq * rq,int subclass)551 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
552 {
553 	raw_spinlock_t *lock;
554 
555 	/* Matches synchronize_rcu() in __sched_core_enable() */
556 	preempt_disable();
557 	if (sched_core_disabled()) {
558 		raw_spin_lock_nested(&rq->__lock, subclass);
559 		/* preempt_count *MUST* be > 1 */
560 		preempt_enable_no_resched();
561 		return;
562 	}
563 
564 	for (;;) {
565 		lock = __rq_lockp(rq);
566 		raw_spin_lock_nested(lock, subclass);
567 		if (likely(lock == __rq_lockp(rq))) {
568 			/* preempt_count *MUST* be > 1 */
569 			preempt_enable_no_resched();
570 			return;
571 		}
572 		raw_spin_unlock(lock);
573 	}
574 }
575 
raw_spin_rq_trylock(struct rq * rq)576 bool raw_spin_rq_trylock(struct rq *rq)
577 {
578 	raw_spinlock_t *lock;
579 	bool ret;
580 
581 	/* Matches synchronize_rcu() in __sched_core_enable() */
582 	preempt_disable();
583 	if (sched_core_disabled()) {
584 		ret = raw_spin_trylock(&rq->__lock);
585 		preempt_enable();
586 		return ret;
587 	}
588 
589 	for (;;) {
590 		lock = __rq_lockp(rq);
591 		ret = raw_spin_trylock(lock);
592 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
593 			preempt_enable();
594 			return ret;
595 		}
596 		raw_spin_unlock(lock);
597 	}
598 }
599 
raw_spin_rq_unlock(struct rq * rq)600 void raw_spin_rq_unlock(struct rq *rq)
601 {
602 	raw_spin_unlock(rq_lockp(rq));
603 }
604 
605 #ifdef CONFIG_SMP
606 /*
607  * double_rq_lock - safely lock two runqueues
608  */
double_rq_lock(struct rq * rq1,struct rq * rq2)609 void double_rq_lock(struct rq *rq1, struct rq *rq2)
610 {
611 	lockdep_assert_irqs_disabled();
612 
613 	if (rq_order_less(rq2, rq1))
614 		swap(rq1, rq2);
615 
616 	raw_spin_rq_lock(rq1);
617 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
618 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
619 
620 	double_rq_clock_clear_update(rq1, rq2);
621 }
622 #endif
623 
624 /*
625  * __task_rq_lock - lock the rq @p resides on.
626  */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)627 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
628 	__acquires(rq->lock)
629 {
630 	struct rq *rq;
631 
632 	lockdep_assert_held(&p->pi_lock);
633 
634 	for (;;) {
635 		rq = task_rq(p);
636 		raw_spin_rq_lock(rq);
637 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
638 			rq_pin_lock(rq, rf);
639 			return rq;
640 		}
641 		raw_spin_rq_unlock(rq);
642 
643 		while (unlikely(task_on_rq_migrating(p)))
644 			cpu_relax();
645 	}
646 }
647 
648 /*
649  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
650  */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)651 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
652 	__acquires(p->pi_lock)
653 	__acquires(rq->lock)
654 {
655 	struct rq *rq;
656 
657 	for (;;) {
658 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
659 		rq = task_rq(p);
660 		raw_spin_rq_lock(rq);
661 		/*
662 		 *	move_queued_task()		task_rq_lock()
663 		 *
664 		 *	ACQUIRE (rq->lock)
665 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
666 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
667 		 *	[S] ->cpu = new_cpu		[L] task_rq()
668 		 *					[L] ->on_rq
669 		 *	RELEASE (rq->lock)
670 		 *
671 		 * If we observe the old CPU in task_rq_lock(), the acquire of
672 		 * the old rq->lock will fully serialize against the stores.
673 		 *
674 		 * If we observe the new CPU in task_rq_lock(), the address
675 		 * dependency headed by '[L] rq = task_rq()' and the acquire
676 		 * will pair with the WMB to ensure we then also see migrating.
677 		 */
678 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
679 			rq_pin_lock(rq, rf);
680 			return rq;
681 		}
682 		raw_spin_rq_unlock(rq);
683 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
684 
685 		while (unlikely(task_on_rq_migrating(p)))
686 			cpu_relax();
687 	}
688 }
689 
690 /*
691  * RQ-clock updating methods:
692  */
693 
update_rq_clock_task(struct rq * rq,s64 delta)694 static void update_rq_clock_task(struct rq *rq, s64 delta)
695 {
696 /*
697  * In theory, the compile should just see 0 here, and optimize out the call
698  * to sched_rt_avg_update. But I don't trust it...
699  */
700 	s64 __maybe_unused steal = 0, irq_delta = 0;
701 
702 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
703 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
704 
705 	/*
706 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
707 	 * this case when a previous update_rq_clock() happened inside a
708 	 * {soft,}irq region.
709 	 *
710 	 * When this happens, we stop ->clock_task and only update the
711 	 * prev_irq_time stamp to account for the part that fit, so that a next
712 	 * update will consume the rest. This ensures ->clock_task is
713 	 * monotonic.
714 	 *
715 	 * It does however cause some slight miss-attribution of {soft,}irq
716 	 * time, a more accurate solution would be to update the irq_time using
717 	 * the current rq->clock timestamp, except that would require using
718 	 * atomic ops.
719 	 */
720 	if (irq_delta > delta)
721 		irq_delta = delta;
722 
723 	rq->prev_irq_time += irq_delta;
724 	delta -= irq_delta;
725 	psi_account_irqtime(rq->curr, irq_delta);
726 	delayacct_irq(rq->curr, irq_delta);
727 #endif
728 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
729 	if (static_key_false((&paravirt_steal_rq_enabled))) {
730 		steal = paravirt_steal_clock(cpu_of(rq));
731 		steal -= rq->prev_steal_time_rq;
732 
733 		if (unlikely(steal > delta))
734 			steal = delta;
735 
736 		rq->prev_steal_time_rq += steal;
737 		delta -= steal;
738 	}
739 #endif
740 
741 	rq->clock_task += delta;
742 
743 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
744 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
745 		update_irq_load_avg(rq, irq_delta + steal);
746 #endif
747 	update_rq_clock_pelt(rq, delta);
748 }
749 
update_rq_clock(struct rq * rq)750 void update_rq_clock(struct rq *rq)
751 {
752 	s64 delta;
753 
754 	lockdep_assert_rq_held(rq);
755 
756 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
757 		return;
758 
759 #ifdef CONFIG_SCHED_DEBUG
760 	if (sched_feat(WARN_DOUBLE_CLOCK))
761 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
762 	rq->clock_update_flags |= RQCF_UPDATED;
763 #endif
764 
765 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
766 	if (delta < 0)
767 		return;
768 	rq->clock += delta;
769 	update_rq_clock_task(rq, delta);
770 }
771 
772 #ifdef CONFIG_SCHED_HRTICK
773 /*
774  * Use HR-timers to deliver accurate preemption points.
775  */
776 
hrtick_clear(struct rq * rq)777 static void hrtick_clear(struct rq *rq)
778 {
779 	if (hrtimer_active(&rq->hrtick_timer))
780 		hrtimer_cancel(&rq->hrtick_timer);
781 }
782 
783 /*
784  * High-resolution timer tick.
785  * Runs from hardirq context with interrupts disabled.
786  */
hrtick(struct hrtimer * timer)787 static enum hrtimer_restart hrtick(struct hrtimer *timer)
788 {
789 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
790 	struct rq_flags rf;
791 
792 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
793 
794 	rq_lock(rq, &rf);
795 	update_rq_clock(rq);
796 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
797 	rq_unlock(rq, &rf);
798 
799 	return HRTIMER_NORESTART;
800 }
801 
802 #ifdef CONFIG_SMP
803 
__hrtick_restart(struct rq * rq)804 static void __hrtick_restart(struct rq *rq)
805 {
806 	struct hrtimer *timer = &rq->hrtick_timer;
807 	ktime_t time = rq->hrtick_time;
808 
809 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
810 }
811 
812 /*
813  * called from hardirq (IPI) context
814  */
__hrtick_start(void * arg)815 static void __hrtick_start(void *arg)
816 {
817 	struct rq *rq = arg;
818 	struct rq_flags rf;
819 
820 	rq_lock(rq, &rf);
821 	__hrtick_restart(rq);
822 	rq_unlock(rq, &rf);
823 }
824 
825 /*
826  * Called to set the hrtick timer state.
827  *
828  * called with rq->lock held and irqs disabled
829  */
hrtick_start(struct rq * rq,u64 delay)830 void hrtick_start(struct rq *rq, u64 delay)
831 {
832 	struct hrtimer *timer = &rq->hrtick_timer;
833 	s64 delta;
834 
835 	/*
836 	 * Don't schedule slices shorter than 10000ns, that just
837 	 * doesn't make sense and can cause timer DoS.
838 	 */
839 	delta = max_t(s64, delay, 10000LL);
840 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
841 
842 	if (rq == this_rq())
843 		__hrtick_restart(rq);
844 	else
845 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
846 }
847 
848 #else
849 /*
850  * Called to set the hrtick timer state.
851  *
852  * called with rq->lock held and irqs disabled
853  */
hrtick_start(struct rq * rq,u64 delay)854 void hrtick_start(struct rq *rq, u64 delay)
855 {
856 	/*
857 	 * Don't schedule slices shorter than 10000ns, that just
858 	 * doesn't make sense. Rely on vruntime for fairness.
859 	 */
860 	delay = max_t(u64, delay, 10000LL);
861 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
862 		      HRTIMER_MODE_REL_PINNED_HARD);
863 }
864 
865 #endif /* CONFIG_SMP */
866 
hrtick_rq_init(struct rq * rq)867 static void hrtick_rq_init(struct rq *rq)
868 {
869 #ifdef CONFIG_SMP
870 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
871 #endif
872 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
873 	rq->hrtick_timer.function = hrtick;
874 }
875 #else	/* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)876 static inline void hrtick_clear(struct rq *rq)
877 {
878 }
879 
hrtick_rq_init(struct rq * rq)880 static inline void hrtick_rq_init(struct rq *rq)
881 {
882 }
883 #endif	/* CONFIG_SCHED_HRTICK */
884 
885 /*
886  * cmpxchg based fetch_or, macro so it works for different integer types
887  */
888 #define fetch_or(ptr, mask)						\
889 	({								\
890 		typeof(ptr) _ptr = (ptr);				\
891 		typeof(mask) _mask = (mask);				\
892 		typeof(*_ptr) _val = *_ptr;				\
893 									\
894 		do {							\
895 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
896 	_val;								\
897 })
898 
899 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
900 /*
901  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
902  * this avoids any races wrt polling state changes and thereby avoids
903  * spurious IPIs.
904  */
set_nr_and_not_polling(struct task_struct * p)905 static inline bool set_nr_and_not_polling(struct task_struct *p)
906 {
907 	struct thread_info *ti = task_thread_info(p);
908 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
909 }
910 
911 /*
912  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
913  *
914  * If this returns true, then the idle task promises to call
915  * sched_ttwu_pending() and reschedule soon.
916  */
set_nr_if_polling(struct task_struct * p)917 static bool set_nr_if_polling(struct task_struct *p)
918 {
919 	struct thread_info *ti = task_thread_info(p);
920 	typeof(ti->flags) val = READ_ONCE(ti->flags);
921 
922 	for (;;) {
923 		if (!(val & _TIF_POLLING_NRFLAG))
924 			return false;
925 		if (val & _TIF_NEED_RESCHED)
926 			return true;
927 		if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
928 			break;
929 	}
930 	return true;
931 }
932 
933 #else
set_nr_and_not_polling(struct task_struct * p)934 static inline bool set_nr_and_not_polling(struct task_struct *p)
935 {
936 	set_tsk_need_resched(p);
937 	return true;
938 }
939 
940 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)941 static inline bool set_nr_if_polling(struct task_struct *p)
942 {
943 	return false;
944 }
945 #endif
946 #endif
947 
__wake_q_add(struct wake_q_head * head,struct task_struct * task)948 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
949 {
950 	struct wake_q_node *node = &task->wake_q;
951 
952 	/*
953 	 * Atomically grab the task, if ->wake_q is !nil already it means
954 	 * it's already queued (either by us or someone else) and will get the
955 	 * wakeup due to that.
956 	 *
957 	 * In order to ensure that a pending wakeup will observe our pending
958 	 * state, even in the failed case, an explicit smp_mb() must be used.
959 	 */
960 	smp_mb__before_atomic();
961 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
962 		return false;
963 
964 	/*
965 	 * The head is context local, there can be no concurrency.
966 	 */
967 	*head->lastp = node;
968 	head->lastp = &node->next;
969 	return true;
970 }
971 
972 /**
973  * wake_q_add() - queue a wakeup for 'later' waking.
974  * @head: the wake_q_head to add @task to
975  * @task: the task to queue for 'later' wakeup
976  *
977  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
978  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
979  * instantly.
980  *
981  * This function must be used as-if it were wake_up_process(); IOW the task
982  * must be ready to be woken at this location.
983  */
wake_q_add(struct wake_q_head * head,struct task_struct * task)984 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
985 {
986 	if (__wake_q_add(head, task))
987 		get_task_struct(task);
988 }
989 
990 /**
991  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
992  * @head: the wake_q_head to add @task to
993  * @task: the task to queue for 'later' wakeup
994  *
995  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
996  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
997  * instantly.
998  *
999  * This function must be used as-if it were wake_up_process(); IOW the task
1000  * must be ready to be woken at this location.
1001  *
1002  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1003  * that already hold reference to @task can call the 'safe' version and trust
1004  * wake_q to do the right thing depending whether or not the @task is already
1005  * queued for wakeup.
1006  */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)1007 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1008 {
1009 	if (!__wake_q_add(head, task))
1010 		put_task_struct(task);
1011 }
1012 
wake_up_q(struct wake_q_head * head)1013 void wake_up_q(struct wake_q_head *head)
1014 {
1015 	struct wake_q_node *node = head->first;
1016 
1017 	while (node != WAKE_Q_TAIL) {
1018 		struct task_struct *task;
1019 
1020 		task = container_of(node, struct task_struct, wake_q);
1021 		/* Task can safely be re-inserted now: */
1022 		node = node->next;
1023 		task->wake_q.next = NULL;
1024 
1025 		/*
1026 		 * wake_up_process() executes a full barrier, which pairs with
1027 		 * the queueing in wake_q_add() so as not to miss wakeups.
1028 		 */
1029 		wake_up_process(task);
1030 		put_task_struct(task);
1031 	}
1032 }
1033 
1034 /*
1035  * resched_curr - mark rq's current task 'to be rescheduled now'.
1036  *
1037  * On UP this means the setting of the need_resched flag, on SMP it
1038  * might also involve a cross-CPU call to trigger the scheduler on
1039  * the target CPU.
1040  */
resched_curr(struct rq * rq)1041 void resched_curr(struct rq *rq)
1042 {
1043 	struct task_struct *curr = rq->curr;
1044 	int cpu;
1045 
1046 	lockdep_assert_rq_held(rq);
1047 
1048 	if (test_tsk_need_resched(curr))
1049 		return;
1050 
1051 	cpu = cpu_of(rq);
1052 
1053 	if (cpu == smp_processor_id()) {
1054 		set_tsk_need_resched(curr);
1055 		set_preempt_need_resched();
1056 		return;
1057 	}
1058 
1059 	if (set_nr_and_not_polling(curr))
1060 		smp_send_reschedule(cpu);
1061 	else
1062 		trace_sched_wake_idle_without_ipi(cpu);
1063 }
1064 
resched_cpu(int cpu)1065 void resched_cpu(int cpu)
1066 {
1067 	struct rq *rq = cpu_rq(cpu);
1068 	unsigned long flags;
1069 
1070 	raw_spin_rq_lock_irqsave(rq, flags);
1071 	if (cpu_online(cpu) || cpu == smp_processor_id())
1072 		resched_curr(rq);
1073 	raw_spin_rq_unlock_irqrestore(rq, flags);
1074 }
1075 
1076 #ifdef CONFIG_SMP
1077 #ifdef CONFIG_NO_HZ_COMMON
1078 /*
1079  * In the semi idle case, use the nearest busy CPU for migrating timers
1080  * from an idle CPU.  This is good for power-savings.
1081  *
1082  * We don't do similar optimization for completely idle system, as
1083  * selecting an idle CPU will add more delays to the timers than intended
1084  * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1085  */
get_nohz_timer_target(void)1086 int get_nohz_timer_target(void)
1087 {
1088 	int i, cpu = smp_processor_id(), default_cpu = -1;
1089 	struct sched_domain *sd;
1090 	const struct cpumask *hk_mask;
1091 
1092 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1093 		if (!idle_cpu(cpu))
1094 			return cpu;
1095 		default_cpu = cpu;
1096 	}
1097 
1098 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1099 
1100 	guard(rcu)();
1101 
1102 	for_each_domain(cpu, sd) {
1103 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1104 			if (cpu == i)
1105 				continue;
1106 
1107 			if (!idle_cpu(i))
1108 				return i;
1109 		}
1110 	}
1111 
1112 	if (default_cpu == -1)
1113 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1114 
1115 	return default_cpu;
1116 }
1117 
1118 /*
1119  * When add_timer_on() enqueues a timer into the timer wheel of an
1120  * idle CPU then this timer might expire before the next timer event
1121  * which is scheduled to wake up that CPU. In case of a completely
1122  * idle system the next event might even be infinite time into the
1123  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1124  * leaves the inner idle loop so the newly added timer is taken into
1125  * account when the CPU goes back to idle and evaluates the timer
1126  * wheel for the next timer event.
1127  */
wake_up_idle_cpu(int cpu)1128 static void wake_up_idle_cpu(int cpu)
1129 {
1130 	struct rq *rq = cpu_rq(cpu);
1131 
1132 	if (cpu == smp_processor_id())
1133 		return;
1134 
1135 	if (set_nr_and_not_polling(rq->idle))
1136 		smp_send_reschedule(cpu);
1137 	else
1138 		trace_sched_wake_idle_without_ipi(cpu);
1139 }
1140 
wake_up_full_nohz_cpu(int cpu)1141 static bool wake_up_full_nohz_cpu(int cpu)
1142 {
1143 	/*
1144 	 * We just need the target to call irq_exit() and re-evaluate
1145 	 * the next tick. The nohz full kick at least implies that.
1146 	 * If needed we can still optimize that later with an
1147 	 * empty IRQ.
1148 	 */
1149 	if (cpu_is_offline(cpu))
1150 		return true;  /* Don't try to wake offline CPUs. */
1151 	if (tick_nohz_full_cpu(cpu)) {
1152 		if (cpu != smp_processor_id() ||
1153 		    tick_nohz_tick_stopped())
1154 			tick_nohz_full_kick_cpu(cpu);
1155 		return true;
1156 	}
1157 
1158 	return false;
1159 }
1160 
1161 /*
1162  * Wake up the specified CPU.  If the CPU is going offline, it is the
1163  * caller's responsibility to deal with the lost wakeup, for example,
1164  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1165  */
wake_up_nohz_cpu(int cpu)1166 void wake_up_nohz_cpu(int cpu)
1167 {
1168 	if (!wake_up_full_nohz_cpu(cpu))
1169 		wake_up_idle_cpu(cpu);
1170 }
1171 
nohz_csd_func(void * info)1172 static void nohz_csd_func(void *info)
1173 {
1174 	struct rq *rq = info;
1175 	int cpu = cpu_of(rq);
1176 	unsigned int flags;
1177 
1178 	/*
1179 	 * Release the rq::nohz_csd.
1180 	 */
1181 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1182 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1183 
1184 	rq->idle_balance = idle_cpu(cpu);
1185 	if (rq->idle_balance && !need_resched()) {
1186 		rq->nohz_idle_balance = flags;
1187 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1188 	}
1189 }
1190 
1191 #endif /* CONFIG_NO_HZ_COMMON */
1192 
1193 #ifdef CONFIG_NO_HZ_FULL
__need_bw_check(struct rq * rq,struct task_struct * p)1194 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1195 {
1196 	if (rq->nr_running != 1)
1197 		return false;
1198 
1199 	if (p->sched_class != &fair_sched_class)
1200 		return false;
1201 
1202 	if (!task_on_rq_queued(p))
1203 		return false;
1204 
1205 	return true;
1206 }
1207 
sched_can_stop_tick(struct rq * rq)1208 bool sched_can_stop_tick(struct rq *rq)
1209 {
1210 	int fifo_nr_running;
1211 
1212 	/* Deadline tasks, even if single, need the tick */
1213 	if (rq->dl.dl_nr_running)
1214 		return false;
1215 
1216 	/*
1217 	 * If there are more than one RR tasks, we need the tick to affect the
1218 	 * actual RR behaviour.
1219 	 */
1220 	if (rq->rt.rr_nr_running) {
1221 		if (rq->rt.rr_nr_running == 1)
1222 			return true;
1223 		else
1224 			return false;
1225 	}
1226 
1227 	/*
1228 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1229 	 * forced preemption between FIFO tasks.
1230 	 */
1231 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1232 	if (fifo_nr_running)
1233 		return true;
1234 
1235 	/*
1236 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1237 	 * if there's more than one we need the tick for involuntary
1238 	 * preemption.
1239 	 */
1240 	if (rq->nr_running > 1)
1241 		return false;
1242 
1243 	/*
1244 	 * If there is one task and it has CFS runtime bandwidth constraints
1245 	 * and it's on the cpu now we don't want to stop the tick.
1246 	 * This check prevents clearing the bit if a newly enqueued task here is
1247 	 * dequeued by migrating while the constrained task continues to run.
1248 	 * E.g. going from 2->1 without going through pick_next_task().
1249 	 */
1250 	if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) {
1251 		if (cfs_task_bw_constrained(rq->curr))
1252 			return false;
1253 	}
1254 
1255 	return true;
1256 }
1257 #endif /* CONFIG_NO_HZ_FULL */
1258 #endif /* CONFIG_SMP */
1259 
1260 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1261 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1262 /*
1263  * Iterate task_group tree rooted at *from, calling @down when first entering a
1264  * node and @up when leaving it for the final time.
1265  *
1266  * Caller must hold rcu_lock or sufficient equivalent.
1267  */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)1268 int walk_tg_tree_from(struct task_group *from,
1269 			     tg_visitor down, tg_visitor up, void *data)
1270 {
1271 	struct task_group *parent, *child;
1272 	int ret;
1273 
1274 	parent = from;
1275 
1276 down:
1277 	ret = (*down)(parent, data);
1278 	if (ret)
1279 		goto out;
1280 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1281 		parent = child;
1282 		goto down;
1283 
1284 up:
1285 		continue;
1286 	}
1287 	ret = (*up)(parent, data);
1288 	if (ret || parent == from)
1289 		goto out;
1290 
1291 	child = parent;
1292 	parent = parent->parent;
1293 	if (parent)
1294 		goto up;
1295 out:
1296 	return ret;
1297 }
1298 
tg_nop(struct task_group * tg,void * data)1299 int tg_nop(struct task_group *tg, void *data)
1300 {
1301 	return 0;
1302 }
1303 #endif
1304 
set_load_weight(struct task_struct * p,bool update_load)1305 static void set_load_weight(struct task_struct *p, bool update_load)
1306 {
1307 	int prio = p->static_prio - MAX_RT_PRIO;
1308 	struct load_weight *load = &p->se.load;
1309 
1310 	/*
1311 	 * SCHED_IDLE tasks get minimal weight:
1312 	 */
1313 	if (task_has_idle_policy(p)) {
1314 		load->weight = scale_load(WEIGHT_IDLEPRIO);
1315 		load->inv_weight = WMULT_IDLEPRIO;
1316 		return;
1317 	}
1318 
1319 	/*
1320 	 * SCHED_OTHER tasks have to update their load when changing their
1321 	 * weight
1322 	 */
1323 	if (update_load && p->sched_class == &fair_sched_class) {
1324 		reweight_task(p, prio);
1325 	} else {
1326 		load->weight = scale_load(sched_prio_to_weight[prio]);
1327 		load->inv_weight = sched_prio_to_wmult[prio];
1328 	}
1329 }
1330 
1331 #ifdef CONFIG_SCHED_LATENCY_NICE
set_latency_weight(struct task_struct * p)1332 static void set_latency_weight(struct task_struct *p)
1333 {
1334 	p->se.latency_weight = sched_latency_to_weight[p->latency_prio];
1335 }
1336 
__setscheduler_latency(struct task_struct * p,const struct sched_attr * attr)1337 static void __setscheduler_latency(struct task_struct *p,
1338 		const struct sched_attr *attr)
1339 {
1340 	if (attr->sched_flags & SCHED_FLAG_LATENCY_NICE) {
1341 		p->latency_prio = NICE_TO_LATENCY(attr->sched_latency_nice);
1342 		set_latency_weight(p);
1343 	}
1344 }
1345 
latency_nice_validate(struct task_struct * p,bool user,const struct sched_attr * attr)1346 static int latency_nice_validate(struct task_struct *p, bool user,
1347 				 const struct sched_attr *attr)
1348 {
1349 	if (attr->sched_latency_nice > MAX_LATENCY_NICE)
1350 		return -EINVAL;
1351 	if (attr->sched_latency_nice < MIN_LATENCY_NICE)
1352 		return -EINVAL;
1353 	/* Use the same security checks as NICE */
1354 	if (user && attr->sched_latency_nice < LATENCY_TO_NICE(p->latency_prio)
1355 	    && !capable(CAP_SYS_NICE))
1356 		return -EPERM;
1357 
1358 	return 0;
1359 }
1360 #else
1361 static void
__setscheduler_latency(struct task_struct * p,const struct sched_attr * attr)1362 __setscheduler_latency(struct task_struct *p, const struct sched_attr *attr)
1363 {
1364 }
1365 
1366 static inline
latency_nice_validate(struct task_struct * p,bool user,const struct sched_attr * attr)1367 int latency_nice_validate(struct task_struct *p, bool user,
1368 			  const struct sched_attr *attr)
1369 {
1370 	return -EOPNOTSUPP;
1371 }
1372 #endif
1373 
1374 #ifdef CONFIG_UCLAMP_TASK
1375 /*
1376  * Serializes updates of utilization clamp values
1377  *
1378  * The (slow-path) user-space triggers utilization clamp value updates which
1379  * can require updates on (fast-path) scheduler's data structures used to
1380  * support enqueue/dequeue operations.
1381  * While the per-CPU rq lock protects fast-path update operations, user-space
1382  * requests are serialized using a mutex to reduce the risk of conflicting
1383  * updates or API abuses.
1384  */
1385 static DEFINE_MUTEX(uclamp_mutex);
1386 
1387 /* Max allowed minimum utilization */
1388 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1389 
1390 /* Max allowed maximum utilization */
1391 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1392 
1393 /*
1394  * By default RT tasks run at the maximum performance point/capacity of the
1395  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1396  * SCHED_CAPACITY_SCALE.
1397  *
1398  * This knob allows admins to change the default behavior when uclamp is being
1399  * used. In battery powered devices, particularly, running at the maximum
1400  * capacity and frequency will increase energy consumption and shorten the
1401  * battery life.
1402  *
1403  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1404  *
1405  * This knob will not override the system default sched_util_clamp_min defined
1406  * above.
1407  */
1408 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1409 
1410 /* All clamps are required to be less or equal than these values */
1411 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1412 
1413 /*
1414  * This static key is used to reduce the uclamp overhead in the fast path. It
1415  * primarily disables the call to uclamp_rq_{inc, dec}() in
1416  * enqueue/dequeue_task().
1417  *
1418  * This allows users to continue to enable uclamp in their kernel config with
1419  * minimum uclamp overhead in the fast path.
1420  *
1421  * As soon as userspace modifies any of the uclamp knobs, the static key is
1422  * enabled, since we have an actual users that make use of uclamp
1423  * functionality.
1424  *
1425  * The knobs that would enable this static key are:
1426  *
1427  *   * A task modifying its uclamp value with sched_setattr().
1428  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1429  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1430  */
1431 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1432 
1433 /* Integer rounded range for each bucket */
1434 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1435 
1436 #define for_each_clamp_id(clamp_id) \
1437 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1438 
uclamp_bucket_id(unsigned int clamp_value)1439 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1440 {
1441 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1442 }
1443 
uclamp_none(enum uclamp_id clamp_id)1444 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1445 {
1446 	if (clamp_id == UCLAMP_MIN)
1447 		return 0;
1448 	return SCHED_CAPACITY_SCALE;
1449 }
1450 
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)1451 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1452 				 unsigned int value, bool user_defined)
1453 {
1454 	uc_se->value = value;
1455 	uc_se->bucket_id = uclamp_bucket_id(value);
1456 	uc_se->user_defined = user_defined;
1457 }
1458 
1459 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1460 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1461 		  unsigned int clamp_value)
1462 {
1463 	/*
1464 	 * Avoid blocked utilization pushing up the frequency when we go
1465 	 * idle (which drops the max-clamp) by retaining the last known
1466 	 * max-clamp.
1467 	 */
1468 	if (clamp_id == UCLAMP_MAX) {
1469 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1470 		return clamp_value;
1471 	}
1472 
1473 	return uclamp_none(UCLAMP_MIN);
1474 }
1475 
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1476 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1477 				     unsigned int clamp_value)
1478 {
1479 	/* Reset max-clamp retention only on idle exit */
1480 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1481 		return;
1482 
1483 	uclamp_rq_set(rq, clamp_id, clamp_value);
1484 }
1485 
1486 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1487 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1488 				   unsigned int clamp_value)
1489 {
1490 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1491 	int bucket_id = UCLAMP_BUCKETS - 1;
1492 
1493 	/*
1494 	 * Since both min and max clamps are max aggregated, find the
1495 	 * top most bucket with tasks in.
1496 	 */
1497 	for ( ; bucket_id >= 0; bucket_id--) {
1498 		if (!bucket[bucket_id].tasks)
1499 			continue;
1500 		return bucket[bucket_id].value;
1501 	}
1502 
1503 	/* No tasks -- default clamp values */
1504 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1505 }
1506 
__uclamp_update_util_min_rt_default(struct task_struct * p)1507 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1508 {
1509 	unsigned int default_util_min;
1510 	struct uclamp_se *uc_se;
1511 
1512 	lockdep_assert_held(&p->pi_lock);
1513 
1514 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1515 
1516 	/* Only sync if user didn't override the default */
1517 	if (uc_se->user_defined)
1518 		return;
1519 
1520 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1521 	uclamp_se_set(uc_se, default_util_min, false);
1522 }
1523 
uclamp_update_util_min_rt_default(struct task_struct * p)1524 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1525 {
1526 	struct rq_flags rf;
1527 	struct rq *rq;
1528 
1529 	if (!rt_task(p))
1530 		return;
1531 
1532 	/* Protect updates to p->uclamp_* */
1533 	rq = task_rq_lock(p, &rf);
1534 	__uclamp_update_util_min_rt_default(p);
1535 	task_rq_unlock(rq, p, &rf);
1536 }
1537 
1538 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)1539 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1540 {
1541 	/* Copy by value as we could modify it */
1542 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1543 #ifdef CONFIG_UCLAMP_TASK_GROUP
1544 	unsigned int tg_min, tg_max, value;
1545 
1546 	/*
1547 	 * Tasks in autogroups or root task group will be
1548 	 * restricted by system defaults.
1549 	 */
1550 	if (task_group_is_autogroup(task_group(p)))
1551 		return uc_req;
1552 	if (task_group(p) == &root_task_group)
1553 		return uc_req;
1554 
1555 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1556 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1557 	value = uc_req.value;
1558 	value = clamp(value, tg_min, tg_max);
1559 	uclamp_se_set(&uc_req, value, false);
1560 #endif
1561 
1562 	return uc_req;
1563 }
1564 
1565 /*
1566  * The effective clamp bucket index of a task depends on, by increasing
1567  * priority:
1568  * - the task specific clamp value, when explicitly requested from userspace
1569  * - the task group effective clamp value, for tasks not either in the root
1570  *   group or in an autogroup
1571  * - the system default clamp value, defined by the sysadmin
1572  */
1573 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)1574 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1575 {
1576 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1577 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1578 
1579 	/* System default restrictions always apply */
1580 	if (unlikely(uc_req.value > uc_max.value))
1581 		return uc_max;
1582 
1583 	return uc_req;
1584 }
1585 
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)1586 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1587 {
1588 	struct uclamp_se uc_eff;
1589 
1590 	/* Task currently refcounted: use back-annotated (effective) value */
1591 	if (p->uclamp[clamp_id].active)
1592 		return (unsigned long)p->uclamp[clamp_id].value;
1593 
1594 	uc_eff = uclamp_eff_get(p, clamp_id);
1595 
1596 	return (unsigned long)uc_eff.value;
1597 }
1598 
1599 /*
1600  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1601  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1602  * updates the rq's clamp value if required.
1603  *
1604  * Tasks can have a task-specific value requested from user-space, track
1605  * within each bucket the maximum value for tasks refcounted in it.
1606  * This "local max aggregation" allows to track the exact "requested" value
1607  * for each bucket when all its RUNNABLE tasks require the same clamp.
1608  */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1609 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1610 				    enum uclamp_id clamp_id)
1611 {
1612 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1613 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1614 	struct uclamp_bucket *bucket;
1615 
1616 	lockdep_assert_rq_held(rq);
1617 
1618 	/* Update task effective clamp */
1619 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1620 
1621 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1622 	bucket->tasks++;
1623 	uc_se->active = true;
1624 
1625 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1626 
1627 	/*
1628 	 * Local max aggregation: rq buckets always track the max
1629 	 * "requested" clamp value of its RUNNABLE tasks.
1630 	 */
1631 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1632 		bucket->value = uc_se->value;
1633 
1634 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1635 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1636 }
1637 
1638 /*
1639  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1640  * is released. If this is the last task reference counting the rq's max
1641  * active clamp value, then the rq's clamp value is updated.
1642  *
1643  * Both refcounted tasks and rq's cached clamp values are expected to be
1644  * always valid. If it's detected they are not, as defensive programming,
1645  * enforce the expected state and warn.
1646  */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1647 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1648 				    enum uclamp_id clamp_id)
1649 {
1650 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1651 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1652 	struct uclamp_bucket *bucket;
1653 	unsigned int bkt_clamp;
1654 	unsigned int rq_clamp;
1655 
1656 	lockdep_assert_rq_held(rq);
1657 
1658 	/*
1659 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1660 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1661 	 *
1662 	 * In this case the uc_se->active flag should be false since no uclamp
1663 	 * accounting was performed at enqueue time and we can just return
1664 	 * here.
1665 	 *
1666 	 * Need to be careful of the following enqueue/dequeue ordering
1667 	 * problem too
1668 	 *
1669 	 *	enqueue(taskA)
1670 	 *	// sched_uclamp_used gets enabled
1671 	 *	enqueue(taskB)
1672 	 *	dequeue(taskA)
1673 	 *	// Must not decrement bucket->tasks here
1674 	 *	dequeue(taskB)
1675 	 *
1676 	 * where we could end up with stale data in uc_se and
1677 	 * bucket[uc_se->bucket_id].
1678 	 *
1679 	 * The following check here eliminates the possibility of such race.
1680 	 */
1681 	if (unlikely(!uc_se->active))
1682 		return;
1683 
1684 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1685 
1686 	SCHED_WARN_ON(!bucket->tasks);
1687 	if (likely(bucket->tasks))
1688 		bucket->tasks--;
1689 
1690 	uc_se->active = false;
1691 
1692 	/*
1693 	 * Keep "local max aggregation" simple and accept to (possibly)
1694 	 * overboost some RUNNABLE tasks in the same bucket.
1695 	 * The rq clamp bucket value is reset to its base value whenever
1696 	 * there are no more RUNNABLE tasks refcounting it.
1697 	 */
1698 	if (likely(bucket->tasks))
1699 		return;
1700 
1701 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1702 	/*
1703 	 * Defensive programming: this should never happen. If it happens,
1704 	 * e.g. due to future modification, warn and fixup the expected value.
1705 	 */
1706 	SCHED_WARN_ON(bucket->value > rq_clamp);
1707 	if (bucket->value >= rq_clamp) {
1708 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1709 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1710 	}
1711 }
1712 
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1713 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1714 {
1715 	enum uclamp_id clamp_id;
1716 
1717 	/*
1718 	 * Avoid any overhead until uclamp is actually used by the userspace.
1719 	 *
1720 	 * The condition is constructed such that a NOP is generated when
1721 	 * sched_uclamp_used is disabled.
1722 	 */
1723 	if (!static_branch_unlikely(&sched_uclamp_used))
1724 		return;
1725 
1726 	if (unlikely(!p->sched_class->uclamp_enabled))
1727 		return;
1728 
1729 	for_each_clamp_id(clamp_id)
1730 		uclamp_rq_inc_id(rq, p, clamp_id);
1731 
1732 	/* Reset clamp idle holding when there is one RUNNABLE task */
1733 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1734 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1735 }
1736 
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1737 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1738 {
1739 	enum uclamp_id clamp_id;
1740 
1741 	/*
1742 	 * Avoid any overhead until uclamp is actually used by the userspace.
1743 	 *
1744 	 * The condition is constructed such that a NOP is generated when
1745 	 * sched_uclamp_used is disabled.
1746 	 */
1747 	if (!static_branch_unlikely(&sched_uclamp_used))
1748 		return;
1749 
1750 	if (unlikely(!p->sched_class->uclamp_enabled))
1751 		return;
1752 
1753 	for_each_clamp_id(clamp_id)
1754 		uclamp_rq_dec_id(rq, p, clamp_id);
1755 }
1756 
uclamp_rq_reinc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1757 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1758 				      enum uclamp_id clamp_id)
1759 {
1760 	if (!p->uclamp[clamp_id].active)
1761 		return;
1762 
1763 	uclamp_rq_dec_id(rq, p, clamp_id);
1764 	uclamp_rq_inc_id(rq, p, clamp_id);
1765 
1766 	/*
1767 	 * Make sure to clear the idle flag if we've transiently reached 0
1768 	 * active tasks on rq.
1769 	 */
1770 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1771 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1772 }
1773 
1774 static inline void
uclamp_update_active(struct task_struct * p)1775 uclamp_update_active(struct task_struct *p)
1776 {
1777 	enum uclamp_id clamp_id;
1778 	struct rq_flags rf;
1779 	struct rq *rq;
1780 
1781 	/*
1782 	 * Lock the task and the rq where the task is (or was) queued.
1783 	 *
1784 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1785 	 * price to pay to safely serialize util_{min,max} updates with
1786 	 * enqueues, dequeues and migration operations.
1787 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1788 	 */
1789 	rq = task_rq_lock(p, &rf);
1790 
1791 	/*
1792 	 * Setting the clamp bucket is serialized by task_rq_lock().
1793 	 * If the task is not yet RUNNABLE and its task_struct is not
1794 	 * affecting a valid clamp bucket, the next time it's enqueued,
1795 	 * it will already see the updated clamp bucket value.
1796 	 */
1797 	for_each_clamp_id(clamp_id)
1798 		uclamp_rq_reinc_id(rq, p, clamp_id);
1799 
1800 	task_rq_unlock(rq, p, &rf);
1801 }
1802 
1803 #ifdef CONFIG_UCLAMP_TASK_GROUP
1804 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css)1805 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1806 {
1807 	struct css_task_iter it;
1808 	struct task_struct *p;
1809 
1810 	css_task_iter_start(css, 0, &it);
1811 	while ((p = css_task_iter_next(&it)))
1812 		uclamp_update_active(p);
1813 	css_task_iter_end(&it);
1814 }
1815 
1816 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1817 #endif
1818 
1819 #ifdef CONFIG_SYSCTL
1820 #ifdef CONFIG_UCLAMP_TASK
1821 #ifdef CONFIG_UCLAMP_TASK_GROUP
uclamp_update_root_tg(void)1822 static void uclamp_update_root_tg(void)
1823 {
1824 	struct task_group *tg = &root_task_group;
1825 
1826 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1827 		      sysctl_sched_uclamp_util_min, false);
1828 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1829 		      sysctl_sched_uclamp_util_max, false);
1830 
1831 	rcu_read_lock();
1832 	cpu_util_update_eff(&root_task_group.css);
1833 	rcu_read_unlock();
1834 }
1835 #else
uclamp_update_root_tg(void)1836 static void uclamp_update_root_tg(void) { }
1837 #endif
1838 
uclamp_sync_util_min_rt_default(void)1839 static void uclamp_sync_util_min_rt_default(void)
1840 {
1841 	struct task_struct *g, *p;
1842 
1843 	/*
1844 	 * copy_process()			sysctl_uclamp
1845 	 *					  uclamp_min_rt = X;
1846 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1847 	 *   // link thread			  smp_mb__after_spinlock()
1848 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1849 	 *   sched_post_fork()			  for_each_process_thread()
1850 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1851 	 *
1852 	 * Ensures that either sched_post_fork() will observe the new
1853 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1854 	 * task.
1855 	 */
1856 	read_lock(&tasklist_lock);
1857 	smp_mb__after_spinlock();
1858 	read_unlock(&tasklist_lock);
1859 
1860 	rcu_read_lock();
1861 	for_each_process_thread(g, p)
1862 		uclamp_update_util_min_rt_default(p);
1863 	rcu_read_unlock();
1864 }
1865 
sysctl_sched_uclamp_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1866 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1867 				void *buffer, size_t *lenp, loff_t *ppos)
1868 {
1869 	bool update_root_tg = false;
1870 	int old_min, old_max, old_min_rt;
1871 	int result;
1872 
1873 	guard(mutex)(&uclamp_mutex);
1874 
1875 	old_min = sysctl_sched_uclamp_util_min;
1876 	old_max = sysctl_sched_uclamp_util_max;
1877 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1878 
1879 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1880 	if (result)
1881 		goto undo;
1882 	if (!write)
1883 		return 0;
1884 
1885 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1886 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1887 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1888 
1889 		result = -EINVAL;
1890 		goto undo;
1891 	}
1892 
1893 	if (old_min != sysctl_sched_uclamp_util_min) {
1894 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1895 			      sysctl_sched_uclamp_util_min, false);
1896 		update_root_tg = true;
1897 	}
1898 	if (old_max != sysctl_sched_uclamp_util_max) {
1899 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1900 			      sysctl_sched_uclamp_util_max, false);
1901 		update_root_tg = true;
1902 	}
1903 
1904 	if (update_root_tg) {
1905 		static_branch_enable(&sched_uclamp_used);
1906 		uclamp_update_root_tg();
1907 	}
1908 
1909 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1910 		static_branch_enable(&sched_uclamp_used);
1911 		uclamp_sync_util_min_rt_default();
1912 	}
1913 
1914 	/*
1915 	 * We update all RUNNABLE tasks only when task groups are in use.
1916 	 * Otherwise, keep it simple and do just a lazy update at each next
1917 	 * task enqueue time.
1918 	 */
1919 	return 0;
1920 
1921 undo:
1922 	sysctl_sched_uclamp_util_min = old_min;
1923 	sysctl_sched_uclamp_util_max = old_max;
1924 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1925 	return result;
1926 }
1927 #endif
1928 #endif
1929 
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1930 static int uclamp_validate(struct task_struct *p,
1931 			   const struct sched_attr *attr)
1932 {
1933 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
1934 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
1935 
1936 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1937 		util_min = attr->sched_util_min;
1938 
1939 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1940 			return -EINVAL;
1941 	}
1942 
1943 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1944 		util_max = attr->sched_util_max;
1945 
1946 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1947 			return -EINVAL;
1948 	}
1949 
1950 	if (util_min != -1 && util_max != -1 && util_min > util_max)
1951 		return -EINVAL;
1952 
1953 	/*
1954 	 * We have valid uclamp attributes; make sure uclamp is enabled.
1955 	 *
1956 	 * We need to do that here, because enabling static branches is a
1957 	 * blocking operation which obviously cannot be done while holding
1958 	 * scheduler locks.
1959 	 */
1960 	static_branch_enable(&sched_uclamp_used);
1961 
1962 	return 0;
1963 }
1964 
uclamp_reset(const struct sched_attr * attr,enum uclamp_id clamp_id,struct uclamp_se * uc_se)1965 static bool uclamp_reset(const struct sched_attr *attr,
1966 			 enum uclamp_id clamp_id,
1967 			 struct uclamp_se *uc_se)
1968 {
1969 	/* Reset on sched class change for a non user-defined clamp value. */
1970 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1971 	    !uc_se->user_defined)
1972 		return true;
1973 
1974 	/* Reset on sched_util_{min,max} == -1. */
1975 	if (clamp_id == UCLAMP_MIN &&
1976 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1977 	    attr->sched_util_min == -1) {
1978 		return true;
1979 	}
1980 
1981 	if (clamp_id == UCLAMP_MAX &&
1982 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1983 	    attr->sched_util_max == -1) {
1984 		return true;
1985 	}
1986 
1987 	return false;
1988 }
1989 
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1990 static void __setscheduler_uclamp(struct task_struct *p,
1991 				  const struct sched_attr *attr)
1992 {
1993 	enum uclamp_id clamp_id;
1994 
1995 	for_each_clamp_id(clamp_id) {
1996 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1997 		unsigned int value;
1998 
1999 		if (!uclamp_reset(attr, clamp_id, uc_se))
2000 			continue;
2001 
2002 		/*
2003 		 * RT by default have a 100% boost value that could be modified
2004 		 * at runtime.
2005 		 */
2006 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
2007 			value = sysctl_sched_uclamp_util_min_rt_default;
2008 		else
2009 			value = uclamp_none(clamp_id);
2010 
2011 		uclamp_se_set(uc_se, value, false);
2012 
2013 	}
2014 
2015 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
2016 		return;
2017 
2018 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
2019 	    attr->sched_util_min != -1) {
2020 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
2021 			      attr->sched_util_min, true);
2022 	}
2023 
2024 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
2025 	    attr->sched_util_max != -1) {
2026 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
2027 			      attr->sched_util_max, true);
2028 	}
2029 }
2030 
uclamp_fork(struct task_struct * p)2031 static void uclamp_fork(struct task_struct *p)
2032 {
2033 	enum uclamp_id clamp_id;
2034 
2035 	/*
2036 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
2037 	 * as the task is still at its early fork stages.
2038 	 */
2039 	for_each_clamp_id(clamp_id)
2040 		p->uclamp[clamp_id].active = false;
2041 
2042 	if (likely(!p->sched_reset_on_fork))
2043 		return;
2044 
2045 	for_each_clamp_id(clamp_id) {
2046 		uclamp_se_set(&p->uclamp_req[clamp_id],
2047 			      uclamp_none(clamp_id), false);
2048 	}
2049 }
2050 
uclamp_post_fork(struct task_struct * p)2051 static void uclamp_post_fork(struct task_struct *p)
2052 {
2053 	uclamp_update_util_min_rt_default(p);
2054 }
2055 
init_uclamp_rq(struct rq * rq)2056 static void __init init_uclamp_rq(struct rq *rq)
2057 {
2058 	enum uclamp_id clamp_id;
2059 	struct uclamp_rq *uc_rq = rq->uclamp;
2060 
2061 	for_each_clamp_id(clamp_id) {
2062 		uc_rq[clamp_id] = (struct uclamp_rq) {
2063 			.value = uclamp_none(clamp_id)
2064 		};
2065 	}
2066 
2067 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2068 }
2069 
init_uclamp(void)2070 static void __init init_uclamp(void)
2071 {
2072 	struct uclamp_se uc_max = {};
2073 	enum uclamp_id clamp_id;
2074 	int cpu;
2075 
2076 	for_each_possible_cpu(cpu)
2077 		init_uclamp_rq(cpu_rq(cpu));
2078 
2079 	for_each_clamp_id(clamp_id) {
2080 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2081 			      uclamp_none(clamp_id), false);
2082 	}
2083 
2084 	/* System defaults allow max clamp values for both indexes */
2085 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2086 	for_each_clamp_id(clamp_id) {
2087 		uclamp_default[clamp_id] = uc_max;
2088 #ifdef CONFIG_UCLAMP_TASK_GROUP
2089 		root_task_group.uclamp_req[clamp_id] = uc_max;
2090 		root_task_group.uclamp[clamp_id] = uc_max;
2091 #endif
2092 	}
2093 }
2094 
2095 #else /* CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p)2096 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)2097 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)2098 static inline int uclamp_validate(struct task_struct *p,
2099 				  const struct sched_attr *attr)
2100 {
2101 	return -EOPNOTSUPP;
2102 }
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)2103 static void __setscheduler_uclamp(struct task_struct *p,
2104 				  const struct sched_attr *attr) { }
uclamp_fork(struct task_struct * p)2105 static inline void uclamp_fork(struct task_struct *p) { }
uclamp_post_fork(struct task_struct * p)2106 static inline void uclamp_post_fork(struct task_struct *p) { }
init_uclamp(void)2107 static inline void init_uclamp(void) { }
2108 #endif /* CONFIG_UCLAMP_TASK */
2109 
sched_task_on_rq(struct task_struct * p)2110 bool sched_task_on_rq(struct task_struct *p)
2111 {
2112 	return task_on_rq_queued(p);
2113 }
2114 
get_wchan(struct task_struct * p)2115 unsigned long get_wchan(struct task_struct *p)
2116 {
2117 	unsigned long ip = 0;
2118 	unsigned int state;
2119 
2120 	if (!p || p == current)
2121 		return 0;
2122 
2123 	/* Only get wchan if task is blocked and we can keep it that way. */
2124 	raw_spin_lock_irq(&p->pi_lock);
2125 	state = READ_ONCE(p->__state);
2126 	smp_rmb(); /* see try_to_wake_up() */
2127 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2128 		ip = __get_wchan(p);
2129 	raw_spin_unlock_irq(&p->pi_lock);
2130 
2131 	return ip;
2132 }
2133 
enqueue_task(struct rq * rq,struct task_struct * p,int flags)2134 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2135 {
2136 	if (!(flags & ENQUEUE_NOCLOCK))
2137 		update_rq_clock(rq);
2138 
2139 	if (!(flags & ENQUEUE_RESTORE)) {
2140 		sched_info_enqueue(rq, p);
2141 		psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2142 	}
2143 
2144 	uclamp_rq_inc(rq, p);
2145 	p->sched_class->enqueue_task(rq, p, flags);
2146 
2147 	if (sched_core_enabled(rq))
2148 		sched_core_enqueue(rq, p);
2149 }
2150 
dequeue_task(struct rq * rq,struct task_struct * p,int flags)2151 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2152 {
2153 	if (sched_core_enabled(rq))
2154 		sched_core_dequeue(rq, p, flags);
2155 
2156 	if (!(flags & DEQUEUE_NOCLOCK))
2157 		update_rq_clock(rq);
2158 
2159 	if (!(flags & DEQUEUE_SAVE)) {
2160 		sched_info_dequeue(rq, p);
2161 		psi_dequeue(p, flags & DEQUEUE_SLEEP);
2162 	}
2163 
2164 	uclamp_rq_dec(rq, p);
2165 	p->sched_class->dequeue_task(rq, p, flags);
2166 }
2167 
activate_task(struct rq * rq,struct task_struct * p,int flags)2168 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2169 {
2170 	if (task_on_rq_migrating(p))
2171 		flags |= ENQUEUE_MIGRATED;
2172 	if (flags & ENQUEUE_MIGRATED)
2173 		sched_mm_cid_migrate_to(rq, p);
2174 
2175 	enqueue_task(rq, p, flags);
2176 
2177 	p->on_rq = TASK_ON_RQ_QUEUED;
2178 }
2179 
deactivate_task(struct rq * rq,struct task_struct * p,int flags)2180 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2181 {
2182 	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2183 
2184 	dequeue_task(rq, p, flags);
2185 }
2186 
__normal_prio(int policy,int rt_prio,int nice)2187 static inline int __normal_prio(int policy, int rt_prio, int nice)
2188 {
2189 	int prio;
2190 
2191 	if (dl_policy(policy))
2192 		prio = MAX_DL_PRIO - 1;
2193 	else if (rt_policy(policy))
2194 		prio = MAX_RT_PRIO - 1 - rt_prio;
2195 	else
2196 		prio = NICE_TO_PRIO(nice);
2197 
2198 	return prio;
2199 }
2200 
2201 /*
2202  * Calculate the expected normal priority: i.e. priority
2203  * without taking RT-inheritance into account. Might be
2204  * boosted by interactivity modifiers. Changes upon fork,
2205  * setprio syscalls, and whenever the interactivity
2206  * estimator recalculates.
2207  */
normal_prio(struct task_struct * p)2208 static inline int normal_prio(struct task_struct *p)
2209 {
2210 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2211 }
2212 
2213 /*
2214  * Calculate the current priority, i.e. the priority
2215  * taken into account by the scheduler. This value might
2216  * be boosted by RT tasks, or might be boosted by
2217  * interactivity modifiers. Will be RT if the task got
2218  * RT-boosted. If not then it returns p->normal_prio.
2219  */
effective_prio(struct task_struct * p)2220 static int effective_prio(struct task_struct *p)
2221 {
2222 	p->normal_prio = normal_prio(p);
2223 	/*
2224 	 * If we are RT tasks or we were boosted to RT priority,
2225 	 * keep the priority unchanged. Otherwise, update priority
2226 	 * to the normal priority:
2227 	 */
2228 	if (!rt_prio(p->prio))
2229 		return p->normal_prio;
2230 	return p->prio;
2231 }
2232 
2233 /**
2234  * task_curr - is this task currently executing on a CPU?
2235  * @p: the task in question.
2236  *
2237  * Return: 1 if the task is currently executing. 0 otherwise.
2238  */
task_curr(const struct task_struct * p)2239 inline int task_curr(const struct task_struct *p)
2240 {
2241 	return cpu_curr(task_cpu(p)) == p;
2242 }
2243 
2244 /*
2245  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2246  * use the balance_callback list if you want balancing.
2247  *
2248  * this means any call to check_class_changed() must be followed by a call to
2249  * balance_callback().
2250  */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)2251 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2252 				       const struct sched_class *prev_class,
2253 				       int oldprio)
2254 {
2255 	if (prev_class != p->sched_class) {
2256 		if (prev_class->switched_from)
2257 			prev_class->switched_from(rq, p);
2258 
2259 		p->sched_class->switched_to(rq, p);
2260 	} else if (oldprio != p->prio || dl_task(p))
2261 		p->sched_class->prio_changed(rq, p, oldprio);
2262 }
2263 
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)2264 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2265 {
2266 	if (p->sched_class == rq->curr->sched_class)
2267 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2268 	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2269 		resched_curr(rq);
2270 
2271 	/*
2272 	 * A queue event has occurred, and we're going to schedule.  In
2273 	 * this case, we can save a useless back to back clock update.
2274 	 */
2275 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2276 		rq_clock_skip_update(rq);
2277 }
2278 
2279 static __always_inline
__task_state_match(struct task_struct * p,unsigned int state)2280 int __task_state_match(struct task_struct *p, unsigned int state)
2281 {
2282 	if (READ_ONCE(p->__state) & state)
2283 		return 1;
2284 
2285 #ifdef CONFIG_PREEMPT_RT
2286 	if (READ_ONCE(p->saved_state) & state)
2287 		return -1;
2288 #endif
2289 	return 0;
2290 }
2291 
2292 static __always_inline
task_state_match(struct task_struct * p,unsigned int state)2293 int task_state_match(struct task_struct *p, unsigned int state)
2294 {
2295 #ifdef CONFIG_PREEMPT_RT
2296 	int match;
2297 
2298 	/*
2299 	 * Serialize against current_save_and_set_rtlock_wait_state() and
2300 	 * current_restore_rtlock_saved_state().
2301 	 */
2302 	raw_spin_lock_irq(&p->pi_lock);
2303 	match = __task_state_match(p, state);
2304 	raw_spin_unlock_irq(&p->pi_lock);
2305 
2306 	return match;
2307 #else
2308 	return __task_state_match(p, state);
2309 #endif
2310 }
2311 
2312 /*
2313  * wait_task_inactive - wait for a thread to unschedule.
2314  *
2315  * Wait for the thread to block in any of the states set in @match_state.
2316  * If it changes, i.e. @p might have woken up, then return zero.  When we
2317  * succeed in waiting for @p to be off its CPU, we return a positive number
2318  * (its total switch count).  If a second call a short while later returns the
2319  * same number, the caller can be sure that @p has remained unscheduled the
2320  * whole time.
2321  *
2322  * The caller must ensure that the task *will* unschedule sometime soon,
2323  * else this function might spin for a *long* time. This function can't
2324  * be called with interrupts off, or it may introduce deadlock with
2325  * smp_call_function() if an IPI is sent by the same process we are
2326  * waiting to become inactive.
2327  */
wait_task_inactive(struct task_struct * p,unsigned int match_state)2328 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2329 {
2330 	int running, queued, match;
2331 	struct rq_flags rf;
2332 	unsigned long ncsw;
2333 	struct rq *rq;
2334 
2335 	for (;;) {
2336 		/*
2337 		 * We do the initial early heuristics without holding
2338 		 * any task-queue locks at all. We'll only try to get
2339 		 * the runqueue lock when things look like they will
2340 		 * work out!
2341 		 */
2342 		rq = task_rq(p);
2343 
2344 		/*
2345 		 * If the task is actively running on another CPU
2346 		 * still, just relax and busy-wait without holding
2347 		 * any locks.
2348 		 *
2349 		 * NOTE! Since we don't hold any locks, it's not
2350 		 * even sure that "rq" stays as the right runqueue!
2351 		 * But we don't care, since "task_on_cpu()" will
2352 		 * return false if the runqueue has changed and p
2353 		 * is actually now running somewhere else!
2354 		 */
2355 		while (task_on_cpu(rq, p)) {
2356 			if (!task_state_match(p, match_state))
2357 				return 0;
2358 			cpu_relax();
2359 		}
2360 
2361 		/*
2362 		 * Ok, time to look more closely! We need the rq
2363 		 * lock now, to be *sure*. If we're wrong, we'll
2364 		 * just go back and repeat.
2365 		 */
2366 		rq = task_rq_lock(p, &rf);
2367 		trace_sched_wait_task(p);
2368 		running = task_on_cpu(rq, p);
2369 		queued = task_on_rq_queued(p);
2370 		ncsw = 0;
2371 		if ((match = __task_state_match(p, match_state))) {
2372 			/*
2373 			 * When matching on p->saved_state, consider this task
2374 			 * still queued so it will wait.
2375 			 */
2376 			if (match < 0)
2377 				queued = 1;
2378 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2379 		}
2380 		task_rq_unlock(rq, p, &rf);
2381 
2382 		/*
2383 		 * If it changed from the expected state, bail out now.
2384 		 */
2385 		if (unlikely(!ncsw))
2386 			break;
2387 
2388 		/*
2389 		 * Was it really running after all now that we
2390 		 * checked with the proper locks actually held?
2391 		 *
2392 		 * Oops. Go back and try again..
2393 		 */
2394 		if (unlikely(running)) {
2395 			cpu_relax();
2396 			continue;
2397 		}
2398 
2399 		/*
2400 		 * It's not enough that it's not actively running,
2401 		 * it must be off the runqueue _entirely_, and not
2402 		 * preempted!
2403 		 *
2404 		 * So if it was still runnable (but just not actively
2405 		 * running right now), it's preempted, and we should
2406 		 * yield - it could be a while.
2407 		 */
2408 		if (unlikely(queued)) {
2409 			ktime_t to = NSEC_PER_SEC / HZ;
2410 
2411 			set_current_state(TASK_UNINTERRUPTIBLE);
2412 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2413 			continue;
2414 		}
2415 
2416 		/*
2417 		 * Ahh, all good. It wasn't running, and it wasn't
2418 		 * runnable, which means that it will never become
2419 		 * running in the future either. We're all done!
2420 		 */
2421 		break;
2422 	}
2423 
2424 	return ncsw;
2425 }
2426 
2427 #ifdef CONFIG_SMP
2428 
2429 static void
2430 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2431 
2432 static int __set_cpus_allowed_ptr(struct task_struct *p,
2433 				  struct affinity_context *ctx);
2434 
migrate_disable_switch(struct rq * rq,struct task_struct * p)2435 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2436 {
2437 	struct affinity_context ac = {
2438 		.new_mask  = cpumask_of(rq->cpu),
2439 		.flags     = SCA_MIGRATE_DISABLE,
2440 	};
2441 
2442 	if (likely(!p->migration_disabled))
2443 		return;
2444 
2445 	if (p->cpus_ptr != &p->cpus_mask)
2446 		return;
2447 
2448 	/*
2449 	 * Violates locking rules! see comment in __do_set_cpus_allowed().
2450 	 */
2451 	__do_set_cpus_allowed(p, &ac);
2452 }
2453 
migrate_disable(void)2454 void migrate_disable(void)
2455 {
2456 	struct task_struct *p = current;
2457 
2458 	if (p->migration_disabled) {
2459 		p->migration_disabled++;
2460 		return;
2461 	}
2462 
2463 	preempt_disable();
2464 	this_rq()->nr_pinned++;
2465 	p->migration_disabled = 1;
2466 	preempt_enable();
2467 }
2468 EXPORT_SYMBOL_GPL(migrate_disable);
2469 
migrate_enable(void)2470 void migrate_enable(void)
2471 {
2472 	struct task_struct *p = current;
2473 	struct affinity_context ac = {
2474 		.new_mask  = &p->cpus_mask,
2475 		.flags     = SCA_MIGRATE_ENABLE,
2476 	};
2477 
2478 	if (p->migration_disabled > 1) {
2479 		p->migration_disabled--;
2480 		return;
2481 	}
2482 
2483 	if (WARN_ON_ONCE(!p->migration_disabled))
2484 		return;
2485 
2486 	/*
2487 	 * Ensure stop_task runs either before or after this, and that
2488 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2489 	 */
2490 	preempt_disable();
2491 	if (p->cpus_ptr != &p->cpus_mask)
2492 		__set_cpus_allowed_ptr(p, &ac);
2493 	/*
2494 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2495 	 * regular cpus_mask, otherwise things that race (eg.
2496 	 * select_fallback_rq) get confused.
2497 	 */
2498 	barrier();
2499 	p->migration_disabled = 0;
2500 	this_rq()->nr_pinned--;
2501 	preempt_enable();
2502 }
2503 EXPORT_SYMBOL_GPL(migrate_enable);
2504 
rq_has_pinned_tasks(struct rq * rq)2505 static inline bool rq_has_pinned_tasks(struct rq *rq)
2506 {
2507 	return rq->nr_pinned;
2508 }
2509 
2510 /*
2511  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2512  * __set_cpus_allowed_ptr() and select_fallback_rq().
2513  */
is_cpu_allowed(struct task_struct * p,int cpu)2514 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2515 {
2516 	/* When not in the task's cpumask, no point in looking further. */
2517 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2518 		return false;
2519 
2520 	/* migrate_disabled() must be allowed to finish. */
2521 	if (is_migration_disabled(p))
2522 		return cpu_online(cpu);
2523 
2524 	/* Non kernel threads are not allowed during either online or offline. */
2525 	if (!(p->flags & PF_KTHREAD))
2526 		return cpu_active(cpu) && task_cpu_possible(cpu, p);
2527 
2528 	/* KTHREAD_IS_PER_CPU is always allowed. */
2529 	if (kthread_is_per_cpu(p))
2530 		return cpu_online(cpu);
2531 
2532 	/* Regular kernel threads don't get to stay during offline. */
2533 	if (cpu_dying(cpu))
2534 		return false;
2535 
2536 	/* But are allowed during online. */
2537 	return cpu_online(cpu);
2538 }
2539 
2540 /*
2541  * This is how migration works:
2542  *
2543  * 1) we invoke migration_cpu_stop() on the target CPU using
2544  *    stop_one_cpu().
2545  * 2) stopper starts to run (implicitly forcing the migrated thread
2546  *    off the CPU)
2547  * 3) it checks whether the migrated task is still in the wrong runqueue.
2548  * 4) if it's in the wrong runqueue then the migration thread removes
2549  *    it and puts it into the right queue.
2550  * 5) stopper completes and stop_one_cpu() returns and the migration
2551  *    is done.
2552  */
2553 
2554 /*
2555  * move_queued_task - move a queued task to new rq.
2556  *
2557  * Returns (locked) new rq. Old rq's lock is released.
2558  */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)2559 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2560 				   struct task_struct *p, int new_cpu)
2561 {
2562 	lockdep_assert_rq_held(rq);
2563 
2564 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2565 	set_task_cpu(p, new_cpu);
2566 	rq_unlock(rq, rf);
2567 
2568 	rq = cpu_rq(new_cpu);
2569 
2570 	rq_lock(rq, rf);
2571 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2572 	activate_task(rq, p, 0);
2573 	check_preempt_curr(rq, p, 0);
2574 
2575 	return rq;
2576 }
2577 
2578 struct migration_arg {
2579 	struct task_struct		*task;
2580 	int				dest_cpu;
2581 	struct set_affinity_pending	*pending;
2582 };
2583 
2584 /*
2585  * @refs: number of wait_for_completion()
2586  * @stop_pending: is @stop_work in use
2587  */
2588 struct set_affinity_pending {
2589 	refcount_t		refs;
2590 	unsigned int		stop_pending;
2591 	struct completion	done;
2592 	struct cpu_stop_work	stop_work;
2593 	struct migration_arg	arg;
2594 };
2595 
2596 /*
2597  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2598  * this because either it can't run here any more (set_cpus_allowed()
2599  * away from this CPU, or CPU going down), or because we're
2600  * attempting to rebalance this task on exec (sched_exec).
2601  *
2602  * So we race with normal scheduler movements, but that's OK, as long
2603  * as the task is no longer on this CPU.
2604  */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)2605 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2606 				 struct task_struct *p, int dest_cpu)
2607 {
2608 	/* Affinity changed (again). */
2609 	if (!is_cpu_allowed(p, dest_cpu))
2610 		return rq;
2611 
2612 	rq = move_queued_task(rq, rf, p, dest_cpu);
2613 
2614 	return rq;
2615 }
2616 
2617 /*
2618  * migration_cpu_stop - this will be executed by a highprio stopper thread
2619  * and performs thread migration by bumping thread off CPU then
2620  * 'pushing' onto another runqueue.
2621  */
migration_cpu_stop(void * data)2622 static int migration_cpu_stop(void *data)
2623 {
2624 	struct migration_arg *arg = data;
2625 	struct set_affinity_pending *pending = arg->pending;
2626 	struct task_struct *p = arg->task;
2627 	struct rq *rq = this_rq();
2628 	bool complete = false;
2629 	struct rq_flags rf;
2630 
2631 	/*
2632 	 * The original target CPU might have gone down and we might
2633 	 * be on another CPU but it doesn't matter.
2634 	 */
2635 	local_irq_save(rf.flags);
2636 	/*
2637 	 * We need to explicitly wake pending tasks before running
2638 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2639 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2640 	 */
2641 	flush_smp_call_function_queue();
2642 
2643 	raw_spin_lock(&p->pi_lock);
2644 	rq_lock(rq, &rf);
2645 
2646 	/*
2647 	 * If we were passed a pending, then ->stop_pending was set, thus
2648 	 * p->migration_pending must have remained stable.
2649 	 */
2650 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2651 
2652 	/*
2653 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2654 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2655 	 * we're holding p->pi_lock.
2656 	 */
2657 	if (task_rq(p) == rq) {
2658 		if (is_migration_disabled(p))
2659 			goto out;
2660 
2661 		if (pending) {
2662 			p->migration_pending = NULL;
2663 			complete = true;
2664 
2665 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2666 				goto out;
2667 		}
2668 
2669 		if (task_on_rq_queued(p)) {
2670 			update_rq_clock(rq);
2671 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2672 		} else {
2673 			p->wake_cpu = arg->dest_cpu;
2674 		}
2675 
2676 		/*
2677 		 * XXX __migrate_task() can fail, at which point we might end
2678 		 * up running on a dodgy CPU, AFAICT this can only happen
2679 		 * during CPU hotplug, at which point we'll get pushed out
2680 		 * anyway, so it's probably not a big deal.
2681 		 */
2682 
2683 	} else if (pending) {
2684 		/*
2685 		 * This happens when we get migrated between migrate_enable()'s
2686 		 * preempt_enable() and scheduling the stopper task. At that
2687 		 * point we're a regular task again and not current anymore.
2688 		 *
2689 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2690 		 * more likely.
2691 		 */
2692 
2693 		/*
2694 		 * The task moved before the stopper got to run. We're holding
2695 		 * ->pi_lock, so the allowed mask is stable - if it got
2696 		 * somewhere allowed, we're done.
2697 		 */
2698 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2699 			p->migration_pending = NULL;
2700 			complete = true;
2701 			goto out;
2702 		}
2703 
2704 		/*
2705 		 * When migrate_enable() hits a rq mis-match we can't reliably
2706 		 * determine is_migration_disabled() and so have to chase after
2707 		 * it.
2708 		 */
2709 		WARN_ON_ONCE(!pending->stop_pending);
2710 		preempt_disable();
2711 		task_rq_unlock(rq, p, &rf);
2712 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2713 				    &pending->arg, &pending->stop_work);
2714 		preempt_enable();
2715 		return 0;
2716 	}
2717 out:
2718 	if (pending)
2719 		pending->stop_pending = false;
2720 	task_rq_unlock(rq, p, &rf);
2721 
2722 	if (complete)
2723 		complete_all(&pending->done);
2724 
2725 	return 0;
2726 }
2727 
push_cpu_stop(void * arg)2728 int push_cpu_stop(void *arg)
2729 {
2730 	struct rq *lowest_rq = NULL, *rq = this_rq();
2731 	struct task_struct *p = arg;
2732 
2733 	raw_spin_lock_irq(&p->pi_lock);
2734 	raw_spin_rq_lock(rq);
2735 
2736 	if (task_rq(p) != rq)
2737 		goto out_unlock;
2738 
2739 	if (is_migration_disabled(p)) {
2740 		p->migration_flags |= MDF_PUSH;
2741 		goto out_unlock;
2742 	}
2743 
2744 	p->migration_flags &= ~MDF_PUSH;
2745 
2746 	if (p->sched_class->find_lock_rq)
2747 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2748 
2749 	if (!lowest_rq)
2750 		goto out_unlock;
2751 
2752 	// XXX validate p is still the highest prio task
2753 	if (task_rq(p) == rq) {
2754 		deactivate_task(rq, p, 0);
2755 		set_task_cpu(p, lowest_rq->cpu);
2756 		activate_task(lowest_rq, p, 0);
2757 		resched_curr(lowest_rq);
2758 	}
2759 
2760 	double_unlock_balance(rq, lowest_rq);
2761 
2762 out_unlock:
2763 	rq->push_busy = false;
2764 	raw_spin_rq_unlock(rq);
2765 	raw_spin_unlock_irq(&p->pi_lock);
2766 
2767 	put_task_struct(p);
2768 	return 0;
2769 }
2770 
2771 /*
2772  * sched_class::set_cpus_allowed must do the below, but is not required to
2773  * actually call this function.
2774  */
set_cpus_allowed_common(struct task_struct * p,struct affinity_context * ctx)2775 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2776 {
2777 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2778 		p->cpus_ptr = ctx->new_mask;
2779 		return;
2780 	}
2781 
2782 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2783 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2784 
2785 	/*
2786 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2787 	 */
2788 	if (ctx->flags & SCA_USER)
2789 		swap(p->user_cpus_ptr, ctx->user_mask);
2790 }
2791 
2792 static void
__do_set_cpus_allowed(struct task_struct * p,struct affinity_context * ctx)2793 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2794 {
2795 	struct rq *rq = task_rq(p);
2796 	bool queued, running;
2797 
2798 	/*
2799 	 * This here violates the locking rules for affinity, since we're only
2800 	 * supposed to change these variables while holding both rq->lock and
2801 	 * p->pi_lock.
2802 	 *
2803 	 * HOWEVER, it magically works, because ttwu() is the only code that
2804 	 * accesses these variables under p->pi_lock and only does so after
2805 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2806 	 * before finish_task().
2807 	 *
2808 	 * XXX do further audits, this smells like something putrid.
2809 	 */
2810 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2811 		SCHED_WARN_ON(!p->on_cpu);
2812 	else
2813 		lockdep_assert_held(&p->pi_lock);
2814 
2815 	queued = task_on_rq_queued(p);
2816 	running = task_current(rq, p);
2817 
2818 	if (queued) {
2819 		/*
2820 		 * Because __kthread_bind() calls this on blocked tasks without
2821 		 * holding rq->lock.
2822 		 */
2823 		lockdep_assert_rq_held(rq);
2824 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2825 	}
2826 	if (running)
2827 		put_prev_task(rq, p);
2828 
2829 	p->sched_class->set_cpus_allowed(p, ctx);
2830 
2831 	if (queued)
2832 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2833 	if (running)
2834 		set_next_task(rq, p);
2835 }
2836 
2837 /*
2838  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2839  * affinity (if any) should be destroyed too.
2840  */
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2841 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2842 {
2843 	struct affinity_context ac = {
2844 		.new_mask  = new_mask,
2845 		.user_mask = NULL,
2846 		.flags     = SCA_USER,	/* clear the user requested mask */
2847 	};
2848 	union cpumask_rcuhead {
2849 		cpumask_t cpumask;
2850 		struct rcu_head rcu;
2851 	};
2852 
2853 	__do_set_cpus_allowed(p, &ac);
2854 
2855 	/*
2856 	 * Because this is called with p->pi_lock held, it is not possible
2857 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2858 	 * kfree_rcu().
2859 	 */
2860 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2861 }
2862 
alloc_user_cpus_ptr(int node)2863 static cpumask_t *alloc_user_cpus_ptr(int node)
2864 {
2865 	/*
2866 	 * See do_set_cpus_allowed() above for the rcu_head usage.
2867 	 */
2868 	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2869 
2870 	return kmalloc_node(size, GFP_KERNEL, node);
2871 }
2872 
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)2873 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2874 		      int node)
2875 {
2876 	cpumask_t *user_mask;
2877 	unsigned long flags;
2878 
2879 	/*
2880 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2881 	 * may differ by now due to racing.
2882 	 */
2883 	dst->user_cpus_ptr = NULL;
2884 
2885 	/*
2886 	 * This check is racy and losing the race is a valid situation.
2887 	 * It is not worth the extra overhead of taking the pi_lock on
2888 	 * every fork/clone.
2889 	 */
2890 	if (data_race(!src->user_cpus_ptr))
2891 		return 0;
2892 
2893 	user_mask = alloc_user_cpus_ptr(node);
2894 	if (!user_mask)
2895 		return -ENOMEM;
2896 
2897 	/*
2898 	 * Use pi_lock to protect content of user_cpus_ptr
2899 	 *
2900 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2901 	 * do_set_cpus_allowed().
2902 	 */
2903 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2904 	if (src->user_cpus_ptr) {
2905 		swap(dst->user_cpus_ptr, user_mask);
2906 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2907 	}
2908 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2909 
2910 	if (unlikely(user_mask))
2911 		kfree(user_mask);
2912 
2913 	return 0;
2914 }
2915 
clear_user_cpus_ptr(struct task_struct * p)2916 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2917 {
2918 	struct cpumask *user_mask = NULL;
2919 
2920 	swap(p->user_cpus_ptr, user_mask);
2921 
2922 	return user_mask;
2923 }
2924 
release_user_cpus_ptr(struct task_struct * p)2925 void release_user_cpus_ptr(struct task_struct *p)
2926 {
2927 	kfree(clear_user_cpus_ptr(p));
2928 }
2929 
2930 /*
2931  * This function is wildly self concurrent; here be dragons.
2932  *
2933  *
2934  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2935  * designated task is enqueued on an allowed CPU. If that task is currently
2936  * running, we have to kick it out using the CPU stopper.
2937  *
2938  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2939  * Consider:
2940  *
2941  *     Initial conditions: P0->cpus_mask = [0, 1]
2942  *
2943  *     P0@CPU0                  P1
2944  *
2945  *     migrate_disable();
2946  *     <preempted>
2947  *                              set_cpus_allowed_ptr(P0, [1]);
2948  *
2949  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2950  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2951  * This means we need the following scheme:
2952  *
2953  *     P0@CPU0                  P1
2954  *
2955  *     migrate_disable();
2956  *     <preempted>
2957  *                              set_cpus_allowed_ptr(P0, [1]);
2958  *                                <blocks>
2959  *     <resumes>
2960  *     migrate_enable();
2961  *       __set_cpus_allowed_ptr();
2962  *       <wakes local stopper>
2963  *                         `--> <woken on migration completion>
2964  *
2965  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2966  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2967  * task p are serialized by p->pi_lock, which we can leverage: the one that
2968  * should come into effect at the end of the Migrate-Disable region is the last
2969  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2970  * but we still need to properly signal those waiting tasks at the appropriate
2971  * moment.
2972  *
2973  * This is implemented using struct set_affinity_pending. The first
2974  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2975  * setup an instance of that struct and install it on the targeted task_struct.
2976  * Any and all further callers will reuse that instance. Those then wait for
2977  * a completion signaled at the tail of the CPU stopper callback (1), triggered
2978  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2979  *
2980  *
2981  * (1) In the cases covered above. There is one more where the completion is
2982  * signaled within affine_move_task() itself: when a subsequent affinity request
2983  * occurs after the stopper bailed out due to the targeted task still being
2984  * Migrate-Disable. Consider:
2985  *
2986  *     Initial conditions: P0->cpus_mask = [0, 1]
2987  *
2988  *     CPU0		  P1				P2
2989  *     <P0>
2990  *       migrate_disable();
2991  *       <preempted>
2992  *                        set_cpus_allowed_ptr(P0, [1]);
2993  *                          <blocks>
2994  *     <migration/0>
2995  *       migration_cpu_stop()
2996  *         is_migration_disabled()
2997  *           <bails>
2998  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
2999  *                                                         <signal completion>
3000  *                          <awakes>
3001  *
3002  * Note that the above is safe vs a concurrent migrate_enable(), as any
3003  * pending affinity completion is preceded by an uninstallation of
3004  * p->migration_pending done with p->pi_lock held.
3005  */
affine_move_task(struct rq * rq,struct task_struct * p,struct rq_flags * rf,int dest_cpu,unsigned int flags)3006 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
3007 			    int dest_cpu, unsigned int flags)
3008 	__releases(rq->lock)
3009 	__releases(p->pi_lock)
3010 {
3011 	struct set_affinity_pending my_pending = { }, *pending = NULL;
3012 	bool stop_pending, complete = false;
3013 
3014 	/* Can the task run on the task's current CPU? If so, we're done */
3015 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
3016 		struct task_struct *push_task = NULL;
3017 
3018 		if ((flags & SCA_MIGRATE_ENABLE) &&
3019 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
3020 			rq->push_busy = true;
3021 			push_task = get_task_struct(p);
3022 		}
3023 
3024 		/*
3025 		 * If there are pending waiters, but no pending stop_work,
3026 		 * then complete now.
3027 		 */
3028 		pending = p->migration_pending;
3029 		if (pending && !pending->stop_pending) {
3030 			p->migration_pending = NULL;
3031 			complete = true;
3032 		}
3033 
3034 		preempt_disable();
3035 		task_rq_unlock(rq, p, rf);
3036 		if (push_task) {
3037 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
3038 					    p, &rq->push_work);
3039 		}
3040 		preempt_enable();
3041 
3042 		if (complete)
3043 			complete_all(&pending->done);
3044 
3045 		return 0;
3046 	}
3047 
3048 	if (!(flags & SCA_MIGRATE_ENABLE)) {
3049 		/* serialized by p->pi_lock */
3050 		if (!p->migration_pending) {
3051 			/* Install the request */
3052 			refcount_set(&my_pending.refs, 1);
3053 			init_completion(&my_pending.done);
3054 			my_pending.arg = (struct migration_arg) {
3055 				.task = p,
3056 				.dest_cpu = dest_cpu,
3057 				.pending = &my_pending,
3058 			};
3059 
3060 			p->migration_pending = &my_pending;
3061 		} else {
3062 			pending = p->migration_pending;
3063 			refcount_inc(&pending->refs);
3064 			/*
3065 			 * Affinity has changed, but we've already installed a
3066 			 * pending. migration_cpu_stop() *must* see this, else
3067 			 * we risk a completion of the pending despite having a
3068 			 * task on a disallowed CPU.
3069 			 *
3070 			 * Serialized by p->pi_lock, so this is safe.
3071 			 */
3072 			pending->arg.dest_cpu = dest_cpu;
3073 		}
3074 	}
3075 	pending = p->migration_pending;
3076 	/*
3077 	 * - !MIGRATE_ENABLE:
3078 	 *   we'll have installed a pending if there wasn't one already.
3079 	 *
3080 	 * - MIGRATE_ENABLE:
3081 	 *   we're here because the current CPU isn't matching anymore,
3082 	 *   the only way that can happen is because of a concurrent
3083 	 *   set_cpus_allowed_ptr() call, which should then still be
3084 	 *   pending completion.
3085 	 *
3086 	 * Either way, we really should have a @pending here.
3087 	 */
3088 	if (WARN_ON_ONCE(!pending)) {
3089 		task_rq_unlock(rq, p, rf);
3090 		return -EINVAL;
3091 	}
3092 
3093 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3094 		/*
3095 		 * MIGRATE_ENABLE gets here because 'p == current', but for
3096 		 * anything else we cannot do is_migration_disabled(), punt
3097 		 * and have the stopper function handle it all race-free.
3098 		 */
3099 		stop_pending = pending->stop_pending;
3100 		if (!stop_pending)
3101 			pending->stop_pending = true;
3102 
3103 		if (flags & SCA_MIGRATE_ENABLE)
3104 			p->migration_flags &= ~MDF_PUSH;
3105 
3106 		preempt_disable();
3107 		task_rq_unlock(rq, p, rf);
3108 		if (!stop_pending) {
3109 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3110 					    &pending->arg, &pending->stop_work);
3111 		}
3112 		preempt_enable();
3113 
3114 		if (flags & SCA_MIGRATE_ENABLE)
3115 			return 0;
3116 	} else {
3117 
3118 		if (!is_migration_disabled(p)) {
3119 			if (task_on_rq_queued(p))
3120 				rq = move_queued_task(rq, rf, p, dest_cpu);
3121 
3122 			if (!pending->stop_pending) {
3123 				p->migration_pending = NULL;
3124 				complete = true;
3125 			}
3126 		}
3127 		task_rq_unlock(rq, p, rf);
3128 
3129 		if (complete)
3130 			complete_all(&pending->done);
3131 	}
3132 
3133 	wait_for_completion(&pending->done);
3134 
3135 	if (refcount_dec_and_test(&pending->refs))
3136 		wake_up_var(&pending->refs); /* No UaF, just an address */
3137 
3138 	/*
3139 	 * Block the original owner of &pending until all subsequent callers
3140 	 * have seen the completion and decremented the refcount
3141 	 */
3142 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3143 
3144 	/* ARGH */
3145 	WARN_ON_ONCE(my_pending.stop_pending);
3146 
3147 	return 0;
3148 }
3149 
3150 /*
3151  * Called with both p->pi_lock and rq->lock held; drops both before returning.
3152  */
__set_cpus_allowed_ptr_locked(struct task_struct * p,struct affinity_context * ctx,struct rq * rq,struct rq_flags * rf)3153 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3154 					 struct affinity_context *ctx,
3155 					 struct rq *rq,
3156 					 struct rq_flags *rf)
3157 	__releases(rq->lock)
3158 	__releases(p->pi_lock)
3159 {
3160 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3161 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
3162 	bool kthread = p->flags & PF_KTHREAD;
3163 	unsigned int dest_cpu;
3164 	int ret = 0;
3165 
3166 	update_rq_clock(rq);
3167 
3168 	if (kthread || is_migration_disabled(p)) {
3169 		/*
3170 		 * Kernel threads are allowed on online && !active CPUs,
3171 		 * however, during cpu-hot-unplug, even these might get pushed
3172 		 * away if not KTHREAD_IS_PER_CPU.
3173 		 *
3174 		 * Specifically, migration_disabled() tasks must not fail the
3175 		 * cpumask_any_and_distribute() pick below, esp. so on
3176 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3177 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3178 		 */
3179 		cpu_valid_mask = cpu_online_mask;
3180 	}
3181 
3182 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3183 		ret = -EINVAL;
3184 		goto out;
3185 	}
3186 
3187 	/*
3188 	 * Must re-check here, to close a race against __kthread_bind(),
3189 	 * sched_setaffinity() is not guaranteed to observe the flag.
3190 	 */
3191 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3192 		ret = -EINVAL;
3193 		goto out;
3194 	}
3195 
3196 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3197 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3198 			if (ctx->flags & SCA_USER)
3199 				swap(p->user_cpus_ptr, ctx->user_mask);
3200 			goto out;
3201 		}
3202 
3203 		if (WARN_ON_ONCE(p == current &&
3204 				 is_migration_disabled(p) &&
3205 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3206 			ret = -EBUSY;
3207 			goto out;
3208 		}
3209 	}
3210 
3211 	/*
3212 	 * Picking a ~random cpu helps in cases where we are changing affinity
3213 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3214 	 * immediately required to distribute the tasks within their new mask.
3215 	 */
3216 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3217 	if (dest_cpu >= nr_cpu_ids) {
3218 		ret = -EINVAL;
3219 		goto out;
3220 	}
3221 
3222 	__do_set_cpus_allowed(p, ctx);
3223 
3224 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3225 
3226 out:
3227 	task_rq_unlock(rq, p, rf);
3228 
3229 	return ret;
3230 }
3231 
3232 /*
3233  * Change a given task's CPU affinity. Migrate the thread to a
3234  * proper CPU and schedule it away if the CPU it's executing on
3235  * is removed from the allowed bitmask.
3236  *
3237  * NOTE: the caller must have a valid reference to the task, the
3238  * task must not exit() & deallocate itself prematurely. The
3239  * call is not atomic; no spinlocks may be held.
3240  */
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)3241 static int __set_cpus_allowed_ptr(struct task_struct *p,
3242 				  struct affinity_context *ctx)
3243 {
3244 	struct rq_flags rf;
3245 	struct rq *rq;
3246 
3247 	rq = task_rq_lock(p, &rf);
3248 	/*
3249 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3250 	 * flags are set.
3251 	 */
3252 	if (p->user_cpus_ptr &&
3253 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3254 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3255 		ctx->new_mask = rq->scratch_mask;
3256 
3257 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3258 }
3259 
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)3260 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3261 {
3262 	struct affinity_context ac = {
3263 		.new_mask  = new_mask,
3264 		.flags     = 0,
3265 	};
3266 
3267 	return __set_cpus_allowed_ptr(p, &ac);
3268 }
3269 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3270 
3271 /*
3272  * Change a given task's CPU affinity to the intersection of its current
3273  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3274  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3275  * affinity or use cpu_online_mask instead.
3276  *
3277  * If the resulting mask is empty, leave the affinity unchanged and return
3278  * -EINVAL.
3279  */
restrict_cpus_allowed_ptr(struct task_struct * p,struct cpumask * new_mask,const struct cpumask * subset_mask)3280 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3281 				     struct cpumask *new_mask,
3282 				     const struct cpumask *subset_mask)
3283 {
3284 	struct affinity_context ac = {
3285 		.new_mask  = new_mask,
3286 		.flags     = 0,
3287 	};
3288 	struct rq_flags rf;
3289 	struct rq *rq;
3290 	int err;
3291 
3292 	rq = task_rq_lock(p, &rf);
3293 
3294 	/*
3295 	 * Forcefully restricting the affinity of a deadline task is
3296 	 * likely to cause problems, so fail and noisily override the
3297 	 * mask entirely.
3298 	 */
3299 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3300 		err = -EPERM;
3301 		goto err_unlock;
3302 	}
3303 
3304 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3305 		err = -EINVAL;
3306 		goto err_unlock;
3307 	}
3308 
3309 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3310 
3311 err_unlock:
3312 	task_rq_unlock(rq, p, &rf);
3313 	return err;
3314 }
3315 
3316 /*
3317  * Restrict the CPU affinity of task @p so that it is a subset of
3318  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3319  * old affinity mask. If the resulting mask is empty, we warn and walk
3320  * up the cpuset hierarchy until we find a suitable mask.
3321  */
force_compatible_cpus_allowed_ptr(struct task_struct * p)3322 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3323 {
3324 	cpumask_var_t new_mask;
3325 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3326 
3327 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3328 
3329 	/*
3330 	 * __migrate_task() can fail silently in the face of concurrent
3331 	 * offlining of the chosen destination CPU, so take the hotplug
3332 	 * lock to ensure that the migration succeeds.
3333 	 */
3334 	cpus_read_lock();
3335 	if (!cpumask_available(new_mask))
3336 		goto out_set_mask;
3337 
3338 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3339 		goto out_free_mask;
3340 
3341 	/*
3342 	 * We failed to find a valid subset of the affinity mask for the
3343 	 * task, so override it based on its cpuset hierarchy.
3344 	 */
3345 	cpuset_cpus_allowed(p, new_mask);
3346 	override_mask = new_mask;
3347 
3348 out_set_mask:
3349 	if (printk_ratelimit()) {
3350 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3351 				task_pid_nr(p), p->comm,
3352 				cpumask_pr_args(override_mask));
3353 	}
3354 
3355 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3356 out_free_mask:
3357 	cpus_read_unlock();
3358 	free_cpumask_var(new_mask);
3359 }
3360 
3361 static int
3362 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3363 
3364 /*
3365  * Restore the affinity of a task @p which was previously restricted by a
3366  * call to force_compatible_cpus_allowed_ptr().
3367  *
3368  * It is the caller's responsibility to serialise this with any calls to
3369  * force_compatible_cpus_allowed_ptr(@p).
3370  */
relax_compatible_cpus_allowed_ptr(struct task_struct * p)3371 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3372 {
3373 	struct affinity_context ac = {
3374 		.new_mask  = task_user_cpus(p),
3375 		.flags     = 0,
3376 	};
3377 	int ret;
3378 
3379 	/*
3380 	 * Try to restore the old affinity mask with __sched_setaffinity().
3381 	 * Cpuset masking will be done there too.
3382 	 */
3383 	ret = __sched_setaffinity(p, &ac);
3384 	WARN_ON_ONCE(ret);
3385 }
3386 
set_task_cpu(struct task_struct * p,unsigned int new_cpu)3387 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3388 {
3389 #ifdef CONFIG_SCHED_DEBUG
3390 	unsigned int state = READ_ONCE(p->__state);
3391 
3392 	/*
3393 	 * We should never call set_task_cpu() on a blocked task,
3394 	 * ttwu() will sort out the placement.
3395 	 */
3396 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3397 
3398 	/*
3399 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3400 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3401 	 * time relying on p->on_rq.
3402 	 */
3403 	WARN_ON_ONCE(state == TASK_RUNNING &&
3404 		     p->sched_class == &fair_sched_class &&
3405 		     (p->on_rq && !task_on_rq_migrating(p)));
3406 
3407 #ifdef CONFIG_LOCKDEP
3408 	/*
3409 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3410 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3411 	 *
3412 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3413 	 * see task_group().
3414 	 *
3415 	 * Furthermore, all task_rq users should acquire both locks, see
3416 	 * task_rq_lock().
3417 	 */
3418 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3419 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3420 #endif
3421 	/*
3422 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3423 	 */
3424 	WARN_ON_ONCE(!cpu_online(new_cpu));
3425 
3426 	WARN_ON_ONCE(is_migration_disabled(p));
3427 #endif
3428 
3429 	trace_sched_migrate_task(p, new_cpu);
3430 
3431 	if (task_cpu(p) != new_cpu) {
3432 		if (p->sched_class->migrate_task_rq)
3433 			p->sched_class->migrate_task_rq(p, new_cpu);
3434 		p->se.nr_migrations++;
3435 		rseq_migrate(p);
3436 		sched_mm_cid_migrate_from(p);
3437 		perf_event_task_migrate(p);
3438 	}
3439 
3440 	__set_task_cpu(p, new_cpu);
3441 }
3442 
3443 #ifdef CONFIG_NUMA_BALANCING
__migrate_swap_task(struct task_struct * p,int cpu)3444 static void __migrate_swap_task(struct task_struct *p, int cpu)
3445 {
3446 	if (task_on_rq_queued(p)) {
3447 		struct rq *src_rq, *dst_rq;
3448 		struct rq_flags srf, drf;
3449 
3450 		src_rq = task_rq(p);
3451 		dst_rq = cpu_rq(cpu);
3452 
3453 		rq_pin_lock(src_rq, &srf);
3454 		rq_pin_lock(dst_rq, &drf);
3455 
3456 		deactivate_task(src_rq, p, 0);
3457 		set_task_cpu(p, cpu);
3458 		activate_task(dst_rq, p, 0);
3459 		check_preempt_curr(dst_rq, p, 0);
3460 
3461 		rq_unpin_lock(dst_rq, &drf);
3462 		rq_unpin_lock(src_rq, &srf);
3463 
3464 	} else {
3465 		/*
3466 		 * Task isn't running anymore; make it appear like we migrated
3467 		 * it before it went to sleep. This means on wakeup we make the
3468 		 * previous CPU our target instead of where it really is.
3469 		 */
3470 		p->wake_cpu = cpu;
3471 	}
3472 }
3473 
3474 struct migration_swap_arg {
3475 	struct task_struct *src_task, *dst_task;
3476 	int src_cpu, dst_cpu;
3477 };
3478 
migrate_swap_stop(void * data)3479 static int migrate_swap_stop(void *data)
3480 {
3481 	struct migration_swap_arg *arg = data;
3482 	struct rq *src_rq, *dst_rq;
3483 
3484 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3485 		return -EAGAIN;
3486 
3487 	src_rq = cpu_rq(arg->src_cpu);
3488 	dst_rq = cpu_rq(arg->dst_cpu);
3489 
3490 	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3491 	guard(double_rq_lock)(src_rq, dst_rq);
3492 
3493 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3494 		return -EAGAIN;
3495 
3496 	if (task_cpu(arg->src_task) != arg->src_cpu)
3497 		return -EAGAIN;
3498 
3499 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3500 		return -EAGAIN;
3501 
3502 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3503 		return -EAGAIN;
3504 
3505 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3506 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3507 
3508 	return 0;
3509 }
3510 
3511 /*
3512  * Cross migrate two tasks
3513  */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)3514 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3515 		int target_cpu, int curr_cpu)
3516 {
3517 	struct migration_swap_arg arg;
3518 	int ret = -EINVAL;
3519 
3520 	arg = (struct migration_swap_arg){
3521 		.src_task = cur,
3522 		.src_cpu = curr_cpu,
3523 		.dst_task = p,
3524 		.dst_cpu = target_cpu,
3525 	};
3526 
3527 	if (arg.src_cpu == arg.dst_cpu)
3528 		goto out;
3529 
3530 	/*
3531 	 * These three tests are all lockless; this is OK since all of them
3532 	 * will be re-checked with proper locks held further down the line.
3533 	 */
3534 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3535 		goto out;
3536 
3537 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3538 		goto out;
3539 
3540 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3541 		goto out;
3542 
3543 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3544 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3545 
3546 out:
3547 	return ret;
3548 }
3549 #endif /* CONFIG_NUMA_BALANCING */
3550 
3551 /***
3552  * kick_process - kick a running thread to enter/exit the kernel
3553  * @p: the to-be-kicked thread
3554  *
3555  * Cause a process which is running on another CPU to enter
3556  * kernel-mode, without any delay. (to get signals handled.)
3557  *
3558  * NOTE: this function doesn't have to take the runqueue lock,
3559  * because all it wants to ensure is that the remote task enters
3560  * the kernel. If the IPI races and the task has been migrated
3561  * to another CPU then no harm is done and the purpose has been
3562  * achieved as well.
3563  */
kick_process(struct task_struct * p)3564 void kick_process(struct task_struct *p)
3565 {
3566 	int cpu;
3567 
3568 	preempt_disable();
3569 	cpu = task_cpu(p);
3570 	if ((cpu != smp_processor_id()) && task_curr(p))
3571 		smp_send_reschedule(cpu);
3572 	preempt_enable();
3573 }
3574 EXPORT_SYMBOL_GPL(kick_process);
3575 
3576 /*
3577  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3578  *
3579  * A few notes on cpu_active vs cpu_online:
3580  *
3581  *  - cpu_active must be a subset of cpu_online
3582  *
3583  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3584  *    see __set_cpus_allowed_ptr(). At this point the newly online
3585  *    CPU isn't yet part of the sched domains, and balancing will not
3586  *    see it.
3587  *
3588  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3589  *    avoid the load balancer to place new tasks on the to be removed
3590  *    CPU. Existing tasks will remain running there and will be taken
3591  *    off.
3592  *
3593  * This means that fallback selection must not select !active CPUs.
3594  * And can assume that any active CPU must be online. Conversely
3595  * select_task_rq() below may allow selection of !active CPUs in order
3596  * to satisfy the above rules.
3597  */
select_fallback_rq(int cpu,struct task_struct * p)3598 static int select_fallback_rq(int cpu, struct task_struct *p)
3599 {
3600 	int nid = cpu_to_node(cpu);
3601 	const struct cpumask *nodemask = NULL;
3602 	enum { cpuset, possible, fail } state = cpuset;
3603 	int dest_cpu;
3604 
3605 	/*
3606 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3607 	 * will return -1. There is no CPU on the node, and we should
3608 	 * select the CPU on the other node.
3609 	 */
3610 	if (nid != -1) {
3611 		nodemask = cpumask_of_node(nid);
3612 
3613 		/* Look for allowed, online CPU in same node. */
3614 		for_each_cpu(dest_cpu, nodemask) {
3615 			if (is_cpu_allowed(p, dest_cpu))
3616 				return dest_cpu;
3617 		}
3618 	}
3619 
3620 	for (;;) {
3621 		/* Any allowed, online CPU? */
3622 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3623 			if (!is_cpu_allowed(p, dest_cpu))
3624 				continue;
3625 
3626 			goto out;
3627 		}
3628 
3629 		/* No more Mr. Nice Guy. */
3630 		switch (state) {
3631 		case cpuset:
3632 			if (cpuset_cpus_allowed_fallback(p)) {
3633 				state = possible;
3634 				break;
3635 			}
3636 			fallthrough;
3637 		case possible:
3638 			/*
3639 			 * XXX When called from select_task_rq() we only
3640 			 * hold p->pi_lock and again violate locking order.
3641 			 *
3642 			 * More yuck to audit.
3643 			 */
3644 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3645 			state = fail;
3646 			break;
3647 		case fail:
3648 			BUG();
3649 			break;
3650 		}
3651 	}
3652 
3653 out:
3654 	if (state != cpuset) {
3655 		/*
3656 		 * Don't tell them about moving exiting tasks or
3657 		 * kernel threads (both mm NULL), since they never
3658 		 * leave kernel.
3659 		 */
3660 		if (p->mm && printk_ratelimit()) {
3661 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3662 					task_pid_nr(p), p->comm, cpu);
3663 		}
3664 	}
3665 
3666 	return dest_cpu;
3667 }
3668 
3669 /*
3670  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3671  */
3672 static inline
select_task_rq(struct task_struct * p,int cpu,int wake_flags)3673 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3674 {
3675 	lockdep_assert_held(&p->pi_lock);
3676 
3677 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3678 		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3679 	else
3680 		cpu = cpumask_any(p->cpus_ptr);
3681 
3682 	/*
3683 	 * In order not to call set_task_cpu() on a blocking task we need
3684 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3685 	 * CPU.
3686 	 *
3687 	 * Since this is common to all placement strategies, this lives here.
3688 	 *
3689 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3690 	 *   not worry about this generic constraint ]
3691 	 */
3692 	if (unlikely(!is_cpu_allowed(p, cpu)))
3693 		cpu = select_fallback_rq(task_cpu(p), p);
3694 
3695 	return cpu;
3696 }
3697 
sched_set_stop_task(int cpu,struct task_struct * stop)3698 void sched_set_stop_task(int cpu, struct task_struct *stop)
3699 {
3700 	static struct lock_class_key stop_pi_lock;
3701 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3702 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3703 
3704 	if (stop) {
3705 		/*
3706 		 * Make it appear like a SCHED_FIFO task, its something
3707 		 * userspace knows about and won't get confused about.
3708 		 *
3709 		 * Also, it will make PI more or less work without too
3710 		 * much confusion -- but then, stop work should not
3711 		 * rely on PI working anyway.
3712 		 */
3713 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3714 
3715 		stop->sched_class = &stop_sched_class;
3716 
3717 		/*
3718 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3719 		 * adjust the effective priority of a task. As a result,
3720 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3721 		 * which can then trigger wakeups of the stop thread to push
3722 		 * around the current task.
3723 		 *
3724 		 * The stop task itself will never be part of the PI-chain, it
3725 		 * never blocks, therefore that ->pi_lock recursion is safe.
3726 		 * Tell lockdep about this by placing the stop->pi_lock in its
3727 		 * own class.
3728 		 */
3729 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3730 	}
3731 
3732 	cpu_rq(cpu)->stop = stop;
3733 
3734 	if (old_stop) {
3735 		/*
3736 		 * Reset it back to a normal scheduling class so that
3737 		 * it can die in pieces.
3738 		 */
3739 		old_stop->sched_class = &rt_sched_class;
3740 	}
3741 }
3742 
3743 #else /* CONFIG_SMP */
3744 
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)3745 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3746 					 struct affinity_context *ctx)
3747 {
3748 	return set_cpus_allowed_ptr(p, ctx->new_mask);
3749 }
3750 
migrate_disable_switch(struct rq * rq,struct task_struct * p)3751 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3752 
rq_has_pinned_tasks(struct rq * rq)3753 static inline bool rq_has_pinned_tasks(struct rq *rq)
3754 {
3755 	return false;
3756 }
3757 
alloc_user_cpus_ptr(int node)3758 static inline cpumask_t *alloc_user_cpus_ptr(int node)
3759 {
3760 	return NULL;
3761 }
3762 
3763 #endif /* !CONFIG_SMP */
3764 
3765 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)3766 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3767 {
3768 	struct rq *rq;
3769 
3770 	if (!schedstat_enabled())
3771 		return;
3772 
3773 	rq = this_rq();
3774 
3775 #ifdef CONFIG_SMP
3776 	if (cpu == rq->cpu) {
3777 		__schedstat_inc(rq->ttwu_local);
3778 		__schedstat_inc(p->stats.nr_wakeups_local);
3779 	} else {
3780 		struct sched_domain *sd;
3781 
3782 		__schedstat_inc(p->stats.nr_wakeups_remote);
3783 
3784 		guard(rcu)();
3785 		for_each_domain(rq->cpu, sd) {
3786 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3787 				__schedstat_inc(sd->ttwu_wake_remote);
3788 				break;
3789 			}
3790 		}
3791 	}
3792 
3793 	if (wake_flags & WF_MIGRATED)
3794 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3795 #endif /* CONFIG_SMP */
3796 
3797 	__schedstat_inc(rq->ttwu_count);
3798 	__schedstat_inc(p->stats.nr_wakeups);
3799 
3800 	if (wake_flags & WF_SYNC)
3801 		__schedstat_inc(p->stats.nr_wakeups_sync);
3802 }
3803 
3804 /*
3805  * Mark the task runnable.
3806  */
ttwu_do_wakeup(struct task_struct * p)3807 static inline void ttwu_do_wakeup(struct task_struct *p)
3808 {
3809 	WRITE_ONCE(p->__state, TASK_RUNNING);
3810 	trace_sched_wakeup(p);
3811 }
3812 
3813 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)3814 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3815 		 struct rq_flags *rf)
3816 {
3817 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3818 
3819 	lockdep_assert_rq_held(rq);
3820 
3821 	if (p->sched_contributes_to_load)
3822 		rq->nr_uninterruptible--;
3823 
3824 #ifdef CONFIG_SMP
3825 	if (wake_flags & WF_MIGRATED)
3826 		en_flags |= ENQUEUE_MIGRATED;
3827 	else
3828 #endif
3829 	if (p->in_iowait) {
3830 		delayacct_blkio_end(p);
3831 		atomic_dec(&task_rq(p)->nr_iowait);
3832 	}
3833 
3834 	activate_task(rq, p, en_flags);
3835 	check_preempt_curr(rq, p, wake_flags);
3836 
3837 	ttwu_do_wakeup(p);
3838 
3839 #ifdef CONFIG_SMP
3840 	if (p->sched_class->task_woken) {
3841 		/*
3842 		 * Our task @p is fully woken up and running; so it's safe to
3843 		 * drop the rq->lock, hereafter rq is only used for statistics.
3844 		 */
3845 		rq_unpin_lock(rq, rf);
3846 		p->sched_class->task_woken(rq, p);
3847 		rq_repin_lock(rq, rf);
3848 	}
3849 
3850 	if (rq->idle_stamp) {
3851 		u64 delta = rq_clock(rq) - rq->idle_stamp;
3852 		u64 max = 2*rq->max_idle_balance_cost;
3853 
3854 		update_avg(&rq->avg_idle, delta);
3855 
3856 		if (rq->avg_idle > max)
3857 			rq->avg_idle = max;
3858 
3859 		rq->wake_stamp = jiffies;
3860 		rq->wake_avg_idle = rq->avg_idle / 2;
3861 
3862 		rq->idle_stamp = 0;
3863 	}
3864 #endif
3865 }
3866 
3867 /*
3868  * Consider @p being inside a wait loop:
3869  *
3870  *   for (;;) {
3871  *      set_current_state(TASK_UNINTERRUPTIBLE);
3872  *
3873  *      if (CONDITION)
3874  *         break;
3875  *
3876  *      schedule();
3877  *   }
3878  *   __set_current_state(TASK_RUNNING);
3879  *
3880  * between set_current_state() and schedule(). In this case @p is still
3881  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3882  * an atomic manner.
3883  *
3884  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3885  * then schedule() must still happen and p->state can be changed to
3886  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3887  * need to do a full wakeup with enqueue.
3888  *
3889  * Returns: %true when the wakeup is done,
3890  *          %false otherwise.
3891  */
ttwu_runnable(struct task_struct * p,int wake_flags)3892 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3893 {
3894 	struct rq_flags rf;
3895 	struct rq *rq;
3896 	int ret = 0;
3897 
3898 	rq = __task_rq_lock(p, &rf);
3899 	if (task_on_rq_queued(p)) {
3900 		if (!task_on_cpu(rq, p)) {
3901 			/*
3902 			 * When on_rq && !on_cpu the task is preempted, see if
3903 			 * it should preempt the task that is current now.
3904 			 */
3905 			update_rq_clock(rq);
3906 			check_preempt_curr(rq, p, wake_flags);
3907 		}
3908 		ttwu_do_wakeup(p);
3909 		ret = 1;
3910 	}
3911 	__task_rq_unlock(rq, &rf);
3912 
3913 	return ret;
3914 }
3915 
3916 #ifdef CONFIG_SMP
sched_ttwu_pending(void * arg)3917 void sched_ttwu_pending(void *arg)
3918 {
3919 	struct llist_node *llist = arg;
3920 	struct rq *rq = this_rq();
3921 	struct task_struct *p, *t;
3922 	struct rq_flags rf;
3923 
3924 	if (!llist)
3925 		return;
3926 
3927 	rq_lock_irqsave(rq, &rf);
3928 	update_rq_clock(rq);
3929 
3930 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3931 		if (WARN_ON_ONCE(p->on_cpu))
3932 			smp_cond_load_acquire(&p->on_cpu, !VAL);
3933 
3934 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3935 			set_task_cpu(p, cpu_of(rq));
3936 
3937 		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3938 	}
3939 
3940 	/*
3941 	 * Must be after enqueueing at least once task such that
3942 	 * idle_cpu() does not observe a false-negative -- if it does,
3943 	 * it is possible for select_idle_siblings() to stack a number
3944 	 * of tasks on this CPU during that window.
3945 	 *
3946 	 * It is ok to clear ttwu_pending when another task pending.
3947 	 * We will receive IPI after local irq enabled and then enqueue it.
3948 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
3949 	 */
3950 	WRITE_ONCE(rq->ttwu_pending, 0);
3951 	rq_unlock_irqrestore(rq, &rf);
3952 }
3953 
3954 /*
3955  * Prepare the scene for sending an IPI for a remote smp_call
3956  *
3957  * Returns true if the caller can proceed with sending the IPI.
3958  * Returns false otherwise.
3959  */
call_function_single_prep_ipi(int cpu)3960 bool call_function_single_prep_ipi(int cpu)
3961 {
3962 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3963 		trace_sched_wake_idle_without_ipi(cpu);
3964 		return false;
3965 	}
3966 
3967 	return true;
3968 }
3969 
3970 /*
3971  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3972  * necessary. The wakee CPU on receipt of the IPI will queue the task
3973  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3974  * of the wakeup instead of the waker.
3975  */
__ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3976 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3977 {
3978 	struct rq *rq = cpu_rq(cpu);
3979 
3980 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3981 
3982 	WRITE_ONCE(rq->ttwu_pending, 1);
3983 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
3984 }
3985 
wake_up_if_idle(int cpu)3986 void wake_up_if_idle(int cpu)
3987 {
3988 	struct rq *rq = cpu_rq(cpu);
3989 
3990 	guard(rcu)();
3991 	if (is_idle_task(rcu_dereference(rq->curr))) {
3992 		guard(rq_lock_irqsave)(rq);
3993 		if (is_idle_task(rq->curr))
3994 			resched_curr(rq);
3995 	}
3996 }
3997 
cpus_share_cache(int this_cpu,int that_cpu)3998 bool cpus_share_cache(int this_cpu, int that_cpu)
3999 {
4000 	if (this_cpu == that_cpu)
4001 		return true;
4002 
4003 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
4004 }
4005 
ttwu_queue_cond(struct task_struct * p,int cpu)4006 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
4007 {
4008 	/*
4009 	 * Do not complicate things with the async wake_list while the CPU is
4010 	 * in hotplug state.
4011 	 */
4012 	if (!cpu_active(cpu))
4013 		return false;
4014 
4015 	/* Ensure the task will still be allowed to run on the CPU. */
4016 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
4017 		return false;
4018 
4019 	/*
4020 	 * If the CPU does not share cache, then queue the task on the
4021 	 * remote rqs wakelist to avoid accessing remote data.
4022 	 */
4023 	if (!cpus_share_cache(smp_processor_id(), cpu))
4024 		return true;
4025 
4026 	if (cpu == smp_processor_id())
4027 		return false;
4028 
4029 	/*
4030 	 * If the wakee cpu is idle, or the task is descheduling and the
4031 	 * only running task on the CPU, then use the wakelist to offload
4032 	 * the task activation to the idle (or soon-to-be-idle) CPU as
4033 	 * the current CPU is likely busy. nr_running is checked to
4034 	 * avoid unnecessary task stacking.
4035 	 *
4036 	 * Note that we can only get here with (wakee) p->on_rq=0,
4037 	 * p->on_cpu can be whatever, we've done the dequeue, so
4038 	 * the wakee has been accounted out of ->nr_running.
4039 	 */
4040 	if (!cpu_rq(cpu)->nr_running)
4041 		return true;
4042 
4043 	return false;
4044 }
4045 
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)4046 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4047 {
4048 	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
4049 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
4050 		__ttwu_queue_wakelist(p, cpu, wake_flags);
4051 		return true;
4052 	}
4053 
4054 	return false;
4055 }
4056 
4057 #else /* !CONFIG_SMP */
4058 
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)4059 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4060 {
4061 	return false;
4062 }
4063 
4064 #endif /* CONFIG_SMP */
4065 
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)4066 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
4067 {
4068 	struct rq *rq = cpu_rq(cpu);
4069 	struct rq_flags rf;
4070 
4071 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
4072 		return;
4073 
4074 	rq_lock(rq, &rf);
4075 	update_rq_clock(rq);
4076 	ttwu_do_activate(rq, p, wake_flags, &rf);
4077 	rq_unlock(rq, &rf);
4078 }
4079 
4080 /*
4081  * Invoked from try_to_wake_up() to check whether the task can be woken up.
4082  *
4083  * The caller holds p::pi_lock if p != current or has preemption
4084  * disabled when p == current.
4085  *
4086  * The rules of PREEMPT_RT saved_state:
4087  *
4088  *   The related locking code always holds p::pi_lock when updating
4089  *   p::saved_state, which means the code is fully serialized in both cases.
4090  *
4091  *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
4092  *   bits set. This allows to distinguish all wakeup scenarios.
4093  */
4094 static __always_inline
ttwu_state_match(struct task_struct * p,unsigned int state,int * success)4095 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4096 {
4097 	int match;
4098 
4099 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4100 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4101 			     state != TASK_RTLOCK_WAIT);
4102 	}
4103 
4104 	*success = !!(match = __task_state_match(p, state));
4105 
4106 #ifdef CONFIG_PREEMPT_RT
4107 	/*
4108 	 * Saved state preserves the task state across blocking on
4109 	 * an RT lock.  If the state matches, set p::saved_state to
4110 	 * TASK_RUNNING, but do not wake the task because it waits
4111 	 * for a lock wakeup. Also indicate success because from
4112 	 * the regular waker's point of view this has succeeded.
4113 	 *
4114 	 * After acquiring the lock the task will restore p::__state
4115 	 * from p::saved_state which ensures that the regular
4116 	 * wakeup is not lost. The restore will also set
4117 	 * p::saved_state to TASK_RUNNING so any further tests will
4118 	 * not result in false positives vs. @success
4119 	 */
4120 	if (match < 0)
4121 		p->saved_state = TASK_RUNNING;
4122 #endif
4123 	return match > 0;
4124 }
4125 
4126 /*
4127  * Notes on Program-Order guarantees on SMP systems.
4128  *
4129  *  MIGRATION
4130  *
4131  * The basic program-order guarantee on SMP systems is that when a task [t]
4132  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4133  * execution on its new CPU [c1].
4134  *
4135  * For migration (of runnable tasks) this is provided by the following means:
4136  *
4137  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4138  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4139  *     rq(c1)->lock (if not at the same time, then in that order).
4140  *  C) LOCK of the rq(c1)->lock scheduling in task
4141  *
4142  * Release/acquire chaining guarantees that B happens after A and C after B.
4143  * Note: the CPU doing B need not be c0 or c1
4144  *
4145  * Example:
4146  *
4147  *   CPU0            CPU1            CPU2
4148  *
4149  *   LOCK rq(0)->lock
4150  *   sched-out X
4151  *   sched-in Y
4152  *   UNLOCK rq(0)->lock
4153  *
4154  *                                   LOCK rq(0)->lock // orders against CPU0
4155  *                                   dequeue X
4156  *                                   UNLOCK rq(0)->lock
4157  *
4158  *                                   LOCK rq(1)->lock
4159  *                                   enqueue X
4160  *                                   UNLOCK rq(1)->lock
4161  *
4162  *                   LOCK rq(1)->lock // orders against CPU2
4163  *                   sched-out Z
4164  *                   sched-in X
4165  *                   UNLOCK rq(1)->lock
4166  *
4167  *
4168  *  BLOCKING -- aka. SLEEP + WAKEUP
4169  *
4170  * For blocking we (obviously) need to provide the same guarantee as for
4171  * migration. However the means are completely different as there is no lock
4172  * chain to provide order. Instead we do:
4173  *
4174  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4175  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4176  *
4177  * Example:
4178  *
4179  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4180  *
4181  *   LOCK rq(0)->lock LOCK X->pi_lock
4182  *   dequeue X
4183  *   sched-out X
4184  *   smp_store_release(X->on_cpu, 0);
4185  *
4186  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4187  *                    X->state = WAKING
4188  *                    set_task_cpu(X,2)
4189  *
4190  *                    LOCK rq(2)->lock
4191  *                    enqueue X
4192  *                    X->state = RUNNING
4193  *                    UNLOCK rq(2)->lock
4194  *
4195  *                                          LOCK rq(2)->lock // orders against CPU1
4196  *                                          sched-out Z
4197  *                                          sched-in X
4198  *                                          UNLOCK rq(2)->lock
4199  *
4200  *                    UNLOCK X->pi_lock
4201  *   UNLOCK rq(0)->lock
4202  *
4203  *
4204  * However, for wakeups there is a second guarantee we must provide, namely we
4205  * must ensure that CONDITION=1 done by the caller can not be reordered with
4206  * accesses to the task state; see try_to_wake_up() and set_current_state().
4207  */
4208 
4209 /**
4210  * try_to_wake_up - wake up a thread
4211  * @p: the thread to be awakened
4212  * @state: the mask of task states that can be woken
4213  * @wake_flags: wake modifier flags (WF_*)
4214  *
4215  * Conceptually does:
4216  *
4217  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4218  *
4219  * If the task was not queued/runnable, also place it back on a runqueue.
4220  *
4221  * This function is atomic against schedule() which would dequeue the task.
4222  *
4223  * It issues a full memory barrier before accessing @p->state, see the comment
4224  * with set_current_state().
4225  *
4226  * Uses p->pi_lock to serialize against concurrent wake-ups.
4227  *
4228  * Relies on p->pi_lock stabilizing:
4229  *  - p->sched_class
4230  *  - p->cpus_ptr
4231  *  - p->sched_task_group
4232  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4233  *
4234  * Tries really hard to only take one task_rq(p)->lock for performance.
4235  * Takes rq->lock in:
4236  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4237  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4238  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4239  *
4240  * As a consequence we race really badly with just about everything. See the
4241  * many memory barriers and their comments for details.
4242  *
4243  * Return: %true if @p->state changes (an actual wakeup was done),
4244  *	   %false otherwise.
4245  */
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)4246 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4247 {
4248 	guard(preempt)();
4249 	int cpu, success = 0;
4250 
4251 	if (p == current) {
4252 		/*
4253 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4254 		 * == smp_processor_id()'. Together this means we can special
4255 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4256 		 * without taking any locks.
4257 		 *
4258 		 * In particular:
4259 		 *  - we rely on Program-Order guarantees for all the ordering,
4260 		 *  - we're serialized against set_special_state() by virtue of
4261 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4262 		 */
4263 		if (!ttwu_state_match(p, state, &success))
4264 			goto out;
4265 
4266 		trace_sched_waking(p);
4267 		ttwu_do_wakeup(p);
4268 		goto out;
4269 	}
4270 
4271 	/*
4272 	 * If we are going to wake up a thread waiting for CONDITION we
4273 	 * need to ensure that CONDITION=1 done by the caller can not be
4274 	 * reordered with p->state check below. This pairs with smp_store_mb()
4275 	 * in set_current_state() that the waiting thread does.
4276 	 */
4277 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4278 		smp_mb__after_spinlock();
4279 		if (!ttwu_state_match(p, state, &success))
4280 			break;
4281 
4282 		trace_sched_waking(p);
4283 
4284 		/*
4285 		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4286 		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4287 		 * in smp_cond_load_acquire() below.
4288 		 *
4289 		 * sched_ttwu_pending()			try_to_wake_up()
4290 		 *   STORE p->on_rq = 1			  LOAD p->state
4291 		 *   UNLOCK rq->lock
4292 		 *
4293 		 * __schedule() (switch to task 'p')
4294 		 *   LOCK rq->lock			  smp_rmb();
4295 		 *   smp_mb__after_spinlock();
4296 		 *   UNLOCK rq->lock
4297 		 *
4298 		 * [task p]
4299 		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4300 		 *
4301 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4302 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4303 		 *
4304 		 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4305 		 */
4306 		smp_rmb();
4307 		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4308 			break;
4309 
4310 #ifdef CONFIG_SMP
4311 		/*
4312 		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4313 		 * possible to, falsely, observe p->on_cpu == 0.
4314 		 *
4315 		 * One must be running (->on_cpu == 1) in order to remove oneself
4316 		 * from the runqueue.
4317 		 *
4318 		 * __schedule() (switch to task 'p')	try_to_wake_up()
4319 		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4320 		 *   UNLOCK rq->lock
4321 		 *
4322 		 * __schedule() (put 'p' to sleep)
4323 		 *   LOCK rq->lock			  smp_rmb();
4324 		 *   smp_mb__after_spinlock();
4325 		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4326 		 *
4327 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4328 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4329 		 *
4330 		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4331 		 * schedule()'s deactivate_task() has 'happened' and p will no longer
4332 		 * care about it's own p->state. See the comment in __schedule().
4333 		 */
4334 		smp_acquire__after_ctrl_dep();
4335 
4336 		/*
4337 		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4338 		 * == 0), which means we need to do an enqueue, change p->state to
4339 		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4340 		 * enqueue, such as ttwu_queue_wakelist().
4341 		 */
4342 		WRITE_ONCE(p->__state, TASK_WAKING);
4343 
4344 		/*
4345 		 * If the owning (remote) CPU is still in the middle of schedule() with
4346 		 * this task as prev, considering queueing p on the remote CPUs wake_list
4347 		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4348 		 * let the waker make forward progress. This is safe because IRQs are
4349 		 * disabled and the IPI will deliver after on_cpu is cleared.
4350 		 *
4351 		 * Ensure we load task_cpu(p) after p->on_cpu:
4352 		 *
4353 		 * set_task_cpu(p, cpu);
4354 		 *   STORE p->cpu = @cpu
4355 		 * __schedule() (switch to task 'p')
4356 		 *   LOCK rq->lock
4357 		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4358 		 *   STORE p->on_cpu = 1		LOAD p->cpu
4359 		 *
4360 		 * to ensure we observe the correct CPU on which the task is currently
4361 		 * scheduling.
4362 		 */
4363 		if (smp_load_acquire(&p->on_cpu) &&
4364 		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4365 			break;
4366 
4367 		/*
4368 		 * If the owning (remote) CPU is still in the middle of schedule() with
4369 		 * this task as prev, wait until it's done referencing the task.
4370 		 *
4371 		 * Pairs with the smp_store_release() in finish_task().
4372 		 *
4373 		 * This ensures that tasks getting woken will be fully ordered against
4374 		 * their previous state and preserve Program Order.
4375 		 */
4376 		smp_cond_load_acquire(&p->on_cpu, !VAL);
4377 
4378 		cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4379 		if (task_cpu(p) != cpu) {
4380 			if (p->in_iowait) {
4381 				delayacct_blkio_end(p);
4382 				atomic_dec(&task_rq(p)->nr_iowait);
4383 			}
4384 
4385 			wake_flags |= WF_MIGRATED;
4386 			psi_ttwu_dequeue(p);
4387 			set_task_cpu(p, cpu);
4388 		}
4389 #else
4390 		cpu = task_cpu(p);
4391 #endif /* CONFIG_SMP */
4392 
4393 		ttwu_queue(p, cpu, wake_flags);
4394 	}
4395 out:
4396 	if (success)
4397 		ttwu_stat(p, task_cpu(p), wake_flags);
4398 
4399 	return success;
4400 }
4401 
__task_needs_rq_lock(struct task_struct * p)4402 static bool __task_needs_rq_lock(struct task_struct *p)
4403 {
4404 	unsigned int state = READ_ONCE(p->__state);
4405 
4406 	/*
4407 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4408 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4409 	 * locks at the end, see ttwu_queue_wakelist().
4410 	 */
4411 	if (state == TASK_RUNNING || state == TASK_WAKING)
4412 		return true;
4413 
4414 	/*
4415 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4416 	 * possible to, falsely, observe p->on_rq == 0.
4417 	 *
4418 	 * See try_to_wake_up() for a longer comment.
4419 	 */
4420 	smp_rmb();
4421 	if (p->on_rq)
4422 		return true;
4423 
4424 #ifdef CONFIG_SMP
4425 	/*
4426 	 * Ensure the task has finished __schedule() and will not be referenced
4427 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4428 	 */
4429 	smp_rmb();
4430 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4431 #endif
4432 
4433 	return false;
4434 }
4435 
4436 /**
4437  * task_call_func - Invoke a function on task in fixed state
4438  * @p: Process for which the function is to be invoked, can be @current.
4439  * @func: Function to invoke.
4440  * @arg: Argument to function.
4441  *
4442  * Fix the task in it's current state by avoiding wakeups and or rq operations
4443  * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
4444  * to work out what the state is, if required.  Given that @func can be invoked
4445  * with a runqueue lock held, it had better be quite lightweight.
4446  *
4447  * Returns:
4448  *   Whatever @func returns
4449  */
task_call_func(struct task_struct * p,task_call_f func,void * arg)4450 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4451 {
4452 	struct rq *rq = NULL;
4453 	struct rq_flags rf;
4454 	int ret;
4455 
4456 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4457 
4458 	if (__task_needs_rq_lock(p))
4459 		rq = __task_rq_lock(p, &rf);
4460 
4461 	/*
4462 	 * At this point the task is pinned; either:
4463 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4464 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4465 	 *  - queued, and we're holding off schedule	 (rq->lock)
4466 	 *  - running, and we're holding off de-schedule (rq->lock)
4467 	 *
4468 	 * The called function (@func) can use: task_curr(), p->on_rq and
4469 	 * p->__state to differentiate between these states.
4470 	 */
4471 	ret = func(p, arg);
4472 
4473 	if (rq)
4474 		rq_unlock(rq, &rf);
4475 
4476 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4477 	return ret;
4478 }
4479 
4480 /**
4481  * cpu_curr_snapshot - Return a snapshot of the currently running task
4482  * @cpu: The CPU on which to snapshot the task.
4483  *
4484  * Returns the task_struct pointer of the task "currently" running on
4485  * the specified CPU.  If the same task is running on that CPU throughout,
4486  * the return value will be a pointer to that task's task_struct structure.
4487  * If the CPU did any context switches even vaguely concurrently with the
4488  * execution of this function, the return value will be a pointer to the
4489  * task_struct structure of a randomly chosen task that was running on
4490  * that CPU somewhere around the time that this function was executing.
4491  *
4492  * If the specified CPU was offline, the return value is whatever it
4493  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4494  * task, but there is no guarantee.  Callers wishing a useful return
4495  * value must take some action to ensure that the specified CPU remains
4496  * online throughout.
4497  *
4498  * This function executes full memory barriers before and after fetching
4499  * the pointer, which permits the caller to confine this function's fetch
4500  * with respect to the caller's accesses to other shared variables.
4501  */
cpu_curr_snapshot(int cpu)4502 struct task_struct *cpu_curr_snapshot(int cpu)
4503 {
4504 	struct task_struct *t;
4505 
4506 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4507 	t = rcu_dereference(cpu_curr(cpu));
4508 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4509 	return t;
4510 }
4511 
4512 /**
4513  * wake_up_process - Wake up a specific process
4514  * @p: The process to be woken up.
4515  *
4516  * Attempt to wake up the nominated process and move it to the set of runnable
4517  * processes.
4518  *
4519  * Return: 1 if the process was woken up, 0 if it was already running.
4520  *
4521  * This function executes a full memory barrier before accessing the task state.
4522  */
wake_up_process(struct task_struct * p)4523 int wake_up_process(struct task_struct *p)
4524 {
4525 	return try_to_wake_up(p, TASK_NORMAL, 0);
4526 }
4527 EXPORT_SYMBOL(wake_up_process);
4528 
wake_up_state(struct task_struct * p,unsigned int state)4529 int wake_up_state(struct task_struct *p, unsigned int state)
4530 {
4531 	return try_to_wake_up(p, state, 0);
4532 }
4533 
4534 /*
4535  * Perform scheduler related setup for a newly forked process p.
4536  * p is forked by current.
4537  *
4538  * __sched_fork() is basic setup used by init_idle() too:
4539  */
__sched_fork(unsigned long clone_flags,struct task_struct * p)4540 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4541 {
4542 	p->on_rq			= 0;
4543 
4544 	p->se.on_rq			= 0;
4545 	p->se.exec_start		= 0;
4546 	p->se.sum_exec_runtime		= 0;
4547 	p->se.prev_sum_exec_runtime	= 0;
4548 	p->se.nr_migrations		= 0;
4549 	p->se.vruntime			= 0;
4550 	p->se.vlag			= 0;
4551 	p->se.slice			= sysctl_sched_base_slice;
4552 	INIT_LIST_HEAD(&p->se.group_node);
4553 
4554 #ifdef CONFIG_FAIR_GROUP_SCHED
4555 	p->se.cfs_rq			= NULL;
4556 #endif
4557 
4558 #ifdef CONFIG_SCHEDSTATS
4559 	/* Even if schedstat is disabled, there should not be garbage */
4560 	memset(&p->stats, 0, sizeof(p->stats));
4561 #endif
4562 
4563 	RB_CLEAR_NODE(&p->dl.rb_node);
4564 	init_dl_task_timer(&p->dl);
4565 	init_dl_inactive_task_timer(&p->dl);
4566 	__dl_clear_params(p);
4567 
4568 	INIT_LIST_HEAD(&p->rt.run_list);
4569 	p->rt.timeout		= 0;
4570 	p->rt.time_slice	= sched_rr_timeslice;
4571 	p->rt.on_rq		= 0;
4572 	p->rt.on_list		= 0;
4573 
4574 #ifdef CONFIG_PREEMPT_NOTIFIERS
4575 	INIT_HLIST_HEAD(&p->preempt_notifiers);
4576 #endif
4577 
4578 #ifdef CONFIG_COMPACTION
4579 	p->capture_control = NULL;
4580 #endif
4581 	init_numa_balancing(clone_flags, p);
4582 #ifdef CONFIG_SMP
4583 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
4584 	p->migration_pending = NULL;
4585 #endif
4586 	init_sched_mm_cid(p);
4587 }
4588 
4589 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4590 
4591 #ifdef CONFIG_NUMA_BALANCING
4592 
4593 int sysctl_numa_balancing_mode;
4594 
__set_numabalancing_state(bool enabled)4595 static void __set_numabalancing_state(bool enabled)
4596 {
4597 	if (enabled)
4598 		static_branch_enable(&sched_numa_balancing);
4599 	else
4600 		static_branch_disable(&sched_numa_balancing);
4601 }
4602 
set_numabalancing_state(bool enabled)4603 void set_numabalancing_state(bool enabled)
4604 {
4605 	if (enabled)
4606 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4607 	else
4608 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4609 	__set_numabalancing_state(enabled);
4610 }
4611 
4612 #ifdef CONFIG_PROC_SYSCTL
reset_memory_tiering(void)4613 static void reset_memory_tiering(void)
4614 {
4615 	struct pglist_data *pgdat;
4616 
4617 	for_each_online_pgdat(pgdat) {
4618 		pgdat->nbp_threshold = 0;
4619 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4620 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4621 	}
4622 }
4623 
sysctl_numa_balancing(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4624 static int sysctl_numa_balancing(struct ctl_table *table, int write,
4625 			  void *buffer, size_t *lenp, loff_t *ppos)
4626 {
4627 	struct ctl_table t;
4628 	int err;
4629 	int state = sysctl_numa_balancing_mode;
4630 
4631 	if (write && !capable(CAP_SYS_ADMIN))
4632 		return -EPERM;
4633 
4634 	t = *table;
4635 	t.data = &state;
4636 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4637 	if (err < 0)
4638 		return err;
4639 	if (write) {
4640 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4641 		    (state & NUMA_BALANCING_MEMORY_TIERING))
4642 			reset_memory_tiering();
4643 		sysctl_numa_balancing_mode = state;
4644 		__set_numabalancing_state(state);
4645 	}
4646 	return err;
4647 }
4648 #endif
4649 #endif
4650 
4651 #ifdef CONFIG_SCHEDSTATS
4652 
4653 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4654 
set_schedstats(bool enabled)4655 static void set_schedstats(bool enabled)
4656 {
4657 	if (enabled)
4658 		static_branch_enable(&sched_schedstats);
4659 	else
4660 		static_branch_disable(&sched_schedstats);
4661 }
4662 
force_schedstat_enabled(void)4663 void force_schedstat_enabled(void)
4664 {
4665 	if (!schedstat_enabled()) {
4666 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4667 		static_branch_enable(&sched_schedstats);
4668 	}
4669 }
4670 
setup_schedstats(char * str)4671 static int __init setup_schedstats(char *str)
4672 {
4673 	int ret = 0;
4674 	if (!str)
4675 		goto out;
4676 
4677 	if (!strcmp(str, "enable")) {
4678 		set_schedstats(true);
4679 		ret = 1;
4680 	} else if (!strcmp(str, "disable")) {
4681 		set_schedstats(false);
4682 		ret = 1;
4683 	}
4684 out:
4685 	if (!ret)
4686 		pr_warn("Unable to parse schedstats=\n");
4687 
4688 	return ret;
4689 }
4690 __setup("schedstats=", setup_schedstats);
4691 
4692 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4693 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4694 		size_t *lenp, loff_t *ppos)
4695 {
4696 	struct ctl_table t;
4697 	int err;
4698 	int state = static_branch_likely(&sched_schedstats);
4699 
4700 	if (write && !capable(CAP_SYS_ADMIN))
4701 		return -EPERM;
4702 
4703 	t = *table;
4704 	t.data = &state;
4705 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4706 	if (err < 0)
4707 		return err;
4708 	if (write)
4709 		set_schedstats(state);
4710 	return err;
4711 }
4712 #endif /* CONFIG_PROC_SYSCTL */
4713 #endif /* CONFIG_SCHEDSTATS */
4714 
4715 #ifdef CONFIG_SYSCTL
4716 static struct ctl_table sched_core_sysctls[] = {
4717 #ifdef CONFIG_SCHEDSTATS
4718 	{
4719 		.procname       = "sched_schedstats",
4720 		.data           = NULL,
4721 		.maxlen         = sizeof(unsigned int),
4722 		.mode           = 0644,
4723 		.proc_handler   = sysctl_schedstats,
4724 		.extra1         = SYSCTL_ZERO,
4725 		.extra2         = SYSCTL_ONE,
4726 	},
4727 #endif /* CONFIG_SCHEDSTATS */
4728 #ifdef CONFIG_UCLAMP_TASK
4729 	{
4730 		.procname       = "sched_util_clamp_min",
4731 		.data           = &sysctl_sched_uclamp_util_min,
4732 		.maxlen         = sizeof(unsigned int),
4733 		.mode           = 0644,
4734 		.proc_handler   = sysctl_sched_uclamp_handler,
4735 	},
4736 	{
4737 		.procname       = "sched_util_clamp_max",
4738 		.data           = &sysctl_sched_uclamp_util_max,
4739 		.maxlen         = sizeof(unsigned int),
4740 		.mode           = 0644,
4741 		.proc_handler   = sysctl_sched_uclamp_handler,
4742 	},
4743 	{
4744 		.procname       = "sched_util_clamp_min_rt_default",
4745 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
4746 		.maxlen         = sizeof(unsigned int),
4747 		.mode           = 0644,
4748 		.proc_handler   = sysctl_sched_uclamp_handler,
4749 	},
4750 #endif /* CONFIG_UCLAMP_TASK */
4751 #ifdef CONFIG_NUMA_BALANCING
4752 	{
4753 		.procname	= "numa_balancing",
4754 		.data		= NULL, /* filled in by handler */
4755 		.maxlen		= sizeof(unsigned int),
4756 		.mode		= 0644,
4757 		.proc_handler	= sysctl_numa_balancing,
4758 		.extra1		= SYSCTL_ZERO,
4759 		.extra2		= SYSCTL_FOUR,
4760 	},
4761 #endif /* CONFIG_NUMA_BALANCING */
4762 	{}
4763 };
sched_core_sysctl_init(void)4764 static int __init sched_core_sysctl_init(void)
4765 {
4766 	register_sysctl_init("kernel", sched_core_sysctls);
4767 	return 0;
4768 }
4769 late_initcall(sched_core_sysctl_init);
4770 #endif /* CONFIG_SYSCTL */
4771 
4772 /*
4773  * fork()/clone()-time setup:
4774  */
sched_fork(unsigned long clone_flags,struct task_struct * p)4775 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4776 {
4777 	__sched_fork(clone_flags, p);
4778 	/*
4779 	 * We mark the process as NEW here. This guarantees that
4780 	 * nobody will actually run it, and a signal or other external
4781 	 * event cannot wake it up and insert it on the runqueue either.
4782 	 */
4783 	p->__state = TASK_NEW;
4784 
4785 	/*
4786 	 * Make sure we do not leak PI boosting priority to the child.
4787 	 */
4788 	p->prio = current->normal_prio;
4789 
4790 #ifdef CONFIG_SCHED_LATENCY_NICE
4791 	/* Propagate the parent's latency requirements to the child as well */
4792 	p->latency_prio = current->latency_prio;
4793 #endif
4794 
4795 	uclamp_fork(p);
4796 
4797 	/*
4798 	 * Revert to default priority/policy on fork if requested.
4799 	 */
4800 	if (unlikely(p->sched_reset_on_fork)) {
4801 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4802 			p->policy = SCHED_NORMAL;
4803 			p->static_prio = NICE_TO_PRIO(0);
4804 			p->rt_priority = 0;
4805 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
4806 			p->static_prio = NICE_TO_PRIO(0);
4807 
4808 		p->prio = p->normal_prio = p->static_prio;
4809 		set_load_weight(p, false);
4810 
4811 #ifdef CONFIG_SCHED_LATENCY_NICE
4812 		p->latency_prio = NICE_TO_LATENCY(0);
4813 		set_latency_weight(p);
4814 #endif
4815 
4816 		/*
4817 		 * We don't need the reset flag anymore after the fork. It has
4818 		 * fulfilled its duty:
4819 		 */
4820 		p->sched_reset_on_fork = 0;
4821 	}
4822 
4823 	if (dl_prio(p->prio))
4824 		return -EAGAIN;
4825 	else if (rt_prio(p->prio))
4826 		p->sched_class = &rt_sched_class;
4827 	else
4828 		p->sched_class = &fair_sched_class;
4829 
4830 	init_entity_runnable_average(&p->se);
4831 
4832 
4833 #ifdef CONFIG_SCHED_INFO
4834 	if (likely(sched_info_on()))
4835 		memset(&p->sched_info, 0, sizeof(p->sched_info));
4836 #endif
4837 #if defined(CONFIG_SMP)
4838 	p->on_cpu = 0;
4839 #endif
4840 	init_task_preempt_count(p);
4841 #ifdef CONFIG_SMP
4842 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
4843 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
4844 #endif
4845 	return 0;
4846 }
4847 
sched_cgroup_fork(struct task_struct * p,struct kernel_clone_args * kargs)4848 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4849 {
4850 	unsigned long flags;
4851 
4852 	/*
4853 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4854 	 * required yet, but lockdep gets upset if rules are violated.
4855 	 */
4856 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4857 #ifdef CONFIG_CGROUP_SCHED
4858 	if (1) {
4859 		struct task_group *tg;
4860 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4861 				  struct task_group, css);
4862 		tg = autogroup_task_group(p, tg);
4863 		p->sched_task_group = tg;
4864 	}
4865 #endif
4866 	rseq_migrate(p);
4867 	/*
4868 	 * We're setting the CPU for the first time, we don't migrate,
4869 	 * so use __set_task_cpu().
4870 	 */
4871 	__set_task_cpu(p, smp_processor_id());
4872 	if (p->sched_class->task_fork)
4873 		p->sched_class->task_fork(p);
4874 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4875 }
4876 
sched_post_fork(struct task_struct * p)4877 void sched_post_fork(struct task_struct *p)
4878 {
4879 	uclamp_post_fork(p);
4880 }
4881 
to_ratio(u64 period,u64 runtime)4882 unsigned long to_ratio(u64 period, u64 runtime)
4883 {
4884 	if (runtime == RUNTIME_INF)
4885 		return BW_UNIT;
4886 
4887 	/*
4888 	 * Doing this here saves a lot of checks in all
4889 	 * the calling paths, and returning zero seems
4890 	 * safe for them anyway.
4891 	 */
4892 	if (period == 0)
4893 		return 0;
4894 
4895 	return div64_u64(runtime << BW_SHIFT, period);
4896 }
4897 
4898 /*
4899  * wake_up_new_task - wake up a newly created task for the first time.
4900  *
4901  * This function will do some initial scheduler statistics housekeeping
4902  * that must be done for every newly created context, then puts the task
4903  * on the runqueue and wakes it.
4904  */
wake_up_new_task(struct task_struct * p)4905 void wake_up_new_task(struct task_struct *p)
4906 {
4907 	struct rq_flags rf;
4908 	struct rq *rq;
4909 
4910 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4911 	WRITE_ONCE(p->__state, TASK_RUNNING);
4912 #ifdef CONFIG_SMP
4913 	/*
4914 	 * Fork balancing, do it here and not earlier because:
4915 	 *  - cpus_ptr can change in the fork path
4916 	 *  - any previously selected CPU might disappear through hotplug
4917 	 *
4918 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4919 	 * as we're not fully set-up yet.
4920 	 */
4921 	p->recent_used_cpu = task_cpu(p);
4922 	rseq_migrate(p);
4923 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4924 #endif
4925 	rq = __task_rq_lock(p, &rf);
4926 	update_rq_clock(rq);
4927 	post_init_entity_util_avg(p);
4928 
4929 	activate_task(rq, p, ENQUEUE_NOCLOCK);
4930 	trace_sched_wakeup_new(p);
4931 	check_preempt_curr(rq, p, WF_FORK);
4932 #ifdef CONFIG_SMP
4933 	if (p->sched_class->task_woken) {
4934 		/*
4935 		 * Nothing relies on rq->lock after this, so it's fine to
4936 		 * drop it.
4937 		 */
4938 		rq_unpin_lock(rq, &rf);
4939 		p->sched_class->task_woken(rq, p);
4940 		rq_repin_lock(rq, &rf);
4941 	}
4942 #endif
4943 	task_rq_unlock(rq, p, &rf);
4944 }
4945 
4946 #ifdef CONFIG_PREEMPT_NOTIFIERS
4947 
4948 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4949 
preempt_notifier_inc(void)4950 void preempt_notifier_inc(void)
4951 {
4952 	static_branch_inc(&preempt_notifier_key);
4953 }
4954 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4955 
preempt_notifier_dec(void)4956 void preempt_notifier_dec(void)
4957 {
4958 	static_branch_dec(&preempt_notifier_key);
4959 }
4960 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4961 
4962 /**
4963  * preempt_notifier_register - tell me when current is being preempted & rescheduled
4964  * @notifier: notifier struct to register
4965  */
preempt_notifier_register(struct preempt_notifier * notifier)4966 void preempt_notifier_register(struct preempt_notifier *notifier)
4967 {
4968 	if (!static_branch_unlikely(&preempt_notifier_key))
4969 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
4970 
4971 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
4972 }
4973 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4974 
4975 /**
4976  * preempt_notifier_unregister - no longer interested in preemption notifications
4977  * @notifier: notifier struct to unregister
4978  *
4979  * This is *not* safe to call from within a preemption notifier.
4980  */
preempt_notifier_unregister(struct preempt_notifier * notifier)4981 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4982 {
4983 	hlist_del(&notifier->link);
4984 }
4985 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4986 
__fire_sched_in_preempt_notifiers(struct task_struct * curr)4987 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4988 {
4989 	struct preempt_notifier *notifier;
4990 
4991 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4992 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
4993 }
4994 
fire_sched_in_preempt_notifiers(struct task_struct * curr)4995 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4996 {
4997 	if (static_branch_unlikely(&preempt_notifier_key))
4998 		__fire_sched_in_preempt_notifiers(curr);
4999 }
5000 
5001 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)5002 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
5003 				   struct task_struct *next)
5004 {
5005 	struct preempt_notifier *notifier;
5006 
5007 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
5008 		notifier->ops->sched_out(notifier, next);
5009 }
5010 
5011 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)5012 fire_sched_out_preempt_notifiers(struct task_struct *curr,
5013 				 struct task_struct *next)
5014 {
5015 	if (static_branch_unlikely(&preempt_notifier_key))
5016 		__fire_sched_out_preempt_notifiers(curr, next);
5017 }
5018 
5019 #else /* !CONFIG_PREEMPT_NOTIFIERS */
5020 
fire_sched_in_preempt_notifiers(struct task_struct * curr)5021 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
5022 {
5023 }
5024 
5025 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)5026 fire_sched_out_preempt_notifiers(struct task_struct *curr,
5027 				 struct task_struct *next)
5028 {
5029 }
5030 
5031 #endif /* CONFIG_PREEMPT_NOTIFIERS */
5032 
prepare_task(struct task_struct * next)5033 static inline void prepare_task(struct task_struct *next)
5034 {
5035 #ifdef CONFIG_SMP
5036 	/*
5037 	 * Claim the task as running, we do this before switching to it
5038 	 * such that any running task will have this set.
5039 	 *
5040 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
5041 	 * its ordering comment.
5042 	 */
5043 	WRITE_ONCE(next->on_cpu, 1);
5044 #endif
5045 }
5046 
finish_task(struct task_struct * prev)5047 static inline void finish_task(struct task_struct *prev)
5048 {
5049 #ifdef CONFIG_SMP
5050 	/*
5051 	 * This must be the very last reference to @prev from this CPU. After
5052 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
5053 	 * must ensure this doesn't happen until the switch is completely
5054 	 * finished.
5055 	 *
5056 	 * In particular, the load of prev->state in finish_task_switch() must
5057 	 * happen before this.
5058 	 *
5059 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5060 	 */
5061 	smp_store_release(&prev->on_cpu, 0);
5062 #endif
5063 }
5064 
5065 #ifdef CONFIG_SMP
5066 
do_balance_callbacks(struct rq * rq,struct balance_callback * head)5067 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5068 {
5069 	void (*func)(struct rq *rq);
5070 	struct balance_callback *next;
5071 
5072 	lockdep_assert_rq_held(rq);
5073 
5074 	while (head) {
5075 		func = (void (*)(struct rq *))head->func;
5076 		next = head->next;
5077 		head->next = NULL;
5078 		head = next;
5079 
5080 		func(rq);
5081 	}
5082 }
5083 
5084 static void balance_push(struct rq *rq);
5085 
5086 /*
5087  * balance_push_callback is a right abuse of the callback interface and plays
5088  * by significantly different rules.
5089  *
5090  * Where the normal balance_callback's purpose is to be ran in the same context
5091  * that queued it (only later, when it's safe to drop rq->lock again),
5092  * balance_push_callback is specifically targeted at __schedule().
5093  *
5094  * This abuse is tolerated because it places all the unlikely/odd cases behind
5095  * a single test, namely: rq->balance_callback == NULL.
5096  */
5097 struct balance_callback balance_push_callback = {
5098 	.next = NULL,
5099 	.func = balance_push,
5100 };
5101 
5102 static inline struct balance_callback *
__splice_balance_callbacks(struct rq * rq,bool split)5103 __splice_balance_callbacks(struct rq *rq, bool split)
5104 {
5105 	struct balance_callback *head = rq->balance_callback;
5106 
5107 	if (likely(!head))
5108 		return NULL;
5109 
5110 	lockdep_assert_rq_held(rq);
5111 	/*
5112 	 * Must not take balance_push_callback off the list when
5113 	 * splice_balance_callbacks() and balance_callbacks() are not
5114 	 * in the same rq->lock section.
5115 	 *
5116 	 * In that case it would be possible for __schedule() to interleave
5117 	 * and observe the list empty.
5118 	 */
5119 	if (split && head == &balance_push_callback)
5120 		head = NULL;
5121 	else
5122 		rq->balance_callback = NULL;
5123 
5124 	return head;
5125 }
5126 
splice_balance_callbacks(struct rq * rq)5127 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5128 {
5129 	return __splice_balance_callbacks(rq, true);
5130 }
5131 
__balance_callbacks(struct rq * rq)5132 static void __balance_callbacks(struct rq *rq)
5133 {
5134 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5135 }
5136 
balance_callbacks(struct rq * rq,struct balance_callback * head)5137 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5138 {
5139 	unsigned long flags;
5140 
5141 	if (unlikely(head)) {
5142 		raw_spin_rq_lock_irqsave(rq, flags);
5143 		do_balance_callbacks(rq, head);
5144 		raw_spin_rq_unlock_irqrestore(rq, flags);
5145 	}
5146 }
5147 
5148 #else
5149 
__balance_callbacks(struct rq * rq)5150 static inline void __balance_callbacks(struct rq *rq)
5151 {
5152 }
5153 
splice_balance_callbacks(struct rq * rq)5154 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5155 {
5156 	return NULL;
5157 }
5158 
balance_callbacks(struct rq * rq,struct balance_callback * head)5159 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5160 {
5161 }
5162 
5163 #endif
5164 
5165 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)5166 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5167 {
5168 	/*
5169 	 * Since the runqueue lock will be released by the next
5170 	 * task (which is an invalid locking op but in the case
5171 	 * of the scheduler it's an obvious special-case), so we
5172 	 * do an early lockdep release here:
5173 	 */
5174 	rq_unpin_lock(rq, rf);
5175 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5176 #ifdef CONFIG_DEBUG_SPINLOCK
5177 	/* this is a valid case when another task releases the spinlock */
5178 	rq_lockp(rq)->owner = next;
5179 #endif
5180 }
5181 
finish_lock_switch(struct rq * rq)5182 static inline void finish_lock_switch(struct rq *rq)
5183 {
5184 	/*
5185 	 * If we are tracking spinlock dependencies then we have to
5186 	 * fix up the runqueue lock - which gets 'carried over' from
5187 	 * prev into current:
5188 	 */
5189 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5190 	__balance_callbacks(rq);
5191 	raw_spin_rq_unlock_irq(rq);
5192 }
5193 
5194 /*
5195  * NOP if the arch has not defined these:
5196  */
5197 
5198 #ifndef prepare_arch_switch
5199 # define prepare_arch_switch(next)	do { } while (0)
5200 #endif
5201 
5202 #ifndef finish_arch_post_lock_switch
5203 # define finish_arch_post_lock_switch()	do { } while (0)
5204 #endif
5205 
kmap_local_sched_out(void)5206 static inline void kmap_local_sched_out(void)
5207 {
5208 #ifdef CONFIG_KMAP_LOCAL
5209 	if (unlikely(current->kmap_ctrl.idx))
5210 		__kmap_local_sched_out();
5211 #endif
5212 }
5213 
kmap_local_sched_in(void)5214 static inline void kmap_local_sched_in(void)
5215 {
5216 #ifdef CONFIG_KMAP_LOCAL
5217 	if (unlikely(current->kmap_ctrl.idx))
5218 		__kmap_local_sched_in();
5219 #endif
5220 }
5221 
5222 /**
5223  * prepare_task_switch - prepare to switch tasks
5224  * @rq: the runqueue preparing to switch
5225  * @prev: the current task that is being switched out
5226  * @next: the task we are going to switch to.
5227  *
5228  * This is called with the rq lock held and interrupts off. It must
5229  * be paired with a subsequent finish_task_switch after the context
5230  * switch.
5231  *
5232  * prepare_task_switch sets up locking and calls architecture specific
5233  * hooks.
5234  */
5235 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)5236 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5237 		    struct task_struct *next)
5238 {
5239 	kcov_prepare_switch(prev);
5240 	sched_info_switch(rq, prev, next);
5241 	perf_event_task_sched_out(prev, next);
5242 	rseq_preempt(prev);
5243 	fire_sched_out_preempt_notifiers(prev, next);
5244 	kmap_local_sched_out();
5245 	prepare_task(next);
5246 	prepare_arch_switch(next);
5247 }
5248 
5249 /**
5250  * finish_task_switch - clean up after a task-switch
5251  * @prev: the thread we just switched away from.
5252  *
5253  * finish_task_switch must be called after the context switch, paired
5254  * with a prepare_task_switch call before the context switch.
5255  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5256  * and do any other architecture-specific cleanup actions.
5257  *
5258  * Note that we may have delayed dropping an mm in context_switch(). If
5259  * so, we finish that here outside of the runqueue lock. (Doing it
5260  * with the lock held can cause deadlocks; see schedule() for
5261  * details.)
5262  *
5263  * The context switch have flipped the stack from under us and restored the
5264  * local variables which were saved when this task called schedule() in the
5265  * past. prev == current is still correct but we need to recalculate this_rq
5266  * because prev may have moved to another CPU.
5267  */
finish_task_switch(struct task_struct * prev)5268 static struct rq *finish_task_switch(struct task_struct *prev)
5269 	__releases(rq->lock)
5270 {
5271 	struct rq *rq = this_rq();
5272 	struct mm_struct *mm = rq->prev_mm;
5273 	unsigned int prev_state;
5274 
5275 	/*
5276 	 * The previous task will have left us with a preempt_count of 2
5277 	 * because it left us after:
5278 	 *
5279 	 *	schedule()
5280 	 *	  preempt_disable();			// 1
5281 	 *	  __schedule()
5282 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5283 	 *
5284 	 * Also, see FORK_PREEMPT_COUNT.
5285 	 */
5286 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5287 		      "corrupted preempt_count: %s/%d/0x%x\n",
5288 		      current->comm, current->pid, preempt_count()))
5289 		preempt_count_set(FORK_PREEMPT_COUNT);
5290 
5291 	rq->prev_mm = NULL;
5292 
5293 	/*
5294 	 * A task struct has one reference for the use as "current".
5295 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5296 	 * schedule one last time. The schedule call will never return, and
5297 	 * the scheduled task must drop that reference.
5298 	 *
5299 	 * We must observe prev->state before clearing prev->on_cpu (in
5300 	 * finish_task), otherwise a concurrent wakeup can get prev
5301 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5302 	 * transition, resulting in a double drop.
5303 	 */
5304 	prev_state = READ_ONCE(prev->__state);
5305 	vtime_task_switch(prev);
5306 	perf_event_task_sched_in(prev, current);
5307 	finish_task(prev);
5308 	tick_nohz_task_switch();
5309 	finish_lock_switch(rq);
5310 	finish_arch_post_lock_switch();
5311 	kcov_finish_switch(current);
5312 	/*
5313 	 * kmap_local_sched_out() is invoked with rq::lock held and
5314 	 * interrupts disabled. There is no requirement for that, but the
5315 	 * sched out code does not have an interrupt enabled section.
5316 	 * Restoring the maps on sched in does not require interrupts being
5317 	 * disabled either.
5318 	 */
5319 	kmap_local_sched_in();
5320 
5321 	fire_sched_in_preempt_notifiers(current);
5322 	/*
5323 	 * When switching through a kernel thread, the loop in
5324 	 * membarrier_{private,global}_expedited() may have observed that
5325 	 * kernel thread and not issued an IPI. It is therefore possible to
5326 	 * schedule between user->kernel->user threads without passing though
5327 	 * switch_mm(). Membarrier requires a barrier after storing to
5328 	 * rq->curr, before returning to userspace, so provide them here:
5329 	 *
5330 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5331 	 *   provided by mmdrop_lazy_tlb(),
5332 	 * - a sync_core for SYNC_CORE.
5333 	 */
5334 	if (mm) {
5335 		membarrier_mm_sync_core_before_usermode(mm);
5336 		mmdrop_lazy_tlb_sched(mm);
5337 	}
5338 
5339 	if (unlikely(prev_state == TASK_DEAD)) {
5340 		if (prev->sched_class->task_dead)
5341 			prev->sched_class->task_dead(prev);
5342 
5343 		/* Task is done with its stack. */
5344 		put_task_stack(prev);
5345 
5346 		put_task_struct_rcu_user(prev);
5347 	}
5348 
5349 	return rq;
5350 }
5351 
5352 /**
5353  * schedule_tail - first thing a freshly forked thread must call.
5354  * @prev: the thread we just switched away from.
5355  */
schedule_tail(struct task_struct * prev)5356 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5357 	__releases(rq->lock)
5358 {
5359 	/*
5360 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5361 	 * finish_task_switch() for details.
5362 	 *
5363 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5364 	 * and the preempt_enable() will end up enabling preemption (on
5365 	 * PREEMPT_COUNT kernels).
5366 	 */
5367 
5368 	finish_task_switch(prev);
5369 	preempt_enable();
5370 
5371 	if (current->set_child_tid)
5372 		put_user(task_pid_vnr(current), current->set_child_tid);
5373 
5374 	calculate_sigpending();
5375 }
5376 
5377 /*
5378  * context_switch - switch to the new MM and the new thread's register state.
5379  */
5380 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)5381 context_switch(struct rq *rq, struct task_struct *prev,
5382 	       struct task_struct *next, struct rq_flags *rf)
5383 {
5384 	prepare_task_switch(rq, prev, next);
5385 
5386 	/*
5387 	 * For paravirt, this is coupled with an exit in switch_to to
5388 	 * combine the page table reload and the switch backend into
5389 	 * one hypercall.
5390 	 */
5391 	arch_start_context_switch(prev);
5392 
5393 	/*
5394 	 * kernel -> kernel   lazy + transfer active
5395 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5396 	 *
5397 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5398 	 *   user ->   user   switch
5399 	 *
5400 	 * switch_mm_cid() needs to be updated if the barriers provided
5401 	 * by context_switch() are modified.
5402 	 */
5403 	if (!next->mm) {                                // to kernel
5404 		enter_lazy_tlb(prev->active_mm, next);
5405 
5406 		next->active_mm = prev->active_mm;
5407 		if (prev->mm)                           // from user
5408 			mmgrab_lazy_tlb(prev->active_mm);
5409 		else
5410 			prev->active_mm = NULL;
5411 	} else {                                        // to user
5412 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5413 		/*
5414 		 * sys_membarrier() requires an smp_mb() between setting
5415 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5416 		 *
5417 		 * The below provides this either through switch_mm(), or in
5418 		 * case 'prev->active_mm == next->mm' through
5419 		 * finish_task_switch()'s mmdrop().
5420 		 */
5421 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5422 		lru_gen_use_mm(next->mm);
5423 
5424 		if (!prev->mm) {                        // from kernel
5425 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5426 			rq->prev_mm = prev->active_mm;
5427 			prev->active_mm = NULL;
5428 		}
5429 	}
5430 
5431 	/* switch_mm_cid() requires the memory barriers above. */
5432 	switch_mm_cid(rq, prev, next);
5433 
5434 	prepare_lock_switch(rq, next, rf);
5435 
5436 	/* Here we just switch the register state and the stack. */
5437 	switch_to(prev, next, prev);
5438 	barrier();
5439 
5440 	return finish_task_switch(prev);
5441 }
5442 
5443 /*
5444  * nr_running and nr_context_switches:
5445  *
5446  * externally visible scheduler statistics: current number of runnable
5447  * threads, total number of context switches performed since bootup.
5448  */
nr_running(void)5449 unsigned int nr_running(void)
5450 {
5451 	unsigned int i, sum = 0;
5452 
5453 	for_each_online_cpu(i)
5454 		sum += cpu_rq(i)->nr_running;
5455 
5456 	return sum;
5457 }
5458 
5459 /*
5460  * Check if only the current task is running on the CPU.
5461  *
5462  * Caution: this function does not check that the caller has disabled
5463  * preemption, thus the result might have a time-of-check-to-time-of-use
5464  * race.  The caller is responsible to use it correctly, for example:
5465  *
5466  * - from a non-preemptible section (of course)
5467  *
5468  * - from a thread that is bound to a single CPU
5469  *
5470  * - in a loop with very short iterations (e.g. a polling loop)
5471  */
single_task_running(void)5472 bool single_task_running(void)
5473 {
5474 	return raw_rq()->nr_running == 1;
5475 }
5476 EXPORT_SYMBOL(single_task_running);
5477 
nr_context_switches_cpu(int cpu)5478 unsigned long long nr_context_switches_cpu(int cpu)
5479 {
5480 	return cpu_rq(cpu)->nr_switches;
5481 }
5482 
nr_context_switches(void)5483 unsigned long long nr_context_switches(void)
5484 {
5485 	int i;
5486 	unsigned long long sum = 0;
5487 
5488 	for_each_possible_cpu(i)
5489 		sum += cpu_rq(i)->nr_switches;
5490 
5491 	return sum;
5492 }
5493 
5494 /*
5495  * Consumers of these two interfaces, like for example the cpuidle menu
5496  * governor, are using nonsensical data. Preferring shallow idle state selection
5497  * for a CPU that has IO-wait which might not even end up running the task when
5498  * it does become runnable.
5499  */
5500 
nr_iowait_cpu(int cpu)5501 unsigned int nr_iowait_cpu(int cpu)
5502 {
5503 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
5504 }
5505 
5506 /*
5507  * IO-wait accounting, and how it's mostly bollocks (on SMP).
5508  *
5509  * The idea behind IO-wait account is to account the idle time that we could
5510  * have spend running if it were not for IO. That is, if we were to improve the
5511  * storage performance, we'd have a proportional reduction in IO-wait time.
5512  *
5513  * This all works nicely on UP, where, when a task blocks on IO, we account
5514  * idle time as IO-wait, because if the storage were faster, it could've been
5515  * running and we'd not be idle.
5516  *
5517  * This has been extended to SMP, by doing the same for each CPU. This however
5518  * is broken.
5519  *
5520  * Imagine for instance the case where two tasks block on one CPU, only the one
5521  * CPU will have IO-wait accounted, while the other has regular idle. Even
5522  * though, if the storage were faster, both could've ran at the same time,
5523  * utilising both CPUs.
5524  *
5525  * This means, that when looking globally, the current IO-wait accounting on
5526  * SMP is a lower bound, by reason of under accounting.
5527  *
5528  * Worse, since the numbers are provided per CPU, they are sometimes
5529  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5530  * associated with any one particular CPU, it can wake to another CPU than it
5531  * blocked on. This means the per CPU IO-wait number is meaningless.
5532  *
5533  * Task CPU affinities can make all that even more 'interesting'.
5534  */
5535 
nr_iowait(void)5536 unsigned int nr_iowait(void)
5537 {
5538 	unsigned int i, sum = 0;
5539 
5540 	for_each_possible_cpu(i)
5541 		sum += nr_iowait_cpu(i);
5542 
5543 	return sum;
5544 }
5545 
5546 #ifdef CONFIG_SMP
5547 
5548 /*
5549  * sched_exec - execve() is a valuable balancing opportunity, because at
5550  * this point the task has the smallest effective memory and cache footprint.
5551  */
sched_exec(void)5552 void sched_exec(void)
5553 {
5554 	struct task_struct *p = current;
5555 	struct migration_arg arg;
5556 	int dest_cpu;
5557 
5558 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5559 		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5560 		if (dest_cpu == smp_processor_id())
5561 			return;
5562 
5563 		if (unlikely(!cpu_active(dest_cpu)))
5564 			return;
5565 
5566 		arg = (struct migration_arg){ p, dest_cpu };
5567 	}
5568 	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5569 }
5570 
5571 #endif
5572 
5573 DEFINE_PER_CPU(struct kernel_stat, kstat);
5574 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5575 
5576 EXPORT_PER_CPU_SYMBOL(kstat);
5577 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5578 
5579 /*
5580  * The function fair_sched_class.update_curr accesses the struct curr
5581  * and its field curr->exec_start; when called from task_sched_runtime(),
5582  * we observe a high rate of cache misses in practice.
5583  * Prefetching this data results in improved performance.
5584  */
prefetch_curr_exec_start(struct task_struct * p)5585 static inline void prefetch_curr_exec_start(struct task_struct *p)
5586 {
5587 #ifdef CONFIG_FAIR_GROUP_SCHED
5588 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5589 #else
5590 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5591 #endif
5592 	prefetch(curr);
5593 	prefetch(&curr->exec_start);
5594 }
5595 
5596 /*
5597  * Return accounted runtime for the task.
5598  * In case the task is currently running, return the runtime plus current's
5599  * pending runtime that have not been accounted yet.
5600  */
task_sched_runtime(struct task_struct * p)5601 unsigned long long task_sched_runtime(struct task_struct *p)
5602 {
5603 	struct rq_flags rf;
5604 	struct rq *rq;
5605 	u64 ns;
5606 
5607 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5608 	/*
5609 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
5610 	 * So we have a optimization chance when the task's delta_exec is 0.
5611 	 * Reading ->on_cpu is racy, but this is ok.
5612 	 *
5613 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5614 	 * If we race with it entering CPU, unaccounted time is 0. This is
5615 	 * indistinguishable from the read occurring a few cycles earlier.
5616 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5617 	 * been accounted, so we're correct here as well.
5618 	 */
5619 	if (!p->on_cpu || !task_on_rq_queued(p))
5620 		return p->se.sum_exec_runtime;
5621 #endif
5622 
5623 	rq = task_rq_lock(p, &rf);
5624 	/*
5625 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
5626 	 * project cycles that may never be accounted to this
5627 	 * thread, breaking clock_gettime().
5628 	 */
5629 	if (task_current(rq, p) && task_on_rq_queued(p)) {
5630 		prefetch_curr_exec_start(p);
5631 		update_rq_clock(rq);
5632 		p->sched_class->update_curr(rq);
5633 	}
5634 	ns = p->se.sum_exec_runtime;
5635 	task_rq_unlock(rq, p, &rf);
5636 
5637 	return ns;
5638 }
5639 
5640 #ifdef CONFIG_SCHED_DEBUG
cpu_resched_latency(struct rq * rq)5641 static u64 cpu_resched_latency(struct rq *rq)
5642 {
5643 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5644 	u64 resched_latency, now = rq_clock(rq);
5645 	static bool warned_once;
5646 
5647 	if (sysctl_resched_latency_warn_once && warned_once)
5648 		return 0;
5649 
5650 	if (!need_resched() || !latency_warn_ms)
5651 		return 0;
5652 
5653 	if (system_state == SYSTEM_BOOTING)
5654 		return 0;
5655 
5656 	if (!rq->last_seen_need_resched_ns) {
5657 		rq->last_seen_need_resched_ns = now;
5658 		rq->ticks_without_resched = 0;
5659 		return 0;
5660 	}
5661 
5662 	rq->ticks_without_resched++;
5663 	resched_latency = now - rq->last_seen_need_resched_ns;
5664 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5665 		return 0;
5666 
5667 	warned_once = true;
5668 
5669 	return resched_latency;
5670 }
5671 
setup_resched_latency_warn_ms(char * str)5672 static int __init setup_resched_latency_warn_ms(char *str)
5673 {
5674 	long val;
5675 
5676 	if ((kstrtol(str, 0, &val))) {
5677 		pr_warn("Unable to set resched_latency_warn_ms\n");
5678 		return 1;
5679 	}
5680 
5681 	sysctl_resched_latency_warn_ms = val;
5682 	return 1;
5683 }
5684 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5685 #else
cpu_resched_latency(struct rq * rq)5686 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5687 #endif /* CONFIG_SCHED_DEBUG */
5688 
5689 /*
5690  * This function gets called by the timer code, with HZ frequency.
5691  * We call it with interrupts disabled.
5692  */
scheduler_tick(void)5693 void scheduler_tick(void)
5694 {
5695 	int cpu = smp_processor_id();
5696 	struct rq *rq = cpu_rq(cpu);
5697 	struct task_struct *curr = rq->curr;
5698 	struct rq_flags rf;
5699 	unsigned long thermal_pressure;
5700 	u64 resched_latency;
5701 
5702 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5703 		arch_scale_freq_tick();
5704 
5705 	sched_clock_tick();
5706 
5707 	rq_lock(rq, &rf);
5708 
5709 	update_rq_clock(rq);
5710 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5711 	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5712 	curr->sched_class->task_tick(rq, curr, 0);
5713 	if (sched_feat(LATENCY_WARN))
5714 		resched_latency = cpu_resched_latency(rq);
5715 	calc_global_load_tick(rq);
5716 	sched_core_tick(rq);
5717 	task_tick_mm_cid(rq, curr);
5718 
5719 	rq_unlock(rq, &rf);
5720 
5721 	if (sched_feat(LATENCY_WARN) && resched_latency)
5722 		resched_latency_warn(cpu, resched_latency);
5723 
5724 	perf_event_task_tick();
5725 
5726 	if (curr->flags & PF_WQ_WORKER)
5727 		wq_worker_tick(curr);
5728 
5729 #ifdef CONFIG_SMP
5730 	rq->idle_balance = idle_cpu(cpu);
5731 	trigger_load_balance(rq);
5732 #endif
5733 }
5734 
5735 #ifdef CONFIG_NO_HZ_FULL
5736 
5737 struct tick_work {
5738 	int			cpu;
5739 	atomic_t		state;
5740 	struct delayed_work	work;
5741 };
5742 /* Values for ->state, see diagram below. */
5743 #define TICK_SCHED_REMOTE_OFFLINE	0
5744 #define TICK_SCHED_REMOTE_OFFLINING	1
5745 #define TICK_SCHED_REMOTE_RUNNING	2
5746 
5747 /*
5748  * State diagram for ->state:
5749  *
5750  *
5751  *          TICK_SCHED_REMOTE_OFFLINE
5752  *                    |   ^
5753  *                    |   |
5754  *                    |   | sched_tick_remote()
5755  *                    |   |
5756  *                    |   |
5757  *                    +--TICK_SCHED_REMOTE_OFFLINING
5758  *                    |   ^
5759  *                    |   |
5760  * sched_tick_start() |   | sched_tick_stop()
5761  *                    |   |
5762  *                    V   |
5763  *          TICK_SCHED_REMOTE_RUNNING
5764  *
5765  *
5766  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5767  * and sched_tick_start() are happy to leave the state in RUNNING.
5768  */
5769 
5770 static struct tick_work __percpu *tick_work_cpu;
5771 
sched_tick_remote(struct work_struct * work)5772 static void sched_tick_remote(struct work_struct *work)
5773 {
5774 	struct delayed_work *dwork = to_delayed_work(work);
5775 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
5776 	int cpu = twork->cpu;
5777 	struct rq *rq = cpu_rq(cpu);
5778 	int os;
5779 
5780 	/*
5781 	 * Handle the tick only if it appears the remote CPU is running in full
5782 	 * dynticks mode. The check is racy by nature, but missing a tick or
5783 	 * having one too much is no big deal because the scheduler tick updates
5784 	 * statistics and checks timeslices in a time-independent way, regardless
5785 	 * of when exactly it is running.
5786 	 */
5787 	if (tick_nohz_tick_stopped_cpu(cpu)) {
5788 		guard(rq_lock_irq)(rq);
5789 		struct task_struct *curr = rq->curr;
5790 
5791 		if (cpu_online(cpu)) {
5792 			update_rq_clock(rq);
5793 
5794 			if (!is_idle_task(curr)) {
5795 				/*
5796 				 * Make sure the next tick runs within a
5797 				 * reasonable amount of time.
5798 				 */
5799 				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5800 				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5801 			}
5802 			curr->sched_class->task_tick(rq, curr, 0);
5803 
5804 			calc_load_nohz_remote(rq);
5805 		}
5806 	}
5807 
5808 	/*
5809 	 * Run the remote tick once per second (1Hz). This arbitrary
5810 	 * frequency is large enough to avoid overload but short enough
5811 	 * to keep scheduler internal stats reasonably up to date.  But
5812 	 * first update state to reflect hotplug activity if required.
5813 	 */
5814 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5815 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5816 	if (os == TICK_SCHED_REMOTE_RUNNING)
5817 		queue_delayed_work(system_unbound_wq, dwork, HZ);
5818 }
5819 
sched_tick_start(int cpu)5820 static void sched_tick_start(int cpu)
5821 {
5822 	int os;
5823 	struct tick_work *twork;
5824 
5825 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5826 		return;
5827 
5828 	WARN_ON_ONCE(!tick_work_cpu);
5829 
5830 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5831 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5832 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5833 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
5834 		twork->cpu = cpu;
5835 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5836 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5837 	}
5838 }
5839 
5840 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)5841 static void sched_tick_stop(int cpu)
5842 {
5843 	struct tick_work *twork;
5844 	int os;
5845 
5846 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5847 		return;
5848 
5849 	WARN_ON_ONCE(!tick_work_cpu);
5850 
5851 	twork = per_cpu_ptr(tick_work_cpu, cpu);
5852 	/* There cannot be competing actions, but don't rely on stop-machine. */
5853 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5854 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5855 	/* Don't cancel, as this would mess up the state machine. */
5856 }
5857 #endif /* CONFIG_HOTPLUG_CPU */
5858 
sched_tick_offload_init(void)5859 int __init sched_tick_offload_init(void)
5860 {
5861 	tick_work_cpu = alloc_percpu(struct tick_work);
5862 	BUG_ON(!tick_work_cpu);
5863 	return 0;
5864 }
5865 
5866 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)5867 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)5868 static inline void sched_tick_stop(int cpu) { }
5869 #endif
5870 
5871 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5872 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5873 /*
5874  * If the value passed in is equal to the current preempt count
5875  * then we just disabled preemption. Start timing the latency.
5876  */
preempt_latency_start(int val)5877 static inline void preempt_latency_start(int val)
5878 {
5879 	if (preempt_count() == val) {
5880 		unsigned long ip = get_lock_parent_ip();
5881 #ifdef CONFIG_DEBUG_PREEMPT
5882 		current->preempt_disable_ip = ip;
5883 #endif
5884 		trace_preempt_off(CALLER_ADDR0, ip);
5885 	}
5886 }
5887 
preempt_count_add(int val)5888 void preempt_count_add(int val)
5889 {
5890 #ifdef CONFIG_DEBUG_PREEMPT
5891 	/*
5892 	 * Underflow?
5893 	 */
5894 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5895 		return;
5896 #endif
5897 	__preempt_count_add(val);
5898 #ifdef CONFIG_DEBUG_PREEMPT
5899 	/*
5900 	 * Spinlock count overflowing soon?
5901 	 */
5902 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5903 				PREEMPT_MASK - 10);
5904 #endif
5905 	preempt_latency_start(val);
5906 }
5907 EXPORT_SYMBOL(preempt_count_add);
5908 NOKPROBE_SYMBOL(preempt_count_add);
5909 
5910 /*
5911  * If the value passed in equals to the current preempt count
5912  * then we just enabled preemption. Stop timing the latency.
5913  */
preempt_latency_stop(int val)5914 static inline void preempt_latency_stop(int val)
5915 {
5916 	if (preempt_count() == val)
5917 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5918 }
5919 
preempt_count_sub(int val)5920 void preempt_count_sub(int val)
5921 {
5922 #ifdef CONFIG_DEBUG_PREEMPT
5923 	/*
5924 	 * Underflow?
5925 	 */
5926 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5927 		return;
5928 	/*
5929 	 * Is the spinlock portion underflowing?
5930 	 */
5931 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5932 			!(preempt_count() & PREEMPT_MASK)))
5933 		return;
5934 #endif
5935 
5936 	preempt_latency_stop(val);
5937 	__preempt_count_sub(val);
5938 }
5939 EXPORT_SYMBOL(preempt_count_sub);
5940 NOKPROBE_SYMBOL(preempt_count_sub);
5941 
5942 #else
preempt_latency_start(int val)5943 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)5944 static inline void preempt_latency_stop(int val) { }
5945 #endif
5946 
get_preempt_disable_ip(struct task_struct * p)5947 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5948 {
5949 #ifdef CONFIG_DEBUG_PREEMPT
5950 	return p->preempt_disable_ip;
5951 #else
5952 	return 0;
5953 #endif
5954 }
5955 
5956 /*
5957  * Print scheduling while atomic bug:
5958  */
__schedule_bug(struct task_struct * prev)5959 static noinline void __schedule_bug(struct task_struct *prev)
5960 {
5961 	/* Save this before calling printk(), since that will clobber it */
5962 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5963 
5964 	if (oops_in_progress)
5965 		return;
5966 
5967 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5968 		prev->comm, prev->pid, preempt_count());
5969 
5970 	debug_show_held_locks(prev);
5971 	print_modules();
5972 	if (irqs_disabled())
5973 		print_irqtrace_events(prev);
5974 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5975 	    && in_atomic_preempt_off()) {
5976 		pr_err("Preemption disabled at:");
5977 		print_ip_sym(KERN_ERR, preempt_disable_ip);
5978 	}
5979 	check_panic_on_warn("scheduling while atomic");
5980 
5981 	dump_stack();
5982 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5983 }
5984 
5985 /*
5986  * Various schedule()-time debugging checks and statistics:
5987  */
schedule_debug(struct task_struct * prev,bool preempt)5988 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5989 {
5990 #ifdef CONFIG_SCHED_STACK_END_CHECK
5991 	if (task_stack_end_corrupted(prev))
5992 		panic("corrupted stack end detected inside scheduler\n");
5993 
5994 	if (task_scs_end_corrupted(prev))
5995 		panic("corrupted shadow stack detected inside scheduler\n");
5996 #endif
5997 
5998 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5999 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
6000 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
6001 			prev->comm, prev->pid, prev->non_block_count);
6002 		dump_stack();
6003 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6004 	}
6005 #endif
6006 
6007 	if (unlikely(in_atomic_preempt_off())) {
6008 		__schedule_bug(prev);
6009 		preempt_count_set(PREEMPT_DISABLED);
6010 	}
6011 	rcu_sleep_check();
6012 	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
6013 
6014 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
6015 
6016 	schedstat_inc(this_rq()->sched_count);
6017 }
6018 
put_prev_task_balance(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6019 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
6020 				  struct rq_flags *rf)
6021 {
6022 #ifdef CONFIG_SMP
6023 	const struct sched_class *class;
6024 	/*
6025 	 * We must do the balancing pass before put_prev_task(), such
6026 	 * that when we release the rq->lock the task is in the same
6027 	 * state as before we took rq->lock.
6028 	 *
6029 	 * We can terminate the balance pass as soon as we know there is
6030 	 * a runnable task of @class priority or higher.
6031 	 */
6032 	for_class_range(class, prev->sched_class, &idle_sched_class) {
6033 		if (class->balance(rq, prev, rf))
6034 			break;
6035 	}
6036 #endif
6037 
6038 	put_prev_task(rq, prev);
6039 }
6040 
6041 /*
6042  * Pick up the highest-prio task:
6043  */
6044 static inline struct task_struct *
__pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6045 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6046 {
6047 	const struct sched_class *class;
6048 	struct task_struct *p;
6049 
6050 	/*
6051 	 * Optimization: we know that if all tasks are in the fair class we can
6052 	 * call that function directly, but only if the @prev task wasn't of a
6053 	 * higher scheduling class, because otherwise those lose the
6054 	 * opportunity to pull in more work from other CPUs.
6055 	 */
6056 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6057 		   rq->nr_running == rq->cfs.h_nr_running)) {
6058 
6059 		p = pick_next_task_fair(rq, prev, rf);
6060 		if (unlikely(p == RETRY_TASK))
6061 			goto restart;
6062 
6063 		/* Assume the next prioritized class is idle_sched_class */
6064 		if (!p) {
6065 			put_prev_task(rq, prev);
6066 			p = pick_next_task_idle(rq);
6067 		}
6068 
6069 		return p;
6070 	}
6071 
6072 restart:
6073 	put_prev_task_balance(rq, prev, rf);
6074 
6075 	for_each_class(class) {
6076 		p = class->pick_next_task(rq);
6077 		if (p)
6078 			return p;
6079 	}
6080 
6081 	BUG(); /* The idle class should always have a runnable task. */
6082 }
6083 
6084 #ifdef CONFIG_SCHED_CORE
is_task_rq_idle(struct task_struct * t)6085 static inline bool is_task_rq_idle(struct task_struct *t)
6086 {
6087 	return (task_rq(t)->idle == t);
6088 }
6089 
cookie_equals(struct task_struct * a,unsigned long cookie)6090 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6091 {
6092 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
6093 }
6094 
cookie_match(struct task_struct * a,struct task_struct * b)6095 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6096 {
6097 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
6098 		return true;
6099 
6100 	return a->core_cookie == b->core_cookie;
6101 }
6102 
pick_task(struct rq * rq)6103 static inline struct task_struct *pick_task(struct rq *rq)
6104 {
6105 	const struct sched_class *class;
6106 	struct task_struct *p;
6107 
6108 	for_each_class(class) {
6109 		p = class->pick_task(rq);
6110 		if (p)
6111 			return p;
6112 	}
6113 
6114 	BUG(); /* The idle class should always have a runnable task. */
6115 }
6116 
6117 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6118 
6119 static void queue_core_balance(struct rq *rq);
6120 
6121 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6122 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6123 {
6124 	struct task_struct *next, *p, *max = NULL;
6125 	const struct cpumask *smt_mask;
6126 	bool fi_before = false;
6127 	bool core_clock_updated = (rq == rq->core);
6128 	unsigned long cookie;
6129 	int i, cpu, occ = 0;
6130 	struct rq *rq_i;
6131 	bool need_sync;
6132 
6133 	if (!sched_core_enabled(rq))
6134 		return __pick_next_task(rq, prev, rf);
6135 
6136 	cpu = cpu_of(rq);
6137 
6138 	/* Stopper task is switching into idle, no need core-wide selection. */
6139 	if (cpu_is_offline(cpu)) {
6140 		/*
6141 		 * Reset core_pick so that we don't enter the fastpath when
6142 		 * coming online. core_pick would already be migrated to
6143 		 * another cpu during offline.
6144 		 */
6145 		rq->core_pick = NULL;
6146 		return __pick_next_task(rq, prev, rf);
6147 	}
6148 
6149 	/*
6150 	 * If there were no {en,de}queues since we picked (IOW, the task
6151 	 * pointers are all still valid), and we haven't scheduled the last
6152 	 * pick yet, do so now.
6153 	 *
6154 	 * rq->core_pick can be NULL if no selection was made for a CPU because
6155 	 * it was either offline or went offline during a sibling's core-wide
6156 	 * selection. In this case, do a core-wide selection.
6157 	 */
6158 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6159 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6160 	    rq->core_pick) {
6161 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6162 
6163 		next = rq->core_pick;
6164 		if (next != prev) {
6165 			put_prev_task(rq, prev);
6166 			set_next_task(rq, next);
6167 		}
6168 
6169 		rq->core_pick = NULL;
6170 		goto out;
6171 	}
6172 
6173 	put_prev_task_balance(rq, prev, rf);
6174 
6175 	smt_mask = cpu_smt_mask(cpu);
6176 	need_sync = !!rq->core->core_cookie;
6177 
6178 	/* reset state */
6179 	rq->core->core_cookie = 0UL;
6180 	if (rq->core->core_forceidle_count) {
6181 		if (!core_clock_updated) {
6182 			update_rq_clock(rq->core);
6183 			core_clock_updated = true;
6184 		}
6185 		sched_core_account_forceidle(rq);
6186 		/* reset after accounting force idle */
6187 		rq->core->core_forceidle_start = 0;
6188 		rq->core->core_forceidle_count = 0;
6189 		rq->core->core_forceidle_occupation = 0;
6190 		need_sync = true;
6191 		fi_before = true;
6192 	}
6193 
6194 	/*
6195 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6196 	 *
6197 	 * @task_seq guards the task state ({en,de}queues)
6198 	 * @pick_seq is the @task_seq we did a selection on
6199 	 * @sched_seq is the @pick_seq we scheduled
6200 	 *
6201 	 * However, preemptions can cause multiple picks on the same task set.
6202 	 * 'Fix' this by also increasing @task_seq for every pick.
6203 	 */
6204 	rq->core->core_task_seq++;
6205 
6206 	/*
6207 	 * Optimize for common case where this CPU has no cookies
6208 	 * and there are no cookied tasks running on siblings.
6209 	 */
6210 	if (!need_sync) {
6211 		next = pick_task(rq);
6212 		if (!next->core_cookie) {
6213 			rq->core_pick = NULL;
6214 			/*
6215 			 * For robustness, update the min_vruntime_fi for
6216 			 * unconstrained picks as well.
6217 			 */
6218 			WARN_ON_ONCE(fi_before);
6219 			task_vruntime_update(rq, next, false);
6220 			goto out_set_next;
6221 		}
6222 	}
6223 
6224 	/*
6225 	 * For each thread: do the regular task pick and find the max prio task
6226 	 * amongst them.
6227 	 *
6228 	 * Tie-break prio towards the current CPU
6229 	 */
6230 	for_each_cpu_wrap(i, smt_mask, cpu) {
6231 		rq_i = cpu_rq(i);
6232 
6233 		/*
6234 		 * Current cpu always has its clock updated on entrance to
6235 		 * pick_next_task(). If the current cpu is not the core,
6236 		 * the core may also have been updated above.
6237 		 */
6238 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6239 			update_rq_clock(rq_i);
6240 
6241 		p = rq_i->core_pick = pick_task(rq_i);
6242 		if (!max || prio_less(max, p, fi_before))
6243 			max = p;
6244 	}
6245 
6246 	cookie = rq->core->core_cookie = max->core_cookie;
6247 
6248 	/*
6249 	 * For each thread: try and find a runnable task that matches @max or
6250 	 * force idle.
6251 	 */
6252 	for_each_cpu(i, smt_mask) {
6253 		rq_i = cpu_rq(i);
6254 		p = rq_i->core_pick;
6255 
6256 		if (!cookie_equals(p, cookie)) {
6257 			p = NULL;
6258 			if (cookie)
6259 				p = sched_core_find(rq_i, cookie);
6260 			if (!p)
6261 				p = idle_sched_class.pick_task(rq_i);
6262 		}
6263 
6264 		rq_i->core_pick = p;
6265 
6266 		if (p == rq_i->idle) {
6267 			if (rq_i->nr_running) {
6268 				rq->core->core_forceidle_count++;
6269 				if (!fi_before)
6270 					rq->core->core_forceidle_seq++;
6271 			}
6272 		} else {
6273 			occ++;
6274 		}
6275 	}
6276 
6277 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6278 		rq->core->core_forceidle_start = rq_clock(rq->core);
6279 		rq->core->core_forceidle_occupation = occ;
6280 	}
6281 
6282 	rq->core->core_pick_seq = rq->core->core_task_seq;
6283 	next = rq->core_pick;
6284 	rq->core_sched_seq = rq->core->core_pick_seq;
6285 
6286 	/* Something should have been selected for current CPU */
6287 	WARN_ON_ONCE(!next);
6288 
6289 	/*
6290 	 * Reschedule siblings
6291 	 *
6292 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6293 	 * sending an IPI (below) ensures the sibling will no longer be running
6294 	 * their task. This ensures there is no inter-sibling overlap between
6295 	 * non-matching user state.
6296 	 */
6297 	for_each_cpu(i, smt_mask) {
6298 		rq_i = cpu_rq(i);
6299 
6300 		/*
6301 		 * An online sibling might have gone offline before a task
6302 		 * could be picked for it, or it might be offline but later
6303 		 * happen to come online, but its too late and nothing was
6304 		 * picked for it.  That's Ok - it will pick tasks for itself,
6305 		 * so ignore it.
6306 		 */
6307 		if (!rq_i->core_pick)
6308 			continue;
6309 
6310 		/*
6311 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6312 		 * fi_before     fi      update?
6313 		 *  0            0       1
6314 		 *  0            1       1
6315 		 *  1            0       1
6316 		 *  1            1       0
6317 		 */
6318 		if (!(fi_before && rq->core->core_forceidle_count))
6319 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6320 
6321 		rq_i->core_pick->core_occupation = occ;
6322 
6323 		if (i == cpu) {
6324 			rq_i->core_pick = NULL;
6325 			continue;
6326 		}
6327 
6328 		/* Did we break L1TF mitigation requirements? */
6329 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6330 
6331 		if (rq_i->curr == rq_i->core_pick) {
6332 			rq_i->core_pick = NULL;
6333 			continue;
6334 		}
6335 
6336 		resched_curr(rq_i);
6337 	}
6338 
6339 out_set_next:
6340 	set_next_task(rq, next);
6341 out:
6342 	if (rq->core->core_forceidle_count && next == rq->idle)
6343 		queue_core_balance(rq);
6344 
6345 	return next;
6346 }
6347 
try_steal_cookie(int this,int that)6348 static bool try_steal_cookie(int this, int that)
6349 {
6350 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6351 	struct task_struct *p;
6352 	unsigned long cookie;
6353 	bool success = false;
6354 
6355 	guard(irq)();
6356 	guard(double_rq_lock)(dst, src);
6357 
6358 	cookie = dst->core->core_cookie;
6359 	if (!cookie)
6360 		return false;
6361 
6362 	if (dst->curr != dst->idle)
6363 		return false;
6364 
6365 	p = sched_core_find(src, cookie);
6366 	if (!p)
6367 		return false;
6368 
6369 	do {
6370 		if (p == src->core_pick || p == src->curr)
6371 			goto next;
6372 
6373 		if (!is_cpu_allowed(p, this))
6374 			goto next;
6375 
6376 		if (p->core_occupation > dst->idle->core_occupation)
6377 			goto next;
6378 		/*
6379 		 * sched_core_find() and sched_core_next() will ensure
6380 		 * that task @p is not throttled now, we also need to
6381 		 * check whether the runqueue of the destination CPU is
6382 		 * being throttled.
6383 		 */
6384 		if (sched_task_is_throttled(p, this))
6385 			goto next;
6386 
6387 		deactivate_task(src, p, 0);
6388 		set_task_cpu(p, this);
6389 		activate_task(dst, p, 0);
6390 
6391 		resched_curr(dst);
6392 
6393 		success = true;
6394 		break;
6395 
6396 next:
6397 		p = sched_core_next(p, cookie);
6398 	} while (p);
6399 
6400 	return success;
6401 }
6402 
steal_cookie_task(int cpu,struct sched_domain * sd)6403 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6404 {
6405 	int i;
6406 
6407 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6408 		if (i == cpu)
6409 			continue;
6410 
6411 		if (need_resched())
6412 			break;
6413 
6414 		if (try_steal_cookie(cpu, i))
6415 			return true;
6416 	}
6417 
6418 	return false;
6419 }
6420 
sched_core_balance(struct rq * rq)6421 static void sched_core_balance(struct rq *rq)
6422 {
6423 	struct sched_domain *sd;
6424 	int cpu = cpu_of(rq);
6425 
6426 	preempt_disable();
6427 	rcu_read_lock();
6428 	raw_spin_rq_unlock_irq(rq);
6429 	for_each_domain(cpu, sd) {
6430 		if (need_resched())
6431 			break;
6432 
6433 		if (steal_cookie_task(cpu, sd))
6434 			break;
6435 	}
6436 	raw_spin_rq_lock_irq(rq);
6437 	rcu_read_unlock();
6438 	preempt_enable();
6439 }
6440 
6441 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6442 
queue_core_balance(struct rq * rq)6443 static void queue_core_balance(struct rq *rq)
6444 {
6445 	if (!sched_core_enabled(rq))
6446 		return;
6447 
6448 	if (!rq->core->core_cookie)
6449 		return;
6450 
6451 	if (!rq->nr_running) /* not forced idle */
6452 		return;
6453 
6454 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6455 }
6456 
6457 DEFINE_LOCK_GUARD_1(core_lock, int,
6458 		    sched_core_lock(*_T->lock, &_T->flags),
6459 		    sched_core_unlock(*_T->lock, &_T->flags),
6460 		    unsigned long flags)
6461 
sched_core_cpu_starting(unsigned int cpu)6462 static void sched_core_cpu_starting(unsigned int cpu)
6463 {
6464 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6465 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6466 	int t;
6467 
6468 	guard(core_lock)(&cpu);
6469 
6470 	WARN_ON_ONCE(rq->core != rq);
6471 
6472 	/* if we're the first, we'll be our own leader */
6473 	if (cpumask_weight(smt_mask) == 1)
6474 		return;
6475 
6476 	/* find the leader */
6477 	for_each_cpu(t, smt_mask) {
6478 		if (t == cpu)
6479 			continue;
6480 		rq = cpu_rq(t);
6481 		if (rq->core == rq) {
6482 			core_rq = rq;
6483 			break;
6484 		}
6485 	}
6486 
6487 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6488 		return;
6489 
6490 	/* install and validate core_rq */
6491 	for_each_cpu(t, smt_mask) {
6492 		rq = cpu_rq(t);
6493 
6494 		if (t == cpu)
6495 			rq->core = core_rq;
6496 
6497 		WARN_ON_ONCE(rq->core != core_rq);
6498 	}
6499 }
6500 
sched_core_cpu_deactivate(unsigned int cpu)6501 static void sched_core_cpu_deactivate(unsigned int cpu)
6502 {
6503 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6504 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6505 	int t;
6506 
6507 	guard(core_lock)(&cpu);
6508 
6509 	/* if we're the last man standing, nothing to do */
6510 	if (cpumask_weight(smt_mask) == 1) {
6511 		WARN_ON_ONCE(rq->core != rq);
6512 		return;
6513 	}
6514 
6515 	/* if we're not the leader, nothing to do */
6516 	if (rq->core != rq)
6517 		return;
6518 
6519 	/* find a new leader */
6520 	for_each_cpu(t, smt_mask) {
6521 		if (t == cpu)
6522 			continue;
6523 		core_rq = cpu_rq(t);
6524 		break;
6525 	}
6526 
6527 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
6528 		return;
6529 
6530 	/* copy the shared state to the new leader */
6531 	core_rq->core_task_seq             = rq->core_task_seq;
6532 	core_rq->core_pick_seq             = rq->core_pick_seq;
6533 	core_rq->core_cookie               = rq->core_cookie;
6534 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
6535 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
6536 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6537 
6538 	/*
6539 	 * Accounting edge for forced idle is handled in pick_next_task().
6540 	 * Don't need another one here, since the hotplug thread shouldn't
6541 	 * have a cookie.
6542 	 */
6543 	core_rq->core_forceidle_start = 0;
6544 
6545 	/* install new leader */
6546 	for_each_cpu(t, smt_mask) {
6547 		rq = cpu_rq(t);
6548 		rq->core = core_rq;
6549 	}
6550 }
6551 
sched_core_cpu_dying(unsigned int cpu)6552 static inline void sched_core_cpu_dying(unsigned int cpu)
6553 {
6554 	struct rq *rq = cpu_rq(cpu);
6555 
6556 	if (rq->core != rq)
6557 		rq->core = rq;
6558 }
6559 
6560 #else /* !CONFIG_SCHED_CORE */
6561 
sched_core_cpu_starting(unsigned int cpu)6562 static inline void sched_core_cpu_starting(unsigned int cpu) {}
sched_core_cpu_deactivate(unsigned int cpu)6563 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
sched_core_cpu_dying(unsigned int cpu)6564 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6565 
6566 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6567 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6568 {
6569 	return __pick_next_task(rq, prev, rf);
6570 }
6571 
6572 #endif /* CONFIG_SCHED_CORE */
6573 
6574 /*
6575  * Constants for the sched_mode argument of __schedule().
6576  *
6577  * The mode argument allows RT enabled kernels to differentiate a
6578  * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6579  * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6580  * optimize the AND operation out and just check for zero.
6581  */
6582 #define SM_NONE			0x0
6583 #define SM_PREEMPT		0x1
6584 #define SM_RTLOCK_WAIT		0x2
6585 
6586 #ifndef CONFIG_PREEMPT_RT
6587 # define SM_MASK_PREEMPT	(~0U)
6588 #else
6589 # define SM_MASK_PREEMPT	SM_PREEMPT
6590 #endif
6591 
6592 /*
6593  * __schedule() is the main scheduler function.
6594  *
6595  * The main means of driving the scheduler and thus entering this function are:
6596  *
6597  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6598  *
6599  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6600  *      paths. For example, see arch/x86/entry_64.S.
6601  *
6602  *      To drive preemption between tasks, the scheduler sets the flag in timer
6603  *      interrupt handler scheduler_tick().
6604  *
6605  *   3. Wakeups don't really cause entry into schedule(). They add a
6606  *      task to the run-queue and that's it.
6607  *
6608  *      Now, if the new task added to the run-queue preempts the current
6609  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6610  *      called on the nearest possible occasion:
6611  *
6612  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6613  *
6614  *         - in syscall or exception context, at the next outmost
6615  *           preempt_enable(). (this might be as soon as the wake_up()'s
6616  *           spin_unlock()!)
6617  *
6618  *         - in IRQ context, return from interrupt-handler to
6619  *           preemptible context
6620  *
6621  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6622  *         then at the next:
6623  *
6624  *          - cond_resched() call
6625  *          - explicit schedule() call
6626  *          - return from syscall or exception to user-space
6627  *          - return from interrupt-handler to user-space
6628  *
6629  * WARNING: must be called with preemption disabled!
6630  */
__schedule(unsigned int sched_mode)6631 static void __sched notrace __schedule(unsigned int sched_mode)
6632 {
6633 	struct task_struct *prev, *next;
6634 	unsigned long *switch_count;
6635 	unsigned long prev_state;
6636 	struct rq_flags rf;
6637 	struct rq *rq;
6638 	int cpu;
6639 
6640 	cpu = smp_processor_id();
6641 	rq = cpu_rq(cpu);
6642 	prev = rq->curr;
6643 
6644 	schedule_debug(prev, !!sched_mode);
6645 
6646 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6647 		hrtick_clear(rq);
6648 
6649 	local_irq_disable();
6650 	rcu_note_context_switch(!!sched_mode);
6651 
6652 	/*
6653 	 * Make sure that signal_pending_state()->signal_pending() below
6654 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6655 	 * done by the caller to avoid the race with signal_wake_up():
6656 	 *
6657 	 * __set_current_state(@state)		signal_wake_up()
6658 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
6659 	 *					  wake_up_state(p, state)
6660 	 *   LOCK rq->lock			    LOCK p->pi_state
6661 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
6662 	 *     if (signal_pending_state())	    if (p->state & @state)
6663 	 *
6664 	 * Also, the membarrier system call requires a full memory barrier
6665 	 * after coming from user-space, before storing to rq->curr.
6666 	 */
6667 	rq_lock(rq, &rf);
6668 	smp_mb__after_spinlock();
6669 
6670 	/* Promote REQ to ACT */
6671 	rq->clock_update_flags <<= 1;
6672 	update_rq_clock(rq);
6673 	rq->clock_update_flags = RQCF_UPDATED;
6674 
6675 	switch_count = &prev->nivcsw;
6676 
6677 	/*
6678 	 * We must load prev->state once (task_struct::state is volatile), such
6679 	 * that we form a control dependency vs deactivate_task() below.
6680 	 */
6681 	prev_state = READ_ONCE(prev->__state);
6682 	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6683 		if (signal_pending_state(prev_state, prev)) {
6684 			WRITE_ONCE(prev->__state, TASK_RUNNING);
6685 		} else {
6686 			prev->sched_contributes_to_load =
6687 				(prev_state & TASK_UNINTERRUPTIBLE) &&
6688 				!(prev_state & TASK_NOLOAD) &&
6689 				!(prev_state & TASK_FROZEN);
6690 
6691 			if (prev->sched_contributes_to_load)
6692 				rq->nr_uninterruptible++;
6693 
6694 			/*
6695 			 * __schedule()			ttwu()
6696 			 *   prev_state = prev->state;    if (p->on_rq && ...)
6697 			 *   if (prev_state)		    goto out;
6698 			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
6699 			 *				  p->state = TASK_WAKING
6700 			 *
6701 			 * Where __schedule() and ttwu() have matching control dependencies.
6702 			 *
6703 			 * After this, schedule() must not care about p->state any more.
6704 			 */
6705 			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6706 
6707 			if (prev->in_iowait) {
6708 				atomic_inc(&rq->nr_iowait);
6709 				delayacct_blkio_start();
6710 			}
6711 		}
6712 		switch_count = &prev->nvcsw;
6713 	}
6714 
6715 	next = pick_next_task(rq, prev, &rf);
6716 	clear_tsk_need_resched(prev);
6717 	clear_preempt_need_resched();
6718 #ifdef CONFIG_SCHED_DEBUG
6719 	rq->last_seen_need_resched_ns = 0;
6720 #endif
6721 
6722 	if (likely(prev != next)) {
6723 		rq->nr_switches++;
6724 		/*
6725 		 * RCU users of rcu_dereference(rq->curr) may not see
6726 		 * changes to task_struct made by pick_next_task().
6727 		 */
6728 		RCU_INIT_POINTER(rq->curr, next);
6729 		/*
6730 		 * The membarrier system call requires each architecture
6731 		 * to have a full memory barrier after updating
6732 		 * rq->curr, before returning to user-space.
6733 		 *
6734 		 * Here are the schemes providing that barrier on the
6735 		 * various architectures:
6736 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6737 		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6738 		 * - finish_lock_switch() for weakly-ordered
6739 		 *   architectures where spin_unlock is a full barrier,
6740 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6741 		 *   is a RELEASE barrier),
6742 		 */
6743 		++*switch_count;
6744 
6745 		migrate_disable_switch(rq, prev);
6746 		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6747 
6748 		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6749 
6750 		/* Also unlocks the rq: */
6751 		rq = context_switch(rq, prev, next, &rf);
6752 	} else {
6753 		rq_unpin_lock(rq, &rf);
6754 		__balance_callbacks(rq);
6755 		raw_spin_rq_unlock_irq(rq);
6756 	}
6757 }
6758 
do_task_dead(void)6759 void __noreturn do_task_dead(void)
6760 {
6761 	/* Causes final put_task_struct in finish_task_switch(): */
6762 	set_special_state(TASK_DEAD);
6763 
6764 	/* Tell freezer to ignore us: */
6765 	current->flags |= PF_NOFREEZE;
6766 
6767 	__schedule(SM_NONE);
6768 	BUG();
6769 
6770 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6771 	for (;;)
6772 		cpu_relax();
6773 }
6774 
sched_submit_work(struct task_struct * tsk)6775 static inline void sched_submit_work(struct task_struct *tsk)
6776 {
6777 	unsigned int task_flags;
6778 
6779 	if (task_is_running(tsk))
6780 		return;
6781 
6782 	task_flags = tsk->flags;
6783 	/*
6784 	 * If a worker goes to sleep, notify and ask workqueue whether it
6785 	 * wants to wake up a task to maintain concurrency.
6786 	 */
6787 	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6788 		if (task_flags & PF_WQ_WORKER)
6789 			wq_worker_sleeping(tsk);
6790 		else
6791 			io_wq_worker_sleeping(tsk);
6792 	}
6793 
6794 	/*
6795 	 * spinlock and rwlock must not flush block requests.  This will
6796 	 * deadlock if the callback attempts to acquire a lock which is
6797 	 * already acquired.
6798 	 */
6799 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6800 
6801 	/*
6802 	 * If we are going to sleep and we have plugged IO queued,
6803 	 * make sure to submit it to avoid deadlocks.
6804 	 */
6805 	blk_flush_plug(tsk->plug, true);
6806 }
6807 
sched_update_worker(struct task_struct * tsk)6808 static void sched_update_worker(struct task_struct *tsk)
6809 {
6810 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6811 		if (tsk->flags & PF_WQ_WORKER)
6812 			wq_worker_running(tsk);
6813 		else
6814 			io_wq_worker_running(tsk);
6815 	}
6816 }
6817 
schedule(void)6818 asmlinkage __visible void __sched schedule(void)
6819 {
6820 	struct task_struct *tsk = current;
6821 
6822 	sched_submit_work(tsk);
6823 	do {
6824 		preempt_disable();
6825 		__schedule(SM_NONE);
6826 		sched_preempt_enable_no_resched();
6827 	} while (need_resched());
6828 	sched_update_worker(tsk);
6829 }
6830 EXPORT_SYMBOL(schedule);
6831 
6832 /*
6833  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6834  * state (have scheduled out non-voluntarily) by making sure that all
6835  * tasks have either left the run queue or have gone into user space.
6836  * As idle tasks do not do either, they must not ever be preempted
6837  * (schedule out non-voluntarily).
6838  *
6839  * schedule_idle() is similar to schedule_preempt_disable() except that it
6840  * never enables preemption because it does not call sched_submit_work().
6841  */
schedule_idle(void)6842 void __sched schedule_idle(void)
6843 {
6844 	/*
6845 	 * As this skips calling sched_submit_work(), which the idle task does
6846 	 * regardless because that function is a nop when the task is in a
6847 	 * TASK_RUNNING state, make sure this isn't used someplace that the
6848 	 * current task can be in any other state. Note, idle is always in the
6849 	 * TASK_RUNNING state.
6850 	 */
6851 	WARN_ON_ONCE(current->__state);
6852 	do {
6853 		__schedule(SM_NONE);
6854 	} while (need_resched());
6855 }
6856 
6857 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
schedule_user(void)6858 asmlinkage __visible void __sched schedule_user(void)
6859 {
6860 	/*
6861 	 * If we come here after a random call to set_need_resched(),
6862 	 * or we have been woken up remotely but the IPI has not yet arrived,
6863 	 * we haven't yet exited the RCU idle mode. Do it here manually until
6864 	 * we find a better solution.
6865 	 *
6866 	 * NB: There are buggy callers of this function.  Ideally we
6867 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
6868 	 * too frequently to make sense yet.
6869 	 */
6870 	enum ctx_state prev_state = exception_enter();
6871 	schedule();
6872 	exception_exit(prev_state);
6873 }
6874 #endif
6875 
6876 /**
6877  * schedule_preempt_disabled - called with preemption disabled
6878  *
6879  * Returns with preemption disabled. Note: preempt_count must be 1
6880  */
schedule_preempt_disabled(void)6881 void __sched schedule_preempt_disabled(void)
6882 {
6883 	sched_preempt_enable_no_resched();
6884 	schedule();
6885 	preempt_disable();
6886 }
6887 
6888 #ifdef CONFIG_PREEMPT_RT
schedule_rtlock(void)6889 void __sched notrace schedule_rtlock(void)
6890 {
6891 	do {
6892 		preempt_disable();
6893 		__schedule(SM_RTLOCK_WAIT);
6894 		sched_preempt_enable_no_resched();
6895 	} while (need_resched());
6896 }
6897 NOKPROBE_SYMBOL(schedule_rtlock);
6898 #endif
6899 
preempt_schedule_common(void)6900 static void __sched notrace preempt_schedule_common(void)
6901 {
6902 	do {
6903 		/*
6904 		 * Because the function tracer can trace preempt_count_sub()
6905 		 * and it also uses preempt_enable/disable_notrace(), if
6906 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6907 		 * by the function tracer will call this function again and
6908 		 * cause infinite recursion.
6909 		 *
6910 		 * Preemption must be disabled here before the function
6911 		 * tracer can trace. Break up preempt_disable() into two
6912 		 * calls. One to disable preemption without fear of being
6913 		 * traced. The other to still record the preemption latency,
6914 		 * which can also be traced by the function tracer.
6915 		 */
6916 		preempt_disable_notrace();
6917 		preempt_latency_start(1);
6918 		__schedule(SM_PREEMPT);
6919 		preempt_latency_stop(1);
6920 		preempt_enable_no_resched_notrace();
6921 
6922 		/*
6923 		 * Check again in case we missed a preemption opportunity
6924 		 * between schedule and now.
6925 		 */
6926 	} while (need_resched());
6927 }
6928 
6929 #ifdef CONFIG_PREEMPTION
6930 /*
6931  * This is the entry point to schedule() from in-kernel preemption
6932  * off of preempt_enable.
6933  */
preempt_schedule(void)6934 asmlinkage __visible void __sched notrace preempt_schedule(void)
6935 {
6936 	/*
6937 	 * If there is a non-zero preempt_count or interrupts are disabled,
6938 	 * we do not want to preempt the current task. Just return..
6939 	 */
6940 	if (likely(!preemptible()))
6941 		return;
6942 	preempt_schedule_common();
6943 }
6944 NOKPROBE_SYMBOL(preempt_schedule);
6945 EXPORT_SYMBOL(preempt_schedule);
6946 
6947 #ifdef CONFIG_PREEMPT_DYNAMIC
6948 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6949 #ifndef preempt_schedule_dynamic_enabled
6950 #define preempt_schedule_dynamic_enabled	preempt_schedule
6951 #define preempt_schedule_dynamic_disabled	NULL
6952 #endif
6953 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6954 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6955 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6956 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
dynamic_preempt_schedule(void)6957 void __sched notrace dynamic_preempt_schedule(void)
6958 {
6959 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6960 		return;
6961 	preempt_schedule();
6962 }
6963 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6964 EXPORT_SYMBOL(dynamic_preempt_schedule);
6965 #endif
6966 #endif
6967 
6968 /**
6969  * preempt_schedule_notrace - preempt_schedule called by tracing
6970  *
6971  * The tracing infrastructure uses preempt_enable_notrace to prevent
6972  * recursion and tracing preempt enabling caused by the tracing
6973  * infrastructure itself. But as tracing can happen in areas coming
6974  * from userspace or just about to enter userspace, a preempt enable
6975  * can occur before user_exit() is called. This will cause the scheduler
6976  * to be called when the system is still in usermode.
6977  *
6978  * To prevent this, the preempt_enable_notrace will use this function
6979  * instead of preempt_schedule() to exit user context if needed before
6980  * calling the scheduler.
6981  */
preempt_schedule_notrace(void)6982 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6983 {
6984 	enum ctx_state prev_ctx;
6985 
6986 	if (likely(!preemptible()))
6987 		return;
6988 
6989 	do {
6990 		/*
6991 		 * Because the function tracer can trace preempt_count_sub()
6992 		 * and it also uses preempt_enable/disable_notrace(), if
6993 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
6994 		 * by the function tracer will call this function again and
6995 		 * cause infinite recursion.
6996 		 *
6997 		 * Preemption must be disabled here before the function
6998 		 * tracer can trace. Break up preempt_disable() into two
6999 		 * calls. One to disable preemption without fear of being
7000 		 * traced. The other to still record the preemption latency,
7001 		 * which can also be traced by the function tracer.
7002 		 */
7003 		preempt_disable_notrace();
7004 		preempt_latency_start(1);
7005 		/*
7006 		 * Needs preempt disabled in case user_exit() is traced
7007 		 * and the tracer calls preempt_enable_notrace() causing
7008 		 * an infinite recursion.
7009 		 */
7010 		prev_ctx = exception_enter();
7011 		__schedule(SM_PREEMPT);
7012 		exception_exit(prev_ctx);
7013 
7014 		preempt_latency_stop(1);
7015 		preempt_enable_no_resched_notrace();
7016 	} while (need_resched());
7017 }
7018 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
7019 
7020 #ifdef CONFIG_PREEMPT_DYNAMIC
7021 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7022 #ifndef preempt_schedule_notrace_dynamic_enabled
7023 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
7024 #define preempt_schedule_notrace_dynamic_disabled	NULL
7025 #endif
7026 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
7027 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
7028 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7029 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
dynamic_preempt_schedule_notrace(void)7030 void __sched notrace dynamic_preempt_schedule_notrace(void)
7031 {
7032 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
7033 		return;
7034 	preempt_schedule_notrace();
7035 }
7036 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
7037 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
7038 #endif
7039 #endif
7040 
7041 #endif /* CONFIG_PREEMPTION */
7042 
7043 /*
7044  * This is the entry point to schedule() from kernel preemption
7045  * off of irq context.
7046  * Note, that this is called and return with irqs disabled. This will
7047  * protect us against recursive calling from irq.
7048  */
preempt_schedule_irq(void)7049 asmlinkage __visible void __sched preempt_schedule_irq(void)
7050 {
7051 	enum ctx_state prev_state;
7052 
7053 	/* Catch callers which need to be fixed */
7054 	BUG_ON(preempt_count() || !irqs_disabled());
7055 
7056 	prev_state = exception_enter();
7057 
7058 	do {
7059 		preempt_disable();
7060 		local_irq_enable();
7061 		__schedule(SM_PREEMPT);
7062 		local_irq_disable();
7063 		sched_preempt_enable_no_resched();
7064 	} while (need_resched());
7065 
7066 	exception_exit(prev_state);
7067 }
7068 
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)7069 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7070 			  void *key)
7071 {
7072 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7073 	return try_to_wake_up(curr->private, mode, wake_flags);
7074 }
7075 EXPORT_SYMBOL(default_wake_function);
7076 
__setscheduler_prio(struct task_struct * p,int prio)7077 static void __setscheduler_prio(struct task_struct *p, int prio)
7078 {
7079 	if (dl_prio(prio))
7080 		p->sched_class = &dl_sched_class;
7081 	else if (rt_prio(prio))
7082 		p->sched_class = &rt_sched_class;
7083 	else
7084 		p->sched_class = &fair_sched_class;
7085 
7086 	p->prio = prio;
7087 }
7088 
7089 #ifdef CONFIG_RT_MUTEXES
7090 
__rt_effective_prio(struct task_struct * pi_task,int prio)7091 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
7092 {
7093 	if (pi_task)
7094 		prio = min(prio, pi_task->prio);
7095 
7096 	return prio;
7097 }
7098 
rt_effective_prio(struct task_struct * p,int prio)7099 static inline int rt_effective_prio(struct task_struct *p, int prio)
7100 {
7101 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
7102 
7103 	return __rt_effective_prio(pi_task, prio);
7104 }
7105 
7106 /*
7107  * rt_mutex_setprio - set the current priority of a task
7108  * @p: task to boost
7109  * @pi_task: donor task
7110  *
7111  * This function changes the 'effective' priority of a task. It does
7112  * not touch ->normal_prio like __setscheduler().
7113  *
7114  * Used by the rt_mutex code to implement priority inheritance
7115  * logic. Call site only calls if the priority of the task changed.
7116  */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)7117 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7118 {
7119 	int prio, oldprio, queued, running, queue_flag =
7120 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7121 	const struct sched_class *prev_class;
7122 	struct rq_flags rf;
7123 	struct rq *rq;
7124 
7125 	/* XXX used to be waiter->prio, not waiter->task->prio */
7126 	prio = __rt_effective_prio(pi_task, p->normal_prio);
7127 
7128 	/*
7129 	 * If nothing changed; bail early.
7130 	 */
7131 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7132 		return;
7133 
7134 	rq = __task_rq_lock(p, &rf);
7135 	update_rq_clock(rq);
7136 	/*
7137 	 * Set under pi_lock && rq->lock, such that the value can be used under
7138 	 * either lock.
7139 	 *
7140 	 * Note that there is loads of tricky to make this pointer cache work
7141 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7142 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
7143 	 * task is allowed to run again (and can exit). This ensures the pointer
7144 	 * points to a blocked task -- which guarantees the task is present.
7145 	 */
7146 	p->pi_top_task = pi_task;
7147 
7148 	/*
7149 	 * For FIFO/RR we only need to set prio, if that matches we're done.
7150 	 */
7151 	if (prio == p->prio && !dl_prio(prio))
7152 		goto out_unlock;
7153 
7154 	/*
7155 	 * Idle task boosting is a nono in general. There is one
7156 	 * exception, when PREEMPT_RT and NOHZ is active:
7157 	 *
7158 	 * The idle task calls get_next_timer_interrupt() and holds
7159 	 * the timer wheel base->lock on the CPU and another CPU wants
7160 	 * to access the timer (probably to cancel it). We can safely
7161 	 * ignore the boosting request, as the idle CPU runs this code
7162 	 * with interrupts disabled and will complete the lock
7163 	 * protected section without being interrupted. So there is no
7164 	 * real need to boost.
7165 	 */
7166 	if (unlikely(p == rq->idle)) {
7167 		WARN_ON(p != rq->curr);
7168 		WARN_ON(p->pi_blocked_on);
7169 		goto out_unlock;
7170 	}
7171 
7172 	trace_sched_pi_setprio(p, pi_task);
7173 	oldprio = p->prio;
7174 
7175 	if (oldprio == prio)
7176 		queue_flag &= ~DEQUEUE_MOVE;
7177 
7178 	prev_class = p->sched_class;
7179 	queued = task_on_rq_queued(p);
7180 	running = task_current(rq, p);
7181 	if (queued)
7182 		dequeue_task(rq, p, queue_flag);
7183 	if (running)
7184 		put_prev_task(rq, p);
7185 
7186 	/*
7187 	 * Boosting condition are:
7188 	 * 1. -rt task is running and holds mutex A
7189 	 *      --> -dl task blocks on mutex A
7190 	 *
7191 	 * 2. -dl task is running and holds mutex A
7192 	 *      --> -dl task blocks on mutex A and could preempt the
7193 	 *          running task
7194 	 */
7195 	if (dl_prio(prio)) {
7196 		if (!dl_prio(p->normal_prio) ||
7197 		    (pi_task && dl_prio(pi_task->prio) &&
7198 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
7199 			p->dl.pi_se = pi_task->dl.pi_se;
7200 			queue_flag |= ENQUEUE_REPLENISH;
7201 		} else {
7202 			p->dl.pi_se = &p->dl;
7203 		}
7204 	} else if (rt_prio(prio)) {
7205 		if (dl_prio(oldprio))
7206 			p->dl.pi_se = &p->dl;
7207 		if (oldprio < prio)
7208 			queue_flag |= ENQUEUE_HEAD;
7209 	} else {
7210 		if (dl_prio(oldprio))
7211 			p->dl.pi_se = &p->dl;
7212 		if (rt_prio(oldprio))
7213 			p->rt.timeout = 0;
7214 	}
7215 
7216 	__setscheduler_prio(p, prio);
7217 
7218 	if (queued)
7219 		enqueue_task(rq, p, queue_flag);
7220 	if (running)
7221 		set_next_task(rq, p);
7222 
7223 	check_class_changed(rq, p, prev_class, oldprio);
7224 out_unlock:
7225 	/* Avoid rq from going away on us: */
7226 	preempt_disable();
7227 
7228 	rq_unpin_lock(rq, &rf);
7229 	__balance_callbacks(rq);
7230 	raw_spin_rq_unlock(rq);
7231 
7232 	preempt_enable();
7233 }
7234 #else
rt_effective_prio(struct task_struct * p,int prio)7235 static inline int rt_effective_prio(struct task_struct *p, int prio)
7236 {
7237 	return prio;
7238 }
7239 #endif
7240 
set_user_nice(struct task_struct * p,long nice)7241 void set_user_nice(struct task_struct *p, long nice)
7242 {
7243 	bool queued, running;
7244 	int old_prio;
7245 	struct rq_flags rf;
7246 	struct rq *rq;
7247 
7248 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7249 		return;
7250 	/*
7251 	 * We have to be careful, if called from sys_setpriority(),
7252 	 * the task might be in the middle of scheduling on another CPU.
7253 	 */
7254 	rq = task_rq_lock(p, &rf);
7255 	update_rq_clock(rq);
7256 
7257 	/*
7258 	 * The RT priorities are set via sched_setscheduler(), but we still
7259 	 * allow the 'normal' nice value to be set - but as expected
7260 	 * it won't have any effect on scheduling until the task is
7261 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7262 	 */
7263 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7264 		p->static_prio = NICE_TO_PRIO(nice);
7265 		goto out_unlock;
7266 	}
7267 	queued = task_on_rq_queued(p);
7268 	running = task_current(rq, p);
7269 	if (queued)
7270 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7271 	if (running)
7272 		put_prev_task(rq, p);
7273 
7274 	p->static_prio = NICE_TO_PRIO(nice);
7275 	set_load_weight(p, true);
7276 	old_prio = p->prio;
7277 	p->prio = effective_prio(p);
7278 
7279 	if (queued)
7280 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7281 	if (running)
7282 		set_next_task(rq, p);
7283 
7284 	/*
7285 	 * If the task increased its priority or is running and
7286 	 * lowered its priority, then reschedule its CPU:
7287 	 */
7288 	p->sched_class->prio_changed(rq, p, old_prio);
7289 
7290 out_unlock:
7291 	task_rq_unlock(rq, p, &rf);
7292 }
7293 EXPORT_SYMBOL(set_user_nice);
7294 
7295 /*
7296  * is_nice_reduction - check if nice value is an actual reduction
7297  *
7298  * Similar to can_nice() but does not perform a capability check.
7299  *
7300  * @p: task
7301  * @nice: nice value
7302  */
is_nice_reduction(const struct task_struct * p,const int nice)7303 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7304 {
7305 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
7306 	int nice_rlim = nice_to_rlimit(nice);
7307 
7308 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7309 }
7310 
7311 /*
7312  * can_nice - check if a task can reduce its nice value
7313  * @p: task
7314  * @nice: nice value
7315  */
can_nice(const struct task_struct * p,const int nice)7316 int can_nice(const struct task_struct *p, const int nice)
7317 {
7318 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7319 }
7320 
7321 #ifdef __ARCH_WANT_SYS_NICE
7322 
7323 /*
7324  * sys_nice - change the priority of the current process.
7325  * @increment: priority increment
7326  *
7327  * sys_setpriority is a more generic, but much slower function that
7328  * does similar things.
7329  */
SYSCALL_DEFINE1(nice,int,increment)7330 SYSCALL_DEFINE1(nice, int, increment)
7331 {
7332 	long nice, retval;
7333 
7334 	/*
7335 	 * Setpriority might change our priority at the same moment.
7336 	 * We don't have to worry. Conceptually one call occurs first
7337 	 * and we have a single winner.
7338 	 */
7339 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7340 	nice = task_nice(current) + increment;
7341 
7342 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7343 	if (increment < 0 && !can_nice(current, nice))
7344 		return -EPERM;
7345 
7346 	retval = security_task_setnice(current, nice);
7347 	if (retval)
7348 		return retval;
7349 
7350 	set_user_nice(current, nice);
7351 	return 0;
7352 }
7353 
7354 #endif
7355 
7356 /**
7357  * task_prio - return the priority value of a given task.
7358  * @p: the task in question.
7359  *
7360  * Return: The priority value as seen by users in /proc.
7361  *
7362  * sched policy         return value   kernel prio    user prio/nice
7363  *
7364  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
7365  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
7366  * deadline                     -101             -1           0
7367  */
task_prio(const struct task_struct * p)7368 int task_prio(const struct task_struct *p)
7369 {
7370 	return p->prio - MAX_RT_PRIO;
7371 }
7372 
7373 /**
7374  * idle_cpu - is a given CPU idle currently?
7375  * @cpu: the processor in question.
7376  *
7377  * Return: 1 if the CPU is currently idle. 0 otherwise.
7378  */
idle_cpu(int cpu)7379 int idle_cpu(int cpu)
7380 {
7381 	struct rq *rq = cpu_rq(cpu);
7382 
7383 	if (rq->curr != rq->idle)
7384 		return 0;
7385 
7386 	if (rq->nr_running)
7387 		return 0;
7388 
7389 #ifdef CONFIG_SMP
7390 	if (rq->ttwu_pending)
7391 		return 0;
7392 #endif
7393 
7394 	return 1;
7395 }
7396 
7397 /**
7398  * available_idle_cpu - is a given CPU idle for enqueuing work.
7399  * @cpu: the CPU in question.
7400  *
7401  * Return: 1 if the CPU is currently idle. 0 otherwise.
7402  */
available_idle_cpu(int cpu)7403 int available_idle_cpu(int cpu)
7404 {
7405 	if (!idle_cpu(cpu))
7406 		return 0;
7407 
7408 	if (vcpu_is_preempted(cpu))
7409 		return 0;
7410 
7411 	return 1;
7412 }
7413 
7414 /**
7415  * idle_task - return the idle task for a given CPU.
7416  * @cpu: the processor in question.
7417  *
7418  * Return: The idle task for the CPU @cpu.
7419  */
idle_task(int cpu)7420 struct task_struct *idle_task(int cpu)
7421 {
7422 	return cpu_rq(cpu)->idle;
7423 }
7424 
7425 #ifdef CONFIG_SCHED_CORE
sched_core_idle_cpu(int cpu)7426 int sched_core_idle_cpu(int cpu)
7427 {
7428 	struct rq *rq = cpu_rq(cpu);
7429 
7430 	if (sched_core_enabled(rq) && rq->curr == rq->idle)
7431 		return 1;
7432 
7433 	return idle_cpu(cpu);
7434 }
7435 
7436 #endif
7437 
7438 #ifdef CONFIG_SMP
7439 /*
7440  * This function computes an effective utilization for the given CPU, to be
7441  * used for frequency selection given the linear relation: f = u * f_max.
7442  *
7443  * The scheduler tracks the following metrics:
7444  *
7445  *   cpu_util_{cfs,rt,dl,irq}()
7446  *   cpu_bw_dl()
7447  *
7448  * Where the cfs,rt and dl util numbers are tracked with the same metric and
7449  * synchronized windows and are thus directly comparable.
7450  *
7451  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7452  * which excludes things like IRQ and steal-time. These latter are then accrued
7453  * in the irq utilization.
7454  *
7455  * The DL bandwidth number otoh is not a measured metric but a value computed
7456  * based on the task model parameters and gives the minimal utilization
7457  * required to meet deadlines.
7458  */
effective_cpu_util(int cpu,unsigned long util_cfs,enum cpu_util_type type,struct task_struct * p)7459 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7460 				 enum cpu_util_type type,
7461 				 struct task_struct *p)
7462 {
7463 	unsigned long dl_util, util, irq, max;
7464 	struct rq *rq = cpu_rq(cpu);
7465 
7466 	max = arch_scale_cpu_capacity(cpu);
7467 
7468 	if (!uclamp_is_used() &&
7469 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7470 		return max;
7471 	}
7472 
7473 	/*
7474 	 * Early check to see if IRQ/steal time saturates the CPU, can be
7475 	 * because of inaccuracies in how we track these -- see
7476 	 * update_irq_load_avg().
7477 	 */
7478 	irq = cpu_util_irq(rq);
7479 	if (unlikely(irq >= max))
7480 		return max;
7481 
7482 	/*
7483 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7484 	 * CFS tasks and we use the same metric to track the effective
7485 	 * utilization (PELT windows are synchronized) we can directly add them
7486 	 * to obtain the CPU's actual utilization.
7487 	 *
7488 	 * CFS and RT utilization can be boosted or capped, depending on
7489 	 * utilization clamp constraints requested by currently RUNNABLE
7490 	 * tasks.
7491 	 * When there are no CFS RUNNABLE tasks, clamps are released and
7492 	 * frequency will be gracefully reduced with the utilization decay.
7493 	 */
7494 	util = util_cfs + cpu_util_rt(rq);
7495 	if (type == FREQUENCY_UTIL)
7496 		util = uclamp_rq_util_with(rq, util, p);
7497 
7498 	dl_util = cpu_util_dl(rq);
7499 
7500 	/*
7501 	 * For frequency selection we do not make cpu_util_dl() a permanent part
7502 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
7503 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7504 	 * that we select f_max when there is no idle time.
7505 	 *
7506 	 * NOTE: numerical errors or stop class might cause us to not quite hit
7507 	 * saturation when we should -- something for later.
7508 	 */
7509 	if (util + dl_util >= max)
7510 		return max;
7511 
7512 	/*
7513 	 * OTOH, for energy computation we need the estimated running time, so
7514 	 * include util_dl and ignore dl_bw.
7515 	 */
7516 	if (type == ENERGY_UTIL)
7517 		util += dl_util;
7518 
7519 	/*
7520 	 * There is still idle time; further improve the number by using the
7521 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
7522 	 * need to scale the task numbers:
7523 	 *
7524 	 *              max - irq
7525 	 *   U' = irq + --------- * U
7526 	 *                 max
7527 	 */
7528 	util = scale_irq_capacity(util, irq, max);
7529 	util += irq;
7530 
7531 	/*
7532 	 * Bandwidth required by DEADLINE must always be granted while, for
7533 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7534 	 * to gracefully reduce the frequency when no tasks show up for longer
7535 	 * periods of time.
7536 	 *
7537 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7538 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7539 	 * an interface. So, we only do the latter for now.
7540 	 */
7541 	if (type == FREQUENCY_UTIL)
7542 		util += cpu_bw_dl(rq);
7543 
7544 	return min(max, util);
7545 }
7546 
sched_cpu_util(int cpu)7547 unsigned long sched_cpu_util(int cpu)
7548 {
7549 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7550 }
7551 #endif /* CONFIG_SMP */
7552 
7553 /**
7554  * find_process_by_pid - find a process with a matching PID value.
7555  * @pid: the pid in question.
7556  *
7557  * The task of @pid, if found. %NULL otherwise.
7558  */
find_process_by_pid(pid_t pid)7559 static struct task_struct *find_process_by_pid(pid_t pid)
7560 {
7561 	return pid ? find_task_by_vpid(pid) : current;
7562 }
7563 
7564 /*
7565  * sched_setparam() passes in -1 for its policy, to let the functions
7566  * it calls know not to change it.
7567  */
7568 #define SETPARAM_POLICY	-1
7569 
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)7570 static void __setscheduler_params(struct task_struct *p,
7571 		const struct sched_attr *attr)
7572 {
7573 	int policy = attr->sched_policy;
7574 
7575 	if (policy == SETPARAM_POLICY)
7576 		policy = p->policy;
7577 
7578 	p->policy = policy;
7579 
7580 	if (dl_policy(policy))
7581 		__setparam_dl(p, attr);
7582 	else if (fair_policy(policy))
7583 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7584 
7585 	/*
7586 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7587 	 * !rt_policy. Always setting this ensures that things like
7588 	 * getparam()/getattr() don't report silly values for !rt tasks.
7589 	 */
7590 	p->rt_priority = attr->sched_priority;
7591 	p->normal_prio = normal_prio(p);
7592 	set_load_weight(p, true);
7593 }
7594 
7595 /*
7596  * Check the target process has a UID that matches the current process's:
7597  */
check_same_owner(struct task_struct * p)7598 static bool check_same_owner(struct task_struct *p)
7599 {
7600 	const struct cred *cred = current_cred(), *pcred;
7601 	bool match;
7602 
7603 	rcu_read_lock();
7604 	pcred = __task_cred(p);
7605 	match = (uid_eq(cred->euid, pcred->euid) ||
7606 		 uid_eq(cred->euid, pcred->uid));
7607 	rcu_read_unlock();
7608 	return match;
7609 }
7610 
7611 /*
7612  * Allow unprivileged RT tasks to decrease priority.
7613  * Only issue a capable test if needed and only once to avoid an audit
7614  * event on permitted non-privileged operations:
7615  */
user_check_sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,int policy,int reset_on_fork)7616 static int user_check_sched_setscheduler(struct task_struct *p,
7617 					 const struct sched_attr *attr,
7618 					 int policy, int reset_on_fork)
7619 {
7620 	if (fair_policy(policy)) {
7621 		if (attr->sched_nice < task_nice(p) &&
7622 		    !is_nice_reduction(p, attr->sched_nice))
7623 			goto req_priv;
7624 	}
7625 
7626 	if (rt_policy(policy)) {
7627 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7628 
7629 		/* Can't set/change the rt policy: */
7630 		if (policy != p->policy && !rlim_rtprio)
7631 			goto req_priv;
7632 
7633 		/* Can't increase priority: */
7634 		if (attr->sched_priority > p->rt_priority &&
7635 		    attr->sched_priority > rlim_rtprio)
7636 			goto req_priv;
7637 	}
7638 
7639 	/*
7640 	 * Can't set/change SCHED_DEADLINE policy at all for now
7641 	 * (safest behavior); in the future we would like to allow
7642 	 * unprivileged DL tasks to increase their relative deadline
7643 	 * or reduce their runtime (both ways reducing utilization)
7644 	 */
7645 	if (dl_policy(policy))
7646 		goto req_priv;
7647 
7648 	/*
7649 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7650 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7651 	 */
7652 	if (task_has_idle_policy(p) && !idle_policy(policy)) {
7653 		if (!is_nice_reduction(p, task_nice(p)))
7654 			goto req_priv;
7655 	}
7656 
7657 	/* Can't change other user's priorities: */
7658 	if (!check_same_owner(p))
7659 		goto req_priv;
7660 
7661 	/* Normal users shall not reset the sched_reset_on_fork flag: */
7662 	if (p->sched_reset_on_fork && !reset_on_fork)
7663 		goto req_priv;
7664 
7665 	return 0;
7666 
7667 req_priv:
7668 	if (!capable(CAP_SYS_NICE))
7669 		return -EPERM;
7670 
7671 	return 0;
7672 }
7673 
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)7674 static int __sched_setscheduler(struct task_struct *p,
7675 				const struct sched_attr *attr,
7676 				bool user, bool pi)
7677 {
7678 	int oldpolicy = -1, policy = attr->sched_policy;
7679 	int retval, oldprio, newprio, queued, running;
7680 	const struct sched_class *prev_class;
7681 	struct balance_callback *head;
7682 	struct rq_flags rf;
7683 	int reset_on_fork;
7684 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7685 	struct rq *rq;
7686 	bool cpuset_locked = false;
7687 
7688 	/* The pi code expects interrupts enabled */
7689 	BUG_ON(pi && in_interrupt());
7690 recheck:
7691 	/* Double check policy once rq lock held: */
7692 	if (policy < 0) {
7693 		reset_on_fork = p->sched_reset_on_fork;
7694 		policy = oldpolicy = p->policy;
7695 	} else {
7696 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7697 
7698 		if (!valid_policy(policy))
7699 			return -EINVAL;
7700 	}
7701 
7702 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7703 		return -EINVAL;
7704 
7705 	/*
7706 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
7707 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7708 	 * SCHED_BATCH and SCHED_IDLE is 0.
7709 	 */
7710 	if (attr->sched_priority > MAX_RT_PRIO-1)
7711 		return -EINVAL;
7712 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7713 	    (rt_policy(policy) != (attr->sched_priority != 0)))
7714 		return -EINVAL;
7715 
7716 	if (user) {
7717 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7718 		if (retval)
7719 			return retval;
7720 
7721 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
7722 			return -EINVAL;
7723 
7724 		retval = security_task_setscheduler(p);
7725 		if (retval)
7726 			return retval;
7727 	}
7728 
7729 	/* Update task specific "requested" clamps */
7730 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7731 		retval = uclamp_validate(p, attr);
7732 		if (retval)
7733 			return retval;
7734 	}
7735 
7736 	/*
7737 	 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
7738 	 * information.
7739 	 */
7740 	if (dl_policy(policy) || dl_policy(p->policy)) {
7741 		cpuset_locked = true;
7742 		cpuset_lock();
7743 	}
7744 
7745 	/*
7746 	 * Make sure no PI-waiters arrive (or leave) while we are
7747 	 * changing the priority of the task:
7748 	 *
7749 	 * To be able to change p->policy safely, the appropriate
7750 	 * runqueue lock must be held.
7751 	 */
7752 	rq = task_rq_lock(p, &rf);
7753 	update_rq_clock(rq);
7754 
7755 	/*
7756 	 * Changing the policy of the stop threads its a very bad idea:
7757 	 */
7758 	if (p == rq->stop) {
7759 		retval = -EINVAL;
7760 		goto unlock;
7761 	}
7762 
7763 	/*
7764 	 * If not changing anything there's no need to proceed further,
7765 	 * but store a possible modification of reset_on_fork.
7766 	 */
7767 	if (unlikely(policy == p->policy)) {
7768 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7769 			goto change;
7770 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7771 			goto change;
7772 		if (dl_policy(policy) && dl_param_changed(p, attr))
7773 			goto change;
7774 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7775 			goto change;
7776 #ifdef CONFIG_SCHED_LATENCY_NICE
7777 		if (attr->sched_flags & SCHED_FLAG_LATENCY_NICE &&
7778 		    attr->sched_latency_nice != LATENCY_TO_NICE(p->latency_prio))
7779 			goto change;
7780 #endif
7781 
7782 		p->sched_reset_on_fork = reset_on_fork;
7783 		retval = 0;
7784 		goto unlock;
7785 	}
7786 change:
7787 
7788 	if (user) {
7789 #ifdef CONFIG_RT_GROUP_SCHED
7790 		/*
7791 		 * Do not allow realtime tasks into groups that have no runtime
7792 		 * assigned.
7793 		 */
7794 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
7795 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7796 				!task_group_is_autogroup(task_group(p))) {
7797 			retval = -EPERM;
7798 			goto unlock;
7799 		}
7800 #endif
7801 #ifdef CONFIG_SMP
7802 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
7803 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7804 			cpumask_t *span = rq->rd->span;
7805 
7806 			/*
7807 			 * Don't allow tasks with an affinity mask smaller than
7808 			 * the entire root_domain to become SCHED_DEADLINE. We
7809 			 * will also fail if there's no bandwidth available.
7810 			 */
7811 			if (!cpumask_subset(span, p->cpus_ptr) ||
7812 			    rq->rd->dl_bw.bw == 0) {
7813 				retval = -EPERM;
7814 				goto unlock;
7815 			}
7816 		}
7817 #endif
7818 	}
7819 
7820 	/* Re-check policy now with rq lock held: */
7821 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7822 		policy = oldpolicy = -1;
7823 		task_rq_unlock(rq, p, &rf);
7824 		if (cpuset_locked)
7825 			cpuset_unlock();
7826 		goto recheck;
7827 	}
7828 
7829 	/*
7830 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7831 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7832 	 * is available.
7833 	 */
7834 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7835 		retval = -EBUSY;
7836 		goto unlock;
7837 	}
7838 
7839 	p->sched_reset_on_fork = reset_on_fork;
7840 	oldprio = p->prio;
7841 
7842 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7843 	if (pi) {
7844 		/*
7845 		 * Take priority boosted tasks into account. If the new
7846 		 * effective priority is unchanged, we just store the new
7847 		 * normal parameters and do not touch the scheduler class and
7848 		 * the runqueue. This will be done when the task deboost
7849 		 * itself.
7850 		 */
7851 		newprio = rt_effective_prio(p, newprio);
7852 		if (newprio == oldprio)
7853 			queue_flags &= ~DEQUEUE_MOVE;
7854 	}
7855 
7856 	queued = task_on_rq_queued(p);
7857 	running = task_current(rq, p);
7858 	if (queued)
7859 		dequeue_task(rq, p, queue_flags);
7860 	if (running)
7861 		put_prev_task(rq, p);
7862 
7863 	prev_class = p->sched_class;
7864 
7865 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7866 		__setscheduler_params(p, attr);
7867 		__setscheduler_prio(p, newprio);
7868 	}
7869 	__setscheduler_uclamp(p, attr);
7870 
7871 	if (queued) {
7872 		/*
7873 		 * We enqueue to tail when the priority of a task is
7874 		 * increased (user space view).
7875 		 */
7876 		if (oldprio < p->prio)
7877 			queue_flags |= ENQUEUE_HEAD;
7878 
7879 		enqueue_task(rq, p, queue_flags);
7880 	}
7881 	if (running)
7882 		set_next_task(rq, p);
7883 
7884 	check_class_changed(rq, p, prev_class, oldprio);
7885 
7886 	/* Avoid rq from going away on us: */
7887 	preempt_disable();
7888 	head = splice_balance_callbacks(rq);
7889 	task_rq_unlock(rq, p, &rf);
7890 
7891 	if (pi) {
7892 		if (cpuset_locked)
7893 			cpuset_unlock();
7894 		rt_mutex_adjust_pi(p);
7895 	}
7896 
7897 	/* Run balance callbacks after we've adjusted the PI chain: */
7898 	balance_callbacks(rq, head);
7899 	preempt_enable();
7900 
7901 	return 0;
7902 
7903 unlock:
7904 	task_rq_unlock(rq, p, &rf);
7905 	if (cpuset_locked)
7906 		cpuset_unlock();
7907 	return retval;
7908 }
7909 
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)7910 static int _sched_setscheduler(struct task_struct *p, int policy,
7911 			       const struct sched_param *param, bool check)
7912 {
7913 	struct sched_attr attr = {
7914 		.sched_policy   = policy,
7915 		.sched_priority = param->sched_priority,
7916 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
7917 	};
7918 
7919 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7920 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7921 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7922 		policy &= ~SCHED_RESET_ON_FORK;
7923 		attr.sched_policy = policy;
7924 	}
7925 
7926 	return __sched_setscheduler(p, &attr, check, true);
7927 }
7928 /**
7929  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7930  * @p: the task in question.
7931  * @policy: new policy.
7932  * @param: structure containing the new RT priority.
7933  *
7934  * Use sched_set_fifo(), read its comment.
7935  *
7936  * Return: 0 on success. An error code otherwise.
7937  *
7938  * NOTE that the task may be already dead.
7939  */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)7940 int sched_setscheduler(struct task_struct *p, int policy,
7941 		       const struct sched_param *param)
7942 {
7943 	return _sched_setscheduler(p, policy, param, true);
7944 }
7945 
sched_setattr(struct task_struct * p,const struct sched_attr * attr)7946 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7947 {
7948 	return __sched_setscheduler(p, attr, true, true);
7949 }
7950 
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)7951 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7952 {
7953 	return __sched_setscheduler(p, attr, false, true);
7954 }
7955 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7956 
7957 /**
7958  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7959  * @p: the task in question.
7960  * @policy: new policy.
7961  * @param: structure containing the new RT priority.
7962  *
7963  * Just like sched_setscheduler, only don't bother checking if the
7964  * current context has permission.  For example, this is needed in
7965  * stop_machine(): we create temporary high priority worker threads,
7966  * but our caller might not have that capability.
7967  *
7968  * Return: 0 on success. An error code otherwise.
7969  */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)7970 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7971 			       const struct sched_param *param)
7972 {
7973 	return _sched_setscheduler(p, policy, param, false);
7974 }
7975 
7976 /*
7977  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7978  * incapable of resource management, which is the one thing an OS really should
7979  * be doing.
7980  *
7981  * This is of course the reason it is limited to privileged users only.
7982  *
7983  * Worse still; it is fundamentally impossible to compose static priority
7984  * workloads. You cannot take two correctly working static prio workloads
7985  * and smash them together and still expect them to work.
7986  *
7987  * For this reason 'all' FIFO tasks the kernel creates are basically at:
7988  *
7989  *   MAX_RT_PRIO / 2
7990  *
7991  * The administrator _MUST_ configure the system, the kernel simply doesn't
7992  * know enough information to make a sensible choice.
7993  */
sched_set_fifo(struct task_struct * p)7994 void sched_set_fifo(struct task_struct *p)
7995 {
7996 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7997 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7998 }
7999 EXPORT_SYMBOL_GPL(sched_set_fifo);
8000 
8001 /*
8002  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
8003  */
sched_set_fifo_low(struct task_struct * p)8004 void sched_set_fifo_low(struct task_struct *p)
8005 {
8006 	struct sched_param sp = { .sched_priority = 1 };
8007 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
8008 }
8009 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
8010 
sched_set_normal(struct task_struct * p,int nice)8011 void sched_set_normal(struct task_struct *p, int nice)
8012 {
8013 	struct sched_attr attr = {
8014 		.sched_policy = SCHED_NORMAL,
8015 		.sched_nice = nice,
8016 	};
8017 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
8018 }
8019 EXPORT_SYMBOL_GPL(sched_set_normal);
8020 
8021 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)8022 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
8023 {
8024 	struct sched_param lparam;
8025 	struct task_struct *p;
8026 	int retval;
8027 
8028 	if (!param || pid < 0)
8029 		return -EINVAL;
8030 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
8031 		return -EFAULT;
8032 
8033 	rcu_read_lock();
8034 	retval = -ESRCH;
8035 	p = find_process_by_pid(pid);
8036 	if (likely(p))
8037 		get_task_struct(p);
8038 	rcu_read_unlock();
8039 
8040 	if (likely(p)) {
8041 		retval = sched_setscheduler(p, policy, &lparam);
8042 		put_task_struct(p);
8043 	}
8044 
8045 	return retval;
8046 }
8047 
8048 /*
8049  * Mimics kernel/events/core.c perf_copy_attr().
8050  */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)8051 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
8052 {
8053 	u32 size;
8054 	int ret;
8055 
8056 	/* Zero the full structure, so that a short copy will be nice: */
8057 	memset(attr, 0, sizeof(*attr));
8058 
8059 	ret = get_user(size, &uattr->size);
8060 	if (ret)
8061 		return ret;
8062 
8063 	/* ABI compatibility quirk: */
8064 	if (!size)
8065 		size = SCHED_ATTR_SIZE_VER0;
8066 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
8067 		goto err_size;
8068 
8069 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
8070 	if (ret) {
8071 		if (ret == -E2BIG)
8072 			goto err_size;
8073 		return ret;
8074 	}
8075 
8076 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
8077 	    size < SCHED_ATTR_SIZE_VER1)
8078 		return -EINVAL;
8079 
8080 #ifdef CONFIG_SCHED_LATENCY_NICE
8081 	if ((attr->sched_flags & SCHED_FLAG_LATENCY_NICE) &&
8082 	    size < SCHED_ATTR_SIZE_VER2)
8083 		return -EINVAL;
8084 #endif
8085 	/*
8086 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
8087 	 * to be strict and return an error on out-of-bounds values?
8088 	 */
8089 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
8090 
8091 	return 0;
8092 
8093 err_size:
8094 	put_user(sizeof(*attr), &uattr->size);
8095 	return -E2BIG;
8096 }
8097 
get_params(struct task_struct * p,struct sched_attr * attr)8098 static void get_params(struct task_struct *p, struct sched_attr *attr)
8099 {
8100 	if (task_has_dl_policy(p))
8101 		__getparam_dl(p, attr);
8102 	else if (task_has_rt_policy(p))
8103 		attr->sched_priority = p->rt_priority;
8104 	else
8105 		attr->sched_nice = task_nice(p);
8106 }
8107 
8108 /**
8109  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
8110  * @pid: the pid in question.
8111  * @policy: new policy.
8112  * @param: structure containing the new RT priority.
8113  *
8114  * Return: 0 on success. An error code otherwise.
8115  */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)8116 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
8117 {
8118 	if (policy < 0)
8119 		return -EINVAL;
8120 
8121 	return do_sched_setscheduler(pid, policy, param);
8122 }
8123 
8124 /**
8125  * sys_sched_setparam - set/change the RT priority of a thread
8126  * @pid: the pid in question.
8127  * @param: structure containing the new RT priority.
8128  *
8129  * Return: 0 on success. An error code otherwise.
8130  */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)8131 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
8132 {
8133 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
8134 }
8135 
8136 /**
8137  * sys_sched_setattr - same as above, but with extended sched_attr
8138  * @pid: the pid in question.
8139  * @uattr: structure containing the extended parameters.
8140  * @flags: for future extension.
8141  */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)8142 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
8143 			       unsigned int, flags)
8144 {
8145 	struct sched_attr attr;
8146 	struct task_struct *p;
8147 	int retval;
8148 
8149 	if (!uattr || pid < 0 || flags)
8150 		return -EINVAL;
8151 
8152 	retval = sched_copy_attr(uattr, &attr);
8153 	if (retval)
8154 		return retval;
8155 
8156 	if ((int)attr.sched_policy < 0)
8157 		return -EINVAL;
8158 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
8159 		attr.sched_policy = SETPARAM_POLICY;
8160 
8161 	rcu_read_lock();
8162 	retval = -ESRCH;
8163 	p = find_process_by_pid(pid);
8164 	if (likely(p))
8165 		get_task_struct(p);
8166 	rcu_read_unlock();
8167 
8168 	if (likely(p)) {
8169 		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
8170 			get_params(p, &attr);
8171 		retval = sched_setattr(p, &attr);
8172 		put_task_struct(p);
8173 	}
8174 
8175 	return retval;
8176 }
8177 
8178 /**
8179  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8180  * @pid: the pid in question.
8181  *
8182  * Return: On success, the policy of the thread. Otherwise, a negative error
8183  * code.
8184  */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)8185 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
8186 {
8187 	struct task_struct *p;
8188 	int retval;
8189 
8190 	if (pid < 0)
8191 		return -EINVAL;
8192 
8193 	retval = -ESRCH;
8194 	rcu_read_lock();
8195 	p = find_process_by_pid(pid);
8196 	if (p) {
8197 		retval = security_task_getscheduler(p);
8198 		if (!retval)
8199 			retval = p->policy
8200 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
8201 	}
8202 	rcu_read_unlock();
8203 	return retval;
8204 }
8205 
8206 /**
8207  * sys_sched_getparam - get the RT priority of a thread
8208  * @pid: the pid in question.
8209  * @param: structure containing the RT priority.
8210  *
8211  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8212  * code.
8213  */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)8214 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
8215 {
8216 	struct sched_param lp = { .sched_priority = 0 };
8217 	struct task_struct *p;
8218 	int retval;
8219 
8220 	if (!param || pid < 0)
8221 		return -EINVAL;
8222 
8223 	rcu_read_lock();
8224 	p = find_process_by_pid(pid);
8225 	retval = -ESRCH;
8226 	if (!p)
8227 		goto out_unlock;
8228 
8229 	retval = security_task_getscheduler(p);
8230 	if (retval)
8231 		goto out_unlock;
8232 
8233 	if (task_has_rt_policy(p))
8234 		lp.sched_priority = p->rt_priority;
8235 	rcu_read_unlock();
8236 
8237 	/*
8238 	 * This one might sleep, we cannot do it with a spinlock held ...
8239 	 */
8240 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8241 
8242 	return retval;
8243 
8244 out_unlock:
8245 	rcu_read_unlock();
8246 	return retval;
8247 }
8248 
8249 /*
8250  * Copy the kernel size attribute structure (which might be larger
8251  * than what user-space knows about) to user-space.
8252  *
8253  * Note that all cases are valid: user-space buffer can be larger or
8254  * smaller than the kernel-space buffer. The usual case is that both
8255  * have the same size.
8256  */
8257 static int
sched_attr_copy_to_user(struct sched_attr __user * uattr,struct sched_attr * kattr,unsigned int usize)8258 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8259 			struct sched_attr *kattr,
8260 			unsigned int usize)
8261 {
8262 	unsigned int ksize = sizeof(*kattr);
8263 
8264 	if (!access_ok(uattr, usize))
8265 		return -EFAULT;
8266 
8267 	/*
8268 	 * sched_getattr() ABI forwards and backwards compatibility:
8269 	 *
8270 	 * If usize == ksize then we just copy everything to user-space and all is good.
8271 	 *
8272 	 * If usize < ksize then we only copy as much as user-space has space for,
8273 	 * this keeps ABI compatibility as well. We skip the rest.
8274 	 *
8275 	 * If usize > ksize then user-space is using a newer version of the ABI,
8276 	 * which part the kernel doesn't know about. Just ignore it - tooling can
8277 	 * detect the kernel's knowledge of attributes from the attr->size value
8278 	 * which is set to ksize in this case.
8279 	 */
8280 	kattr->size = min(usize, ksize);
8281 
8282 	if (copy_to_user(uattr, kattr, kattr->size))
8283 		return -EFAULT;
8284 
8285 	return 0;
8286 }
8287 
8288 /**
8289  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8290  * @pid: the pid in question.
8291  * @uattr: structure containing the extended parameters.
8292  * @usize: sizeof(attr) for fwd/bwd comp.
8293  * @flags: for future extension.
8294  */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,usize,unsigned int,flags)8295 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8296 		unsigned int, usize, unsigned int, flags)
8297 {
8298 	struct sched_attr kattr = { };
8299 	struct task_struct *p;
8300 	int retval;
8301 
8302 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8303 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
8304 		return -EINVAL;
8305 
8306 	rcu_read_lock();
8307 	p = find_process_by_pid(pid);
8308 	retval = -ESRCH;
8309 	if (!p)
8310 		goto out_unlock;
8311 
8312 	retval = security_task_getscheduler(p);
8313 	if (retval)
8314 		goto out_unlock;
8315 
8316 	kattr.sched_policy = p->policy;
8317 	if (p->sched_reset_on_fork)
8318 		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8319 	get_params(p, &kattr);
8320 	kattr.sched_flags &= SCHED_FLAG_ALL;
8321 
8322 #ifdef CONFIG_SCHED_LATENCY_NICE
8323 	kattr.sched_latency_nice = LATENCY_TO_NICE(p->latency_prio);
8324 #endif
8325 
8326 #ifdef CONFIG_UCLAMP_TASK
8327 	/*
8328 	 * This could race with another potential updater, but this is fine
8329 	 * because it'll correctly read the old or the new value. We don't need
8330 	 * to guarantee who wins the race as long as it doesn't return garbage.
8331 	 */
8332 	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8333 	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8334 #endif
8335 
8336 	rcu_read_unlock();
8337 
8338 	return sched_attr_copy_to_user(uattr, &kattr, usize);
8339 
8340 out_unlock:
8341 	rcu_read_unlock();
8342 	return retval;
8343 }
8344 
8345 #ifdef CONFIG_SMP
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)8346 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8347 {
8348 	int ret = 0;
8349 
8350 	/*
8351 	 * If the task isn't a deadline task or admission control is
8352 	 * disabled then we don't care about affinity changes.
8353 	 */
8354 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8355 		return 0;
8356 
8357 	/*
8358 	 * Since bandwidth control happens on root_domain basis,
8359 	 * if admission test is enabled, we only admit -deadline
8360 	 * tasks allowed to run on all the CPUs in the task's
8361 	 * root_domain.
8362 	 */
8363 	rcu_read_lock();
8364 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
8365 		ret = -EBUSY;
8366 	rcu_read_unlock();
8367 	return ret;
8368 }
8369 #endif
8370 
8371 static int
__sched_setaffinity(struct task_struct * p,struct affinity_context * ctx)8372 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
8373 {
8374 	int retval;
8375 	cpumask_var_t cpus_allowed, new_mask;
8376 
8377 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8378 		return -ENOMEM;
8379 
8380 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8381 		retval = -ENOMEM;
8382 		goto out_free_cpus_allowed;
8383 	}
8384 
8385 	cpuset_cpus_allowed(p, cpus_allowed);
8386 	cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8387 
8388 	ctx->new_mask = new_mask;
8389 	ctx->flags |= SCA_CHECK;
8390 
8391 	retval = dl_task_check_affinity(p, new_mask);
8392 	if (retval)
8393 		goto out_free_new_mask;
8394 
8395 	retval = __set_cpus_allowed_ptr(p, ctx);
8396 	if (retval)
8397 		goto out_free_new_mask;
8398 
8399 	cpuset_cpus_allowed(p, cpus_allowed);
8400 	if (!cpumask_subset(new_mask, cpus_allowed)) {
8401 		/*
8402 		 * We must have raced with a concurrent cpuset update.
8403 		 * Just reset the cpumask to the cpuset's cpus_allowed.
8404 		 */
8405 		cpumask_copy(new_mask, cpus_allowed);
8406 
8407 		/*
8408 		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8409 		 * will restore the previous user_cpus_ptr value.
8410 		 *
8411 		 * In the unlikely event a previous user_cpus_ptr exists,
8412 		 * we need to further restrict the mask to what is allowed
8413 		 * by that old user_cpus_ptr.
8414 		 */
8415 		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8416 			bool empty = !cpumask_and(new_mask, new_mask,
8417 						  ctx->user_mask);
8418 
8419 			if (WARN_ON_ONCE(empty))
8420 				cpumask_copy(new_mask, cpus_allowed);
8421 		}
8422 		__set_cpus_allowed_ptr(p, ctx);
8423 		retval = -EINVAL;
8424 	}
8425 
8426 out_free_new_mask:
8427 	free_cpumask_var(new_mask);
8428 out_free_cpus_allowed:
8429 	free_cpumask_var(cpus_allowed);
8430 	return retval;
8431 }
8432 
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)8433 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8434 {
8435 	struct affinity_context ac;
8436 	struct cpumask *user_mask;
8437 	struct task_struct *p;
8438 	int retval;
8439 
8440 	rcu_read_lock();
8441 
8442 	p = find_process_by_pid(pid);
8443 	if (!p) {
8444 		rcu_read_unlock();
8445 		return -ESRCH;
8446 	}
8447 
8448 	/* Prevent p going away */
8449 	get_task_struct(p);
8450 	rcu_read_unlock();
8451 
8452 	if (p->flags & PF_NO_SETAFFINITY) {
8453 		retval = -EINVAL;
8454 		goto out_put_task;
8455 	}
8456 
8457 	if (!check_same_owner(p)) {
8458 		rcu_read_lock();
8459 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8460 			rcu_read_unlock();
8461 			retval = -EPERM;
8462 			goto out_put_task;
8463 		}
8464 		rcu_read_unlock();
8465 	}
8466 
8467 	retval = security_task_setscheduler(p);
8468 	if (retval)
8469 		goto out_put_task;
8470 
8471 	/*
8472 	 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
8473 	 * alloc_user_cpus_ptr() returns NULL.
8474 	 */
8475 	user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
8476 	if (user_mask) {
8477 		cpumask_copy(user_mask, in_mask);
8478 	} else if (IS_ENABLED(CONFIG_SMP)) {
8479 		retval = -ENOMEM;
8480 		goto out_put_task;
8481 	}
8482 
8483 	ac = (struct affinity_context){
8484 		.new_mask  = in_mask,
8485 		.user_mask = user_mask,
8486 		.flags     = SCA_USER,
8487 	};
8488 
8489 	retval = __sched_setaffinity(p, &ac);
8490 	kfree(ac.user_mask);
8491 
8492 out_put_task:
8493 	put_task_struct(p);
8494 	return retval;
8495 }
8496 
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)8497 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8498 			     struct cpumask *new_mask)
8499 {
8500 	if (len < cpumask_size())
8501 		cpumask_clear(new_mask);
8502 	else if (len > cpumask_size())
8503 		len = cpumask_size();
8504 
8505 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8506 }
8507 
8508 /**
8509  * sys_sched_setaffinity - set the CPU affinity of a process
8510  * @pid: pid of the process
8511  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8512  * @user_mask_ptr: user-space pointer to the new CPU mask
8513  *
8514  * Return: 0 on success. An error code otherwise.
8515  */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8516 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8517 		unsigned long __user *, user_mask_ptr)
8518 {
8519 	cpumask_var_t new_mask;
8520 	int retval;
8521 
8522 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8523 		return -ENOMEM;
8524 
8525 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8526 	if (retval == 0)
8527 		retval = sched_setaffinity(pid, new_mask);
8528 	free_cpumask_var(new_mask);
8529 	return retval;
8530 }
8531 
sched_getaffinity(pid_t pid,struct cpumask * mask)8532 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8533 {
8534 	struct task_struct *p;
8535 	unsigned long flags;
8536 	int retval;
8537 
8538 	rcu_read_lock();
8539 
8540 	retval = -ESRCH;
8541 	p = find_process_by_pid(pid);
8542 	if (!p)
8543 		goto out_unlock;
8544 
8545 	retval = security_task_getscheduler(p);
8546 	if (retval)
8547 		goto out_unlock;
8548 
8549 	raw_spin_lock_irqsave(&p->pi_lock, flags);
8550 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8551 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8552 
8553 out_unlock:
8554 	rcu_read_unlock();
8555 
8556 	return retval;
8557 }
8558 
8559 /**
8560  * sys_sched_getaffinity - get the CPU affinity of a process
8561  * @pid: pid of the process
8562  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8563  * @user_mask_ptr: user-space pointer to hold the current CPU mask
8564  *
8565  * Return: size of CPU mask copied to user_mask_ptr on success. An
8566  * error code otherwise.
8567  */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8568 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8569 		unsigned long __user *, user_mask_ptr)
8570 {
8571 	int ret;
8572 	cpumask_var_t mask;
8573 
8574 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8575 		return -EINVAL;
8576 	if (len & (sizeof(unsigned long)-1))
8577 		return -EINVAL;
8578 
8579 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
8580 		return -ENOMEM;
8581 
8582 	ret = sched_getaffinity(pid, mask);
8583 	if (ret == 0) {
8584 		unsigned int retlen = min(len, cpumask_size());
8585 
8586 		if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
8587 			ret = -EFAULT;
8588 		else
8589 			ret = retlen;
8590 	}
8591 	free_cpumask_var(mask);
8592 
8593 	return ret;
8594 }
8595 
do_sched_yield(void)8596 static void do_sched_yield(void)
8597 {
8598 	struct rq_flags rf;
8599 	struct rq *rq;
8600 
8601 	rq = this_rq_lock_irq(&rf);
8602 
8603 	schedstat_inc(rq->yld_count);
8604 	current->sched_class->yield_task(rq);
8605 
8606 	preempt_disable();
8607 	rq_unlock_irq(rq, &rf);
8608 	sched_preempt_enable_no_resched();
8609 
8610 	schedule();
8611 }
8612 
8613 /**
8614  * sys_sched_yield - yield the current processor to other threads.
8615  *
8616  * This function yields the current CPU to other tasks. If there are no
8617  * other threads running on this CPU then this function will return.
8618  *
8619  * Return: 0.
8620  */
SYSCALL_DEFINE0(sched_yield)8621 SYSCALL_DEFINE0(sched_yield)
8622 {
8623 	do_sched_yield();
8624 	return 0;
8625 }
8626 
8627 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
__cond_resched(void)8628 int __sched __cond_resched(void)
8629 {
8630 	if (should_resched(0)) {
8631 		preempt_schedule_common();
8632 		return 1;
8633 	}
8634 	/*
8635 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8636 	 * whether the current CPU is in an RCU read-side critical section,
8637 	 * so the tick can report quiescent states even for CPUs looping
8638 	 * in kernel context.  In contrast, in non-preemptible kernels,
8639 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8640 	 * processes executing in kernel context might never report an
8641 	 * RCU quiescent state.  Therefore, the following code causes
8642 	 * cond_resched() to report a quiescent state, but only when RCU
8643 	 * is in urgent need of one.
8644 	 */
8645 #ifndef CONFIG_PREEMPT_RCU
8646 	rcu_all_qs();
8647 #endif
8648 	return 0;
8649 }
8650 EXPORT_SYMBOL(__cond_resched);
8651 #endif
8652 
8653 #ifdef CONFIG_PREEMPT_DYNAMIC
8654 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8655 #define cond_resched_dynamic_enabled	__cond_resched
8656 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
8657 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8658 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8659 
8660 #define might_resched_dynamic_enabled	__cond_resched
8661 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
8662 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8663 EXPORT_STATIC_CALL_TRAMP(might_resched);
8664 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8665 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
dynamic_cond_resched(void)8666 int __sched dynamic_cond_resched(void)
8667 {
8668 	klp_sched_try_switch();
8669 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8670 		return 0;
8671 	return __cond_resched();
8672 }
8673 EXPORT_SYMBOL(dynamic_cond_resched);
8674 
8675 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
dynamic_might_resched(void)8676 int __sched dynamic_might_resched(void)
8677 {
8678 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
8679 		return 0;
8680 	return __cond_resched();
8681 }
8682 EXPORT_SYMBOL(dynamic_might_resched);
8683 #endif
8684 #endif
8685 
8686 /*
8687  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8688  * call schedule, and on return reacquire the lock.
8689  *
8690  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8691  * operations here to prevent schedule() from being called twice (once via
8692  * spin_unlock(), once by hand).
8693  */
__cond_resched_lock(spinlock_t * lock)8694 int __cond_resched_lock(spinlock_t *lock)
8695 {
8696 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8697 	int ret = 0;
8698 
8699 	lockdep_assert_held(lock);
8700 
8701 	if (spin_needbreak(lock) || resched) {
8702 		spin_unlock(lock);
8703 		if (!_cond_resched())
8704 			cpu_relax();
8705 		ret = 1;
8706 		spin_lock(lock);
8707 	}
8708 	return ret;
8709 }
8710 EXPORT_SYMBOL(__cond_resched_lock);
8711 
__cond_resched_rwlock_read(rwlock_t * lock)8712 int __cond_resched_rwlock_read(rwlock_t *lock)
8713 {
8714 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8715 	int ret = 0;
8716 
8717 	lockdep_assert_held_read(lock);
8718 
8719 	if (rwlock_needbreak(lock) || resched) {
8720 		read_unlock(lock);
8721 		if (!_cond_resched())
8722 			cpu_relax();
8723 		ret = 1;
8724 		read_lock(lock);
8725 	}
8726 	return ret;
8727 }
8728 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8729 
__cond_resched_rwlock_write(rwlock_t * lock)8730 int __cond_resched_rwlock_write(rwlock_t *lock)
8731 {
8732 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8733 	int ret = 0;
8734 
8735 	lockdep_assert_held_write(lock);
8736 
8737 	if (rwlock_needbreak(lock) || resched) {
8738 		write_unlock(lock);
8739 		if (!_cond_resched())
8740 			cpu_relax();
8741 		ret = 1;
8742 		write_lock(lock);
8743 	}
8744 	return ret;
8745 }
8746 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8747 
8748 #ifdef CONFIG_PREEMPT_DYNAMIC
8749 
8750 #ifdef CONFIG_GENERIC_ENTRY
8751 #include <linux/entry-common.h>
8752 #endif
8753 
8754 /*
8755  * SC:cond_resched
8756  * SC:might_resched
8757  * SC:preempt_schedule
8758  * SC:preempt_schedule_notrace
8759  * SC:irqentry_exit_cond_resched
8760  *
8761  *
8762  * NONE:
8763  *   cond_resched               <- __cond_resched
8764  *   might_resched              <- RET0
8765  *   preempt_schedule           <- NOP
8766  *   preempt_schedule_notrace   <- NOP
8767  *   irqentry_exit_cond_resched <- NOP
8768  *
8769  * VOLUNTARY:
8770  *   cond_resched               <- __cond_resched
8771  *   might_resched              <- __cond_resched
8772  *   preempt_schedule           <- NOP
8773  *   preempt_schedule_notrace   <- NOP
8774  *   irqentry_exit_cond_resched <- NOP
8775  *
8776  * FULL:
8777  *   cond_resched               <- RET0
8778  *   might_resched              <- RET0
8779  *   preempt_schedule           <- preempt_schedule
8780  *   preempt_schedule_notrace   <- preempt_schedule_notrace
8781  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8782  */
8783 
8784 enum {
8785 	preempt_dynamic_undefined = -1,
8786 	preempt_dynamic_none,
8787 	preempt_dynamic_voluntary,
8788 	preempt_dynamic_full,
8789 };
8790 
8791 int preempt_dynamic_mode = preempt_dynamic_undefined;
8792 
sched_dynamic_mode(const char * str)8793 int sched_dynamic_mode(const char *str)
8794 {
8795 	if (!strcmp(str, "none"))
8796 		return preempt_dynamic_none;
8797 
8798 	if (!strcmp(str, "voluntary"))
8799 		return preempt_dynamic_voluntary;
8800 
8801 	if (!strcmp(str, "full"))
8802 		return preempt_dynamic_full;
8803 
8804 	return -EINVAL;
8805 }
8806 
8807 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8808 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
8809 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
8810 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8811 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
8812 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
8813 #else
8814 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8815 #endif
8816 
8817 static DEFINE_MUTEX(sched_dynamic_mutex);
8818 static bool klp_override;
8819 
__sched_dynamic_update(int mode)8820 static void __sched_dynamic_update(int mode)
8821 {
8822 	/*
8823 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8824 	 * the ZERO state, which is invalid.
8825 	 */
8826 	if (!klp_override)
8827 		preempt_dynamic_enable(cond_resched);
8828 	preempt_dynamic_enable(might_resched);
8829 	preempt_dynamic_enable(preempt_schedule);
8830 	preempt_dynamic_enable(preempt_schedule_notrace);
8831 	preempt_dynamic_enable(irqentry_exit_cond_resched);
8832 
8833 	switch (mode) {
8834 	case preempt_dynamic_none:
8835 		if (!klp_override)
8836 			preempt_dynamic_enable(cond_resched);
8837 		preempt_dynamic_disable(might_resched);
8838 		preempt_dynamic_disable(preempt_schedule);
8839 		preempt_dynamic_disable(preempt_schedule_notrace);
8840 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8841 		if (mode != preempt_dynamic_mode)
8842 			pr_info("Dynamic Preempt: none\n");
8843 		break;
8844 
8845 	case preempt_dynamic_voluntary:
8846 		if (!klp_override)
8847 			preempt_dynamic_enable(cond_resched);
8848 		preempt_dynamic_enable(might_resched);
8849 		preempt_dynamic_disable(preempt_schedule);
8850 		preempt_dynamic_disable(preempt_schedule_notrace);
8851 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8852 		if (mode != preempt_dynamic_mode)
8853 			pr_info("Dynamic Preempt: voluntary\n");
8854 		break;
8855 
8856 	case preempt_dynamic_full:
8857 		if (!klp_override)
8858 			preempt_dynamic_disable(cond_resched);
8859 		preempt_dynamic_disable(might_resched);
8860 		preempt_dynamic_enable(preempt_schedule);
8861 		preempt_dynamic_enable(preempt_schedule_notrace);
8862 		preempt_dynamic_enable(irqentry_exit_cond_resched);
8863 		if (mode != preempt_dynamic_mode)
8864 			pr_info("Dynamic Preempt: full\n");
8865 		break;
8866 	}
8867 
8868 	preempt_dynamic_mode = mode;
8869 }
8870 
sched_dynamic_update(int mode)8871 void sched_dynamic_update(int mode)
8872 {
8873 	mutex_lock(&sched_dynamic_mutex);
8874 	__sched_dynamic_update(mode);
8875 	mutex_unlock(&sched_dynamic_mutex);
8876 }
8877 
8878 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
8879 
klp_cond_resched(void)8880 static int klp_cond_resched(void)
8881 {
8882 	__klp_sched_try_switch();
8883 	return __cond_resched();
8884 }
8885 
sched_dynamic_klp_enable(void)8886 void sched_dynamic_klp_enable(void)
8887 {
8888 	mutex_lock(&sched_dynamic_mutex);
8889 
8890 	klp_override = true;
8891 	static_call_update(cond_resched, klp_cond_resched);
8892 
8893 	mutex_unlock(&sched_dynamic_mutex);
8894 }
8895 
sched_dynamic_klp_disable(void)8896 void sched_dynamic_klp_disable(void)
8897 {
8898 	mutex_lock(&sched_dynamic_mutex);
8899 
8900 	klp_override = false;
8901 	__sched_dynamic_update(preempt_dynamic_mode);
8902 
8903 	mutex_unlock(&sched_dynamic_mutex);
8904 }
8905 
8906 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
8907 
setup_preempt_mode(char * str)8908 static int __init setup_preempt_mode(char *str)
8909 {
8910 	int mode = sched_dynamic_mode(str);
8911 	if (mode < 0) {
8912 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8913 		return 0;
8914 	}
8915 
8916 	sched_dynamic_update(mode);
8917 	return 1;
8918 }
8919 __setup("preempt=", setup_preempt_mode);
8920 
preempt_dynamic_init(void)8921 static void __init preempt_dynamic_init(void)
8922 {
8923 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8924 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8925 			sched_dynamic_update(preempt_dynamic_none);
8926 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8927 			sched_dynamic_update(preempt_dynamic_voluntary);
8928 		} else {
8929 			/* Default static call setting, nothing to do */
8930 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8931 			preempt_dynamic_mode = preempt_dynamic_full;
8932 			pr_info("Dynamic Preempt: full\n");
8933 		}
8934 	}
8935 }
8936 
8937 #define PREEMPT_MODEL_ACCESSOR(mode) \
8938 	bool preempt_model_##mode(void)						 \
8939 	{									 \
8940 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8941 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
8942 	}									 \
8943 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
8944 
8945 PREEMPT_MODEL_ACCESSOR(none);
8946 PREEMPT_MODEL_ACCESSOR(voluntary);
8947 PREEMPT_MODEL_ACCESSOR(full);
8948 
8949 #else /* !CONFIG_PREEMPT_DYNAMIC */
8950 
preempt_dynamic_init(void)8951 static inline void preempt_dynamic_init(void) { }
8952 
8953 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8954 
8955 /**
8956  * yield - yield the current processor to other threads.
8957  *
8958  * Do not ever use this function, there's a 99% chance you're doing it wrong.
8959  *
8960  * The scheduler is at all times free to pick the calling task as the most
8961  * eligible task to run, if removing the yield() call from your code breaks
8962  * it, it's already broken.
8963  *
8964  * Typical broken usage is:
8965  *
8966  * while (!event)
8967  *	yield();
8968  *
8969  * where one assumes that yield() will let 'the other' process run that will
8970  * make event true. If the current task is a SCHED_FIFO task that will never
8971  * happen. Never use yield() as a progress guarantee!!
8972  *
8973  * If you want to use yield() to wait for something, use wait_event().
8974  * If you want to use yield() to be 'nice' for others, use cond_resched().
8975  * If you still want to use yield(), do not!
8976  */
yield(void)8977 void __sched yield(void)
8978 {
8979 	set_current_state(TASK_RUNNING);
8980 	do_sched_yield();
8981 }
8982 EXPORT_SYMBOL(yield);
8983 
8984 /**
8985  * yield_to - yield the current processor to another thread in
8986  * your thread group, or accelerate that thread toward the
8987  * processor it's on.
8988  * @p: target task
8989  * @preempt: whether task preemption is allowed or not
8990  *
8991  * It's the caller's job to ensure that the target task struct
8992  * can't go away on us before we can do any checks.
8993  *
8994  * Return:
8995  *	true (>0) if we indeed boosted the target task.
8996  *	false (0) if we failed to boost the target.
8997  *	-ESRCH if there's no task to yield to.
8998  */
yield_to(struct task_struct * p,bool preempt)8999 int __sched yield_to(struct task_struct *p, bool preempt)
9000 {
9001 	struct task_struct *curr = current;
9002 	struct rq *rq, *p_rq;
9003 	unsigned long flags;
9004 	int yielded = 0;
9005 
9006 	local_irq_save(flags);
9007 	rq = this_rq();
9008 
9009 again:
9010 	p_rq = task_rq(p);
9011 	/*
9012 	 * If we're the only runnable task on the rq and target rq also
9013 	 * has only one task, there's absolutely no point in yielding.
9014 	 */
9015 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
9016 		yielded = -ESRCH;
9017 		goto out_irq;
9018 	}
9019 
9020 	double_rq_lock(rq, p_rq);
9021 	if (task_rq(p) != p_rq) {
9022 		double_rq_unlock(rq, p_rq);
9023 		goto again;
9024 	}
9025 
9026 	if (!curr->sched_class->yield_to_task)
9027 		goto out_unlock;
9028 
9029 	if (curr->sched_class != p->sched_class)
9030 		goto out_unlock;
9031 
9032 	if (task_on_cpu(p_rq, p) || !task_is_running(p))
9033 		goto out_unlock;
9034 
9035 	yielded = curr->sched_class->yield_to_task(rq, p);
9036 	if (yielded) {
9037 		schedstat_inc(rq->yld_count);
9038 		/*
9039 		 * Make p's CPU reschedule; pick_next_entity takes care of
9040 		 * fairness.
9041 		 */
9042 		if (preempt && rq != p_rq)
9043 			resched_curr(p_rq);
9044 	}
9045 
9046 out_unlock:
9047 	double_rq_unlock(rq, p_rq);
9048 out_irq:
9049 	local_irq_restore(flags);
9050 
9051 	if (yielded > 0)
9052 		schedule();
9053 
9054 	return yielded;
9055 }
9056 EXPORT_SYMBOL_GPL(yield_to);
9057 
io_schedule_prepare(void)9058 int io_schedule_prepare(void)
9059 {
9060 	int old_iowait = current->in_iowait;
9061 
9062 	current->in_iowait = 1;
9063 	blk_flush_plug(current->plug, true);
9064 	return old_iowait;
9065 }
9066 
io_schedule_finish(int token)9067 void io_schedule_finish(int token)
9068 {
9069 	current->in_iowait = token;
9070 }
9071 
9072 /*
9073  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
9074  * that process accounting knows that this is a task in IO wait state.
9075  */
io_schedule_timeout(long timeout)9076 long __sched io_schedule_timeout(long timeout)
9077 {
9078 	int token;
9079 	long ret;
9080 
9081 	token = io_schedule_prepare();
9082 	ret = schedule_timeout(timeout);
9083 	io_schedule_finish(token);
9084 
9085 	return ret;
9086 }
9087 EXPORT_SYMBOL(io_schedule_timeout);
9088 
io_schedule(void)9089 void __sched io_schedule(void)
9090 {
9091 	int token;
9092 
9093 	token = io_schedule_prepare();
9094 	schedule();
9095 	io_schedule_finish(token);
9096 }
9097 EXPORT_SYMBOL(io_schedule);
9098 
9099 /**
9100  * sys_sched_get_priority_max - return maximum RT priority.
9101  * @policy: scheduling class.
9102  *
9103  * Return: On success, this syscall returns the maximum
9104  * rt_priority that can be used by a given scheduling class.
9105  * On failure, a negative error code is returned.
9106  */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)9107 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
9108 {
9109 	int ret = -EINVAL;
9110 
9111 	switch (policy) {
9112 	case SCHED_FIFO:
9113 	case SCHED_RR:
9114 		ret = MAX_RT_PRIO-1;
9115 		break;
9116 	case SCHED_DEADLINE:
9117 	case SCHED_NORMAL:
9118 	case SCHED_BATCH:
9119 	case SCHED_IDLE:
9120 		ret = 0;
9121 		break;
9122 	}
9123 	return ret;
9124 }
9125 
9126 /**
9127  * sys_sched_get_priority_min - return minimum RT priority.
9128  * @policy: scheduling class.
9129  *
9130  * Return: On success, this syscall returns the minimum
9131  * rt_priority that can be used by a given scheduling class.
9132  * On failure, a negative error code is returned.
9133  */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)9134 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
9135 {
9136 	int ret = -EINVAL;
9137 
9138 	switch (policy) {
9139 	case SCHED_FIFO:
9140 	case SCHED_RR:
9141 		ret = 1;
9142 		break;
9143 	case SCHED_DEADLINE:
9144 	case SCHED_NORMAL:
9145 	case SCHED_BATCH:
9146 	case SCHED_IDLE:
9147 		ret = 0;
9148 	}
9149 	return ret;
9150 }
9151 
sched_rr_get_interval(pid_t pid,struct timespec64 * t)9152 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
9153 {
9154 	struct task_struct *p;
9155 	unsigned int time_slice;
9156 	struct rq_flags rf;
9157 	struct rq *rq;
9158 	int retval;
9159 
9160 	if (pid < 0)
9161 		return -EINVAL;
9162 
9163 	retval = -ESRCH;
9164 	rcu_read_lock();
9165 	p = find_process_by_pid(pid);
9166 	if (!p)
9167 		goto out_unlock;
9168 
9169 	retval = security_task_getscheduler(p);
9170 	if (retval)
9171 		goto out_unlock;
9172 
9173 	rq = task_rq_lock(p, &rf);
9174 	time_slice = 0;
9175 	if (p->sched_class->get_rr_interval)
9176 		time_slice = p->sched_class->get_rr_interval(rq, p);
9177 	task_rq_unlock(rq, p, &rf);
9178 
9179 	rcu_read_unlock();
9180 	jiffies_to_timespec64(time_slice, t);
9181 	return 0;
9182 
9183 out_unlock:
9184 	rcu_read_unlock();
9185 	return retval;
9186 }
9187 
9188 /**
9189  * sys_sched_rr_get_interval - return the default timeslice of a process.
9190  * @pid: pid of the process.
9191  * @interval: userspace pointer to the timeslice value.
9192  *
9193  * this syscall writes the default timeslice value of a given process
9194  * into the user-space timespec buffer. A value of '0' means infinity.
9195  *
9196  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
9197  * an error code.
9198  */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct __kernel_timespec __user *,interval)9199 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
9200 		struct __kernel_timespec __user *, interval)
9201 {
9202 	struct timespec64 t;
9203 	int retval = sched_rr_get_interval(pid, &t);
9204 
9205 	if (retval == 0)
9206 		retval = put_timespec64(&t, interval);
9207 
9208 	return retval;
9209 }
9210 
9211 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32,pid_t,pid,struct old_timespec32 __user *,interval)9212 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
9213 		struct old_timespec32 __user *, interval)
9214 {
9215 	struct timespec64 t;
9216 	int retval = sched_rr_get_interval(pid, &t);
9217 
9218 	if (retval == 0)
9219 		retval = put_old_timespec32(&t, interval);
9220 	return retval;
9221 }
9222 #endif
9223 
sched_show_task(struct task_struct * p)9224 void sched_show_task(struct task_struct *p)
9225 {
9226 	unsigned long free = 0;
9227 	int ppid;
9228 
9229 	if (!try_get_task_stack(p))
9230 		return;
9231 
9232 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
9233 
9234 	if (task_is_running(p))
9235 		pr_cont("  running task    ");
9236 #ifdef CONFIG_DEBUG_STACK_USAGE
9237 	free = stack_not_used(p);
9238 #endif
9239 	ppid = 0;
9240 	rcu_read_lock();
9241 	if (pid_alive(p))
9242 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
9243 	rcu_read_unlock();
9244 	pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
9245 		free, task_pid_nr(p), ppid,
9246 		read_task_thread_flags(p));
9247 
9248 	print_worker_info(KERN_INFO, p);
9249 	print_stop_info(KERN_INFO, p);
9250 	show_stack(p, NULL, KERN_INFO);
9251 	put_task_stack(p);
9252 }
9253 EXPORT_SYMBOL_GPL(sched_show_task);
9254 
9255 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)9256 state_filter_match(unsigned long state_filter, struct task_struct *p)
9257 {
9258 	unsigned int state = READ_ONCE(p->__state);
9259 
9260 	/* no filter, everything matches */
9261 	if (!state_filter)
9262 		return true;
9263 
9264 	/* filter, but doesn't match */
9265 	if (!(state & state_filter))
9266 		return false;
9267 
9268 	/*
9269 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
9270 	 * TASK_KILLABLE).
9271 	 */
9272 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
9273 		return false;
9274 
9275 	return true;
9276 }
9277 
9278 
show_state_filter(unsigned int state_filter)9279 void show_state_filter(unsigned int state_filter)
9280 {
9281 	struct task_struct *g, *p;
9282 
9283 	rcu_read_lock();
9284 	for_each_process_thread(g, p) {
9285 		/*
9286 		 * reset the NMI-timeout, listing all files on a slow
9287 		 * console might take a lot of time:
9288 		 * Also, reset softlockup watchdogs on all CPUs, because
9289 		 * another CPU might be blocked waiting for us to process
9290 		 * an IPI.
9291 		 */
9292 		touch_nmi_watchdog();
9293 		touch_all_softlockup_watchdogs();
9294 		if (state_filter_match(state_filter, p))
9295 			sched_show_task(p);
9296 	}
9297 
9298 #ifdef CONFIG_SCHED_DEBUG
9299 	if (!state_filter)
9300 		sysrq_sched_debug_show();
9301 #endif
9302 	rcu_read_unlock();
9303 	/*
9304 	 * Only show locks if all tasks are dumped:
9305 	 */
9306 	if (!state_filter)
9307 		debug_show_all_locks();
9308 }
9309 
9310 /**
9311  * init_idle - set up an idle thread for a given CPU
9312  * @idle: task in question
9313  * @cpu: CPU the idle task belongs to
9314  *
9315  * NOTE: this function does not set the idle thread's NEED_RESCHED
9316  * flag, to make booting more robust.
9317  */
init_idle(struct task_struct * idle,int cpu)9318 void __init init_idle(struct task_struct *idle, int cpu)
9319 {
9320 #ifdef CONFIG_SMP
9321 	struct affinity_context ac = (struct affinity_context) {
9322 		.new_mask  = cpumask_of(cpu),
9323 		.flags     = 0,
9324 	};
9325 #endif
9326 	struct rq *rq = cpu_rq(cpu);
9327 	unsigned long flags;
9328 
9329 	__sched_fork(0, idle);
9330 
9331 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
9332 	raw_spin_rq_lock(rq);
9333 
9334 	idle->__state = TASK_RUNNING;
9335 	idle->se.exec_start = sched_clock();
9336 	/*
9337 	 * PF_KTHREAD should already be set at this point; regardless, make it
9338 	 * look like a proper per-CPU kthread.
9339 	 */
9340 	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
9341 	kthread_set_per_cpu(idle, cpu);
9342 
9343 #ifdef CONFIG_SMP
9344 	/*
9345 	 * It's possible that init_idle() gets called multiple times on a task,
9346 	 * in that case do_set_cpus_allowed() will not do the right thing.
9347 	 *
9348 	 * And since this is boot we can forgo the serialization.
9349 	 */
9350 	set_cpus_allowed_common(idle, &ac);
9351 #endif
9352 	/*
9353 	 * We're having a chicken and egg problem, even though we are
9354 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
9355 	 * lockdep check in task_group() will fail.
9356 	 *
9357 	 * Similar case to sched_fork(). / Alternatively we could
9358 	 * use task_rq_lock() here and obtain the other rq->lock.
9359 	 *
9360 	 * Silence PROVE_RCU
9361 	 */
9362 	rcu_read_lock();
9363 	__set_task_cpu(idle, cpu);
9364 	rcu_read_unlock();
9365 
9366 	rq->idle = idle;
9367 	rcu_assign_pointer(rq->curr, idle);
9368 	idle->on_rq = TASK_ON_RQ_QUEUED;
9369 #ifdef CONFIG_SMP
9370 	idle->on_cpu = 1;
9371 #endif
9372 	raw_spin_rq_unlock(rq);
9373 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9374 
9375 	/* Set the preempt count _outside_ the spinlocks! */
9376 	init_idle_preempt_count(idle, cpu);
9377 
9378 	/*
9379 	 * The idle tasks have their own, simple scheduling class:
9380 	 */
9381 	idle->sched_class = &idle_sched_class;
9382 	ftrace_graph_init_idle_task(idle, cpu);
9383 	vtime_init_idle(idle, cpu);
9384 #ifdef CONFIG_SMP
9385 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9386 #endif
9387 }
9388 
9389 #ifdef CONFIG_SMP
9390 
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)9391 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9392 			      const struct cpumask *trial)
9393 {
9394 	int ret = 1;
9395 
9396 	if (cpumask_empty(cur))
9397 		return ret;
9398 
9399 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9400 
9401 	return ret;
9402 }
9403 
task_can_attach(struct task_struct * p)9404 int task_can_attach(struct task_struct *p)
9405 {
9406 	int ret = 0;
9407 
9408 	/*
9409 	 * Kthreads which disallow setaffinity shouldn't be moved
9410 	 * to a new cpuset; we don't want to change their CPU
9411 	 * affinity and isolating such threads by their set of
9412 	 * allowed nodes is unnecessary.  Thus, cpusets are not
9413 	 * applicable for such threads.  This prevents checking for
9414 	 * success of set_cpus_allowed_ptr() on all attached tasks
9415 	 * before cpus_mask may be changed.
9416 	 */
9417 	if (p->flags & PF_NO_SETAFFINITY)
9418 		ret = -EINVAL;
9419 
9420 	return ret;
9421 }
9422 
9423 bool sched_smp_initialized __read_mostly;
9424 
9425 #ifdef CONFIG_NUMA_BALANCING
9426 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)9427 int migrate_task_to(struct task_struct *p, int target_cpu)
9428 {
9429 	struct migration_arg arg = { p, target_cpu };
9430 	int curr_cpu = task_cpu(p);
9431 
9432 	if (curr_cpu == target_cpu)
9433 		return 0;
9434 
9435 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9436 		return -EINVAL;
9437 
9438 	/* TODO: This is not properly updating schedstats */
9439 
9440 	trace_sched_move_numa(p, curr_cpu, target_cpu);
9441 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9442 }
9443 
9444 /*
9445  * Requeue a task on a given node and accurately track the number of NUMA
9446  * tasks on the runqueues
9447  */
sched_setnuma(struct task_struct * p,int nid)9448 void sched_setnuma(struct task_struct *p, int nid)
9449 {
9450 	bool queued, running;
9451 	struct rq_flags rf;
9452 	struct rq *rq;
9453 
9454 	rq = task_rq_lock(p, &rf);
9455 	queued = task_on_rq_queued(p);
9456 	running = task_current(rq, p);
9457 
9458 	if (queued)
9459 		dequeue_task(rq, p, DEQUEUE_SAVE);
9460 	if (running)
9461 		put_prev_task(rq, p);
9462 
9463 	p->numa_preferred_nid = nid;
9464 
9465 	if (queued)
9466 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9467 	if (running)
9468 		set_next_task(rq, p);
9469 	task_rq_unlock(rq, p, &rf);
9470 }
9471 #endif /* CONFIG_NUMA_BALANCING */
9472 
9473 #ifdef CONFIG_HOTPLUG_CPU
9474 /*
9475  * Ensure that the idle task is using init_mm right before its CPU goes
9476  * offline.
9477  */
idle_task_exit(void)9478 void idle_task_exit(void)
9479 {
9480 	struct mm_struct *mm = current->active_mm;
9481 
9482 	BUG_ON(cpu_online(smp_processor_id()));
9483 	BUG_ON(current != this_rq()->idle);
9484 
9485 	if (mm != &init_mm) {
9486 		switch_mm(mm, &init_mm, current);
9487 		finish_arch_post_lock_switch();
9488 	}
9489 
9490 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9491 }
9492 
__balance_push_cpu_stop(void * arg)9493 static int __balance_push_cpu_stop(void *arg)
9494 {
9495 	struct task_struct *p = arg;
9496 	struct rq *rq = this_rq();
9497 	struct rq_flags rf;
9498 	int cpu;
9499 
9500 	raw_spin_lock_irq(&p->pi_lock);
9501 	rq_lock(rq, &rf);
9502 
9503 	update_rq_clock(rq);
9504 
9505 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
9506 		cpu = select_fallback_rq(rq->cpu, p);
9507 		rq = __migrate_task(rq, &rf, p, cpu);
9508 	}
9509 
9510 	rq_unlock(rq, &rf);
9511 	raw_spin_unlock_irq(&p->pi_lock);
9512 
9513 	put_task_struct(p);
9514 
9515 	return 0;
9516 }
9517 
9518 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9519 
9520 /*
9521  * Ensure we only run per-cpu kthreads once the CPU goes !active.
9522  *
9523  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9524  * effective when the hotplug motion is down.
9525  */
balance_push(struct rq * rq)9526 static void balance_push(struct rq *rq)
9527 {
9528 	struct task_struct *push_task = rq->curr;
9529 
9530 	lockdep_assert_rq_held(rq);
9531 
9532 	/*
9533 	 * Ensure the thing is persistent until balance_push_set(.on = false);
9534 	 */
9535 	rq->balance_callback = &balance_push_callback;
9536 
9537 	/*
9538 	 * Only active while going offline and when invoked on the outgoing
9539 	 * CPU.
9540 	 */
9541 	if (!cpu_dying(rq->cpu) || rq != this_rq())
9542 		return;
9543 
9544 	/*
9545 	 * Both the cpu-hotplug and stop task are in this case and are
9546 	 * required to complete the hotplug process.
9547 	 */
9548 	if (kthread_is_per_cpu(push_task) ||
9549 	    is_migration_disabled(push_task)) {
9550 
9551 		/*
9552 		 * If this is the idle task on the outgoing CPU try to wake
9553 		 * up the hotplug control thread which might wait for the
9554 		 * last task to vanish. The rcuwait_active() check is
9555 		 * accurate here because the waiter is pinned on this CPU
9556 		 * and can't obviously be running in parallel.
9557 		 *
9558 		 * On RT kernels this also has to check whether there are
9559 		 * pinned and scheduled out tasks on the runqueue. They
9560 		 * need to leave the migrate disabled section first.
9561 		 */
9562 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9563 		    rcuwait_active(&rq->hotplug_wait)) {
9564 			raw_spin_rq_unlock(rq);
9565 			rcuwait_wake_up(&rq->hotplug_wait);
9566 			raw_spin_rq_lock(rq);
9567 		}
9568 		return;
9569 	}
9570 
9571 	get_task_struct(push_task);
9572 	/*
9573 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
9574 	 * Both preemption and IRQs are still disabled.
9575 	 */
9576 	preempt_disable();
9577 	raw_spin_rq_unlock(rq);
9578 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9579 			    this_cpu_ptr(&push_work));
9580 	preempt_enable();
9581 	/*
9582 	 * At this point need_resched() is true and we'll take the loop in
9583 	 * schedule(). The next pick is obviously going to be the stop task
9584 	 * which kthread_is_per_cpu() and will push this task away.
9585 	 */
9586 	raw_spin_rq_lock(rq);
9587 }
9588 
balance_push_set(int cpu,bool on)9589 static void balance_push_set(int cpu, bool on)
9590 {
9591 	struct rq *rq = cpu_rq(cpu);
9592 	struct rq_flags rf;
9593 
9594 	rq_lock_irqsave(rq, &rf);
9595 	if (on) {
9596 		WARN_ON_ONCE(rq->balance_callback);
9597 		rq->balance_callback = &balance_push_callback;
9598 	} else if (rq->balance_callback == &balance_push_callback) {
9599 		rq->balance_callback = NULL;
9600 	}
9601 	rq_unlock_irqrestore(rq, &rf);
9602 }
9603 
9604 /*
9605  * Invoked from a CPUs hotplug control thread after the CPU has been marked
9606  * inactive. All tasks which are not per CPU kernel threads are either
9607  * pushed off this CPU now via balance_push() or placed on a different CPU
9608  * during wakeup. Wait until the CPU is quiescent.
9609  */
balance_hotplug_wait(void)9610 static void balance_hotplug_wait(void)
9611 {
9612 	struct rq *rq = this_rq();
9613 
9614 	rcuwait_wait_event(&rq->hotplug_wait,
9615 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9616 			   TASK_UNINTERRUPTIBLE);
9617 }
9618 
9619 #else
9620 
balance_push(struct rq * rq)9621 static inline void balance_push(struct rq *rq)
9622 {
9623 }
9624 
balance_push_set(int cpu,bool on)9625 static inline void balance_push_set(int cpu, bool on)
9626 {
9627 }
9628 
balance_hotplug_wait(void)9629 static inline void balance_hotplug_wait(void)
9630 {
9631 }
9632 
9633 #endif /* CONFIG_HOTPLUG_CPU */
9634 
set_rq_online(struct rq * rq)9635 void set_rq_online(struct rq *rq)
9636 {
9637 	if (!rq->online) {
9638 		const struct sched_class *class;
9639 
9640 		cpumask_set_cpu(rq->cpu, rq->rd->online);
9641 		rq->online = 1;
9642 
9643 		for_each_class(class) {
9644 			if (class->rq_online)
9645 				class->rq_online(rq);
9646 		}
9647 	}
9648 }
9649 
set_rq_offline(struct rq * rq)9650 void set_rq_offline(struct rq *rq)
9651 {
9652 	if (rq->online) {
9653 		const struct sched_class *class;
9654 
9655 		update_rq_clock(rq);
9656 		for_each_class(class) {
9657 			if (class->rq_offline)
9658 				class->rq_offline(rq);
9659 		}
9660 
9661 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
9662 		rq->online = 0;
9663 	}
9664 }
9665 
9666 /*
9667  * used to mark begin/end of suspend/resume:
9668  */
9669 static int num_cpus_frozen;
9670 
9671 /*
9672  * Update cpusets according to cpu_active mask.  If cpusets are
9673  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9674  * around partition_sched_domains().
9675  *
9676  * If we come here as part of a suspend/resume, don't touch cpusets because we
9677  * want to restore it back to its original state upon resume anyway.
9678  */
cpuset_cpu_active(void)9679 static void cpuset_cpu_active(void)
9680 {
9681 	if (cpuhp_tasks_frozen) {
9682 		/*
9683 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
9684 		 * resume sequence. As long as this is not the last online
9685 		 * operation in the resume sequence, just build a single sched
9686 		 * domain, ignoring cpusets.
9687 		 */
9688 		partition_sched_domains(1, NULL, NULL);
9689 		if (--num_cpus_frozen)
9690 			return;
9691 		/*
9692 		 * This is the last CPU online operation. So fall through and
9693 		 * restore the original sched domains by considering the
9694 		 * cpuset configurations.
9695 		 */
9696 		cpuset_force_rebuild();
9697 	}
9698 	cpuset_update_active_cpus();
9699 }
9700 
cpuset_cpu_inactive(unsigned int cpu)9701 static int cpuset_cpu_inactive(unsigned int cpu)
9702 {
9703 	if (!cpuhp_tasks_frozen) {
9704 		int ret = dl_bw_check_overflow(cpu);
9705 
9706 		if (ret)
9707 			return ret;
9708 		cpuset_update_active_cpus();
9709 	} else {
9710 		num_cpus_frozen++;
9711 		partition_sched_domains(1, NULL, NULL);
9712 	}
9713 	return 0;
9714 }
9715 
sched_cpu_activate(unsigned int cpu)9716 int sched_cpu_activate(unsigned int cpu)
9717 {
9718 	struct rq *rq = cpu_rq(cpu);
9719 	struct rq_flags rf;
9720 
9721 	/*
9722 	 * Clear the balance_push callback and prepare to schedule
9723 	 * regular tasks.
9724 	 */
9725 	balance_push_set(cpu, false);
9726 
9727 #ifdef CONFIG_SCHED_SMT
9728 	/*
9729 	 * When going up, increment the number of cores with SMT present.
9730 	 */
9731 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9732 		static_branch_inc_cpuslocked(&sched_smt_present);
9733 #endif
9734 	set_cpu_active(cpu, true);
9735 
9736 	if (sched_smp_initialized) {
9737 		sched_update_numa(cpu, true);
9738 		sched_domains_numa_masks_set(cpu);
9739 		cpuset_cpu_active();
9740 	}
9741 
9742 	/*
9743 	 * Put the rq online, if not already. This happens:
9744 	 *
9745 	 * 1) In the early boot process, because we build the real domains
9746 	 *    after all CPUs have been brought up.
9747 	 *
9748 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9749 	 *    domains.
9750 	 */
9751 	rq_lock_irqsave(rq, &rf);
9752 	if (rq->rd) {
9753 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9754 		set_rq_online(rq);
9755 	}
9756 	rq_unlock_irqrestore(rq, &rf);
9757 
9758 	return 0;
9759 }
9760 
sched_cpu_deactivate(unsigned int cpu)9761 int sched_cpu_deactivate(unsigned int cpu)
9762 {
9763 	struct rq *rq = cpu_rq(cpu);
9764 	struct rq_flags rf;
9765 	int ret;
9766 
9767 	/*
9768 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9769 	 * load balancing when not active
9770 	 */
9771 	nohz_balance_exit_idle(rq);
9772 
9773 	set_cpu_active(cpu, false);
9774 
9775 	/*
9776 	 * From this point forward, this CPU will refuse to run any task that
9777 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9778 	 * push those tasks away until this gets cleared, see
9779 	 * sched_cpu_dying().
9780 	 */
9781 	balance_push_set(cpu, true);
9782 
9783 	/*
9784 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9785 	 * preempt-disabled and RCU users of this state to go away such that
9786 	 * all new such users will observe it.
9787 	 *
9788 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9789 	 * ttwu_queue_cond() and is_cpu_allowed().
9790 	 *
9791 	 * Do sync before park smpboot threads to take care the rcu boost case.
9792 	 */
9793 	synchronize_rcu();
9794 
9795 	rq_lock_irqsave(rq, &rf);
9796 	if (rq->rd) {
9797 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9798 		set_rq_offline(rq);
9799 	}
9800 	rq_unlock_irqrestore(rq, &rf);
9801 
9802 #ifdef CONFIG_SCHED_SMT
9803 	/*
9804 	 * When going down, decrement the number of cores with SMT present.
9805 	 */
9806 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9807 		static_branch_dec_cpuslocked(&sched_smt_present);
9808 
9809 	sched_core_cpu_deactivate(cpu);
9810 #endif
9811 
9812 	if (!sched_smp_initialized)
9813 		return 0;
9814 
9815 	sched_update_numa(cpu, false);
9816 	ret = cpuset_cpu_inactive(cpu);
9817 	if (ret) {
9818 		balance_push_set(cpu, false);
9819 		set_cpu_active(cpu, true);
9820 		sched_update_numa(cpu, true);
9821 		return ret;
9822 	}
9823 	sched_domains_numa_masks_clear(cpu);
9824 	return 0;
9825 }
9826 
sched_rq_cpu_starting(unsigned int cpu)9827 static void sched_rq_cpu_starting(unsigned int cpu)
9828 {
9829 	struct rq *rq = cpu_rq(cpu);
9830 
9831 	rq->calc_load_update = calc_load_update;
9832 	update_max_interval();
9833 }
9834 
sched_cpu_starting(unsigned int cpu)9835 int sched_cpu_starting(unsigned int cpu)
9836 {
9837 	sched_core_cpu_starting(cpu);
9838 	sched_rq_cpu_starting(cpu);
9839 	sched_tick_start(cpu);
9840 	return 0;
9841 }
9842 
9843 #ifdef CONFIG_HOTPLUG_CPU
9844 
9845 /*
9846  * Invoked immediately before the stopper thread is invoked to bring the
9847  * CPU down completely. At this point all per CPU kthreads except the
9848  * hotplug thread (current) and the stopper thread (inactive) have been
9849  * either parked or have been unbound from the outgoing CPU. Ensure that
9850  * any of those which might be on the way out are gone.
9851  *
9852  * If after this point a bound task is being woken on this CPU then the
9853  * responsible hotplug callback has failed to do it's job.
9854  * sched_cpu_dying() will catch it with the appropriate fireworks.
9855  */
sched_cpu_wait_empty(unsigned int cpu)9856 int sched_cpu_wait_empty(unsigned int cpu)
9857 {
9858 	balance_hotplug_wait();
9859 	return 0;
9860 }
9861 
9862 /*
9863  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9864  * might have. Called from the CPU stopper task after ensuring that the
9865  * stopper is the last running task on the CPU, so nr_active count is
9866  * stable. We need to take the teardown thread which is calling this into
9867  * account, so we hand in adjust = 1 to the load calculation.
9868  *
9869  * Also see the comment "Global load-average calculations".
9870  */
calc_load_migrate(struct rq * rq)9871 static void calc_load_migrate(struct rq *rq)
9872 {
9873 	long delta = calc_load_fold_active(rq, 1);
9874 
9875 	if (delta)
9876 		atomic_long_add(delta, &calc_load_tasks);
9877 }
9878 
dump_rq_tasks(struct rq * rq,const char * loglvl)9879 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9880 {
9881 	struct task_struct *g, *p;
9882 	int cpu = cpu_of(rq);
9883 
9884 	lockdep_assert_rq_held(rq);
9885 
9886 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9887 	for_each_process_thread(g, p) {
9888 		if (task_cpu(p) != cpu)
9889 			continue;
9890 
9891 		if (!task_on_rq_queued(p))
9892 			continue;
9893 
9894 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9895 	}
9896 }
9897 
sched_cpu_dying(unsigned int cpu)9898 int sched_cpu_dying(unsigned int cpu)
9899 {
9900 	struct rq *rq = cpu_rq(cpu);
9901 	struct rq_flags rf;
9902 
9903 	/* Handle pending wakeups and then migrate everything off */
9904 	sched_tick_stop(cpu);
9905 
9906 	rq_lock_irqsave(rq, &rf);
9907 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9908 		WARN(true, "Dying CPU not properly vacated!");
9909 		dump_rq_tasks(rq, KERN_WARNING);
9910 	}
9911 	rq_unlock_irqrestore(rq, &rf);
9912 
9913 	calc_load_migrate(rq);
9914 	update_max_interval();
9915 	hrtick_clear(rq);
9916 	sched_core_cpu_dying(cpu);
9917 	return 0;
9918 }
9919 #endif
9920 
sched_init_smp(void)9921 void __init sched_init_smp(void)
9922 {
9923 	sched_init_numa(NUMA_NO_NODE);
9924 
9925 	/*
9926 	 * There's no userspace yet to cause hotplug operations; hence all the
9927 	 * CPU masks are stable and all blatant races in the below code cannot
9928 	 * happen.
9929 	 */
9930 	mutex_lock(&sched_domains_mutex);
9931 	sched_init_domains(cpu_active_mask);
9932 	mutex_unlock(&sched_domains_mutex);
9933 
9934 	/* Move init over to a non-isolated CPU */
9935 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9936 		BUG();
9937 	current->flags &= ~PF_NO_SETAFFINITY;
9938 	sched_init_granularity();
9939 
9940 	init_sched_rt_class();
9941 	init_sched_dl_class();
9942 
9943 	sched_smp_initialized = true;
9944 }
9945 
migration_init(void)9946 static int __init migration_init(void)
9947 {
9948 	sched_cpu_starting(smp_processor_id());
9949 	return 0;
9950 }
9951 early_initcall(migration_init);
9952 
9953 #else
sched_init_smp(void)9954 void __init sched_init_smp(void)
9955 {
9956 	sched_init_granularity();
9957 }
9958 #endif /* CONFIG_SMP */
9959 
in_sched_functions(unsigned long addr)9960 int in_sched_functions(unsigned long addr)
9961 {
9962 	return in_lock_functions(addr) ||
9963 		(addr >= (unsigned long)__sched_text_start
9964 		&& addr < (unsigned long)__sched_text_end);
9965 }
9966 
9967 #ifdef CONFIG_CGROUP_SCHED
9968 /*
9969  * Default task group.
9970  * Every task in system belongs to this group at bootup.
9971  */
9972 struct task_group root_task_group;
9973 LIST_HEAD(task_groups);
9974 
9975 /* Cacheline aligned slab cache for task_group */
9976 static struct kmem_cache *task_group_cache __read_mostly;
9977 #endif
9978 
sched_init(void)9979 void __init sched_init(void)
9980 {
9981 	unsigned long ptr = 0;
9982 	int i;
9983 
9984 	/* Make sure the linker didn't screw up */
9985 	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9986 	       &fair_sched_class != &rt_sched_class + 1 ||
9987 	       &rt_sched_class   != &dl_sched_class + 1);
9988 #ifdef CONFIG_SMP
9989 	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9990 #endif
9991 
9992 	wait_bit_init();
9993 
9994 #ifdef CONFIG_FAIR_GROUP_SCHED
9995 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9996 #endif
9997 #ifdef CONFIG_RT_GROUP_SCHED
9998 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9999 #endif
10000 	if (ptr) {
10001 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
10002 
10003 #ifdef CONFIG_FAIR_GROUP_SCHED
10004 		root_task_group.se = (struct sched_entity **)ptr;
10005 		ptr += nr_cpu_ids * sizeof(void **);
10006 
10007 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
10008 		ptr += nr_cpu_ids * sizeof(void **);
10009 
10010 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
10011 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
10012 #endif /* CONFIG_FAIR_GROUP_SCHED */
10013 #ifdef CONFIG_RT_GROUP_SCHED
10014 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
10015 		ptr += nr_cpu_ids * sizeof(void **);
10016 
10017 		root_task_group.rt_rq = (struct rt_rq **)ptr;
10018 		ptr += nr_cpu_ids * sizeof(void **);
10019 
10020 #endif /* CONFIG_RT_GROUP_SCHED */
10021 	}
10022 
10023 	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
10024 
10025 #ifdef CONFIG_SMP
10026 	init_defrootdomain();
10027 #endif
10028 
10029 #ifdef CONFIG_RT_GROUP_SCHED
10030 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
10031 			global_rt_period(), global_rt_runtime());
10032 #endif /* CONFIG_RT_GROUP_SCHED */
10033 
10034 #ifdef CONFIG_CGROUP_SCHED
10035 	task_group_cache = KMEM_CACHE(task_group, 0);
10036 
10037 	list_add(&root_task_group.list, &task_groups);
10038 	INIT_LIST_HEAD(&root_task_group.children);
10039 	INIT_LIST_HEAD(&root_task_group.siblings);
10040 	autogroup_init(&init_task);
10041 #endif /* CONFIG_CGROUP_SCHED */
10042 
10043 	for_each_possible_cpu(i) {
10044 		struct rq *rq;
10045 
10046 		rq = cpu_rq(i);
10047 		raw_spin_lock_init(&rq->__lock);
10048 		rq->nr_running = 0;
10049 		rq->calc_load_active = 0;
10050 		rq->calc_load_update = jiffies + LOAD_FREQ;
10051 		init_cfs_rq(&rq->cfs);
10052 		init_rt_rq(&rq->rt);
10053 		init_dl_rq(&rq->dl);
10054 #ifdef CONFIG_FAIR_GROUP_SCHED
10055 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
10056 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
10057 		/*
10058 		 * How much CPU bandwidth does root_task_group get?
10059 		 *
10060 		 * In case of task-groups formed thr' the cgroup filesystem, it
10061 		 * gets 100% of the CPU resources in the system. This overall
10062 		 * system CPU resource is divided among the tasks of
10063 		 * root_task_group and its child task-groups in a fair manner,
10064 		 * based on each entity's (task or task-group's) weight
10065 		 * (se->load.weight).
10066 		 *
10067 		 * In other words, if root_task_group has 10 tasks of weight
10068 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
10069 		 * then A0's share of the CPU resource is:
10070 		 *
10071 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
10072 		 *
10073 		 * We achieve this by letting root_task_group's tasks sit
10074 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
10075 		 */
10076 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
10077 #endif /* CONFIG_FAIR_GROUP_SCHED */
10078 
10079 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
10080 #ifdef CONFIG_RT_GROUP_SCHED
10081 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
10082 #endif
10083 #ifdef CONFIG_SMP
10084 		rq->sd = NULL;
10085 		rq->rd = NULL;
10086 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
10087 		rq->balance_callback = &balance_push_callback;
10088 		rq->active_balance = 0;
10089 		rq->next_balance = jiffies;
10090 		rq->push_cpu = 0;
10091 		rq->cpu = i;
10092 		rq->online = 0;
10093 		rq->idle_stamp = 0;
10094 		rq->avg_idle = 2*sysctl_sched_migration_cost;
10095 		rq->wake_stamp = jiffies;
10096 		rq->wake_avg_idle = rq->avg_idle;
10097 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
10098 
10099 		INIT_LIST_HEAD(&rq->cfs_tasks);
10100 
10101 		rq_attach_root(rq, &def_root_domain);
10102 #ifdef CONFIG_NO_HZ_COMMON
10103 		rq->last_blocked_load_update_tick = jiffies;
10104 		atomic_set(&rq->nohz_flags, 0);
10105 
10106 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
10107 #endif
10108 #ifdef CONFIG_HOTPLUG_CPU
10109 		rcuwait_init(&rq->hotplug_wait);
10110 #endif
10111 #endif /* CONFIG_SMP */
10112 		hrtick_rq_init(rq);
10113 		atomic_set(&rq->nr_iowait, 0);
10114 
10115 #ifdef CONFIG_SCHED_CORE
10116 		rq->core = rq;
10117 		rq->core_pick = NULL;
10118 		rq->core_enabled = 0;
10119 		rq->core_tree = RB_ROOT;
10120 		rq->core_forceidle_count = 0;
10121 		rq->core_forceidle_occupation = 0;
10122 		rq->core_forceidle_start = 0;
10123 
10124 		rq->core_cookie = 0UL;
10125 #endif
10126 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
10127 	}
10128 
10129 	set_load_weight(&init_task, false);
10130 
10131 	/*
10132 	 * The boot idle thread does lazy MMU switching as well:
10133 	 */
10134 	mmgrab_lazy_tlb(&init_mm);
10135 	enter_lazy_tlb(&init_mm, current);
10136 
10137 	/*
10138 	 * The idle task doesn't need the kthread struct to function, but it
10139 	 * is dressed up as a per-CPU kthread and thus needs to play the part
10140 	 * if we want to avoid special-casing it in code that deals with per-CPU
10141 	 * kthreads.
10142 	 */
10143 	WARN_ON(!set_kthread_struct(current));
10144 
10145 	/*
10146 	 * Make us the idle thread. Technically, schedule() should not be
10147 	 * called from this thread, however somewhere below it might be,
10148 	 * but because we are the idle thread, we just pick up running again
10149 	 * when this runqueue becomes "idle".
10150 	 */
10151 	init_idle(current, smp_processor_id());
10152 
10153 	calc_load_update = jiffies + LOAD_FREQ;
10154 
10155 #ifdef CONFIG_SMP
10156 	idle_thread_set_boot_cpu();
10157 	balance_push_set(smp_processor_id(), false);
10158 #endif
10159 	init_sched_fair_class();
10160 
10161 	psi_init();
10162 
10163 	init_uclamp();
10164 
10165 	preempt_dynamic_init();
10166 
10167 	scheduler_running = 1;
10168 }
10169 
10170 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
10171 
__might_sleep(const char * file,int line)10172 void __might_sleep(const char *file, int line)
10173 {
10174 	unsigned int state = get_current_state();
10175 	/*
10176 	 * Blocking primitives will set (and therefore destroy) current->state,
10177 	 * since we will exit with TASK_RUNNING make sure we enter with it,
10178 	 * otherwise we will destroy state.
10179 	 */
10180 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
10181 			"do not call blocking ops when !TASK_RUNNING; "
10182 			"state=%x set at [<%p>] %pS\n", state,
10183 			(void *)current->task_state_change,
10184 			(void *)current->task_state_change);
10185 
10186 	__might_resched(file, line, 0);
10187 }
10188 EXPORT_SYMBOL(__might_sleep);
10189 
print_preempt_disable_ip(int preempt_offset,unsigned long ip)10190 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
10191 {
10192 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
10193 		return;
10194 
10195 	if (preempt_count() == preempt_offset)
10196 		return;
10197 
10198 	pr_err("Preemption disabled at:");
10199 	print_ip_sym(KERN_ERR, ip);
10200 }
10201 
resched_offsets_ok(unsigned int offsets)10202 static inline bool resched_offsets_ok(unsigned int offsets)
10203 {
10204 	unsigned int nested = preempt_count();
10205 
10206 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
10207 
10208 	return nested == offsets;
10209 }
10210 
__might_resched(const char * file,int line,unsigned int offsets)10211 void __might_resched(const char *file, int line, unsigned int offsets)
10212 {
10213 	/* Ratelimiting timestamp: */
10214 	static unsigned long prev_jiffy;
10215 
10216 	unsigned long preempt_disable_ip;
10217 
10218 	/* WARN_ON_ONCE() by default, no rate limit required: */
10219 	rcu_sleep_check();
10220 
10221 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10222 	     !is_idle_task(current) && !current->non_block_count) ||
10223 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10224 	    oops_in_progress)
10225 		return;
10226 
10227 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10228 		return;
10229 	prev_jiffy = jiffies;
10230 
10231 	/* Save this before calling printk(), since that will clobber it: */
10232 	preempt_disable_ip = get_preempt_disable_ip(current);
10233 
10234 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10235 	       file, line);
10236 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10237 	       in_atomic(), irqs_disabled(), current->non_block_count,
10238 	       current->pid, current->comm);
10239 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10240 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
10241 
10242 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10243 		pr_err("RCU nest depth: %d, expected: %u\n",
10244 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10245 	}
10246 
10247 	if (task_stack_end_corrupted(current))
10248 		pr_emerg("Thread overran stack, or stack corrupted\n");
10249 
10250 	debug_show_held_locks(current);
10251 	if (irqs_disabled())
10252 		print_irqtrace_events(current);
10253 
10254 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10255 				 preempt_disable_ip);
10256 
10257 	dump_stack();
10258 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10259 }
10260 EXPORT_SYMBOL(__might_resched);
10261 
__cant_sleep(const char * file,int line,int preempt_offset)10262 void __cant_sleep(const char *file, int line, int preempt_offset)
10263 {
10264 	static unsigned long prev_jiffy;
10265 
10266 	if (irqs_disabled())
10267 		return;
10268 
10269 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10270 		return;
10271 
10272 	if (preempt_count() > preempt_offset)
10273 		return;
10274 
10275 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10276 		return;
10277 	prev_jiffy = jiffies;
10278 
10279 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10280 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10281 			in_atomic(), irqs_disabled(),
10282 			current->pid, current->comm);
10283 
10284 	debug_show_held_locks(current);
10285 	dump_stack();
10286 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10287 }
10288 EXPORT_SYMBOL_GPL(__cant_sleep);
10289 
10290 #ifdef CONFIG_SMP
__cant_migrate(const char * file,int line)10291 void __cant_migrate(const char *file, int line)
10292 {
10293 	static unsigned long prev_jiffy;
10294 
10295 	if (irqs_disabled())
10296 		return;
10297 
10298 	if (is_migration_disabled(current))
10299 		return;
10300 
10301 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10302 		return;
10303 
10304 	if (preempt_count() > 0)
10305 		return;
10306 
10307 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10308 		return;
10309 	prev_jiffy = jiffies;
10310 
10311 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10312 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10313 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
10314 	       current->pid, current->comm);
10315 
10316 	debug_show_held_locks(current);
10317 	dump_stack();
10318 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10319 }
10320 EXPORT_SYMBOL_GPL(__cant_migrate);
10321 #endif
10322 #endif
10323 
10324 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)10325 void normalize_rt_tasks(void)
10326 {
10327 	struct task_struct *g, *p;
10328 	struct sched_attr attr = {
10329 		.sched_policy = SCHED_NORMAL,
10330 	};
10331 
10332 	read_lock(&tasklist_lock);
10333 	for_each_process_thread(g, p) {
10334 		/*
10335 		 * Only normalize user tasks:
10336 		 */
10337 		if (p->flags & PF_KTHREAD)
10338 			continue;
10339 
10340 		p->se.exec_start = 0;
10341 		schedstat_set(p->stats.wait_start,  0);
10342 		schedstat_set(p->stats.sleep_start, 0);
10343 		schedstat_set(p->stats.block_start, 0);
10344 
10345 		if (!dl_task(p) && !rt_task(p)) {
10346 			/*
10347 			 * Renice negative nice level userspace
10348 			 * tasks back to 0:
10349 			 */
10350 			if (task_nice(p) < 0)
10351 				set_user_nice(p, 0);
10352 			continue;
10353 		}
10354 
10355 		__sched_setscheduler(p, &attr, false, false);
10356 	}
10357 	read_unlock(&tasklist_lock);
10358 }
10359 
10360 #endif /* CONFIG_MAGIC_SYSRQ */
10361 
10362 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
10363 /*
10364  * These functions are only useful for the IA64 MCA handling, or kdb.
10365  *
10366  * They can only be called when the whole system has been
10367  * stopped - every CPU needs to be quiescent, and no scheduling
10368  * activity can take place. Using them for anything else would
10369  * be a serious bug, and as a result, they aren't even visible
10370  * under any other configuration.
10371  */
10372 
10373 /**
10374  * curr_task - return the current task for a given CPU.
10375  * @cpu: the processor in question.
10376  *
10377  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10378  *
10379  * Return: The current task for @cpu.
10380  */
curr_task(int cpu)10381 struct task_struct *curr_task(int cpu)
10382 {
10383 	return cpu_curr(cpu);
10384 }
10385 
10386 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10387 
10388 #ifdef CONFIG_IA64
10389 /**
10390  * ia64_set_curr_task - set the current task for a given CPU.
10391  * @cpu: the processor in question.
10392  * @p: the task pointer to set.
10393  *
10394  * Description: This function must only be used when non-maskable interrupts
10395  * are serviced on a separate stack. It allows the architecture to switch the
10396  * notion of the current task on a CPU in a non-blocking manner. This function
10397  * must be called with all CPU's synchronized, and interrupts disabled, the
10398  * and caller must save the original value of the current task (see
10399  * curr_task() above) and restore that value before reenabling interrupts and
10400  * re-starting the system.
10401  *
10402  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10403  */
ia64_set_curr_task(int cpu,struct task_struct * p)10404 void ia64_set_curr_task(int cpu, struct task_struct *p)
10405 {
10406 	cpu_curr(cpu) = p;
10407 }
10408 
10409 #endif
10410 
10411 #ifdef CONFIG_CGROUP_SCHED
10412 /* task_group_lock serializes the addition/removal of task groups */
10413 static DEFINE_SPINLOCK(task_group_lock);
10414 
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)10415 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10416 					    struct task_group *parent)
10417 {
10418 #ifdef CONFIG_UCLAMP_TASK_GROUP
10419 	enum uclamp_id clamp_id;
10420 
10421 	for_each_clamp_id(clamp_id) {
10422 		uclamp_se_set(&tg->uclamp_req[clamp_id],
10423 			      uclamp_none(clamp_id), false);
10424 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10425 	}
10426 #endif
10427 }
10428 
sched_free_group(struct task_group * tg)10429 static void sched_free_group(struct task_group *tg)
10430 {
10431 	free_fair_sched_group(tg);
10432 	free_rt_sched_group(tg);
10433 	autogroup_free(tg);
10434 	kmem_cache_free(task_group_cache, tg);
10435 }
10436 
sched_free_group_rcu(struct rcu_head * rcu)10437 static void sched_free_group_rcu(struct rcu_head *rcu)
10438 {
10439 	sched_free_group(container_of(rcu, struct task_group, rcu));
10440 }
10441 
sched_unregister_group(struct task_group * tg)10442 static void sched_unregister_group(struct task_group *tg)
10443 {
10444 	unregister_fair_sched_group(tg);
10445 	unregister_rt_sched_group(tg);
10446 	/*
10447 	 * We have to wait for yet another RCU grace period to expire, as
10448 	 * print_cfs_stats() might run concurrently.
10449 	 */
10450 	call_rcu(&tg->rcu, sched_free_group_rcu);
10451 }
10452 
10453 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)10454 struct task_group *sched_create_group(struct task_group *parent)
10455 {
10456 	struct task_group *tg;
10457 
10458 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10459 	if (!tg)
10460 		return ERR_PTR(-ENOMEM);
10461 
10462 	if (!alloc_fair_sched_group(tg, parent))
10463 		goto err;
10464 
10465 	if (!alloc_rt_sched_group(tg, parent))
10466 		goto err;
10467 
10468 	alloc_uclamp_sched_group(tg, parent);
10469 
10470 	return tg;
10471 
10472 err:
10473 	sched_free_group(tg);
10474 	return ERR_PTR(-ENOMEM);
10475 }
10476 
sched_online_group(struct task_group * tg,struct task_group * parent)10477 void sched_online_group(struct task_group *tg, struct task_group *parent)
10478 {
10479 	unsigned long flags;
10480 
10481 	spin_lock_irqsave(&task_group_lock, flags);
10482 	list_add_rcu(&tg->list, &task_groups);
10483 
10484 	/* Root should already exist: */
10485 	WARN_ON(!parent);
10486 
10487 	tg->parent = parent;
10488 	INIT_LIST_HEAD(&tg->children);
10489 	list_add_rcu(&tg->siblings, &parent->children);
10490 	spin_unlock_irqrestore(&task_group_lock, flags);
10491 
10492 	online_fair_sched_group(tg);
10493 }
10494 
10495 /* rcu callback to free various structures associated with a task group */
sched_unregister_group_rcu(struct rcu_head * rhp)10496 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10497 {
10498 	/* Now it should be safe to free those cfs_rqs: */
10499 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
10500 }
10501 
sched_destroy_group(struct task_group * tg)10502 void sched_destroy_group(struct task_group *tg)
10503 {
10504 	/* Wait for possible concurrent references to cfs_rqs complete: */
10505 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10506 }
10507 
sched_release_group(struct task_group * tg)10508 void sched_release_group(struct task_group *tg)
10509 {
10510 	unsigned long flags;
10511 
10512 	/*
10513 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10514 	 * sched_cfs_period_timer()).
10515 	 *
10516 	 * For this to be effective, we have to wait for all pending users of
10517 	 * this task group to leave their RCU critical section to ensure no new
10518 	 * user will see our dying task group any more. Specifically ensure
10519 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10520 	 *
10521 	 * We therefore defer calling unregister_fair_sched_group() to
10522 	 * sched_unregister_group() which is guarantied to get called only after the
10523 	 * current RCU grace period has expired.
10524 	 */
10525 	spin_lock_irqsave(&task_group_lock, flags);
10526 	list_del_rcu(&tg->list);
10527 	list_del_rcu(&tg->siblings);
10528 	spin_unlock_irqrestore(&task_group_lock, flags);
10529 }
10530 
sched_get_task_group(struct task_struct * tsk)10531 static struct task_group *sched_get_task_group(struct task_struct *tsk)
10532 {
10533 	struct task_group *tg;
10534 
10535 	/*
10536 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10537 	 * which is pointless here. Thus, we pass "true" to task_css_check()
10538 	 * to prevent lockdep warnings.
10539 	 */
10540 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10541 			  struct task_group, css);
10542 	tg = autogroup_task_group(tsk, tg);
10543 
10544 	return tg;
10545 }
10546 
sched_change_group(struct task_struct * tsk,struct task_group * group)10547 static void sched_change_group(struct task_struct *tsk, struct task_group *group)
10548 {
10549 	tsk->sched_task_group = group;
10550 
10551 #ifdef CONFIG_FAIR_GROUP_SCHED
10552 	if (tsk->sched_class->task_change_group)
10553 		tsk->sched_class->task_change_group(tsk);
10554 	else
10555 #endif
10556 		set_task_rq(tsk, task_cpu(tsk));
10557 }
10558 
10559 /*
10560  * Change task's runqueue when it moves between groups.
10561  *
10562  * The caller of this function should have put the task in its new group by
10563  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10564  * its new group.
10565  */
sched_move_task(struct task_struct * tsk)10566 void sched_move_task(struct task_struct *tsk)
10567 {
10568 	int queued, running, queue_flags =
10569 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10570 	struct task_group *group;
10571 	struct rq_flags rf;
10572 	struct rq *rq;
10573 
10574 	rq = task_rq_lock(tsk, &rf);
10575 	/*
10576 	 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
10577 	 * group changes.
10578 	 */
10579 	group = sched_get_task_group(tsk);
10580 	if (group == tsk->sched_task_group)
10581 		goto unlock;
10582 
10583 	update_rq_clock(rq);
10584 
10585 	running = task_current(rq, tsk);
10586 	queued = task_on_rq_queued(tsk);
10587 
10588 	if (queued)
10589 		dequeue_task(rq, tsk, queue_flags);
10590 	if (running)
10591 		put_prev_task(rq, tsk);
10592 
10593 	sched_change_group(tsk, group);
10594 
10595 	if (queued)
10596 		enqueue_task(rq, tsk, queue_flags);
10597 	if (running) {
10598 		set_next_task(rq, tsk);
10599 		/*
10600 		 * After changing group, the running task may have joined a
10601 		 * throttled one but it's still the running task. Trigger a
10602 		 * resched to make sure that task can still run.
10603 		 */
10604 		resched_curr(rq);
10605 	}
10606 
10607 unlock:
10608 	task_rq_unlock(rq, tsk, &rf);
10609 }
10610 
css_tg(struct cgroup_subsys_state * css)10611 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10612 {
10613 	return css ? container_of(css, struct task_group, css) : NULL;
10614 }
10615 
10616 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)10617 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10618 {
10619 	struct task_group *parent = css_tg(parent_css);
10620 	struct task_group *tg;
10621 
10622 	if (!parent) {
10623 		/* This is early initialization for the top cgroup */
10624 		return &root_task_group.css;
10625 	}
10626 
10627 	tg = sched_create_group(parent);
10628 	if (IS_ERR(tg))
10629 		return ERR_PTR(-ENOMEM);
10630 
10631 	return &tg->css;
10632 }
10633 
10634 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)10635 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10636 {
10637 	struct task_group *tg = css_tg(css);
10638 	struct task_group *parent = css_tg(css->parent);
10639 
10640 	if (parent)
10641 		sched_online_group(tg, parent);
10642 
10643 #ifdef CONFIG_UCLAMP_TASK_GROUP
10644 	/* Propagate the effective uclamp value for the new group */
10645 	mutex_lock(&uclamp_mutex);
10646 	rcu_read_lock();
10647 	cpu_util_update_eff(css);
10648 	rcu_read_unlock();
10649 	mutex_unlock(&uclamp_mutex);
10650 #endif
10651 
10652 	return 0;
10653 }
10654 
cpu_cgroup_css_released(struct cgroup_subsys_state * css)10655 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10656 {
10657 	struct task_group *tg = css_tg(css);
10658 
10659 	sched_release_group(tg);
10660 }
10661 
cpu_cgroup_css_free(struct cgroup_subsys_state * css)10662 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10663 {
10664 	struct task_group *tg = css_tg(css);
10665 
10666 	/*
10667 	 * Relies on the RCU grace period between css_released() and this.
10668 	 */
10669 	sched_unregister_group(tg);
10670 }
10671 
10672 #ifdef CONFIG_RT_GROUP_SCHED
cpu_cgroup_can_attach(struct cgroup_taskset * tset)10673 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10674 {
10675 	struct task_struct *task;
10676 	struct cgroup_subsys_state *css;
10677 
10678 	cgroup_taskset_for_each(task, css, tset) {
10679 		if (!sched_rt_can_attach(css_tg(css), task))
10680 			return -EINVAL;
10681 	}
10682 	return 0;
10683 }
10684 #endif
10685 
cpu_cgroup_attach(struct cgroup_taskset * tset)10686 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10687 {
10688 	struct task_struct *task;
10689 	struct cgroup_subsys_state *css;
10690 
10691 	cgroup_taskset_for_each(task, css, tset)
10692 		sched_move_task(task);
10693 }
10694 
10695 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)10696 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10697 {
10698 	struct cgroup_subsys_state *top_css = css;
10699 	struct uclamp_se *uc_parent = NULL;
10700 	struct uclamp_se *uc_se = NULL;
10701 	unsigned int eff[UCLAMP_CNT];
10702 	enum uclamp_id clamp_id;
10703 	unsigned int clamps;
10704 
10705 	lockdep_assert_held(&uclamp_mutex);
10706 	SCHED_WARN_ON(!rcu_read_lock_held());
10707 
10708 	css_for_each_descendant_pre(css, top_css) {
10709 		uc_parent = css_tg(css)->parent
10710 			? css_tg(css)->parent->uclamp : NULL;
10711 
10712 		for_each_clamp_id(clamp_id) {
10713 			/* Assume effective clamps matches requested clamps */
10714 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10715 			/* Cap effective clamps with parent's effective clamps */
10716 			if (uc_parent &&
10717 			    eff[clamp_id] > uc_parent[clamp_id].value) {
10718 				eff[clamp_id] = uc_parent[clamp_id].value;
10719 			}
10720 		}
10721 		/* Ensure protection is always capped by limit */
10722 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10723 
10724 		/* Propagate most restrictive effective clamps */
10725 		clamps = 0x0;
10726 		uc_se = css_tg(css)->uclamp;
10727 		for_each_clamp_id(clamp_id) {
10728 			if (eff[clamp_id] == uc_se[clamp_id].value)
10729 				continue;
10730 			uc_se[clamp_id].value = eff[clamp_id];
10731 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10732 			clamps |= (0x1 << clamp_id);
10733 		}
10734 		if (!clamps) {
10735 			css = css_rightmost_descendant(css);
10736 			continue;
10737 		}
10738 
10739 		/* Immediately update descendants RUNNABLE tasks */
10740 		uclamp_update_active_tasks(css);
10741 	}
10742 }
10743 
10744 /*
10745  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10746  * C expression. Since there is no way to convert a macro argument (N) into a
10747  * character constant, use two levels of macros.
10748  */
10749 #define _POW10(exp) ((unsigned int)1e##exp)
10750 #define POW10(exp) _POW10(exp)
10751 
10752 struct uclamp_request {
10753 #define UCLAMP_PERCENT_SHIFT	2
10754 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10755 	s64 percent;
10756 	u64 util;
10757 	int ret;
10758 };
10759 
10760 static inline struct uclamp_request
capacity_from_percent(char * buf)10761 capacity_from_percent(char *buf)
10762 {
10763 	struct uclamp_request req = {
10764 		.percent = UCLAMP_PERCENT_SCALE,
10765 		.util = SCHED_CAPACITY_SCALE,
10766 		.ret = 0,
10767 	};
10768 
10769 	buf = strim(buf);
10770 	if (strcmp(buf, "max")) {
10771 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10772 					     &req.percent);
10773 		if (req.ret)
10774 			return req;
10775 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10776 			req.ret = -ERANGE;
10777 			return req;
10778 		}
10779 
10780 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10781 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10782 	}
10783 
10784 	return req;
10785 }
10786 
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)10787 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10788 				size_t nbytes, loff_t off,
10789 				enum uclamp_id clamp_id)
10790 {
10791 	struct uclamp_request req;
10792 	struct task_group *tg;
10793 
10794 	req = capacity_from_percent(buf);
10795 	if (req.ret)
10796 		return req.ret;
10797 
10798 	static_branch_enable(&sched_uclamp_used);
10799 
10800 	mutex_lock(&uclamp_mutex);
10801 	rcu_read_lock();
10802 
10803 	tg = css_tg(of_css(of));
10804 	if (tg->uclamp_req[clamp_id].value != req.util)
10805 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10806 
10807 	/*
10808 	 * Because of not recoverable conversion rounding we keep track of the
10809 	 * exact requested value
10810 	 */
10811 	tg->uclamp_pct[clamp_id] = req.percent;
10812 
10813 	/* Update effective clamps to track the most restrictive value */
10814 	cpu_util_update_eff(of_css(of));
10815 
10816 	rcu_read_unlock();
10817 	mutex_unlock(&uclamp_mutex);
10818 
10819 	return nbytes;
10820 }
10821 
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10822 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10823 				    char *buf, size_t nbytes,
10824 				    loff_t off)
10825 {
10826 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10827 }
10828 
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10829 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10830 				    char *buf, size_t nbytes,
10831 				    loff_t off)
10832 {
10833 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10834 }
10835 
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)10836 static inline void cpu_uclamp_print(struct seq_file *sf,
10837 				    enum uclamp_id clamp_id)
10838 {
10839 	struct task_group *tg;
10840 	u64 util_clamp;
10841 	u64 percent;
10842 	u32 rem;
10843 
10844 	rcu_read_lock();
10845 	tg = css_tg(seq_css(sf));
10846 	util_clamp = tg->uclamp_req[clamp_id].value;
10847 	rcu_read_unlock();
10848 
10849 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10850 		seq_puts(sf, "max\n");
10851 		return;
10852 	}
10853 
10854 	percent = tg->uclamp_pct[clamp_id];
10855 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10856 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10857 }
10858 
cpu_uclamp_min_show(struct seq_file * sf,void * v)10859 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10860 {
10861 	cpu_uclamp_print(sf, UCLAMP_MIN);
10862 	return 0;
10863 }
10864 
cpu_uclamp_max_show(struct seq_file * sf,void * v)10865 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10866 {
10867 	cpu_uclamp_print(sf, UCLAMP_MAX);
10868 	return 0;
10869 }
10870 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10871 
10872 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)10873 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10874 				struct cftype *cftype, u64 shareval)
10875 {
10876 	if (shareval > scale_load_down(ULONG_MAX))
10877 		shareval = MAX_SHARES;
10878 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10879 }
10880 
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10881 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10882 			       struct cftype *cft)
10883 {
10884 	struct task_group *tg = css_tg(css);
10885 
10886 	return (u64) scale_load_down(tg->shares);
10887 }
10888 
10889 #ifdef CONFIG_CFS_BANDWIDTH
10890 static DEFINE_MUTEX(cfs_constraints_mutex);
10891 
10892 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10893 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10894 /* More than 203 days if BW_SHIFT equals 20. */
10895 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10896 
10897 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10898 
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota,u64 burst)10899 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10900 				u64 burst)
10901 {
10902 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10903 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10904 
10905 	if (tg == &root_task_group)
10906 		return -EINVAL;
10907 
10908 	/*
10909 	 * Ensure we have at some amount of bandwidth every period.  This is
10910 	 * to prevent reaching a state of large arrears when throttled via
10911 	 * entity_tick() resulting in prolonged exit starvation.
10912 	 */
10913 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10914 		return -EINVAL;
10915 
10916 	/*
10917 	 * Likewise, bound things on the other side by preventing insane quota
10918 	 * periods.  This also allows us to normalize in computing quota
10919 	 * feasibility.
10920 	 */
10921 	if (period > max_cfs_quota_period)
10922 		return -EINVAL;
10923 
10924 	/*
10925 	 * Bound quota to defend quota against overflow during bandwidth shift.
10926 	 */
10927 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10928 		return -EINVAL;
10929 
10930 	if (quota != RUNTIME_INF && (burst > quota ||
10931 				     burst + quota > max_cfs_runtime))
10932 		return -EINVAL;
10933 
10934 	/*
10935 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10936 	 * unthrottle_offline_cfs_rqs().
10937 	 */
10938 	cpus_read_lock();
10939 	mutex_lock(&cfs_constraints_mutex);
10940 	ret = __cfs_schedulable(tg, period, quota);
10941 	if (ret)
10942 		goto out_unlock;
10943 
10944 	runtime_enabled = quota != RUNTIME_INF;
10945 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10946 	/*
10947 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10948 	 * before making related changes, and on->off must occur afterwards
10949 	 */
10950 	if (runtime_enabled && !runtime_was_enabled)
10951 		cfs_bandwidth_usage_inc();
10952 	raw_spin_lock_irq(&cfs_b->lock);
10953 	cfs_b->period = ns_to_ktime(period);
10954 	cfs_b->quota = quota;
10955 	cfs_b->burst = burst;
10956 
10957 	__refill_cfs_bandwidth_runtime(cfs_b);
10958 
10959 	/* Restart the period timer (if active) to handle new period expiry: */
10960 	if (runtime_enabled)
10961 		start_cfs_bandwidth(cfs_b);
10962 
10963 	raw_spin_unlock_irq(&cfs_b->lock);
10964 
10965 	for_each_online_cpu(i) {
10966 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10967 		struct rq *rq = cfs_rq->rq;
10968 		struct rq_flags rf;
10969 
10970 		rq_lock_irq(rq, &rf);
10971 		cfs_rq->runtime_enabled = runtime_enabled;
10972 		cfs_rq->runtime_remaining = 0;
10973 
10974 		if (cfs_rq->throttled)
10975 			unthrottle_cfs_rq(cfs_rq);
10976 		rq_unlock_irq(rq, &rf);
10977 	}
10978 	if (runtime_was_enabled && !runtime_enabled)
10979 		cfs_bandwidth_usage_dec();
10980 out_unlock:
10981 	mutex_unlock(&cfs_constraints_mutex);
10982 	cpus_read_unlock();
10983 
10984 	return ret;
10985 }
10986 
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)10987 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10988 {
10989 	u64 quota, period, burst;
10990 
10991 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10992 	burst = tg->cfs_bandwidth.burst;
10993 	if (cfs_quota_us < 0)
10994 		quota = RUNTIME_INF;
10995 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10996 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10997 	else
10998 		return -EINVAL;
10999 
11000 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
11001 }
11002 
tg_get_cfs_quota(struct task_group * tg)11003 static long tg_get_cfs_quota(struct task_group *tg)
11004 {
11005 	u64 quota_us;
11006 
11007 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
11008 		return -1;
11009 
11010 	quota_us = tg->cfs_bandwidth.quota;
11011 	do_div(quota_us, NSEC_PER_USEC);
11012 
11013 	return quota_us;
11014 }
11015 
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)11016 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
11017 {
11018 	u64 quota, period, burst;
11019 
11020 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
11021 		return -EINVAL;
11022 
11023 	period = (u64)cfs_period_us * NSEC_PER_USEC;
11024 	quota = tg->cfs_bandwidth.quota;
11025 	burst = tg->cfs_bandwidth.burst;
11026 
11027 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
11028 }
11029 
tg_get_cfs_period(struct task_group * tg)11030 static long tg_get_cfs_period(struct task_group *tg)
11031 {
11032 	u64 cfs_period_us;
11033 
11034 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
11035 	do_div(cfs_period_us, NSEC_PER_USEC);
11036 
11037 	return cfs_period_us;
11038 }
11039 
tg_set_cfs_burst(struct task_group * tg,long cfs_burst_us)11040 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
11041 {
11042 	u64 quota, period, burst;
11043 
11044 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
11045 		return -EINVAL;
11046 
11047 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
11048 	period = ktime_to_ns(tg->cfs_bandwidth.period);
11049 	quota = tg->cfs_bandwidth.quota;
11050 
11051 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
11052 }
11053 
tg_get_cfs_burst(struct task_group * tg)11054 static long tg_get_cfs_burst(struct task_group *tg)
11055 {
11056 	u64 burst_us;
11057 
11058 	burst_us = tg->cfs_bandwidth.burst;
11059 	do_div(burst_us, NSEC_PER_USEC);
11060 
11061 	return burst_us;
11062 }
11063 
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11064 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
11065 				  struct cftype *cft)
11066 {
11067 	return tg_get_cfs_quota(css_tg(css));
11068 }
11069 
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)11070 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
11071 				   struct cftype *cftype, s64 cfs_quota_us)
11072 {
11073 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
11074 }
11075 
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11076 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
11077 				   struct cftype *cft)
11078 {
11079 	return tg_get_cfs_period(css_tg(css));
11080 }
11081 
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)11082 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
11083 				    struct cftype *cftype, u64 cfs_period_us)
11084 {
11085 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
11086 }
11087 
cpu_cfs_burst_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11088 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
11089 				  struct cftype *cft)
11090 {
11091 	return tg_get_cfs_burst(css_tg(css));
11092 }
11093 
cpu_cfs_burst_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_burst_us)11094 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
11095 				   struct cftype *cftype, u64 cfs_burst_us)
11096 {
11097 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
11098 }
11099 
11100 struct cfs_schedulable_data {
11101 	struct task_group *tg;
11102 	u64 period, quota;
11103 };
11104 
11105 /*
11106  * normalize group quota/period to be quota/max_period
11107  * note: units are usecs
11108  */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)11109 static u64 normalize_cfs_quota(struct task_group *tg,
11110 			       struct cfs_schedulable_data *d)
11111 {
11112 	u64 quota, period;
11113 
11114 	if (tg == d->tg) {
11115 		period = d->period;
11116 		quota = d->quota;
11117 	} else {
11118 		period = tg_get_cfs_period(tg);
11119 		quota = tg_get_cfs_quota(tg);
11120 	}
11121 
11122 	/* note: these should typically be equivalent */
11123 	if (quota == RUNTIME_INF || quota == -1)
11124 		return RUNTIME_INF;
11125 
11126 	return to_ratio(period, quota);
11127 }
11128 
tg_cfs_schedulable_down(struct task_group * tg,void * data)11129 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
11130 {
11131 	struct cfs_schedulable_data *d = data;
11132 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11133 	s64 quota = 0, parent_quota = -1;
11134 
11135 	if (!tg->parent) {
11136 		quota = RUNTIME_INF;
11137 	} else {
11138 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
11139 
11140 		quota = normalize_cfs_quota(tg, d);
11141 		parent_quota = parent_b->hierarchical_quota;
11142 
11143 		/*
11144 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
11145 		 * always take the non-RUNTIME_INF min.  On cgroup1, only
11146 		 * inherit when no limit is set. In both cases this is used
11147 		 * by the scheduler to determine if a given CFS task has a
11148 		 * bandwidth constraint at some higher level.
11149 		 */
11150 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
11151 			if (quota == RUNTIME_INF)
11152 				quota = parent_quota;
11153 			else if (parent_quota != RUNTIME_INF)
11154 				quota = min(quota, parent_quota);
11155 		} else {
11156 			if (quota == RUNTIME_INF)
11157 				quota = parent_quota;
11158 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
11159 				return -EINVAL;
11160 		}
11161 	}
11162 	cfs_b->hierarchical_quota = quota;
11163 
11164 	return 0;
11165 }
11166 
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)11167 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
11168 {
11169 	int ret;
11170 	struct cfs_schedulable_data data = {
11171 		.tg = tg,
11172 		.period = period,
11173 		.quota = quota,
11174 	};
11175 
11176 	if (quota != RUNTIME_INF) {
11177 		do_div(data.period, NSEC_PER_USEC);
11178 		do_div(data.quota, NSEC_PER_USEC);
11179 	}
11180 
11181 	rcu_read_lock();
11182 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
11183 	rcu_read_unlock();
11184 
11185 	return ret;
11186 }
11187 
cpu_cfs_stat_show(struct seq_file * sf,void * v)11188 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
11189 {
11190 	struct task_group *tg = css_tg(seq_css(sf));
11191 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11192 
11193 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
11194 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
11195 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
11196 
11197 	if (schedstat_enabled() && tg != &root_task_group) {
11198 		struct sched_statistics *stats;
11199 		u64 ws = 0;
11200 		int i;
11201 
11202 		for_each_possible_cpu(i) {
11203 			stats = __schedstats_from_se(tg->se[i]);
11204 			ws += schedstat_val(stats->wait_sum);
11205 		}
11206 
11207 		seq_printf(sf, "wait_sum %llu\n", ws);
11208 	}
11209 
11210 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
11211 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
11212 
11213 	return 0;
11214 }
11215 
throttled_time_self(struct task_group * tg)11216 static u64 throttled_time_self(struct task_group *tg)
11217 {
11218 	int i;
11219 	u64 total = 0;
11220 
11221 	for_each_possible_cpu(i) {
11222 		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
11223 	}
11224 
11225 	return total;
11226 }
11227 
cpu_cfs_local_stat_show(struct seq_file * sf,void * v)11228 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
11229 {
11230 	struct task_group *tg = css_tg(seq_css(sf));
11231 
11232 	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
11233 
11234 	return 0;
11235 }
11236 #endif /* CONFIG_CFS_BANDWIDTH */
11237 #endif /* CONFIG_FAIR_GROUP_SCHED */
11238 
11239 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)11240 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
11241 				struct cftype *cft, s64 val)
11242 {
11243 	return sched_group_set_rt_runtime(css_tg(css), val);
11244 }
11245 
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)11246 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
11247 			       struct cftype *cft)
11248 {
11249 	return sched_group_rt_runtime(css_tg(css));
11250 }
11251 
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)11252 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
11253 				    struct cftype *cftype, u64 rt_period_us)
11254 {
11255 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
11256 }
11257 
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)11258 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11259 				   struct cftype *cft)
11260 {
11261 	return sched_group_rt_period(css_tg(css));
11262 }
11263 #endif /* CONFIG_RT_GROUP_SCHED */
11264 
11265 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_idle_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11266 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11267 			       struct cftype *cft)
11268 {
11269 	return css_tg(css)->idle;
11270 }
11271 
cpu_idle_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 idle)11272 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11273 				struct cftype *cft, s64 idle)
11274 {
11275 	return sched_group_set_idle(css_tg(css), idle);
11276 }
11277 #endif
11278 
11279 static struct cftype cpu_legacy_files[] = {
11280 #ifdef CONFIG_FAIR_GROUP_SCHED
11281 	{
11282 		.name = "shares",
11283 		.read_u64 = cpu_shares_read_u64,
11284 		.write_u64 = cpu_shares_write_u64,
11285 	},
11286 	{
11287 		.name = "idle",
11288 		.read_s64 = cpu_idle_read_s64,
11289 		.write_s64 = cpu_idle_write_s64,
11290 	},
11291 #endif
11292 #ifdef CONFIG_CFS_BANDWIDTH
11293 	{
11294 		.name = "cfs_quota_us",
11295 		.read_s64 = cpu_cfs_quota_read_s64,
11296 		.write_s64 = cpu_cfs_quota_write_s64,
11297 	},
11298 	{
11299 		.name = "cfs_period_us",
11300 		.read_u64 = cpu_cfs_period_read_u64,
11301 		.write_u64 = cpu_cfs_period_write_u64,
11302 	},
11303 	{
11304 		.name = "cfs_burst_us",
11305 		.read_u64 = cpu_cfs_burst_read_u64,
11306 		.write_u64 = cpu_cfs_burst_write_u64,
11307 	},
11308 	{
11309 		.name = "stat",
11310 		.seq_show = cpu_cfs_stat_show,
11311 	},
11312 	{
11313 		.name = "stat.local",
11314 		.seq_show = cpu_cfs_local_stat_show,
11315 	},
11316 #endif
11317 #ifdef CONFIG_RT_GROUP_SCHED
11318 	{
11319 		.name = "rt_runtime_us",
11320 		.read_s64 = cpu_rt_runtime_read,
11321 		.write_s64 = cpu_rt_runtime_write,
11322 	},
11323 	{
11324 		.name = "rt_period_us",
11325 		.read_u64 = cpu_rt_period_read_uint,
11326 		.write_u64 = cpu_rt_period_write_uint,
11327 	},
11328 #endif
11329 #ifdef CONFIG_UCLAMP_TASK_GROUP
11330 	{
11331 		.name = "uclamp.min",
11332 		.flags = CFTYPE_NOT_ON_ROOT,
11333 		.seq_show = cpu_uclamp_min_show,
11334 		.write = cpu_uclamp_min_write,
11335 	},
11336 	{
11337 		.name = "uclamp.max",
11338 		.flags = CFTYPE_NOT_ON_ROOT,
11339 		.seq_show = cpu_uclamp_max_show,
11340 		.write = cpu_uclamp_max_write,
11341 	},
11342 #endif
11343 	{ }	/* Terminate */
11344 };
11345 
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)11346 static int cpu_extra_stat_show(struct seq_file *sf,
11347 			       struct cgroup_subsys_state *css)
11348 {
11349 #ifdef CONFIG_CFS_BANDWIDTH
11350 	{
11351 		struct task_group *tg = css_tg(css);
11352 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11353 		u64 throttled_usec, burst_usec;
11354 
11355 		throttled_usec = cfs_b->throttled_time;
11356 		do_div(throttled_usec, NSEC_PER_USEC);
11357 		burst_usec = cfs_b->burst_time;
11358 		do_div(burst_usec, NSEC_PER_USEC);
11359 
11360 		seq_printf(sf, "nr_periods %d\n"
11361 			   "nr_throttled %d\n"
11362 			   "throttled_usec %llu\n"
11363 			   "nr_bursts %d\n"
11364 			   "burst_usec %llu\n",
11365 			   cfs_b->nr_periods, cfs_b->nr_throttled,
11366 			   throttled_usec, cfs_b->nr_burst, burst_usec);
11367 	}
11368 #endif
11369 	return 0;
11370 }
11371 
cpu_local_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)11372 static int cpu_local_stat_show(struct seq_file *sf,
11373 			       struct cgroup_subsys_state *css)
11374 {
11375 #ifdef CONFIG_CFS_BANDWIDTH
11376 	{
11377 		struct task_group *tg = css_tg(css);
11378 		u64 throttled_self_usec;
11379 
11380 		throttled_self_usec = throttled_time_self(tg);
11381 		do_div(throttled_self_usec, NSEC_PER_USEC);
11382 
11383 		seq_printf(sf, "throttled_usec %llu\n",
11384 			   throttled_self_usec);
11385 	}
11386 #endif
11387 	return 0;
11388 }
11389 
11390 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11391 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11392 			       struct cftype *cft)
11393 {
11394 	struct task_group *tg = css_tg(css);
11395 	u64 weight = scale_load_down(tg->shares);
11396 
11397 	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11398 }
11399 
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 weight)11400 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11401 				struct cftype *cft, u64 weight)
11402 {
11403 	/*
11404 	 * cgroup weight knobs should use the common MIN, DFL and MAX
11405 	 * values which are 1, 100 and 10000 respectively.  While it loses
11406 	 * a bit of range on both ends, it maps pretty well onto the shares
11407 	 * value used by scheduler and the round-trip conversions preserve
11408 	 * the original value over the entire range.
11409 	 */
11410 	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11411 		return -ERANGE;
11412 
11413 	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11414 
11415 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11416 }
11417 
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11418 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11419 				    struct cftype *cft)
11420 {
11421 	unsigned long weight = scale_load_down(css_tg(css)->shares);
11422 	int last_delta = INT_MAX;
11423 	int prio, delta;
11424 
11425 	/* find the closest nice value to the current weight */
11426 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11427 		delta = abs(sched_prio_to_weight[prio] - weight);
11428 		if (delta >= last_delta)
11429 			break;
11430 		last_delta = delta;
11431 	}
11432 
11433 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11434 }
11435 
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)11436 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11437 				     struct cftype *cft, s64 nice)
11438 {
11439 	unsigned long weight;
11440 	int idx;
11441 
11442 	if (nice < MIN_NICE || nice > MAX_NICE)
11443 		return -ERANGE;
11444 
11445 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11446 	idx = array_index_nospec(idx, 40);
11447 	weight = sched_prio_to_weight[idx];
11448 
11449 	return sched_group_set_shares(css_tg(css), scale_load(weight));
11450 }
11451 #endif
11452 
cpu_period_quota_print(struct seq_file * sf,long period,long quota)11453 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11454 						  long period, long quota)
11455 {
11456 	if (quota < 0)
11457 		seq_puts(sf, "max");
11458 	else
11459 		seq_printf(sf, "%ld", quota);
11460 
11461 	seq_printf(sf, " %ld\n", period);
11462 }
11463 
11464 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)11465 static int __maybe_unused cpu_period_quota_parse(char *buf,
11466 						 u64 *periodp, u64 *quotap)
11467 {
11468 	char tok[21];	/* U64_MAX */
11469 
11470 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11471 		return -EINVAL;
11472 
11473 	*periodp *= NSEC_PER_USEC;
11474 
11475 	if (sscanf(tok, "%llu", quotap))
11476 		*quotap *= NSEC_PER_USEC;
11477 	else if (!strcmp(tok, "max"))
11478 		*quotap = RUNTIME_INF;
11479 	else
11480 		return -EINVAL;
11481 
11482 	return 0;
11483 }
11484 
11485 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)11486 static int cpu_max_show(struct seq_file *sf, void *v)
11487 {
11488 	struct task_group *tg = css_tg(seq_css(sf));
11489 
11490 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11491 	return 0;
11492 }
11493 
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)11494 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11495 			     char *buf, size_t nbytes, loff_t off)
11496 {
11497 	struct task_group *tg = css_tg(of_css(of));
11498 	u64 period = tg_get_cfs_period(tg);
11499 	u64 burst = tg_get_cfs_burst(tg);
11500 	u64 quota;
11501 	int ret;
11502 
11503 	ret = cpu_period_quota_parse(buf, &period, &quota);
11504 	if (!ret)
11505 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11506 	return ret ?: nbytes;
11507 }
11508 #endif
11509 
11510 static struct cftype cpu_files[] = {
11511 #ifdef CONFIG_FAIR_GROUP_SCHED
11512 	{
11513 		.name = "weight",
11514 		.flags = CFTYPE_NOT_ON_ROOT,
11515 		.read_u64 = cpu_weight_read_u64,
11516 		.write_u64 = cpu_weight_write_u64,
11517 	},
11518 	{
11519 		.name = "weight.nice",
11520 		.flags = CFTYPE_NOT_ON_ROOT,
11521 		.read_s64 = cpu_weight_nice_read_s64,
11522 		.write_s64 = cpu_weight_nice_write_s64,
11523 	},
11524 	{
11525 		.name = "idle",
11526 		.flags = CFTYPE_NOT_ON_ROOT,
11527 		.read_s64 = cpu_idle_read_s64,
11528 		.write_s64 = cpu_idle_write_s64,
11529 	},
11530 #endif
11531 #ifdef CONFIG_CFS_BANDWIDTH
11532 	{
11533 		.name = "max",
11534 		.flags = CFTYPE_NOT_ON_ROOT,
11535 		.seq_show = cpu_max_show,
11536 		.write = cpu_max_write,
11537 	},
11538 	{
11539 		.name = "max.burst",
11540 		.flags = CFTYPE_NOT_ON_ROOT,
11541 		.read_u64 = cpu_cfs_burst_read_u64,
11542 		.write_u64 = cpu_cfs_burst_write_u64,
11543 	},
11544 #endif
11545 #ifdef CONFIG_UCLAMP_TASK_GROUP
11546 	{
11547 		.name = "uclamp.min",
11548 		.flags = CFTYPE_NOT_ON_ROOT,
11549 		.seq_show = cpu_uclamp_min_show,
11550 		.write = cpu_uclamp_min_write,
11551 	},
11552 	{
11553 		.name = "uclamp.max",
11554 		.flags = CFTYPE_NOT_ON_ROOT,
11555 		.seq_show = cpu_uclamp_max_show,
11556 		.write = cpu_uclamp_max_write,
11557 	},
11558 #endif
11559 	{ }	/* terminate */
11560 };
11561 
11562 struct cgroup_subsys cpu_cgrp_subsys = {
11563 	.css_alloc	= cpu_cgroup_css_alloc,
11564 	.css_online	= cpu_cgroup_css_online,
11565 	.css_released	= cpu_cgroup_css_released,
11566 	.css_free	= cpu_cgroup_css_free,
11567 	.css_extra_stat_show = cpu_extra_stat_show,
11568 	.css_local_stat_show = cpu_local_stat_show,
11569 #ifdef CONFIG_RT_GROUP_SCHED
11570 	.can_attach	= cpu_cgroup_can_attach,
11571 #endif
11572 	.attach		= cpu_cgroup_attach,
11573 	.legacy_cftypes	= cpu_legacy_files,
11574 	.dfl_cftypes	= cpu_files,
11575 	.early_init	= true,
11576 	.threaded	= true,
11577 };
11578 
11579 #endif	/* CONFIG_CGROUP_SCHED */
11580 
dump_cpu_task(int cpu)11581 void dump_cpu_task(int cpu)
11582 {
11583 	if (cpu == smp_processor_id() && in_hardirq()) {
11584 		struct pt_regs *regs;
11585 
11586 		regs = get_irq_regs();
11587 		if (regs) {
11588 			show_regs(regs);
11589 			return;
11590 		}
11591 	}
11592 
11593 	if (trigger_single_cpu_backtrace(cpu))
11594 		return;
11595 
11596 	pr_info("Task dump for CPU %d:\n", cpu);
11597 	sched_show_task(cpu_curr(cpu));
11598 }
11599 
11600 /*
11601  * Nice levels are multiplicative, with a gentle 10% change for every
11602  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11603  * nice 1, it will get ~10% less CPU time than another CPU-bound task
11604  * that remained on nice 0.
11605  *
11606  * The "10% effect" is relative and cumulative: from _any_ nice level,
11607  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11608  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11609  * If a task goes up by ~10% and another task goes down by ~10% then
11610  * the relative distance between them is ~25%.)
11611  */
11612 const int sched_prio_to_weight[40] = {
11613  /* -20 */     88761,     71755,     56483,     46273,     36291,
11614  /* -15 */     29154,     23254,     18705,     14949,     11916,
11615  /* -10 */      9548,      7620,      6100,      4904,      3906,
11616  /*  -5 */      3121,      2501,      1991,      1586,      1277,
11617  /*   0 */      1024,       820,       655,       526,       423,
11618  /*   5 */       335,       272,       215,       172,       137,
11619  /*  10 */       110,        87,        70,        56,        45,
11620  /*  15 */        36,        29,        23,        18,        15,
11621 };
11622 
11623 /*
11624  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11625  *
11626  * In cases where the weight does not change often, we can use the
11627  * precalculated inverse to speed up arithmetics by turning divisions
11628  * into multiplications:
11629  */
11630 const u32 sched_prio_to_wmult[40] = {
11631  /* -20 */     48388,     59856,     76040,     92818,    118348,
11632  /* -15 */    147320,    184698,    229616,    287308,    360437,
11633  /* -10 */    449829,    563644,    704093,    875809,   1099582,
11634  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11635  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11636  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11637  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11638  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11639 };
11640 
11641 #ifdef CONFIG_SCHED_LATENCY_NICE
11642 /*
11643  * latency weight for wakeup preemption
11644  */
11645 const int sched_latency_to_weight[40] = {
11646  /* -20 */      1024,       973,       922,       870,       819,
11647  /* -15 */       768,       717,       666,       614,       563,
11648  /* -10 */       512,       461,       410,       358,       307,
11649  /*  -5 */       256,       205,       154,       102,       51,
11650  /*   0 */	   0,       -51,      -102,      -154,      -205,
11651  /*   5 */      -256,      -307,      -358,      -410,      -461,
11652  /*  10 */      -512,      -563,      -614,      -666,      -717,
11653  /*  15 */      -768,      -819,      -870,      -922,      -973,
11654 };
11655 #endif
11656 
call_trace_sched_update_nr_running(struct rq * rq,int count)11657 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11658 {
11659         trace_sched_update_nr_running_tp(rq, count);
11660 }
11661 
11662 #ifdef CONFIG_SCHED_MM_CID
11663 
11664 /*
11665  * @cid_lock: Guarantee forward-progress of cid allocation.
11666  *
11667  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
11668  * is only used when contention is detected by the lock-free allocation so
11669  * forward progress can be guaranteed.
11670  */
11671 DEFINE_RAW_SPINLOCK(cid_lock);
11672 
11673 /*
11674  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
11675  *
11676  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
11677  * detected, it is set to 1 to ensure that all newly coming allocations are
11678  * serialized by @cid_lock until the allocation which detected contention
11679  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
11680  * of a cid allocation.
11681  */
11682 int use_cid_lock;
11683 
11684 /*
11685  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
11686  * concurrently with respect to the execution of the source runqueue context
11687  * switch.
11688  *
11689  * There is one basic properties we want to guarantee here:
11690  *
11691  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
11692  * used by a task. That would lead to concurrent allocation of the cid and
11693  * userspace corruption.
11694  *
11695  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
11696  * that a pair of loads observe at least one of a pair of stores, which can be
11697  * shown as:
11698  *
11699  *      X = Y = 0
11700  *
11701  *      w[X]=1          w[Y]=1
11702  *      MB              MB
11703  *      r[Y]=y          r[X]=x
11704  *
11705  * Which guarantees that x==0 && y==0 is impossible. But rather than using
11706  * values 0 and 1, this algorithm cares about specific state transitions of the
11707  * runqueue current task (as updated by the scheduler context switch), and the
11708  * per-mm/cpu cid value.
11709  *
11710  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
11711  * task->mm != mm for the rest of the discussion. There are two scheduler state
11712  * transitions on context switch we care about:
11713  *
11714  * (TSA) Store to rq->curr with transition from (N) to (Y)
11715  *
11716  * (TSB) Store to rq->curr with transition from (Y) to (N)
11717  *
11718  * On the remote-clear side, there is one transition we care about:
11719  *
11720  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
11721  *
11722  * There is also a transition to UNSET state which can be performed from all
11723  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
11724  * guarantees that only a single thread will succeed:
11725  *
11726  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
11727  *
11728  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
11729  * when a thread is actively using the cid (property (1)).
11730  *
11731  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
11732  *
11733  * Scenario A) (TSA)+(TMA) (from next task perspective)
11734  *
11735  * CPU0                                      CPU1
11736  *
11737  * Context switch CS-1                       Remote-clear
11738  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
11739  *                                             (implied barrier after cmpxchg)
11740  *   - switch_mm_cid()
11741  *     - memory barrier (see switch_mm_cid()
11742  *       comment explaining how this barrier
11743  *       is combined with other scheduler
11744  *       barriers)
11745  *     - mm_cid_get (next)
11746  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
11747  *
11748  * This Dekker ensures that either task (Y) is observed by the
11749  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
11750  * observed.
11751  *
11752  * If task (Y) store is observed by rcu_dereference(), it means that there is
11753  * still an active task on the cpu. Remote-clear will therefore not transition
11754  * to UNSET, which fulfills property (1).
11755  *
11756  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
11757  * it will move its state to UNSET, which clears the percpu cid perhaps
11758  * uselessly (which is not an issue for correctness). Because task (Y) is not
11759  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
11760  * state to UNSET is done with a cmpxchg expecting that the old state has the
11761  * LAZY flag set, only one thread will successfully UNSET.
11762  *
11763  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
11764  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
11765  * CPU1 will observe task (Y) and do nothing more, which is fine.
11766  *
11767  * What we are effectively preventing with this Dekker is a scenario where
11768  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
11769  * because this would UNSET a cid which is actively used.
11770  */
11771 
sched_mm_cid_migrate_from(struct task_struct * t)11772 void sched_mm_cid_migrate_from(struct task_struct *t)
11773 {
11774 	t->migrate_from_cpu = task_cpu(t);
11775 }
11776 
11777 static
__sched_mm_cid_migrate_from_fetch_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid)11778 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
11779 					  struct task_struct *t,
11780 					  struct mm_cid *src_pcpu_cid)
11781 {
11782 	struct mm_struct *mm = t->mm;
11783 	struct task_struct *src_task;
11784 	int src_cid, last_mm_cid;
11785 
11786 	if (!mm)
11787 		return -1;
11788 
11789 	last_mm_cid = t->last_mm_cid;
11790 	/*
11791 	 * If the migrated task has no last cid, or if the current
11792 	 * task on src rq uses the cid, it means the source cid does not need
11793 	 * to be moved to the destination cpu.
11794 	 */
11795 	if (last_mm_cid == -1)
11796 		return -1;
11797 	src_cid = READ_ONCE(src_pcpu_cid->cid);
11798 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
11799 		return -1;
11800 
11801 	/*
11802 	 * If we observe an active task using the mm on this rq, it means we
11803 	 * are not the last task to be migrated from this cpu for this mm, so
11804 	 * there is no need to move src_cid to the destination cpu.
11805 	 */
11806 	rcu_read_lock();
11807 	src_task = rcu_dereference(src_rq->curr);
11808 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11809 		rcu_read_unlock();
11810 		t->last_mm_cid = -1;
11811 		return -1;
11812 	}
11813 	rcu_read_unlock();
11814 
11815 	return src_cid;
11816 }
11817 
11818 static
__sched_mm_cid_migrate_from_try_steal_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid,int src_cid)11819 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
11820 					      struct task_struct *t,
11821 					      struct mm_cid *src_pcpu_cid,
11822 					      int src_cid)
11823 {
11824 	struct task_struct *src_task;
11825 	struct mm_struct *mm = t->mm;
11826 	int lazy_cid;
11827 
11828 	if (src_cid == -1)
11829 		return -1;
11830 
11831 	/*
11832 	 * Attempt to clear the source cpu cid to move it to the destination
11833 	 * cpu.
11834 	 */
11835 	lazy_cid = mm_cid_set_lazy_put(src_cid);
11836 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
11837 		return -1;
11838 
11839 	/*
11840 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11841 	 * rq->curr->mm matches the scheduler barrier in context_switch()
11842 	 * between store to rq->curr and load of prev and next task's
11843 	 * per-mm/cpu cid.
11844 	 *
11845 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11846 	 * rq->curr->mm_cid_active matches the barrier in
11847 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11848 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11849 	 * load of per-mm/cpu cid.
11850 	 */
11851 
11852 	/*
11853 	 * If we observe an active task using the mm on this rq after setting
11854 	 * the lazy-put flag, this task will be responsible for transitioning
11855 	 * from lazy-put flag set to MM_CID_UNSET.
11856 	 */
11857 	rcu_read_lock();
11858 	src_task = rcu_dereference(src_rq->curr);
11859 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11860 		rcu_read_unlock();
11861 		/*
11862 		 * We observed an active task for this mm, there is therefore
11863 		 * no point in moving this cid to the destination cpu.
11864 		 */
11865 		t->last_mm_cid = -1;
11866 		return -1;
11867 	}
11868 	rcu_read_unlock();
11869 
11870 	/*
11871 	 * The src_cid is unused, so it can be unset.
11872 	 */
11873 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11874 		return -1;
11875 	return src_cid;
11876 }
11877 
11878 /*
11879  * Migration to dst cpu. Called with dst_rq lock held.
11880  * Interrupts are disabled, which keeps the window of cid ownership without the
11881  * source rq lock held small.
11882  */
sched_mm_cid_migrate_to(struct rq * dst_rq,struct task_struct * t)11883 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
11884 {
11885 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
11886 	struct mm_struct *mm = t->mm;
11887 	int src_cid, dst_cid, src_cpu;
11888 	struct rq *src_rq;
11889 
11890 	lockdep_assert_rq_held(dst_rq);
11891 
11892 	if (!mm)
11893 		return;
11894 	src_cpu = t->migrate_from_cpu;
11895 	if (src_cpu == -1) {
11896 		t->last_mm_cid = -1;
11897 		return;
11898 	}
11899 	/*
11900 	 * Move the src cid if the dst cid is unset. This keeps id
11901 	 * allocation closest to 0 in cases where few threads migrate around
11902 	 * many cpus.
11903 	 *
11904 	 * If destination cid is already set, we may have to just clear
11905 	 * the src cid to ensure compactness in frequent migrations
11906 	 * scenarios.
11907 	 *
11908 	 * It is not useful to clear the src cid when the number of threads is
11909 	 * greater or equal to the number of allowed cpus, because user-space
11910 	 * can expect that the number of allowed cids can reach the number of
11911 	 * allowed cpus.
11912 	 */
11913 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
11914 	dst_cid = READ_ONCE(dst_pcpu_cid->cid);
11915 	if (!mm_cid_is_unset(dst_cid) &&
11916 	    atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
11917 		return;
11918 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
11919 	src_rq = cpu_rq(src_cpu);
11920 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
11921 	if (src_cid == -1)
11922 		return;
11923 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
11924 							    src_cid);
11925 	if (src_cid == -1)
11926 		return;
11927 	if (!mm_cid_is_unset(dst_cid)) {
11928 		__mm_cid_put(mm, src_cid);
11929 		return;
11930 	}
11931 	/* Move src_cid to dst cpu. */
11932 	mm_cid_snapshot_time(dst_rq, mm);
11933 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
11934 }
11935 
sched_mm_cid_remote_clear(struct mm_struct * mm,struct mm_cid * pcpu_cid,int cpu)11936 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
11937 				      int cpu)
11938 {
11939 	struct rq *rq = cpu_rq(cpu);
11940 	struct task_struct *t;
11941 	unsigned long flags;
11942 	int cid, lazy_cid;
11943 
11944 	cid = READ_ONCE(pcpu_cid->cid);
11945 	if (!mm_cid_is_valid(cid))
11946 		return;
11947 
11948 	/*
11949 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
11950 	 * there happens to be other tasks left on the source cpu using this
11951 	 * mm, the next task using this mm will reallocate its cid on context
11952 	 * switch.
11953 	 */
11954 	lazy_cid = mm_cid_set_lazy_put(cid);
11955 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
11956 		return;
11957 
11958 	/*
11959 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11960 	 * rq->curr->mm matches the scheduler barrier in context_switch()
11961 	 * between store to rq->curr and load of prev and next task's
11962 	 * per-mm/cpu cid.
11963 	 *
11964 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11965 	 * rq->curr->mm_cid_active matches the barrier in
11966 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11967 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11968 	 * load of per-mm/cpu cid.
11969 	 */
11970 
11971 	/*
11972 	 * If we observe an active task using the mm on this rq after setting
11973 	 * the lazy-put flag, that task will be responsible for transitioning
11974 	 * from lazy-put flag set to MM_CID_UNSET.
11975 	 */
11976 	rcu_read_lock();
11977 	t = rcu_dereference(rq->curr);
11978 	if (READ_ONCE(t->mm_cid_active) && t->mm == mm) {
11979 		rcu_read_unlock();
11980 		return;
11981 	}
11982 	rcu_read_unlock();
11983 
11984 	/*
11985 	 * The cid is unused, so it can be unset.
11986 	 * Disable interrupts to keep the window of cid ownership without rq
11987 	 * lock small.
11988 	 */
11989 	local_irq_save(flags);
11990 	if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11991 		__mm_cid_put(mm, cid);
11992 	local_irq_restore(flags);
11993 }
11994 
sched_mm_cid_remote_clear_old(struct mm_struct * mm,int cpu)11995 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
11996 {
11997 	struct rq *rq = cpu_rq(cpu);
11998 	struct mm_cid *pcpu_cid;
11999 	struct task_struct *curr;
12000 	u64 rq_clock;
12001 
12002 	/*
12003 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
12004 	 * while is irrelevant.
12005 	 */
12006 	rq_clock = READ_ONCE(rq->clock);
12007 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
12008 
12009 	/*
12010 	 * In order to take care of infrequently scheduled tasks, bump the time
12011 	 * snapshot associated with this cid if an active task using the mm is
12012 	 * observed on this rq.
12013 	 */
12014 	rcu_read_lock();
12015 	curr = rcu_dereference(rq->curr);
12016 	if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
12017 		WRITE_ONCE(pcpu_cid->time, rq_clock);
12018 		rcu_read_unlock();
12019 		return;
12020 	}
12021 	rcu_read_unlock();
12022 
12023 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
12024 		return;
12025 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
12026 }
12027 
sched_mm_cid_remote_clear_weight(struct mm_struct * mm,int cpu,int weight)12028 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
12029 					     int weight)
12030 {
12031 	struct mm_cid *pcpu_cid;
12032 	int cid;
12033 
12034 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
12035 	cid = READ_ONCE(pcpu_cid->cid);
12036 	if (!mm_cid_is_valid(cid) || cid < weight)
12037 		return;
12038 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
12039 }
12040 
task_mm_cid_work(struct callback_head * work)12041 static void task_mm_cid_work(struct callback_head *work)
12042 {
12043 	unsigned long now = jiffies, old_scan, next_scan;
12044 	struct task_struct *t = current;
12045 	struct cpumask *cidmask;
12046 	struct mm_struct *mm;
12047 	int weight, cpu;
12048 
12049 	SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
12050 
12051 	work->next = work;	/* Prevent double-add */
12052 	if (t->flags & PF_EXITING)
12053 		return;
12054 	mm = t->mm;
12055 	if (!mm)
12056 		return;
12057 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
12058 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
12059 	if (!old_scan) {
12060 		unsigned long res;
12061 
12062 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
12063 		if (res != old_scan)
12064 			old_scan = res;
12065 		else
12066 			old_scan = next_scan;
12067 	}
12068 	if (time_before(now, old_scan))
12069 		return;
12070 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
12071 		return;
12072 	cidmask = mm_cidmask(mm);
12073 	/* Clear cids that were not recently used. */
12074 	for_each_possible_cpu(cpu)
12075 		sched_mm_cid_remote_clear_old(mm, cpu);
12076 	weight = cpumask_weight(cidmask);
12077 	/*
12078 	 * Clear cids that are greater or equal to the cidmask weight to
12079 	 * recompact it.
12080 	 */
12081 	for_each_possible_cpu(cpu)
12082 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
12083 }
12084 
init_sched_mm_cid(struct task_struct * t)12085 void init_sched_mm_cid(struct task_struct *t)
12086 {
12087 	struct mm_struct *mm = t->mm;
12088 	int mm_users = 0;
12089 
12090 	if (mm) {
12091 		mm_users = atomic_read(&mm->mm_users);
12092 		if (mm_users == 1)
12093 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
12094 	}
12095 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
12096 	init_task_work(&t->cid_work, task_mm_cid_work);
12097 }
12098 
task_tick_mm_cid(struct rq * rq,struct task_struct * curr)12099 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
12100 {
12101 	struct callback_head *work = &curr->cid_work;
12102 	unsigned long now = jiffies;
12103 
12104 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
12105 	    work->next != work)
12106 		return;
12107 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
12108 		return;
12109 	task_work_add(curr, work, TWA_RESUME);
12110 }
12111 
sched_mm_cid_exit_signals(struct task_struct * t)12112 void sched_mm_cid_exit_signals(struct task_struct *t)
12113 {
12114 	struct mm_struct *mm = t->mm;
12115 	struct rq_flags rf;
12116 	struct rq *rq;
12117 
12118 	if (!mm)
12119 		return;
12120 
12121 	preempt_disable();
12122 	rq = this_rq();
12123 	rq_lock_irqsave(rq, &rf);
12124 	preempt_enable_no_resched();	/* holding spinlock */
12125 	WRITE_ONCE(t->mm_cid_active, 0);
12126 	/*
12127 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
12128 	 * Matches barrier in sched_mm_cid_remote_clear_old().
12129 	 */
12130 	smp_mb();
12131 	mm_cid_put(mm);
12132 	t->last_mm_cid = t->mm_cid = -1;
12133 	rq_unlock_irqrestore(rq, &rf);
12134 }
12135 
sched_mm_cid_before_execve(struct task_struct * t)12136 void sched_mm_cid_before_execve(struct task_struct *t)
12137 {
12138 	struct mm_struct *mm = t->mm;
12139 	struct rq_flags rf;
12140 	struct rq *rq;
12141 
12142 	if (!mm)
12143 		return;
12144 
12145 	preempt_disable();
12146 	rq = this_rq();
12147 	rq_lock_irqsave(rq, &rf);
12148 	preempt_enable_no_resched();	/* holding spinlock */
12149 	WRITE_ONCE(t->mm_cid_active, 0);
12150 	/*
12151 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
12152 	 * Matches barrier in sched_mm_cid_remote_clear_old().
12153 	 */
12154 	smp_mb();
12155 	mm_cid_put(mm);
12156 	t->last_mm_cid = t->mm_cid = -1;
12157 	rq_unlock_irqrestore(rq, &rf);
12158 }
12159 
sched_mm_cid_after_execve(struct task_struct * t)12160 void sched_mm_cid_after_execve(struct task_struct *t)
12161 {
12162 	struct mm_struct *mm = t->mm;
12163 	struct rq_flags rf;
12164 	struct rq *rq;
12165 
12166 	if (!mm)
12167 		return;
12168 
12169 	preempt_disable();
12170 	rq = this_rq();
12171 	rq_lock_irqsave(rq, &rf);
12172 	preempt_enable_no_resched();	/* holding spinlock */
12173 	WRITE_ONCE(t->mm_cid_active, 1);
12174 	/*
12175 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
12176 	 * Matches barrier in sched_mm_cid_remote_clear_old().
12177 	 */
12178 	smp_mb();
12179 	t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
12180 	rq_unlock_irqrestore(rq, &rf);
12181 	rseq_set_notify_resume(t);
12182 }
12183 
sched_mm_cid_fork(struct task_struct * t)12184 void sched_mm_cid_fork(struct task_struct *t)
12185 {
12186 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
12187 	t->mm_cid_active = 1;
12188 }
12189 #endif
12190