1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 # include <linux/entry-common.h>
71 # endif
72 #endif
73
74 #include <uapi/linux/sched/types.h>
75
76 #include <asm/irq_regs.h>
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79
80 #define CREATE_TRACE_POINTS
81 #include <linux/sched/rseq_api.h>
82 #include <trace/events/sched.h>
83 #include <trace/events/ipi.h>
84 #undef CREATE_TRACE_POINTS
85
86 #include "sched.h"
87 #include "stats.h"
88 #include "autogroup.h"
89
90 #include "autogroup.h"
91 #include "pelt.h"
92 #include "smp.h"
93 #include "stats.h"
94
95 #include "../workqueue_internal.h"
96 #include "../../io_uring/io-wq.h"
97 #include "../smpboot.h"
98
99 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
101
102 /*
103 * Export tracepoints that act as a bare tracehook (ie: have no trace event
104 * associated with them) to allow external modules to probe them.
105 */
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
117
118 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
119
120 #ifdef CONFIG_SCHED_DEBUG
121 /*
122 * Debugging: various feature bits
123 *
124 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
125 * sysctl_sched_features, defined in sched.h, to allow constants propagation
126 * at compile time and compiler optimization based on features default.
127 */
128 #define SCHED_FEAT(name, enabled) \
129 (1UL << __SCHED_FEAT_##name) * enabled |
130 const_debug unsigned int sysctl_sched_features =
131 #include "features.h"
132 0;
133 #undef SCHED_FEAT
134
135 /*
136 * Print a warning if need_resched is set for the given duration (if
137 * LATENCY_WARN is enabled).
138 *
139 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
140 * per boot.
141 */
142 __read_mostly int sysctl_resched_latency_warn_ms = 100;
143 __read_mostly int sysctl_resched_latency_warn_once = 1;
144 #endif /* CONFIG_SCHED_DEBUG */
145
146 /*
147 * Number of tasks to iterate in a single balance run.
148 * Limited because this is done with IRQs disabled.
149 */
150 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
151
152 __read_mostly int scheduler_running;
153
154 #ifdef CONFIG_SCHED_CORE
155
156 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
157
158 /* kernel prio, less is more */
__task_prio(const struct task_struct * p)159 static inline int __task_prio(const struct task_struct *p)
160 {
161 if (p->sched_class == &stop_sched_class) /* trumps deadline */
162 return -2;
163
164 if (rt_prio(p->prio)) /* includes deadline */
165 return p->prio; /* [-1, 99] */
166
167 if (p->sched_class == &idle_sched_class)
168 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
169
170 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
171 }
172
173 /*
174 * l(a,b)
175 * le(a,b) := !l(b,a)
176 * g(a,b) := l(b,a)
177 * ge(a,b) := !l(a,b)
178 */
179
180 /* real prio, less is less */
prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)181 static inline bool prio_less(const struct task_struct *a,
182 const struct task_struct *b, bool in_fi)
183 {
184
185 int pa = __task_prio(a), pb = __task_prio(b);
186
187 if (-pa < -pb)
188 return true;
189
190 if (-pb < -pa)
191 return false;
192
193 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
194 return !dl_time_before(a->dl.deadline, b->dl.deadline);
195
196 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
197 return cfs_prio_less(a, b, in_fi);
198
199 return false;
200 }
201
__sched_core_less(const struct task_struct * a,const struct task_struct * b)202 static inline bool __sched_core_less(const struct task_struct *a,
203 const struct task_struct *b)
204 {
205 if (a->core_cookie < b->core_cookie)
206 return true;
207
208 if (a->core_cookie > b->core_cookie)
209 return false;
210
211 /* flip prio, so high prio is leftmost */
212 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
213 return true;
214
215 return false;
216 }
217
218 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
219
rb_sched_core_less(struct rb_node * a,const struct rb_node * b)220 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
221 {
222 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
223 }
224
rb_sched_core_cmp(const void * key,const struct rb_node * node)225 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
226 {
227 const struct task_struct *p = __node_2_sc(node);
228 unsigned long cookie = (unsigned long)key;
229
230 if (cookie < p->core_cookie)
231 return -1;
232
233 if (cookie > p->core_cookie)
234 return 1;
235
236 return 0;
237 }
238
sched_core_enqueue(struct rq * rq,struct task_struct * p)239 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
240 {
241 rq->core->core_task_seq++;
242
243 if (!p->core_cookie)
244 return;
245
246 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
247 }
248
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)249 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
250 {
251 rq->core->core_task_seq++;
252
253 if (sched_core_enqueued(p)) {
254 rb_erase(&p->core_node, &rq->core_tree);
255 RB_CLEAR_NODE(&p->core_node);
256 }
257
258 /*
259 * Migrating the last task off the cpu, with the cpu in forced idle
260 * state. Reschedule to create an accounting edge for forced idle,
261 * and re-examine whether the core is still in forced idle state.
262 */
263 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
264 rq->core->core_forceidle_count && rq->curr == rq->idle)
265 resched_curr(rq);
266 }
267
sched_task_is_throttled(struct task_struct * p,int cpu)268 static int sched_task_is_throttled(struct task_struct *p, int cpu)
269 {
270 if (p->sched_class->task_is_throttled)
271 return p->sched_class->task_is_throttled(p, cpu);
272
273 return 0;
274 }
275
sched_core_next(struct task_struct * p,unsigned long cookie)276 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
277 {
278 struct rb_node *node = &p->core_node;
279 int cpu = task_cpu(p);
280
281 do {
282 node = rb_next(node);
283 if (!node)
284 return NULL;
285
286 p = __node_2_sc(node);
287 if (p->core_cookie != cookie)
288 return NULL;
289
290 } while (sched_task_is_throttled(p, cpu));
291
292 return p;
293 }
294
295 /*
296 * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
297 * If no suitable task is found, NULL will be returned.
298 */
sched_core_find(struct rq * rq,unsigned long cookie)299 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
300 {
301 struct task_struct *p;
302 struct rb_node *node;
303
304 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
305 if (!node)
306 return NULL;
307
308 p = __node_2_sc(node);
309 if (!sched_task_is_throttled(p, rq->cpu))
310 return p;
311
312 return sched_core_next(p, cookie);
313 }
314
315 /*
316 * Magic required such that:
317 *
318 * raw_spin_rq_lock(rq);
319 * ...
320 * raw_spin_rq_unlock(rq);
321 *
322 * ends up locking and unlocking the _same_ lock, and all CPUs
323 * always agree on what rq has what lock.
324 *
325 * XXX entirely possible to selectively enable cores, don't bother for now.
326 */
327
328 static DEFINE_MUTEX(sched_core_mutex);
329 static atomic_t sched_core_count;
330 static struct cpumask sched_core_mask;
331
sched_core_lock(int cpu,unsigned long * flags)332 static void sched_core_lock(int cpu, unsigned long *flags)
333 {
334 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
335 int t, i = 0;
336
337 local_irq_save(*flags);
338 for_each_cpu(t, smt_mask)
339 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
340 }
341
sched_core_unlock(int cpu,unsigned long * flags)342 static void sched_core_unlock(int cpu, unsigned long *flags)
343 {
344 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
345 int t;
346
347 for_each_cpu(t, smt_mask)
348 raw_spin_unlock(&cpu_rq(t)->__lock);
349 local_irq_restore(*flags);
350 }
351
__sched_core_flip(bool enabled)352 static void __sched_core_flip(bool enabled)
353 {
354 unsigned long flags;
355 int cpu, t;
356
357 cpus_read_lock();
358
359 /*
360 * Toggle the online cores, one by one.
361 */
362 cpumask_copy(&sched_core_mask, cpu_online_mask);
363 for_each_cpu(cpu, &sched_core_mask) {
364 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
365
366 sched_core_lock(cpu, &flags);
367
368 for_each_cpu(t, smt_mask)
369 cpu_rq(t)->core_enabled = enabled;
370
371 cpu_rq(cpu)->core->core_forceidle_start = 0;
372
373 sched_core_unlock(cpu, &flags);
374
375 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
376 }
377
378 /*
379 * Toggle the offline CPUs.
380 */
381 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
382 cpu_rq(cpu)->core_enabled = enabled;
383
384 cpus_read_unlock();
385 }
386
sched_core_assert_empty(void)387 static void sched_core_assert_empty(void)
388 {
389 int cpu;
390
391 for_each_possible_cpu(cpu)
392 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
393 }
394
__sched_core_enable(void)395 static void __sched_core_enable(void)
396 {
397 static_branch_enable(&__sched_core_enabled);
398 /*
399 * Ensure all previous instances of raw_spin_rq_*lock() have finished
400 * and future ones will observe !sched_core_disabled().
401 */
402 synchronize_rcu();
403 __sched_core_flip(true);
404 sched_core_assert_empty();
405 }
406
__sched_core_disable(void)407 static void __sched_core_disable(void)
408 {
409 sched_core_assert_empty();
410 __sched_core_flip(false);
411 static_branch_disable(&__sched_core_enabled);
412 }
413
sched_core_get(void)414 void sched_core_get(void)
415 {
416 if (atomic_inc_not_zero(&sched_core_count))
417 return;
418
419 mutex_lock(&sched_core_mutex);
420 if (!atomic_read(&sched_core_count))
421 __sched_core_enable();
422
423 smp_mb__before_atomic();
424 atomic_inc(&sched_core_count);
425 mutex_unlock(&sched_core_mutex);
426 }
427
__sched_core_put(struct work_struct * work)428 static void __sched_core_put(struct work_struct *work)
429 {
430 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
431 __sched_core_disable();
432 mutex_unlock(&sched_core_mutex);
433 }
434 }
435
sched_core_put(void)436 void sched_core_put(void)
437 {
438 static DECLARE_WORK(_work, __sched_core_put);
439
440 /*
441 * "There can be only one"
442 *
443 * Either this is the last one, or we don't actually need to do any
444 * 'work'. If it is the last *again*, we rely on
445 * WORK_STRUCT_PENDING_BIT.
446 */
447 if (!atomic_add_unless(&sched_core_count, -1, 1))
448 schedule_work(&_work);
449 }
450
451 #else /* !CONFIG_SCHED_CORE */
452
sched_core_enqueue(struct rq * rq,struct task_struct * p)453 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
454 static inline void
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)455 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
456
457 #endif /* CONFIG_SCHED_CORE */
458
459 /*
460 * Serialization rules:
461 *
462 * Lock order:
463 *
464 * p->pi_lock
465 * rq->lock
466 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
467 *
468 * rq1->lock
469 * rq2->lock where: rq1 < rq2
470 *
471 * Regular state:
472 *
473 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
474 * local CPU's rq->lock, it optionally removes the task from the runqueue and
475 * always looks at the local rq data structures to find the most eligible task
476 * to run next.
477 *
478 * Task enqueue is also under rq->lock, possibly taken from another CPU.
479 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
480 * the local CPU to avoid bouncing the runqueue state around [ see
481 * ttwu_queue_wakelist() ]
482 *
483 * Task wakeup, specifically wakeups that involve migration, are horribly
484 * complicated to avoid having to take two rq->locks.
485 *
486 * Special state:
487 *
488 * System-calls and anything external will use task_rq_lock() which acquires
489 * both p->pi_lock and rq->lock. As a consequence the state they change is
490 * stable while holding either lock:
491 *
492 * - sched_setaffinity()/
493 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
494 * - set_user_nice(): p->se.load, p->*prio
495 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
496 * p->se.load, p->rt_priority,
497 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
498 * - sched_setnuma(): p->numa_preferred_nid
499 * - sched_move_task(): p->sched_task_group
500 * - uclamp_update_active() p->uclamp*
501 *
502 * p->state <- TASK_*:
503 *
504 * is changed locklessly using set_current_state(), __set_current_state() or
505 * set_special_state(), see their respective comments, or by
506 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
507 * concurrent self.
508 *
509 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
510 *
511 * is set by activate_task() and cleared by deactivate_task(), under
512 * rq->lock. Non-zero indicates the task is runnable, the special
513 * ON_RQ_MIGRATING state is used for migration without holding both
514 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
515 *
516 * p->on_cpu <- { 0, 1 }:
517 *
518 * is set by prepare_task() and cleared by finish_task() such that it will be
519 * set before p is scheduled-in and cleared after p is scheduled-out, both
520 * under rq->lock. Non-zero indicates the task is running on its CPU.
521 *
522 * [ The astute reader will observe that it is possible for two tasks on one
523 * CPU to have ->on_cpu = 1 at the same time. ]
524 *
525 * task_cpu(p): is changed by set_task_cpu(), the rules are:
526 *
527 * - Don't call set_task_cpu() on a blocked task:
528 *
529 * We don't care what CPU we're not running on, this simplifies hotplug,
530 * the CPU assignment of blocked tasks isn't required to be valid.
531 *
532 * - for try_to_wake_up(), called under p->pi_lock:
533 *
534 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
535 *
536 * - for migration called under rq->lock:
537 * [ see task_on_rq_migrating() in task_rq_lock() ]
538 *
539 * o move_queued_task()
540 * o detach_task()
541 *
542 * - for migration called under double_rq_lock():
543 *
544 * o __migrate_swap_task()
545 * o push_rt_task() / pull_rt_task()
546 * o push_dl_task() / pull_dl_task()
547 * o dl_task_offline_migration()
548 *
549 */
550
raw_spin_rq_lock_nested(struct rq * rq,int subclass)551 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
552 {
553 raw_spinlock_t *lock;
554
555 /* Matches synchronize_rcu() in __sched_core_enable() */
556 preempt_disable();
557 if (sched_core_disabled()) {
558 raw_spin_lock_nested(&rq->__lock, subclass);
559 /* preempt_count *MUST* be > 1 */
560 preempt_enable_no_resched();
561 return;
562 }
563
564 for (;;) {
565 lock = __rq_lockp(rq);
566 raw_spin_lock_nested(lock, subclass);
567 if (likely(lock == __rq_lockp(rq))) {
568 /* preempt_count *MUST* be > 1 */
569 preempt_enable_no_resched();
570 return;
571 }
572 raw_spin_unlock(lock);
573 }
574 }
575
raw_spin_rq_trylock(struct rq * rq)576 bool raw_spin_rq_trylock(struct rq *rq)
577 {
578 raw_spinlock_t *lock;
579 bool ret;
580
581 /* Matches synchronize_rcu() in __sched_core_enable() */
582 preempt_disable();
583 if (sched_core_disabled()) {
584 ret = raw_spin_trylock(&rq->__lock);
585 preempt_enable();
586 return ret;
587 }
588
589 for (;;) {
590 lock = __rq_lockp(rq);
591 ret = raw_spin_trylock(lock);
592 if (!ret || (likely(lock == __rq_lockp(rq)))) {
593 preempt_enable();
594 return ret;
595 }
596 raw_spin_unlock(lock);
597 }
598 }
599
raw_spin_rq_unlock(struct rq * rq)600 void raw_spin_rq_unlock(struct rq *rq)
601 {
602 raw_spin_unlock(rq_lockp(rq));
603 }
604
605 #ifdef CONFIG_SMP
606 /*
607 * double_rq_lock - safely lock two runqueues
608 */
double_rq_lock(struct rq * rq1,struct rq * rq2)609 void double_rq_lock(struct rq *rq1, struct rq *rq2)
610 {
611 lockdep_assert_irqs_disabled();
612
613 if (rq_order_less(rq2, rq1))
614 swap(rq1, rq2);
615
616 raw_spin_rq_lock(rq1);
617 if (__rq_lockp(rq1) != __rq_lockp(rq2))
618 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
619
620 double_rq_clock_clear_update(rq1, rq2);
621 }
622 #endif
623
624 /*
625 * __task_rq_lock - lock the rq @p resides on.
626 */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)627 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
628 __acquires(rq->lock)
629 {
630 struct rq *rq;
631
632 lockdep_assert_held(&p->pi_lock);
633
634 for (;;) {
635 rq = task_rq(p);
636 raw_spin_rq_lock(rq);
637 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
638 rq_pin_lock(rq, rf);
639 return rq;
640 }
641 raw_spin_rq_unlock(rq);
642
643 while (unlikely(task_on_rq_migrating(p)))
644 cpu_relax();
645 }
646 }
647
648 /*
649 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
650 */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)651 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
652 __acquires(p->pi_lock)
653 __acquires(rq->lock)
654 {
655 struct rq *rq;
656
657 for (;;) {
658 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
659 rq = task_rq(p);
660 raw_spin_rq_lock(rq);
661 /*
662 * move_queued_task() task_rq_lock()
663 *
664 * ACQUIRE (rq->lock)
665 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
666 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
667 * [S] ->cpu = new_cpu [L] task_rq()
668 * [L] ->on_rq
669 * RELEASE (rq->lock)
670 *
671 * If we observe the old CPU in task_rq_lock(), the acquire of
672 * the old rq->lock will fully serialize against the stores.
673 *
674 * If we observe the new CPU in task_rq_lock(), the address
675 * dependency headed by '[L] rq = task_rq()' and the acquire
676 * will pair with the WMB to ensure we then also see migrating.
677 */
678 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
679 rq_pin_lock(rq, rf);
680 return rq;
681 }
682 raw_spin_rq_unlock(rq);
683 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
684
685 while (unlikely(task_on_rq_migrating(p)))
686 cpu_relax();
687 }
688 }
689
690 /*
691 * RQ-clock updating methods:
692 */
693
update_rq_clock_task(struct rq * rq,s64 delta)694 static void update_rq_clock_task(struct rq *rq, s64 delta)
695 {
696 /*
697 * In theory, the compile should just see 0 here, and optimize out the call
698 * to sched_rt_avg_update. But I don't trust it...
699 */
700 s64 __maybe_unused steal = 0, irq_delta = 0;
701
702 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
703 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
704
705 /*
706 * Since irq_time is only updated on {soft,}irq_exit, we might run into
707 * this case when a previous update_rq_clock() happened inside a
708 * {soft,}irq region.
709 *
710 * When this happens, we stop ->clock_task and only update the
711 * prev_irq_time stamp to account for the part that fit, so that a next
712 * update will consume the rest. This ensures ->clock_task is
713 * monotonic.
714 *
715 * It does however cause some slight miss-attribution of {soft,}irq
716 * time, a more accurate solution would be to update the irq_time using
717 * the current rq->clock timestamp, except that would require using
718 * atomic ops.
719 */
720 if (irq_delta > delta)
721 irq_delta = delta;
722
723 rq->prev_irq_time += irq_delta;
724 delta -= irq_delta;
725 psi_account_irqtime(rq->curr, irq_delta);
726 delayacct_irq(rq->curr, irq_delta);
727 #endif
728 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
729 if (static_key_false((¶virt_steal_rq_enabled))) {
730 steal = paravirt_steal_clock(cpu_of(rq));
731 steal -= rq->prev_steal_time_rq;
732
733 if (unlikely(steal > delta))
734 steal = delta;
735
736 rq->prev_steal_time_rq += steal;
737 delta -= steal;
738 }
739 #endif
740
741 rq->clock_task += delta;
742
743 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
744 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
745 update_irq_load_avg(rq, irq_delta + steal);
746 #endif
747 update_rq_clock_pelt(rq, delta);
748 }
749
update_rq_clock(struct rq * rq)750 void update_rq_clock(struct rq *rq)
751 {
752 s64 delta;
753
754 lockdep_assert_rq_held(rq);
755
756 if (rq->clock_update_flags & RQCF_ACT_SKIP)
757 return;
758
759 #ifdef CONFIG_SCHED_DEBUG
760 if (sched_feat(WARN_DOUBLE_CLOCK))
761 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
762 rq->clock_update_flags |= RQCF_UPDATED;
763 #endif
764
765 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
766 if (delta < 0)
767 return;
768 rq->clock += delta;
769 update_rq_clock_task(rq, delta);
770 }
771
772 #ifdef CONFIG_SCHED_HRTICK
773 /*
774 * Use HR-timers to deliver accurate preemption points.
775 */
776
hrtick_clear(struct rq * rq)777 static void hrtick_clear(struct rq *rq)
778 {
779 if (hrtimer_active(&rq->hrtick_timer))
780 hrtimer_cancel(&rq->hrtick_timer);
781 }
782
783 /*
784 * High-resolution timer tick.
785 * Runs from hardirq context with interrupts disabled.
786 */
hrtick(struct hrtimer * timer)787 static enum hrtimer_restart hrtick(struct hrtimer *timer)
788 {
789 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
790 struct rq_flags rf;
791
792 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
793
794 rq_lock(rq, &rf);
795 update_rq_clock(rq);
796 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
797 rq_unlock(rq, &rf);
798
799 return HRTIMER_NORESTART;
800 }
801
802 #ifdef CONFIG_SMP
803
__hrtick_restart(struct rq * rq)804 static void __hrtick_restart(struct rq *rq)
805 {
806 struct hrtimer *timer = &rq->hrtick_timer;
807 ktime_t time = rq->hrtick_time;
808
809 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
810 }
811
812 /*
813 * called from hardirq (IPI) context
814 */
__hrtick_start(void * arg)815 static void __hrtick_start(void *arg)
816 {
817 struct rq *rq = arg;
818 struct rq_flags rf;
819
820 rq_lock(rq, &rf);
821 __hrtick_restart(rq);
822 rq_unlock(rq, &rf);
823 }
824
825 /*
826 * Called to set the hrtick timer state.
827 *
828 * called with rq->lock held and irqs disabled
829 */
hrtick_start(struct rq * rq,u64 delay)830 void hrtick_start(struct rq *rq, u64 delay)
831 {
832 struct hrtimer *timer = &rq->hrtick_timer;
833 s64 delta;
834
835 /*
836 * Don't schedule slices shorter than 10000ns, that just
837 * doesn't make sense and can cause timer DoS.
838 */
839 delta = max_t(s64, delay, 10000LL);
840 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
841
842 if (rq == this_rq())
843 __hrtick_restart(rq);
844 else
845 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
846 }
847
848 #else
849 /*
850 * Called to set the hrtick timer state.
851 *
852 * called with rq->lock held and irqs disabled
853 */
hrtick_start(struct rq * rq,u64 delay)854 void hrtick_start(struct rq *rq, u64 delay)
855 {
856 /*
857 * Don't schedule slices shorter than 10000ns, that just
858 * doesn't make sense. Rely on vruntime for fairness.
859 */
860 delay = max_t(u64, delay, 10000LL);
861 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
862 HRTIMER_MODE_REL_PINNED_HARD);
863 }
864
865 #endif /* CONFIG_SMP */
866
hrtick_rq_init(struct rq * rq)867 static void hrtick_rq_init(struct rq *rq)
868 {
869 #ifdef CONFIG_SMP
870 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
871 #endif
872 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
873 rq->hrtick_timer.function = hrtick;
874 }
875 #else /* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)876 static inline void hrtick_clear(struct rq *rq)
877 {
878 }
879
hrtick_rq_init(struct rq * rq)880 static inline void hrtick_rq_init(struct rq *rq)
881 {
882 }
883 #endif /* CONFIG_SCHED_HRTICK */
884
885 /*
886 * cmpxchg based fetch_or, macro so it works for different integer types
887 */
888 #define fetch_or(ptr, mask) \
889 ({ \
890 typeof(ptr) _ptr = (ptr); \
891 typeof(mask) _mask = (mask); \
892 typeof(*_ptr) _val = *_ptr; \
893 \
894 do { \
895 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \
896 _val; \
897 })
898
899 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
900 /*
901 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
902 * this avoids any races wrt polling state changes and thereby avoids
903 * spurious IPIs.
904 */
set_nr_and_not_polling(struct task_struct * p)905 static inline bool set_nr_and_not_polling(struct task_struct *p)
906 {
907 struct thread_info *ti = task_thread_info(p);
908 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
909 }
910
911 /*
912 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
913 *
914 * If this returns true, then the idle task promises to call
915 * sched_ttwu_pending() and reschedule soon.
916 */
set_nr_if_polling(struct task_struct * p)917 static bool set_nr_if_polling(struct task_struct *p)
918 {
919 struct thread_info *ti = task_thread_info(p);
920 typeof(ti->flags) val = READ_ONCE(ti->flags);
921
922 for (;;) {
923 if (!(val & _TIF_POLLING_NRFLAG))
924 return false;
925 if (val & _TIF_NEED_RESCHED)
926 return true;
927 if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
928 break;
929 }
930 return true;
931 }
932
933 #else
set_nr_and_not_polling(struct task_struct * p)934 static inline bool set_nr_and_not_polling(struct task_struct *p)
935 {
936 set_tsk_need_resched(p);
937 return true;
938 }
939
940 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)941 static inline bool set_nr_if_polling(struct task_struct *p)
942 {
943 return false;
944 }
945 #endif
946 #endif
947
__wake_q_add(struct wake_q_head * head,struct task_struct * task)948 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
949 {
950 struct wake_q_node *node = &task->wake_q;
951
952 /*
953 * Atomically grab the task, if ->wake_q is !nil already it means
954 * it's already queued (either by us or someone else) and will get the
955 * wakeup due to that.
956 *
957 * In order to ensure that a pending wakeup will observe our pending
958 * state, even in the failed case, an explicit smp_mb() must be used.
959 */
960 smp_mb__before_atomic();
961 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
962 return false;
963
964 /*
965 * The head is context local, there can be no concurrency.
966 */
967 *head->lastp = node;
968 head->lastp = &node->next;
969 return true;
970 }
971
972 /**
973 * wake_q_add() - queue a wakeup for 'later' waking.
974 * @head: the wake_q_head to add @task to
975 * @task: the task to queue for 'later' wakeup
976 *
977 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
978 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
979 * instantly.
980 *
981 * This function must be used as-if it were wake_up_process(); IOW the task
982 * must be ready to be woken at this location.
983 */
wake_q_add(struct wake_q_head * head,struct task_struct * task)984 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
985 {
986 if (__wake_q_add(head, task))
987 get_task_struct(task);
988 }
989
990 /**
991 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
992 * @head: the wake_q_head to add @task to
993 * @task: the task to queue for 'later' wakeup
994 *
995 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
996 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
997 * instantly.
998 *
999 * This function must be used as-if it were wake_up_process(); IOW the task
1000 * must be ready to be woken at this location.
1001 *
1002 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1003 * that already hold reference to @task can call the 'safe' version and trust
1004 * wake_q to do the right thing depending whether or not the @task is already
1005 * queued for wakeup.
1006 */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)1007 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1008 {
1009 if (!__wake_q_add(head, task))
1010 put_task_struct(task);
1011 }
1012
wake_up_q(struct wake_q_head * head)1013 void wake_up_q(struct wake_q_head *head)
1014 {
1015 struct wake_q_node *node = head->first;
1016
1017 while (node != WAKE_Q_TAIL) {
1018 struct task_struct *task;
1019
1020 task = container_of(node, struct task_struct, wake_q);
1021 /* Task can safely be re-inserted now: */
1022 node = node->next;
1023 task->wake_q.next = NULL;
1024
1025 /*
1026 * wake_up_process() executes a full barrier, which pairs with
1027 * the queueing in wake_q_add() so as not to miss wakeups.
1028 */
1029 wake_up_process(task);
1030 put_task_struct(task);
1031 }
1032 }
1033
1034 /*
1035 * resched_curr - mark rq's current task 'to be rescheduled now'.
1036 *
1037 * On UP this means the setting of the need_resched flag, on SMP it
1038 * might also involve a cross-CPU call to trigger the scheduler on
1039 * the target CPU.
1040 */
resched_curr(struct rq * rq)1041 void resched_curr(struct rq *rq)
1042 {
1043 struct task_struct *curr = rq->curr;
1044 int cpu;
1045
1046 lockdep_assert_rq_held(rq);
1047
1048 if (test_tsk_need_resched(curr))
1049 return;
1050
1051 cpu = cpu_of(rq);
1052
1053 if (cpu == smp_processor_id()) {
1054 set_tsk_need_resched(curr);
1055 set_preempt_need_resched();
1056 return;
1057 }
1058
1059 if (set_nr_and_not_polling(curr))
1060 smp_send_reschedule(cpu);
1061 else
1062 trace_sched_wake_idle_without_ipi(cpu);
1063 }
1064
resched_cpu(int cpu)1065 void resched_cpu(int cpu)
1066 {
1067 struct rq *rq = cpu_rq(cpu);
1068 unsigned long flags;
1069
1070 raw_spin_rq_lock_irqsave(rq, flags);
1071 if (cpu_online(cpu) || cpu == smp_processor_id())
1072 resched_curr(rq);
1073 raw_spin_rq_unlock_irqrestore(rq, flags);
1074 }
1075
1076 #ifdef CONFIG_SMP
1077 #ifdef CONFIG_NO_HZ_COMMON
1078 /*
1079 * In the semi idle case, use the nearest busy CPU for migrating timers
1080 * from an idle CPU. This is good for power-savings.
1081 *
1082 * We don't do similar optimization for completely idle system, as
1083 * selecting an idle CPU will add more delays to the timers than intended
1084 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1085 */
get_nohz_timer_target(void)1086 int get_nohz_timer_target(void)
1087 {
1088 int i, cpu = smp_processor_id(), default_cpu = -1;
1089 struct sched_domain *sd;
1090 const struct cpumask *hk_mask;
1091
1092 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1093 if (!idle_cpu(cpu))
1094 return cpu;
1095 default_cpu = cpu;
1096 }
1097
1098 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1099
1100 guard(rcu)();
1101
1102 for_each_domain(cpu, sd) {
1103 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1104 if (cpu == i)
1105 continue;
1106
1107 if (!idle_cpu(i))
1108 return i;
1109 }
1110 }
1111
1112 if (default_cpu == -1)
1113 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1114
1115 return default_cpu;
1116 }
1117
1118 /*
1119 * When add_timer_on() enqueues a timer into the timer wheel of an
1120 * idle CPU then this timer might expire before the next timer event
1121 * which is scheduled to wake up that CPU. In case of a completely
1122 * idle system the next event might even be infinite time into the
1123 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1124 * leaves the inner idle loop so the newly added timer is taken into
1125 * account when the CPU goes back to idle and evaluates the timer
1126 * wheel for the next timer event.
1127 */
wake_up_idle_cpu(int cpu)1128 static void wake_up_idle_cpu(int cpu)
1129 {
1130 struct rq *rq = cpu_rq(cpu);
1131
1132 if (cpu == smp_processor_id())
1133 return;
1134
1135 if (set_nr_and_not_polling(rq->idle))
1136 smp_send_reschedule(cpu);
1137 else
1138 trace_sched_wake_idle_without_ipi(cpu);
1139 }
1140
wake_up_full_nohz_cpu(int cpu)1141 static bool wake_up_full_nohz_cpu(int cpu)
1142 {
1143 /*
1144 * We just need the target to call irq_exit() and re-evaluate
1145 * the next tick. The nohz full kick at least implies that.
1146 * If needed we can still optimize that later with an
1147 * empty IRQ.
1148 */
1149 if (cpu_is_offline(cpu))
1150 return true; /* Don't try to wake offline CPUs. */
1151 if (tick_nohz_full_cpu(cpu)) {
1152 if (cpu != smp_processor_id() ||
1153 tick_nohz_tick_stopped())
1154 tick_nohz_full_kick_cpu(cpu);
1155 return true;
1156 }
1157
1158 return false;
1159 }
1160
1161 /*
1162 * Wake up the specified CPU. If the CPU is going offline, it is the
1163 * caller's responsibility to deal with the lost wakeup, for example,
1164 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1165 */
wake_up_nohz_cpu(int cpu)1166 void wake_up_nohz_cpu(int cpu)
1167 {
1168 if (!wake_up_full_nohz_cpu(cpu))
1169 wake_up_idle_cpu(cpu);
1170 }
1171
nohz_csd_func(void * info)1172 static void nohz_csd_func(void *info)
1173 {
1174 struct rq *rq = info;
1175 int cpu = cpu_of(rq);
1176 unsigned int flags;
1177
1178 /*
1179 * Release the rq::nohz_csd.
1180 */
1181 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1182 WARN_ON(!(flags & NOHZ_KICK_MASK));
1183
1184 rq->idle_balance = idle_cpu(cpu);
1185 if (rq->idle_balance && !need_resched()) {
1186 rq->nohz_idle_balance = flags;
1187 raise_softirq_irqoff(SCHED_SOFTIRQ);
1188 }
1189 }
1190
1191 #endif /* CONFIG_NO_HZ_COMMON */
1192
1193 #ifdef CONFIG_NO_HZ_FULL
__need_bw_check(struct rq * rq,struct task_struct * p)1194 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1195 {
1196 if (rq->nr_running != 1)
1197 return false;
1198
1199 if (p->sched_class != &fair_sched_class)
1200 return false;
1201
1202 if (!task_on_rq_queued(p))
1203 return false;
1204
1205 return true;
1206 }
1207
sched_can_stop_tick(struct rq * rq)1208 bool sched_can_stop_tick(struct rq *rq)
1209 {
1210 int fifo_nr_running;
1211
1212 /* Deadline tasks, even if single, need the tick */
1213 if (rq->dl.dl_nr_running)
1214 return false;
1215
1216 /*
1217 * If there are more than one RR tasks, we need the tick to affect the
1218 * actual RR behaviour.
1219 */
1220 if (rq->rt.rr_nr_running) {
1221 if (rq->rt.rr_nr_running == 1)
1222 return true;
1223 else
1224 return false;
1225 }
1226
1227 /*
1228 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1229 * forced preemption between FIFO tasks.
1230 */
1231 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1232 if (fifo_nr_running)
1233 return true;
1234
1235 /*
1236 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1237 * if there's more than one we need the tick for involuntary
1238 * preemption.
1239 */
1240 if (rq->nr_running > 1)
1241 return false;
1242
1243 /*
1244 * If there is one task and it has CFS runtime bandwidth constraints
1245 * and it's on the cpu now we don't want to stop the tick.
1246 * This check prevents clearing the bit if a newly enqueued task here is
1247 * dequeued by migrating while the constrained task continues to run.
1248 * E.g. going from 2->1 without going through pick_next_task().
1249 */
1250 if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) {
1251 if (cfs_task_bw_constrained(rq->curr))
1252 return false;
1253 }
1254
1255 return true;
1256 }
1257 #endif /* CONFIG_NO_HZ_FULL */
1258 #endif /* CONFIG_SMP */
1259
1260 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1261 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1262 /*
1263 * Iterate task_group tree rooted at *from, calling @down when first entering a
1264 * node and @up when leaving it for the final time.
1265 *
1266 * Caller must hold rcu_lock or sufficient equivalent.
1267 */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)1268 int walk_tg_tree_from(struct task_group *from,
1269 tg_visitor down, tg_visitor up, void *data)
1270 {
1271 struct task_group *parent, *child;
1272 int ret;
1273
1274 parent = from;
1275
1276 down:
1277 ret = (*down)(parent, data);
1278 if (ret)
1279 goto out;
1280 list_for_each_entry_rcu(child, &parent->children, siblings) {
1281 parent = child;
1282 goto down;
1283
1284 up:
1285 continue;
1286 }
1287 ret = (*up)(parent, data);
1288 if (ret || parent == from)
1289 goto out;
1290
1291 child = parent;
1292 parent = parent->parent;
1293 if (parent)
1294 goto up;
1295 out:
1296 return ret;
1297 }
1298
tg_nop(struct task_group * tg,void * data)1299 int tg_nop(struct task_group *tg, void *data)
1300 {
1301 return 0;
1302 }
1303 #endif
1304
set_load_weight(struct task_struct * p,bool update_load)1305 static void set_load_weight(struct task_struct *p, bool update_load)
1306 {
1307 int prio = p->static_prio - MAX_RT_PRIO;
1308 struct load_weight *load = &p->se.load;
1309
1310 /*
1311 * SCHED_IDLE tasks get minimal weight:
1312 */
1313 if (task_has_idle_policy(p)) {
1314 load->weight = scale_load(WEIGHT_IDLEPRIO);
1315 load->inv_weight = WMULT_IDLEPRIO;
1316 return;
1317 }
1318
1319 /*
1320 * SCHED_OTHER tasks have to update their load when changing their
1321 * weight
1322 */
1323 if (update_load && p->sched_class == &fair_sched_class) {
1324 reweight_task(p, prio);
1325 } else {
1326 load->weight = scale_load(sched_prio_to_weight[prio]);
1327 load->inv_weight = sched_prio_to_wmult[prio];
1328 }
1329 }
1330
1331 #ifdef CONFIG_SCHED_LATENCY_NICE
set_latency_weight(struct task_struct * p)1332 static void set_latency_weight(struct task_struct *p)
1333 {
1334 p->se.latency_weight = sched_latency_to_weight[p->latency_prio];
1335 }
1336
__setscheduler_latency(struct task_struct * p,const struct sched_attr * attr)1337 static void __setscheduler_latency(struct task_struct *p,
1338 const struct sched_attr *attr)
1339 {
1340 if (attr->sched_flags & SCHED_FLAG_LATENCY_NICE) {
1341 p->latency_prio = NICE_TO_LATENCY(attr->sched_latency_nice);
1342 set_latency_weight(p);
1343 }
1344 }
1345
latency_nice_validate(struct task_struct * p,bool user,const struct sched_attr * attr)1346 static int latency_nice_validate(struct task_struct *p, bool user,
1347 const struct sched_attr *attr)
1348 {
1349 if (attr->sched_latency_nice > MAX_LATENCY_NICE)
1350 return -EINVAL;
1351 if (attr->sched_latency_nice < MIN_LATENCY_NICE)
1352 return -EINVAL;
1353 /* Use the same security checks as NICE */
1354 if (user && attr->sched_latency_nice < LATENCY_TO_NICE(p->latency_prio)
1355 && !capable(CAP_SYS_NICE))
1356 return -EPERM;
1357
1358 return 0;
1359 }
1360 #else
1361 static void
__setscheduler_latency(struct task_struct * p,const struct sched_attr * attr)1362 __setscheduler_latency(struct task_struct *p, const struct sched_attr *attr)
1363 {
1364 }
1365
1366 static inline
latency_nice_validate(struct task_struct * p,bool user,const struct sched_attr * attr)1367 int latency_nice_validate(struct task_struct *p, bool user,
1368 const struct sched_attr *attr)
1369 {
1370 return -EOPNOTSUPP;
1371 }
1372 #endif
1373
1374 #ifdef CONFIG_UCLAMP_TASK
1375 /*
1376 * Serializes updates of utilization clamp values
1377 *
1378 * The (slow-path) user-space triggers utilization clamp value updates which
1379 * can require updates on (fast-path) scheduler's data structures used to
1380 * support enqueue/dequeue operations.
1381 * While the per-CPU rq lock protects fast-path update operations, user-space
1382 * requests are serialized using a mutex to reduce the risk of conflicting
1383 * updates or API abuses.
1384 */
1385 static DEFINE_MUTEX(uclamp_mutex);
1386
1387 /* Max allowed minimum utilization */
1388 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1389
1390 /* Max allowed maximum utilization */
1391 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1392
1393 /*
1394 * By default RT tasks run at the maximum performance point/capacity of the
1395 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1396 * SCHED_CAPACITY_SCALE.
1397 *
1398 * This knob allows admins to change the default behavior when uclamp is being
1399 * used. In battery powered devices, particularly, running at the maximum
1400 * capacity and frequency will increase energy consumption and shorten the
1401 * battery life.
1402 *
1403 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1404 *
1405 * This knob will not override the system default sched_util_clamp_min defined
1406 * above.
1407 */
1408 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1409
1410 /* All clamps are required to be less or equal than these values */
1411 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1412
1413 /*
1414 * This static key is used to reduce the uclamp overhead in the fast path. It
1415 * primarily disables the call to uclamp_rq_{inc, dec}() in
1416 * enqueue/dequeue_task().
1417 *
1418 * This allows users to continue to enable uclamp in their kernel config with
1419 * minimum uclamp overhead in the fast path.
1420 *
1421 * As soon as userspace modifies any of the uclamp knobs, the static key is
1422 * enabled, since we have an actual users that make use of uclamp
1423 * functionality.
1424 *
1425 * The knobs that would enable this static key are:
1426 *
1427 * * A task modifying its uclamp value with sched_setattr().
1428 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1429 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1430 */
1431 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1432
1433 /* Integer rounded range for each bucket */
1434 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1435
1436 #define for_each_clamp_id(clamp_id) \
1437 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1438
uclamp_bucket_id(unsigned int clamp_value)1439 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1440 {
1441 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1442 }
1443
uclamp_none(enum uclamp_id clamp_id)1444 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1445 {
1446 if (clamp_id == UCLAMP_MIN)
1447 return 0;
1448 return SCHED_CAPACITY_SCALE;
1449 }
1450
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)1451 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1452 unsigned int value, bool user_defined)
1453 {
1454 uc_se->value = value;
1455 uc_se->bucket_id = uclamp_bucket_id(value);
1456 uc_se->user_defined = user_defined;
1457 }
1458
1459 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1460 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1461 unsigned int clamp_value)
1462 {
1463 /*
1464 * Avoid blocked utilization pushing up the frequency when we go
1465 * idle (which drops the max-clamp) by retaining the last known
1466 * max-clamp.
1467 */
1468 if (clamp_id == UCLAMP_MAX) {
1469 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1470 return clamp_value;
1471 }
1472
1473 return uclamp_none(UCLAMP_MIN);
1474 }
1475
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1476 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1477 unsigned int clamp_value)
1478 {
1479 /* Reset max-clamp retention only on idle exit */
1480 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1481 return;
1482
1483 uclamp_rq_set(rq, clamp_id, clamp_value);
1484 }
1485
1486 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1487 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1488 unsigned int clamp_value)
1489 {
1490 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1491 int bucket_id = UCLAMP_BUCKETS - 1;
1492
1493 /*
1494 * Since both min and max clamps are max aggregated, find the
1495 * top most bucket with tasks in.
1496 */
1497 for ( ; bucket_id >= 0; bucket_id--) {
1498 if (!bucket[bucket_id].tasks)
1499 continue;
1500 return bucket[bucket_id].value;
1501 }
1502
1503 /* No tasks -- default clamp values */
1504 return uclamp_idle_value(rq, clamp_id, clamp_value);
1505 }
1506
__uclamp_update_util_min_rt_default(struct task_struct * p)1507 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1508 {
1509 unsigned int default_util_min;
1510 struct uclamp_se *uc_se;
1511
1512 lockdep_assert_held(&p->pi_lock);
1513
1514 uc_se = &p->uclamp_req[UCLAMP_MIN];
1515
1516 /* Only sync if user didn't override the default */
1517 if (uc_se->user_defined)
1518 return;
1519
1520 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1521 uclamp_se_set(uc_se, default_util_min, false);
1522 }
1523
uclamp_update_util_min_rt_default(struct task_struct * p)1524 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1525 {
1526 struct rq_flags rf;
1527 struct rq *rq;
1528
1529 if (!rt_task(p))
1530 return;
1531
1532 /* Protect updates to p->uclamp_* */
1533 rq = task_rq_lock(p, &rf);
1534 __uclamp_update_util_min_rt_default(p);
1535 task_rq_unlock(rq, p, &rf);
1536 }
1537
1538 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)1539 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1540 {
1541 /* Copy by value as we could modify it */
1542 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1543 #ifdef CONFIG_UCLAMP_TASK_GROUP
1544 unsigned int tg_min, tg_max, value;
1545
1546 /*
1547 * Tasks in autogroups or root task group will be
1548 * restricted by system defaults.
1549 */
1550 if (task_group_is_autogroup(task_group(p)))
1551 return uc_req;
1552 if (task_group(p) == &root_task_group)
1553 return uc_req;
1554
1555 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1556 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1557 value = uc_req.value;
1558 value = clamp(value, tg_min, tg_max);
1559 uclamp_se_set(&uc_req, value, false);
1560 #endif
1561
1562 return uc_req;
1563 }
1564
1565 /*
1566 * The effective clamp bucket index of a task depends on, by increasing
1567 * priority:
1568 * - the task specific clamp value, when explicitly requested from userspace
1569 * - the task group effective clamp value, for tasks not either in the root
1570 * group or in an autogroup
1571 * - the system default clamp value, defined by the sysadmin
1572 */
1573 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)1574 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1575 {
1576 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1577 struct uclamp_se uc_max = uclamp_default[clamp_id];
1578
1579 /* System default restrictions always apply */
1580 if (unlikely(uc_req.value > uc_max.value))
1581 return uc_max;
1582
1583 return uc_req;
1584 }
1585
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)1586 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1587 {
1588 struct uclamp_se uc_eff;
1589
1590 /* Task currently refcounted: use back-annotated (effective) value */
1591 if (p->uclamp[clamp_id].active)
1592 return (unsigned long)p->uclamp[clamp_id].value;
1593
1594 uc_eff = uclamp_eff_get(p, clamp_id);
1595
1596 return (unsigned long)uc_eff.value;
1597 }
1598
1599 /*
1600 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1601 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1602 * updates the rq's clamp value if required.
1603 *
1604 * Tasks can have a task-specific value requested from user-space, track
1605 * within each bucket the maximum value for tasks refcounted in it.
1606 * This "local max aggregation" allows to track the exact "requested" value
1607 * for each bucket when all its RUNNABLE tasks require the same clamp.
1608 */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1609 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1610 enum uclamp_id clamp_id)
1611 {
1612 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1613 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1614 struct uclamp_bucket *bucket;
1615
1616 lockdep_assert_rq_held(rq);
1617
1618 /* Update task effective clamp */
1619 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1620
1621 bucket = &uc_rq->bucket[uc_se->bucket_id];
1622 bucket->tasks++;
1623 uc_se->active = true;
1624
1625 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1626
1627 /*
1628 * Local max aggregation: rq buckets always track the max
1629 * "requested" clamp value of its RUNNABLE tasks.
1630 */
1631 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1632 bucket->value = uc_se->value;
1633
1634 if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1635 uclamp_rq_set(rq, clamp_id, uc_se->value);
1636 }
1637
1638 /*
1639 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1640 * is released. If this is the last task reference counting the rq's max
1641 * active clamp value, then the rq's clamp value is updated.
1642 *
1643 * Both refcounted tasks and rq's cached clamp values are expected to be
1644 * always valid. If it's detected they are not, as defensive programming,
1645 * enforce the expected state and warn.
1646 */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1647 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1648 enum uclamp_id clamp_id)
1649 {
1650 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1651 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1652 struct uclamp_bucket *bucket;
1653 unsigned int bkt_clamp;
1654 unsigned int rq_clamp;
1655
1656 lockdep_assert_rq_held(rq);
1657
1658 /*
1659 * If sched_uclamp_used was enabled after task @p was enqueued,
1660 * we could end up with unbalanced call to uclamp_rq_dec_id().
1661 *
1662 * In this case the uc_se->active flag should be false since no uclamp
1663 * accounting was performed at enqueue time and we can just return
1664 * here.
1665 *
1666 * Need to be careful of the following enqueue/dequeue ordering
1667 * problem too
1668 *
1669 * enqueue(taskA)
1670 * // sched_uclamp_used gets enabled
1671 * enqueue(taskB)
1672 * dequeue(taskA)
1673 * // Must not decrement bucket->tasks here
1674 * dequeue(taskB)
1675 *
1676 * where we could end up with stale data in uc_se and
1677 * bucket[uc_se->bucket_id].
1678 *
1679 * The following check here eliminates the possibility of such race.
1680 */
1681 if (unlikely(!uc_se->active))
1682 return;
1683
1684 bucket = &uc_rq->bucket[uc_se->bucket_id];
1685
1686 SCHED_WARN_ON(!bucket->tasks);
1687 if (likely(bucket->tasks))
1688 bucket->tasks--;
1689
1690 uc_se->active = false;
1691
1692 /*
1693 * Keep "local max aggregation" simple and accept to (possibly)
1694 * overboost some RUNNABLE tasks in the same bucket.
1695 * The rq clamp bucket value is reset to its base value whenever
1696 * there are no more RUNNABLE tasks refcounting it.
1697 */
1698 if (likely(bucket->tasks))
1699 return;
1700
1701 rq_clamp = uclamp_rq_get(rq, clamp_id);
1702 /*
1703 * Defensive programming: this should never happen. If it happens,
1704 * e.g. due to future modification, warn and fixup the expected value.
1705 */
1706 SCHED_WARN_ON(bucket->value > rq_clamp);
1707 if (bucket->value >= rq_clamp) {
1708 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1709 uclamp_rq_set(rq, clamp_id, bkt_clamp);
1710 }
1711 }
1712
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1713 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1714 {
1715 enum uclamp_id clamp_id;
1716
1717 /*
1718 * Avoid any overhead until uclamp is actually used by the userspace.
1719 *
1720 * The condition is constructed such that a NOP is generated when
1721 * sched_uclamp_used is disabled.
1722 */
1723 if (!static_branch_unlikely(&sched_uclamp_used))
1724 return;
1725
1726 if (unlikely(!p->sched_class->uclamp_enabled))
1727 return;
1728
1729 for_each_clamp_id(clamp_id)
1730 uclamp_rq_inc_id(rq, p, clamp_id);
1731
1732 /* Reset clamp idle holding when there is one RUNNABLE task */
1733 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1734 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1735 }
1736
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1737 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1738 {
1739 enum uclamp_id clamp_id;
1740
1741 /*
1742 * Avoid any overhead until uclamp is actually used by the userspace.
1743 *
1744 * The condition is constructed such that a NOP is generated when
1745 * sched_uclamp_used is disabled.
1746 */
1747 if (!static_branch_unlikely(&sched_uclamp_used))
1748 return;
1749
1750 if (unlikely(!p->sched_class->uclamp_enabled))
1751 return;
1752
1753 for_each_clamp_id(clamp_id)
1754 uclamp_rq_dec_id(rq, p, clamp_id);
1755 }
1756
uclamp_rq_reinc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1757 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1758 enum uclamp_id clamp_id)
1759 {
1760 if (!p->uclamp[clamp_id].active)
1761 return;
1762
1763 uclamp_rq_dec_id(rq, p, clamp_id);
1764 uclamp_rq_inc_id(rq, p, clamp_id);
1765
1766 /*
1767 * Make sure to clear the idle flag if we've transiently reached 0
1768 * active tasks on rq.
1769 */
1770 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1771 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1772 }
1773
1774 static inline void
uclamp_update_active(struct task_struct * p)1775 uclamp_update_active(struct task_struct *p)
1776 {
1777 enum uclamp_id clamp_id;
1778 struct rq_flags rf;
1779 struct rq *rq;
1780
1781 /*
1782 * Lock the task and the rq where the task is (or was) queued.
1783 *
1784 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1785 * price to pay to safely serialize util_{min,max} updates with
1786 * enqueues, dequeues and migration operations.
1787 * This is the same locking schema used by __set_cpus_allowed_ptr().
1788 */
1789 rq = task_rq_lock(p, &rf);
1790
1791 /*
1792 * Setting the clamp bucket is serialized by task_rq_lock().
1793 * If the task is not yet RUNNABLE and its task_struct is not
1794 * affecting a valid clamp bucket, the next time it's enqueued,
1795 * it will already see the updated clamp bucket value.
1796 */
1797 for_each_clamp_id(clamp_id)
1798 uclamp_rq_reinc_id(rq, p, clamp_id);
1799
1800 task_rq_unlock(rq, p, &rf);
1801 }
1802
1803 #ifdef CONFIG_UCLAMP_TASK_GROUP
1804 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css)1805 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1806 {
1807 struct css_task_iter it;
1808 struct task_struct *p;
1809
1810 css_task_iter_start(css, 0, &it);
1811 while ((p = css_task_iter_next(&it)))
1812 uclamp_update_active(p);
1813 css_task_iter_end(&it);
1814 }
1815
1816 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1817 #endif
1818
1819 #ifdef CONFIG_SYSCTL
1820 #ifdef CONFIG_UCLAMP_TASK
1821 #ifdef CONFIG_UCLAMP_TASK_GROUP
uclamp_update_root_tg(void)1822 static void uclamp_update_root_tg(void)
1823 {
1824 struct task_group *tg = &root_task_group;
1825
1826 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1827 sysctl_sched_uclamp_util_min, false);
1828 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1829 sysctl_sched_uclamp_util_max, false);
1830
1831 rcu_read_lock();
1832 cpu_util_update_eff(&root_task_group.css);
1833 rcu_read_unlock();
1834 }
1835 #else
uclamp_update_root_tg(void)1836 static void uclamp_update_root_tg(void) { }
1837 #endif
1838
uclamp_sync_util_min_rt_default(void)1839 static void uclamp_sync_util_min_rt_default(void)
1840 {
1841 struct task_struct *g, *p;
1842
1843 /*
1844 * copy_process() sysctl_uclamp
1845 * uclamp_min_rt = X;
1846 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1847 * // link thread smp_mb__after_spinlock()
1848 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1849 * sched_post_fork() for_each_process_thread()
1850 * __uclamp_sync_rt() __uclamp_sync_rt()
1851 *
1852 * Ensures that either sched_post_fork() will observe the new
1853 * uclamp_min_rt or for_each_process_thread() will observe the new
1854 * task.
1855 */
1856 read_lock(&tasklist_lock);
1857 smp_mb__after_spinlock();
1858 read_unlock(&tasklist_lock);
1859
1860 rcu_read_lock();
1861 for_each_process_thread(g, p)
1862 uclamp_update_util_min_rt_default(p);
1863 rcu_read_unlock();
1864 }
1865
sysctl_sched_uclamp_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1866 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1867 void *buffer, size_t *lenp, loff_t *ppos)
1868 {
1869 bool update_root_tg = false;
1870 int old_min, old_max, old_min_rt;
1871 int result;
1872
1873 guard(mutex)(&uclamp_mutex);
1874
1875 old_min = sysctl_sched_uclamp_util_min;
1876 old_max = sysctl_sched_uclamp_util_max;
1877 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1878
1879 result = proc_dointvec(table, write, buffer, lenp, ppos);
1880 if (result)
1881 goto undo;
1882 if (!write)
1883 return 0;
1884
1885 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1886 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1887 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1888
1889 result = -EINVAL;
1890 goto undo;
1891 }
1892
1893 if (old_min != sysctl_sched_uclamp_util_min) {
1894 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1895 sysctl_sched_uclamp_util_min, false);
1896 update_root_tg = true;
1897 }
1898 if (old_max != sysctl_sched_uclamp_util_max) {
1899 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1900 sysctl_sched_uclamp_util_max, false);
1901 update_root_tg = true;
1902 }
1903
1904 if (update_root_tg) {
1905 static_branch_enable(&sched_uclamp_used);
1906 uclamp_update_root_tg();
1907 }
1908
1909 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1910 static_branch_enable(&sched_uclamp_used);
1911 uclamp_sync_util_min_rt_default();
1912 }
1913
1914 /*
1915 * We update all RUNNABLE tasks only when task groups are in use.
1916 * Otherwise, keep it simple and do just a lazy update at each next
1917 * task enqueue time.
1918 */
1919 return 0;
1920
1921 undo:
1922 sysctl_sched_uclamp_util_min = old_min;
1923 sysctl_sched_uclamp_util_max = old_max;
1924 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1925 return result;
1926 }
1927 #endif
1928 #endif
1929
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1930 static int uclamp_validate(struct task_struct *p,
1931 const struct sched_attr *attr)
1932 {
1933 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1934 int util_max = p->uclamp_req[UCLAMP_MAX].value;
1935
1936 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1937 util_min = attr->sched_util_min;
1938
1939 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1940 return -EINVAL;
1941 }
1942
1943 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1944 util_max = attr->sched_util_max;
1945
1946 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1947 return -EINVAL;
1948 }
1949
1950 if (util_min != -1 && util_max != -1 && util_min > util_max)
1951 return -EINVAL;
1952
1953 /*
1954 * We have valid uclamp attributes; make sure uclamp is enabled.
1955 *
1956 * We need to do that here, because enabling static branches is a
1957 * blocking operation which obviously cannot be done while holding
1958 * scheduler locks.
1959 */
1960 static_branch_enable(&sched_uclamp_used);
1961
1962 return 0;
1963 }
1964
uclamp_reset(const struct sched_attr * attr,enum uclamp_id clamp_id,struct uclamp_se * uc_se)1965 static bool uclamp_reset(const struct sched_attr *attr,
1966 enum uclamp_id clamp_id,
1967 struct uclamp_se *uc_se)
1968 {
1969 /* Reset on sched class change for a non user-defined clamp value. */
1970 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1971 !uc_se->user_defined)
1972 return true;
1973
1974 /* Reset on sched_util_{min,max} == -1. */
1975 if (clamp_id == UCLAMP_MIN &&
1976 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1977 attr->sched_util_min == -1) {
1978 return true;
1979 }
1980
1981 if (clamp_id == UCLAMP_MAX &&
1982 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1983 attr->sched_util_max == -1) {
1984 return true;
1985 }
1986
1987 return false;
1988 }
1989
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1990 static void __setscheduler_uclamp(struct task_struct *p,
1991 const struct sched_attr *attr)
1992 {
1993 enum uclamp_id clamp_id;
1994
1995 for_each_clamp_id(clamp_id) {
1996 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1997 unsigned int value;
1998
1999 if (!uclamp_reset(attr, clamp_id, uc_se))
2000 continue;
2001
2002 /*
2003 * RT by default have a 100% boost value that could be modified
2004 * at runtime.
2005 */
2006 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
2007 value = sysctl_sched_uclamp_util_min_rt_default;
2008 else
2009 value = uclamp_none(clamp_id);
2010
2011 uclamp_se_set(uc_se, value, false);
2012
2013 }
2014
2015 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
2016 return;
2017
2018 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
2019 attr->sched_util_min != -1) {
2020 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
2021 attr->sched_util_min, true);
2022 }
2023
2024 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
2025 attr->sched_util_max != -1) {
2026 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
2027 attr->sched_util_max, true);
2028 }
2029 }
2030
uclamp_fork(struct task_struct * p)2031 static void uclamp_fork(struct task_struct *p)
2032 {
2033 enum uclamp_id clamp_id;
2034
2035 /*
2036 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
2037 * as the task is still at its early fork stages.
2038 */
2039 for_each_clamp_id(clamp_id)
2040 p->uclamp[clamp_id].active = false;
2041
2042 if (likely(!p->sched_reset_on_fork))
2043 return;
2044
2045 for_each_clamp_id(clamp_id) {
2046 uclamp_se_set(&p->uclamp_req[clamp_id],
2047 uclamp_none(clamp_id), false);
2048 }
2049 }
2050
uclamp_post_fork(struct task_struct * p)2051 static void uclamp_post_fork(struct task_struct *p)
2052 {
2053 uclamp_update_util_min_rt_default(p);
2054 }
2055
init_uclamp_rq(struct rq * rq)2056 static void __init init_uclamp_rq(struct rq *rq)
2057 {
2058 enum uclamp_id clamp_id;
2059 struct uclamp_rq *uc_rq = rq->uclamp;
2060
2061 for_each_clamp_id(clamp_id) {
2062 uc_rq[clamp_id] = (struct uclamp_rq) {
2063 .value = uclamp_none(clamp_id)
2064 };
2065 }
2066
2067 rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2068 }
2069
init_uclamp(void)2070 static void __init init_uclamp(void)
2071 {
2072 struct uclamp_se uc_max = {};
2073 enum uclamp_id clamp_id;
2074 int cpu;
2075
2076 for_each_possible_cpu(cpu)
2077 init_uclamp_rq(cpu_rq(cpu));
2078
2079 for_each_clamp_id(clamp_id) {
2080 uclamp_se_set(&init_task.uclamp_req[clamp_id],
2081 uclamp_none(clamp_id), false);
2082 }
2083
2084 /* System defaults allow max clamp values for both indexes */
2085 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2086 for_each_clamp_id(clamp_id) {
2087 uclamp_default[clamp_id] = uc_max;
2088 #ifdef CONFIG_UCLAMP_TASK_GROUP
2089 root_task_group.uclamp_req[clamp_id] = uc_max;
2090 root_task_group.uclamp[clamp_id] = uc_max;
2091 #endif
2092 }
2093 }
2094
2095 #else /* CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p)2096 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)2097 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)2098 static inline int uclamp_validate(struct task_struct *p,
2099 const struct sched_attr *attr)
2100 {
2101 return -EOPNOTSUPP;
2102 }
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)2103 static void __setscheduler_uclamp(struct task_struct *p,
2104 const struct sched_attr *attr) { }
uclamp_fork(struct task_struct * p)2105 static inline void uclamp_fork(struct task_struct *p) { }
uclamp_post_fork(struct task_struct * p)2106 static inline void uclamp_post_fork(struct task_struct *p) { }
init_uclamp(void)2107 static inline void init_uclamp(void) { }
2108 #endif /* CONFIG_UCLAMP_TASK */
2109
sched_task_on_rq(struct task_struct * p)2110 bool sched_task_on_rq(struct task_struct *p)
2111 {
2112 return task_on_rq_queued(p);
2113 }
2114
get_wchan(struct task_struct * p)2115 unsigned long get_wchan(struct task_struct *p)
2116 {
2117 unsigned long ip = 0;
2118 unsigned int state;
2119
2120 if (!p || p == current)
2121 return 0;
2122
2123 /* Only get wchan if task is blocked and we can keep it that way. */
2124 raw_spin_lock_irq(&p->pi_lock);
2125 state = READ_ONCE(p->__state);
2126 smp_rmb(); /* see try_to_wake_up() */
2127 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2128 ip = __get_wchan(p);
2129 raw_spin_unlock_irq(&p->pi_lock);
2130
2131 return ip;
2132 }
2133
enqueue_task(struct rq * rq,struct task_struct * p,int flags)2134 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2135 {
2136 if (!(flags & ENQUEUE_NOCLOCK))
2137 update_rq_clock(rq);
2138
2139 if (!(flags & ENQUEUE_RESTORE)) {
2140 sched_info_enqueue(rq, p);
2141 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2142 }
2143
2144 uclamp_rq_inc(rq, p);
2145 p->sched_class->enqueue_task(rq, p, flags);
2146
2147 if (sched_core_enabled(rq))
2148 sched_core_enqueue(rq, p);
2149 }
2150
dequeue_task(struct rq * rq,struct task_struct * p,int flags)2151 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2152 {
2153 if (sched_core_enabled(rq))
2154 sched_core_dequeue(rq, p, flags);
2155
2156 if (!(flags & DEQUEUE_NOCLOCK))
2157 update_rq_clock(rq);
2158
2159 if (!(flags & DEQUEUE_SAVE)) {
2160 sched_info_dequeue(rq, p);
2161 psi_dequeue(p, flags & DEQUEUE_SLEEP);
2162 }
2163
2164 uclamp_rq_dec(rq, p);
2165 p->sched_class->dequeue_task(rq, p, flags);
2166 }
2167
activate_task(struct rq * rq,struct task_struct * p,int flags)2168 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2169 {
2170 if (task_on_rq_migrating(p))
2171 flags |= ENQUEUE_MIGRATED;
2172 if (flags & ENQUEUE_MIGRATED)
2173 sched_mm_cid_migrate_to(rq, p);
2174
2175 enqueue_task(rq, p, flags);
2176
2177 p->on_rq = TASK_ON_RQ_QUEUED;
2178 }
2179
deactivate_task(struct rq * rq,struct task_struct * p,int flags)2180 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2181 {
2182 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2183
2184 dequeue_task(rq, p, flags);
2185 }
2186
__normal_prio(int policy,int rt_prio,int nice)2187 static inline int __normal_prio(int policy, int rt_prio, int nice)
2188 {
2189 int prio;
2190
2191 if (dl_policy(policy))
2192 prio = MAX_DL_PRIO - 1;
2193 else if (rt_policy(policy))
2194 prio = MAX_RT_PRIO - 1 - rt_prio;
2195 else
2196 prio = NICE_TO_PRIO(nice);
2197
2198 return prio;
2199 }
2200
2201 /*
2202 * Calculate the expected normal priority: i.e. priority
2203 * without taking RT-inheritance into account. Might be
2204 * boosted by interactivity modifiers. Changes upon fork,
2205 * setprio syscalls, and whenever the interactivity
2206 * estimator recalculates.
2207 */
normal_prio(struct task_struct * p)2208 static inline int normal_prio(struct task_struct *p)
2209 {
2210 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2211 }
2212
2213 /*
2214 * Calculate the current priority, i.e. the priority
2215 * taken into account by the scheduler. This value might
2216 * be boosted by RT tasks, or might be boosted by
2217 * interactivity modifiers. Will be RT if the task got
2218 * RT-boosted. If not then it returns p->normal_prio.
2219 */
effective_prio(struct task_struct * p)2220 static int effective_prio(struct task_struct *p)
2221 {
2222 p->normal_prio = normal_prio(p);
2223 /*
2224 * If we are RT tasks or we were boosted to RT priority,
2225 * keep the priority unchanged. Otherwise, update priority
2226 * to the normal priority:
2227 */
2228 if (!rt_prio(p->prio))
2229 return p->normal_prio;
2230 return p->prio;
2231 }
2232
2233 /**
2234 * task_curr - is this task currently executing on a CPU?
2235 * @p: the task in question.
2236 *
2237 * Return: 1 if the task is currently executing. 0 otherwise.
2238 */
task_curr(const struct task_struct * p)2239 inline int task_curr(const struct task_struct *p)
2240 {
2241 return cpu_curr(task_cpu(p)) == p;
2242 }
2243
2244 /*
2245 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2246 * use the balance_callback list if you want balancing.
2247 *
2248 * this means any call to check_class_changed() must be followed by a call to
2249 * balance_callback().
2250 */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)2251 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2252 const struct sched_class *prev_class,
2253 int oldprio)
2254 {
2255 if (prev_class != p->sched_class) {
2256 if (prev_class->switched_from)
2257 prev_class->switched_from(rq, p);
2258
2259 p->sched_class->switched_to(rq, p);
2260 } else if (oldprio != p->prio || dl_task(p))
2261 p->sched_class->prio_changed(rq, p, oldprio);
2262 }
2263
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)2264 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2265 {
2266 if (p->sched_class == rq->curr->sched_class)
2267 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2268 else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2269 resched_curr(rq);
2270
2271 /*
2272 * A queue event has occurred, and we're going to schedule. In
2273 * this case, we can save a useless back to back clock update.
2274 */
2275 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2276 rq_clock_skip_update(rq);
2277 }
2278
2279 static __always_inline
__task_state_match(struct task_struct * p,unsigned int state)2280 int __task_state_match(struct task_struct *p, unsigned int state)
2281 {
2282 if (READ_ONCE(p->__state) & state)
2283 return 1;
2284
2285 #ifdef CONFIG_PREEMPT_RT
2286 if (READ_ONCE(p->saved_state) & state)
2287 return -1;
2288 #endif
2289 return 0;
2290 }
2291
2292 static __always_inline
task_state_match(struct task_struct * p,unsigned int state)2293 int task_state_match(struct task_struct *p, unsigned int state)
2294 {
2295 #ifdef CONFIG_PREEMPT_RT
2296 int match;
2297
2298 /*
2299 * Serialize against current_save_and_set_rtlock_wait_state() and
2300 * current_restore_rtlock_saved_state().
2301 */
2302 raw_spin_lock_irq(&p->pi_lock);
2303 match = __task_state_match(p, state);
2304 raw_spin_unlock_irq(&p->pi_lock);
2305
2306 return match;
2307 #else
2308 return __task_state_match(p, state);
2309 #endif
2310 }
2311
2312 /*
2313 * wait_task_inactive - wait for a thread to unschedule.
2314 *
2315 * Wait for the thread to block in any of the states set in @match_state.
2316 * If it changes, i.e. @p might have woken up, then return zero. When we
2317 * succeed in waiting for @p to be off its CPU, we return a positive number
2318 * (its total switch count). If a second call a short while later returns the
2319 * same number, the caller can be sure that @p has remained unscheduled the
2320 * whole time.
2321 *
2322 * The caller must ensure that the task *will* unschedule sometime soon,
2323 * else this function might spin for a *long* time. This function can't
2324 * be called with interrupts off, or it may introduce deadlock with
2325 * smp_call_function() if an IPI is sent by the same process we are
2326 * waiting to become inactive.
2327 */
wait_task_inactive(struct task_struct * p,unsigned int match_state)2328 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2329 {
2330 int running, queued, match;
2331 struct rq_flags rf;
2332 unsigned long ncsw;
2333 struct rq *rq;
2334
2335 for (;;) {
2336 /*
2337 * We do the initial early heuristics without holding
2338 * any task-queue locks at all. We'll only try to get
2339 * the runqueue lock when things look like they will
2340 * work out!
2341 */
2342 rq = task_rq(p);
2343
2344 /*
2345 * If the task is actively running on another CPU
2346 * still, just relax and busy-wait without holding
2347 * any locks.
2348 *
2349 * NOTE! Since we don't hold any locks, it's not
2350 * even sure that "rq" stays as the right runqueue!
2351 * But we don't care, since "task_on_cpu()" will
2352 * return false if the runqueue has changed and p
2353 * is actually now running somewhere else!
2354 */
2355 while (task_on_cpu(rq, p)) {
2356 if (!task_state_match(p, match_state))
2357 return 0;
2358 cpu_relax();
2359 }
2360
2361 /*
2362 * Ok, time to look more closely! We need the rq
2363 * lock now, to be *sure*. If we're wrong, we'll
2364 * just go back and repeat.
2365 */
2366 rq = task_rq_lock(p, &rf);
2367 trace_sched_wait_task(p);
2368 running = task_on_cpu(rq, p);
2369 queued = task_on_rq_queued(p);
2370 ncsw = 0;
2371 if ((match = __task_state_match(p, match_state))) {
2372 /*
2373 * When matching on p->saved_state, consider this task
2374 * still queued so it will wait.
2375 */
2376 if (match < 0)
2377 queued = 1;
2378 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2379 }
2380 task_rq_unlock(rq, p, &rf);
2381
2382 /*
2383 * If it changed from the expected state, bail out now.
2384 */
2385 if (unlikely(!ncsw))
2386 break;
2387
2388 /*
2389 * Was it really running after all now that we
2390 * checked with the proper locks actually held?
2391 *
2392 * Oops. Go back and try again..
2393 */
2394 if (unlikely(running)) {
2395 cpu_relax();
2396 continue;
2397 }
2398
2399 /*
2400 * It's not enough that it's not actively running,
2401 * it must be off the runqueue _entirely_, and not
2402 * preempted!
2403 *
2404 * So if it was still runnable (but just not actively
2405 * running right now), it's preempted, and we should
2406 * yield - it could be a while.
2407 */
2408 if (unlikely(queued)) {
2409 ktime_t to = NSEC_PER_SEC / HZ;
2410
2411 set_current_state(TASK_UNINTERRUPTIBLE);
2412 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2413 continue;
2414 }
2415
2416 /*
2417 * Ahh, all good. It wasn't running, and it wasn't
2418 * runnable, which means that it will never become
2419 * running in the future either. We're all done!
2420 */
2421 break;
2422 }
2423
2424 return ncsw;
2425 }
2426
2427 #ifdef CONFIG_SMP
2428
2429 static void
2430 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2431
2432 static int __set_cpus_allowed_ptr(struct task_struct *p,
2433 struct affinity_context *ctx);
2434
migrate_disable_switch(struct rq * rq,struct task_struct * p)2435 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2436 {
2437 struct affinity_context ac = {
2438 .new_mask = cpumask_of(rq->cpu),
2439 .flags = SCA_MIGRATE_DISABLE,
2440 };
2441
2442 if (likely(!p->migration_disabled))
2443 return;
2444
2445 if (p->cpus_ptr != &p->cpus_mask)
2446 return;
2447
2448 /*
2449 * Violates locking rules! see comment in __do_set_cpus_allowed().
2450 */
2451 __do_set_cpus_allowed(p, &ac);
2452 }
2453
migrate_disable(void)2454 void migrate_disable(void)
2455 {
2456 struct task_struct *p = current;
2457
2458 if (p->migration_disabled) {
2459 p->migration_disabled++;
2460 return;
2461 }
2462
2463 preempt_disable();
2464 this_rq()->nr_pinned++;
2465 p->migration_disabled = 1;
2466 preempt_enable();
2467 }
2468 EXPORT_SYMBOL_GPL(migrate_disable);
2469
migrate_enable(void)2470 void migrate_enable(void)
2471 {
2472 struct task_struct *p = current;
2473 struct affinity_context ac = {
2474 .new_mask = &p->cpus_mask,
2475 .flags = SCA_MIGRATE_ENABLE,
2476 };
2477
2478 if (p->migration_disabled > 1) {
2479 p->migration_disabled--;
2480 return;
2481 }
2482
2483 if (WARN_ON_ONCE(!p->migration_disabled))
2484 return;
2485
2486 /*
2487 * Ensure stop_task runs either before or after this, and that
2488 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2489 */
2490 preempt_disable();
2491 if (p->cpus_ptr != &p->cpus_mask)
2492 __set_cpus_allowed_ptr(p, &ac);
2493 /*
2494 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2495 * regular cpus_mask, otherwise things that race (eg.
2496 * select_fallback_rq) get confused.
2497 */
2498 barrier();
2499 p->migration_disabled = 0;
2500 this_rq()->nr_pinned--;
2501 preempt_enable();
2502 }
2503 EXPORT_SYMBOL_GPL(migrate_enable);
2504
rq_has_pinned_tasks(struct rq * rq)2505 static inline bool rq_has_pinned_tasks(struct rq *rq)
2506 {
2507 return rq->nr_pinned;
2508 }
2509
2510 /*
2511 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2512 * __set_cpus_allowed_ptr() and select_fallback_rq().
2513 */
is_cpu_allowed(struct task_struct * p,int cpu)2514 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2515 {
2516 /* When not in the task's cpumask, no point in looking further. */
2517 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2518 return false;
2519
2520 /* migrate_disabled() must be allowed to finish. */
2521 if (is_migration_disabled(p))
2522 return cpu_online(cpu);
2523
2524 /* Non kernel threads are not allowed during either online or offline. */
2525 if (!(p->flags & PF_KTHREAD))
2526 return cpu_active(cpu) && task_cpu_possible(cpu, p);
2527
2528 /* KTHREAD_IS_PER_CPU is always allowed. */
2529 if (kthread_is_per_cpu(p))
2530 return cpu_online(cpu);
2531
2532 /* Regular kernel threads don't get to stay during offline. */
2533 if (cpu_dying(cpu))
2534 return false;
2535
2536 /* But are allowed during online. */
2537 return cpu_online(cpu);
2538 }
2539
2540 /*
2541 * This is how migration works:
2542 *
2543 * 1) we invoke migration_cpu_stop() on the target CPU using
2544 * stop_one_cpu().
2545 * 2) stopper starts to run (implicitly forcing the migrated thread
2546 * off the CPU)
2547 * 3) it checks whether the migrated task is still in the wrong runqueue.
2548 * 4) if it's in the wrong runqueue then the migration thread removes
2549 * it and puts it into the right queue.
2550 * 5) stopper completes and stop_one_cpu() returns and the migration
2551 * is done.
2552 */
2553
2554 /*
2555 * move_queued_task - move a queued task to new rq.
2556 *
2557 * Returns (locked) new rq. Old rq's lock is released.
2558 */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)2559 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2560 struct task_struct *p, int new_cpu)
2561 {
2562 lockdep_assert_rq_held(rq);
2563
2564 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2565 set_task_cpu(p, new_cpu);
2566 rq_unlock(rq, rf);
2567
2568 rq = cpu_rq(new_cpu);
2569
2570 rq_lock(rq, rf);
2571 WARN_ON_ONCE(task_cpu(p) != new_cpu);
2572 activate_task(rq, p, 0);
2573 check_preempt_curr(rq, p, 0);
2574
2575 return rq;
2576 }
2577
2578 struct migration_arg {
2579 struct task_struct *task;
2580 int dest_cpu;
2581 struct set_affinity_pending *pending;
2582 };
2583
2584 /*
2585 * @refs: number of wait_for_completion()
2586 * @stop_pending: is @stop_work in use
2587 */
2588 struct set_affinity_pending {
2589 refcount_t refs;
2590 unsigned int stop_pending;
2591 struct completion done;
2592 struct cpu_stop_work stop_work;
2593 struct migration_arg arg;
2594 };
2595
2596 /*
2597 * Move (not current) task off this CPU, onto the destination CPU. We're doing
2598 * this because either it can't run here any more (set_cpus_allowed()
2599 * away from this CPU, or CPU going down), or because we're
2600 * attempting to rebalance this task on exec (sched_exec).
2601 *
2602 * So we race with normal scheduler movements, but that's OK, as long
2603 * as the task is no longer on this CPU.
2604 */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)2605 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2606 struct task_struct *p, int dest_cpu)
2607 {
2608 /* Affinity changed (again). */
2609 if (!is_cpu_allowed(p, dest_cpu))
2610 return rq;
2611
2612 rq = move_queued_task(rq, rf, p, dest_cpu);
2613
2614 return rq;
2615 }
2616
2617 /*
2618 * migration_cpu_stop - this will be executed by a highprio stopper thread
2619 * and performs thread migration by bumping thread off CPU then
2620 * 'pushing' onto another runqueue.
2621 */
migration_cpu_stop(void * data)2622 static int migration_cpu_stop(void *data)
2623 {
2624 struct migration_arg *arg = data;
2625 struct set_affinity_pending *pending = arg->pending;
2626 struct task_struct *p = arg->task;
2627 struct rq *rq = this_rq();
2628 bool complete = false;
2629 struct rq_flags rf;
2630
2631 /*
2632 * The original target CPU might have gone down and we might
2633 * be on another CPU but it doesn't matter.
2634 */
2635 local_irq_save(rf.flags);
2636 /*
2637 * We need to explicitly wake pending tasks before running
2638 * __migrate_task() such that we will not miss enforcing cpus_ptr
2639 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2640 */
2641 flush_smp_call_function_queue();
2642
2643 raw_spin_lock(&p->pi_lock);
2644 rq_lock(rq, &rf);
2645
2646 /*
2647 * If we were passed a pending, then ->stop_pending was set, thus
2648 * p->migration_pending must have remained stable.
2649 */
2650 WARN_ON_ONCE(pending && pending != p->migration_pending);
2651
2652 /*
2653 * If task_rq(p) != rq, it cannot be migrated here, because we're
2654 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2655 * we're holding p->pi_lock.
2656 */
2657 if (task_rq(p) == rq) {
2658 if (is_migration_disabled(p))
2659 goto out;
2660
2661 if (pending) {
2662 p->migration_pending = NULL;
2663 complete = true;
2664
2665 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2666 goto out;
2667 }
2668
2669 if (task_on_rq_queued(p)) {
2670 update_rq_clock(rq);
2671 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2672 } else {
2673 p->wake_cpu = arg->dest_cpu;
2674 }
2675
2676 /*
2677 * XXX __migrate_task() can fail, at which point we might end
2678 * up running on a dodgy CPU, AFAICT this can only happen
2679 * during CPU hotplug, at which point we'll get pushed out
2680 * anyway, so it's probably not a big deal.
2681 */
2682
2683 } else if (pending) {
2684 /*
2685 * This happens when we get migrated between migrate_enable()'s
2686 * preempt_enable() and scheduling the stopper task. At that
2687 * point we're a regular task again and not current anymore.
2688 *
2689 * A !PREEMPT kernel has a giant hole here, which makes it far
2690 * more likely.
2691 */
2692
2693 /*
2694 * The task moved before the stopper got to run. We're holding
2695 * ->pi_lock, so the allowed mask is stable - if it got
2696 * somewhere allowed, we're done.
2697 */
2698 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2699 p->migration_pending = NULL;
2700 complete = true;
2701 goto out;
2702 }
2703
2704 /*
2705 * When migrate_enable() hits a rq mis-match we can't reliably
2706 * determine is_migration_disabled() and so have to chase after
2707 * it.
2708 */
2709 WARN_ON_ONCE(!pending->stop_pending);
2710 preempt_disable();
2711 task_rq_unlock(rq, p, &rf);
2712 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2713 &pending->arg, &pending->stop_work);
2714 preempt_enable();
2715 return 0;
2716 }
2717 out:
2718 if (pending)
2719 pending->stop_pending = false;
2720 task_rq_unlock(rq, p, &rf);
2721
2722 if (complete)
2723 complete_all(&pending->done);
2724
2725 return 0;
2726 }
2727
push_cpu_stop(void * arg)2728 int push_cpu_stop(void *arg)
2729 {
2730 struct rq *lowest_rq = NULL, *rq = this_rq();
2731 struct task_struct *p = arg;
2732
2733 raw_spin_lock_irq(&p->pi_lock);
2734 raw_spin_rq_lock(rq);
2735
2736 if (task_rq(p) != rq)
2737 goto out_unlock;
2738
2739 if (is_migration_disabled(p)) {
2740 p->migration_flags |= MDF_PUSH;
2741 goto out_unlock;
2742 }
2743
2744 p->migration_flags &= ~MDF_PUSH;
2745
2746 if (p->sched_class->find_lock_rq)
2747 lowest_rq = p->sched_class->find_lock_rq(p, rq);
2748
2749 if (!lowest_rq)
2750 goto out_unlock;
2751
2752 // XXX validate p is still the highest prio task
2753 if (task_rq(p) == rq) {
2754 deactivate_task(rq, p, 0);
2755 set_task_cpu(p, lowest_rq->cpu);
2756 activate_task(lowest_rq, p, 0);
2757 resched_curr(lowest_rq);
2758 }
2759
2760 double_unlock_balance(rq, lowest_rq);
2761
2762 out_unlock:
2763 rq->push_busy = false;
2764 raw_spin_rq_unlock(rq);
2765 raw_spin_unlock_irq(&p->pi_lock);
2766
2767 put_task_struct(p);
2768 return 0;
2769 }
2770
2771 /*
2772 * sched_class::set_cpus_allowed must do the below, but is not required to
2773 * actually call this function.
2774 */
set_cpus_allowed_common(struct task_struct * p,struct affinity_context * ctx)2775 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2776 {
2777 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2778 p->cpus_ptr = ctx->new_mask;
2779 return;
2780 }
2781
2782 cpumask_copy(&p->cpus_mask, ctx->new_mask);
2783 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2784
2785 /*
2786 * Swap in a new user_cpus_ptr if SCA_USER flag set
2787 */
2788 if (ctx->flags & SCA_USER)
2789 swap(p->user_cpus_ptr, ctx->user_mask);
2790 }
2791
2792 static void
__do_set_cpus_allowed(struct task_struct * p,struct affinity_context * ctx)2793 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2794 {
2795 struct rq *rq = task_rq(p);
2796 bool queued, running;
2797
2798 /*
2799 * This here violates the locking rules for affinity, since we're only
2800 * supposed to change these variables while holding both rq->lock and
2801 * p->pi_lock.
2802 *
2803 * HOWEVER, it magically works, because ttwu() is the only code that
2804 * accesses these variables under p->pi_lock and only does so after
2805 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2806 * before finish_task().
2807 *
2808 * XXX do further audits, this smells like something putrid.
2809 */
2810 if (ctx->flags & SCA_MIGRATE_DISABLE)
2811 SCHED_WARN_ON(!p->on_cpu);
2812 else
2813 lockdep_assert_held(&p->pi_lock);
2814
2815 queued = task_on_rq_queued(p);
2816 running = task_current(rq, p);
2817
2818 if (queued) {
2819 /*
2820 * Because __kthread_bind() calls this on blocked tasks without
2821 * holding rq->lock.
2822 */
2823 lockdep_assert_rq_held(rq);
2824 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2825 }
2826 if (running)
2827 put_prev_task(rq, p);
2828
2829 p->sched_class->set_cpus_allowed(p, ctx);
2830
2831 if (queued)
2832 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2833 if (running)
2834 set_next_task(rq, p);
2835 }
2836
2837 /*
2838 * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2839 * affinity (if any) should be destroyed too.
2840 */
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2841 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2842 {
2843 struct affinity_context ac = {
2844 .new_mask = new_mask,
2845 .user_mask = NULL,
2846 .flags = SCA_USER, /* clear the user requested mask */
2847 };
2848 union cpumask_rcuhead {
2849 cpumask_t cpumask;
2850 struct rcu_head rcu;
2851 };
2852
2853 __do_set_cpus_allowed(p, &ac);
2854
2855 /*
2856 * Because this is called with p->pi_lock held, it is not possible
2857 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2858 * kfree_rcu().
2859 */
2860 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2861 }
2862
alloc_user_cpus_ptr(int node)2863 static cpumask_t *alloc_user_cpus_ptr(int node)
2864 {
2865 /*
2866 * See do_set_cpus_allowed() above for the rcu_head usage.
2867 */
2868 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2869
2870 return kmalloc_node(size, GFP_KERNEL, node);
2871 }
2872
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)2873 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2874 int node)
2875 {
2876 cpumask_t *user_mask;
2877 unsigned long flags;
2878
2879 /*
2880 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2881 * may differ by now due to racing.
2882 */
2883 dst->user_cpus_ptr = NULL;
2884
2885 /*
2886 * This check is racy and losing the race is a valid situation.
2887 * It is not worth the extra overhead of taking the pi_lock on
2888 * every fork/clone.
2889 */
2890 if (data_race(!src->user_cpus_ptr))
2891 return 0;
2892
2893 user_mask = alloc_user_cpus_ptr(node);
2894 if (!user_mask)
2895 return -ENOMEM;
2896
2897 /*
2898 * Use pi_lock to protect content of user_cpus_ptr
2899 *
2900 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2901 * do_set_cpus_allowed().
2902 */
2903 raw_spin_lock_irqsave(&src->pi_lock, flags);
2904 if (src->user_cpus_ptr) {
2905 swap(dst->user_cpus_ptr, user_mask);
2906 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2907 }
2908 raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2909
2910 if (unlikely(user_mask))
2911 kfree(user_mask);
2912
2913 return 0;
2914 }
2915
clear_user_cpus_ptr(struct task_struct * p)2916 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2917 {
2918 struct cpumask *user_mask = NULL;
2919
2920 swap(p->user_cpus_ptr, user_mask);
2921
2922 return user_mask;
2923 }
2924
release_user_cpus_ptr(struct task_struct * p)2925 void release_user_cpus_ptr(struct task_struct *p)
2926 {
2927 kfree(clear_user_cpus_ptr(p));
2928 }
2929
2930 /*
2931 * This function is wildly self concurrent; here be dragons.
2932 *
2933 *
2934 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2935 * designated task is enqueued on an allowed CPU. If that task is currently
2936 * running, we have to kick it out using the CPU stopper.
2937 *
2938 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2939 * Consider:
2940 *
2941 * Initial conditions: P0->cpus_mask = [0, 1]
2942 *
2943 * P0@CPU0 P1
2944 *
2945 * migrate_disable();
2946 * <preempted>
2947 * set_cpus_allowed_ptr(P0, [1]);
2948 *
2949 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2950 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2951 * This means we need the following scheme:
2952 *
2953 * P0@CPU0 P1
2954 *
2955 * migrate_disable();
2956 * <preempted>
2957 * set_cpus_allowed_ptr(P0, [1]);
2958 * <blocks>
2959 * <resumes>
2960 * migrate_enable();
2961 * __set_cpus_allowed_ptr();
2962 * <wakes local stopper>
2963 * `--> <woken on migration completion>
2964 *
2965 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2966 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2967 * task p are serialized by p->pi_lock, which we can leverage: the one that
2968 * should come into effect at the end of the Migrate-Disable region is the last
2969 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2970 * but we still need to properly signal those waiting tasks at the appropriate
2971 * moment.
2972 *
2973 * This is implemented using struct set_affinity_pending. The first
2974 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2975 * setup an instance of that struct and install it on the targeted task_struct.
2976 * Any and all further callers will reuse that instance. Those then wait for
2977 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2978 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2979 *
2980 *
2981 * (1) In the cases covered above. There is one more where the completion is
2982 * signaled within affine_move_task() itself: when a subsequent affinity request
2983 * occurs after the stopper bailed out due to the targeted task still being
2984 * Migrate-Disable. Consider:
2985 *
2986 * Initial conditions: P0->cpus_mask = [0, 1]
2987 *
2988 * CPU0 P1 P2
2989 * <P0>
2990 * migrate_disable();
2991 * <preempted>
2992 * set_cpus_allowed_ptr(P0, [1]);
2993 * <blocks>
2994 * <migration/0>
2995 * migration_cpu_stop()
2996 * is_migration_disabled()
2997 * <bails>
2998 * set_cpus_allowed_ptr(P0, [0, 1]);
2999 * <signal completion>
3000 * <awakes>
3001 *
3002 * Note that the above is safe vs a concurrent migrate_enable(), as any
3003 * pending affinity completion is preceded by an uninstallation of
3004 * p->migration_pending done with p->pi_lock held.
3005 */
affine_move_task(struct rq * rq,struct task_struct * p,struct rq_flags * rf,int dest_cpu,unsigned int flags)3006 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
3007 int dest_cpu, unsigned int flags)
3008 __releases(rq->lock)
3009 __releases(p->pi_lock)
3010 {
3011 struct set_affinity_pending my_pending = { }, *pending = NULL;
3012 bool stop_pending, complete = false;
3013
3014 /* Can the task run on the task's current CPU? If so, we're done */
3015 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
3016 struct task_struct *push_task = NULL;
3017
3018 if ((flags & SCA_MIGRATE_ENABLE) &&
3019 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
3020 rq->push_busy = true;
3021 push_task = get_task_struct(p);
3022 }
3023
3024 /*
3025 * If there are pending waiters, but no pending stop_work,
3026 * then complete now.
3027 */
3028 pending = p->migration_pending;
3029 if (pending && !pending->stop_pending) {
3030 p->migration_pending = NULL;
3031 complete = true;
3032 }
3033
3034 preempt_disable();
3035 task_rq_unlock(rq, p, rf);
3036 if (push_task) {
3037 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
3038 p, &rq->push_work);
3039 }
3040 preempt_enable();
3041
3042 if (complete)
3043 complete_all(&pending->done);
3044
3045 return 0;
3046 }
3047
3048 if (!(flags & SCA_MIGRATE_ENABLE)) {
3049 /* serialized by p->pi_lock */
3050 if (!p->migration_pending) {
3051 /* Install the request */
3052 refcount_set(&my_pending.refs, 1);
3053 init_completion(&my_pending.done);
3054 my_pending.arg = (struct migration_arg) {
3055 .task = p,
3056 .dest_cpu = dest_cpu,
3057 .pending = &my_pending,
3058 };
3059
3060 p->migration_pending = &my_pending;
3061 } else {
3062 pending = p->migration_pending;
3063 refcount_inc(&pending->refs);
3064 /*
3065 * Affinity has changed, but we've already installed a
3066 * pending. migration_cpu_stop() *must* see this, else
3067 * we risk a completion of the pending despite having a
3068 * task on a disallowed CPU.
3069 *
3070 * Serialized by p->pi_lock, so this is safe.
3071 */
3072 pending->arg.dest_cpu = dest_cpu;
3073 }
3074 }
3075 pending = p->migration_pending;
3076 /*
3077 * - !MIGRATE_ENABLE:
3078 * we'll have installed a pending if there wasn't one already.
3079 *
3080 * - MIGRATE_ENABLE:
3081 * we're here because the current CPU isn't matching anymore,
3082 * the only way that can happen is because of a concurrent
3083 * set_cpus_allowed_ptr() call, which should then still be
3084 * pending completion.
3085 *
3086 * Either way, we really should have a @pending here.
3087 */
3088 if (WARN_ON_ONCE(!pending)) {
3089 task_rq_unlock(rq, p, rf);
3090 return -EINVAL;
3091 }
3092
3093 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3094 /*
3095 * MIGRATE_ENABLE gets here because 'p == current', but for
3096 * anything else we cannot do is_migration_disabled(), punt
3097 * and have the stopper function handle it all race-free.
3098 */
3099 stop_pending = pending->stop_pending;
3100 if (!stop_pending)
3101 pending->stop_pending = true;
3102
3103 if (flags & SCA_MIGRATE_ENABLE)
3104 p->migration_flags &= ~MDF_PUSH;
3105
3106 preempt_disable();
3107 task_rq_unlock(rq, p, rf);
3108 if (!stop_pending) {
3109 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3110 &pending->arg, &pending->stop_work);
3111 }
3112 preempt_enable();
3113
3114 if (flags & SCA_MIGRATE_ENABLE)
3115 return 0;
3116 } else {
3117
3118 if (!is_migration_disabled(p)) {
3119 if (task_on_rq_queued(p))
3120 rq = move_queued_task(rq, rf, p, dest_cpu);
3121
3122 if (!pending->stop_pending) {
3123 p->migration_pending = NULL;
3124 complete = true;
3125 }
3126 }
3127 task_rq_unlock(rq, p, rf);
3128
3129 if (complete)
3130 complete_all(&pending->done);
3131 }
3132
3133 wait_for_completion(&pending->done);
3134
3135 if (refcount_dec_and_test(&pending->refs))
3136 wake_up_var(&pending->refs); /* No UaF, just an address */
3137
3138 /*
3139 * Block the original owner of &pending until all subsequent callers
3140 * have seen the completion and decremented the refcount
3141 */
3142 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3143
3144 /* ARGH */
3145 WARN_ON_ONCE(my_pending.stop_pending);
3146
3147 return 0;
3148 }
3149
3150 /*
3151 * Called with both p->pi_lock and rq->lock held; drops both before returning.
3152 */
__set_cpus_allowed_ptr_locked(struct task_struct * p,struct affinity_context * ctx,struct rq * rq,struct rq_flags * rf)3153 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3154 struct affinity_context *ctx,
3155 struct rq *rq,
3156 struct rq_flags *rf)
3157 __releases(rq->lock)
3158 __releases(p->pi_lock)
3159 {
3160 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3161 const struct cpumask *cpu_valid_mask = cpu_active_mask;
3162 bool kthread = p->flags & PF_KTHREAD;
3163 unsigned int dest_cpu;
3164 int ret = 0;
3165
3166 update_rq_clock(rq);
3167
3168 if (kthread || is_migration_disabled(p)) {
3169 /*
3170 * Kernel threads are allowed on online && !active CPUs,
3171 * however, during cpu-hot-unplug, even these might get pushed
3172 * away if not KTHREAD_IS_PER_CPU.
3173 *
3174 * Specifically, migration_disabled() tasks must not fail the
3175 * cpumask_any_and_distribute() pick below, esp. so on
3176 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3177 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3178 */
3179 cpu_valid_mask = cpu_online_mask;
3180 }
3181
3182 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3183 ret = -EINVAL;
3184 goto out;
3185 }
3186
3187 /*
3188 * Must re-check here, to close a race against __kthread_bind(),
3189 * sched_setaffinity() is not guaranteed to observe the flag.
3190 */
3191 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3192 ret = -EINVAL;
3193 goto out;
3194 }
3195
3196 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3197 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3198 if (ctx->flags & SCA_USER)
3199 swap(p->user_cpus_ptr, ctx->user_mask);
3200 goto out;
3201 }
3202
3203 if (WARN_ON_ONCE(p == current &&
3204 is_migration_disabled(p) &&
3205 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3206 ret = -EBUSY;
3207 goto out;
3208 }
3209 }
3210
3211 /*
3212 * Picking a ~random cpu helps in cases where we are changing affinity
3213 * for groups of tasks (ie. cpuset), so that load balancing is not
3214 * immediately required to distribute the tasks within their new mask.
3215 */
3216 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3217 if (dest_cpu >= nr_cpu_ids) {
3218 ret = -EINVAL;
3219 goto out;
3220 }
3221
3222 __do_set_cpus_allowed(p, ctx);
3223
3224 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3225
3226 out:
3227 task_rq_unlock(rq, p, rf);
3228
3229 return ret;
3230 }
3231
3232 /*
3233 * Change a given task's CPU affinity. Migrate the thread to a
3234 * proper CPU and schedule it away if the CPU it's executing on
3235 * is removed from the allowed bitmask.
3236 *
3237 * NOTE: the caller must have a valid reference to the task, the
3238 * task must not exit() & deallocate itself prematurely. The
3239 * call is not atomic; no spinlocks may be held.
3240 */
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)3241 static int __set_cpus_allowed_ptr(struct task_struct *p,
3242 struct affinity_context *ctx)
3243 {
3244 struct rq_flags rf;
3245 struct rq *rq;
3246
3247 rq = task_rq_lock(p, &rf);
3248 /*
3249 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3250 * flags are set.
3251 */
3252 if (p->user_cpus_ptr &&
3253 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3254 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3255 ctx->new_mask = rq->scratch_mask;
3256
3257 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3258 }
3259
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)3260 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3261 {
3262 struct affinity_context ac = {
3263 .new_mask = new_mask,
3264 .flags = 0,
3265 };
3266
3267 return __set_cpus_allowed_ptr(p, &ac);
3268 }
3269 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3270
3271 /*
3272 * Change a given task's CPU affinity to the intersection of its current
3273 * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3274 * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3275 * affinity or use cpu_online_mask instead.
3276 *
3277 * If the resulting mask is empty, leave the affinity unchanged and return
3278 * -EINVAL.
3279 */
restrict_cpus_allowed_ptr(struct task_struct * p,struct cpumask * new_mask,const struct cpumask * subset_mask)3280 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3281 struct cpumask *new_mask,
3282 const struct cpumask *subset_mask)
3283 {
3284 struct affinity_context ac = {
3285 .new_mask = new_mask,
3286 .flags = 0,
3287 };
3288 struct rq_flags rf;
3289 struct rq *rq;
3290 int err;
3291
3292 rq = task_rq_lock(p, &rf);
3293
3294 /*
3295 * Forcefully restricting the affinity of a deadline task is
3296 * likely to cause problems, so fail and noisily override the
3297 * mask entirely.
3298 */
3299 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3300 err = -EPERM;
3301 goto err_unlock;
3302 }
3303
3304 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3305 err = -EINVAL;
3306 goto err_unlock;
3307 }
3308
3309 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3310
3311 err_unlock:
3312 task_rq_unlock(rq, p, &rf);
3313 return err;
3314 }
3315
3316 /*
3317 * Restrict the CPU affinity of task @p so that it is a subset of
3318 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3319 * old affinity mask. If the resulting mask is empty, we warn and walk
3320 * up the cpuset hierarchy until we find a suitable mask.
3321 */
force_compatible_cpus_allowed_ptr(struct task_struct * p)3322 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3323 {
3324 cpumask_var_t new_mask;
3325 const struct cpumask *override_mask = task_cpu_possible_mask(p);
3326
3327 alloc_cpumask_var(&new_mask, GFP_KERNEL);
3328
3329 /*
3330 * __migrate_task() can fail silently in the face of concurrent
3331 * offlining of the chosen destination CPU, so take the hotplug
3332 * lock to ensure that the migration succeeds.
3333 */
3334 cpus_read_lock();
3335 if (!cpumask_available(new_mask))
3336 goto out_set_mask;
3337
3338 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3339 goto out_free_mask;
3340
3341 /*
3342 * We failed to find a valid subset of the affinity mask for the
3343 * task, so override it based on its cpuset hierarchy.
3344 */
3345 cpuset_cpus_allowed(p, new_mask);
3346 override_mask = new_mask;
3347
3348 out_set_mask:
3349 if (printk_ratelimit()) {
3350 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3351 task_pid_nr(p), p->comm,
3352 cpumask_pr_args(override_mask));
3353 }
3354
3355 WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3356 out_free_mask:
3357 cpus_read_unlock();
3358 free_cpumask_var(new_mask);
3359 }
3360
3361 static int
3362 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3363
3364 /*
3365 * Restore the affinity of a task @p which was previously restricted by a
3366 * call to force_compatible_cpus_allowed_ptr().
3367 *
3368 * It is the caller's responsibility to serialise this with any calls to
3369 * force_compatible_cpus_allowed_ptr(@p).
3370 */
relax_compatible_cpus_allowed_ptr(struct task_struct * p)3371 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3372 {
3373 struct affinity_context ac = {
3374 .new_mask = task_user_cpus(p),
3375 .flags = 0,
3376 };
3377 int ret;
3378
3379 /*
3380 * Try to restore the old affinity mask with __sched_setaffinity().
3381 * Cpuset masking will be done there too.
3382 */
3383 ret = __sched_setaffinity(p, &ac);
3384 WARN_ON_ONCE(ret);
3385 }
3386
set_task_cpu(struct task_struct * p,unsigned int new_cpu)3387 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3388 {
3389 #ifdef CONFIG_SCHED_DEBUG
3390 unsigned int state = READ_ONCE(p->__state);
3391
3392 /*
3393 * We should never call set_task_cpu() on a blocked task,
3394 * ttwu() will sort out the placement.
3395 */
3396 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3397
3398 /*
3399 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3400 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3401 * time relying on p->on_rq.
3402 */
3403 WARN_ON_ONCE(state == TASK_RUNNING &&
3404 p->sched_class == &fair_sched_class &&
3405 (p->on_rq && !task_on_rq_migrating(p)));
3406
3407 #ifdef CONFIG_LOCKDEP
3408 /*
3409 * The caller should hold either p->pi_lock or rq->lock, when changing
3410 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3411 *
3412 * sched_move_task() holds both and thus holding either pins the cgroup,
3413 * see task_group().
3414 *
3415 * Furthermore, all task_rq users should acquire both locks, see
3416 * task_rq_lock().
3417 */
3418 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3419 lockdep_is_held(__rq_lockp(task_rq(p)))));
3420 #endif
3421 /*
3422 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3423 */
3424 WARN_ON_ONCE(!cpu_online(new_cpu));
3425
3426 WARN_ON_ONCE(is_migration_disabled(p));
3427 #endif
3428
3429 trace_sched_migrate_task(p, new_cpu);
3430
3431 if (task_cpu(p) != new_cpu) {
3432 if (p->sched_class->migrate_task_rq)
3433 p->sched_class->migrate_task_rq(p, new_cpu);
3434 p->se.nr_migrations++;
3435 rseq_migrate(p);
3436 sched_mm_cid_migrate_from(p);
3437 perf_event_task_migrate(p);
3438 }
3439
3440 __set_task_cpu(p, new_cpu);
3441 }
3442
3443 #ifdef CONFIG_NUMA_BALANCING
__migrate_swap_task(struct task_struct * p,int cpu)3444 static void __migrate_swap_task(struct task_struct *p, int cpu)
3445 {
3446 if (task_on_rq_queued(p)) {
3447 struct rq *src_rq, *dst_rq;
3448 struct rq_flags srf, drf;
3449
3450 src_rq = task_rq(p);
3451 dst_rq = cpu_rq(cpu);
3452
3453 rq_pin_lock(src_rq, &srf);
3454 rq_pin_lock(dst_rq, &drf);
3455
3456 deactivate_task(src_rq, p, 0);
3457 set_task_cpu(p, cpu);
3458 activate_task(dst_rq, p, 0);
3459 check_preempt_curr(dst_rq, p, 0);
3460
3461 rq_unpin_lock(dst_rq, &drf);
3462 rq_unpin_lock(src_rq, &srf);
3463
3464 } else {
3465 /*
3466 * Task isn't running anymore; make it appear like we migrated
3467 * it before it went to sleep. This means on wakeup we make the
3468 * previous CPU our target instead of where it really is.
3469 */
3470 p->wake_cpu = cpu;
3471 }
3472 }
3473
3474 struct migration_swap_arg {
3475 struct task_struct *src_task, *dst_task;
3476 int src_cpu, dst_cpu;
3477 };
3478
migrate_swap_stop(void * data)3479 static int migrate_swap_stop(void *data)
3480 {
3481 struct migration_swap_arg *arg = data;
3482 struct rq *src_rq, *dst_rq;
3483
3484 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3485 return -EAGAIN;
3486
3487 src_rq = cpu_rq(arg->src_cpu);
3488 dst_rq = cpu_rq(arg->dst_cpu);
3489
3490 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3491 guard(double_rq_lock)(src_rq, dst_rq);
3492
3493 if (task_cpu(arg->dst_task) != arg->dst_cpu)
3494 return -EAGAIN;
3495
3496 if (task_cpu(arg->src_task) != arg->src_cpu)
3497 return -EAGAIN;
3498
3499 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3500 return -EAGAIN;
3501
3502 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3503 return -EAGAIN;
3504
3505 __migrate_swap_task(arg->src_task, arg->dst_cpu);
3506 __migrate_swap_task(arg->dst_task, arg->src_cpu);
3507
3508 return 0;
3509 }
3510
3511 /*
3512 * Cross migrate two tasks
3513 */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)3514 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3515 int target_cpu, int curr_cpu)
3516 {
3517 struct migration_swap_arg arg;
3518 int ret = -EINVAL;
3519
3520 arg = (struct migration_swap_arg){
3521 .src_task = cur,
3522 .src_cpu = curr_cpu,
3523 .dst_task = p,
3524 .dst_cpu = target_cpu,
3525 };
3526
3527 if (arg.src_cpu == arg.dst_cpu)
3528 goto out;
3529
3530 /*
3531 * These three tests are all lockless; this is OK since all of them
3532 * will be re-checked with proper locks held further down the line.
3533 */
3534 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3535 goto out;
3536
3537 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3538 goto out;
3539
3540 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3541 goto out;
3542
3543 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3544 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3545
3546 out:
3547 return ret;
3548 }
3549 #endif /* CONFIG_NUMA_BALANCING */
3550
3551 /***
3552 * kick_process - kick a running thread to enter/exit the kernel
3553 * @p: the to-be-kicked thread
3554 *
3555 * Cause a process which is running on another CPU to enter
3556 * kernel-mode, without any delay. (to get signals handled.)
3557 *
3558 * NOTE: this function doesn't have to take the runqueue lock,
3559 * because all it wants to ensure is that the remote task enters
3560 * the kernel. If the IPI races and the task has been migrated
3561 * to another CPU then no harm is done and the purpose has been
3562 * achieved as well.
3563 */
kick_process(struct task_struct * p)3564 void kick_process(struct task_struct *p)
3565 {
3566 int cpu;
3567
3568 preempt_disable();
3569 cpu = task_cpu(p);
3570 if ((cpu != smp_processor_id()) && task_curr(p))
3571 smp_send_reschedule(cpu);
3572 preempt_enable();
3573 }
3574 EXPORT_SYMBOL_GPL(kick_process);
3575
3576 /*
3577 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3578 *
3579 * A few notes on cpu_active vs cpu_online:
3580 *
3581 * - cpu_active must be a subset of cpu_online
3582 *
3583 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3584 * see __set_cpus_allowed_ptr(). At this point the newly online
3585 * CPU isn't yet part of the sched domains, and balancing will not
3586 * see it.
3587 *
3588 * - on CPU-down we clear cpu_active() to mask the sched domains and
3589 * avoid the load balancer to place new tasks on the to be removed
3590 * CPU. Existing tasks will remain running there and will be taken
3591 * off.
3592 *
3593 * This means that fallback selection must not select !active CPUs.
3594 * And can assume that any active CPU must be online. Conversely
3595 * select_task_rq() below may allow selection of !active CPUs in order
3596 * to satisfy the above rules.
3597 */
select_fallback_rq(int cpu,struct task_struct * p)3598 static int select_fallback_rq(int cpu, struct task_struct *p)
3599 {
3600 int nid = cpu_to_node(cpu);
3601 const struct cpumask *nodemask = NULL;
3602 enum { cpuset, possible, fail } state = cpuset;
3603 int dest_cpu;
3604
3605 /*
3606 * If the node that the CPU is on has been offlined, cpu_to_node()
3607 * will return -1. There is no CPU on the node, and we should
3608 * select the CPU on the other node.
3609 */
3610 if (nid != -1) {
3611 nodemask = cpumask_of_node(nid);
3612
3613 /* Look for allowed, online CPU in same node. */
3614 for_each_cpu(dest_cpu, nodemask) {
3615 if (is_cpu_allowed(p, dest_cpu))
3616 return dest_cpu;
3617 }
3618 }
3619
3620 for (;;) {
3621 /* Any allowed, online CPU? */
3622 for_each_cpu(dest_cpu, p->cpus_ptr) {
3623 if (!is_cpu_allowed(p, dest_cpu))
3624 continue;
3625
3626 goto out;
3627 }
3628
3629 /* No more Mr. Nice Guy. */
3630 switch (state) {
3631 case cpuset:
3632 if (cpuset_cpus_allowed_fallback(p)) {
3633 state = possible;
3634 break;
3635 }
3636 fallthrough;
3637 case possible:
3638 /*
3639 * XXX When called from select_task_rq() we only
3640 * hold p->pi_lock and again violate locking order.
3641 *
3642 * More yuck to audit.
3643 */
3644 do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3645 state = fail;
3646 break;
3647 case fail:
3648 BUG();
3649 break;
3650 }
3651 }
3652
3653 out:
3654 if (state != cpuset) {
3655 /*
3656 * Don't tell them about moving exiting tasks or
3657 * kernel threads (both mm NULL), since they never
3658 * leave kernel.
3659 */
3660 if (p->mm && printk_ratelimit()) {
3661 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3662 task_pid_nr(p), p->comm, cpu);
3663 }
3664 }
3665
3666 return dest_cpu;
3667 }
3668
3669 /*
3670 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3671 */
3672 static inline
select_task_rq(struct task_struct * p,int cpu,int wake_flags)3673 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3674 {
3675 lockdep_assert_held(&p->pi_lock);
3676
3677 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3678 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3679 else
3680 cpu = cpumask_any(p->cpus_ptr);
3681
3682 /*
3683 * In order not to call set_task_cpu() on a blocking task we need
3684 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3685 * CPU.
3686 *
3687 * Since this is common to all placement strategies, this lives here.
3688 *
3689 * [ this allows ->select_task() to simply return task_cpu(p) and
3690 * not worry about this generic constraint ]
3691 */
3692 if (unlikely(!is_cpu_allowed(p, cpu)))
3693 cpu = select_fallback_rq(task_cpu(p), p);
3694
3695 return cpu;
3696 }
3697
sched_set_stop_task(int cpu,struct task_struct * stop)3698 void sched_set_stop_task(int cpu, struct task_struct *stop)
3699 {
3700 static struct lock_class_key stop_pi_lock;
3701 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3702 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3703
3704 if (stop) {
3705 /*
3706 * Make it appear like a SCHED_FIFO task, its something
3707 * userspace knows about and won't get confused about.
3708 *
3709 * Also, it will make PI more or less work without too
3710 * much confusion -- but then, stop work should not
3711 * rely on PI working anyway.
3712 */
3713 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
3714
3715 stop->sched_class = &stop_sched_class;
3716
3717 /*
3718 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3719 * adjust the effective priority of a task. As a result,
3720 * rt_mutex_setprio() can trigger (RT) balancing operations,
3721 * which can then trigger wakeups of the stop thread to push
3722 * around the current task.
3723 *
3724 * The stop task itself will never be part of the PI-chain, it
3725 * never blocks, therefore that ->pi_lock recursion is safe.
3726 * Tell lockdep about this by placing the stop->pi_lock in its
3727 * own class.
3728 */
3729 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3730 }
3731
3732 cpu_rq(cpu)->stop = stop;
3733
3734 if (old_stop) {
3735 /*
3736 * Reset it back to a normal scheduling class so that
3737 * it can die in pieces.
3738 */
3739 old_stop->sched_class = &rt_sched_class;
3740 }
3741 }
3742
3743 #else /* CONFIG_SMP */
3744
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)3745 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3746 struct affinity_context *ctx)
3747 {
3748 return set_cpus_allowed_ptr(p, ctx->new_mask);
3749 }
3750
migrate_disable_switch(struct rq * rq,struct task_struct * p)3751 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3752
rq_has_pinned_tasks(struct rq * rq)3753 static inline bool rq_has_pinned_tasks(struct rq *rq)
3754 {
3755 return false;
3756 }
3757
alloc_user_cpus_ptr(int node)3758 static inline cpumask_t *alloc_user_cpus_ptr(int node)
3759 {
3760 return NULL;
3761 }
3762
3763 #endif /* !CONFIG_SMP */
3764
3765 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)3766 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3767 {
3768 struct rq *rq;
3769
3770 if (!schedstat_enabled())
3771 return;
3772
3773 rq = this_rq();
3774
3775 #ifdef CONFIG_SMP
3776 if (cpu == rq->cpu) {
3777 __schedstat_inc(rq->ttwu_local);
3778 __schedstat_inc(p->stats.nr_wakeups_local);
3779 } else {
3780 struct sched_domain *sd;
3781
3782 __schedstat_inc(p->stats.nr_wakeups_remote);
3783
3784 guard(rcu)();
3785 for_each_domain(rq->cpu, sd) {
3786 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3787 __schedstat_inc(sd->ttwu_wake_remote);
3788 break;
3789 }
3790 }
3791 }
3792
3793 if (wake_flags & WF_MIGRATED)
3794 __schedstat_inc(p->stats.nr_wakeups_migrate);
3795 #endif /* CONFIG_SMP */
3796
3797 __schedstat_inc(rq->ttwu_count);
3798 __schedstat_inc(p->stats.nr_wakeups);
3799
3800 if (wake_flags & WF_SYNC)
3801 __schedstat_inc(p->stats.nr_wakeups_sync);
3802 }
3803
3804 /*
3805 * Mark the task runnable.
3806 */
ttwu_do_wakeup(struct task_struct * p)3807 static inline void ttwu_do_wakeup(struct task_struct *p)
3808 {
3809 WRITE_ONCE(p->__state, TASK_RUNNING);
3810 trace_sched_wakeup(p);
3811 }
3812
3813 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)3814 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3815 struct rq_flags *rf)
3816 {
3817 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3818
3819 lockdep_assert_rq_held(rq);
3820
3821 if (p->sched_contributes_to_load)
3822 rq->nr_uninterruptible--;
3823
3824 #ifdef CONFIG_SMP
3825 if (wake_flags & WF_MIGRATED)
3826 en_flags |= ENQUEUE_MIGRATED;
3827 else
3828 #endif
3829 if (p->in_iowait) {
3830 delayacct_blkio_end(p);
3831 atomic_dec(&task_rq(p)->nr_iowait);
3832 }
3833
3834 activate_task(rq, p, en_flags);
3835 check_preempt_curr(rq, p, wake_flags);
3836
3837 ttwu_do_wakeup(p);
3838
3839 #ifdef CONFIG_SMP
3840 if (p->sched_class->task_woken) {
3841 /*
3842 * Our task @p is fully woken up and running; so it's safe to
3843 * drop the rq->lock, hereafter rq is only used for statistics.
3844 */
3845 rq_unpin_lock(rq, rf);
3846 p->sched_class->task_woken(rq, p);
3847 rq_repin_lock(rq, rf);
3848 }
3849
3850 if (rq->idle_stamp) {
3851 u64 delta = rq_clock(rq) - rq->idle_stamp;
3852 u64 max = 2*rq->max_idle_balance_cost;
3853
3854 update_avg(&rq->avg_idle, delta);
3855
3856 if (rq->avg_idle > max)
3857 rq->avg_idle = max;
3858
3859 rq->wake_stamp = jiffies;
3860 rq->wake_avg_idle = rq->avg_idle / 2;
3861
3862 rq->idle_stamp = 0;
3863 }
3864 #endif
3865 }
3866
3867 /*
3868 * Consider @p being inside a wait loop:
3869 *
3870 * for (;;) {
3871 * set_current_state(TASK_UNINTERRUPTIBLE);
3872 *
3873 * if (CONDITION)
3874 * break;
3875 *
3876 * schedule();
3877 * }
3878 * __set_current_state(TASK_RUNNING);
3879 *
3880 * between set_current_state() and schedule(). In this case @p is still
3881 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3882 * an atomic manner.
3883 *
3884 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3885 * then schedule() must still happen and p->state can be changed to
3886 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3887 * need to do a full wakeup with enqueue.
3888 *
3889 * Returns: %true when the wakeup is done,
3890 * %false otherwise.
3891 */
ttwu_runnable(struct task_struct * p,int wake_flags)3892 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3893 {
3894 struct rq_flags rf;
3895 struct rq *rq;
3896 int ret = 0;
3897
3898 rq = __task_rq_lock(p, &rf);
3899 if (task_on_rq_queued(p)) {
3900 if (!task_on_cpu(rq, p)) {
3901 /*
3902 * When on_rq && !on_cpu the task is preempted, see if
3903 * it should preempt the task that is current now.
3904 */
3905 update_rq_clock(rq);
3906 check_preempt_curr(rq, p, wake_flags);
3907 }
3908 ttwu_do_wakeup(p);
3909 ret = 1;
3910 }
3911 __task_rq_unlock(rq, &rf);
3912
3913 return ret;
3914 }
3915
3916 #ifdef CONFIG_SMP
sched_ttwu_pending(void * arg)3917 void sched_ttwu_pending(void *arg)
3918 {
3919 struct llist_node *llist = arg;
3920 struct rq *rq = this_rq();
3921 struct task_struct *p, *t;
3922 struct rq_flags rf;
3923
3924 if (!llist)
3925 return;
3926
3927 rq_lock_irqsave(rq, &rf);
3928 update_rq_clock(rq);
3929
3930 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3931 if (WARN_ON_ONCE(p->on_cpu))
3932 smp_cond_load_acquire(&p->on_cpu, !VAL);
3933
3934 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3935 set_task_cpu(p, cpu_of(rq));
3936
3937 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3938 }
3939
3940 /*
3941 * Must be after enqueueing at least once task such that
3942 * idle_cpu() does not observe a false-negative -- if it does,
3943 * it is possible for select_idle_siblings() to stack a number
3944 * of tasks on this CPU during that window.
3945 *
3946 * It is ok to clear ttwu_pending when another task pending.
3947 * We will receive IPI after local irq enabled and then enqueue it.
3948 * Since now nr_running > 0, idle_cpu() will always get correct result.
3949 */
3950 WRITE_ONCE(rq->ttwu_pending, 0);
3951 rq_unlock_irqrestore(rq, &rf);
3952 }
3953
3954 /*
3955 * Prepare the scene for sending an IPI for a remote smp_call
3956 *
3957 * Returns true if the caller can proceed with sending the IPI.
3958 * Returns false otherwise.
3959 */
call_function_single_prep_ipi(int cpu)3960 bool call_function_single_prep_ipi(int cpu)
3961 {
3962 if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3963 trace_sched_wake_idle_without_ipi(cpu);
3964 return false;
3965 }
3966
3967 return true;
3968 }
3969
3970 /*
3971 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3972 * necessary. The wakee CPU on receipt of the IPI will queue the task
3973 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3974 * of the wakeup instead of the waker.
3975 */
__ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3976 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3977 {
3978 struct rq *rq = cpu_rq(cpu);
3979
3980 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3981
3982 WRITE_ONCE(rq->ttwu_pending, 1);
3983 __smp_call_single_queue(cpu, &p->wake_entry.llist);
3984 }
3985
wake_up_if_idle(int cpu)3986 void wake_up_if_idle(int cpu)
3987 {
3988 struct rq *rq = cpu_rq(cpu);
3989
3990 guard(rcu)();
3991 if (is_idle_task(rcu_dereference(rq->curr))) {
3992 guard(rq_lock_irqsave)(rq);
3993 if (is_idle_task(rq->curr))
3994 resched_curr(rq);
3995 }
3996 }
3997
cpus_share_cache(int this_cpu,int that_cpu)3998 bool cpus_share_cache(int this_cpu, int that_cpu)
3999 {
4000 if (this_cpu == that_cpu)
4001 return true;
4002
4003 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
4004 }
4005
ttwu_queue_cond(struct task_struct * p,int cpu)4006 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
4007 {
4008 /*
4009 * Do not complicate things with the async wake_list while the CPU is
4010 * in hotplug state.
4011 */
4012 if (!cpu_active(cpu))
4013 return false;
4014
4015 /* Ensure the task will still be allowed to run on the CPU. */
4016 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
4017 return false;
4018
4019 /*
4020 * If the CPU does not share cache, then queue the task on the
4021 * remote rqs wakelist to avoid accessing remote data.
4022 */
4023 if (!cpus_share_cache(smp_processor_id(), cpu))
4024 return true;
4025
4026 if (cpu == smp_processor_id())
4027 return false;
4028
4029 /*
4030 * If the wakee cpu is idle, or the task is descheduling and the
4031 * only running task on the CPU, then use the wakelist to offload
4032 * the task activation to the idle (or soon-to-be-idle) CPU as
4033 * the current CPU is likely busy. nr_running is checked to
4034 * avoid unnecessary task stacking.
4035 *
4036 * Note that we can only get here with (wakee) p->on_rq=0,
4037 * p->on_cpu can be whatever, we've done the dequeue, so
4038 * the wakee has been accounted out of ->nr_running.
4039 */
4040 if (!cpu_rq(cpu)->nr_running)
4041 return true;
4042
4043 return false;
4044 }
4045
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)4046 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4047 {
4048 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
4049 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
4050 __ttwu_queue_wakelist(p, cpu, wake_flags);
4051 return true;
4052 }
4053
4054 return false;
4055 }
4056
4057 #else /* !CONFIG_SMP */
4058
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)4059 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4060 {
4061 return false;
4062 }
4063
4064 #endif /* CONFIG_SMP */
4065
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)4066 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
4067 {
4068 struct rq *rq = cpu_rq(cpu);
4069 struct rq_flags rf;
4070
4071 if (ttwu_queue_wakelist(p, cpu, wake_flags))
4072 return;
4073
4074 rq_lock(rq, &rf);
4075 update_rq_clock(rq);
4076 ttwu_do_activate(rq, p, wake_flags, &rf);
4077 rq_unlock(rq, &rf);
4078 }
4079
4080 /*
4081 * Invoked from try_to_wake_up() to check whether the task can be woken up.
4082 *
4083 * The caller holds p::pi_lock if p != current or has preemption
4084 * disabled when p == current.
4085 *
4086 * The rules of PREEMPT_RT saved_state:
4087 *
4088 * The related locking code always holds p::pi_lock when updating
4089 * p::saved_state, which means the code is fully serialized in both cases.
4090 *
4091 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
4092 * bits set. This allows to distinguish all wakeup scenarios.
4093 */
4094 static __always_inline
ttwu_state_match(struct task_struct * p,unsigned int state,int * success)4095 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4096 {
4097 int match;
4098
4099 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4100 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4101 state != TASK_RTLOCK_WAIT);
4102 }
4103
4104 *success = !!(match = __task_state_match(p, state));
4105
4106 #ifdef CONFIG_PREEMPT_RT
4107 /*
4108 * Saved state preserves the task state across blocking on
4109 * an RT lock. If the state matches, set p::saved_state to
4110 * TASK_RUNNING, but do not wake the task because it waits
4111 * for a lock wakeup. Also indicate success because from
4112 * the regular waker's point of view this has succeeded.
4113 *
4114 * After acquiring the lock the task will restore p::__state
4115 * from p::saved_state which ensures that the regular
4116 * wakeup is not lost. The restore will also set
4117 * p::saved_state to TASK_RUNNING so any further tests will
4118 * not result in false positives vs. @success
4119 */
4120 if (match < 0)
4121 p->saved_state = TASK_RUNNING;
4122 #endif
4123 return match > 0;
4124 }
4125
4126 /*
4127 * Notes on Program-Order guarantees on SMP systems.
4128 *
4129 * MIGRATION
4130 *
4131 * The basic program-order guarantee on SMP systems is that when a task [t]
4132 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4133 * execution on its new CPU [c1].
4134 *
4135 * For migration (of runnable tasks) this is provided by the following means:
4136 *
4137 * A) UNLOCK of the rq(c0)->lock scheduling out task t
4138 * B) migration for t is required to synchronize *both* rq(c0)->lock and
4139 * rq(c1)->lock (if not at the same time, then in that order).
4140 * C) LOCK of the rq(c1)->lock scheduling in task
4141 *
4142 * Release/acquire chaining guarantees that B happens after A and C after B.
4143 * Note: the CPU doing B need not be c0 or c1
4144 *
4145 * Example:
4146 *
4147 * CPU0 CPU1 CPU2
4148 *
4149 * LOCK rq(0)->lock
4150 * sched-out X
4151 * sched-in Y
4152 * UNLOCK rq(0)->lock
4153 *
4154 * LOCK rq(0)->lock // orders against CPU0
4155 * dequeue X
4156 * UNLOCK rq(0)->lock
4157 *
4158 * LOCK rq(1)->lock
4159 * enqueue X
4160 * UNLOCK rq(1)->lock
4161 *
4162 * LOCK rq(1)->lock // orders against CPU2
4163 * sched-out Z
4164 * sched-in X
4165 * UNLOCK rq(1)->lock
4166 *
4167 *
4168 * BLOCKING -- aka. SLEEP + WAKEUP
4169 *
4170 * For blocking we (obviously) need to provide the same guarantee as for
4171 * migration. However the means are completely different as there is no lock
4172 * chain to provide order. Instead we do:
4173 *
4174 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
4175 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4176 *
4177 * Example:
4178 *
4179 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
4180 *
4181 * LOCK rq(0)->lock LOCK X->pi_lock
4182 * dequeue X
4183 * sched-out X
4184 * smp_store_release(X->on_cpu, 0);
4185 *
4186 * smp_cond_load_acquire(&X->on_cpu, !VAL);
4187 * X->state = WAKING
4188 * set_task_cpu(X,2)
4189 *
4190 * LOCK rq(2)->lock
4191 * enqueue X
4192 * X->state = RUNNING
4193 * UNLOCK rq(2)->lock
4194 *
4195 * LOCK rq(2)->lock // orders against CPU1
4196 * sched-out Z
4197 * sched-in X
4198 * UNLOCK rq(2)->lock
4199 *
4200 * UNLOCK X->pi_lock
4201 * UNLOCK rq(0)->lock
4202 *
4203 *
4204 * However, for wakeups there is a second guarantee we must provide, namely we
4205 * must ensure that CONDITION=1 done by the caller can not be reordered with
4206 * accesses to the task state; see try_to_wake_up() and set_current_state().
4207 */
4208
4209 /**
4210 * try_to_wake_up - wake up a thread
4211 * @p: the thread to be awakened
4212 * @state: the mask of task states that can be woken
4213 * @wake_flags: wake modifier flags (WF_*)
4214 *
4215 * Conceptually does:
4216 *
4217 * If (@state & @p->state) @p->state = TASK_RUNNING.
4218 *
4219 * If the task was not queued/runnable, also place it back on a runqueue.
4220 *
4221 * This function is atomic against schedule() which would dequeue the task.
4222 *
4223 * It issues a full memory barrier before accessing @p->state, see the comment
4224 * with set_current_state().
4225 *
4226 * Uses p->pi_lock to serialize against concurrent wake-ups.
4227 *
4228 * Relies on p->pi_lock stabilizing:
4229 * - p->sched_class
4230 * - p->cpus_ptr
4231 * - p->sched_task_group
4232 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4233 *
4234 * Tries really hard to only take one task_rq(p)->lock for performance.
4235 * Takes rq->lock in:
4236 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
4237 * - ttwu_queue() -- new rq, for enqueue of the task;
4238 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4239 *
4240 * As a consequence we race really badly with just about everything. See the
4241 * many memory barriers and their comments for details.
4242 *
4243 * Return: %true if @p->state changes (an actual wakeup was done),
4244 * %false otherwise.
4245 */
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)4246 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4247 {
4248 guard(preempt)();
4249 int cpu, success = 0;
4250
4251 if (p == current) {
4252 /*
4253 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4254 * == smp_processor_id()'. Together this means we can special
4255 * case the whole 'p->on_rq && ttwu_runnable()' case below
4256 * without taking any locks.
4257 *
4258 * In particular:
4259 * - we rely on Program-Order guarantees for all the ordering,
4260 * - we're serialized against set_special_state() by virtue of
4261 * it disabling IRQs (this allows not taking ->pi_lock).
4262 */
4263 if (!ttwu_state_match(p, state, &success))
4264 goto out;
4265
4266 trace_sched_waking(p);
4267 ttwu_do_wakeup(p);
4268 goto out;
4269 }
4270
4271 /*
4272 * If we are going to wake up a thread waiting for CONDITION we
4273 * need to ensure that CONDITION=1 done by the caller can not be
4274 * reordered with p->state check below. This pairs with smp_store_mb()
4275 * in set_current_state() that the waiting thread does.
4276 */
4277 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4278 smp_mb__after_spinlock();
4279 if (!ttwu_state_match(p, state, &success))
4280 break;
4281
4282 trace_sched_waking(p);
4283
4284 /*
4285 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4286 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4287 * in smp_cond_load_acquire() below.
4288 *
4289 * sched_ttwu_pending() try_to_wake_up()
4290 * STORE p->on_rq = 1 LOAD p->state
4291 * UNLOCK rq->lock
4292 *
4293 * __schedule() (switch to task 'p')
4294 * LOCK rq->lock smp_rmb();
4295 * smp_mb__after_spinlock();
4296 * UNLOCK rq->lock
4297 *
4298 * [task p]
4299 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
4300 *
4301 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4302 * __schedule(). See the comment for smp_mb__after_spinlock().
4303 *
4304 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4305 */
4306 smp_rmb();
4307 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4308 break;
4309
4310 #ifdef CONFIG_SMP
4311 /*
4312 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4313 * possible to, falsely, observe p->on_cpu == 0.
4314 *
4315 * One must be running (->on_cpu == 1) in order to remove oneself
4316 * from the runqueue.
4317 *
4318 * __schedule() (switch to task 'p') try_to_wake_up()
4319 * STORE p->on_cpu = 1 LOAD p->on_rq
4320 * UNLOCK rq->lock
4321 *
4322 * __schedule() (put 'p' to sleep)
4323 * LOCK rq->lock smp_rmb();
4324 * smp_mb__after_spinlock();
4325 * STORE p->on_rq = 0 LOAD p->on_cpu
4326 *
4327 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4328 * __schedule(). See the comment for smp_mb__after_spinlock().
4329 *
4330 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4331 * schedule()'s deactivate_task() has 'happened' and p will no longer
4332 * care about it's own p->state. See the comment in __schedule().
4333 */
4334 smp_acquire__after_ctrl_dep();
4335
4336 /*
4337 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4338 * == 0), which means we need to do an enqueue, change p->state to
4339 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4340 * enqueue, such as ttwu_queue_wakelist().
4341 */
4342 WRITE_ONCE(p->__state, TASK_WAKING);
4343
4344 /*
4345 * If the owning (remote) CPU is still in the middle of schedule() with
4346 * this task as prev, considering queueing p on the remote CPUs wake_list
4347 * which potentially sends an IPI instead of spinning on p->on_cpu to
4348 * let the waker make forward progress. This is safe because IRQs are
4349 * disabled and the IPI will deliver after on_cpu is cleared.
4350 *
4351 * Ensure we load task_cpu(p) after p->on_cpu:
4352 *
4353 * set_task_cpu(p, cpu);
4354 * STORE p->cpu = @cpu
4355 * __schedule() (switch to task 'p')
4356 * LOCK rq->lock
4357 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
4358 * STORE p->on_cpu = 1 LOAD p->cpu
4359 *
4360 * to ensure we observe the correct CPU on which the task is currently
4361 * scheduling.
4362 */
4363 if (smp_load_acquire(&p->on_cpu) &&
4364 ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4365 break;
4366
4367 /*
4368 * If the owning (remote) CPU is still in the middle of schedule() with
4369 * this task as prev, wait until it's done referencing the task.
4370 *
4371 * Pairs with the smp_store_release() in finish_task().
4372 *
4373 * This ensures that tasks getting woken will be fully ordered against
4374 * their previous state and preserve Program Order.
4375 */
4376 smp_cond_load_acquire(&p->on_cpu, !VAL);
4377
4378 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4379 if (task_cpu(p) != cpu) {
4380 if (p->in_iowait) {
4381 delayacct_blkio_end(p);
4382 atomic_dec(&task_rq(p)->nr_iowait);
4383 }
4384
4385 wake_flags |= WF_MIGRATED;
4386 psi_ttwu_dequeue(p);
4387 set_task_cpu(p, cpu);
4388 }
4389 #else
4390 cpu = task_cpu(p);
4391 #endif /* CONFIG_SMP */
4392
4393 ttwu_queue(p, cpu, wake_flags);
4394 }
4395 out:
4396 if (success)
4397 ttwu_stat(p, task_cpu(p), wake_flags);
4398
4399 return success;
4400 }
4401
__task_needs_rq_lock(struct task_struct * p)4402 static bool __task_needs_rq_lock(struct task_struct *p)
4403 {
4404 unsigned int state = READ_ONCE(p->__state);
4405
4406 /*
4407 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4408 * the task is blocked. Make sure to check @state since ttwu() can drop
4409 * locks at the end, see ttwu_queue_wakelist().
4410 */
4411 if (state == TASK_RUNNING || state == TASK_WAKING)
4412 return true;
4413
4414 /*
4415 * Ensure we load p->on_rq after p->__state, otherwise it would be
4416 * possible to, falsely, observe p->on_rq == 0.
4417 *
4418 * See try_to_wake_up() for a longer comment.
4419 */
4420 smp_rmb();
4421 if (p->on_rq)
4422 return true;
4423
4424 #ifdef CONFIG_SMP
4425 /*
4426 * Ensure the task has finished __schedule() and will not be referenced
4427 * anymore. Again, see try_to_wake_up() for a longer comment.
4428 */
4429 smp_rmb();
4430 smp_cond_load_acquire(&p->on_cpu, !VAL);
4431 #endif
4432
4433 return false;
4434 }
4435
4436 /**
4437 * task_call_func - Invoke a function on task in fixed state
4438 * @p: Process for which the function is to be invoked, can be @current.
4439 * @func: Function to invoke.
4440 * @arg: Argument to function.
4441 *
4442 * Fix the task in it's current state by avoiding wakeups and or rq operations
4443 * and call @func(@arg) on it. This function can use ->on_rq and task_curr()
4444 * to work out what the state is, if required. Given that @func can be invoked
4445 * with a runqueue lock held, it had better be quite lightweight.
4446 *
4447 * Returns:
4448 * Whatever @func returns
4449 */
task_call_func(struct task_struct * p,task_call_f func,void * arg)4450 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4451 {
4452 struct rq *rq = NULL;
4453 struct rq_flags rf;
4454 int ret;
4455
4456 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4457
4458 if (__task_needs_rq_lock(p))
4459 rq = __task_rq_lock(p, &rf);
4460
4461 /*
4462 * At this point the task is pinned; either:
4463 * - blocked and we're holding off wakeups (pi->lock)
4464 * - woken, and we're holding off enqueue (rq->lock)
4465 * - queued, and we're holding off schedule (rq->lock)
4466 * - running, and we're holding off de-schedule (rq->lock)
4467 *
4468 * The called function (@func) can use: task_curr(), p->on_rq and
4469 * p->__state to differentiate between these states.
4470 */
4471 ret = func(p, arg);
4472
4473 if (rq)
4474 rq_unlock(rq, &rf);
4475
4476 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4477 return ret;
4478 }
4479
4480 /**
4481 * cpu_curr_snapshot - Return a snapshot of the currently running task
4482 * @cpu: The CPU on which to snapshot the task.
4483 *
4484 * Returns the task_struct pointer of the task "currently" running on
4485 * the specified CPU. If the same task is running on that CPU throughout,
4486 * the return value will be a pointer to that task's task_struct structure.
4487 * If the CPU did any context switches even vaguely concurrently with the
4488 * execution of this function, the return value will be a pointer to the
4489 * task_struct structure of a randomly chosen task that was running on
4490 * that CPU somewhere around the time that this function was executing.
4491 *
4492 * If the specified CPU was offline, the return value is whatever it
4493 * is, perhaps a pointer to the task_struct structure of that CPU's idle
4494 * task, but there is no guarantee. Callers wishing a useful return
4495 * value must take some action to ensure that the specified CPU remains
4496 * online throughout.
4497 *
4498 * This function executes full memory barriers before and after fetching
4499 * the pointer, which permits the caller to confine this function's fetch
4500 * with respect to the caller's accesses to other shared variables.
4501 */
cpu_curr_snapshot(int cpu)4502 struct task_struct *cpu_curr_snapshot(int cpu)
4503 {
4504 struct task_struct *t;
4505
4506 smp_mb(); /* Pairing determined by caller's synchronization design. */
4507 t = rcu_dereference(cpu_curr(cpu));
4508 smp_mb(); /* Pairing determined by caller's synchronization design. */
4509 return t;
4510 }
4511
4512 /**
4513 * wake_up_process - Wake up a specific process
4514 * @p: The process to be woken up.
4515 *
4516 * Attempt to wake up the nominated process and move it to the set of runnable
4517 * processes.
4518 *
4519 * Return: 1 if the process was woken up, 0 if it was already running.
4520 *
4521 * This function executes a full memory barrier before accessing the task state.
4522 */
wake_up_process(struct task_struct * p)4523 int wake_up_process(struct task_struct *p)
4524 {
4525 return try_to_wake_up(p, TASK_NORMAL, 0);
4526 }
4527 EXPORT_SYMBOL(wake_up_process);
4528
wake_up_state(struct task_struct * p,unsigned int state)4529 int wake_up_state(struct task_struct *p, unsigned int state)
4530 {
4531 return try_to_wake_up(p, state, 0);
4532 }
4533
4534 /*
4535 * Perform scheduler related setup for a newly forked process p.
4536 * p is forked by current.
4537 *
4538 * __sched_fork() is basic setup used by init_idle() too:
4539 */
__sched_fork(unsigned long clone_flags,struct task_struct * p)4540 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4541 {
4542 p->on_rq = 0;
4543
4544 p->se.on_rq = 0;
4545 p->se.exec_start = 0;
4546 p->se.sum_exec_runtime = 0;
4547 p->se.prev_sum_exec_runtime = 0;
4548 p->se.nr_migrations = 0;
4549 p->se.vruntime = 0;
4550 p->se.vlag = 0;
4551 p->se.slice = sysctl_sched_base_slice;
4552 INIT_LIST_HEAD(&p->se.group_node);
4553
4554 #ifdef CONFIG_FAIR_GROUP_SCHED
4555 p->se.cfs_rq = NULL;
4556 #endif
4557
4558 #ifdef CONFIG_SCHEDSTATS
4559 /* Even if schedstat is disabled, there should not be garbage */
4560 memset(&p->stats, 0, sizeof(p->stats));
4561 #endif
4562
4563 RB_CLEAR_NODE(&p->dl.rb_node);
4564 init_dl_task_timer(&p->dl);
4565 init_dl_inactive_task_timer(&p->dl);
4566 __dl_clear_params(p);
4567
4568 INIT_LIST_HEAD(&p->rt.run_list);
4569 p->rt.timeout = 0;
4570 p->rt.time_slice = sched_rr_timeslice;
4571 p->rt.on_rq = 0;
4572 p->rt.on_list = 0;
4573
4574 #ifdef CONFIG_PREEMPT_NOTIFIERS
4575 INIT_HLIST_HEAD(&p->preempt_notifiers);
4576 #endif
4577
4578 #ifdef CONFIG_COMPACTION
4579 p->capture_control = NULL;
4580 #endif
4581 init_numa_balancing(clone_flags, p);
4582 #ifdef CONFIG_SMP
4583 p->wake_entry.u_flags = CSD_TYPE_TTWU;
4584 p->migration_pending = NULL;
4585 #endif
4586 init_sched_mm_cid(p);
4587 }
4588
4589 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4590
4591 #ifdef CONFIG_NUMA_BALANCING
4592
4593 int sysctl_numa_balancing_mode;
4594
__set_numabalancing_state(bool enabled)4595 static void __set_numabalancing_state(bool enabled)
4596 {
4597 if (enabled)
4598 static_branch_enable(&sched_numa_balancing);
4599 else
4600 static_branch_disable(&sched_numa_balancing);
4601 }
4602
set_numabalancing_state(bool enabled)4603 void set_numabalancing_state(bool enabled)
4604 {
4605 if (enabled)
4606 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4607 else
4608 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4609 __set_numabalancing_state(enabled);
4610 }
4611
4612 #ifdef CONFIG_PROC_SYSCTL
reset_memory_tiering(void)4613 static void reset_memory_tiering(void)
4614 {
4615 struct pglist_data *pgdat;
4616
4617 for_each_online_pgdat(pgdat) {
4618 pgdat->nbp_threshold = 0;
4619 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4620 pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4621 }
4622 }
4623
sysctl_numa_balancing(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4624 static int sysctl_numa_balancing(struct ctl_table *table, int write,
4625 void *buffer, size_t *lenp, loff_t *ppos)
4626 {
4627 struct ctl_table t;
4628 int err;
4629 int state = sysctl_numa_balancing_mode;
4630
4631 if (write && !capable(CAP_SYS_ADMIN))
4632 return -EPERM;
4633
4634 t = *table;
4635 t.data = &state;
4636 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4637 if (err < 0)
4638 return err;
4639 if (write) {
4640 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4641 (state & NUMA_BALANCING_MEMORY_TIERING))
4642 reset_memory_tiering();
4643 sysctl_numa_balancing_mode = state;
4644 __set_numabalancing_state(state);
4645 }
4646 return err;
4647 }
4648 #endif
4649 #endif
4650
4651 #ifdef CONFIG_SCHEDSTATS
4652
4653 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4654
set_schedstats(bool enabled)4655 static void set_schedstats(bool enabled)
4656 {
4657 if (enabled)
4658 static_branch_enable(&sched_schedstats);
4659 else
4660 static_branch_disable(&sched_schedstats);
4661 }
4662
force_schedstat_enabled(void)4663 void force_schedstat_enabled(void)
4664 {
4665 if (!schedstat_enabled()) {
4666 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4667 static_branch_enable(&sched_schedstats);
4668 }
4669 }
4670
setup_schedstats(char * str)4671 static int __init setup_schedstats(char *str)
4672 {
4673 int ret = 0;
4674 if (!str)
4675 goto out;
4676
4677 if (!strcmp(str, "enable")) {
4678 set_schedstats(true);
4679 ret = 1;
4680 } else if (!strcmp(str, "disable")) {
4681 set_schedstats(false);
4682 ret = 1;
4683 }
4684 out:
4685 if (!ret)
4686 pr_warn("Unable to parse schedstats=\n");
4687
4688 return ret;
4689 }
4690 __setup("schedstats=", setup_schedstats);
4691
4692 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4693 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4694 size_t *lenp, loff_t *ppos)
4695 {
4696 struct ctl_table t;
4697 int err;
4698 int state = static_branch_likely(&sched_schedstats);
4699
4700 if (write && !capable(CAP_SYS_ADMIN))
4701 return -EPERM;
4702
4703 t = *table;
4704 t.data = &state;
4705 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4706 if (err < 0)
4707 return err;
4708 if (write)
4709 set_schedstats(state);
4710 return err;
4711 }
4712 #endif /* CONFIG_PROC_SYSCTL */
4713 #endif /* CONFIG_SCHEDSTATS */
4714
4715 #ifdef CONFIG_SYSCTL
4716 static struct ctl_table sched_core_sysctls[] = {
4717 #ifdef CONFIG_SCHEDSTATS
4718 {
4719 .procname = "sched_schedstats",
4720 .data = NULL,
4721 .maxlen = sizeof(unsigned int),
4722 .mode = 0644,
4723 .proc_handler = sysctl_schedstats,
4724 .extra1 = SYSCTL_ZERO,
4725 .extra2 = SYSCTL_ONE,
4726 },
4727 #endif /* CONFIG_SCHEDSTATS */
4728 #ifdef CONFIG_UCLAMP_TASK
4729 {
4730 .procname = "sched_util_clamp_min",
4731 .data = &sysctl_sched_uclamp_util_min,
4732 .maxlen = sizeof(unsigned int),
4733 .mode = 0644,
4734 .proc_handler = sysctl_sched_uclamp_handler,
4735 },
4736 {
4737 .procname = "sched_util_clamp_max",
4738 .data = &sysctl_sched_uclamp_util_max,
4739 .maxlen = sizeof(unsigned int),
4740 .mode = 0644,
4741 .proc_handler = sysctl_sched_uclamp_handler,
4742 },
4743 {
4744 .procname = "sched_util_clamp_min_rt_default",
4745 .data = &sysctl_sched_uclamp_util_min_rt_default,
4746 .maxlen = sizeof(unsigned int),
4747 .mode = 0644,
4748 .proc_handler = sysctl_sched_uclamp_handler,
4749 },
4750 #endif /* CONFIG_UCLAMP_TASK */
4751 #ifdef CONFIG_NUMA_BALANCING
4752 {
4753 .procname = "numa_balancing",
4754 .data = NULL, /* filled in by handler */
4755 .maxlen = sizeof(unsigned int),
4756 .mode = 0644,
4757 .proc_handler = sysctl_numa_balancing,
4758 .extra1 = SYSCTL_ZERO,
4759 .extra2 = SYSCTL_FOUR,
4760 },
4761 #endif /* CONFIG_NUMA_BALANCING */
4762 {}
4763 };
sched_core_sysctl_init(void)4764 static int __init sched_core_sysctl_init(void)
4765 {
4766 register_sysctl_init("kernel", sched_core_sysctls);
4767 return 0;
4768 }
4769 late_initcall(sched_core_sysctl_init);
4770 #endif /* CONFIG_SYSCTL */
4771
4772 /*
4773 * fork()/clone()-time setup:
4774 */
sched_fork(unsigned long clone_flags,struct task_struct * p)4775 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4776 {
4777 __sched_fork(clone_flags, p);
4778 /*
4779 * We mark the process as NEW here. This guarantees that
4780 * nobody will actually run it, and a signal or other external
4781 * event cannot wake it up and insert it on the runqueue either.
4782 */
4783 p->__state = TASK_NEW;
4784
4785 /*
4786 * Make sure we do not leak PI boosting priority to the child.
4787 */
4788 p->prio = current->normal_prio;
4789
4790 #ifdef CONFIG_SCHED_LATENCY_NICE
4791 /* Propagate the parent's latency requirements to the child as well */
4792 p->latency_prio = current->latency_prio;
4793 #endif
4794
4795 uclamp_fork(p);
4796
4797 /*
4798 * Revert to default priority/policy on fork if requested.
4799 */
4800 if (unlikely(p->sched_reset_on_fork)) {
4801 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4802 p->policy = SCHED_NORMAL;
4803 p->static_prio = NICE_TO_PRIO(0);
4804 p->rt_priority = 0;
4805 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4806 p->static_prio = NICE_TO_PRIO(0);
4807
4808 p->prio = p->normal_prio = p->static_prio;
4809 set_load_weight(p, false);
4810
4811 #ifdef CONFIG_SCHED_LATENCY_NICE
4812 p->latency_prio = NICE_TO_LATENCY(0);
4813 set_latency_weight(p);
4814 #endif
4815
4816 /*
4817 * We don't need the reset flag anymore after the fork. It has
4818 * fulfilled its duty:
4819 */
4820 p->sched_reset_on_fork = 0;
4821 }
4822
4823 if (dl_prio(p->prio))
4824 return -EAGAIN;
4825 else if (rt_prio(p->prio))
4826 p->sched_class = &rt_sched_class;
4827 else
4828 p->sched_class = &fair_sched_class;
4829
4830 init_entity_runnable_average(&p->se);
4831
4832
4833 #ifdef CONFIG_SCHED_INFO
4834 if (likely(sched_info_on()))
4835 memset(&p->sched_info, 0, sizeof(p->sched_info));
4836 #endif
4837 #if defined(CONFIG_SMP)
4838 p->on_cpu = 0;
4839 #endif
4840 init_task_preempt_count(p);
4841 #ifdef CONFIG_SMP
4842 plist_node_init(&p->pushable_tasks, MAX_PRIO);
4843 RB_CLEAR_NODE(&p->pushable_dl_tasks);
4844 #endif
4845 return 0;
4846 }
4847
sched_cgroup_fork(struct task_struct * p,struct kernel_clone_args * kargs)4848 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4849 {
4850 unsigned long flags;
4851
4852 /*
4853 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4854 * required yet, but lockdep gets upset if rules are violated.
4855 */
4856 raw_spin_lock_irqsave(&p->pi_lock, flags);
4857 #ifdef CONFIG_CGROUP_SCHED
4858 if (1) {
4859 struct task_group *tg;
4860 tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4861 struct task_group, css);
4862 tg = autogroup_task_group(p, tg);
4863 p->sched_task_group = tg;
4864 }
4865 #endif
4866 rseq_migrate(p);
4867 /*
4868 * We're setting the CPU for the first time, we don't migrate,
4869 * so use __set_task_cpu().
4870 */
4871 __set_task_cpu(p, smp_processor_id());
4872 if (p->sched_class->task_fork)
4873 p->sched_class->task_fork(p);
4874 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4875 }
4876
sched_post_fork(struct task_struct * p)4877 void sched_post_fork(struct task_struct *p)
4878 {
4879 uclamp_post_fork(p);
4880 }
4881
to_ratio(u64 period,u64 runtime)4882 unsigned long to_ratio(u64 period, u64 runtime)
4883 {
4884 if (runtime == RUNTIME_INF)
4885 return BW_UNIT;
4886
4887 /*
4888 * Doing this here saves a lot of checks in all
4889 * the calling paths, and returning zero seems
4890 * safe for them anyway.
4891 */
4892 if (period == 0)
4893 return 0;
4894
4895 return div64_u64(runtime << BW_SHIFT, period);
4896 }
4897
4898 /*
4899 * wake_up_new_task - wake up a newly created task for the first time.
4900 *
4901 * This function will do some initial scheduler statistics housekeeping
4902 * that must be done for every newly created context, then puts the task
4903 * on the runqueue and wakes it.
4904 */
wake_up_new_task(struct task_struct * p)4905 void wake_up_new_task(struct task_struct *p)
4906 {
4907 struct rq_flags rf;
4908 struct rq *rq;
4909
4910 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4911 WRITE_ONCE(p->__state, TASK_RUNNING);
4912 #ifdef CONFIG_SMP
4913 /*
4914 * Fork balancing, do it here and not earlier because:
4915 * - cpus_ptr can change in the fork path
4916 * - any previously selected CPU might disappear through hotplug
4917 *
4918 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4919 * as we're not fully set-up yet.
4920 */
4921 p->recent_used_cpu = task_cpu(p);
4922 rseq_migrate(p);
4923 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4924 #endif
4925 rq = __task_rq_lock(p, &rf);
4926 update_rq_clock(rq);
4927 post_init_entity_util_avg(p);
4928
4929 activate_task(rq, p, ENQUEUE_NOCLOCK);
4930 trace_sched_wakeup_new(p);
4931 check_preempt_curr(rq, p, WF_FORK);
4932 #ifdef CONFIG_SMP
4933 if (p->sched_class->task_woken) {
4934 /*
4935 * Nothing relies on rq->lock after this, so it's fine to
4936 * drop it.
4937 */
4938 rq_unpin_lock(rq, &rf);
4939 p->sched_class->task_woken(rq, p);
4940 rq_repin_lock(rq, &rf);
4941 }
4942 #endif
4943 task_rq_unlock(rq, p, &rf);
4944 }
4945
4946 #ifdef CONFIG_PREEMPT_NOTIFIERS
4947
4948 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4949
preempt_notifier_inc(void)4950 void preempt_notifier_inc(void)
4951 {
4952 static_branch_inc(&preempt_notifier_key);
4953 }
4954 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4955
preempt_notifier_dec(void)4956 void preempt_notifier_dec(void)
4957 {
4958 static_branch_dec(&preempt_notifier_key);
4959 }
4960 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4961
4962 /**
4963 * preempt_notifier_register - tell me when current is being preempted & rescheduled
4964 * @notifier: notifier struct to register
4965 */
preempt_notifier_register(struct preempt_notifier * notifier)4966 void preempt_notifier_register(struct preempt_notifier *notifier)
4967 {
4968 if (!static_branch_unlikely(&preempt_notifier_key))
4969 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4970
4971 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
4972 }
4973 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4974
4975 /**
4976 * preempt_notifier_unregister - no longer interested in preemption notifications
4977 * @notifier: notifier struct to unregister
4978 *
4979 * This is *not* safe to call from within a preemption notifier.
4980 */
preempt_notifier_unregister(struct preempt_notifier * notifier)4981 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4982 {
4983 hlist_del(¬ifier->link);
4984 }
4985 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4986
__fire_sched_in_preempt_notifiers(struct task_struct * curr)4987 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4988 {
4989 struct preempt_notifier *notifier;
4990
4991 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4992 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4993 }
4994
fire_sched_in_preempt_notifiers(struct task_struct * curr)4995 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4996 {
4997 if (static_branch_unlikely(&preempt_notifier_key))
4998 __fire_sched_in_preempt_notifiers(curr);
4999 }
5000
5001 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)5002 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
5003 struct task_struct *next)
5004 {
5005 struct preempt_notifier *notifier;
5006
5007 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
5008 notifier->ops->sched_out(notifier, next);
5009 }
5010
5011 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)5012 fire_sched_out_preempt_notifiers(struct task_struct *curr,
5013 struct task_struct *next)
5014 {
5015 if (static_branch_unlikely(&preempt_notifier_key))
5016 __fire_sched_out_preempt_notifiers(curr, next);
5017 }
5018
5019 #else /* !CONFIG_PREEMPT_NOTIFIERS */
5020
fire_sched_in_preempt_notifiers(struct task_struct * curr)5021 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
5022 {
5023 }
5024
5025 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)5026 fire_sched_out_preempt_notifiers(struct task_struct *curr,
5027 struct task_struct *next)
5028 {
5029 }
5030
5031 #endif /* CONFIG_PREEMPT_NOTIFIERS */
5032
prepare_task(struct task_struct * next)5033 static inline void prepare_task(struct task_struct *next)
5034 {
5035 #ifdef CONFIG_SMP
5036 /*
5037 * Claim the task as running, we do this before switching to it
5038 * such that any running task will have this set.
5039 *
5040 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
5041 * its ordering comment.
5042 */
5043 WRITE_ONCE(next->on_cpu, 1);
5044 #endif
5045 }
5046
finish_task(struct task_struct * prev)5047 static inline void finish_task(struct task_struct *prev)
5048 {
5049 #ifdef CONFIG_SMP
5050 /*
5051 * This must be the very last reference to @prev from this CPU. After
5052 * p->on_cpu is cleared, the task can be moved to a different CPU. We
5053 * must ensure this doesn't happen until the switch is completely
5054 * finished.
5055 *
5056 * In particular, the load of prev->state in finish_task_switch() must
5057 * happen before this.
5058 *
5059 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5060 */
5061 smp_store_release(&prev->on_cpu, 0);
5062 #endif
5063 }
5064
5065 #ifdef CONFIG_SMP
5066
do_balance_callbacks(struct rq * rq,struct balance_callback * head)5067 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5068 {
5069 void (*func)(struct rq *rq);
5070 struct balance_callback *next;
5071
5072 lockdep_assert_rq_held(rq);
5073
5074 while (head) {
5075 func = (void (*)(struct rq *))head->func;
5076 next = head->next;
5077 head->next = NULL;
5078 head = next;
5079
5080 func(rq);
5081 }
5082 }
5083
5084 static void balance_push(struct rq *rq);
5085
5086 /*
5087 * balance_push_callback is a right abuse of the callback interface and plays
5088 * by significantly different rules.
5089 *
5090 * Where the normal balance_callback's purpose is to be ran in the same context
5091 * that queued it (only later, when it's safe to drop rq->lock again),
5092 * balance_push_callback is specifically targeted at __schedule().
5093 *
5094 * This abuse is tolerated because it places all the unlikely/odd cases behind
5095 * a single test, namely: rq->balance_callback == NULL.
5096 */
5097 struct balance_callback balance_push_callback = {
5098 .next = NULL,
5099 .func = balance_push,
5100 };
5101
5102 static inline struct balance_callback *
__splice_balance_callbacks(struct rq * rq,bool split)5103 __splice_balance_callbacks(struct rq *rq, bool split)
5104 {
5105 struct balance_callback *head = rq->balance_callback;
5106
5107 if (likely(!head))
5108 return NULL;
5109
5110 lockdep_assert_rq_held(rq);
5111 /*
5112 * Must not take balance_push_callback off the list when
5113 * splice_balance_callbacks() and balance_callbacks() are not
5114 * in the same rq->lock section.
5115 *
5116 * In that case it would be possible for __schedule() to interleave
5117 * and observe the list empty.
5118 */
5119 if (split && head == &balance_push_callback)
5120 head = NULL;
5121 else
5122 rq->balance_callback = NULL;
5123
5124 return head;
5125 }
5126
splice_balance_callbacks(struct rq * rq)5127 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5128 {
5129 return __splice_balance_callbacks(rq, true);
5130 }
5131
__balance_callbacks(struct rq * rq)5132 static void __balance_callbacks(struct rq *rq)
5133 {
5134 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5135 }
5136
balance_callbacks(struct rq * rq,struct balance_callback * head)5137 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5138 {
5139 unsigned long flags;
5140
5141 if (unlikely(head)) {
5142 raw_spin_rq_lock_irqsave(rq, flags);
5143 do_balance_callbacks(rq, head);
5144 raw_spin_rq_unlock_irqrestore(rq, flags);
5145 }
5146 }
5147
5148 #else
5149
__balance_callbacks(struct rq * rq)5150 static inline void __balance_callbacks(struct rq *rq)
5151 {
5152 }
5153
splice_balance_callbacks(struct rq * rq)5154 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5155 {
5156 return NULL;
5157 }
5158
balance_callbacks(struct rq * rq,struct balance_callback * head)5159 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5160 {
5161 }
5162
5163 #endif
5164
5165 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)5166 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5167 {
5168 /*
5169 * Since the runqueue lock will be released by the next
5170 * task (which is an invalid locking op but in the case
5171 * of the scheduler it's an obvious special-case), so we
5172 * do an early lockdep release here:
5173 */
5174 rq_unpin_lock(rq, rf);
5175 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5176 #ifdef CONFIG_DEBUG_SPINLOCK
5177 /* this is a valid case when another task releases the spinlock */
5178 rq_lockp(rq)->owner = next;
5179 #endif
5180 }
5181
finish_lock_switch(struct rq * rq)5182 static inline void finish_lock_switch(struct rq *rq)
5183 {
5184 /*
5185 * If we are tracking spinlock dependencies then we have to
5186 * fix up the runqueue lock - which gets 'carried over' from
5187 * prev into current:
5188 */
5189 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5190 __balance_callbacks(rq);
5191 raw_spin_rq_unlock_irq(rq);
5192 }
5193
5194 /*
5195 * NOP if the arch has not defined these:
5196 */
5197
5198 #ifndef prepare_arch_switch
5199 # define prepare_arch_switch(next) do { } while (0)
5200 #endif
5201
5202 #ifndef finish_arch_post_lock_switch
5203 # define finish_arch_post_lock_switch() do { } while (0)
5204 #endif
5205
kmap_local_sched_out(void)5206 static inline void kmap_local_sched_out(void)
5207 {
5208 #ifdef CONFIG_KMAP_LOCAL
5209 if (unlikely(current->kmap_ctrl.idx))
5210 __kmap_local_sched_out();
5211 #endif
5212 }
5213
kmap_local_sched_in(void)5214 static inline void kmap_local_sched_in(void)
5215 {
5216 #ifdef CONFIG_KMAP_LOCAL
5217 if (unlikely(current->kmap_ctrl.idx))
5218 __kmap_local_sched_in();
5219 #endif
5220 }
5221
5222 /**
5223 * prepare_task_switch - prepare to switch tasks
5224 * @rq: the runqueue preparing to switch
5225 * @prev: the current task that is being switched out
5226 * @next: the task we are going to switch to.
5227 *
5228 * This is called with the rq lock held and interrupts off. It must
5229 * be paired with a subsequent finish_task_switch after the context
5230 * switch.
5231 *
5232 * prepare_task_switch sets up locking and calls architecture specific
5233 * hooks.
5234 */
5235 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)5236 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5237 struct task_struct *next)
5238 {
5239 kcov_prepare_switch(prev);
5240 sched_info_switch(rq, prev, next);
5241 perf_event_task_sched_out(prev, next);
5242 rseq_preempt(prev);
5243 fire_sched_out_preempt_notifiers(prev, next);
5244 kmap_local_sched_out();
5245 prepare_task(next);
5246 prepare_arch_switch(next);
5247 }
5248
5249 /**
5250 * finish_task_switch - clean up after a task-switch
5251 * @prev: the thread we just switched away from.
5252 *
5253 * finish_task_switch must be called after the context switch, paired
5254 * with a prepare_task_switch call before the context switch.
5255 * finish_task_switch will reconcile locking set up by prepare_task_switch,
5256 * and do any other architecture-specific cleanup actions.
5257 *
5258 * Note that we may have delayed dropping an mm in context_switch(). If
5259 * so, we finish that here outside of the runqueue lock. (Doing it
5260 * with the lock held can cause deadlocks; see schedule() for
5261 * details.)
5262 *
5263 * The context switch have flipped the stack from under us and restored the
5264 * local variables which were saved when this task called schedule() in the
5265 * past. prev == current is still correct but we need to recalculate this_rq
5266 * because prev may have moved to another CPU.
5267 */
finish_task_switch(struct task_struct * prev)5268 static struct rq *finish_task_switch(struct task_struct *prev)
5269 __releases(rq->lock)
5270 {
5271 struct rq *rq = this_rq();
5272 struct mm_struct *mm = rq->prev_mm;
5273 unsigned int prev_state;
5274
5275 /*
5276 * The previous task will have left us with a preempt_count of 2
5277 * because it left us after:
5278 *
5279 * schedule()
5280 * preempt_disable(); // 1
5281 * __schedule()
5282 * raw_spin_lock_irq(&rq->lock) // 2
5283 *
5284 * Also, see FORK_PREEMPT_COUNT.
5285 */
5286 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5287 "corrupted preempt_count: %s/%d/0x%x\n",
5288 current->comm, current->pid, preempt_count()))
5289 preempt_count_set(FORK_PREEMPT_COUNT);
5290
5291 rq->prev_mm = NULL;
5292
5293 /*
5294 * A task struct has one reference for the use as "current".
5295 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5296 * schedule one last time. The schedule call will never return, and
5297 * the scheduled task must drop that reference.
5298 *
5299 * We must observe prev->state before clearing prev->on_cpu (in
5300 * finish_task), otherwise a concurrent wakeup can get prev
5301 * running on another CPU and we could rave with its RUNNING -> DEAD
5302 * transition, resulting in a double drop.
5303 */
5304 prev_state = READ_ONCE(prev->__state);
5305 vtime_task_switch(prev);
5306 perf_event_task_sched_in(prev, current);
5307 finish_task(prev);
5308 tick_nohz_task_switch();
5309 finish_lock_switch(rq);
5310 finish_arch_post_lock_switch();
5311 kcov_finish_switch(current);
5312 /*
5313 * kmap_local_sched_out() is invoked with rq::lock held and
5314 * interrupts disabled. There is no requirement for that, but the
5315 * sched out code does not have an interrupt enabled section.
5316 * Restoring the maps on sched in does not require interrupts being
5317 * disabled either.
5318 */
5319 kmap_local_sched_in();
5320
5321 fire_sched_in_preempt_notifiers(current);
5322 /*
5323 * When switching through a kernel thread, the loop in
5324 * membarrier_{private,global}_expedited() may have observed that
5325 * kernel thread and not issued an IPI. It is therefore possible to
5326 * schedule between user->kernel->user threads without passing though
5327 * switch_mm(). Membarrier requires a barrier after storing to
5328 * rq->curr, before returning to userspace, so provide them here:
5329 *
5330 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5331 * provided by mmdrop_lazy_tlb(),
5332 * - a sync_core for SYNC_CORE.
5333 */
5334 if (mm) {
5335 membarrier_mm_sync_core_before_usermode(mm);
5336 mmdrop_lazy_tlb_sched(mm);
5337 }
5338
5339 if (unlikely(prev_state == TASK_DEAD)) {
5340 if (prev->sched_class->task_dead)
5341 prev->sched_class->task_dead(prev);
5342
5343 /* Task is done with its stack. */
5344 put_task_stack(prev);
5345
5346 put_task_struct_rcu_user(prev);
5347 }
5348
5349 return rq;
5350 }
5351
5352 /**
5353 * schedule_tail - first thing a freshly forked thread must call.
5354 * @prev: the thread we just switched away from.
5355 */
schedule_tail(struct task_struct * prev)5356 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5357 __releases(rq->lock)
5358 {
5359 /*
5360 * New tasks start with FORK_PREEMPT_COUNT, see there and
5361 * finish_task_switch() for details.
5362 *
5363 * finish_task_switch() will drop rq->lock() and lower preempt_count
5364 * and the preempt_enable() will end up enabling preemption (on
5365 * PREEMPT_COUNT kernels).
5366 */
5367
5368 finish_task_switch(prev);
5369 preempt_enable();
5370
5371 if (current->set_child_tid)
5372 put_user(task_pid_vnr(current), current->set_child_tid);
5373
5374 calculate_sigpending();
5375 }
5376
5377 /*
5378 * context_switch - switch to the new MM and the new thread's register state.
5379 */
5380 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)5381 context_switch(struct rq *rq, struct task_struct *prev,
5382 struct task_struct *next, struct rq_flags *rf)
5383 {
5384 prepare_task_switch(rq, prev, next);
5385
5386 /*
5387 * For paravirt, this is coupled with an exit in switch_to to
5388 * combine the page table reload and the switch backend into
5389 * one hypercall.
5390 */
5391 arch_start_context_switch(prev);
5392
5393 /*
5394 * kernel -> kernel lazy + transfer active
5395 * user -> kernel lazy + mmgrab_lazy_tlb() active
5396 *
5397 * kernel -> user switch + mmdrop_lazy_tlb() active
5398 * user -> user switch
5399 *
5400 * switch_mm_cid() needs to be updated if the barriers provided
5401 * by context_switch() are modified.
5402 */
5403 if (!next->mm) { // to kernel
5404 enter_lazy_tlb(prev->active_mm, next);
5405
5406 next->active_mm = prev->active_mm;
5407 if (prev->mm) // from user
5408 mmgrab_lazy_tlb(prev->active_mm);
5409 else
5410 prev->active_mm = NULL;
5411 } else { // to user
5412 membarrier_switch_mm(rq, prev->active_mm, next->mm);
5413 /*
5414 * sys_membarrier() requires an smp_mb() between setting
5415 * rq->curr / membarrier_switch_mm() and returning to userspace.
5416 *
5417 * The below provides this either through switch_mm(), or in
5418 * case 'prev->active_mm == next->mm' through
5419 * finish_task_switch()'s mmdrop().
5420 */
5421 switch_mm_irqs_off(prev->active_mm, next->mm, next);
5422 lru_gen_use_mm(next->mm);
5423
5424 if (!prev->mm) { // from kernel
5425 /* will mmdrop_lazy_tlb() in finish_task_switch(). */
5426 rq->prev_mm = prev->active_mm;
5427 prev->active_mm = NULL;
5428 }
5429 }
5430
5431 /* switch_mm_cid() requires the memory barriers above. */
5432 switch_mm_cid(rq, prev, next);
5433
5434 prepare_lock_switch(rq, next, rf);
5435
5436 /* Here we just switch the register state and the stack. */
5437 switch_to(prev, next, prev);
5438 barrier();
5439
5440 return finish_task_switch(prev);
5441 }
5442
5443 /*
5444 * nr_running and nr_context_switches:
5445 *
5446 * externally visible scheduler statistics: current number of runnable
5447 * threads, total number of context switches performed since bootup.
5448 */
nr_running(void)5449 unsigned int nr_running(void)
5450 {
5451 unsigned int i, sum = 0;
5452
5453 for_each_online_cpu(i)
5454 sum += cpu_rq(i)->nr_running;
5455
5456 return sum;
5457 }
5458
5459 /*
5460 * Check if only the current task is running on the CPU.
5461 *
5462 * Caution: this function does not check that the caller has disabled
5463 * preemption, thus the result might have a time-of-check-to-time-of-use
5464 * race. The caller is responsible to use it correctly, for example:
5465 *
5466 * - from a non-preemptible section (of course)
5467 *
5468 * - from a thread that is bound to a single CPU
5469 *
5470 * - in a loop with very short iterations (e.g. a polling loop)
5471 */
single_task_running(void)5472 bool single_task_running(void)
5473 {
5474 return raw_rq()->nr_running == 1;
5475 }
5476 EXPORT_SYMBOL(single_task_running);
5477
nr_context_switches_cpu(int cpu)5478 unsigned long long nr_context_switches_cpu(int cpu)
5479 {
5480 return cpu_rq(cpu)->nr_switches;
5481 }
5482
nr_context_switches(void)5483 unsigned long long nr_context_switches(void)
5484 {
5485 int i;
5486 unsigned long long sum = 0;
5487
5488 for_each_possible_cpu(i)
5489 sum += cpu_rq(i)->nr_switches;
5490
5491 return sum;
5492 }
5493
5494 /*
5495 * Consumers of these two interfaces, like for example the cpuidle menu
5496 * governor, are using nonsensical data. Preferring shallow idle state selection
5497 * for a CPU that has IO-wait which might not even end up running the task when
5498 * it does become runnable.
5499 */
5500
nr_iowait_cpu(int cpu)5501 unsigned int nr_iowait_cpu(int cpu)
5502 {
5503 return atomic_read(&cpu_rq(cpu)->nr_iowait);
5504 }
5505
5506 /*
5507 * IO-wait accounting, and how it's mostly bollocks (on SMP).
5508 *
5509 * The idea behind IO-wait account is to account the idle time that we could
5510 * have spend running if it were not for IO. That is, if we were to improve the
5511 * storage performance, we'd have a proportional reduction in IO-wait time.
5512 *
5513 * This all works nicely on UP, where, when a task blocks on IO, we account
5514 * idle time as IO-wait, because if the storage were faster, it could've been
5515 * running and we'd not be idle.
5516 *
5517 * This has been extended to SMP, by doing the same for each CPU. This however
5518 * is broken.
5519 *
5520 * Imagine for instance the case where two tasks block on one CPU, only the one
5521 * CPU will have IO-wait accounted, while the other has regular idle. Even
5522 * though, if the storage were faster, both could've ran at the same time,
5523 * utilising both CPUs.
5524 *
5525 * This means, that when looking globally, the current IO-wait accounting on
5526 * SMP is a lower bound, by reason of under accounting.
5527 *
5528 * Worse, since the numbers are provided per CPU, they are sometimes
5529 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5530 * associated with any one particular CPU, it can wake to another CPU than it
5531 * blocked on. This means the per CPU IO-wait number is meaningless.
5532 *
5533 * Task CPU affinities can make all that even more 'interesting'.
5534 */
5535
nr_iowait(void)5536 unsigned int nr_iowait(void)
5537 {
5538 unsigned int i, sum = 0;
5539
5540 for_each_possible_cpu(i)
5541 sum += nr_iowait_cpu(i);
5542
5543 return sum;
5544 }
5545
5546 #ifdef CONFIG_SMP
5547
5548 /*
5549 * sched_exec - execve() is a valuable balancing opportunity, because at
5550 * this point the task has the smallest effective memory and cache footprint.
5551 */
sched_exec(void)5552 void sched_exec(void)
5553 {
5554 struct task_struct *p = current;
5555 struct migration_arg arg;
5556 int dest_cpu;
5557
5558 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5559 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5560 if (dest_cpu == smp_processor_id())
5561 return;
5562
5563 if (unlikely(!cpu_active(dest_cpu)))
5564 return;
5565
5566 arg = (struct migration_arg){ p, dest_cpu };
5567 }
5568 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5569 }
5570
5571 #endif
5572
5573 DEFINE_PER_CPU(struct kernel_stat, kstat);
5574 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5575
5576 EXPORT_PER_CPU_SYMBOL(kstat);
5577 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5578
5579 /*
5580 * The function fair_sched_class.update_curr accesses the struct curr
5581 * and its field curr->exec_start; when called from task_sched_runtime(),
5582 * we observe a high rate of cache misses in practice.
5583 * Prefetching this data results in improved performance.
5584 */
prefetch_curr_exec_start(struct task_struct * p)5585 static inline void prefetch_curr_exec_start(struct task_struct *p)
5586 {
5587 #ifdef CONFIG_FAIR_GROUP_SCHED
5588 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5589 #else
5590 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5591 #endif
5592 prefetch(curr);
5593 prefetch(&curr->exec_start);
5594 }
5595
5596 /*
5597 * Return accounted runtime for the task.
5598 * In case the task is currently running, return the runtime plus current's
5599 * pending runtime that have not been accounted yet.
5600 */
task_sched_runtime(struct task_struct * p)5601 unsigned long long task_sched_runtime(struct task_struct *p)
5602 {
5603 struct rq_flags rf;
5604 struct rq *rq;
5605 u64 ns;
5606
5607 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5608 /*
5609 * 64-bit doesn't need locks to atomically read a 64-bit value.
5610 * So we have a optimization chance when the task's delta_exec is 0.
5611 * Reading ->on_cpu is racy, but this is ok.
5612 *
5613 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5614 * If we race with it entering CPU, unaccounted time is 0. This is
5615 * indistinguishable from the read occurring a few cycles earlier.
5616 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5617 * been accounted, so we're correct here as well.
5618 */
5619 if (!p->on_cpu || !task_on_rq_queued(p))
5620 return p->se.sum_exec_runtime;
5621 #endif
5622
5623 rq = task_rq_lock(p, &rf);
5624 /*
5625 * Must be ->curr _and_ ->on_rq. If dequeued, we would
5626 * project cycles that may never be accounted to this
5627 * thread, breaking clock_gettime().
5628 */
5629 if (task_current(rq, p) && task_on_rq_queued(p)) {
5630 prefetch_curr_exec_start(p);
5631 update_rq_clock(rq);
5632 p->sched_class->update_curr(rq);
5633 }
5634 ns = p->se.sum_exec_runtime;
5635 task_rq_unlock(rq, p, &rf);
5636
5637 return ns;
5638 }
5639
5640 #ifdef CONFIG_SCHED_DEBUG
cpu_resched_latency(struct rq * rq)5641 static u64 cpu_resched_latency(struct rq *rq)
5642 {
5643 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5644 u64 resched_latency, now = rq_clock(rq);
5645 static bool warned_once;
5646
5647 if (sysctl_resched_latency_warn_once && warned_once)
5648 return 0;
5649
5650 if (!need_resched() || !latency_warn_ms)
5651 return 0;
5652
5653 if (system_state == SYSTEM_BOOTING)
5654 return 0;
5655
5656 if (!rq->last_seen_need_resched_ns) {
5657 rq->last_seen_need_resched_ns = now;
5658 rq->ticks_without_resched = 0;
5659 return 0;
5660 }
5661
5662 rq->ticks_without_resched++;
5663 resched_latency = now - rq->last_seen_need_resched_ns;
5664 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5665 return 0;
5666
5667 warned_once = true;
5668
5669 return resched_latency;
5670 }
5671
setup_resched_latency_warn_ms(char * str)5672 static int __init setup_resched_latency_warn_ms(char *str)
5673 {
5674 long val;
5675
5676 if ((kstrtol(str, 0, &val))) {
5677 pr_warn("Unable to set resched_latency_warn_ms\n");
5678 return 1;
5679 }
5680
5681 sysctl_resched_latency_warn_ms = val;
5682 return 1;
5683 }
5684 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5685 #else
cpu_resched_latency(struct rq * rq)5686 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5687 #endif /* CONFIG_SCHED_DEBUG */
5688
5689 /*
5690 * This function gets called by the timer code, with HZ frequency.
5691 * We call it with interrupts disabled.
5692 */
scheduler_tick(void)5693 void scheduler_tick(void)
5694 {
5695 int cpu = smp_processor_id();
5696 struct rq *rq = cpu_rq(cpu);
5697 struct task_struct *curr = rq->curr;
5698 struct rq_flags rf;
5699 unsigned long thermal_pressure;
5700 u64 resched_latency;
5701
5702 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5703 arch_scale_freq_tick();
5704
5705 sched_clock_tick();
5706
5707 rq_lock(rq, &rf);
5708
5709 update_rq_clock(rq);
5710 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5711 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5712 curr->sched_class->task_tick(rq, curr, 0);
5713 if (sched_feat(LATENCY_WARN))
5714 resched_latency = cpu_resched_latency(rq);
5715 calc_global_load_tick(rq);
5716 sched_core_tick(rq);
5717 task_tick_mm_cid(rq, curr);
5718
5719 rq_unlock(rq, &rf);
5720
5721 if (sched_feat(LATENCY_WARN) && resched_latency)
5722 resched_latency_warn(cpu, resched_latency);
5723
5724 perf_event_task_tick();
5725
5726 if (curr->flags & PF_WQ_WORKER)
5727 wq_worker_tick(curr);
5728
5729 #ifdef CONFIG_SMP
5730 rq->idle_balance = idle_cpu(cpu);
5731 trigger_load_balance(rq);
5732 #endif
5733 }
5734
5735 #ifdef CONFIG_NO_HZ_FULL
5736
5737 struct tick_work {
5738 int cpu;
5739 atomic_t state;
5740 struct delayed_work work;
5741 };
5742 /* Values for ->state, see diagram below. */
5743 #define TICK_SCHED_REMOTE_OFFLINE 0
5744 #define TICK_SCHED_REMOTE_OFFLINING 1
5745 #define TICK_SCHED_REMOTE_RUNNING 2
5746
5747 /*
5748 * State diagram for ->state:
5749 *
5750 *
5751 * TICK_SCHED_REMOTE_OFFLINE
5752 * | ^
5753 * | |
5754 * | | sched_tick_remote()
5755 * | |
5756 * | |
5757 * +--TICK_SCHED_REMOTE_OFFLINING
5758 * | ^
5759 * | |
5760 * sched_tick_start() | | sched_tick_stop()
5761 * | |
5762 * V |
5763 * TICK_SCHED_REMOTE_RUNNING
5764 *
5765 *
5766 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5767 * and sched_tick_start() are happy to leave the state in RUNNING.
5768 */
5769
5770 static struct tick_work __percpu *tick_work_cpu;
5771
sched_tick_remote(struct work_struct * work)5772 static void sched_tick_remote(struct work_struct *work)
5773 {
5774 struct delayed_work *dwork = to_delayed_work(work);
5775 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5776 int cpu = twork->cpu;
5777 struct rq *rq = cpu_rq(cpu);
5778 int os;
5779
5780 /*
5781 * Handle the tick only if it appears the remote CPU is running in full
5782 * dynticks mode. The check is racy by nature, but missing a tick or
5783 * having one too much is no big deal because the scheduler tick updates
5784 * statistics and checks timeslices in a time-independent way, regardless
5785 * of when exactly it is running.
5786 */
5787 if (tick_nohz_tick_stopped_cpu(cpu)) {
5788 guard(rq_lock_irq)(rq);
5789 struct task_struct *curr = rq->curr;
5790
5791 if (cpu_online(cpu)) {
5792 update_rq_clock(rq);
5793
5794 if (!is_idle_task(curr)) {
5795 /*
5796 * Make sure the next tick runs within a
5797 * reasonable amount of time.
5798 */
5799 u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5800 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5801 }
5802 curr->sched_class->task_tick(rq, curr, 0);
5803
5804 calc_load_nohz_remote(rq);
5805 }
5806 }
5807
5808 /*
5809 * Run the remote tick once per second (1Hz). This arbitrary
5810 * frequency is large enough to avoid overload but short enough
5811 * to keep scheduler internal stats reasonably up to date. But
5812 * first update state to reflect hotplug activity if required.
5813 */
5814 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5815 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5816 if (os == TICK_SCHED_REMOTE_RUNNING)
5817 queue_delayed_work(system_unbound_wq, dwork, HZ);
5818 }
5819
sched_tick_start(int cpu)5820 static void sched_tick_start(int cpu)
5821 {
5822 int os;
5823 struct tick_work *twork;
5824
5825 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5826 return;
5827
5828 WARN_ON_ONCE(!tick_work_cpu);
5829
5830 twork = per_cpu_ptr(tick_work_cpu, cpu);
5831 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5832 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5833 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5834 twork->cpu = cpu;
5835 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5836 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5837 }
5838 }
5839
5840 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)5841 static void sched_tick_stop(int cpu)
5842 {
5843 struct tick_work *twork;
5844 int os;
5845
5846 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5847 return;
5848
5849 WARN_ON_ONCE(!tick_work_cpu);
5850
5851 twork = per_cpu_ptr(tick_work_cpu, cpu);
5852 /* There cannot be competing actions, but don't rely on stop-machine. */
5853 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5854 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5855 /* Don't cancel, as this would mess up the state machine. */
5856 }
5857 #endif /* CONFIG_HOTPLUG_CPU */
5858
sched_tick_offload_init(void)5859 int __init sched_tick_offload_init(void)
5860 {
5861 tick_work_cpu = alloc_percpu(struct tick_work);
5862 BUG_ON(!tick_work_cpu);
5863 return 0;
5864 }
5865
5866 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)5867 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)5868 static inline void sched_tick_stop(int cpu) { }
5869 #endif
5870
5871 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5872 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5873 /*
5874 * If the value passed in is equal to the current preempt count
5875 * then we just disabled preemption. Start timing the latency.
5876 */
preempt_latency_start(int val)5877 static inline void preempt_latency_start(int val)
5878 {
5879 if (preempt_count() == val) {
5880 unsigned long ip = get_lock_parent_ip();
5881 #ifdef CONFIG_DEBUG_PREEMPT
5882 current->preempt_disable_ip = ip;
5883 #endif
5884 trace_preempt_off(CALLER_ADDR0, ip);
5885 }
5886 }
5887
preempt_count_add(int val)5888 void preempt_count_add(int val)
5889 {
5890 #ifdef CONFIG_DEBUG_PREEMPT
5891 /*
5892 * Underflow?
5893 */
5894 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5895 return;
5896 #endif
5897 __preempt_count_add(val);
5898 #ifdef CONFIG_DEBUG_PREEMPT
5899 /*
5900 * Spinlock count overflowing soon?
5901 */
5902 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5903 PREEMPT_MASK - 10);
5904 #endif
5905 preempt_latency_start(val);
5906 }
5907 EXPORT_SYMBOL(preempt_count_add);
5908 NOKPROBE_SYMBOL(preempt_count_add);
5909
5910 /*
5911 * If the value passed in equals to the current preempt count
5912 * then we just enabled preemption. Stop timing the latency.
5913 */
preempt_latency_stop(int val)5914 static inline void preempt_latency_stop(int val)
5915 {
5916 if (preempt_count() == val)
5917 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5918 }
5919
preempt_count_sub(int val)5920 void preempt_count_sub(int val)
5921 {
5922 #ifdef CONFIG_DEBUG_PREEMPT
5923 /*
5924 * Underflow?
5925 */
5926 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5927 return;
5928 /*
5929 * Is the spinlock portion underflowing?
5930 */
5931 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5932 !(preempt_count() & PREEMPT_MASK)))
5933 return;
5934 #endif
5935
5936 preempt_latency_stop(val);
5937 __preempt_count_sub(val);
5938 }
5939 EXPORT_SYMBOL(preempt_count_sub);
5940 NOKPROBE_SYMBOL(preempt_count_sub);
5941
5942 #else
preempt_latency_start(int val)5943 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)5944 static inline void preempt_latency_stop(int val) { }
5945 #endif
5946
get_preempt_disable_ip(struct task_struct * p)5947 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5948 {
5949 #ifdef CONFIG_DEBUG_PREEMPT
5950 return p->preempt_disable_ip;
5951 #else
5952 return 0;
5953 #endif
5954 }
5955
5956 /*
5957 * Print scheduling while atomic bug:
5958 */
__schedule_bug(struct task_struct * prev)5959 static noinline void __schedule_bug(struct task_struct *prev)
5960 {
5961 /* Save this before calling printk(), since that will clobber it */
5962 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5963
5964 if (oops_in_progress)
5965 return;
5966
5967 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5968 prev->comm, prev->pid, preempt_count());
5969
5970 debug_show_held_locks(prev);
5971 print_modules();
5972 if (irqs_disabled())
5973 print_irqtrace_events(prev);
5974 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5975 && in_atomic_preempt_off()) {
5976 pr_err("Preemption disabled at:");
5977 print_ip_sym(KERN_ERR, preempt_disable_ip);
5978 }
5979 check_panic_on_warn("scheduling while atomic");
5980
5981 dump_stack();
5982 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5983 }
5984
5985 /*
5986 * Various schedule()-time debugging checks and statistics:
5987 */
schedule_debug(struct task_struct * prev,bool preempt)5988 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5989 {
5990 #ifdef CONFIG_SCHED_STACK_END_CHECK
5991 if (task_stack_end_corrupted(prev))
5992 panic("corrupted stack end detected inside scheduler\n");
5993
5994 if (task_scs_end_corrupted(prev))
5995 panic("corrupted shadow stack detected inside scheduler\n");
5996 #endif
5997
5998 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5999 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
6000 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
6001 prev->comm, prev->pid, prev->non_block_count);
6002 dump_stack();
6003 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6004 }
6005 #endif
6006
6007 if (unlikely(in_atomic_preempt_off())) {
6008 __schedule_bug(prev);
6009 preempt_count_set(PREEMPT_DISABLED);
6010 }
6011 rcu_sleep_check();
6012 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
6013
6014 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
6015
6016 schedstat_inc(this_rq()->sched_count);
6017 }
6018
put_prev_task_balance(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6019 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
6020 struct rq_flags *rf)
6021 {
6022 #ifdef CONFIG_SMP
6023 const struct sched_class *class;
6024 /*
6025 * We must do the balancing pass before put_prev_task(), such
6026 * that when we release the rq->lock the task is in the same
6027 * state as before we took rq->lock.
6028 *
6029 * We can terminate the balance pass as soon as we know there is
6030 * a runnable task of @class priority or higher.
6031 */
6032 for_class_range(class, prev->sched_class, &idle_sched_class) {
6033 if (class->balance(rq, prev, rf))
6034 break;
6035 }
6036 #endif
6037
6038 put_prev_task(rq, prev);
6039 }
6040
6041 /*
6042 * Pick up the highest-prio task:
6043 */
6044 static inline struct task_struct *
__pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6045 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6046 {
6047 const struct sched_class *class;
6048 struct task_struct *p;
6049
6050 /*
6051 * Optimization: we know that if all tasks are in the fair class we can
6052 * call that function directly, but only if the @prev task wasn't of a
6053 * higher scheduling class, because otherwise those lose the
6054 * opportunity to pull in more work from other CPUs.
6055 */
6056 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6057 rq->nr_running == rq->cfs.h_nr_running)) {
6058
6059 p = pick_next_task_fair(rq, prev, rf);
6060 if (unlikely(p == RETRY_TASK))
6061 goto restart;
6062
6063 /* Assume the next prioritized class is idle_sched_class */
6064 if (!p) {
6065 put_prev_task(rq, prev);
6066 p = pick_next_task_idle(rq);
6067 }
6068
6069 return p;
6070 }
6071
6072 restart:
6073 put_prev_task_balance(rq, prev, rf);
6074
6075 for_each_class(class) {
6076 p = class->pick_next_task(rq);
6077 if (p)
6078 return p;
6079 }
6080
6081 BUG(); /* The idle class should always have a runnable task. */
6082 }
6083
6084 #ifdef CONFIG_SCHED_CORE
is_task_rq_idle(struct task_struct * t)6085 static inline bool is_task_rq_idle(struct task_struct *t)
6086 {
6087 return (task_rq(t)->idle == t);
6088 }
6089
cookie_equals(struct task_struct * a,unsigned long cookie)6090 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6091 {
6092 return is_task_rq_idle(a) || (a->core_cookie == cookie);
6093 }
6094
cookie_match(struct task_struct * a,struct task_struct * b)6095 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6096 {
6097 if (is_task_rq_idle(a) || is_task_rq_idle(b))
6098 return true;
6099
6100 return a->core_cookie == b->core_cookie;
6101 }
6102
pick_task(struct rq * rq)6103 static inline struct task_struct *pick_task(struct rq *rq)
6104 {
6105 const struct sched_class *class;
6106 struct task_struct *p;
6107
6108 for_each_class(class) {
6109 p = class->pick_task(rq);
6110 if (p)
6111 return p;
6112 }
6113
6114 BUG(); /* The idle class should always have a runnable task. */
6115 }
6116
6117 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6118
6119 static void queue_core_balance(struct rq *rq);
6120
6121 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6122 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6123 {
6124 struct task_struct *next, *p, *max = NULL;
6125 const struct cpumask *smt_mask;
6126 bool fi_before = false;
6127 bool core_clock_updated = (rq == rq->core);
6128 unsigned long cookie;
6129 int i, cpu, occ = 0;
6130 struct rq *rq_i;
6131 bool need_sync;
6132
6133 if (!sched_core_enabled(rq))
6134 return __pick_next_task(rq, prev, rf);
6135
6136 cpu = cpu_of(rq);
6137
6138 /* Stopper task is switching into idle, no need core-wide selection. */
6139 if (cpu_is_offline(cpu)) {
6140 /*
6141 * Reset core_pick so that we don't enter the fastpath when
6142 * coming online. core_pick would already be migrated to
6143 * another cpu during offline.
6144 */
6145 rq->core_pick = NULL;
6146 return __pick_next_task(rq, prev, rf);
6147 }
6148
6149 /*
6150 * If there were no {en,de}queues since we picked (IOW, the task
6151 * pointers are all still valid), and we haven't scheduled the last
6152 * pick yet, do so now.
6153 *
6154 * rq->core_pick can be NULL if no selection was made for a CPU because
6155 * it was either offline or went offline during a sibling's core-wide
6156 * selection. In this case, do a core-wide selection.
6157 */
6158 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6159 rq->core->core_pick_seq != rq->core_sched_seq &&
6160 rq->core_pick) {
6161 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6162
6163 next = rq->core_pick;
6164 if (next != prev) {
6165 put_prev_task(rq, prev);
6166 set_next_task(rq, next);
6167 }
6168
6169 rq->core_pick = NULL;
6170 goto out;
6171 }
6172
6173 put_prev_task_balance(rq, prev, rf);
6174
6175 smt_mask = cpu_smt_mask(cpu);
6176 need_sync = !!rq->core->core_cookie;
6177
6178 /* reset state */
6179 rq->core->core_cookie = 0UL;
6180 if (rq->core->core_forceidle_count) {
6181 if (!core_clock_updated) {
6182 update_rq_clock(rq->core);
6183 core_clock_updated = true;
6184 }
6185 sched_core_account_forceidle(rq);
6186 /* reset after accounting force idle */
6187 rq->core->core_forceidle_start = 0;
6188 rq->core->core_forceidle_count = 0;
6189 rq->core->core_forceidle_occupation = 0;
6190 need_sync = true;
6191 fi_before = true;
6192 }
6193
6194 /*
6195 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6196 *
6197 * @task_seq guards the task state ({en,de}queues)
6198 * @pick_seq is the @task_seq we did a selection on
6199 * @sched_seq is the @pick_seq we scheduled
6200 *
6201 * However, preemptions can cause multiple picks on the same task set.
6202 * 'Fix' this by also increasing @task_seq for every pick.
6203 */
6204 rq->core->core_task_seq++;
6205
6206 /*
6207 * Optimize for common case where this CPU has no cookies
6208 * and there are no cookied tasks running on siblings.
6209 */
6210 if (!need_sync) {
6211 next = pick_task(rq);
6212 if (!next->core_cookie) {
6213 rq->core_pick = NULL;
6214 /*
6215 * For robustness, update the min_vruntime_fi for
6216 * unconstrained picks as well.
6217 */
6218 WARN_ON_ONCE(fi_before);
6219 task_vruntime_update(rq, next, false);
6220 goto out_set_next;
6221 }
6222 }
6223
6224 /*
6225 * For each thread: do the regular task pick and find the max prio task
6226 * amongst them.
6227 *
6228 * Tie-break prio towards the current CPU
6229 */
6230 for_each_cpu_wrap(i, smt_mask, cpu) {
6231 rq_i = cpu_rq(i);
6232
6233 /*
6234 * Current cpu always has its clock updated on entrance to
6235 * pick_next_task(). If the current cpu is not the core,
6236 * the core may also have been updated above.
6237 */
6238 if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6239 update_rq_clock(rq_i);
6240
6241 p = rq_i->core_pick = pick_task(rq_i);
6242 if (!max || prio_less(max, p, fi_before))
6243 max = p;
6244 }
6245
6246 cookie = rq->core->core_cookie = max->core_cookie;
6247
6248 /*
6249 * For each thread: try and find a runnable task that matches @max or
6250 * force idle.
6251 */
6252 for_each_cpu(i, smt_mask) {
6253 rq_i = cpu_rq(i);
6254 p = rq_i->core_pick;
6255
6256 if (!cookie_equals(p, cookie)) {
6257 p = NULL;
6258 if (cookie)
6259 p = sched_core_find(rq_i, cookie);
6260 if (!p)
6261 p = idle_sched_class.pick_task(rq_i);
6262 }
6263
6264 rq_i->core_pick = p;
6265
6266 if (p == rq_i->idle) {
6267 if (rq_i->nr_running) {
6268 rq->core->core_forceidle_count++;
6269 if (!fi_before)
6270 rq->core->core_forceidle_seq++;
6271 }
6272 } else {
6273 occ++;
6274 }
6275 }
6276
6277 if (schedstat_enabled() && rq->core->core_forceidle_count) {
6278 rq->core->core_forceidle_start = rq_clock(rq->core);
6279 rq->core->core_forceidle_occupation = occ;
6280 }
6281
6282 rq->core->core_pick_seq = rq->core->core_task_seq;
6283 next = rq->core_pick;
6284 rq->core_sched_seq = rq->core->core_pick_seq;
6285
6286 /* Something should have been selected for current CPU */
6287 WARN_ON_ONCE(!next);
6288
6289 /*
6290 * Reschedule siblings
6291 *
6292 * NOTE: L1TF -- at this point we're no longer running the old task and
6293 * sending an IPI (below) ensures the sibling will no longer be running
6294 * their task. This ensures there is no inter-sibling overlap between
6295 * non-matching user state.
6296 */
6297 for_each_cpu(i, smt_mask) {
6298 rq_i = cpu_rq(i);
6299
6300 /*
6301 * An online sibling might have gone offline before a task
6302 * could be picked for it, or it might be offline but later
6303 * happen to come online, but its too late and nothing was
6304 * picked for it. That's Ok - it will pick tasks for itself,
6305 * so ignore it.
6306 */
6307 if (!rq_i->core_pick)
6308 continue;
6309
6310 /*
6311 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6312 * fi_before fi update?
6313 * 0 0 1
6314 * 0 1 1
6315 * 1 0 1
6316 * 1 1 0
6317 */
6318 if (!(fi_before && rq->core->core_forceidle_count))
6319 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6320
6321 rq_i->core_pick->core_occupation = occ;
6322
6323 if (i == cpu) {
6324 rq_i->core_pick = NULL;
6325 continue;
6326 }
6327
6328 /* Did we break L1TF mitigation requirements? */
6329 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6330
6331 if (rq_i->curr == rq_i->core_pick) {
6332 rq_i->core_pick = NULL;
6333 continue;
6334 }
6335
6336 resched_curr(rq_i);
6337 }
6338
6339 out_set_next:
6340 set_next_task(rq, next);
6341 out:
6342 if (rq->core->core_forceidle_count && next == rq->idle)
6343 queue_core_balance(rq);
6344
6345 return next;
6346 }
6347
try_steal_cookie(int this,int that)6348 static bool try_steal_cookie(int this, int that)
6349 {
6350 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6351 struct task_struct *p;
6352 unsigned long cookie;
6353 bool success = false;
6354
6355 guard(irq)();
6356 guard(double_rq_lock)(dst, src);
6357
6358 cookie = dst->core->core_cookie;
6359 if (!cookie)
6360 return false;
6361
6362 if (dst->curr != dst->idle)
6363 return false;
6364
6365 p = sched_core_find(src, cookie);
6366 if (!p)
6367 return false;
6368
6369 do {
6370 if (p == src->core_pick || p == src->curr)
6371 goto next;
6372
6373 if (!is_cpu_allowed(p, this))
6374 goto next;
6375
6376 if (p->core_occupation > dst->idle->core_occupation)
6377 goto next;
6378 /*
6379 * sched_core_find() and sched_core_next() will ensure
6380 * that task @p is not throttled now, we also need to
6381 * check whether the runqueue of the destination CPU is
6382 * being throttled.
6383 */
6384 if (sched_task_is_throttled(p, this))
6385 goto next;
6386
6387 deactivate_task(src, p, 0);
6388 set_task_cpu(p, this);
6389 activate_task(dst, p, 0);
6390
6391 resched_curr(dst);
6392
6393 success = true;
6394 break;
6395
6396 next:
6397 p = sched_core_next(p, cookie);
6398 } while (p);
6399
6400 return success;
6401 }
6402
steal_cookie_task(int cpu,struct sched_domain * sd)6403 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6404 {
6405 int i;
6406
6407 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6408 if (i == cpu)
6409 continue;
6410
6411 if (need_resched())
6412 break;
6413
6414 if (try_steal_cookie(cpu, i))
6415 return true;
6416 }
6417
6418 return false;
6419 }
6420
sched_core_balance(struct rq * rq)6421 static void sched_core_balance(struct rq *rq)
6422 {
6423 struct sched_domain *sd;
6424 int cpu = cpu_of(rq);
6425
6426 preempt_disable();
6427 rcu_read_lock();
6428 raw_spin_rq_unlock_irq(rq);
6429 for_each_domain(cpu, sd) {
6430 if (need_resched())
6431 break;
6432
6433 if (steal_cookie_task(cpu, sd))
6434 break;
6435 }
6436 raw_spin_rq_lock_irq(rq);
6437 rcu_read_unlock();
6438 preempt_enable();
6439 }
6440
6441 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6442
queue_core_balance(struct rq * rq)6443 static void queue_core_balance(struct rq *rq)
6444 {
6445 if (!sched_core_enabled(rq))
6446 return;
6447
6448 if (!rq->core->core_cookie)
6449 return;
6450
6451 if (!rq->nr_running) /* not forced idle */
6452 return;
6453
6454 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6455 }
6456
6457 DEFINE_LOCK_GUARD_1(core_lock, int,
6458 sched_core_lock(*_T->lock, &_T->flags),
6459 sched_core_unlock(*_T->lock, &_T->flags),
6460 unsigned long flags)
6461
sched_core_cpu_starting(unsigned int cpu)6462 static void sched_core_cpu_starting(unsigned int cpu)
6463 {
6464 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6465 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6466 int t;
6467
6468 guard(core_lock)(&cpu);
6469
6470 WARN_ON_ONCE(rq->core != rq);
6471
6472 /* if we're the first, we'll be our own leader */
6473 if (cpumask_weight(smt_mask) == 1)
6474 return;
6475
6476 /* find the leader */
6477 for_each_cpu(t, smt_mask) {
6478 if (t == cpu)
6479 continue;
6480 rq = cpu_rq(t);
6481 if (rq->core == rq) {
6482 core_rq = rq;
6483 break;
6484 }
6485 }
6486
6487 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6488 return;
6489
6490 /* install and validate core_rq */
6491 for_each_cpu(t, smt_mask) {
6492 rq = cpu_rq(t);
6493
6494 if (t == cpu)
6495 rq->core = core_rq;
6496
6497 WARN_ON_ONCE(rq->core != core_rq);
6498 }
6499 }
6500
sched_core_cpu_deactivate(unsigned int cpu)6501 static void sched_core_cpu_deactivate(unsigned int cpu)
6502 {
6503 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6504 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6505 int t;
6506
6507 guard(core_lock)(&cpu);
6508
6509 /* if we're the last man standing, nothing to do */
6510 if (cpumask_weight(smt_mask) == 1) {
6511 WARN_ON_ONCE(rq->core != rq);
6512 return;
6513 }
6514
6515 /* if we're not the leader, nothing to do */
6516 if (rq->core != rq)
6517 return;
6518
6519 /* find a new leader */
6520 for_each_cpu(t, smt_mask) {
6521 if (t == cpu)
6522 continue;
6523 core_rq = cpu_rq(t);
6524 break;
6525 }
6526
6527 if (WARN_ON_ONCE(!core_rq)) /* impossible */
6528 return;
6529
6530 /* copy the shared state to the new leader */
6531 core_rq->core_task_seq = rq->core_task_seq;
6532 core_rq->core_pick_seq = rq->core_pick_seq;
6533 core_rq->core_cookie = rq->core_cookie;
6534 core_rq->core_forceidle_count = rq->core_forceidle_count;
6535 core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6536 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6537
6538 /*
6539 * Accounting edge for forced idle is handled in pick_next_task().
6540 * Don't need another one here, since the hotplug thread shouldn't
6541 * have a cookie.
6542 */
6543 core_rq->core_forceidle_start = 0;
6544
6545 /* install new leader */
6546 for_each_cpu(t, smt_mask) {
6547 rq = cpu_rq(t);
6548 rq->core = core_rq;
6549 }
6550 }
6551
sched_core_cpu_dying(unsigned int cpu)6552 static inline void sched_core_cpu_dying(unsigned int cpu)
6553 {
6554 struct rq *rq = cpu_rq(cpu);
6555
6556 if (rq->core != rq)
6557 rq->core = rq;
6558 }
6559
6560 #else /* !CONFIG_SCHED_CORE */
6561
sched_core_cpu_starting(unsigned int cpu)6562 static inline void sched_core_cpu_starting(unsigned int cpu) {}
sched_core_cpu_deactivate(unsigned int cpu)6563 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
sched_core_cpu_dying(unsigned int cpu)6564 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6565
6566 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6567 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6568 {
6569 return __pick_next_task(rq, prev, rf);
6570 }
6571
6572 #endif /* CONFIG_SCHED_CORE */
6573
6574 /*
6575 * Constants for the sched_mode argument of __schedule().
6576 *
6577 * The mode argument allows RT enabled kernels to differentiate a
6578 * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6579 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6580 * optimize the AND operation out and just check for zero.
6581 */
6582 #define SM_NONE 0x0
6583 #define SM_PREEMPT 0x1
6584 #define SM_RTLOCK_WAIT 0x2
6585
6586 #ifndef CONFIG_PREEMPT_RT
6587 # define SM_MASK_PREEMPT (~0U)
6588 #else
6589 # define SM_MASK_PREEMPT SM_PREEMPT
6590 #endif
6591
6592 /*
6593 * __schedule() is the main scheduler function.
6594 *
6595 * The main means of driving the scheduler and thus entering this function are:
6596 *
6597 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6598 *
6599 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6600 * paths. For example, see arch/x86/entry_64.S.
6601 *
6602 * To drive preemption between tasks, the scheduler sets the flag in timer
6603 * interrupt handler scheduler_tick().
6604 *
6605 * 3. Wakeups don't really cause entry into schedule(). They add a
6606 * task to the run-queue and that's it.
6607 *
6608 * Now, if the new task added to the run-queue preempts the current
6609 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6610 * called on the nearest possible occasion:
6611 *
6612 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6613 *
6614 * - in syscall or exception context, at the next outmost
6615 * preempt_enable(). (this might be as soon as the wake_up()'s
6616 * spin_unlock()!)
6617 *
6618 * - in IRQ context, return from interrupt-handler to
6619 * preemptible context
6620 *
6621 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6622 * then at the next:
6623 *
6624 * - cond_resched() call
6625 * - explicit schedule() call
6626 * - return from syscall or exception to user-space
6627 * - return from interrupt-handler to user-space
6628 *
6629 * WARNING: must be called with preemption disabled!
6630 */
__schedule(unsigned int sched_mode)6631 static void __sched notrace __schedule(unsigned int sched_mode)
6632 {
6633 struct task_struct *prev, *next;
6634 unsigned long *switch_count;
6635 unsigned long prev_state;
6636 struct rq_flags rf;
6637 struct rq *rq;
6638 int cpu;
6639
6640 cpu = smp_processor_id();
6641 rq = cpu_rq(cpu);
6642 prev = rq->curr;
6643
6644 schedule_debug(prev, !!sched_mode);
6645
6646 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6647 hrtick_clear(rq);
6648
6649 local_irq_disable();
6650 rcu_note_context_switch(!!sched_mode);
6651
6652 /*
6653 * Make sure that signal_pending_state()->signal_pending() below
6654 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6655 * done by the caller to avoid the race with signal_wake_up():
6656 *
6657 * __set_current_state(@state) signal_wake_up()
6658 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
6659 * wake_up_state(p, state)
6660 * LOCK rq->lock LOCK p->pi_state
6661 * smp_mb__after_spinlock() smp_mb__after_spinlock()
6662 * if (signal_pending_state()) if (p->state & @state)
6663 *
6664 * Also, the membarrier system call requires a full memory barrier
6665 * after coming from user-space, before storing to rq->curr.
6666 */
6667 rq_lock(rq, &rf);
6668 smp_mb__after_spinlock();
6669
6670 /* Promote REQ to ACT */
6671 rq->clock_update_flags <<= 1;
6672 update_rq_clock(rq);
6673 rq->clock_update_flags = RQCF_UPDATED;
6674
6675 switch_count = &prev->nivcsw;
6676
6677 /*
6678 * We must load prev->state once (task_struct::state is volatile), such
6679 * that we form a control dependency vs deactivate_task() below.
6680 */
6681 prev_state = READ_ONCE(prev->__state);
6682 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6683 if (signal_pending_state(prev_state, prev)) {
6684 WRITE_ONCE(prev->__state, TASK_RUNNING);
6685 } else {
6686 prev->sched_contributes_to_load =
6687 (prev_state & TASK_UNINTERRUPTIBLE) &&
6688 !(prev_state & TASK_NOLOAD) &&
6689 !(prev_state & TASK_FROZEN);
6690
6691 if (prev->sched_contributes_to_load)
6692 rq->nr_uninterruptible++;
6693
6694 /*
6695 * __schedule() ttwu()
6696 * prev_state = prev->state; if (p->on_rq && ...)
6697 * if (prev_state) goto out;
6698 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
6699 * p->state = TASK_WAKING
6700 *
6701 * Where __schedule() and ttwu() have matching control dependencies.
6702 *
6703 * After this, schedule() must not care about p->state any more.
6704 */
6705 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6706
6707 if (prev->in_iowait) {
6708 atomic_inc(&rq->nr_iowait);
6709 delayacct_blkio_start();
6710 }
6711 }
6712 switch_count = &prev->nvcsw;
6713 }
6714
6715 next = pick_next_task(rq, prev, &rf);
6716 clear_tsk_need_resched(prev);
6717 clear_preempt_need_resched();
6718 #ifdef CONFIG_SCHED_DEBUG
6719 rq->last_seen_need_resched_ns = 0;
6720 #endif
6721
6722 if (likely(prev != next)) {
6723 rq->nr_switches++;
6724 /*
6725 * RCU users of rcu_dereference(rq->curr) may not see
6726 * changes to task_struct made by pick_next_task().
6727 */
6728 RCU_INIT_POINTER(rq->curr, next);
6729 /*
6730 * The membarrier system call requires each architecture
6731 * to have a full memory barrier after updating
6732 * rq->curr, before returning to user-space.
6733 *
6734 * Here are the schemes providing that barrier on the
6735 * various architectures:
6736 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6737 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6738 * - finish_lock_switch() for weakly-ordered
6739 * architectures where spin_unlock is a full barrier,
6740 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6741 * is a RELEASE barrier),
6742 */
6743 ++*switch_count;
6744
6745 migrate_disable_switch(rq, prev);
6746 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6747
6748 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6749
6750 /* Also unlocks the rq: */
6751 rq = context_switch(rq, prev, next, &rf);
6752 } else {
6753 rq_unpin_lock(rq, &rf);
6754 __balance_callbacks(rq);
6755 raw_spin_rq_unlock_irq(rq);
6756 }
6757 }
6758
do_task_dead(void)6759 void __noreturn do_task_dead(void)
6760 {
6761 /* Causes final put_task_struct in finish_task_switch(): */
6762 set_special_state(TASK_DEAD);
6763
6764 /* Tell freezer to ignore us: */
6765 current->flags |= PF_NOFREEZE;
6766
6767 __schedule(SM_NONE);
6768 BUG();
6769
6770 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6771 for (;;)
6772 cpu_relax();
6773 }
6774
sched_submit_work(struct task_struct * tsk)6775 static inline void sched_submit_work(struct task_struct *tsk)
6776 {
6777 unsigned int task_flags;
6778
6779 if (task_is_running(tsk))
6780 return;
6781
6782 task_flags = tsk->flags;
6783 /*
6784 * If a worker goes to sleep, notify and ask workqueue whether it
6785 * wants to wake up a task to maintain concurrency.
6786 */
6787 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6788 if (task_flags & PF_WQ_WORKER)
6789 wq_worker_sleeping(tsk);
6790 else
6791 io_wq_worker_sleeping(tsk);
6792 }
6793
6794 /*
6795 * spinlock and rwlock must not flush block requests. This will
6796 * deadlock if the callback attempts to acquire a lock which is
6797 * already acquired.
6798 */
6799 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6800
6801 /*
6802 * If we are going to sleep and we have plugged IO queued,
6803 * make sure to submit it to avoid deadlocks.
6804 */
6805 blk_flush_plug(tsk->plug, true);
6806 }
6807
sched_update_worker(struct task_struct * tsk)6808 static void sched_update_worker(struct task_struct *tsk)
6809 {
6810 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6811 if (tsk->flags & PF_WQ_WORKER)
6812 wq_worker_running(tsk);
6813 else
6814 io_wq_worker_running(tsk);
6815 }
6816 }
6817
schedule(void)6818 asmlinkage __visible void __sched schedule(void)
6819 {
6820 struct task_struct *tsk = current;
6821
6822 sched_submit_work(tsk);
6823 do {
6824 preempt_disable();
6825 __schedule(SM_NONE);
6826 sched_preempt_enable_no_resched();
6827 } while (need_resched());
6828 sched_update_worker(tsk);
6829 }
6830 EXPORT_SYMBOL(schedule);
6831
6832 /*
6833 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6834 * state (have scheduled out non-voluntarily) by making sure that all
6835 * tasks have either left the run queue or have gone into user space.
6836 * As idle tasks do not do either, they must not ever be preempted
6837 * (schedule out non-voluntarily).
6838 *
6839 * schedule_idle() is similar to schedule_preempt_disable() except that it
6840 * never enables preemption because it does not call sched_submit_work().
6841 */
schedule_idle(void)6842 void __sched schedule_idle(void)
6843 {
6844 /*
6845 * As this skips calling sched_submit_work(), which the idle task does
6846 * regardless because that function is a nop when the task is in a
6847 * TASK_RUNNING state, make sure this isn't used someplace that the
6848 * current task can be in any other state. Note, idle is always in the
6849 * TASK_RUNNING state.
6850 */
6851 WARN_ON_ONCE(current->__state);
6852 do {
6853 __schedule(SM_NONE);
6854 } while (need_resched());
6855 }
6856
6857 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
schedule_user(void)6858 asmlinkage __visible void __sched schedule_user(void)
6859 {
6860 /*
6861 * If we come here after a random call to set_need_resched(),
6862 * or we have been woken up remotely but the IPI has not yet arrived,
6863 * we haven't yet exited the RCU idle mode. Do it here manually until
6864 * we find a better solution.
6865 *
6866 * NB: There are buggy callers of this function. Ideally we
6867 * should warn if prev_state != CONTEXT_USER, but that will trigger
6868 * too frequently to make sense yet.
6869 */
6870 enum ctx_state prev_state = exception_enter();
6871 schedule();
6872 exception_exit(prev_state);
6873 }
6874 #endif
6875
6876 /**
6877 * schedule_preempt_disabled - called with preemption disabled
6878 *
6879 * Returns with preemption disabled. Note: preempt_count must be 1
6880 */
schedule_preempt_disabled(void)6881 void __sched schedule_preempt_disabled(void)
6882 {
6883 sched_preempt_enable_no_resched();
6884 schedule();
6885 preempt_disable();
6886 }
6887
6888 #ifdef CONFIG_PREEMPT_RT
schedule_rtlock(void)6889 void __sched notrace schedule_rtlock(void)
6890 {
6891 do {
6892 preempt_disable();
6893 __schedule(SM_RTLOCK_WAIT);
6894 sched_preempt_enable_no_resched();
6895 } while (need_resched());
6896 }
6897 NOKPROBE_SYMBOL(schedule_rtlock);
6898 #endif
6899
preempt_schedule_common(void)6900 static void __sched notrace preempt_schedule_common(void)
6901 {
6902 do {
6903 /*
6904 * Because the function tracer can trace preempt_count_sub()
6905 * and it also uses preempt_enable/disable_notrace(), if
6906 * NEED_RESCHED is set, the preempt_enable_notrace() called
6907 * by the function tracer will call this function again and
6908 * cause infinite recursion.
6909 *
6910 * Preemption must be disabled here before the function
6911 * tracer can trace. Break up preempt_disable() into two
6912 * calls. One to disable preemption without fear of being
6913 * traced. The other to still record the preemption latency,
6914 * which can also be traced by the function tracer.
6915 */
6916 preempt_disable_notrace();
6917 preempt_latency_start(1);
6918 __schedule(SM_PREEMPT);
6919 preempt_latency_stop(1);
6920 preempt_enable_no_resched_notrace();
6921
6922 /*
6923 * Check again in case we missed a preemption opportunity
6924 * between schedule and now.
6925 */
6926 } while (need_resched());
6927 }
6928
6929 #ifdef CONFIG_PREEMPTION
6930 /*
6931 * This is the entry point to schedule() from in-kernel preemption
6932 * off of preempt_enable.
6933 */
preempt_schedule(void)6934 asmlinkage __visible void __sched notrace preempt_schedule(void)
6935 {
6936 /*
6937 * If there is a non-zero preempt_count or interrupts are disabled,
6938 * we do not want to preempt the current task. Just return..
6939 */
6940 if (likely(!preemptible()))
6941 return;
6942 preempt_schedule_common();
6943 }
6944 NOKPROBE_SYMBOL(preempt_schedule);
6945 EXPORT_SYMBOL(preempt_schedule);
6946
6947 #ifdef CONFIG_PREEMPT_DYNAMIC
6948 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6949 #ifndef preempt_schedule_dynamic_enabled
6950 #define preempt_schedule_dynamic_enabled preempt_schedule
6951 #define preempt_schedule_dynamic_disabled NULL
6952 #endif
6953 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6954 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6955 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6956 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
dynamic_preempt_schedule(void)6957 void __sched notrace dynamic_preempt_schedule(void)
6958 {
6959 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6960 return;
6961 preempt_schedule();
6962 }
6963 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6964 EXPORT_SYMBOL(dynamic_preempt_schedule);
6965 #endif
6966 #endif
6967
6968 /**
6969 * preempt_schedule_notrace - preempt_schedule called by tracing
6970 *
6971 * The tracing infrastructure uses preempt_enable_notrace to prevent
6972 * recursion and tracing preempt enabling caused by the tracing
6973 * infrastructure itself. But as tracing can happen in areas coming
6974 * from userspace or just about to enter userspace, a preempt enable
6975 * can occur before user_exit() is called. This will cause the scheduler
6976 * to be called when the system is still in usermode.
6977 *
6978 * To prevent this, the preempt_enable_notrace will use this function
6979 * instead of preempt_schedule() to exit user context if needed before
6980 * calling the scheduler.
6981 */
preempt_schedule_notrace(void)6982 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6983 {
6984 enum ctx_state prev_ctx;
6985
6986 if (likely(!preemptible()))
6987 return;
6988
6989 do {
6990 /*
6991 * Because the function tracer can trace preempt_count_sub()
6992 * and it also uses preempt_enable/disable_notrace(), if
6993 * NEED_RESCHED is set, the preempt_enable_notrace() called
6994 * by the function tracer will call this function again and
6995 * cause infinite recursion.
6996 *
6997 * Preemption must be disabled here before the function
6998 * tracer can trace. Break up preempt_disable() into two
6999 * calls. One to disable preemption without fear of being
7000 * traced. The other to still record the preemption latency,
7001 * which can also be traced by the function tracer.
7002 */
7003 preempt_disable_notrace();
7004 preempt_latency_start(1);
7005 /*
7006 * Needs preempt disabled in case user_exit() is traced
7007 * and the tracer calls preempt_enable_notrace() causing
7008 * an infinite recursion.
7009 */
7010 prev_ctx = exception_enter();
7011 __schedule(SM_PREEMPT);
7012 exception_exit(prev_ctx);
7013
7014 preempt_latency_stop(1);
7015 preempt_enable_no_resched_notrace();
7016 } while (need_resched());
7017 }
7018 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
7019
7020 #ifdef CONFIG_PREEMPT_DYNAMIC
7021 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
7022 #ifndef preempt_schedule_notrace_dynamic_enabled
7023 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace
7024 #define preempt_schedule_notrace_dynamic_disabled NULL
7025 #endif
7026 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
7027 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
7028 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
7029 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
dynamic_preempt_schedule_notrace(void)7030 void __sched notrace dynamic_preempt_schedule_notrace(void)
7031 {
7032 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
7033 return;
7034 preempt_schedule_notrace();
7035 }
7036 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
7037 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
7038 #endif
7039 #endif
7040
7041 #endif /* CONFIG_PREEMPTION */
7042
7043 /*
7044 * This is the entry point to schedule() from kernel preemption
7045 * off of irq context.
7046 * Note, that this is called and return with irqs disabled. This will
7047 * protect us against recursive calling from irq.
7048 */
preempt_schedule_irq(void)7049 asmlinkage __visible void __sched preempt_schedule_irq(void)
7050 {
7051 enum ctx_state prev_state;
7052
7053 /* Catch callers which need to be fixed */
7054 BUG_ON(preempt_count() || !irqs_disabled());
7055
7056 prev_state = exception_enter();
7057
7058 do {
7059 preempt_disable();
7060 local_irq_enable();
7061 __schedule(SM_PREEMPT);
7062 local_irq_disable();
7063 sched_preempt_enable_no_resched();
7064 } while (need_resched());
7065
7066 exception_exit(prev_state);
7067 }
7068
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)7069 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7070 void *key)
7071 {
7072 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7073 return try_to_wake_up(curr->private, mode, wake_flags);
7074 }
7075 EXPORT_SYMBOL(default_wake_function);
7076
__setscheduler_prio(struct task_struct * p,int prio)7077 static void __setscheduler_prio(struct task_struct *p, int prio)
7078 {
7079 if (dl_prio(prio))
7080 p->sched_class = &dl_sched_class;
7081 else if (rt_prio(prio))
7082 p->sched_class = &rt_sched_class;
7083 else
7084 p->sched_class = &fair_sched_class;
7085
7086 p->prio = prio;
7087 }
7088
7089 #ifdef CONFIG_RT_MUTEXES
7090
__rt_effective_prio(struct task_struct * pi_task,int prio)7091 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
7092 {
7093 if (pi_task)
7094 prio = min(prio, pi_task->prio);
7095
7096 return prio;
7097 }
7098
rt_effective_prio(struct task_struct * p,int prio)7099 static inline int rt_effective_prio(struct task_struct *p, int prio)
7100 {
7101 struct task_struct *pi_task = rt_mutex_get_top_task(p);
7102
7103 return __rt_effective_prio(pi_task, prio);
7104 }
7105
7106 /*
7107 * rt_mutex_setprio - set the current priority of a task
7108 * @p: task to boost
7109 * @pi_task: donor task
7110 *
7111 * This function changes the 'effective' priority of a task. It does
7112 * not touch ->normal_prio like __setscheduler().
7113 *
7114 * Used by the rt_mutex code to implement priority inheritance
7115 * logic. Call site only calls if the priority of the task changed.
7116 */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)7117 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7118 {
7119 int prio, oldprio, queued, running, queue_flag =
7120 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7121 const struct sched_class *prev_class;
7122 struct rq_flags rf;
7123 struct rq *rq;
7124
7125 /* XXX used to be waiter->prio, not waiter->task->prio */
7126 prio = __rt_effective_prio(pi_task, p->normal_prio);
7127
7128 /*
7129 * If nothing changed; bail early.
7130 */
7131 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7132 return;
7133
7134 rq = __task_rq_lock(p, &rf);
7135 update_rq_clock(rq);
7136 /*
7137 * Set under pi_lock && rq->lock, such that the value can be used under
7138 * either lock.
7139 *
7140 * Note that there is loads of tricky to make this pointer cache work
7141 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7142 * ensure a task is de-boosted (pi_task is set to NULL) before the
7143 * task is allowed to run again (and can exit). This ensures the pointer
7144 * points to a blocked task -- which guarantees the task is present.
7145 */
7146 p->pi_top_task = pi_task;
7147
7148 /*
7149 * For FIFO/RR we only need to set prio, if that matches we're done.
7150 */
7151 if (prio == p->prio && !dl_prio(prio))
7152 goto out_unlock;
7153
7154 /*
7155 * Idle task boosting is a nono in general. There is one
7156 * exception, when PREEMPT_RT and NOHZ is active:
7157 *
7158 * The idle task calls get_next_timer_interrupt() and holds
7159 * the timer wheel base->lock on the CPU and another CPU wants
7160 * to access the timer (probably to cancel it). We can safely
7161 * ignore the boosting request, as the idle CPU runs this code
7162 * with interrupts disabled and will complete the lock
7163 * protected section without being interrupted. So there is no
7164 * real need to boost.
7165 */
7166 if (unlikely(p == rq->idle)) {
7167 WARN_ON(p != rq->curr);
7168 WARN_ON(p->pi_blocked_on);
7169 goto out_unlock;
7170 }
7171
7172 trace_sched_pi_setprio(p, pi_task);
7173 oldprio = p->prio;
7174
7175 if (oldprio == prio)
7176 queue_flag &= ~DEQUEUE_MOVE;
7177
7178 prev_class = p->sched_class;
7179 queued = task_on_rq_queued(p);
7180 running = task_current(rq, p);
7181 if (queued)
7182 dequeue_task(rq, p, queue_flag);
7183 if (running)
7184 put_prev_task(rq, p);
7185
7186 /*
7187 * Boosting condition are:
7188 * 1. -rt task is running and holds mutex A
7189 * --> -dl task blocks on mutex A
7190 *
7191 * 2. -dl task is running and holds mutex A
7192 * --> -dl task blocks on mutex A and could preempt the
7193 * running task
7194 */
7195 if (dl_prio(prio)) {
7196 if (!dl_prio(p->normal_prio) ||
7197 (pi_task && dl_prio(pi_task->prio) &&
7198 dl_entity_preempt(&pi_task->dl, &p->dl))) {
7199 p->dl.pi_se = pi_task->dl.pi_se;
7200 queue_flag |= ENQUEUE_REPLENISH;
7201 } else {
7202 p->dl.pi_se = &p->dl;
7203 }
7204 } else if (rt_prio(prio)) {
7205 if (dl_prio(oldprio))
7206 p->dl.pi_se = &p->dl;
7207 if (oldprio < prio)
7208 queue_flag |= ENQUEUE_HEAD;
7209 } else {
7210 if (dl_prio(oldprio))
7211 p->dl.pi_se = &p->dl;
7212 if (rt_prio(oldprio))
7213 p->rt.timeout = 0;
7214 }
7215
7216 __setscheduler_prio(p, prio);
7217
7218 if (queued)
7219 enqueue_task(rq, p, queue_flag);
7220 if (running)
7221 set_next_task(rq, p);
7222
7223 check_class_changed(rq, p, prev_class, oldprio);
7224 out_unlock:
7225 /* Avoid rq from going away on us: */
7226 preempt_disable();
7227
7228 rq_unpin_lock(rq, &rf);
7229 __balance_callbacks(rq);
7230 raw_spin_rq_unlock(rq);
7231
7232 preempt_enable();
7233 }
7234 #else
rt_effective_prio(struct task_struct * p,int prio)7235 static inline int rt_effective_prio(struct task_struct *p, int prio)
7236 {
7237 return prio;
7238 }
7239 #endif
7240
set_user_nice(struct task_struct * p,long nice)7241 void set_user_nice(struct task_struct *p, long nice)
7242 {
7243 bool queued, running;
7244 int old_prio;
7245 struct rq_flags rf;
7246 struct rq *rq;
7247
7248 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7249 return;
7250 /*
7251 * We have to be careful, if called from sys_setpriority(),
7252 * the task might be in the middle of scheduling on another CPU.
7253 */
7254 rq = task_rq_lock(p, &rf);
7255 update_rq_clock(rq);
7256
7257 /*
7258 * The RT priorities are set via sched_setscheduler(), but we still
7259 * allow the 'normal' nice value to be set - but as expected
7260 * it won't have any effect on scheduling until the task is
7261 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7262 */
7263 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7264 p->static_prio = NICE_TO_PRIO(nice);
7265 goto out_unlock;
7266 }
7267 queued = task_on_rq_queued(p);
7268 running = task_current(rq, p);
7269 if (queued)
7270 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7271 if (running)
7272 put_prev_task(rq, p);
7273
7274 p->static_prio = NICE_TO_PRIO(nice);
7275 set_load_weight(p, true);
7276 old_prio = p->prio;
7277 p->prio = effective_prio(p);
7278
7279 if (queued)
7280 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7281 if (running)
7282 set_next_task(rq, p);
7283
7284 /*
7285 * If the task increased its priority or is running and
7286 * lowered its priority, then reschedule its CPU:
7287 */
7288 p->sched_class->prio_changed(rq, p, old_prio);
7289
7290 out_unlock:
7291 task_rq_unlock(rq, p, &rf);
7292 }
7293 EXPORT_SYMBOL(set_user_nice);
7294
7295 /*
7296 * is_nice_reduction - check if nice value is an actual reduction
7297 *
7298 * Similar to can_nice() but does not perform a capability check.
7299 *
7300 * @p: task
7301 * @nice: nice value
7302 */
is_nice_reduction(const struct task_struct * p,const int nice)7303 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7304 {
7305 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7306 int nice_rlim = nice_to_rlimit(nice);
7307
7308 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7309 }
7310
7311 /*
7312 * can_nice - check if a task can reduce its nice value
7313 * @p: task
7314 * @nice: nice value
7315 */
can_nice(const struct task_struct * p,const int nice)7316 int can_nice(const struct task_struct *p, const int nice)
7317 {
7318 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7319 }
7320
7321 #ifdef __ARCH_WANT_SYS_NICE
7322
7323 /*
7324 * sys_nice - change the priority of the current process.
7325 * @increment: priority increment
7326 *
7327 * sys_setpriority is a more generic, but much slower function that
7328 * does similar things.
7329 */
SYSCALL_DEFINE1(nice,int,increment)7330 SYSCALL_DEFINE1(nice, int, increment)
7331 {
7332 long nice, retval;
7333
7334 /*
7335 * Setpriority might change our priority at the same moment.
7336 * We don't have to worry. Conceptually one call occurs first
7337 * and we have a single winner.
7338 */
7339 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7340 nice = task_nice(current) + increment;
7341
7342 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7343 if (increment < 0 && !can_nice(current, nice))
7344 return -EPERM;
7345
7346 retval = security_task_setnice(current, nice);
7347 if (retval)
7348 return retval;
7349
7350 set_user_nice(current, nice);
7351 return 0;
7352 }
7353
7354 #endif
7355
7356 /**
7357 * task_prio - return the priority value of a given task.
7358 * @p: the task in question.
7359 *
7360 * Return: The priority value as seen by users in /proc.
7361 *
7362 * sched policy return value kernel prio user prio/nice
7363 *
7364 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
7365 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
7366 * deadline -101 -1 0
7367 */
task_prio(const struct task_struct * p)7368 int task_prio(const struct task_struct *p)
7369 {
7370 return p->prio - MAX_RT_PRIO;
7371 }
7372
7373 /**
7374 * idle_cpu - is a given CPU idle currently?
7375 * @cpu: the processor in question.
7376 *
7377 * Return: 1 if the CPU is currently idle. 0 otherwise.
7378 */
idle_cpu(int cpu)7379 int idle_cpu(int cpu)
7380 {
7381 struct rq *rq = cpu_rq(cpu);
7382
7383 if (rq->curr != rq->idle)
7384 return 0;
7385
7386 if (rq->nr_running)
7387 return 0;
7388
7389 #ifdef CONFIG_SMP
7390 if (rq->ttwu_pending)
7391 return 0;
7392 #endif
7393
7394 return 1;
7395 }
7396
7397 /**
7398 * available_idle_cpu - is a given CPU idle for enqueuing work.
7399 * @cpu: the CPU in question.
7400 *
7401 * Return: 1 if the CPU is currently idle. 0 otherwise.
7402 */
available_idle_cpu(int cpu)7403 int available_idle_cpu(int cpu)
7404 {
7405 if (!idle_cpu(cpu))
7406 return 0;
7407
7408 if (vcpu_is_preempted(cpu))
7409 return 0;
7410
7411 return 1;
7412 }
7413
7414 /**
7415 * idle_task - return the idle task for a given CPU.
7416 * @cpu: the processor in question.
7417 *
7418 * Return: The idle task for the CPU @cpu.
7419 */
idle_task(int cpu)7420 struct task_struct *idle_task(int cpu)
7421 {
7422 return cpu_rq(cpu)->idle;
7423 }
7424
7425 #ifdef CONFIG_SCHED_CORE
sched_core_idle_cpu(int cpu)7426 int sched_core_idle_cpu(int cpu)
7427 {
7428 struct rq *rq = cpu_rq(cpu);
7429
7430 if (sched_core_enabled(rq) && rq->curr == rq->idle)
7431 return 1;
7432
7433 return idle_cpu(cpu);
7434 }
7435
7436 #endif
7437
7438 #ifdef CONFIG_SMP
7439 /*
7440 * This function computes an effective utilization for the given CPU, to be
7441 * used for frequency selection given the linear relation: f = u * f_max.
7442 *
7443 * The scheduler tracks the following metrics:
7444 *
7445 * cpu_util_{cfs,rt,dl,irq}()
7446 * cpu_bw_dl()
7447 *
7448 * Where the cfs,rt and dl util numbers are tracked with the same metric and
7449 * synchronized windows and are thus directly comparable.
7450 *
7451 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7452 * which excludes things like IRQ and steal-time. These latter are then accrued
7453 * in the irq utilization.
7454 *
7455 * The DL bandwidth number otoh is not a measured metric but a value computed
7456 * based on the task model parameters and gives the minimal utilization
7457 * required to meet deadlines.
7458 */
effective_cpu_util(int cpu,unsigned long util_cfs,enum cpu_util_type type,struct task_struct * p)7459 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7460 enum cpu_util_type type,
7461 struct task_struct *p)
7462 {
7463 unsigned long dl_util, util, irq, max;
7464 struct rq *rq = cpu_rq(cpu);
7465
7466 max = arch_scale_cpu_capacity(cpu);
7467
7468 if (!uclamp_is_used() &&
7469 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7470 return max;
7471 }
7472
7473 /*
7474 * Early check to see if IRQ/steal time saturates the CPU, can be
7475 * because of inaccuracies in how we track these -- see
7476 * update_irq_load_avg().
7477 */
7478 irq = cpu_util_irq(rq);
7479 if (unlikely(irq >= max))
7480 return max;
7481
7482 /*
7483 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7484 * CFS tasks and we use the same metric to track the effective
7485 * utilization (PELT windows are synchronized) we can directly add them
7486 * to obtain the CPU's actual utilization.
7487 *
7488 * CFS and RT utilization can be boosted or capped, depending on
7489 * utilization clamp constraints requested by currently RUNNABLE
7490 * tasks.
7491 * When there are no CFS RUNNABLE tasks, clamps are released and
7492 * frequency will be gracefully reduced with the utilization decay.
7493 */
7494 util = util_cfs + cpu_util_rt(rq);
7495 if (type == FREQUENCY_UTIL)
7496 util = uclamp_rq_util_with(rq, util, p);
7497
7498 dl_util = cpu_util_dl(rq);
7499
7500 /*
7501 * For frequency selection we do not make cpu_util_dl() a permanent part
7502 * of this sum because we want to use cpu_bw_dl() later on, but we need
7503 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7504 * that we select f_max when there is no idle time.
7505 *
7506 * NOTE: numerical errors or stop class might cause us to not quite hit
7507 * saturation when we should -- something for later.
7508 */
7509 if (util + dl_util >= max)
7510 return max;
7511
7512 /*
7513 * OTOH, for energy computation we need the estimated running time, so
7514 * include util_dl and ignore dl_bw.
7515 */
7516 if (type == ENERGY_UTIL)
7517 util += dl_util;
7518
7519 /*
7520 * There is still idle time; further improve the number by using the
7521 * irq metric. Because IRQ/steal time is hidden from the task clock we
7522 * need to scale the task numbers:
7523 *
7524 * max - irq
7525 * U' = irq + --------- * U
7526 * max
7527 */
7528 util = scale_irq_capacity(util, irq, max);
7529 util += irq;
7530
7531 /*
7532 * Bandwidth required by DEADLINE must always be granted while, for
7533 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7534 * to gracefully reduce the frequency when no tasks show up for longer
7535 * periods of time.
7536 *
7537 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7538 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7539 * an interface. So, we only do the latter for now.
7540 */
7541 if (type == FREQUENCY_UTIL)
7542 util += cpu_bw_dl(rq);
7543
7544 return min(max, util);
7545 }
7546
sched_cpu_util(int cpu)7547 unsigned long sched_cpu_util(int cpu)
7548 {
7549 return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7550 }
7551 #endif /* CONFIG_SMP */
7552
7553 /**
7554 * find_process_by_pid - find a process with a matching PID value.
7555 * @pid: the pid in question.
7556 *
7557 * The task of @pid, if found. %NULL otherwise.
7558 */
find_process_by_pid(pid_t pid)7559 static struct task_struct *find_process_by_pid(pid_t pid)
7560 {
7561 return pid ? find_task_by_vpid(pid) : current;
7562 }
7563
7564 /*
7565 * sched_setparam() passes in -1 for its policy, to let the functions
7566 * it calls know not to change it.
7567 */
7568 #define SETPARAM_POLICY -1
7569
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)7570 static void __setscheduler_params(struct task_struct *p,
7571 const struct sched_attr *attr)
7572 {
7573 int policy = attr->sched_policy;
7574
7575 if (policy == SETPARAM_POLICY)
7576 policy = p->policy;
7577
7578 p->policy = policy;
7579
7580 if (dl_policy(policy))
7581 __setparam_dl(p, attr);
7582 else if (fair_policy(policy))
7583 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7584
7585 /*
7586 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7587 * !rt_policy. Always setting this ensures that things like
7588 * getparam()/getattr() don't report silly values for !rt tasks.
7589 */
7590 p->rt_priority = attr->sched_priority;
7591 p->normal_prio = normal_prio(p);
7592 set_load_weight(p, true);
7593 }
7594
7595 /*
7596 * Check the target process has a UID that matches the current process's:
7597 */
check_same_owner(struct task_struct * p)7598 static bool check_same_owner(struct task_struct *p)
7599 {
7600 const struct cred *cred = current_cred(), *pcred;
7601 bool match;
7602
7603 rcu_read_lock();
7604 pcred = __task_cred(p);
7605 match = (uid_eq(cred->euid, pcred->euid) ||
7606 uid_eq(cred->euid, pcred->uid));
7607 rcu_read_unlock();
7608 return match;
7609 }
7610
7611 /*
7612 * Allow unprivileged RT tasks to decrease priority.
7613 * Only issue a capable test if needed and only once to avoid an audit
7614 * event on permitted non-privileged operations:
7615 */
user_check_sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,int policy,int reset_on_fork)7616 static int user_check_sched_setscheduler(struct task_struct *p,
7617 const struct sched_attr *attr,
7618 int policy, int reset_on_fork)
7619 {
7620 if (fair_policy(policy)) {
7621 if (attr->sched_nice < task_nice(p) &&
7622 !is_nice_reduction(p, attr->sched_nice))
7623 goto req_priv;
7624 }
7625
7626 if (rt_policy(policy)) {
7627 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7628
7629 /* Can't set/change the rt policy: */
7630 if (policy != p->policy && !rlim_rtprio)
7631 goto req_priv;
7632
7633 /* Can't increase priority: */
7634 if (attr->sched_priority > p->rt_priority &&
7635 attr->sched_priority > rlim_rtprio)
7636 goto req_priv;
7637 }
7638
7639 /*
7640 * Can't set/change SCHED_DEADLINE policy at all for now
7641 * (safest behavior); in the future we would like to allow
7642 * unprivileged DL tasks to increase their relative deadline
7643 * or reduce their runtime (both ways reducing utilization)
7644 */
7645 if (dl_policy(policy))
7646 goto req_priv;
7647
7648 /*
7649 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7650 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7651 */
7652 if (task_has_idle_policy(p) && !idle_policy(policy)) {
7653 if (!is_nice_reduction(p, task_nice(p)))
7654 goto req_priv;
7655 }
7656
7657 /* Can't change other user's priorities: */
7658 if (!check_same_owner(p))
7659 goto req_priv;
7660
7661 /* Normal users shall not reset the sched_reset_on_fork flag: */
7662 if (p->sched_reset_on_fork && !reset_on_fork)
7663 goto req_priv;
7664
7665 return 0;
7666
7667 req_priv:
7668 if (!capable(CAP_SYS_NICE))
7669 return -EPERM;
7670
7671 return 0;
7672 }
7673
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)7674 static int __sched_setscheduler(struct task_struct *p,
7675 const struct sched_attr *attr,
7676 bool user, bool pi)
7677 {
7678 int oldpolicy = -1, policy = attr->sched_policy;
7679 int retval, oldprio, newprio, queued, running;
7680 const struct sched_class *prev_class;
7681 struct balance_callback *head;
7682 struct rq_flags rf;
7683 int reset_on_fork;
7684 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7685 struct rq *rq;
7686 bool cpuset_locked = false;
7687
7688 /* The pi code expects interrupts enabled */
7689 BUG_ON(pi && in_interrupt());
7690 recheck:
7691 /* Double check policy once rq lock held: */
7692 if (policy < 0) {
7693 reset_on_fork = p->sched_reset_on_fork;
7694 policy = oldpolicy = p->policy;
7695 } else {
7696 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7697
7698 if (!valid_policy(policy))
7699 return -EINVAL;
7700 }
7701
7702 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7703 return -EINVAL;
7704
7705 /*
7706 * Valid priorities for SCHED_FIFO and SCHED_RR are
7707 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7708 * SCHED_BATCH and SCHED_IDLE is 0.
7709 */
7710 if (attr->sched_priority > MAX_RT_PRIO-1)
7711 return -EINVAL;
7712 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7713 (rt_policy(policy) != (attr->sched_priority != 0)))
7714 return -EINVAL;
7715
7716 if (user) {
7717 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7718 if (retval)
7719 return retval;
7720
7721 if (attr->sched_flags & SCHED_FLAG_SUGOV)
7722 return -EINVAL;
7723
7724 retval = security_task_setscheduler(p);
7725 if (retval)
7726 return retval;
7727 }
7728
7729 /* Update task specific "requested" clamps */
7730 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7731 retval = uclamp_validate(p, attr);
7732 if (retval)
7733 return retval;
7734 }
7735
7736 /*
7737 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
7738 * information.
7739 */
7740 if (dl_policy(policy) || dl_policy(p->policy)) {
7741 cpuset_locked = true;
7742 cpuset_lock();
7743 }
7744
7745 /*
7746 * Make sure no PI-waiters arrive (or leave) while we are
7747 * changing the priority of the task:
7748 *
7749 * To be able to change p->policy safely, the appropriate
7750 * runqueue lock must be held.
7751 */
7752 rq = task_rq_lock(p, &rf);
7753 update_rq_clock(rq);
7754
7755 /*
7756 * Changing the policy of the stop threads its a very bad idea:
7757 */
7758 if (p == rq->stop) {
7759 retval = -EINVAL;
7760 goto unlock;
7761 }
7762
7763 /*
7764 * If not changing anything there's no need to proceed further,
7765 * but store a possible modification of reset_on_fork.
7766 */
7767 if (unlikely(policy == p->policy)) {
7768 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7769 goto change;
7770 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7771 goto change;
7772 if (dl_policy(policy) && dl_param_changed(p, attr))
7773 goto change;
7774 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7775 goto change;
7776 #ifdef CONFIG_SCHED_LATENCY_NICE
7777 if (attr->sched_flags & SCHED_FLAG_LATENCY_NICE &&
7778 attr->sched_latency_nice != LATENCY_TO_NICE(p->latency_prio))
7779 goto change;
7780 #endif
7781
7782 p->sched_reset_on_fork = reset_on_fork;
7783 retval = 0;
7784 goto unlock;
7785 }
7786 change:
7787
7788 if (user) {
7789 #ifdef CONFIG_RT_GROUP_SCHED
7790 /*
7791 * Do not allow realtime tasks into groups that have no runtime
7792 * assigned.
7793 */
7794 if (rt_bandwidth_enabled() && rt_policy(policy) &&
7795 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7796 !task_group_is_autogroup(task_group(p))) {
7797 retval = -EPERM;
7798 goto unlock;
7799 }
7800 #endif
7801 #ifdef CONFIG_SMP
7802 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7803 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7804 cpumask_t *span = rq->rd->span;
7805
7806 /*
7807 * Don't allow tasks with an affinity mask smaller than
7808 * the entire root_domain to become SCHED_DEADLINE. We
7809 * will also fail if there's no bandwidth available.
7810 */
7811 if (!cpumask_subset(span, p->cpus_ptr) ||
7812 rq->rd->dl_bw.bw == 0) {
7813 retval = -EPERM;
7814 goto unlock;
7815 }
7816 }
7817 #endif
7818 }
7819
7820 /* Re-check policy now with rq lock held: */
7821 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7822 policy = oldpolicy = -1;
7823 task_rq_unlock(rq, p, &rf);
7824 if (cpuset_locked)
7825 cpuset_unlock();
7826 goto recheck;
7827 }
7828
7829 /*
7830 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7831 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7832 * is available.
7833 */
7834 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7835 retval = -EBUSY;
7836 goto unlock;
7837 }
7838
7839 p->sched_reset_on_fork = reset_on_fork;
7840 oldprio = p->prio;
7841
7842 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7843 if (pi) {
7844 /*
7845 * Take priority boosted tasks into account. If the new
7846 * effective priority is unchanged, we just store the new
7847 * normal parameters and do not touch the scheduler class and
7848 * the runqueue. This will be done when the task deboost
7849 * itself.
7850 */
7851 newprio = rt_effective_prio(p, newprio);
7852 if (newprio == oldprio)
7853 queue_flags &= ~DEQUEUE_MOVE;
7854 }
7855
7856 queued = task_on_rq_queued(p);
7857 running = task_current(rq, p);
7858 if (queued)
7859 dequeue_task(rq, p, queue_flags);
7860 if (running)
7861 put_prev_task(rq, p);
7862
7863 prev_class = p->sched_class;
7864
7865 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7866 __setscheduler_params(p, attr);
7867 __setscheduler_prio(p, newprio);
7868 }
7869 __setscheduler_uclamp(p, attr);
7870
7871 if (queued) {
7872 /*
7873 * We enqueue to tail when the priority of a task is
7874 * increased (user space view).
7875 */
7876 if (oldprio < p->prio)
7877 queue_flags |= ENQUEUE_HEAD;
7878
7879 enqueue_task(rq, p, queue_flags);
7880 }
7881 if (running)
7882 set_next_task(rq, p);
7883
7884 check_class_changed(rq, p, prev_class, oldprio);
7885
7886 /* Avoid rq from going away on us: */
7887 preempt_disable();
7888 head = splice_balance_callbacks(rq);
7889 task_rq_unlock(rq, p, &rf);
7890
7891 if (pi) {
7892 if (cpuset_locked)
7893 cpuset_unlock();
7894 rt_mutex_adjust_pi(p);
7895 }
7896
7897 /* Run balance callbacks after we've adjusted the PI chain: */
7898 balance_callbacks(rq, head);
7899 preempt_enable();
7900
7901 return 0;
7902
7903 unlock:
7904 task_rq_unlock(rq, p, &rf);
7905 if (cpuset_locked)
7906 cpuset_unlock();
7907 return retval;
7908 }
7909
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)7910 static int _sched_setscheduler(struct task_struct *p, int policy,
7911 const struct sched_param *param, bool check)
7912 {
7913 struct sched_attr attr = {
7914 .sched_policy = policy,
7915 .sched_priority = param->sched_priority,
7916 .sched_nice = PRIO_TO_NICE(p->static_prio),
7917 };
7918
7919 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7920 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7921 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7922 policy &= ~SCHED_RESET_ON_FORK;
7923 attr.sched_policy = policy;
7924 }
7925
7926 return __sched_setscheduler(p, &attr, check, true);
7927 }
7928 /**
7929 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7930 * @p: the task in question.
7931 * @policy: new policy.
7932 * @param: structure containing the new RT priority.
7933 *
7934 * Use sched_set_fifo(), read its comment.
7935 *
7936 * Return: 0 on success. An error code otherwise.
7937 *
7938 * NOTE that the task may be already dead.
7939 */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)7940 int sched_setscheduler(struct task_struct *p, int policy,
7941 const struct sched_param *param)
7942 {
7943 return _sched_setscheduler(p, policy, param, true);
7944 }
7945
sched_setattr(struct task_struct * p,const struct sched_attr * attr)7946 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7947 {
7948 return __sched_setscheduler(p, attr, true, true);
7949 }
7950
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)7951 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7952 {
7953 return __sched_setscheduler(p, attr, false, true);
7954 }
7955 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7956
7957 /**
7958 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7959 * @p: the task in question.
7960 * @policy: new policy.
7961 * @param: structure containing the new RT priority.
7962 *
7963 * Just like sched_setscheduler, only don't bother checking if the
7964 * current context has permission. For example, this is needed in
7965 * stop_machine(): we create temporary high priority worker threads,
7966 * but our caller might not have that capability.
7967 *
7968 * Return: 0 on success. An error code otherwise.
7969 */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)7970 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7971 const struct sched_param *param)
7972 {
7973 return _sched_setscheduler(p, policy, param, false);
7974 }
7975
7976 /*
7977 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7978 * incapable of resource management, which is the one thing an OS really should
7979 * be doing.
7980 *
7981 * This is of course the reason it is limited to privileged users only.
7982 *
7983 * Worse still; it is fundamentally impossible to compose static priority
7984 * workloads. You cannot take two correctly working static prio workloads
7985 * and smash them together and still expect them to work.
7986 *
7987 * For this reason 'all' FIFO tasks the kernel creates are basically at:
7988 *
7989 * MAX_RT_PRIO / 2
7990 *
7991 * The administrator _MUST_ configure the system, the kernel simply doesn't
7992 * know enough information to make a sensible choice.
7993 */
sched_set_fifo(struct task_struct * p)7994 void sched_set_fifo(struct task_struct *p)
7995 {
7996 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7997 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7998 }
7999 EXPORT_SYMBOL_GPL(sched_set_fifo);
8000
8001 /*
8002 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
8003 */
sched_set_fifo_low(struct task_struct * p)8004 void sched_set_fifo_low(struct task_struct *p)
8005 {
8006 struct sched_param sp = { .sched_priority = 1 };
8007 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
8008 }
8009 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
8010
sched_set_normal(struct task_struct * p,int nice)8011 void sched_set_normal(struct task_struct *p, int nice)
8012 {
8013 struct sched_attr attr = {
8014 .sched_policy = SCHED_NORMAL,
8015 .sched_nice = nice,
8016 };
8017 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
8018 }
8019 EXPORT_SYMBOL_GPL(sched_set_normal);
8020
8021 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)8022 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
8023 {
8024 struct sched_param lparam;
8025 struct task_struct *p;
8026 int retval;
8027
8028 if (!param || pid < 0)
8029 return -EINVAL;
8030 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
8031 return -EFAULT;
8032
8033 rcu_read_lock();
8034 retval = -ESRCH;
8035 p = find_process_by_pid(pid);
8036 if (likely(p))
8037 get_task_struct(p);
8038 rcu_read_unlock();
8039
8040 if (likely(p)) {
8041 retval = sched_setscheduler(p, policy, &lparam);
8042 put_task_struct(p);
8043 }
8044
8045 return retval;
8046 }
8047
8048 /*
8049 * Mimics kernel/events/core.c perf_copy_attr().
8050 */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)8051 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
8052 {
8053 u32 size;
8054 int ret;
8055
8056 /* Zero the full structure, so that a short copy will be nice: */
8057 memset(attr, 0, sizeof(*attr));
8058
8059 ret = get_user(size, &uattr->size);
8060 if (ret)
8061 return ret;
8062
8063 /* ABI compatibility quirk: */
8064 if (!size)
8065 size = SCHED_ATTR_SIZE_VER0;
8066 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
8067 goto err_size;
8068
8069 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
8070 if (ret) {
8071 if (ret == -E2BIG)
8072 goto err_size;
8073 return ret;
8074 }
8075
8076 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
8077 size < SCHED_ATTR_SIZE_VER1)
8078 return -EINVAL;
8079
8080 #ifdef CONFIG_SCHED_LATENCY_NICE
8081 if ((attr->sched_flags & SCHED_FLAG_LATENCY_NICE) &&
8082 size < SCHED_ATTR_SIZE_VER2)
8083 return -EINVAL;
8084 #endif
8085 /*
8086 * XXX: Do we want to be lenient like existing syscalls; or do we want
8087 * to be strict and return an error on out-of-bounds values?
8088 */
8089 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
8090
8091 return 0;
8092
8093 err_size:
8094 put_user(sizeof(*attr), &uattr->size);
8095 return -E2BIG;
8096 }
8097
get_params(struct task_struct * p,struct sched_attr * attr)8098 static void get_params(struct task_struct *p, struct sched_attr *attr)
8099 {
8100 if (task_has_dl_policy(p))
8101 __getparam_dl(p, attr);
8102 else if (task_has_rt_policy(p))
8103 attr->sched_priority = p->rt_priority;
8104 else
8105 attr->sched_nice = task_nice(p);
8106 }
8107
8108 /**
8109 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
8110 * @pid: the pid in question.
8111 * @policy: new policy.
8112 * @param: structure containing the new RT priority.
8113 *
8114 * Return: 0 on success. An error code otherwise.
8115 */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)8116 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
8117 {
8118 if (policy < 0)
8119 return -EINVAL;
8120
8121 return do_sched_setscheduler(pid, policy, param);
8122 }
8123
8124 /**
8125 * sys_sched_setparam - set/change the RT priority of a thread
8126 * @pid: the pid in question.
8127 * @param: structure containing the new RT priority.
8128 *
8129 * Return: 0 on success. An error code otherwise.
8130 */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)8131 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
8132 {
8133 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
8134 }
8135
8136 /**
8137 * sys_sched_setattr - same as above, but with extended sched_attr
8138 * @pid: the pid in question.
8139 * @uattr: structure containing the extended parameters.
8140 * @flags: for future extension.
8141 */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)8142 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
8143 unsigned int, flags)
8144 {
8145 struct sched_attr attr;
8146 struct task_struct *p;
8147 int retval;
8148
8149 if (!uattr || pid < 0 || flags)
8150 return -EINVAL;
8151
8152 retval = sched_copy_attr(uattr, &attr);
8153 if (retval)
8154 return retval;
8155
8156 if ((int)attr.sched_policy < 0)
8157 return -EINVAL;
8158 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
8159 attr.sched_policy = SETPARAM_POLICY;
8160
8161 rcu_read_lock();
8162 retval = -ESRCH;
8163 p = find_process_by_pid(pid);
8164 if (likely(p))
8165 get_task_struct(p);
8166 rcu_read_unlock();
8167
8168 if (likely(p)) {
8169 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
8170 get_params(p, &attr);
8171 retval = sched_setattr(p, &attr);
8172 put_task_struct(p);
8173 }
8174
8175 return retval;
8176 }
8177
8178 /**
8179 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8180 * @pid: the pid in question.
8181 *
8182 * Return: On success, the policy of the thread. Otherwise, a negative error
8183 * code.
8184 */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)8185 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
8186 {
8187 struct task_struct *p;
8188 int retval;
8189
8190 if (pid < 0)
8191 return -EINVAL;
8192
8193 retval = -ESRCH;
8194 rcu_read_lock();
8195 p = find_process_by_pid(pid);
8196 if (p) {
8197 retval = security_task_getscheduler(p);
8198 if (!retval)
8199 retval = p->policy
8200 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
8201 }
8202 rcu_read_unlock();
8203 return retval;
8204 }
8205
8206 /**
8207 * sys_sched_getparam - get the RT priority of a thread
8208 * @pid: the pid in question.
8209 * @param: structure containing the RT priority.
8210 *
8211 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8212 * code.
8213 */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)8214 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
8215 {
8216 struct sched_param lp = { .sched_priority = 0 };
8217 struct task_struct *p;
8218 int retval;
8219
8220 if (!param || pid < 0)
8221 return -EINVAL;
8222
8223 rcu_read_lock();
8224 p = find_process_by_pid(pid);
8225 retval = -ESRCH;
8226 if (!p)
8227 goto out_unlock;
8228
8229 retval = security_task_getscheduler(p);
8230 if (retval)
8231 goto out_unlock;
8232
8233 if (task_has_rt_policy(p))
8234 lp.sched_priority = p->rt_priority;
8235 rcu_read_unlock();
8236
8237 /*
8238 * This one might sleep, we cannot do it with a spinlock held ...
8239 */
8240 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8241
8242 return retval;
8243
8244 out_unlock:
8245 rcu_read_unlock();
8246 return retval;
8247 }
8248
8249 /*
8250 * Copy the kernel size attribute structure (which might be larger
8251 * than what user-space knows about) to user-space.
8252 *
8253 * Note that all cases are valid: user-space buffer can be larger or
8254 * smaller than the kernel-space buffer. The usual case is that both
8255 * have the same size.
8256 */
8257 static int
sched_attr_copy_to_user(struct sched_attr __user * uattr,struct sched_attr * kattr,unsigned int usize)8258 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8259 struct sched_attr *kattr,
8260 unsigned int usize)
8261 {
8262 unsigned int ksize = sizeof(*kattr);
8263
8264 if (!access_ok(uattr, usize))
8265 return -EFAULT;
8266
8267 /*
8268 * sched_getattr() ABI forwards and backwards compatibility:
8269 *
8270 * If usize == ksize then we just copy everything to user-space and all is good.
8271 *
8272 * If usize < ksize then we only copy as much as user-space has space for,
8273 * this keeps ABI compatibility as well. We skip the rest.
8274 *
8275 * If usize > ksize then user-space is using a newer version of the ABI,
8276 * which part the kernel doesn't know about. Just ignore it - tooling can
8277 * detect the kernel's knowledge of attributes from the attr->size value
8278 * which is set to ksize in this case.
8279 */
8280 kattr->size = min(usize, ksize);
8281
8282 if (copy_to_user(uattr, kattr, kattr->size))
8283 return -EFAULT;
8284
8285 return 0;
8286 }
8287
8288 /**
8289 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8290 * @pid: the pid in question.
8291 * @uattr: structure containing the extended parameters.
8292 * @usize: sizeof(attr) for fwd/bwd comp.
8293 * @flags: for future extension.
8294 */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,usize,unsigned int,flags)8295 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8296 unsigned int, usize, unsigned int, flags)
8297 {
8298 struct sched_attr kattr = { };
8299 struct task_struct *p;
8300 int retval;
8301
8302 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8303 usize < SCHED_ATTR_SIZE_VER0 || flags)
8304 return -EINVAL;
8305
8306 rcu_read_lock();
8307 p = find_process_by_pid(pid);
8308 retval = -ESRCH;
8309 if (!p)
8310 goto out_unlock;
8311
8312 retval = security_task_getscheduler(p);
8313 if (retval)
8314 goto out_unlock;
8315
8316 kattr.sched_policy = p->policy;
8317 if (p->sched_reset_on_fork)
8318 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8319 get_params(p, &kattr);
8320 kattr.sched_flags &= SCHED_FLAG_ALL;
8321
8322 #ifdef CONFIG_SCHED_LATENCY_NICE
8323 kattr.sched_latency_nice = LATENCY_TO_NICE(p->latency_prio);
8324 #endif
8325
8326 #ifdef CONFIG_UCLAMP_TASK
8327 /*
8328 * This could race with another potential updater, but this is fine
8329 * because it'll correctly read the old or the new value. We don't need
8330 * to guarantee who wins the race as long as it doesn't return garbage.
8331 */
8332 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8333 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8334 #endif
8335
8336 rcu_read_unlock();
8337
8338 return sched_attr_copy_to_user(uattr, &kattr, usize);
8339
8340 out_unlock:
8341 rcu_read_unlock();
8342 return retval;
8343 }
8344
8345 #ifdef CONFIG_SMP
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)8346 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8347 {
8348 int ret = 0;
8349
8350 /*
8351 * If the task isn't a deadline task or admission control is
8352 * disabled then we don't care about affinity changes.
8353 */
8354 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8355 return 0;
8356
8357 /*
8358 * Since bandwidth control happens on root_domain basis,
8359 * if admission test is enabled, we only admit -deadline
8360 * tasks allowed to run on all the CPUs in the task's
8361 * root_domain.
8362 */
8363 rcu_read_lock();
8364 if (!cpumask_subset(task_rq(p)->rd->span, mask))
8365 ret = -EBUSY;
8366 rcu_read_unlock();
8367 return ret;
8368 }
8369 #endif
8370
8371 static int
__sched_setaffinity(struct task_struct * p,struct affinity_context * ctx)8372 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
8373 {
8374 int retval;
8375 cpumask_var_t cpus_allowed, new_mask;
8376
8377 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8378 return -ENOMEM;
8379
8380 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8381 retval = -ENOMEM;
8382 goto out_free_cpus_allowed;
8383 }
8384
8385 cpuset_cpus_allowed(p, cpus_allowed);
8386 cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8387
8388 ctx->new_mask = new_mask;
8389 ctx->flags |= SCA_CHECK;
8390
8391 retval = dl_task_check_affinity(p, new_mask);
8392 if (retval)
8393 goto out_free_new_mask;
8394
8395 retval = __set_cpus_allowed_ptr(p, ctx);
8396 if (retval)
8397 goto out_free_new_mask;
8398
8399 cpuset_cpus_allowed(p, cpus_allowed);
8400 if (!cpumask_subset(new_mask, cpus_allowed)) {
8401 /*
8402 * We must have raced with a concurrent cpuset update.
8403 * Just reset the cpumask to the cpuset's cpus_allowed.
8404 */
8405 cpumask_copy(new_mask, cpus_allowed);
8406
8407 /*
8408 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8409 * will restore the previous user_cpus_ptr value.
8410 *
8411 * In the unlikely event a previous user_cpus_ptr exists,
8412 * we need to further restrict the mask to what is allowed
8413 * by that old user_cpus_ptr.
8414 */
8415 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8416 bool empty = !cpumask_and(new_mask, new_mask,
8417 ctx->user_mask);
8418
8419 if (WARN_ON_ONCE(empty))
8420 cpumask_copy(new_mask, cpus_allowed);
8421 }
8422 __set_cpus_allowed_ptr(p, ctx);
8423 retval = -EINVAL;
8424 }
8425
8426 out_free_new_mask:
8427 free_cpumask_var(new_mask);
8428 out_free_cpus_allowed:
8429 free_cpumask_var(cpus_allowed);
8430 return retval;
8431 }
8432
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)8433 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8434 {
8435 struct affinity_context ac;
8436 struct cpumask *user_mask;
8437 struct task_struct *p;
8438 int retval;
8439
8440 rcu_read_lock();
8441
8442 p = find_process_by_pid(pid);
8443 if (!p) {
8444 rcu_read_unlock();
8445 return -ESRCH;
8446 }
8447
8448 /* Prevent p going away */
8449 get_task_struct(p);
8450 rcu_read_unlock();
8451
8452 if (p->flags & PF_NO_SETAFFINITY) {
8453 retval = -EINVAL;
8454 goto out_put_task;
8455 }
8456
8457 if (!check_same_owner(p)) {
8458 rcu_read_lock();
8459 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8460 rcu_read_unlock();
8461 retval = -EPERM;
8462 goto out_put_task;
8463 }
8464 rcu_read_unlock();
8465 }
8466
8467 retval = security_task_setscheduler(p);
8468 if (retval)
8469 goto out_put_task;
8470
8471 /*
8472 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
8473 * alloc_user_cpus_ptr() returns NULL.
8474 */
8475 user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
8476 if (user_mask) {
8477 cpumask_copy(user_mask, in_mask);
8478 } else if (IS_ENABLED(CONFIG_SMP)) {
8479 retval = -ENOMEM;
8480 goto out_put_task;
8481 }
8482
8483 ac = (struct affinity_context){
8484 .new_mask = in_mask,
8485 .user_mask = user_mask,
8486 .flags = SCA_USER,
8487 };
8488
8489 retval = __sched_setaffinity(p, &ac);
8490 kfree(ac.user_mask);
8491
8492 out_put_task:
8493 put_task_struct(p);
8494 return retval;
8495 }
8496
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)8497 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8498 struct cpumask *new_mask)
8499 {
8500 if (len < cpumask_size())
8501 cpumask_clear(new_mask);
8502 else if (len > cpumask_size())
8503 len = cpumask_size();
8504
8505 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8506 }
8507
8508 /**
8509 * sys_sched_setaffinity - set the CPU affinity of a process
8510 * @pid: pid of the process
8511 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8512 * @user_mask_ptr: user-space pointer to the new CPU mask
8513 *
8514 * Return: 0 on success. An error code otherwise.
8515 */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8516 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8517 unsigned long __user *, user_mask_ptr)
8518 {
8519 cpumask_var_t new_mask;
8520 int retval;
8521
8522 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8523 return -ENOMEM;
8524
8525 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8526 if (retval == 0)
8527 retval = sched_setaffinity(pid, new_mask);
8528 free_cpumask_var(new_mask);
8529 return retval;
8530 }
8531
sched_getaffinity(pid_t pid,struct cpumask * mask)8532 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8533 {
8534 struct task_struct *p;
8535 unsigned long flags;
8536 int retval;
8537
8538 rcu_read_lock();
8539
8540 retval = -ESRCH;
8541 p = find_process_by_pid(pid);
8542 if (!p)
8543 goto out_unlock;
8544
8545 retval = security_task_getscheduler(p);
8546 if (retval)
8547 goto out_unlock;
8548
8549 raw_spin_lock_irqsave(&p->pi_lock, flags);
8550 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8551 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8552
8553 out_unlock:
8554 rcu_read_unlock();
8555
8556 return retval;
8557 }
8558
8559 /**
8560 * sys_sched_getaffinity - get the CPU affinity of a process
8561 * @pid: pid of the process
8562 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8563 * @user_mask_ptr: user-space pointer to hold the current CPU mask
8564 *
8565 * Return: size of CPU mask copied to user_mask_ptr on success. An
8566 * error code otherwise.
8567 */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8568 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8569 unsigned long __user *, user_mask_ptr)
8570 {
8571 int ret;
8572 cpumask_var_t mask;
8573
8574 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8575 return -EINVAL;
8576 if (len & (sizeof(unsigned long)-1))
8577 return -EINVAL;
8578
8579 if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
8580 return -ENOMEM;
8581
8582 ret = sched_getaffinity(pid, mask);
8583 if (ret == 0) {
8584 unsigned int retlen = min(len, cpumask_size());
8585
8586 if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
8587 ret = -EFAULT;
8588 else
8589 ret = retlen;
8590 }
8591 free_cpumask_var(mask);
8592
8593 return ret;
8594 }
8595
do_sched_yield(void)8596 static void do_sched_yield(void)
8597 {
8598 struct rq_flags rf;
8599 struct rq *rq;
8600
8601 rq = this_rq_lock_irq(&rf);
8602
8603 schedstat_inc(rq->yld_count);
8604 current->sched_class->yield_task(rq);
8605
8606 preempt_disable();
8607 rq_unlock_irq(rq, &rf);
8608 sched_preempt_enable_no_resched();
8609
8610 schedule();
8611 }
8612
8613 /**
8614 * sys_sched_yield - yield the current processor to other threads.
8615 *
8616 * This function yields the current CPU to other tasks. If there are no
8617 * other threads running on this CPU then this function will return.
8618 *
8619 * Return: 0.
8620 */
SYSCALL_DEFINE0(sched_yield)8621 SYSCALL_DEFINE0(sched_yield)
8622 {
8623 do_sched_yield();
8624 return 0;
8625 }
8626
8627 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
__cond_resched(void)8628 int __sched __cond_resched(void)
8629 {
8630 if (should_resched(0)) {
8631 preempt_schedule_common();
8632 return 1;
8633 }
8634 /*
8635 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8636 * whether the current CPU is in an RCU read-side critical section,
8637 * so the tick can report quiescent states even for CPUs looping
8638 * in kernel context. In contrast, in non-preemptible kernels,
8639 * RCU readers leave no in-memory hints, which means that CPU-bound
8640 * processes executing in kernel context might never report an
8641 * RCU quiescent state. Therefore, the following code causes
8642 * cond_resched() to report a quiescent state, but only when RCU
8643 * is in urgent need of one.
8644 */
8645 #ifndef CONFIG_PREEMPT_RCU
8646 rcu_all_qs();
8647 #endif
8648 return 0;
8649 }
8650 EXPORT_SYMBOL(__cond_resched);
8651 #endif
8652
8653 #ifdef CONFIG_PREEMPT_DYNAMIC
8654 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8655 #define cond_resched_dynamic_enabled __cond_resched
8656 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0)
8657 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8658 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8659
8660 #define might_resched_dynamic_enabled __cond_resched
8661 #define might_resched_dynamic_disabled ((void *)&__static_call_return0)
8662 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8663 EXPORT_STATIC_CALL_TRAMP(might_resched);
8664 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8665 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
dynamic_cond_resched(void)8666 int __sched dynamic_cond_resched(void)
8667 {
8668 klp_sched_try_switch();
8669 if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8670 return 0;
8671 return __cond_resched();
8672 }
8673 EXPORT_SYMBOL(dynamic_cond_resched);
8674
8675 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
dynamic_might_resched(void)8676 int __sched dynamic_might_resched(void)
8677 {
8678 if (!static_branch_unlikely(&sk_dynamic_might_resched))
8679 return 0;
8680 return __cond_resched();
8681 }
8682 EXPORT_SYMBOL(dynamic_might_resched);
8683 #endif
8684 #endif
8685
8686 /*
8687 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8688 * call schedule, and on return reacquire the lock.
8689 *
8690 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8691 * operations here to prevent schedule() from being called twice (once via
8692 * spin_unlock(), once by hand).
8693 */
__cond_resched_lock(spinlock_t * lock)8694 int __cond_resched_lock(spinlock_t *lock)
8695 {
8696 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8697 int ret = 0;
8698
8699 lockdep_assert_held(lock);
8700
8701 if (spin_needbreak(lock) || resched) {
8702 spin_unlock(lock);
8703 if (!_cond_resched())
8704 cpu_relax();
8705 ret = 1;
8706 spin_lock(lock);
8707 }
8708 return ret;
8709 }
8710 EXPORT_SYMBOL(__cond_resched_lock);
8711
__cond_resched_rwlock_read(rwlock_t * lock)8712 int __cond_resched_rwlock_read(rwlock_t *lock)
8713 {
8714 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8715 int ret = 0;
8716
8717 lockdep_assert_held_read(lock);
8718
8719 if (rwlock_needbreak(lock) || resched) {
8720 read_unlock(lock);
8721 if (!_cond_resched())
8722 cpu_relax();
8723 ret = 1;
8724 read_lock(lock);
8725 }
8726 return ret;
8727 }
8728 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8729
__cond_resched_rwlock_write(rwlock_t * lock)8730 int __cond_resched_rwlock_write(rwlock_t *lock)
8731 {
8732 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8733 int ret = 0;
8734
8735 lockdep_assert_held_write(lock);
8736
8737 if (rwlock_needbreak(lock) || resched) {
8738 write_unlock(lock);
8739 if (!_cond_resched())
8740 cpu_relax();
8741 ret = 1;
8742 write_lock(lock);
8743 }
8744 return ret;
8745 }
8746 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8747
8748 #ifdef CONFIG_PREEMPT_DYNAMIC
8749
8750 #ifdef CONFIG_GENERIC_ENTRY
8751 #include <linux/entry-common.h>
8752 #endif
8753
8754 /*
8755 * SC:cond_resched
8756 * SC:might_resched
8757 * SC:preempt_schedule
8758 * SC:preempt_schedule_notrace
8759 * SC:irqentry_exit_cond_resched
8760 *
8761 *
8762 * NONE:
8763 * cond_resched <- __cond_resched
8764 * might_resched <- RET0
8765 * preempt_schedule <- NOP
8766 * preempt_schedule_notrace <- NOP
8767 * irqentry_exit_cond_resched <- NOP
8768 *
8769 * VOLUNTARY:
8770 * cond_resched <- __cond_resched
8771 * might_resched <- __cond_resched
8772 * preempt_schedule <- NOP
8773 * preempt_schedule_notrace <- NOP
8774 * irqentry_exit_cond_resched <- NOP
8775 *
8776 * FULL:
8777 * cond_resched <- RET0
8778 * might_resched <- RET0
8779 * preempt_schedule <- preempt_schedule
8780 * preempt_schedule_notrace <- preempt_schedule_notrace
8781 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8782 */
8783
8784 enum {
8785 preempt_dynamic_undefined = -1,
8786 preempt_dynamic_none,
8787 preempt_dynamic_voluntary,
8788 preempt_dynamic_full,
8789 };
8790
8791 int preempt_dynamic_mode = preempt_dynamic_undefined;
8792
sched_dynamic_mode(const char * str)8793 int sched_dynamic_mode(const char *str)
8794 {
8795 if (!strcmp(str, "none"))
8796 return preempt_dynamic_none;
8797
8798 if (!strcmp(str, "voluntary"))
8799 return preempt_dynamic_voluntary;
8800
8801 if (!strcmp(str, "full"))
8802 return preempt_dynamic_full;
8803
8804 return -EINVAL;
8805 }
8806
8807 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8808 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled)
8809 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled)
8810 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8811 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key)
8812 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key)
8813 #else
8814 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8815 #endif
8816
8817 static DEFINE_MUTEX(sched_dynamic_mutex);
8818 static bool klp_override;
8819
__sched_dynamic_update(int mode)8820 static void __sched_dynamic_update(int mode)
8821 {
8822 /*
8823 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8824 * the ZERO state, which is invalid.
8825 */
8826 if (!klp_override)
8827 preempt_dynamic_enable(cond_resched);
8828 preempt_dynamic_enable(might_resched);
8829 preempt_dynamic_enable(preempt_schedule);
8830 preempt_dynamic_enable(preempt_schedule_notrace);
8831 preempt_dynamic_enable(irqentry_exit_cond_resched);
8832
8833 switch (mode) {
8834 case preempt_dynamic_none:
8835 if (!klp_override)
8836 preempt_dynamic_enable(cond_resched);
8837 preempt_dynamic_disable(might_resched);
8838 preempt_dynamic_disable(preempt_schedule);
8839 preempt_dynamic_disable(preempt_schedule_notrace);
8840 preempt_dynamic_disable(irqentry_exit_cond_resched);
8841 if (mode != preempt_dynamic_mode)
8842 pr_info("Dynamic Preempt: none\n");
8843 break;
8844
8845 case preempt_dynamic_voluntary:
8846 if (!klp_override)
8847 preempt_dynamic_enable(cond_resched);
8848 preempt_dynamic_enable(might_resched);
8849 preempt_dynamic_disable(preempt_schedule);
8850 preempt_dynamic_disable(preempt_schedule_notrace);
8851 preempt_dynamic_disable(irqentry_exit_cond_resched);
8852 if (mode != preempt_dynamic_mode)
8853 pr_info("Dynamic Preempt: voluntary\n");
8854 break;
8855
8856 case preempt_dynamic_full:
8857 if (!klp_override)
8858 preempt_dynamic_disable(cond_resched);
8859 preempt_dynamic_disable(might_resched);
8860 preempt_dynamic_enable(preempt_schedule);
8861 preempt_dynamic_enable(preempt_schedule_notrace);
8862 preempt_dynamic_enable(irqentry_exit_cond_resched);
8863 if (mode != preempt_dynamic_mode)
8864 pr_info("Dynamic Preempt: full\n");
8865 break;
8866 }
8867
8868 preempt_dynamic_mode = mode;
8869 }
8870
sched_dynamic_update(int mode)8871 void sched_dynamic_update(int mode)
8872 {
8873 mutex_lock(&sched_dynamic_mutex);
8874 __sched_dynamic_update(mode);
8875 mutex_unlock(&sched_dynamic_mutex);
8876 }
8877
8878 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
8879
klp_cond_resched(void)8880 static int klp_cond_resched(void)
8881 {
8882 __klp_sched_try_switch();
8883 return __cond_resched();
8884 }
8885
sched_dynamic_klp_enable(void)8886 void sched_dynamic_klp_enable(void)
8887 {
8888 mutex_lock(&sched_dynamic_mutex);
8889
8890 klp_override = true;
8891 static_call_update(cond_resched, klp_cond_resched);
8892
8893 mutex_unlock(&sched_dynamic_mutex);
8894 }
8895
sched_dynamic_klp_disable(void)8896 void sched_dynamic_klp_disable(void)
8897 {
8898 mutex_lock(&sched_dynamic_mutex);
8899
8900 klp_override = false;
8901 __sched_dynamic_update(preempt_dynamic_mode);
8902
8903 mutex_unlock(&sched_dynamic_mutex);
8904 }
8905
8906 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
8907
setup_preempt_mode(char * str)8908 static int __init setup_preempt_mode(char *str)
8909 {
8910 int mode = sched_dynamic_mode(str);
8911 if (mode < 0) {
8912 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8913 return 0;
8914 }
8915
8916 sched_dynamic_update(mode);
8917 return 1;
8918 }
8919 __setup("preempt=", setup_preempt_mode);
8920
preempt_dynamic_init(void)8921 static void __init preempt_dynamic_init(void)
8922 {
8923 if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8924 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8925 sched_dynamic_update(preempt_dynamic_none);
8926 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8927 sched_dynamic_update(preempt_dynamic_voluntary);
8928 } else {
8929 /* Default static call setting, nothing to do */
8930 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8931 preempt_dynamic_mode = preempt_dynamic_full;
8932 pr_info("Dynamic Preempt: full\n");
8933 }
8934 }
8935 }
8936
8937 #define PREEMPT_MODEL_ACCESSOR(mode) \
8938 bool preempt_model_##mode(void) \
8939 { \
8940 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8941 return preempt_dynamic_mode == preempt_dynamic_##mode; \
8942 } \
8943 EXPORT_SYMBOL_GPL(preempt_model_##mode)
8944
8945 PREEMPT_MODEL_ACCESSOR(none);
8946 PREEMPT_MODEL_ACCESSOR(voluntary);
8947 PREEMPT_MODEL_ACCESSOR(full);
8948
8949 #else /* !CONFIG_PREEMPT_DYNAMIC */
8950
preempt_dynamic_init(void)8951 static inline void preempt_dynamic_init(void) { }
8952
8953 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8954
8955 /**
8956 * yield - yield the current processor to other threads.
8957 *
8958 * Do not ever use this function, there's a 99% chance you're doing it wrong.
8959 *
8960 * The scheduler is at all times free to pick the calling task as the most
8961 * eligible task to run, if removing the yield() call from your code breaks
8962 * it, it's already broken.
8963 *
8964 * Typical broken usage is:
8965 *
8966 * while (!event)
8967 * yield();
8968 *
8969 * where one assumes that yield() will let 'the other' process run that will
8970 * make event true. If the current task is a SCHED_FIFO task that will never
8971 * happen. Never use yield() as a progress guarantee!!
8972 *
8973 * If you want to use yield() to wait for something, use wait_event().
8974 * If you want to use yield() to be 'nice' for others, use cond_resched().
8975 * If you still want to use yield(), do not!
8976 */
yield(void)8977 void __sched yield(void)
8978 {
8979 set_current_state(TASK_RUNNING);
8980 do_sched_yield();
8981 }
8982 EXPORT_SYMBOL(yield);
8983
8984 /**
8985 * yield_to - yield the current processor to another thread in
8986 * your thread group, or accelerate that thread toward the
8987 * processor it's on.
8988 * @p: target task
8989 * @preempt: whether task preemption is allowed or not
8990 *
8991 * It's the caller's job to ensure that the target task struct
8992 * can't go away on us before we can do any checks.
8993 *
8994 * Return:
8995 * true (>0) if we indeed boosted the target task.
8996 * false (0) if we failed to boost the target.
8997 * -ESRCH if there's no task to yield to.
8998 */
yield_to(struct task_struct * p,bool preempt)8999 int __sched yield_to(struct task_struct *p, bool preempt)
9000 {
9001 struct task_struct *curr = current;
9002 struct rq *rq, *p_rq;
9003 unsigned long flags;
9004 int yielded = 0;
9005
9006 local_irq_save(flags);
9007 rq = this_rq();
9008
9009 again:
9010 p_rq = task_rq(p);
9011 /*
9012 * If we're the only runnable task on the rq and target rq also
9013 * has only one task, there's absolutely no point in yielding.
9014 */
9015 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
9016 yielded = -ESRCH;
9017 goto out_irq;
9018 }
9019
9020 double_rq_lock(rq, p_rq);
9021 if (task_rq(p) != p_rq) {
9022 double_rq_unlock(rq, p_rq);
9023 goto again;
9024 }
9025
9026 if (!curr->sched_class->yield_to_task)
9027 goto out_unlock;
9028
9029 if (curr->sched_class != p->sched_class)
9030 goto out_unlock;
9031
9032 if (task_on_cpu(p_rq, p) || !task_is_running(p))
9033 goto out_unlock;
9034
9035 yielded = curr->sched_class->yield_to_task(rq, p);
9036 if (yielded) {
9037 schedstat_inc(rq->yld_count);
9038 /*
9039 * Make p's CPU reschedule; pick_next_entity takes care of
9040 * fairness.
9041 */
9042 if (preempt && rq != p_rq)
9043 resched_curr(p_rq);
9044 }
9045
9046 out_unlock:
9047 double_rq_unlock(rq, p_rq);
9048 out_irq:
9049 local_irq_restore(flags);
9050
9051 if (yielded > 0)
9052 schedule();
9053
9054 return yielded;
9055 }
9056 EXPORT_SYMBOL_GPL(yield_to);
9057
io_schedule_prepare(void)9058 int io_schedule_prepare(void)
9059 {
9060 int old_iowait = current->in_iowait;
9061
9062 current->in_iowait = 1;
9063 blk_flush_plug(current->plug, true);
9064 return old_iowait;
9065 }
9066
io_schedule_finish(int token)9067 void io_schedule_finish(int token)
9068 {
9069 current->in_iowait = token;
9070 }
9071
9072 /*
9073 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
9074 * that process accounting knows that this is a task in IO wait state.
9075 */
io_schedule_timeout(long timeout)9076 long __sched io_schedule_timeout(long timeout)
9077 {
9078 int token;
9079 long ret;
9080
9081 token = io_schedule_prepare();
9082 ret = schedule_timeout(timeout);
9083 io_schedule_finish(token);
9084
9085 return ret;
9086 }
9087 EXPORT_SYMBOL(io_schedule_timeout);
9088
io_schedule(void)9089 void __sched io_schedule(void)
9090 {
9091 int token;
9092
9093 token = io_schedule_prepare();
9094 schedule();
9095 io_schedule_finish(token);
9096 }
9097 EXPORT_SYMBOL(io_schedule);
9098
9099 /**
9100 * sys_sched_get_priority_max - return maximum RT priority.
9101 * @policy: scheduling class.
9102 *
9103 * Return: On success, this syscall returns the maximum
9104 * rt_priority that can be used by a given scheduling class.
9105 * On failure, a negative error code is returned.
9106 */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)9107 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
9108 {
9109 int ret = -EINVAL;
9110
9111 switch (policy) {
9112 case SCHED_FIFO:
9113 case SCHED_RR:
9114 ret = MAX_RT_PRIO-1;
9115 break;
9116 case SCHED_DEADLINE:
9117 case SCHED_NORMAL:
9118 case SCHED_BATCH:
9119 case SCHED_IDLE:
9120 ret = 0;
9121 break;
9122 }
9123 return ret;
9124 }
9125
9126 /**
9127 * sys_sched_get_priority_min - return minimum RT priority.
9128 * @policy: scheduling class.
9129 *
9130 * Return: On success, this syscall returns the minimum
9131 * rt_priority that can be used by a given scheduling class.
9132 * On failure, a negative error code is returned.
9133 */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)9134 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
9135 {
9136 int ret = -EINVAL;
9137
9138 switch (policy) {
9139 case SCHED_FIFO:
9140 case SCHED_RR:
9141 ret = 1;
9142 break;
9143 case SCHED_DEADLINE:
9144 case SCHED_NORMAL:
9145 case SCHED_BATCH:
9146 case SCHED_IDLE:
9147 ret = 0;
9148 }
9149 return ret;
9150 }
9151
sched_rr_get_interval(pid_t pid,struct timespec64 * t)9152 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
9153 {
9154 struct task_struct *p;
9155 unsigned int time_slice;
9156 struct rq_flags rf;
9157 struct rq *rq;
9158 int retval;
9159
9160 if (pid < 0)
9161 return -EINVAL;
9162
9163 retval = -ESRCH;
9164 rcu_read_lock();
9165 p = find_process_by_pid(pid);
9166 if (!p)
9167 goto out_unlock;
9168
9169 retval = security_task_getscheduler(p);
9170 if (retval)
9171 goto out_unlock;
9172
9173 rq = task_rq_lock(p, &rf);
9174 time_slice = 0;
9175 if (p->sched_class->get_rr_interval)
9176 time_slice = p->sched_class->get_rr_interval(rq, p);
9177 task_rq_unlock(rq, p, &rf);
9178
9179 rcu_read_unlock();
9180 jiffies_to_timespec64(time_slice, t);
9181 return 0;
9182
9183 out_unlock:
9184 rcu_read_unlock();
9185 return retval;
9186 }
9187
9188 /**
9189 * sys_sched_rr_get_interval - return the default timeslice of a process.
9190 * @pid: pid of the process.
9191 * @interval: userspace pointer to the timeslice value.
9192 *
9193 * this syscall writes the default timeslice value of a given process
9194 * into the user-space timespec buffer. A value of '0' means infinity.
9195 *
9196 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
9197 * an error code.
9198 */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct __kernel_timespec __user *,interval)9199 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
9200 struct __kernel_timespec __user *, interval)
9201 {
9202 struct timespec64 t;
9203 int retval = sched_rr_get_interval(pid, &t);
9204
9205 if (retval == 0)
9206 retval = put_timespec64(&t, interval);
9207
9208 return retval;
9209 }
9210
9211 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32,pid_t,pid,struct old_timespec32 __user *,interval)9212 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
9213 struct old_timespec32 __user *, interval)
9214 {
9215 struct timespec64 t;
9216 int retval = sched_rr_get_interval(pid, &t);
9217
9218 if (retval == 0)
9219 retval = put_old_timespec32(&t, interval);
9220 return retval;
9221 }
9222 #endif
9223
sched_show_task(struct task_struct * p)9224 void sched_show_task(struct task_struct *p)
9225 {
9226 unsigned long free = 0;
9227 int ppid;
9228
9229 if (!try_get_task_stack(p))
9230 return;
9231
9232 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
9233
9234 if (task_is_running(p))
9235 pr_cont(" running task ");
9236 #ifdef CONFIG_DEBUG_STACK_USAGE
9237 free = stack_not_used(p);
9238 #endif
9239 ppid = 0;
9240 rcu_read_lock();
9241 if (pid_alive(p))
9242 ppid = task_pid_nr(rcu_dereference(p->real_parent));
9243 rcu_read_unlock();
9244 pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
9245 free, task_pid_nr(p), ppid,
9246 read_task_thread_flags(p));
9247
9248 print_worker_info(KERN_INFO, p);
9249 print_stop_info(KERN_INFO, p);
9250 show_stack(p, NULL, KERN_INFO);
9251 put_task_stack(p);
9252 }
9253 EXPORT_SYMBOL_GPL(sched_show_task);
9254
9255 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)9256 state_filter_match(unsigned long state_filter, struct task_struct *p)
9257 {
9258 unsigned int state = READ_ONCE(p->__state);
9259
9260 /* no filter, everything matches */
9261 if (!state_filter)
9262 return true;
9263
9264 /* filter, but doesn't match */
9265 if (!(state & state_filter))
9266 return false;
9267
9268 /*
9269 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
9270 * TASK_KILLABLE).
9271 */
9272 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
9273 return false;
9274
9275 return true;
9276 }
9277
9278
show_state_filter(unsigned int state_filter)9279 void show_state_filter(unsigned int state_filter)
9280 {
9281 struct task_struct *g, *p;
9282
9283 rcu_read_lock();
9284 for_each_process_thread(g, p) {
9285 /*
9286 * reset the NMI-timeout, listing all files on a slow
9287 * console might take a lot of time:
9288 * Also, reset softlockup watchdogs on all CPUs, because
9289 * another CPU might be blocked waiting for us to process
9290 * an IPI.
9291 */
9292 touch_nmi_watchdog();
9293 touch_all_softlockup_watchdogs();
9294 if (state_filter_match(state_filter, p))
9295 sched_show_task(p);
9296 }
9297
9298 #ifdef CONFIG_SCHED_DEBUG
9299 if (!state_filter)
9300 sysrq_sched_debug_show();
9301 #endif
9302 rcu_read_unlock();
9303 /*
9304 * Only show locks if all tasks are dumped:
9305 */
9306 if (!state_filter)
9307 debug_show_all_locks();
9308 }
9309
9310 /**
9311 * init_idle - set up an idle thread for a given CPU
9312 * @idle: task in question
9313 * @cpu: CPU the idle task belongs to
9314 *
9315 * NOTE: this function does not set the idle thread's NEED_RESCHED
9316 * flag, to make booting more robust.
9317 */
init_idle(struct task_struct * idle,int cpu)9318 void __init init_idle(struct task_struct *idle, int cpu)
9319 {
9320 #ifdef CONFIG_SMP
9321 struct affinity_context ac = (struct affinity_context) {
9322 .new_mask = cpumask_of(cpu),
9323 .flags = 0,
9324 };
9325 #endif
9326 struct rq *rq = cpu_rq(cpu);
9327 unsigned long flags;
9328
9329 __sched_fork(0, idle);
9330
9331 raw_spin_lock_irqsave(&idle->pi_lock, flags);
9332 raw_spin_rq_lock(rq);
9333
9334 idle->__state = TASK_RUNNING;
9335 idle->se.exec_start = sched_clock();
9336 /*
9337 * PF_KTHREAD should already be set at this point; regardless, make it
9338 * look like a proper per-CPU kthread.
9339 */
9340 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
9341 kthread_set_per_cpu(idle, cpu);
9342
9343 #ifdef CONFIG_SMP
9344 /*
9345 * It's possible that init_idle() gets called multiple times on a task,
9346 * in that case do_set_cpus_allowed() will not do the right thing.
9347 *
9348 * And since this is boot we can forgo the serialization.
9349 */
9350 set_cpus_allowed_common(idle, &ac);
9351 #endif
9352 /*
9353 * We're having a chicken and egg problem, even though we are
9354 * holding rq->lock, the CPU isn't yet set to this CPU so the
9355 * lockdep check in task_group() will fail.
9356 *
9357 * Similar case to sched_fork(). / Alternatively we could
9358 * use task_rq_lock() here and obtain the other rq->lock.
9359 *
9360 * Silence PROVE_RCU
9361 */
9362 rcu_read_lock();
9363 __set_task_cpu(idle, cpu);
9364 rcu_read_unlock();
9365
9366 rq->idle = idle;
9367 rcu_assign_pointer(rq->curr, idle);
9368 idle->on_rq = TASK_ON_RQ_QUEUED;
9369 #ifdef CONFIG_SMP
9370 idle->on_cpu = 1;
9371 #endif
9372 raw_spin_rq_unlock(rq);
9373 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9374
9375 /* Set the preempt count _outside_ the spinlocks! */
9376 init_idle_preempt_count(idle, cpu);
9377
9378 /*
9379 * The idle tasks have their own, simple scheduling class:
9380 */
9381 idle->sched_class = &idle_sched_class;
9382 ftrace_graph_init_idle_task(idle, cpu);
9383 vtime_init_idle(idle, cpu);
9384 #ifdef CONFIG_SMP
9385 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9386 #endif
9387 }
9388
9389 #ifdef CONFIG_SMP
9390
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)9391 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9392 const struct cpumask *trial)
9393 {
9394 int ret = 1;
9395
9396 if (cpumask_empty(cur))
9397 return ret;
9398
9399 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9400
9401 return ret;
9402 }
9403
task_can_attach(struct task_struct * p)9404 int task_can_attach(struct task_struct *p)
9405 {
9406 int ret = 0;
9407
9408 /*
9409 * Kthreads which disallow setaffinity shouldn't be moved
9410 * to a new cpuset; we don't want to change their CPU
9411 * affinity and isolating such threads by their set of
9412 * allowed nodes is unnecessary. Thus, cpusets are not
9413 * applicable for such threads. This prevents checking for
9414 * success of set_cpus_allowed_ptr() on all attached tasks
9415 * before cpus_mask may be changed.
9416 */
9417 if (p->flags & PF_NO_SETAFFINITY)
9418 ret = -EINVAL;
9419
9420 return ret;
9421 }
9422
9423 bool sched_smp_initialized __read_mostly;
9424
9425 #ifdef CONFIG_NUMA_BALANCING
9426 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)9427 int migrate_task_to(struct task_struct *p, int target_cpu)
9428 {
9429 struct migration_arg arg = { p, target_cpu };
9430 int curr_cpu = task_cpu(p);
9431
9432 if (curr_cpu == target_cpu)
9433 return 0;
9434
9435 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9436 return -EINVAL;
9437
9438 /* TODO: This is not properly updating schedstats */
9439
9440 trace_sched_move_numa(p, curr_cpu, target_cpu);
9441 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9442 }
9443
9444 /*
9445 * Requeue a task on a given node and accurately track the number of NUMA
9446 * tasks on the runqueues
9447 */
sched_setnuma(struct task_struct * p,int nid)9448 void sched_setnuma(struct task_struct *p, int nid)
9449 {
9450 bool queued, running;
9451 struct rq_flags rf;
9452 struct rq *rq;
9453
9454 rq = task_rq_lock(p, &rf);
9455 queued = task_on_rq_queued(p);
9456 running = task_current(rq, p);
9457
9458 if (queued)
9459 dequeue_task(rq, p, DEQUEUE_SAVE);
9460 if (running)
9461 put_prev_task(rq, p);
9462
9463 p->numa_preferred_nid = nid;
9464
9465 if (queued)
9466 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9467 if (running)
9468 set_next_task(rq, p);
9469 task_rq_unlock(rq, p, &rf);
9470 }
9471 #endif /* CONFIG_NUMA_BALANCING */
9472
9473 #ifdef CONFIG_HOTPLUG_CPU
9474 /*
9475 * Ensure that the idle task is using init_mm right before its CPU goes
9476 * offline.
9477 */
idle_task_exit(void)9478 void idle_task_exit(void)
9479 {
9480 struct mm_struct *mm = current->active_mm;
9481
9482 BUG_ON(cpu_online(smp_processor_id()));
9483 BUG_ON(current != this_rq()->idle);
9484
9485 if (mm != &init_mm) {
9486 switch_mm(mm, &init_mm, current);
9487 finish_arch_post_lock_switch();
9488 }
9489
9490 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9491 }
9492
__balance_push_cpu_stop(void * arg)9493 static int __balance_push_cpu_stop(void *arg)
9494 {
9495 struct task_struct *p = arg;
9496 struct rq *rq = this_rq();
9497 struct rq_flags rf;
9498 int cpu;
9499
9500 raw_spin_lock_irq(&p->pi_lock);
9501 rq_lock(rq, &rf);
9502
9503 update_rq_clock(rq);
9504
9505 if (task_rq(p) == rq && task_on_rq_queued(p)) {
9506 cpu = select_fallback_rq(rq->cpu, p);
9507 rq = __migrate_task(rq, &rf, p, cpu);
9508 }
9509
9510 rq_unlock(rq, &rf);
9511 raw_spin_unlock_irq(&p->pi_lock);
9512
9513 put_task_struct(p);
9514
9515 return 0;
9516 }
9517
9518 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9519
9520 /*
9521 * Ensure we only run per-cpu kthreads once the CPU goes !active.
9522 *
9523 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9524 * effective when the hotplug motion is down.
9525 */
balance_push(struct rq * rq)9526 static void balance_push(struct rq *rq)
9527 {
9528 struct task_struct *push_task = rq->curr;
9529
9530 lockdep_assert_rq_held(rq);
9531
9532 /*
9533 * Ensure the thing is persistent until balance_push_set(.on = false);
9534 */
9535 rq->balance_callback = &balance_push_callback;
9536
9537 /*
9538 * Only active while going offline and when invoked on the outgoing
9539 * CPU.
9540 */
9541 if (!cpu_dying(rq->cpu) || rq != this_rq())
9542 return;
9543
9544 /*
9545 * Both the cpu-hotplug and stop task are in this case and are
9546 * required to complete the hotplug process.
9547 */
9548 if (kthread_is_per_cpu(push_task) ||
9549 is_migration_disabled(push_task)) {
9550
9551 /*
9552 * If this is the idle task on the outgoing CPU try to wake
9553 * up the hotplug control thread which might wait for the
9554 * last task to vanish. The rcuwait_active() check is
9555 * accurate here because the waiter is pinned on this CPU
9556 * and can't obviously be running in parallel.
9557 *
9558 * On RT kernels this also has to check whether there are
9559 * pinned and scheduled out tasks on the runqueue. They
9560 * need to leave the migrate disabled section first.
9561 */
9562 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9563 rcuwait_active(&rq->hotplug_wait)) {
9564 raw_spin_rq_unlock(rq);
9565 rcuwait_wake_up(&rq->hotplug_wait);
9566 raw_spin_rq_lock(rq);
9567 }
9568 return;
9569 }
9570
9571 get_task_struct(push_task);
9572 /*
9573 * Temporarily drop rq->lock such that we can wake-up the stop task.
9574 * Both preemption and IRQs are still disabled.
9575 */
9576 preempt_disable();
9577 raw_spin_rq_unlock(rq);
9578 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9579 this_cpu_ptr(&push_work));
9580 preempt_enable();
9581 /*
9582 * At this point need_resched() is true and we'll take the loop in
9583 * schedule(). The next pick is obviously going to be the stop task
9584 * which kthread_is_per_cpu() and will push this task away.
9585 */
9586 raw_spin_rq_lock(rq);
9587 }
9588
balance_push_set(int cpu,bool on)9589 static void balance_push_set(int cpu, bool on)
9590 {
9591 struct rq *rq = cpu_rq(cpu);
9592 struct rq_flags rf;
9593
9594 rq_lock_irqsave(rq, &rf);
9595 if (on) {
9596 WARN_ON_ONCE(rq->balance_callback);
9597 rq->balance_callback = &balance_push_callback;
9598 } else if (rq->balance_callback == &balance_push_callback) {
9599 rq->balance_callback = NULL;
9600 }
9601 rq_unlock_irqrestore(rq, &rf);
9602 }
9603
9604 /*
9605 * Invoked from a CPUs hotplug control thread after the CPU has been marked
9606 * inactive. All tasks which are not per CPU kernel threads are either
9607 * pushed off this CPU now via balance_push() or placed on a different CPU
9608 * during wakeup. Wait until the CPU is quiescent.
9609 */
balance_hotplug_wait(void)9610 static void balance_hotplug_wait(void)
9611 {
9612 struct rq *rq = this_rq();
9613
9614 rcuwait_wait_event(&rq->hotplug_wait,
9615 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9616 TASK_UNINTERRUPTIBLE);
9617 }
9618
9619 #else
9620
balance_push(struct rq * rq)9621 static inline void balance_push(struct rq *rq)
9622 {
9623 }
9624
balance_push_set(int cpu,bool on)9625 static inline void balance_push_set(int cpu, bool on)
9626 {
9627 }
9628
balance_hotplug_wait(void)9629 static inline void balance_hotplug_wait(void)
9630 {
9631 }
9632
9633 #endif /* CONFIG_HOTPLUG_CPU */
9634
set_rq_online(struct rq * rq)9635 void set_rq_online(struct rq *rq)
9636 {
9637 if (!rq->online) {
9638 const struct sched_class *class;
9639
9640 cpumask_set_cpu(rq->cpu, rq->rd->online);
9641 rq->online = 1;
9642
9643 for_each_class(class) {
9644 if (class->rq_online)
9645 class->rq_online(rq);
9646 }
9647 }
9648 }
9649
set_rq_offline(struct rq * rq)9650 void set_rq_offline(struct rq *rq)
9651 {
9652 if (rq->online) {
9653 const struct sched_class *class;
9654
9655 update_rq_clock(rq);
9656 for_each_class(class) {
9657 if (class->rq_offline)
9658 class->rq_offline(rq);
9659 }
9660
9661 cpumask_clear_cpu(rq->cpu, rq->rd->online);
9662 rq->online = 0;
9663 }
9664 }
9665
9666 /*
9667 * used to mark begin/end of suspend/resume:
9668 */
9669 static int num_cpus_frozen;
9670
9671 /*
9672 * Update cpusets according to cpu_active mask. If cpusets are
9673 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9674 * around partition_sched_domains().
9675 *
9676 * If we come here as part of a suspend/resume, don't touch cpusets because we
9677 * want to restore it back to its original state upon resume anyway.
9678 */
cpuset_cpu_active(void)9679 static void cpuset_cpu_active(void)
9680 {
9681 if (cpuhp_tasks_frozen) {
9682 /*
9683 * num_cpus_frozen tracks how many CPUs are involved in suspend
9684 * resume sequence. As long as this is not the last online
9685 * operation in the resume sequence, just build a single sched
9686 * domain, ignoring cpusets.
9687 */
9688 partition_sched_domains(1, NULL, NULL);
9689 if (--num_cpus_frozen)
9690 return;
9691 /*
9692 * This is the last CPU online operation. So fall through and
9693 * restore the original sched domains by considering the
9694 * cpuset configurations.
9695 */
9696 cpuset_force_rebuild();
9697 }
9698 cpuset_update_active_cpus();
9699 }
9700
cpuset_cpu_inactive(unsigned int cpu)9701 static int cpuset_cpu_inactive(unsigned int cpu)
9702 {
9703 if (!cpuhp_tasks_frozen) {
9704 int ret = dl_bw_check_overflow(cpu);
9705
9706 if (ret)
9707 return ret;
9708 cpuset_update_active_cpus();
9709 } else {
9710 num_cpus_frozen++;
9711 partition_sched_domains(1, NULL, NULL);
9712 }
9713 return 0;
9714 }
9715
sched_cpu_activate(unsigned int cpu)9716 int sched_cpu_activate(unsigned int cpu)
9717 {
9718 struct rq *rq = cpu_rq(cpu);
9719 struct rq_flags rf;
9720
9721 /*
9722 * Clear the balance_push callback and prepare to schedule
9723 * regular tasks.
9724 */
9725 balance_push_set(cpu, false);
9726
9727 #ifdef CONFIG_SCHED_SMT
9728 /*
9729 * When going up, increment the number of cores with SMT present.
9730 */
9731 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9732 static_branch_inc_cpuslocked(&sched_smt_present);
9733 #endif
9734 set_cpu_active(cpu, true);
9735
9736 if (sched_smp_initialized) {
9737 sched_update_numa(cpu, true);
9738 sched_domains_numa_masks_set(cpu);
9739 cpuset_cpu_active();
9740 }
9741
9742 /*
9743 * Put the rq online, if not already. This happens:
9744 *
9745 * 1) In the early boot process, because we build the real domains
9746 * after all CPUs have been brought up.
9747 *
9748 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9749 * domains.
9750 */
9751 rq_lock_irqsave(rq, &rf);
9752 if (rq->rd) {
9753 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9754 set_rq_online(rq);
9755 }
9756 rq_unlock_irqrestore(rq, &rf);
9757
9758 return 0;
9759 }
9760
sched_cpu_deactivate(unsigned int cpu)9761 int sched_cpu_deactivate(unsigned int cpu)
9762 {
9763 struct rq *rq = cpu_rq(cpu);
9764 struct rq_flags rf;
9765 int ret;
9766
9767 /*
9768 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9769 * load balancing when not active
9770 */
9771 nohz_balance_exit_idle(rq);
9772
9773 set_cpu_active(cpu, false);
9774
9775 /*
9776 * From this point forward, this CPU will refuse to run any task that
9777 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9778 * push those tasks away until this gets cleared, see
9779 * sched_cpu_dying().
9780 */
9781 balance_push_set(cpu, true);
9782
9783 /*
9784 * We've cleared cpu_active_mask / set balance_push, wait for all
9785 * preempt-disabled and RCU users of this state to go away such that
9786 * all new such users will observe it.
9787 *
9788 * Specifically, we rely on ttwu to no longer target this CPU, see
9789 * ttwu_queue_cond() and is_cpu_allowed().
9790 *
9791 * Do sync before park smpboot threads to take care the rcu boost case.
9792 */
9793 synchronize_rcu();
9794
9795 rq_lock_irqsave(rq, &rf);
9796 if (rq->rd) {
9797 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9798 set_rq_offline(rq);
9799 }
9800 rq_unlock_irqrestore(rq, &rf);
9801
9802 #ifdef CONFIG_SCHED_SMT
9803 /*
9804 * When going down, decrement the number of cores with SMT present.
9805 */
9806 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9807 static_branch_dec_cpuslocked(&sched_smt_present);
9808
9809 sched_core_cpu_deactivate(cpu);
9810 #endif
9811
9812 if (!sched_smp_initialized)
9813 return 0;
9814
9815 sched_update_numa(cpu, false);
9816 ret = cpuset_cpu_inactive(cpu);
9817 if (ret) {
9818 balance_push_set(cpu, false);
9819 set_cpu_active(cpu, true);
9820 sched_update_numa(cpu, true);
9821 return ret;
9822 }
9823 sched_domains_numa_masks_clear(cpu);
9824 return 0;
9825 }
9826
sched_rq_cpu_starting(unsigned int cpu)9827 static void sched_rq_cpu_starting(unsigned int cpu)
9828 {
9829 struct rq *rq = cpu_rq(cpu);
9830
9831 rq->calc_load_update = calc_load_update;
9832 update_max_interval();
9833 }
9834
sched_cpu_starting(unsigned int cpu)9835 int sched_cpu_starting(unsigned int cpu)
9836 {
9837 sched_core_cpu_starting(cpu);
9838 sched_rq_cpu_starting(cpu);
9839 sched_tick_start(cpu);
9840 return 0;
9841 }
9842
9843 #ifdef CONFIG_HOTPLUG_CPU
9844
9845 /*
9846 * Invoked immediately before the stopper thread is invoked to bring the
9847 * CPU down completely. At this point all per CPU kthreads except the
9848 * hotplug thread (current) and the stopper thread (inactive) have been
9849 * either parked or have been unbound from the outgoing CPU. Ensure that
9850 * any of those which might be on the way out are gone.
9851 *
9852 * If after this point a bound task is being woken on this CPU then the
9853 * responsible hotplug callback has failed to do it's job.
9854 * sched_cpu_dying() will catch it with the appropriate fireworks.
9855 */
sched_cpu_wait_empty(unsigned int cpu)9856 int sched_cpu_wait_empty(unsigned int cpu)
9857 {
9858 balance_hotplug_wait();
9859 return 0;
9860 }
9861
9862 /*
9863 * Since this CPU is going 'away' for a while, fold any nr_active delta we
9864 * might have. Called from the CPU stopper task after ensuring that the
9865 * stopper is the last running task on the CPU, so nr_active count is
9866 * stable. We need to take the teardown thread which is calling this into
9867 * account, so we hand in adjust = 1 to the load calculation.
9868 *
9869 * Also see the comment "Global load-average calculations".
9870 */
calc_load_migrate(struct rq * rq)9871 static void calc_load_migrate(struct rq *rq)
9872 {
9873 long delta = calc_load_fold_active(rq, 1);
9874
9875 if (delta)
9876 atomic_long_add(delta, &calc_load_tasks);
9877 }
9878
dump_rq_tasks(struct rq * rq,const char * loglvl)9879 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9880 {
9881 struct task_struct *g, *p;
9882 int cpu = cpu_of(rq);
9883
9884 lockdep_assert_rq_held(rq);
9885
9886 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9887 for_each_process_thread(g, p) {
9888 if (task_cpu(p) != cpu)
9889 continue;
9890
9891 if (!task_on_rq_queued(p))
9892 continue;
9893
9894 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9895 }
9896 }
9897
sched_cpu_dying(unsigned int cpu)9898 int sched_cpu_dying(unsigned int cpu)
9899 {
9900 struct rq *rq = cpu_rq(cpu);
9901 struct rq_flags rf;
9902
9903 /* Handle pending wakeups and then migrate everything off */
9904 sched_tick_stop(cpu);
9905
9906 rq_lock_irqsave(rq, &rf);
9907 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9908 WARN(true, "Dying CPU not properly vacated!");
9909 dump_rq_tasks(rq, KERN_WARNING);
9910 }
9911 rq_unlock_irqrestore(rq, &rf);
9912
9913 calc_load_migrate(rq);
9914 update_max_interval();
9915 hrtick_clear(rq);
9916 sched_core_cpu_dying(cpu);
9917 return 0;
9918 }
9919 #endif
9920
sched_init_smp(void)9921 void __init sched_init_smp(void)
9922 {
9923 sched_init_numa(NUMA_NO_NODE);
9924
9925 /*
9926 * There's no userspace yet to cause hotplug operations; hence all the
9927 * CPU masks are stable and all blatant races in the below code cannot
9928 * happen.
9929 */
9930 mutex_lock(&sched_domains_mutex);
9931 sched_init_domains(cpu_active_mask);
9932 mutex_unlock(&sched_domains_mutex);
9933
9934 /* Move init over to a non-isolated CPU */
9935 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9936 BUG();
9937 current->flags &= ~PF_NO_SETAFFINITY;
9938 sched_init_granularity();
9939
9940 init_sched_rt_class();
9941 init_sched_dl_class();
9942
9943 sched_smp_initialized = true;
9944 }
9945
migration_init(void)9946 static int __init migration_init(void)
9947 {
9948 sched_cpu_starting(smp_processor_id());
9949 return 0;
9950 }
9951 early_initcall(migration_init);
9952
9953 #else
sched_init_smp(void)9954 void __init sched_init_smp(void)
9955 {
9956 sched_init_granularity();
9957 }
9958 #endif /* CONFIG_SMP */
9959
in_sched_functions(unsigned long addr)9960 int in_sched_functions(unsigned long addr)
9961 {
9962 return in_lock_functions(addr) ||
9963 (addr >= (unsigned long)__sched_text_start
9964 && addr < (unsigned long)__sched_text_end);
9965 }
9966
9967 #ifdef CONFIG_CGROUP_SCHED
9968 /*
9969 * Default task group.
9970 * Every task in system belongs to this group at bootup.
9971 */
9972 struct task_group root_task_group;
9973 LIST_HEAD(task_groups);
9974
9975 /* Cacheline aligned slab cache for task_group */
9976 static struct kmem_cache *task_group_cache __read_mostly;
9977 #endif
9978
sched_init(void)9979 void __init sched_init(void)
9980 {
9981 unsigned long ptr = 0;
9982 int i;
9983
9984 /* Make sure the linker didn't screw up */
9985 BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9986 &fair_sched_class != &rt_sched_class + 1 ||
9987 &rt_sched_class != &dl_sched_class + 1);
9988 #ifdef CONFIG_SMP
9989 BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9990 #endif
9991
9992 wait_bit_init();
9993
9994 #ifdef CONFIG_FAIR_GROUP_SCHED
9995 ptr += 2 * nr_cpu_ids * sizeof(void **);
9996 #endif
9997 #ifdef CONFIG_RT_GROUP_SCHED
9998 ptr += 2 * nr_cpu_ids * sizeof(void **);
9999 #endif
10000 if (ptr) {
10001 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
10002
10003 #ifdef CONFIG_FAIR_GROUP_SCHED
10004 root_task_group.se = (struct sched_entity **)ptr;
10005 ptr += nr_cpu_ids * sizeof(void **);
10006
10007 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
10008 ptr += nr_cpu_ids * sizeof(void **);
10009
10010 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
10011 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
10012 #endif /* CONFIG_FAIR_GROUP_SCHED */
10013 #ifdef CONFIG_RT_GROUP_SCHED
10014 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
10015 ptr += nr_cpu_ids * sizeof(void **);
10016
10017 root_task_group.rt_rq = (struct rt_rq **)ptr;
10018 ptr += nr_cpu_ids * sizeof(void **);
10019
10020 #endif /* CONFIG_RT_GROUP_SCHED */
10021 }
10022
10023 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
10024
10025 #ifdef CONFIG_SMP
10026 init_defrootdomain();
10027 #endif
10028
10029 #ifdef CONFIG_RT_GROUP_SCHED
10030 init_rt_bandwidth(&root_task_group.rt_bandwidth,
10031 global_rt_period(), global_rt_runtime());
10032 #endif /* CONFIG_RT_GROUP_SCHED */
10033
10034 #ifdef CONFIG_CGROUP_SCHED
10035 task_group_cache = KMEM_CACHE(task_group, 0);
10036
10037 list_add(&root_task_group.list, &task_groups);
10038 INIT_LIST_HEAD(&root_task_group.children);
10039 INIT_LIST_HEAD(&root_task_group.siblings);
10040 autogroup_init(&init_task);
10041 #endif /* CONFIG_CGROUP_SCHED */
10042
10043 for_each_possible_cpu(i) {
10044 struct rq *rq;
10045
10046 rq = cpu_rq(i);
10047 raw_spin_lock_init(&rq->__lock);
10048 rq->nr_running = 0;
10049 rq->calc_load_active = 0;
10050 rq->calc_load_update = jiffies + LOAD_FREQ;
10051 init_cfs_rq(&rq->cfs);
10052 init_rt_rq(&rq->rt);
10053 init_dl_rq(&rq->dl);
10054 #ifdef CONFIG_FAIR_GROUP_SCHED
10055 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
10056 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
10057 /*
10058 * How much CPU bandwidth does root_task_group get?
10059 *
10060 * In case of task-groups formed thr' the cgroup filesystem, it
10061 * gets 100% of the CPU resources in the system. This overall
10062 * system CPU resource is divided among the tasks of
10063 * root_task_group and its child task-groups in a fair manner,
10064 * based on each entity's (task or task-group's) weight
10065 * (se->load.weight).
10066 *
10067 * In other words, if root_task_group has 10 tasks of weight
10068 * 1024) and two child groups A0 and A1 (of weight 1024 each),
10069 * then A0's share of the CPU resource is:
10070 *
10071 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
10072 *
10073 * We achieve this by letting root_task_group's tasks sit
10074 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
10075 */
10076 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
10077 #endif /* CONFIG_FAIR_GROUP_SCHED */
10078
10079 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
10080 #ifdef CONFIG_RT_GROUP_SCHED
10081 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
10082 #endif
10083 #ifdef CONFIG_SMP
10084 rq->sd = NULL;
10085 rq->rd = NULL;
10086 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
10087 rq->balance_callback = &balance_push_callback;
10088 rq->active_balance = 0;
10089 rq->next_balance = jiffies;
10090 rq->push_cpu = 0;
10091 rq->cpu = i;
10092 rq->online = 0;
10093 rq->idle_stamp = 0;
10094 rq->avg_idle = 2*sysctl_sched_migration_cost;
10095 rq->wake_stamp = jiffies;
10096 rq->wake_avg_idle = rq->avg_idle;
10097 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
10098
10099 INIT_LIST_HEAD(&rq->cfs_tasks);
10100
10101 rq_attach_root(rq, &def_root_domain);
10102 #ifdef CONFIG_NO_HZ_COMMON
10103 rq->last_blocked_load_update_tick = jiffies;
10104 atomic_set(&rq->nohz_flags, 0);
10105
10106 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
10107 #endif
10108 #ifdef CONFIG_HOTPLUG_CPU
10109 rcuwait_init(&rq->hotplug_wait);
10110 #endif
10111 #endif /* CONFIG_SMP */
10112 hrtick_rq_init(rq);
10113 atomic_set(&rq->nr_iowait, 0);
10114
10115 #ifdef CONFIG_SCHED_CORE
10116 rq->core = rq;
10117 rq->core_pick = NULL;
10118 rq->core_enabled = 0;
10119 rq->core_tree = RB_ROOT;
10120 rq->core_forceidle_count = 0;
10121 rq->core_forceidle_occupation = 0;
10122 rq->core_forceidle_start = 0;
10123
10124 rq->core_cookie = 0UL;
10125 #endif
10126 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
10127 }
10128
10129 set_load_weight(&init_task, false);
10130
10131 /*
10132 * The boot idle thread does lazy MMU switching as well:
10133 */
10134 mmgrab_lazy_tlb(&init_mm);
10135 enter_lazy_tlb(&init_mm, current);
10136
10137 /*
10138 * The idle task doesn't need the kthread struct to function, but it
10139 * is dressed up as a per-CPU kthread and thus needs to play the part
10140 * if we want to avoid special-casing it in code that deals with per-CPU
10141 * kthreads.
10142 */
10143 WARN_ON(!set_kthread_struct(current));
10144
10145 /*
10146 * Make us the idle thread. Technically, schedule() should not be
10147 * called from this thread, however somewhere below it might be,
10148 * but because we are the idle thread, we just pick up running again
10149 * when this runqueue becomes "idle".
10150 */
10151 init_idle(current, smp_processor_id());
10152
10153 calc_load_update = jiffies + LOAD_FREQ;
10154
10155 #ifdef CONFIG_SMP
10156 idle_thread_set_boot_cpu();
10157 balance_push_set(smp_processor_id(), false);
10158 #endif
10159 init_sched_fair_class();
10160
10161 psi_init();
10162
10163 init_uclamp();
10164
10165 preempt_dynamic_init();
10166
10167 scheduler_running = 1;
10168 }
10169
10170 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
10171
__might_sleep(const char * file,int line)10172 void __might_sleep(const char *file, int line)
10173 {
10174 unsigned int state = get_current_state();
10175 /*
10176 * Blocking primitives will set (and therefore destroy) current->state,
10177 * since we will exit with TASK_RUNNING make sure we enter with it,
10178 * otherwise we will destroy state.
10179 */
10180 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
10181 "do not call blocking ops when !TASK_RUNNING; "
10182 "state=%x set at [<%p>] %pS\n", state,
10183 (void *)current->task_state_change,
10184 (void *)current->task_state_change);
10185
10186 __might_resched(file, line, 0);
10187 }
10188 EXPORT_SYMBOL(__might_sleep);
10189
print_preempt_disable_ip(int preempt_offset,unsigned long ip)10190 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
10191 {
10192 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
10193 return;
10194
10195 if (preempt_count() == preempt_offset)
10196 return;
10197
10198 pr_err("Preemption disabled at:");
10199 print_ip_sym(KERN_ERR, ip);
10200 }
10201
resched_offsets_ok(unsigned int offsets)10202 static inline bool resched_offsets_ok(unsigned int offsets)
10203 {
10204 unsigned int nested = preempt_count();
10205
10206 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
10207
10208 return nested == offsets;
10209 }
10210
__might_resched(const char * file,int line,unsigned int offsets)10211 void __might_resched(const char *file, int line, unsigned int offsets)
10212 {
10213 /* Ratelimiting timestamp: */
10214 static unsigned long prev_jiffy;
10215
10216 unsigned long preempt_disable_ip;
10217
10218 /* WARN_ON_ONCE() by default, no rate limit required: */
10219 rcu_sleep_check();
10220
10221 if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10222 !is_idle_task(current) && !current->non_block_count) ||
10223 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10224 oops_in_progress)
10225 return;
10226
10227 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10228 return;
10229 prev_jiffy = jiffies;
10230
10231 /* Save this before calling printk(), since that will clobber it: */
10232 preempt_disable_ip = get_preempt_disable_ip(current);
10233
10234 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10235 file, line);
10236 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10237 in_atomic(), irqs_disabled(), current->non_block_count,
10238 current->pid, current->comm);
10239 pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10240 offsets & MIGHT_RESCHED_PREEMPT_MASK);
10241
10242 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10243 pr_err("RCU nest depth: %d, expected: %u\n",
10244 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10245 }
10246
10247 if (task_stack_end_corrupted(current))
10248 pr_emerg("Thread overran stack, or stack corrupted\n");
10249
10250 debug_show_held_locks(current);
10251 if (irqs_disabled())
10252 print_irqtrace_events(current);
10253
10254 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10255 preempt_disable_ip);
10256
10257 dump_stack();
10258 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10259 }
10260 EXPORT_SYMBOL(__might_resched);
10261
__cant_sleep(const char * file,int line,int preempt_offset)10262 void __cant_sleep(const char *file, int line, int preempt_offset)
10263 {
10264 static unsigned long prev_jiffy;
10265
10266 if (irqs_disabled())
10267 return;
10268
10269 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10270 return;
10271
10272 if (preempt_count() > preempt_offset)
10273 return;
10274
10275 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10276 return;
10277 prev_jiffy = jiffies;
10278
10279 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10280 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10281 in_atomic(), irqs_disabled(),
10282 current->pid, current->comm);
10283
10284 debug_show_held_locks(current);
10285 dump_stack();
10286 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10287 }
10288 EXPORT_SYMBOL_GPL(__cant_sleep);
10289
10290 #ifdef CONFIG_SMP
__cant_migrate(const char * file,int line)10291 void __cant_migrate(const char *file, int line)
10292 {
10293 static unsigned long prev_jiffy;
10294
10295 if (irqs_disabled())
10296 return;
10297
10298 if (is_migration_disabled(current))
10299 return;
10300
10301 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10302 return;
10303
10304 if (preempt_count() > 0)
10305 return;
10306
10307 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10308 return;
10309 prev_jiffy = jiffies;
10310
10311 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10312 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10313 in_atomic(), irqs_disabled(), is_migration_disabled(current),
10314 current->pid, current->comm);
10315
10316 debug_show_held_locks(current);
10317 dump_stack();
10318 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10319 }
10320 EXPORT_SYMBOL_GPL(__cant_migrate);
10321 #endif
10322 #endif
10323
10324 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)10325 void normalize_rt_tasks(void)
10326 {
10327 struct task_struct *g, *p;
10328 struct sched_attr attr = {
10329 .sched_policy = SCHED_NORMAL,
10330 };
10331
10332 read_lock(&tasklist_lock);
10333 for_each_process_thread(g, p) {
10334 /*
10335 * Only normalize user tasks:
10336 */
10337 if (p->flags & PF_KTHREAD)
10338 continue;
10339
10340 p->se.exec_start = 0;
10341 schedstat_set(p->stats.wait_start, 0);
10342 schedstat_set(p->stats.sleep_start, 0);
10343 schedstat_set(p->stats.block_start, 0);
10344
10345 if (!dl_task(p) && !rt_task(p)) {
10346 /*
10347 * Renice negative nice level userspace
10348 * tasks back to 0:
10349 */
10350 if (task_nice(p) < 0)
10351 set_user_nice(p, 0);
10352 continue;
10353 }
10354
10355 __sched_setscheduler(p, &attr, false, false);
10356 }
10357 read_unlock(&tasklist_lock);
10358 }
10359
10360 #endif /* CONFIG_MAGIC_SYSRQ */
10361
10362 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
10363 /*
10364 * These functions are only useful for the IA64 MCA handling, or kdb.
10365 *
10366 * They can only be called when the whole system has been
10367 * stopped - every CPU needs to be quiescent, and no scheduling
10368 * activity can take place. Using them for anything else would
10369 * be a serious bug, and as a result, they aren't even visible
10370 * under any other configuration.
10371 */
10372
10373 /**
10374 * curr_task - return the current task for a given CPU.
10375 * @cpu: the processor in question.
10376 *
10377 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10378 *
10379 * Return: The current task for @cpu.
10380 */
curr_task(int cpu)10381 struct task_struct *curr_task(int cpu)
10382 {
10383 return cpu_curr(cpu);
10384 }
10385
10386 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10387
10388 #ifdef CONFIG_IA64
10389 /**
10390 * ia64_set_curr_task - set the current task for a given CPU.
10391 * @cpu: the processor in question.
10392 * @p: the task pointer to set.
10393 *
10394 * Description: This function must only be used when non-maskable interrupts
10395 * are serviced on a separate stack. It allows the architecture to switch the
10396 * notion of the current task on a CPU in a non-blocking manner. This function
10397 * must be called with all CPU's synchronized, and interrupts disabled, the
10398 * and caller must save the original value of the current task (see
10399 * curr_task() above) and restore that value before reenabling interrupts and
10400 * re-starting the system.
10401 *
10402 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10403 */
ia64_set_curr_task(int cpu,struct task_struct * p)10404 void ia64_set_curr_task(int cpu, struct task_struct *p)
10405 {
10406 cpu_curr(cpu) = p;
10407 }
10408
10409 #endif
10410
10411 #ifdef CONFIG_CGROUP_SCHED
10412 /* task_group_lock serializes the addition/removal of task groups */
10413 static DEFINE_SPINLOCK(task_group_lock);
10414
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)10415 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10416 struct task_group *parent)
10417 {
10418 #ifdef CONFIG_UCLAMP_TASK_GROUP
10419 enum uclamp_id clamp_id;
10420
10421 for_each_clamp_id(clamp_id) {
10422 uclamp_se_set(&tg->uclamp_req[clamp_id],
10423 uclamp_none(clamp_id), false);
10424 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10425 }
10426 #endif
10427 }
10428
sched_free_group(struct task_group * tg)10429 static void sched_free_group(struct task_group *tg)
10430 {
10431 free_fair_sched_group(tg);
10432 free_rt_sched_group(tg);
10433 autogroup_free(tg);
10434 kmem_cache_free(task_group_cache, tg);
10435 }
10436
sched_free_group_rcu(struct rcu_head * rcu)10437 static void sched_free_group_rcu(struct rcu_head *rcu)
10438 {
10439 sched_free_group(container_of(rcu, struct task_group, rcu));
10440 }
10441
sched_unregister_group(struct task_group * tg)10442 static void sched_unregister_group(struct task_group *tg)
10443 {
10444 unregister_fair_sched_group(tg);
10445 unregister_rt_sched_group(tg);
10446 /*
10447 * We have to wait for yet another RCU grace period to expire, as
10448 * print_cfs_stats() might run concurrently.
10449 */
10450 call_rcu(&tg->rcu, sched_free_group_rcu);
10451 }
10452
10453 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)10454 struct task_group *sched_create_group(struct task_group *parent)
10455 {
10456 struct task_group *tg;
10457
10458 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10459 if (!tg)
10460 return ERR_PTR(-ENOMEM);
10461
10462 if (!alloc_fair_sched_group(tg, parent))
10463 goto err;
10464
10465 if (!alloc_rt_sched_group(tg, parent))
10466 goto err;
10467
10468 alloc_uclamp_sched_group(tg, parent);
10469
10470 return tg;
10471
10472 err:
10473 sched_free_group(tg);
10474 return ERR_PTR(-ENOMEM);
10475 }
10476
sched_online_group(struct task_group * tg,struct task_group * parent)10477 void sched_online_group(struct task_group *tg, struct task_group *parent)
10478 {
10479 unsigned long flags;
10480
10481 spin_lock_irqsave(&task_group_lock, flags);
10482 list_add_rcu(&tg->list, &task_groups);
10483
10484 /* Root should already exist: */
10485 WARN_ON(!parent);
10486
10487 tg->parent = parent;
10488 INIT_LIST_HEAD(&tg->children);
10489 list_add_rcu(&tg->siblings, &parent->children);
10490 spin_unlock_irqrestore(&task_group_lock, flags);
10491
10492 online_fair_sched_group(tg);
10493 }
10494
10495 /* rcu callback to free various structures associated with a task group */
sched_unregister_group_rcu(struct rcu_head * rhp)10496 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10497 {
10498 /* Now it should be safe to free those cfs_rqs: */
10499 sched_unregister_group(container_of(rhp, struct task_group, rcu));
10500 }
10501
sched_destroy_group(struct task_group * tg)10502 void sched_destroy_group(struct task_group *tg)
10503 {
10504 /* Wait for possible concurrent references to cfs_rqs complete: */
10505 call_rcu(&tg->rcu, sched_unregister_group_rcu);
10506 }
10507
sched_release_group(struct task_group * tg)10508 void sched_release_group(struct task_group *tg)
10509 {
10510 unsigned long flags;
10511
10512 /*
10513 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10514 * sched_cfs_period_timer()).
10515 *
10516 * For this to be effective, we have to wait for all pending users of
10517 * this task group to leave their RCU critical section to ensure no new
10518 * user will see our dying task group any more. Specifically ensure
10519 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10520 *
10521 * We therefore defer calling unregister_fair_sched_group() to
10522 * sched_unregister_group() which is guarantied to get called only after the
10523 * current RCU grace period has expired.
10524 */
10525 spin_lock_irqsave(&task_group_lock, flags);
10526 list_del_rcu(&tg->list);
10527 list_del_rcu(&tg->siblings);
10528 spin_unlock_irqrestore(&task_group_lock, flags);
10529 }
10530
sched_get_task_group(struct task_struct * tsk)10531 static struct task_group *sched_get_task_group(struct task_struct *tsk)
10532 {
10533 struct task_group *tg;
10534
10535 /*
10536 * All callers are synchronized by task_rq_lock(); we do not use RCU
10537 * which is pointless here. Thus, we pass "true" to task_css_check()
10538 * to prevent lockdep warnings.
10539 */
10540 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10541 struct task_group, css);
10542 tg = autogroup_task_group(tsk, tg);
10543
10544 return tg;
10545 }
10546
sched_change_group(struct task_struct * tsk,struct task_group * group)10547 static void sched_change_group(struct task_struct *tsk, struct task_group *group)
10548 {
10549 tsk->sched_task_group = group;
10550
10551 #ifdef CONFIG_FAIR_GROUP_SCHED
10552 if (tsk->sched_class->task_change_group)
10553 tsk->sched_class->task_change_group(tsk);
10554 else
10555 #endif
10556 set_task_rq(tsk, task_cpu(tsk));
10557 }
10558
10559 /*
10560 * Change task's runqueue when it moves between groups.
10561 *
10562 * The caller of this function should have put the task in its new group by
10563 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10564 * its new group.
10565 */
sched_move_task(struct task_struct * tsk)10566 void sched_move_task(struct task_struct *tsk)
10567 {
10568 int queued, running, queue_flags =
10569 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10570 struct task_group *group;
10571 struct rq_flags rf;
10572 struct rq *rq;
10573
10574 rq = task_rq_lock(tsk, &rf);
10575 /*
10576 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
10577 * group changes.
10578 */
10579 group = sched_get_task_group(tsk);
10580 if (group == tsk->sched_task_group)
10581 goto unlock;
10582
10583 update_rq_clock(rq);
10584
10585 running = task_current(rq, tsk);
10586 queued = task_on_rq_queued(tsk);
10587
10588 if (queued)
10589 dequeue_task(rq, tsk, queue_flags);
10590 if (running)
10591 put_prev_task(rq, tsk);
10592
10593 sched_change_group(tsk, group);
10594
10595 if (queued)
10596 enqueue_task(rq, tsk, queue_flags);
10597 if (running) {
10598 set_next_task(rq, tsk);
10599 /*
10600 * After changing group, the running task may have joined a
10601 * throttled one but it's still the running task. Trigger a
10602 * resched to make sure that task can still run.
10603 */
10604 resched_curr(rq);
10605 }
10606
10607 unlock:
10608 task_rq_unlock(rq, tsk, &rf);
10609 }
10610
css_tg(struct cgroup_subsys_state * css)10611 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10612 {
10613 return css ? container_of(css, struct task_group, css) : NULL;
10614 }
10615
10616 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)10617 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10618 {
10619 struct task_group *parent = css_tg(parent_css);
10620 struct task_group *tg;
10621
10622 if (!parent) {
10623 /* This is early initialization for the top cgroup */
10624 return &root_task_group.css;
10625 }
10626
10627 tg = sched_create_group(parent);
10628 if (IS_ERR(tg))
10629 return ERR_PTR(-ENOMEM);
10630
10631 return &tg->css;
10632 }
10633
10634 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)10635 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10636 {
10637 struct task_group *tg = css_tg(css);
10638 struct task_group *parent = css_tg(css->parent);
10639
10640 if (parent)
10641 sched_online_group(tg, parent);
10642
10643 #ifdef CONFIG_UCLAMP_TASK_GROUP
10644 /* Propagate the effective uclamp value for the new group */
10645 mutex_lock(&uclamp_mutex);
10646 rcu_read_lock();
10647 cpu_util_update_eff(css);
10648 rcu_read_unlock();
10649 mutex_unlock(&uclamp_mutex);
10650 #endif
10651
10652 return 0;
10653 }
10654
cpu_cgroup_css_released(struct cgroup_subsys_state * css)10655 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10656 {
10657 struct task_group *tg = css_tg(css);
10658
10659 sched_release_group(tg);
10660 }
10661
cpu_cgroup_css_free(struct cgroup_subsys_state * css)10662 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10663 {
10664 struct task_group *tg = css_tg(css);
10665
10666 /*
10667 * Relies on the RCU grace period between css_released() and this.
10668 */
10669 sched_unregister_group(tg);
10670 }
10671
10672 #ifdef CONFIG_RT_GROUP_SCHED
cpu_cgroup_can_attach(struct cgroup_taskset * tset)10673 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10674 {
10675 struct task_struct *task;
10676 struct cgroup_subsys_state *css;
10677
10678 cgroup_taskset_for_each(task, css, tset) {
10679 if (!sched_rt_can_attach(css_tg(css), task))
10680 return -EINVAL;
10681 }
10682 return 0;
10683 }
10684 #endif
10685
cpu_cgroup_attach(struct cgroup_taskset * tset)10686 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10687 {
10688 struct task_struct *task;
10689 struct cgroup_subsys_state *css;
10690
10691 cgroup_taskset_for_each(task, css, tset)
10692 sched_move_task(task);
10693 }
10694
10695 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)10696 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10697 {
10698 struct cgroup_subsys_state *top_css = css;
10699 struct uclamp_se *uc_parent = NULL;
10700 struct uclamp_se *uc_se = NULL;
10701 unsigned int eff[UCLAMP_CNT];
10702 enum uclamp_id clamp_id;
10703 unsigned int clamps;
10704
10705 lockdep_assert_held(&uclamp_mutex);
10706 SCHED_WARN_ON(!rcu_read_lock_held());
10707
10708 css_for_each_descendant_pre(css, top_css) {
10709 uc_parent = css_tg(css)->parent
10710 ? css_tg(css)->parent->uclamp : NULL;
10711
10712 for_each_clamp_id(clamp_id) {
10713 /* Assume effective clamps matches requested clamps */
10714 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10715 /* Cap effective clamps with parent's effective clamps */
10716 if (uc_parent &&
10717 eff[clamp_id] > uc_parent[clamp_id].value) {
10718 eff[clamp_id] = uc_parent[clamp_id].value;
10719 }
10720 }
10721 /* Ensure protection is always capped by limit */
10722 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10723
10724 /* Propagate most restrictive effective clamps */
10725 clamps = 0x0;
10726 uc_se = css_tg(css)->uclamp;
10727 for_each_clamp_id(clamp_id) {
10728 if (eff[clamp_id] == uc_se[clamp_id].value)
10729 continue;
10730 uc_se[clamp_id].value = eff[clamp_id];
10731 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10732 clamps |= (0x1 << clamp_id);
10733 }
10734 if (!clamps) {
10735 css = css_rightmost_descendant(css);
10736 continue;
10737 }
10738
10739 /* Immediately update descendants RUNNABLE tasks */
10740 uclamp_update_active_tasks(css);
10741 }
10742 }
10743
10744 /*
10745 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10746 * C expression. Since there is no way to convert a macro argument (N) into a
10747 * character constant, use two levels of macros.
10748 */
10749 #define _POW10(exp) ((unsigned int)1e##exp)
10750 #define POW10(exp) _POW10(exp)
10751
10752 struct uclamp_request {
10753 #define UCLAMP_PERCENT_SHIFT 2
10754 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
10755 s64 percent;
10756 u64 util;
10757 int ret;
10758 };
10759
10760 static inline struct uclamp_request
capacity_from_percent(char * buf)10761 capacity_from_percent(char *buf)
10762 {
10763 struct uclamp_request req = {
10764 .percent = UCLAMP_PERCENT_SCALE,
10765 .util = SCHED_CAPACITY_SCALE,
10766 .ret = 0,
10767 };
10768
10769 buf = strim(buf);
10770 if (strcmp(buf, "max")) {
10771 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10772 &req.percent);
10773 if (req.ret)
10774 return req;
10775 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10776 req.ret = -ERANGE;
10777 return req;
10778 }
10779
10780 req.util = req.percent << SCHED_CAPACITY_SHIFT;
10781 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10782 }
10783
10784 return req;
10785 }
10786
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)10787 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10788 size_t nbytes, loff_t off,
10789 enum uclamp_id clamp_id)
10790 {
10791 struct uclamp_request req;
10792 struct task_group *tg;
10793
10794 req = capacity_from_percent(buf);
10795 if (req.ret)
10796 return req.ret;
10797
10798 static_branch_enable(&sched_uclamp_used);
10799
10800 mutex_lock(&uclamp_mutex);
10801 rcu_read_lock();
10802
10803 tg = css_tg(of_css(of));
10804 if (tg->uclamp_req[clamp_id].value != req.util)
10805 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10806
10807 /*
10808 * Because of not recoverable conversion rounding we keep track of the
10809 * exact requested value
10810 */
10811 tg->uclamp_pct[clamp_id] = req.percent;
10812
10813 /* Update effective clamps to track the most restrictive value */
10814 cpu_util_update_eff(of_css(of));
10815
10816 rcu_read_unlock();
10817 mutex_unlock(&uclamp_mutex);
10818
10819 return nbytes;
10820 }
10821
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10822 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10823 char *buf, size_t nbytes,
10824 loff_t off)
10825 {
10826 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10827 }
10828
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10829 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10830 char *buf, size_t nbytes,
10831 loff_t off)
10832 {
10833 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10834 }
10835
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)10836 static inline void cpu_uclamp_print(struct seq_file *sf,
10837 enum uclamp_id clamp_id)
10838 {
10839 struct task_group *tg;
10840 u64 util_clamp;
10841 u64 percent;
10842 u32 rem;
10843
10844 rcu_read_lock();
10845 tg = css_tg(seq_css(sf));
10846 util_clamp = tg->uclamp_req[clamp_id].value;
10847 rcu_read_unlock();
10848
10849 if (util_clamp == SCHED_CAPACITY_SCALE) {
10850 seq_puts(sf, "max\n");
10851 return;
10852 }
10853
10854 percent = tg->uclamp_pct[clamp_id];
10855 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10856 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10857 }
10858
cpu_uclamp_min_show(struct seq_file * sf,void * v)10859 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10860 {
10861 cpu_uclamp_print(sf, UCLAMP_MIN);
10862 return 0;
10863 }
10864
cpu_uclamp_max_show(struct seq_file * sf,void * v)10865 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10866 {
10867 cpu_uclamp_print(sf, UCLAMP_MAX);
10868 return 0;
10869 }
10870 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10871
10872 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)10873 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10874 struct cftype *cftype, u64 shareval)
10875 {
10876 if (shareval > scale_load_down(ULONG_MAX))
10877 shareval = MAX_SHARES;
10878 return sched_group_set_shares(css_tg(css), scale_load(shareval));
10879 }
10880
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10881 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10882 struct cftype *cft)
10883 {
10884 struct task_group *tg = css_tg(css);
10885
10886 return (u64) scale_load_down(tg->shares);
10887 }
10888
10889 #ifdef CONFIG_CFS_BANDWIDTH
10890 static DEFINE_MUTEX(cfs_constraints_mutex);
10891
10892 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10893 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10894 /* More than 203 days if BW_SHIFT equals 20. */
10895 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10896
10897 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10898
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota,u64 burst)10899 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10900 u64 burst)
10901 {
10902 int i, ret = 0, runtime_enabled, runtime_was_enabled;
10903 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10904
10905 if (tg == &root_task_group)
10906 return -EINVAL;
10907
10908 /*
10909 * Ensure we have at some amount of bandwidth every period. This is
10910 * to prevent reaching a state of large arrears when throttled via
10911 * entity_tick() resulting in prolonged exit starvation.
10912 */
10913 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10914 return -EINVAL;
10915
10916 /*
10917 * Likewise, bound things on the other side by preventing insane quota
10918 * periods. This also allows us to normalize in computing quota
10919 * feasibility.
10920 */
10921 if (period > max_cfs_quota_period)
10922 return -EINVAL;
10923
10924 /*
10925 * Bound quota to defend quota against overflow during bandwidth shift.
10926 */
10927 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10928 return -EINVAL;
10929
10930 if (quota != RUNTIME_INF && (burst > quota ||
10931 burst + quota > max_cfs_runtime))
10932 return -EINVAL;
10933
10934 /*
10935 * Prevent race between setting of cfs_rq->runtime_enabled and
10936 * unthrottle_offline_cfs_rqs().
10937 */
10938 cpus_read_lock();
10939 mutex_lock(&cfs_constraints_mutex);
10940 ret = __cfs_schedulable(tg, period, quota);
10941 if (ret)
10942 goto out_unlock;
10943
10944 runtime_enabled = quota != RUNTIME_INF;
10945 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10946 /*
10947 * If we need to toggle cfs_bandwidth_used, off->on must occur
10948 * before making related changes, and on->off must occur afterwards
10949 */
10950 if (runtime_enabled && !runtime_was_enabled)
10951 cfs_bandwidth_usage_inc();
10952 raw_spin_lock_irq(&cfs_b->lock);
10953 cfs_b->period = ns_to_ktime(period);
10954 cfs_b->quota = quota;
10955 cfs_b->burst = burst;
10956
10957 __refill_cfs_bandwidth_runtime(cfs_b);
10958
10959 /* Restart the period timer (if active) to handle new period expiry: */
10960 if (runtime_enabled)
10961 start_cfs_bandwidth(cfs_b);
10962
10963 raw_spin_unlock_irq(&cfs_b->lock);
10964
10965 for_each_online_cpu(i) {
10966 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10967 struct rq *rq = cfs_rq->rq;
10968 struct rq_flags rf;
10969
10970 rq_lock_irq(rq, &rf);
10971 cfs_rq->runtime_enabled = runtime_enabled;
10972 cfs_rq->runtime_remaining = 0;
10973
10974 if (cfs_rq->throttled)
10975 unthrottle_cfs_rq(cfs_rq);
10976 rq_unlock_irq(rq, &rf);
10977 }
10978 if (runtime_was_enabled && !runtime_enabled)
10979 cfs_bandwidth_usage_dec();
10980 out_unlock:
10981 mutex_unlock(&cfs_constraints_mutex);
10982 cpus_read_unlock();
10983
10984 return ret;
10985 }
10986
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)10987 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10988 {
10989 u64 quota, period, burst;
10990
10991 period = ktime_to_ns(tg->cfs_bandwidth.period);
10992 burst = tg->cfs_bandwidth.burst;
10993 if (cfs_quota_us < 0)
10994 quota = RUNTIME_INF;
10995 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10996 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10997 else
10998 return -EINVAL;
10999
11000 return tg_set_cfs_bandwidth(tg, period, quota, burst);
11001 }
11002
tg_get_cfs_quota(struct task_group * tg)11003 static long tg_get_cfs_quota(struct task_group *tg)
11004 {
11005 u64 quota_us;
11006
11007 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
11008 return -1;
11009
11010 quota_us = tg->cfs_bandwidth.quota;
11011 do_div(quota_us, NSEC_PER_USEC);
11012
11013 return quota_us;
11014 }
11015
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)11016 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
11017 {
11018 u64 quota, period, burst;
11019
11020 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
11021 return -EINVAL;
11022
11023 period = (u64)cfs_period_us * NSEC_PER_USEC;
11024 quota = tg->cfs_bandwidth.quota;
11025 burst = tg->cfs_bandwidth.burst;
11026
11027 return tg_set_cfs_bandwidth(tg, period, quota, burst);
11028 }
11029
tg_get_cfs_period(struct task_group * tg)11030 static long tg_get_cfs_period(struct task_group *tg)
11031 {
11032 u64 cfs_period_us;
11033
11034 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
11035 do_div(cfs_period_us, NSEC_PER_USEC);
11036
11037 return cfs_period_us;
11038 }
11039
tg_set_cfs_burst(struct task_group * tg,long cfs_burst_us)11040 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
11041 {
11042 u64 quota, period, burst;
11043
11044 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
11045 return -EINVAL;
11046
11047 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
11048 period = ktime_to_ns(tg->cfs_bandwidth.period);
11049 quota = tg->cfs_bandwidth.quota;
11050
11051 return tg_set_cfs_bandwidth(tg, period, quota, burst);
11052 }
11053
tg_get_cfs_burst(struct task_group * tg)11054 static long tg_get_cfs_burst(struct task_group *tg)
11055 {
11056 u64 burst_us;
11057
11058 burst_us = tg->cfs_bandwidth.burst;
11059 do_div(burst_us, NSEC_PER_USEC);
11060
11061 return burst_us;
11062 }
11063
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11064 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
11065 struct cftype *cft)
11066 {
11067 return tg_get_cfs_quota(css_tg(css));
11068 }
11069
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)11070 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
11071 struct cftype *cftype, s64 cfs_quota_us)
11072 {
11073 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
11074 }
11075
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11076 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
11077 struct cftype *cft)
11078 {
11079 return tg_get_cfs_period(css_tg(css));
11080 }
11081
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)11082 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
11083 struct cftype *cftype, u64 cfs_period_us)
11084 {
11085 return tg_set_cfs_period(css_tg(css), cfs_period_us);
11086 }
11087
cpu_cfs_burst_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11088 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
11089 struct cftype *cft)
11090 {
11091 return tg_get_cfs_burst(css_tg(css));
11092 }
11093
cpu_cfs_burst_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_burst_us)11094 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
11095 struct cftype *cftype, u64 cfs_burst_us)
11096 {
11097 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
11098 }
11099
11100 struct cfs_schedulable_data {
11101 struct task_group *tg;
11102 u64 period, quota;
11103 };
11104
11105 /*
11106 * normalize group quota/period to be quota/max_period
11107 * note: units are usecs
11108 */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)11109 static u64 normalize_cfs_quota(struct task_group *tg,
11110 struct cfs_schedulable_data *d)
11111 {
11112 u64 quota, period;
11113
11114 if (tg == d->tg) {
11115 period = d->period;
11116 quota = d->quota;
11117 } else {
11118 period = tg_get_cfs_period(tg);
11119 quota = tg_get_cfs_quota(tg);
11120 }
11121
11122 /* note: these should typically be equivalent */
11123 if (quota == RUNTIME_INF || quota == -1)
11124 return RUNTIME_INF;
11125
11126 return to_ratio(period, quota);
11127 }
11128
tg_cfs_schedulable_down(struct task_group * tg,void * data)11129 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
11130 {
11131 struct cfs_schedulable_data *d = data;
11132 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11133 s64 quota = 0, parent_quota = -1;
11134
11135 if (!tg->parent) {
11136 quota = RUNTIME_INF;
11137 } else {
11138 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
11139
11140 quota = normalize_cfs_quota(tg, d);
11141 parent_quota = parent_b->hierarchical_quota;
11142
11143 /*
11144 * Ensure max(child_quota) <= parent_quota. On cgroup2,
11145 * always take the non-RUNTIME_INF min. On cgroup1, only
11146 * inherit when no limit is set. In both cases this is used
11147 * by the scheduler to determine if a given CFS task has a
11148 * bandwidth constraint at some higher level.
11149 */
11150 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
11151 if (quota == RUNTIME_INF)
11152 quota = parent_quota;
11153 else if (parent_quota != RUNTIME_INF)
11154 quota = min(quota, parent_quota);
11155 } else {
11156 if (quota == RUNTIME_INF)
11157 quota = parent_quota;
11158 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
11159 return -EINVAL;
11160 }
11161 }
11162 cfs_b->hierarchical_quota = quota;
11163
11164 return 0;
11165 }
11166
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)11167 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
11168 {
11169 int ret;
11170 struct cfs_schedulable_data data = {
11171 .tg = tg,
11172 .period = period,
11173 .quota = quota,
11174 };
11175
11176 if (quota != RUNTIME_INF) {
11177 do_div(data.period, NSEC_PER_USEC);
11178 do_div(data.quota, NSEC_PER_USEC);
11179 }
11180
11181 rcu_read_lock();
11182 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
11183 rcu_read_unlock();
11184
11185 return ret;
11186 }
11187
cpu_cfs_stat_show(struct seq_file * sf,void * v)11188 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
11189 {
11190 struct task_group *tg = css_tg(seq_css(sf));
11191 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11192
11193 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
11194 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
11195 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
11196
11197 if (schedstat_enabled() && tg != &root_task_group) {
11198 struct sched_statistics *stats;
11199 u64 ws = 0;
11200 int i;
11201
11202 for_each_possible_cpu(i) {
11203 stats = __schedstats_from_se(tg->se[i]);
11204 ws += schedstat_val(stats->wait_sum);
11205 }
11206
11207 seq_printf(sf, "wait_sum %llu\n", ws);
11208 }
11209
11210 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
11211 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
11212
11213 return 0;
11214 }
11215
throttled_time_self(struct task_group * tg)11216 static u64 throttled_time_self(struct task_group *tg)
11217 {
11218 int i;
11219 u64 total = 0;
11220
11221 for_each_possible_cpu(i) {
11222 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
11223 }
11224
11225 return total;
11226 }
11227
cpu_cfs_local_stat_show(struct seq_file * sf,void * v)11228 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
11229 {
11230 struct task_group *tg = css_tg(seq_css(sf));
11231
11232 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
11233
11234 return 0;
11235 }
11236 #endif /* CONFIG_CFS_BANDWIDTH */
11237 #endif /* CONFIG_FAIR_GROUP_SCHED */
11238
11239 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)11240 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
11241 struct cftype *cft, s64 val)
11242 {
11243 return sched_group_set_rt_runtime(css_tg(css), val);
11244 }
11245
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)11246 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
11247 struct cftype *cft)
11248 {
11249 return sched_group_rt_runtime(css_tg(css));
11250 }
11251
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)11252 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
11253 struct cftype *cftype, u64 rt_period_us)
11254 {
11255 return sched_group_set_rt_period(css_tg(css), rt_period_us);
11256 }
11257
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)11258 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11259 struct cftype *cft)
11260 {
11261 return sched_group_rt_period(css_tg(css));
11262 }
11263 #endif /* CONFIG_RT_GROUP_SCHED */
11264
11265 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_idle_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11266 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11267 struct cftype *cft)
11268 {
11269 return css_tg(css)->idle;
11270 }
11271
cpu_idle_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 idle)11272 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11273 struct cftype *cft, s64 idle)
11274 {
11275 return sched_group_set_idle(css_tg(css), idle);
11276 }
11277 #endif
11278
11279 static struct cftype cpu_legacy_files[] = {
11280 #ifdef CONFIG_FAIR_GROUP_SCHED
11281 {
11282 .name = "shares",
11283 .read_u64 = cpu_shares_read_u64,
11284 .write_u64 = cpu_shares_write_u64,
11285 },
11286 {
11287 .name = "idle",
11288 .read_s64 = cpu_idle_read_s64,
11289 .write_s64 = cpu_idle_write_s64,
11290 },
11291 #endif
11292 #ifdef CONFIG_CFS_BANDWIDTH
11293 {
11294 .name = "cfs_quota_us",
11295 .read_s64 = cpu_cfs_quota_read_s64,
11296 .write_s64 = cpu_cfs_quota_write_s64,
11297 },
11298 {
11299 .name = "cfs_period_us",
11300 .read_u64 = cpu_cfs_period_read_u64,
11301 .write_u64 = cpu_cfs_period_write_u64,
11302 },
11303 {
11304 .name = "cfs_burst_us",
11305 .read_u64 = cpu_cfs_burst_read_u64,
11306 .write_u64 = cpu_cfs_burst_write_u64,
11307 },
11308 {
11309 .name = "stat",
11310 .seq_show = cpu_cfs_stat_show,
11311 },
11312 {
11313 .name = "stat.local",
11314 .seq_show = cpu_cfs_local_stat_show,
11315 },
11316 #endif
11317 #ifdef CONFIG_RT_GROUP_SCHED
11318 {
11319 .name = "rt_runtime_us",
11320 .read_s64 = cpu_rt_runtime_read,
11321 .write_s64 = cpu_rt_runtime_write,
11322 },
11323 {
11324 .name = "rt_period_us",
11325 .read_u64 = cpu_rt_period_read_uint,
11326 .write_u64 = cpu_rt_period_write_uint,
11327 },
11328 #endif
11329 #ifdef CONFIG_UCLAMP_TASK_GROUP
11330 {
11331 .name = "uclamp.min",
11332 .flags = CFTYPE_NOT_ON_ROOT,
11333 .seq_show = cpu_uclamp_min_show,
11334 .write = cpu_uclamp_min_write,
11335 },
11336 {
11337 .name = "uclamp.max",
11338 .flags = CFTYPE_NOT_ON_ROOT,
11339 .seq_show = cpu_uclamp_max_show,
11340 .write = cpu_uclamp_max_write,
11341 },
11342 #endif
11343 { } /* Terminate */
11344 };
11345
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)11346 static int cpu_extra_stat_show(struct seq_file *sf,
11347 struct cgroup_subsys_state *css)
11348 {
11349 #ifdef CONFIG_CFS_BANDWIDTH
11350 {
11351 struct task_group *tg = css_tg(css);
11352 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11353 u64 throttled_usec, burst_usec;
11354
11355 throttled_usec = cfs_b->throttled_time;
11356 do_div(throttled_usec, NSEC_PER_USEC);
11357 burst_usec = cfs_b->burst_time;
11358 do_div(burst_usec, NSEC_PER_USEC);
11359
11360 seq_printf(sf, "nr_periods %d\n"
11361 "nr_throttled %d\n"
11362 "throttled_usec %llu\n"
11363 "nr_bursts %d\n"
11364 "burst_usec %llu\n",
11365 cfs_b->nr_periods, cfs_b->nr_throttled,
11366 throttled_usec, cfs_b->nr_burst, burst_usec);
11367 }
11368 #endif
11369 return 0;
11370 }
11371
cpu_local_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)11372 static int cpu_local_stat_show(struct seq_file *sf,
11373 struct cgroup_subsys_state *css)
11374 {
11375 #ifdef CONFIG_CFS_BANDWIDTH
11376 {
11377 struct task_group *tg = css_tg(css);
11378 u64 throttled_self_usec;
11379
11380 throttled_self_usec = throttled_time_self(tg);
11381 do_div(throttled_self_usec, NSEC_PER_USEC);
11382
11383 seq_printf(sf, "throttled_usec %llu\n",
11384 throttled_self_usec);
11385 }
11386 #endif
11387 return 0;
11388 }
11389
11390 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11391 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11392 struct cftype *cft)
11393 {
11394 struct task_group *tg = css_tg(css);
11395 u64 weight = scale_load_down(tg->shares);
11396
11397 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11398 }
11399
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 weight)11400 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11401 struct cftype *cft, u64 weight)
11402 {
11403 /*
11404 * cgroup weight knobs should use the common MIN, DFL and MAX
11405 * values which are 1, 100 and 10000 respectively. While it loses
11406 * a bit of range on both ends, it maps pretty well onto the shares
11407 * value used by scheduler and the round-trip conversions preserve
11408 * the original value over the entire range.
11409 */
11410 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11411 return -ERANGE;
11412
11413 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11414
11415 return sched_group_set_shares(css_tg(css), scale_load(weight));
11416 }
11417
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11418 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11419 struct cftype *cft)
11420 {
11421 unsigned long weight = scale_load_down(css_tg(css)->shares);
11422 int last_delta = INT_MAX;
11423 int prio, delta;
11424
11425 /* find the closest nice value to the current weight */
11426 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11427 delta = abs(sched_prio_to_weight[prio] - weight);
11428 if (delta >= last_delta)
11429 break;
11430 last_delta = delta;
11431 }
11432
11433 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11434 }
11435
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)11436 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11437 struct cftype *cft, s64 nice)
11438 {
11439 unsigned long weight;
11440 int idx;
11441
11442 if (nice < MIN_NICE || nice > MAX_NICE)
11443 return -ERANGE;
11444
11445 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11446 idx = array_index_nospec(idx, 40);
11447 weight = sched_prio_to_weight[idx];
11448
11449 return sched_group_set_shares(css_tg(css), scale_load(weight));
11450 }
11451 #endif
11452
cpu_period_quota_print(struct seq_file * sf,long period,long quota)11453 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11454 long period, long quota)
11455 {
11456 if (quota < 0)
11457 seq_puts(sf, "max");
11458 else
11459 seq_printf(sf, "%ld", quota);
11460
11461 seq_printf(sf, " %ld\n", period);
11462 }
11463
11464 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)11465 static int __maybe_unused cpu_period_quota_parse(char *buf,
11466 u64 *periodp, u64 *quotap)
11467 {
11468 char tok[21]; /* U64_MAX */
11469
11470 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11471 return -EINVAL;
11472
11473 *periodp *= NSEC_PER_USEC;
11474
11475 if (sscanf(tok, "%llu", quotap))
11476 *quotap *= NSEC_PER_USEC;
11477 else if (!strcmp(tok, "max"))
11478 *quotap = RUNTIME_INF;
11479 else
11480 return -EINVAL;
11481
11482 return 0;
11483 }
11484
11485 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)11486 static int cpu_max_show(struct seq_file *sf, void *v)
11487 {
11488 struct task_group *tg = css_tg(seq_css(sf));
11489
11490 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11491 return 0;
11492 }
11493
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)11494 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11495 char *buf, size_t nbytes, loff_t off)
11496 {
11497 struct task_group *tg = css_tg(of_css(of));
11498 u64 period = tg_get_cfs_period(tg);
11499 u64 burst = tg_get_cfs_burst(tg);
11500 u64 quota;
11501 int ret;
11502
11503 ret = cpu_period_quota_parse(buf, &period, "a);
11504 if (!ret)
11505 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11506 return ret ?: nbytes;
11507 }
11508 #endif
11509
11510 static struct cftype cpu_files[] = {
11511 #ifdef CONFIG_FAIR_GROUP_SCHED
11512 {
11513 .name = "weight",
11514 .flags = CFTYPE_NOT_ON_ROOT,
11515 .read_u64 = cpu_weight_read_u64,
11516 .write_u64 = cpu_weight_write_u64,
11517 },
11518 {
11519 .name = "weight.nice",
11520 .flags = CFTYPE_NOT_ON_ROOT,
11521 .read_s64 = cpu_weight_nice_read_s64,
11522 .write_s64 = cpu_weight_nice_write_s64,
11523 },
11524 {
11525 .name = "idle",
11526 .flags = CFTYPE_NOT_ON_ROOT,
11527 .read_s64 = cpu_idle_read_s64,
11528 .write_s64 = cpu_idle_write_s64,
11529 },
11530 #endif
11531 #ifdef CONFIG_CFS_BANDWIDTH
11532 {
11533 .name = "max",
11534 .flags = CFTYPE_NOT_ON_ROOT,
11535 .seq_show = cpu_max_show,
11536 .write = cpu_max_write,
11537 },
11538 {
11539 .name = "max.burst",
11540 .flags = CFTYPE_NOT_ON_ROOT,
11541 .read_u64 = cpu_cfs_burst_read_u64,
11542 .write_u64 = cpu_cfs_burst_write_u64,
11543 },
11544 #endif
11545 #ifdef CONFIG_UCLAMP_TASK_GROUP
11546 {
11547 .name = "uclamp.min",
11548 .flags = CFTYPE_NOT_ON_ROOT,
11549 .seq_show = cpu_uclamp_min_show,
11550 .write = cpu_uclamp_min_write,
11551 },
11552 {
11553 .name = "uclamp.max",
11554 .flags = CFTYPE_NOT_ON_ROOT,
11555 .seq_show = cpu_uclamp_max_show,
11556 .write = cpu_uclamp_max_write,
11557 },
11558 #endif
11559 { } /* terminate */
11560 };
11561
11562 struct cgroup_subsys cpu_cgrp_subsys = {
11563 .css_alloc = cpu_cgroup_css_alloc,
11564 .css_online = cpu_cgroup_css_online,
11565 .css_released = cpu_cgroup_css_released,
11566 .css_free = cpu_cgroup_css_free,
11567 .css_extra_stat_show = cpu_extra_stat_show,
11568 .css_local_stat_show = cpu_local_stat_show,
11569 #ifdef CONFIG_RT_GROUP_SCHED
11570 .can_attach = cpu_cgroup_can_attach,
11571 #endif
11572 .attach = cpu_cgroup_attach,
11573 .legacy_cftypes = cpu_legacy_files,
11574 .dfl_cftypes = cpu_files,
11575 .early_init = true,
11576 .threaded = true,
11577 };
11578
11579 #endif /* CONFIG_CGROUP_SCHED */
11580
dump_cpu_task(int cpu)11581 void dump_cpu_task(int cpu)
11582 {
11583 if (cpu == smp_processor_id() && in_hardirq()) {
11584 struct pt_regs *regs;
11585
11586 regs = get_irq_regs();
11587 if (regs) {
11588 show_regs(regs);
11589 return;
11590 }
11591 }
11592
11593 if (trigger_single_cpu_backtrace(cpu))
11594 return;
11595
11596 pr_info("Task dump for CPU %d:\n", cpu);
11597 sched_show_task(cpu_curr(cpu));
11598 }
11599
11600 /*
11601 * Nice levels are multiplicative, with a gentle 10% change for every
11602 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11603 * nice 1, it will get ~10% less CPU time than another CPU-bound task
11604 * that remained on nice 0.
11605 *
11606 * The "10% effect" is relative and cumulative: from _any_ nice level,
11607 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11608 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11609 * If a task goes up by ~10% and another task goes down by ~10% then
11610 * the relative distance between them is ~25%.)
11611 */
11612 const int sched_prio_to_weight[40] = {
11613 /* -20 */ 88761, 71755, 56483, 46273, 36291,
11614 /* -15 */ 29154, 23254, 18705, 14949, 11916,
11615 /* -10 */ 9548, 7620, 6100, 4904, 3906,
11616 /* -5 */ 3121, 2501, 1991, 1586, 1277,
11617 /* 0 */ 1024, 820, 655, 526, 423,
11618 /* 5 */ 335, 272, 215, 172, 137,
11619 /* 10 */ 110, 87, 70, 56, 45,
11620 /* 15 */ 36, 29, 23, 18, 15,
11621 };
11622
11623 /*
11624 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11625 *
11626 * In cases where the weight does not change often, we can use the
11627 * precalculated inverse to speed up arithmetics by turning divisions
11628 * into multiplications:
11629 */
11630 const u32 sched_prio_to_wmult[40] = {
11631 /* -20 */ 48388, 59856, 76040, 92818, 118348,
11632 /* -15 */ 147320, 184698, 229616, 287308, 360437,
11633 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
11634 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
11635 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
11636 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
11637 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
11638 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11639 };
11640
11641 #ifdef CONFIG_SCHED_LATENCY_NICE
11642 /*
11643 * latency weight for wakeup preemption
11644 */
11645 const int sched_latency_to_weight[40] = {
11646 /* -20 */ 1024, 973, 922, 870, 819,
11647 /* -15 */ 768, 717, 666, 614, 563,
11648 /* -10 */ 512, 461, 410, 358, 307,
11649 /* -5 */ 256, 205, 154, 102, 51,
11650 /* 0 */ 0, -51, -102, -154, -205,
11651 /* 5 */ -256, -307, -358, -410, -461,
11652 /* 10 */ -512, -563, -614, -666, -717,
11653 /* 15 */ -768, -819, -870, -922, -973,
11654 };
11655 #endif
11656
call_trace_sched_update_nr_running(struct rq * rq,int count)11657 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11658 {
11659 trace_sched_update_nr_running_tp(rq, count);
11660 }
11661
11662 #ifdef CONFIG_SCHED_MM_CID
11663
11664 /*
11665 * @cid_lock: Guarantee forward-progress of cid allocation.
11666 *
11667 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
11668 * is only used when contention is detected by the lock-free allocation so
11669 * forward progress can be guaranteed.
11670 */
11671 DEFINE_RAW_SPINLOCK(cid_lock);
11672
11673 /*
11674 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
11675 *
11676 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
11677 * detected, it is set to 1 to ensure that all newly coming allocations are
11678 * serialized by @cid_lock until the allocation which detected contention
11679 * completes and sets @use_cid_lock back to 0. This guarantees forward progress
11680 * of a cid allocation.
11681 */
11682 int use_cid_lock;
11683
11684 /*
11685 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
11686 * concurrently with respect to the execution of the source runqueue context
11687 * switch.
11688 *
11689 * There is one basic properties we want to guarantee here:
11690 *
11691 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
11692 * used by a task. That would lead to concurrent allocation of the cid and
11693 * userspace corruption.
11694 *
11695 * Provide this guarantee by introducing a Dekker memory ordering to guarantee
11696 * that a pair of loads observe at least one of a pair of stores, which can be
11697 * shown as:
11698 *
11699 * X = Y = 0
11700 *
11701 * w[X]=1 w[Y]=1
11702 * MB MB
11703 * r[Y]=y r[X]=x
11704 *
11705 * Which guarantees that x==0 && y==0 is impossible. But rather than using
11706 * values 0 and 1, this algorithm cares about specific state transitions of the
11707 * runqueue current task (as updated by the scheduler context switch), and the
11708 * per-mm/cpu cid value.
11709 *
11710 * Let's introduce task (Y) which has task->mm == mm and task (N) which has
11711 * task->mm != mm for the rest of the discussion. There are two scheduler state
11712 * transitions on context switch we care about:
11713 *
11714 * (TSA) Store to rq->curr with transition from (N) to (Y)
11715 *
11716 * (TSB) Store to rq->curr with transition from (Y) to (N)
11717 *
11718 * On the remote-clear side, there is one transition we care about:
11719 *
11720 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
11721 *
11722 * There is also a transition to UNSET state which can be performed from all
11723 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
11724 * guarantees that only a single thread will succeed:
11725 *
11726 * (TMB) cmpxchg to *pcpu_cid to mark UNSET
11727 *
11728 * Just to be clear, what we do _not_ want to happen is a transition to UNSET
11729 * when a thread is actively using the cid (property (1)).
11730 *
11731 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
11732 *
11733 * Scenario A) (TSA)+(TMA) (from next task perspective)
11734 *
11735 * CPU0 CPU1
11736 *
11737 * Context switch CS-1 Remote-clear
11738 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA)
11739 * (implied barrier after cmpxchg)
11740 * - switch_mm_cid()
11741 * - memory barrier (see switch_mm_cid()
11742 * comment explaining how this barrier
11743 * is combined with other scheduler
11744 * barriers)
11745 * - mm_cid_get (next)
11746 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr)
11747 *
11748 * This Dekker ensures that either task (Y) is observed by the
11749 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
11750 * observed.
11751 *
11752 * If task (Y) store is observed by rcu_dereference(), it means that there is
11753 * still an active task on the cpu. Remote-clear will therefore not transition
11754 * to UNSET, which fulfills property (1).
11755 *
11756 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
11757 * it will move its state to UNSET, which clears the percpu cid perhaps
11758 * uselessly (which is not an issue for correctness). Because task (Y) is not
11759 * observed, CPU1 can move ahead to set the state to UNSET. Because moving
11760 * state to UNSET is done with a cmpxchg expecting that the old state has the
11761 * LAZY flag set, only one thread will successfully UNSET.
11762 *
11763 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
11764 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
11765 * CPU1 will observe task (Y) and do nothing more, which is fine.
11766 *
11767 * What we are effectively preventing with this Dekker is a scenario where
11768 * neither LAZY flag nor store (Y) are observed, which would fail property (1)
11769 * because this would UNSET a cid which is actively used.
11770 */
11771
sched_mm_cid_migrate_from(struct task_struct * t)11772 void sched_mm_cid_migrate_from(struct task_struct *t)
11773 {
11774 t->migrate_from_cpu = task_cpu(t);
11775 }
11776
11777 static
__sched_mm_cid_migrate_from_fetch_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid)11778 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
11779 struct task_struct *t,
11780 struct mm_cid *src_pcpu_cid)
11781 {
11782 struct mm_struct *mm = t->mm;
11783 struct task_struct *src_task;
11784 int src_cid, last_mm_cid;
11785
11786 if (!mm)
11787 return -1;
11788
11789 last_mm_cid = t->last_mm_cid;
11790 /*
11791 * If the migrated task has no last cid, or if the current
11792 * task on src rq uses the cid, it means the source cid does not need
11793 * to be moved to the destination cpu.
11794 */
11795 if (last_mm_cid == -1)
11796 return -1;
11797 src_cid = READ_ONCE(src_pcpu_cid->cid);
11798 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
11799 return -1;
11800
11801 /*
11802 * If we observe an active task using the mm on this rq, it means we
11803 * are not the last task to be migrated from this cpu for this mm, so
11804 * there is no need to move src_cid to the destination cpu.
11805 */
11806 rcu_read_lock();
11807 src_task = rcu_dereference(src_rq->curr);
11808 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11809 rcu_read_unlock();
11810 t->last_mm_cid = -1;
11811 return -1;
11812 }
11813 rcu_read_unlock();
11814
11815 return src_cid;
11816 }
11817
11818 static
__sched_mm_cid_migrate_from_try_steal_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid,int src_cid)11819 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
11820 struct task_struct *t,
11821 struct mm_cid *src_pcpu_cid,
11822 int src_cid)
11823 {
11824 struct task_struct *src_task;
11825 struct mm_struct *mm = t->mm;
11826 int lazy_cid;
11827
11828 if (src_cid == -1)
11829 return -1;
11830
11831 /*
11832 * Attempt to clear the source cpu cid to move it to the destination
11833 * cpu.
11834 */
11835 lazy_cid = mm_cid_set_lazy_put(src_cid);
11836 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
11837 return -1;
11838
11839 /*
11840 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11841 * rq->curr->mm matches the scheduler barrier in context_switch()
11842 * between store to rq->curr and load of prev and next task's
11843 * per-mm/cpu cid.
11844 *
11845 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11846 * rq->curr->mm_cid_active matches the barrier in
11847 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11848 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11849 * load of per-mm/cpu cid.
11850 */
11851
11852 /*
11853 * If we observe an active task using the mm on this rq after setting
11854 * the lazy-put flag, this task will be responsible for transitioning
11855 * from lazy-put flag set to MM_CID_UNSET.
11856 */
11857 rcu_read_lock();
11858 src_task = rcu_dereference(src_rq->curr);
11859 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11860 rcu_read_unlock();
11861 /*
11862 * We observed an active task for this mm, there is therefore
11863 * no point in moving this cid to the destination cpu.
11864 */
11865 t->last_mm_cid = -1;
11866 return -1;
11867 }
11868 rcu_read_unlock();
11869
11870 /*
11871 * The src_cid is unused, so it can be unset.
11872 */
11873 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11874 return -1;
11875 return src_cid;
11876 }
11877
11878 /*
11879 * Migration to dst cpu. Called with dst_rq lock held.
11880 * Interrupts are disabled, which keeps the window of cid ownership without the
11881 * source rq lock held small.
11882 */
sched_mm_cid_migrate_to(struct rq * dst_rq,struct task_struct * t)11883 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
11884 {
11885 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
11886 struct mm_struct *mm = t->mm;
11887 int src_cid, dst_cid, src_cpu;
11888 struct rq *src_rq;
11889
11890 lockdep_assert_rq_held(dst_rq);
11891
11892 if (!mm)
11893 return;
11894 src_cpu = t->migrate_from_cpu;
11895 if (src_cpu == -1) {
11896 t->last_mm_cid = -1;
11897 return;
11898 }
11899 /*
11900 * Move the src cid if the dst cid is unset. This keeps id
11901 * allocation closest to 0 in cases where few threads migrate around
11902 * many cpus.
11903 *
11904 * If destination cid is already set, we may have to just clear
11905 * the src cid to ensure compactness in frequent migrations
11906 * scenarios.
11907 *
11908 * It is not useful to clear the src cid when the number of threads is
11909 * greater or equal to the number of allowed cpus, because user-space
11910 * can expect that the number of allowed cids can reach the number of
11911 * allowed cpus.
11912 */
11913 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
11914 dst_cid = READ_ONCE(dst_pcpu_cid->cid);
11915 if (!mm_cid_is_unset(dst_cid) &&
11916 atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
11917 return;
11918 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
11919 src_rq = cpu_rq(src_cpu);
11920 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
11921 if (src_cid == -1)
11922 return;
11923 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
11924 src_cid);
11925 if (src_cid == -1)
11926 return;
11927 if (!mm_cid_is_unset(dst_cid)) {
11928 __mm_cid_put(mm, src_cid);
11929 return;
11930 }
11931 /* Move src_cid to dst cpu. */
11932 mm_cid_snapshot_time(dst_rq, mm);
11933 WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
11934 }
11935
sched_mm_cid_remote_clear(struct mm_struct * mm,struct mm_cid * pcpu_cid,int cpu)11936 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
11937 int cpu)
11938 {
11939 struct rq *rq = cpu_rq(cpu);
11940 struct task_struct *t;
11941 unsigned long flags;
11942 int cid, lazy_cid;
11943
11944 cid = READ_ONCE(pcpu_cid->cid);
11945 if (!mm_cid_is_valid(cid))
11946 return;
11947
11948 /*
11949 * Clear the cpu cid if it is set to keep cid allocation compact. If
11950 * there happens to be other tasks left on the source cpu using this
11951 * mm, the next task using this mm will reallocate its cid on context
11952 * switch.
11953 */
11954 lazy_cid = mm_cid_set_lazy_put(cid);
11955 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
11956 return;
11957
11958 /*
11959 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11960 * rq->curr->mm matches the scheduler barrier in context_switch()
11961 * between store to rq->curr and load of prev and next task's
11962 * per-mm/cpu cid.
11963 *
11964 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11965 * rq->curr->mm_cid_active matches the barrier in
11966 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11967 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11968 * load of per-mm/cpu cid.
11969 */
11970
11971 /*
11972 * If we observe an active task using the mm on this rq after setting
11973 * the lazy-put flag, that task will be responsible for transitioning
11974 * from lazy-put flag set to MM_CID_UNSET.
11975 */
11976 rcu_read_lock();
11977 t = rcu_dereference(rq->curr);
11978 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) {
11979 rcu_read_unlock();
11980 return;
11981 }
11982 rcu_read_unlock();
11983
11984 /*
11985 * The cid is unused, so it can be unset.
11986 * Disable interrupts to keep the window of cid ownership without rq
11987 * lock small.
11988 */
11989 local_irq_save(flags);
11990 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11991 __mm_cid_put(mm, cid);
11992 local_irq_restore(flags);
11993 }
11994
sched_mm_cid_remote_clear_old(struct mm_struct * mm,int cpu)11995 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
11996 {
11997 struct rq *rq = cpu_rq(cpu);
11998 struct mm_cid *pcpu_cid;
11999 struct task_struct *curr;
12000 u64 rq_clock;
12001
12002 /*
12003 * rq->clock load is racy on 32-bit but one spurious clear once in a
12004 * while is irrelevant.
12005 */
12006 rq_clock = READ_ONCE(rq->clock);
12007 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
12008
12009 /*
12010 * In order to take care of infrequently scheduled tasks, bump the time
12011 * snapshot associated with this cid if an active task using the mm is
12012 * observed on this rq.
12013 */
12014 rcu_read_lock();
12015 curr = rcu_dereference(rq->curr);
12016 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
12017 WRITE_ONCE(pcpu_cid->time, rq_clock);
12018 rcu_read_unlock();
12019 return;
12020 }
12021 rcu_read_unlock();
12022
12023 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
12024 return;
12025 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
12026 }
12027
sched_mm_cid_remote_clear_weight(struct mm_struct * mm,int cpu,int weight)12028 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
12029 int weight)
12030 {
12031 struct mm_cid *pcpu_cid;
12032 int cid;
12033
12034 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
12035 cid = READ_ONCE(pcpu_cid->cid);
12036 if (!mm_cid_is_valid(cid) || cid < weight)
12037 return;
12038 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
12039 }
12040
task_mm_cid_work(struct callback_head * work)12041 static void task_mm_cid_work(struct callback_head *work)
12042 {
12043 unsigned long now = jiffies, old_scan, next_scan;
12044 struct task_struct *t = current;
12045 struct cpumask *cidmask;
12046 struct mm_struct *mm;
12047 int weight, cpu;
12048
12049 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
12050
12051 work->next = work; /* Prevent double-add */
12052 if (t->flags & PF_EXITING)
12053 return;
12054 mm = t->mm;
12055 if (!mm)
12056 return;
12057 old_scan = READ_ONCE(mm->mm_cid_next_scan);
12058 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
12059 if (!old_scan) {
12060 unsigned long res;
12061
12062 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
12063 if (res != old_scan)
12064 old_scan = res;
12065 else
12066 old_scan = next_scan;
12067 }
12068 if (time_before(now, old_scan))
12069 return;
12070 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
12071 return;
12072 cidmask = mm_cidmask(mm);
12073 /* Clear cids that were not recently used. */
12074 for_each_possible_cpu(cpu)
12075 sched_mm_cid_remote_clear_old(mm, cpu);
12076 weight = cpumask_weight(cidmask);
12077 /*
12078 * Clear cids that are greater or equal to the cidmask weight to
12079 * recompact it.
12080 */
12081 for_each_possible_cpu(cpu)
12082 sched_mm_cid_remote_clear_weight(mm, cpu, weight);
12083 }
12084
init_sched_mm_cid(struct task_struct * t)12085 void init_sched_mm_cid(struct task_struct *t)
12086 {
12087 struct mm_struct *mm = t->mm;
12088 int mm_users = 0;
12089
12090 if (mm) {
12091 mm_users = atomic_read(&mm->mm_users);
12092 if (mm_users == 1)
12093 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
12094 }
12095 t->cid_work.next = &t->cid_work; /* Protect against double add */
12096 init_task_work(&t->cid_work, task_mm_cid_work);
12097 }
12098
task_tick_mm_cid(struct rq * rq,struct task_struct * curr)12099 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
12100 {
12101 struct callback_head *work = &curr->cid_work;
12102 unsigned long now = jiffies;
12103
12104 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
12105 work->next != work)
12106 return;
12107 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
12108 return;
12109 task_work_add(curr, work, TWA_RESUME);
12110 }
12111
sched_mm_cid_exit_signals(struct task_struct * t)12112 void sched_mm_cid_exit_signals(struct task_struct *t)
12113 {
12114 struct mm_struct *mm = t->mm;
12115 struct rq_flags rf;
12116 struct rq *rq;
12117
12118 if (!mm)
12119 return;
12120
12121 preempt_disable();
12122 rq = this_rq();
12123 rq_lock_irqsave(rq, &rf);
12124 preempt_enable_no_resched(); /* holding spinlock */
12125 WRITE_ONCE(t->mm_cid_active, 0);
12126 /*
12127 * Store t->mm_cid_active before loading per-mm/cpu cid.
12128 * Matches barrier in sched_mm_cid_remote_clear_old().
12129 */
12130 smp_mb();
12131 mm_cid_put(mm);
12132 t->last_mm_cid = t->mm_cid = -1;
12133 rq_unlock_irqrestore(rq, &rf);
12134 }
12135
sched_mm_cid_before_execve(struct task_struct * t)12136 void sched_mm_cid_before_execve(struct task_struct *t)
12137 {
12138 struct mm_struct *mm = t->mm;
12139 struct rq_flags rf;
12140 struct rq *rq;
12141
12142 if (!mm)
12143 return;
12144
12145 preempt_disable();
12146 rq = this_rq();
12147 rq_lock_irqsave(rq, &rf);
12148 preempt_enable_no_resched(); /* holding spinlock */
12149 WRITE_ONCE(t->mm_cid_active, 0);
12150 /*
12151 * Store t->mm_cid_active before loading per-mm/cpu cid.
12152 * Matches barrier in sched_mm_cid_remote_clear_old().
12153 */
12154 smp_mb();
12155 mm_cid_put(mm);
12156 t->last_mm_cid = t->mm_cid = -1;
12157 rq_unlock_irqrestore(rq, &rf);
12158 }
12159
sched_mm_cid_after_execve(struct task_struct * t)12160 void sched_mm_cid_after_execve(struct task_struct *t)
12161 {
12162 struct mm_struct *mm = t->mm;
12163 struct rq_flags rf;
12164 struct rq *rq;
12165
12166 if (!mm)
12167 return;
12168
12169 preempt_disable();
12170 rq = this_rq();
12171 rq_lock_irqsave(rq, &rf);
12172 preempt_enable_no_resched(); /* holding spinlock */
12173 WRITE_ONCE(t->mm_cid_active, 1);
12174 /*
12175 * Store t->mm_cid_active before loading per-mm/cpu cid.
12176 * Matches barrier in sched_mm_cid_remote_clear_old().
12177 */
12178 smp_mb();
12179 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
12180 rq_unlock_irqrestore(rq, &rf);
12181 rseq_set_notify_resume(t);
12182 }
12183
sched_mm_cid_fork(struct task_struct * t)12184 void sched_mm_cid_fork(struct task_struct *t)
12185 {
12186 WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
12187 t->mm_cid_active = 1;
12188 }
12189 #endif
12190