• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <drm/drm_print.h>
26 
27 #include "gem/i915_gem_context.h"
28 
29 #include "i915_drv.h"
30 
31 #include "intel_breadcrumbs.h"
32 #include "intel_context.h"
33 #include "intel_engine.h"
34 #include "intel_engine_pm.h"
35 #include "intel_engine_user.h"
36 #include "intel_gt.h"
37 #include "intel_gt_requests.h"
38 #include "intel_gt_pm.h"
39 #include "intel_lrc.h"
40 #include "intel_reset.h"
41 #include "intel_ring.h"
42 
43 /* Haswell does have the CXT_SIZE register however it does not appear to be
44  * valid. Now, docs explain in dwords what is in the context object. The full
45  * size is 70720 bytes, however, the power context and execlist context will
46  * never be saved (power context is stored elsewhere, and execlists don't work
47  * on HSW) - so the final size, including the extra state required for the
48  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
49  */
50 #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE)
51 
52 #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
53 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
54 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
55 #define GEN10_LR_CONTEXT_RENDER_SIZE (18 * PAGE_SIZE)
56 #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE)
57 
58 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
59 
60 #define MAX_MMIO_BASES 3
61 struct engine_info {
62     unsigned int hw_id;
63     u8 class;
64     u8 instance;
65     /* mmio bases table *must* be sorted in reverse gen order */
66     struct engine_mmio_base {
67         u32 gen : 8;
68         u32 base : 24;
69     } mmio_bases[MAX_MMIO_BASES];
70 };
71 
72 static const struct engine_info intel_engines[] = {
73     [RCS0] =
74         {
75             .hw_id = RCS0_HW,
76             .class = RENDER_CLASS,
77             .instance = 0,
78             .mmio_bases = {{.gen = 1, .base = RENDER_RING_BASE}},
79         },
80     [BCS0] =
81         {
82             .hw_id = BCS0_HW,
83             .class = COPY_ENGINE_CLASS,
84             .instance = 0,
85             .mmio_bases = {{.gen = 6, .base = BLT_RING_BASE}},
86         },
87     [VCS0] =
88         {
89             .hw_id = VCS0_HW,
90             .class = VIDEO_DECODE_CLASS,
91             .instance = 0,
92             .mmio_bases = {
93                 {.gen = 11, .base = GEN11_BSD_RING_BASE},
94                 {.gen = 6, .base = GEN6_BSD_RING_BASE},
95                 {.gen = 4, .base = BSD_RING_BASE}},
96         },
97     [VCS1] =
98         {
99             .hw_id = VCS1_HW,
100             .class = VIDEO_DECODE_CLASS,
101             .instance = 1,
102             .mmio_bases = {{.gen = 11, .base = GEN11_BSD2_RING_BASE}, {.gen = 8, .base = GEN8_BSD2_RING_BASE}},
103         },
104     [VCS2] =
105         {
106             .hw_id = VCS2_HW,
107             .class = VIDEO_DECODE_CLASS,
108             .instance = 2,
109             .mmio_bases = {{.gen = 11, .base = GEN11_BSD3_RING_BASE}},
110         },
111     [VCS3] =
112         {
113             .hw_id = VCS3_HW,
114             .class = VIDEO_DECODE_CLASS,
115             .instance = 3,
116             .mmio_bases = {{.gen = 11, .base = GEN11_BSD4_RING_BASE}},
117         },
118     [VECS0] =
119         {
120             .hw_id = VECS0_HW,
121             .class = VIDEO_ENHANCEMENT_CLASS,
122             .instance = 0,
123             .mmio_bases = {{.gen = 11, .base = GEN11_VEBOX_RING_BASE}, {.gen = 7, .base = VEBOX_RING_BASE}},
124         },
125     [VECS1] =
126         {
127             .hw_id = VECS1_HW,
128             .class = VIDEO_ENHANCEMENT_CLASS,
129             .instance = 1,
130             .mmio_bases = {{.gen = 11, .base = GEN11_VEBOX2_RING_BASE}},
131         },
132 };
133 
134 /**
135  * intel_engine_context_size() - return the size of the context for an engine
136  * @gt: the gt
137  * @class: engine class
138  *
139  * Each engine class may require a different amount of space for a context
140  * image.
141  *
142  * Return: size (in bytes) of an engine class specific context image
143  *
144  * Note: this size includes the HWSP, which is part of the context image
145  * in LRC mode, but does not include the "shared data page" used with
146  * GuC submission. The caller should account for this if using the GuC.
147  */
intel_engine_context_size(struct intel_gt * gt,u8 class)148 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
149 {
150     struct intel_uncore *uncore = gt->uncore;
151     u32 cxt_size;
152 
153     BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
154 
155     switch (class) {
156         case RENDER_CLASS:
157             switch (INTEL_GEN(gt->i915)) {
158                 default:
159                     MISSING_CASE(INTEL_GEN(gt->i915));
160                     return DEFAULT_LR_CONTEXT_RENDER_SIZE;
161                 case 0xc:
162                 case 0xb:
163                     return GEN11_LR_CONTEXT_RENDER_SIZE;
164                 case 0xa:
165                     return GEN10_LR_CONTEXT_RENDER_SIZE;
166                 case 0x9:
167                     return GEN9_LR_CONTEXT_RENDER_SIZE;
168                 case 0x8:
169                     return GEN8_LR_CONTEXT_RENDER_SIZE;
170                 case 0x7:
171                     if (IS_HASWELL(gt->i915)) {
172                         return HSW_CXT_TOTAL_SIZE;
173                     }
174 
175                     cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
176                     return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 0x40, PAGE_SIZE);
177                 case 0x6:
178                     cxt_size = intel_uncore_read(uncore, CXT_SIZE);
179                     return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 0x40, PAGE_SIZE);
180                 case 0x5:
181                 case 0x4:
182                     /*
183                      * There is a discrepancy here between the size reported
184                      * by the register and the size of the context layout
185                      * in the docs. Both are described as authorative!
186                      *
187                      * The discrepancy is on the order of a few cachelines,
188                      * but the total is under one page (4k), which is our
189                      * minimum allocation anyway so it should all come
190                      * out in the wash.
191                      */
192                     cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
193                     drm_dbg(&gt->i915->drm, "gen%d CXT_SIZE = %d bytes [0x%08x]\n", INTEL_GEN(gt->i915),
194                             cxt_size * 0x40 cxt_size - 1);
195                     return round_up(cxt_size * 0x40, PAGE_SIZE);
196                 case 0x3:
197                 case 0x2:
198                 /* For the special day when i810 gets merged. */
199                 case 0x1:
200                     return 0;
201             }
202             break;
203         default:
204             MISSING_CASE(class);
205             fallthrough;
206         case VIDEO_DECODE_CLASS:
207         case VIDEO_ENHANCEMENT_CLASS:
208         case COPY_ENGINE_CLASS:
209             if (INTEL_GEN(gt->i915) < 0x8) {
210                 return 0;
211             }
212             return GEN8_LR_CONTEXT_OTHER_SIZE;
213     }
214 }
215 
_engine_mmio_base(struct drm_i915_private * i915,const struct engine_mmio_base * bases)216 static u32 _engine_mmio_base(struct drm_i915_private *i915, const struct engine_mmio_base *bases)
217 {
218     int i;
219 
220     for (i = 0; i < MAX_MMIO_BASES; i++) {
221         if (INTEL_GEN(i915) >= bases[i].gen) {
222             break;
223         }
224     }
225 
226     GEM_BUG_ON(i == MAX_MMIO_BASES);
227     GEM_BUG_ON(!bases[i].base);
228 
229     return bases[i].base;
230 }
231 
_sprint_engine_name(struct intel_engine_cs * engine)232 static void _sprint_engine_name(struct intel_engine_cs *engine)
233 {
234     /*
235      * Before we know what the uABI name for this engine will be,
236      * we still would like to keep track of this engine in the debug logs.
237      * We throw in a ' here as a reminder that this isn't its final name.
238      */
239     GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u", intel_engine_class_repr(engine->class),
240                          engine->instance) >= sizeof(engine->name));
241 }
242 
intel_engine_set_hwsp_writemask(struct intel_engine_cs * engine,u32 mask)243 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
244 {
245     /*
246      * Though they added more rings on g4x/ilk, they did not add
247      * per-engine HWSTAM until gen6.
248      */
249     if (INTEL_GEN(engine->i915) < 0x6 && engine->class != RENDER_CLASS) {
250         return;
251     }
252 
253     if (INTEL_GEN(engine->i915) >= 0x3) {
254         ENGINE_WRITE(engine, RING_HWSTAM, mask);
255     } else {
256         ENGINE_WRITE16(engine, RING_HWSTAM, mask);
257     }
258 }
259 
intel_engine_sanitize_mmio(struct intel_engine_cs * engine)260 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
261 {
262     /* Mask off all writes into the unknown HWSP */
263     intel_engine_set_hwsp_writemask(engine, ~0u);
264 }
265 
intel_engine_setup(struct intel_gt * gt,enum intel_engine_id id)266 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
267 {
268     const struct engine_info *info = &intel_engines[id];
269     struct drm_i915_private *i915 = gt->i915;
270     struct intel_engine_cs *engine;
271 
272     BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
273     BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
274 
275     if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine))) {
276         return -EINVAL;
277     }
278 
279     if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS)) {
280         return -EINVAL;
281     }
282 
283     if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE)) {
284         return -EINVAL;
285     }
286 
287     if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance])) {
288         return -EINVAL;
289     }
290 
291     engine = kzalloc(sizeof(*engine), GFP_KERNEL);
292     if (!engine) {
293         return -ENOMEM;
294     }
295 
296     BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
297 
298     engine->id = id;
299     engine->legacy_idx = INVALID_ENGINE;
300     engine->mask = BIT(id);
301     engine->i915 = i915;
302     engine->gt = gt;
303     engine->uncore = gt->uncore;
304     engine->hw_id = engine->guc_id = info->hw_id;
305     engine->mmio_base = _engine_mmio_base(i915, info->mmio_bases);
306 
307     engine->class = info->class;
308     engine->instance = info->instance;
309     _sprint_engine_name(engine);
310 
311     engine->props.heartbeat_interval_ms = CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
312     engine->props.max_busywait_duration_ns = CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
313     engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT;
314     engine->props.stop_timeout_ms = CONFIG_DRM_I915_STOP_TIMEOUT;
315     engine->props.timeslice_duration_ms = CONFIG_DRM_I915_TIMESLICE_DURATION;
316 
317     /* Override to uninterruptible for OpenCL workloads. */
318     if (INTEL_GEN(i915) == 0xc && engine->class == RENDER_CLASS) {
319         engine->props.preempt_timeout_ms = 0;
320     }
321 
322     engine->defaults = engine->props; /* never to change again */
323 
324     engine->context_size = intel_engine_context_size(gt, engine->class);
325     if (WARN_ON(engine->context_size > BIT(0x14))) {
326         engine->context_size = 0;
327     }
328     if (engine->context_size) {
329         DRIVER_CAPS(i915)->has_logical_contexts = true;
330     }
331 
332     /* Nothing to do here, execute in order of dependencies */
333     engine->schedule = NULL;
334 
335     ewma__engine_latency_init(&engine->latency);
336     seqlock_init(&engine->stats.lock);
337 
338     ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
339 
340     /* Scrub mmio state on takeover */
341     intel_engine_sanitize_mmio(engine);
342 
343     gt->engine_class[info->class][info->instance] = engine;
344     gt->engine[id] = engine;
345 
346     return 0;
347 }
348 
_setup_engine_capabilities(struct intel_engine_cs * engine)349 static void _setup_engine_capabilities(struct intel_engine_cs *engine)
350 {
351     struct drm_i915_private *i915 = engine->i915;
352 
353     if (engine->class == VIDEO_DECODE_CLASS) {
354         /*
355          * HEVC support is present on first engine instance
356          * before Gen11 and on all instances afterwards.
357          */
358         if (INTEL_GEN(i915) >= 0xb || (INTEL_GEN(i915) >= 0x9 && engine->instance == 0x0)) {
359             engine->uabi_capabilities |= I915_VIDEO_CLASS_CAPABILITY_HEVC;
360         }
361 
362         /*
363          * SFC block is present only on even logical engine
364          * instances.
365          */
366         if ((INTEL_GEN(i915) >= 0xb && (engine->gt->info.vdbox_sfc_access & BIT(engine->instance))) ||
367             (INTEL_GEN(i915) >= 0x9 && engine->instance == 0x0)) {
368             engine->uabi_capabilities |= I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
369         }
370     } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
371         if (INTEL_GEN(i915) >= 0x9) {
372             engine->uabi_capabilities |= I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
373         }
374     }
375 }
376 
intel_setup_engine_capabilities(struct intel_gt * gt)377 static void intel_setup_engine_capabilities(struct intel_gt *gt)
378 {
379     struct intel_engine_cs *engine;
380     enum intel_engine_id id;
381 
382     for_each_engine(engine, gt, id) _setup_engine_capabilities(engine);
383 }
384 
385 /**
386  * intel_engines_release() - free the resources allocated for Command Streamers
387  * @gt: pointer to struct intel_gt
388  */
intel_engines_release(struct intel_gt * gt)389 void intel_engines_release(struct intel_gt *gt)
390 {
391     struct intel_engine_cs *engine;
392     enum intel_engine_id id;
393 
394     /*
395      * Before we release the resources held by engine, we must be certain
396      * that the HW is no longer accessing them -- having the GPU scribble
397      * to or read from a page being used for something else causes no end
398      * of fun.
399      *
400      * The GPU should be reset by this point, but assume the worst just
401      * in case we aborted before completely initialising the engines.
402      */
403     GEM_BUG_ON(intel_gt_pm_is_awake(gt));
404     if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) {
405         __intel_gt_reset(gt, ALL_ENGINES);
406     }
407 
408     /* Decouple the backend; but keep the layout for late GPU resets */
409     for_each_engine(engine, gt, id)
410     {
411         if (!engine->release) {
412             continue;
413         }
414 
415         intel_wakeref_wait_for_idle(&engine->wakeref);
416         GEM_BUG_ON(intel_engine_pm_is_awake(engine));
417 
418         engine->release(engine);
419         engine->release = NULL;
420 
421         memset(&engine->reset, 0, sizeof(engine->reset));
422     }
423 }
424 
intel_engine_free_request_pool(struct intel_engine_cs * engine)425 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
426 {
427     if (!engine->request_pool) {
428         return;
429     }
430 
431     kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
432 }
433 
intel_engines_free(struct intel_gt * gt)434 void intel_engines_free(struct intel_gt *gt)
435 {
436     struct intel_engine_cs *engine;
437     enum intel_engine_id id;
438 
439     /* Free the requests! dma-resv keeps fences around for an eternity */
440     rcu_barrier();
441 
442     for_each_engine(engine, gt, id)
443     {
444         intel_engine_free_request_pool(engine);
445         kfree(engine);
446         gt->engine[id] = NULL;
447     }
448 }
449 
450 /*
451  * Determine which engines are fused off in our particular hardware.
452  * Note that we have a catch-22 situation where we need to be able to access
453  * the blitter forcewake domain to read the engine fuses, but at the same time
454  * we need to know which engines are available on the system to know which
455  * forcewake domains are present. We solve this by intializing the forcewake
456  * domains based on the full engine mask in the platform capabilities before
457  * calling this function and pruning the domains for fused-off engines
458  * afterwards.
459  */
init_engine_mask(struct intel_gt * gt)460 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
461 {
462     struct drm_i915_private *i915 = gt->i915;
463     struct intel_gt_info *info = &gt->info;
464     struct intel_uncore *uncore = gt->uncore;
465     unsigned int logical_vdbox = 0;
466     unsigned int i;
467     u32 media_fuse;
468     u16 vdbox_mask;
469     u16 vebox_mask;
470 
471     info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;
472 
473     if (INTEL_GEN(i915) < 0xb) {
474         return info->engine_mask;
475     }
476 
477     media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
478 
479     vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
480     vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >> GEN11_GT_VEBOX_DISABLE_SHIFT;
481 
482     for (i = 0; i < I915_MAX_VCS; i++) {
483         if (!HAS_ENGINE(gt, _VCS(i))) {
484             vdbox_mask &= ~BIT(i);
485             continue;
486         }
487 
488         if (!(BIT(i) & vdbox_mask)) {
489             info->engine_mask &= ~BIT(_VCS(i));
490             drm_dbg(&i915->drm, "vcs%u fused off\n", i);
491             continue;
492         }
493 
494         /*
495          * In Gen11, only even numbered logical VDBOXes are
496          * hooked up to an SFC (Scaler & Format Converter) unit.
497          * In TGL each VDBOX has access to an SFC.
498          */
499         if (INTEL_GEN(i915) >= 0xc || logical_vdbox++ % 0x2 == 0) {
500             gt->info.vdbox_sfc_access |= BIT(i);
501         }
502     }
503     drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n", vdbox_mask, VDBOX_MASK(gt));
504     GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
505 
506     for (i = 0; i < I915_MAX_VECS; i++) {
507         if (!HAS_ENGINE(gt, _VECS(i))) {
508             vebox_mask &= ~BIT(i);
509             continue;
510         }
511 
512         if (!(BIT(i) & vebox_mask)) {
513             info->engine_mask &= ~BIT(_VECS(i));
514             drm_dbg(&i915->drm, "vecs%u fused off\n", i);
515         }
516     }
517     drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n", vebox_mask, VEBOX_MASK(gt));
518     GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
519 
520     return info->engine_mask;
521 }
522 
523 /**
524  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
525  * @gt: pointer to struct intel_gt
526  *
527  * Return: non-zero if the initialization failed.
528  */
intel_engines_init_mmio(struct intel_gt * gt)529 int intel_engines_init_mmio(struct intel_gt *gt)
530 {
531     struct drm_i915_private *i915 = gt->i915;
532     const unsigned int engine_mask = init_engine_mask(gt);
533     unsigned int mask = 0;
534     unsigned int i;
535     int err;
536 
537     drm_WARN_ON(&i915->drm, engine_mask == 0);
538     drm_WARN_ON(&i915->drm, engine_mask & GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
539 
540     if (i915_inject_probe_failure(i915)) {
541         return -ENODEV;
542     }
543 
544     for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
545         if (!HAS_ENGINE(gt, i)) {
546             continue;
547         }
548 
549         err = intel_engine_setup(gt, i);
550         if (err) {
551             goto cleanup;
552         }
553 
554         mask |= BIT(i);
555     }
556 
557     /*
558      * Catch failures to update intel_engines table when the new engines
559      * are added to the driver by a warning and disabling the forgotten
560      * engines.
561      */
562     if (drm_WARN_ON(&i915->drm, mask != engine_mask)) {
563         gt->info.engine_mask = mask;
564     }
565 
566     gt->info.num_engines = hweight32(mask);
567 
568     intel_gt_check_and_clear_faults(gt);
569 
570     intel_setup_engine_capabilities(gt);
571 
572     intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
573 
574     return 0;
575 
576 cleanup:
577     intel_engines_free(gt);
578     return err;
579 }
580 
intel_engine_init_execlists(struct intel_engine_cs * engine)581 void intel_engine_init_execlists(struct intel_engine_cs *engine)
582 {
583     struct intel_engine_execlists *const execlists = &engine->execlists;
584 
585     execlists->port_mask = 1;
586     GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
587     GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
588 
589     memset(execlists->pending, 0, sizeof(execlists->pending));
590     execlists->active = memset(execlists->inflight, 0, sizeof(execlists->inflight));
591 
592     execlists->queue_priority_hint = INT_MIN;
593     execlists->queue = RB_ROOT_CACHED;
594 }
595 
cleanup_status_page(struct intel_engine_cs * engine)596 static void cleanup_status_page(struct intel_engine_cs *engine)
597 {
598     struct i915_vma *vma;
599 
600     /* Prevent writes into HWSP after returning the page to the system */
601     intel_engine_set_hwsp_writemask(engine, ~0u);
602 
603     vma = fetch_and_zero(&engine->status_page.vma);
604     if (!vma) {
605         return;
606     }
607 
608     if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
609         i915_vma_unpin(vma);
610     }
611 
612     i915_gem_object_unpin_map(vma->obj);
613     i915_gem_object_put(vma->obj);
614 }
615 
pin_ggtt_status_page(struct intel_engine_cs * engine,struct i915_vma * vma)616 static int pin_ggtt_status_page(struct intel_engine_cs *engine, struct i915_vma *vma)
617 {
618     unsigned int flags;
619 
620     if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt)) {
621         /*
622          * On g33, we cannot place HWS above 256MiB, so
623          * restrict its pinning to the low mappable arena.
624          * Though this restriction is not documented for
625          * gen4, gen5, or byt, they also behave similarly
626          * and hang if the HWS is placed at the top of the
627          * GTT. To generalise, it appears that all !llc
628          * platforms have issues with us placing the HWS
629          * above the mappable region (even though we never
630          * actually map it).
631          */
632         flags = PIN_MAPPABLE;
633     } else {
634         flags = PIN_HIGH;
635     }
636 
637     return i915_ggtt_pin(vma, NULL, 0, flags);
638 }
639 
init_status_page(struct intel_engine_cs * engine)640 static int init_status_page(struct intel_engine_cs *engine)
641 {
642     struct drm_i915_gem_object *obj;
643     struct i915_vma *vma;
644     void *vaddr;
645     int ret;
646 
647     /*
648      * Though the HWS register does support 36bit addresses, historically
649      * we have had hangs and corruption reported due to wild writes if
650      * the HWS is placed above 4G. We only allow objects to be allocated
651      * in GFP_DMA32 for i965, and no earlier physical address users had
652      * access to more than 4G.
653      */
654     obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
655     if (IS_ERR(obj)) {
656         drm_err(&engine->i915->drm, "Failed to allocate status page\n");
657         return PTR_ERR(obj);
658     }
659 
660     i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
661 
662     vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
663     if (IS_ERR(vma)) {
664         ret = PTR_ERR(vma);
665         goto err;
666     }
667 
668     vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
669     if (IS_ERR(vaddr)) {
670         ret = PTR_ERR(vaddr);
671         goto err;
672     }
673 
674     engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
675     engine->status_page.vma = vma;
676 
677     if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
678         ret = pin_ggtt_status_page(engine, vma);
679         if (ret) {
680             goto err_unpin;
681         }
682     }
683 
684     return 0;
685 
686 err_unpin:
687     i915_gem_object_unpin_map(obj);
688 err:
689     i915_gem_object_put(obj);
690     return ret;
691 }
692 
engine_setup_common(struct intel_engine_cs * engine)693 static int engine_setup_common(struct intel_engine_cs *engine)
694 {
695     int err;
696 
697     init_llist_head(&engine->barrier_tasks);
698 
699     err = init_status_page(engine);
700     if (err) {
701         return err;
702     }
703 
704     engine->breadcrumbs = intel_breadcrumbs_create(engine);
705     if (!engine->breadcrumbs) {
706         err = -ENOMEM;
707         goto err_status;
708     }
709 
710     err = intel_engine_init_cmd_parser(engine);
711     if (err) {
712         goto err_cmd_parser;
713     }
714 
715     intel_engine_init_active(engine, ENGINE_PHYSICAL);
716     intel_engine_init_execlists(engine);
717     intel_engine_init__pm(engine);
718     intel_engine_init_retire(engine);
719 
720     /* Use the whole device by default */
721     engine->sseu = intel_sseu_from_device_info(&engine->gt->info.sseu);
722 
723     intel_engine_init_workarounds(engine);
724     intel_engine_init_whitelist(engine);
725     intel_engine_init_ctx_wa(engine);
726 
727     return 0;
728 
729 err_cmd_parser:
730     intel_breadcrumbs_free(engine->breadcrumbs);
731 err_status:
732     cleanup_status_page(engine);
733     return err;
734 }
735 
736 struct measure_breadcrumb {
737     struct i915_request rq;
738     struct intel_ring ring;
739     u32 cs[2048];
740 };
741 
measure_breadcrumb_dw(struct intel_context * ce)742 static int measure_breadcrumb_dw(struct intel_context *ce)
743 {
744     struct intel_engine_cs *engine = ce->engine;
745     struct measure_breadcrumb *frame;
746     int dw;
747 
748     GEM_BUG_ON(!engine->gt->scratch);
749 
750     frame = kzalloc(sizeof(*frame), GFP_KERNEL);
751     if (!frame) {
752         return -ENOMEM;
753     }
754 
755     frame->rq.engine = engine;
756     frame->rq.context = ce;
757     rcu_assign_pointer(frame->rq.timeline, ce->timeline);
758 
759     frame->ring.vaddr = frame->cs;
760     frame->ring.size = sizeof(frame->cs);
761     frame->ring.wrap = BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
762     frame->ring.effective_size = frame->ring.size;
763     intel_ring_update_space(&frame->ring);
764     frame->rq.ring = &frame->ring;
765 
766     mutex_lock(&ce->timeline->mutex);
767     spin_lock_irq(&engine->active.lock);
768 
769     dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
770 
771     spin_unlock_irq(&engine->active.lock);
772     mutex_unlock(&ce->timeline->mutex);
773 
774     GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
775 
776     kfree(frame);
777     return dw;
778 }
779 
intel_engine_init_active(struct intel_engine_cs * engine,unsigned int subclass)780 void intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
781 {
782     INIT_LIST_HEAD(&engine->active.requests);
783     INIT_LIST_HEAD(&engine->active.hold);
784 
785     spin_lock_init(&engine->active.lock);
786     lockdep_set_subclass(&engine->active.lock, subclass);
787 
788     /*
789      * Due to an interesting quirk in lockdep's internal debug tracking,
790      * after setting a subclass we must ensure the lock is used. Otherwise,
791      * nr_unused_locks is incremented once too often.
792      */
793 #ifdef CONFIG_DEBUG_LOCK_ALLOC
794     local_irq_disable();
795     lock_map_acquire(&engine->active.lock.dep_map);
796     lock_map_release(&engine->active.lock.dep_map);
797     local_irq_enable();
798 #endif
799 }
800 
create_pinned_context(struct intel_engine_cs * engine,unsigned int hwsp,struct lock_class_key * key,const char * name)801 static struct intel_context *create_pinned_context(struct intel_engine_cs *engine, unsigned int hwsp,
802                                                    struct lock_class_key *key, const char *name)
803 {
804     struct intel_context *ce;
805     int err;
806 
807     ce = intel_context_create(engine);
808     if (IS_ERR(ce)) {
809         return ce;
810     }
811 
812     __set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
813     ce->timeline = page_pack_bits(NULL, hwsp);
814 
815     err = intel_context_pin(ce); /* perma-pin so it is always available */
816     if (err) {
817         intel_context_put(ce);
818         return ERR_PTR(err);
819     }
820 
821     /*
822      * Give our perma-pinned kernel timelines a separate lockdep class,
823      * so that we can use them from within the normal user timelines
824      * should we need to inject GPU operations during their request
825      * construction.
826      */
827     lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
828 
829     return ce;
830 }
831 
create_kernel_context(struct intel_engine_cs * engine)832 static struct intel_context *create_kernel_context(struct intel_engine_cs *engine)
833 {
834     static struct lock_class_key kernel;
835 
836     return create_pinned_context(engine, I915_GEM_HWS_SEQNO_ADDR, &kernel, "kernel_context");
837 }
838 
839 /**
840  * intel_engines_init_common - initialize cengine state which might require hw access
841  * @engine: Engine to initialize.
842  *
843  * Initializes @engine@ structure members shared between legacy and execlists
844  * submission modes which do require hardware access.
845  *
846  * Typcally done at later stages of submission mode specific engine setup.
847  *
848  * Returns zero on success or an error code on failure.
849  */
engine_init_common(struct intel_engine_cs * engine)850 static int engine_init_common(struct intel_engine_cs *engine)
851 {
852     struct intel_context *ce;
853     int ret;
854 
855     engine->set_default_submission(engine);
856 
857     /*
858      * We may need to do things with the shrinker which
859      * require us to immediately switch back to the default
860      * context. This can cause a problem as pinning the
861      * default context also requires GTT space which may not
862      * be available. To avoid this we always pin the default
863      * context.
864      */
865     ce = create_kernel_context(engine);
866     if (IS_ERR(ce)) {
867         return PTR_ERR(ce);
868     }
869 
870     ret = measure_breadcrumb_dw(ce);
871     if (ret < 0) {
872         goto err_context;
873     }
874 
875     engine->emit_fini_breadcrumb_dw = ret;
876     engine->kernel_context = ce;
877 
878     return 0;
879 
880 err_context:
881     intel_context_put(ce);
882     return ret;
883 }
884 
intel_engines_init(struct intel_gt * gt)885 int intel_engines_init(struct intel_gt *gt)
886 {
887     int (*setup)(struct intel_engine_cs * engine);
888     struct intel_engine_cs *engine;
889     enum intel_engine_id id;
890     int err;
891 
892     if (HAS_EXECLISTS(gt->i915)) {
893         setup = intel_execlists_submission_setup;
894     } else {
895         setup = intel_ring_submission_setup;
896     }
897 
898     for_each_engine(engine, gt, id)
899     {
900         err = engine_setup_common(engine);
901         if (err) {
902             return err;
903         }
904 
905         err = setup(engine);
906         if (err) {
907             return err;
908         }
909 
910         err = engine_init_common(engine);
911         if (err) {
912             return err;
913         }
914 
915         intel_engine_add_user(engine);
916     }
917 
918     return 0;
919 }
920 
921 /**
922  * intel_engines_cleanup_common - cleans up the engine state created by
923  *                                the common initiailizers.
924  * @engine: Engine to cleanup.
925  *
926  * This cleans up everything created by the common helpers.
927  */
intel_engine_cleanup_common(struct intel_engine_cs * engine)928 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
929 {
930     GEM_BUG_ON(!list_empty(&engine->active.requests));
931     tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
932 
933     cleanup_status_page(engine);
934     intel_breadcrumbs_free(engine->breadcrumbs);
935 
936     intel_engine_fini_retire(engine);
937     intel_engine_cleanup_cmd_parser(engine);
938 
939     if (engine->default_state) {
940         fput(engine->default_state);
941     }
942 
943     if (engine->kernel_context) {
944         intel_context_unpin(engine->kernel_context);
945         intel_context_put(engine->kernel_context);
946     }
947     GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
948 
949     intel_wa_list_free(&engine->ctx_wa_list);
950     intel_wa_list_free(&engine->wa_list);
951     intel_wa_list_free(&engine->whitelist);
952 }
953 
954 /**
955  * intel_engine_resume - re-initializes the HW state of the engine
956  * @engine: Engine to resume.
957  *
958  * Returns zero on success or an error code on failure.
959  */
intel_engine_resume(struct intel_engine_cs * engine)960 int intel_engine_resume(struct intel_engine_cs *engine)
961 {
962     intel_engine_apply_workarounds(engine);
963     intel_engine_apply_whitelist(engine);
964 
965     return engine->resume(engine);
966 }
967 
intel_engine_get_active_head(const struct intel_engine_cs * engine)968 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
969 {
970     struct drm_i915_private *i915 = engine->i915;
971 
972     u64 acthd;
973 
974     if (INTEL_GEN(i915) >= 0x8) {
975         acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
976     } else if (INTEL_GEN(i915) >= 0x4) {
977         acthd = ENGINE_READ(engine, RING_ACTHD);
978     } else {
979         acthd = ENGINE_READ(engine, ACTHD);
980     }
981 
982     return acthd;
983 }
984 
intel_engine_get_last_batch_head(const struct intel_engine_cs * engine)985 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
986 {
987     u64 bbaddr;
988 
989     if (INTEL_GEN(engine->i915) >= 0x8) {
990         bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
991     } else {
992         bbaddr = ENGINE_READ(engine, RING_BBADDR);
993     }
994 
995     return bbaddr;
996 }
997 
stop_timeout(const struct intel_engine_cs * engine)998 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
999 {
1000     if (in_atomic() || irqs_disabled()) { /* inside atomic preempt-reset? */
1001         return 0;
1002     }
1003 
1004     /*
1005      * If we are doing a normal GPU reset, we can take our time and allow
1006      * the engine to quiesce. We've stopped submission to the engine, and
1007      * if we wait long enough an innocent context should complete and
1008      * leave the engine idle. So they should not be caught unaware by
1009      * the forthcoming GPU reset (which usually follows the stop_cs)!
1010      */
1011     return READ_ONCE(engine->props.stop_timeout_ms);
1012 }
1013 
intel_engine_stop_cs(struct intel_engine_cs * engine)1014 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1015 {
1016     struct intel_uncore *uncore = engine->uncore;
1017     const u32 base = engine->mmio_base;
1018     const i915_reg_t mode = RING_MI_MODE(base);
1019     int err;
1020 
1021     if (INTEL_GEN(engine->i915) < 0x3) {
1022         return -ENODEV;
1023     }
1024 
1025     ENGINE_TRACE(engine, "\n");
1026 
1027     intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1028 
1029     err = 0;
1030     if (__intel_wait_for_register_fw(uncore, mode, MODE_IDLE, MODE_IDLE, 0x3e8, stop_timeout(engine), NULL)) {
1031         ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
1032         err = -ETIMEDOUT;
1033     }
1034 
1035     /* A final mmio read to let GPU writes be hopefully flushed to memory */
1036     intel_uncore_posting_read_fw(uncore, mode);
1037 
1038     return err;
1039 }
1040 
intel_engine_cancel_stop_cs(struct intel_engine_cs * engine)1041 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1042 {
1043     ENGINE_TRACE(engine, "\n");
1044 
1045     ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1046 }
1047 
i915_cache_level_str(struct drm_i915_private * i915,int type)1048 const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
1049 {
1050     switch (type) {
1051         case I915_CACHE_NONE:
1052             return " uncached";
1053         case I915_CACHE_LLC:
1054             return HAS_LLC(i915) ? " LLC" : " snooped";
1055         case I915_CACHE_L3_LLC:
1056             return " L3+LLC";
1057         case I915_CACHE_WT:
1058             return " WT";
1059         default:
1060             return "";
1061     }
1062 }
1063 
read_subslice_reg(const struct intel_engine_cs * engine,int slice,int subslice,i915_reg_t reg)1064 static u32 read_subslice_reg(const struct intel_engine_cs *engine, int slice, int subslice, i915_reg_t reg)
1065 {
1066     struct drm_i915_private *i915 = engine->i915;
1067     struct intel_uncore *uncore = engine->uncore;
1068     u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
1069     enum forcewake_domains fw_domains;
1070 
1071     if (INTEL_GEN(i915) >= 0xb) {
1072         mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1073         mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1074     } else {
1075         mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1076         mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1077     }
1078 
1079     fw_domains = intel_uncore_forcewake_for_reg(uncore, reg, FW_REG_READ);
1080     fw_domains |= intel_uncore_forcewake_for_reg(uncore, GEN8_MCR_SELECTOR, FW_REG_READ | FW_REG_WRITE);
1081 
1082     spin_lock_irq(&uncore->lock);
1083     intel_uncore_forcewake_get__locked(uncore, fw_domains);
1084 
1085     old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
1086 
1087     mcr &= ~mcr_mask;
1088     mcr |= mcr_ss;
1089     intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1090 
1091     val = intel_uncore_read_fw(uncore, reg);
1092 
1093     mcr &= ~mcr_mask;
1094     mcr |= old_mcr & mcr_mask;
1095 
1096     intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1097 
1098     intel_uncore_forcewake_put__locked(uncore, fw_domains);
1099     spin_unlock_irq(&uncore->lock);
1100 
1101     return val;
1102 }
1103 
1104 /* NB: please notice the memset */
intel_engine_get_instdone(const struct intel_engine_cs * engine,struct intel_instdone * instdone)1105 void intel_engine_get_instdone(const struct intel_engine_cs *engine, struct intel_instdone *instdone)
1106 {
1107     struct drm_i915_private *i915 = engine->i915;
1108     const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1109     struct intel_uncore *uncore = engine->uncore;
1110     u32 mmio_base = engine->mmio_base;
1111     int slice;
1112     int subslice;
1113 
1114     memset(instdone, 0, sizeof(*instdone));
1115 
1116     switch (INTEL_GEN(i915)) {
1117         case 0x7:
1118             instdone->instdone = intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1119 
1120             if (engine->id != RCS0) {
1121                 break;
1122             }
1123 
1124             instdone->slice_common = intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1125             instdone->sampler[0][0] = intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1126             instdone->row[0][0] = intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1127 
1128             break;
1129         case 0x6:
1130         case 0x5:
1131         case 0x4:
1132             instdone->instdone = intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1133             if (engine->id == RCS0) {
1134                 /* HACK: Using the wrong struct member */
1135                 instdone->slice_common = intel_uncore_read(uncore, GEN4_INSTDONE1);
1136             }
1137             break;
1138         case 0x3:
1139         case 0x2:
1140             instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1141             break;
1142         default:
1143             instdone->instdone = intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1144 
1145             if (engine->id != RCS0) {
1146                 break;
1147             }
1148 
1149             instdone->slice_common = intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1150             if (INTEL_GEN(i915) >= 0xc) {
1151                 instdone->slice_common_extra[0] = intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1152                 instdone->slice_common_extra[1] = intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1153             }
1154             for_each_instdone_slice_subslice(i915, sseu, slice, subslice)
1155             {
1156                 instdone->sampler[slice][subslice] = read_subslice_reg(engine, slice, subslice, GEN7_SAMPLER_INSTDONE);
1157                 instdone->row[slice][subslice] = read_subslice_reg(engine, slice, subslice, GEN7_ROW_INSTDONE);
1158             }
1159             break;
1160     }
1161 }
1162 
ring_is_idle(struct intel_engine_cs * engine)1163 static bool ring_is_idle(struct intel_engine_cs *engine)
1164 {
1165     bool idle = true;
1166 
1167     if (I915_SELFTEST_ONLY(!engine->mmio_base)) {
1168         return true;
1169     }
1170 
1171     if (!intel_engine_pm_get_if_awake(engine)) {
1172         return true;
1173     }
1174 
1175     /* First check that no commands are left in the ring */
1176     if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) != (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR)) {
1177         idle = false;
1178     }
1179 
1180     /* No bit for gen2, so assume the CS parser is idle */
1181     if (INTEL_GEN(engine->i915) > 0x2 && !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE)) {
1182         idle = false;
1183     }
1184 
1185     intel_engine_pm_put(engine);
1186 
1187     return idle;
1188 }
1189 
intel_engine_flush_submission(struct intel_engine_cs * engine)1190 void intel_engine_flush_submission(struct intel_engine_cs *engine)
1191 {
1192     struct tasklet_struct *t = &engine->execlists.tasklet;
1193 
1194     if (!t->func) {
1195         return;
1196     }
1197 
1198     /* Synchronise and wait for the tasklet on another CPU */
1199     tasklet_kill(t);
1200 
1201     /* Having cancelled the tasklet, ensure that is run */
1202     local_bh_disable();
1203     if (tasklet_trylock(t)) {
1204         /* Must wait for any GPU reset in progress. */
1205         if (__tasklet_is_enabled(t)) {
1206             t->func(t->data);
1207         }
1208         tasklet_unlock(t);
1209     }
1210     local_bh_enable();
1211 }
1212 
1213 /**
1214  * intel_engine_is_idle() - Report if the engine has finished process all work
1215  * @engine: the intel_engine_cs
1216  *
1217  * Return true if there are no requests pending, nothing left to be submitted
1218  * to hardware, and that the engine is idle.
1219  */
intel_engine_is_idle(struct intel_engine_cs * engine)1220 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1221 {
1222     /* More white lies, if wedged, hw state is inconsistent */
1223     if (intel_gt_is_wedged(engine->gt)) {
1224         return true;
1225     }
1226 
1227     if (!intel_engine_pm_is_awake(engine)) {
1228         return true;
1229     }
1230 
1231     /* Waiting to drain ELSP? */
1232     if (execlists_active(&engine->execlists)) {
1233         synchronize_hardirq(engine->i915->drm.pdev->irq);
1234 
1235         intel_engine_flush_submission(engine);
1236 
1237         if (execlists_active(&engine->execlists)) {
1238             return false;
1239         }
1240     }
1241 
1242     /* ELSP is empty, but there are ready requests? E.g. after reset */
1243     if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root)) {
1244         return false;
1245     }
1246 
1247     /* Ring stopped? */
1248     return ring_is_idle(engine);
1249 }
1250 
intel_engines_are_idle(struct intel_gt * gt)1251 bool intel_engines_are_idle(struct intel_gt *gt)
1252 {
1253     struct intel_engine_cs *engine;
1254     enum intel_engine_id id;
1255 
1256     /*
1257      * If the driver is wedged, HW state may be very inconsistent and
1258      * report that it is still busy, even though we have stopped using it.
1259      */
1260     if (intel_gt_is_wedged(gt)) {
1261         return true;
1262     }
1263 
1264     /* Already parked (and passed an idleness test); must still be idle */
1265     if (!READ_ONCE(gt->awake)) {
1266         return true;
1267     }
1268 
1269     for_each_engine(engine, gt, id)
1270     {
1271         if (!intel_engine_is_idle(engine)) {
1272             return false;
1273         }
1274     }
1275 
1276     return true;
1277 }
1278 
intel_engines_reset_default_submission(struct intel_gt * gt)1279 void intel_engines_reset_default_submission(struct intel_gt *gt)
1280 {
1281     struct intel_engine_cs *engine;
1282     enum intel_engine_id id;
1283 
1284     for_each_engine(engine, gt, id) engine->set_default_submission(engine);
1285 }
1286 
intel_engine_can_store_dword(struct intel_engine_cs * engine)1287 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1288 {
1289     switch (INTEL_GEN(engine->i915)) {
1290         case 0x2:
1291             return false; /* uses physical not virtual addresses */
1292         case 0x3:
1293             /* maybe only uses physical not virtual addresses */
1294             return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1295         case 0x4:
1296             return !IS_I965G(engine->i915); /* who knows! */
1297         case 0x6:
1298             return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1299         default:
1300             return true;
1301     }
1302 }
1303 
print_sched_attr(const struct i915_sched_attr * attr,char * buf,int x,int len)1304 static int print_sched_attr(const struct i915_sched_attr *attr, char *buf, int x, int len)
1305 {
1306     if (attr->priority == I915_PRIORITY_INVALID) {
1307         return x;
1308     }
1309 
1310     x += snprintf(buf + x, len - x, " prio=%d", attr->priority);
1311 
1312     return x;
1313 }
1314 
print_request(struct drm_printer * m,struct i915_request * rq,const char * prefix)1315 static void print_request(struct drm_printer *m, struct i915_request *rq, const char *prefix)
1316 {
1317     const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1318     char buf[0x50] = "";
1319     int x = 0;
1320 
1321     x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
1322 
1323     drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n", prefix, rq->fence.context, rq->fence.seqno,
1324                i915_request_completed(rq) ? "!"
1325                : i915_request_started(rq) ? "*"
1326                                           : "",
1327                test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)        ? "+"
1328                : test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags) ? "-"
1329                                                                               : "",
1330                buf, jiffies_to_msecs(jiffies - rq->emitted_jiffies), name);
1331 }
1332 
get_timeline(struct i915_request * rq)1333 static struct intel_timeline *get_timeline(struct i915_request *rq)
1334 {
1335     struct intel_timeline *tl;
1336 
1337     /*
1338      * Even though we are holding the engine->active.lock here, there
1339      * is no control over the submission queue per-se and we are
1340      * inspecting the active state at a random point in time, with an
1341      * unknown queue. Play safe and make sure the timeline remains valid.
1342      * (Only being used for pretty printing, one extra kref shouldn't
1343      * cause a camel stampede!)
1344      */
1345     rcu_read_lock();
1346     tl = rcu_dereference(rq->timeline);
1347     if (!kref_get_unless_zero(&tl->kref)) {
1348         tl = NULL;
1349     }
1350     rcu_read_unlock();
1351 
1352     return tl;
1353 }
1354 
print_ring(char * buf,int sz,struct i915_request * rq)1355 static int print_ring(char *buf, int sz, struct i915_request *rq)
1356 {
1357     int len = 0;
1358 
1359     if (!i915_request_signaled(rq)) {
1360         struct intel_timeline *tl = get_timeline(rq);
1361 
1362         len = scnprintf(buf, sz, "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1363                         i915_ggtt_offset(rq->ring->vma), tl ? tl->hwsp_offset : 0, hwsp_seqno(rq),
1364                         DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context), 0x3e8 * 0x3e8));
1365 
1366         if (tl) {
1367             intel_timeline_put(tl);
1368         }
1369     }
1370 
1371     return len;
1372 }
1373 
hexdump(struct drm_printer * m,const void * buf,size_t len)1374 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1375 {
1376     const size_t rowsize = 0x8 * sizeof(u32);
1377     const void *prev = NULL;
1378     bool skip = false;
1379     size_t pos;
1380 
1381     for (pos = 0; pos < len; pos += rowsize) {
1382         char line[0x80];
1383 
1384         if (prev && !memcmp(prev, buf + pos, rowsize)) {
1385             if (!skip) {
1386                 drm_printf(m, "*\n");
1387                 skip = true;
1388             }
1389             continue;
1390         }
1391 
1392         WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos, rowsize, sizeof(u32), line, sizeof(line), false) >=
1393                      sizeof(line));
1394         drm_printf(m, "[%04zx] %s\n", pos, line);
1395 
1396         prev = buf + pos;
1397         skip = false;
1398     }
1399 }
1400 
repr_timer(const struct timer_list * t)1401 static const char *repr_timer(const struct timer_list *t)
1402 {
1403     if (!READ_ONCE(t->expires)) {
1404         return "inactive";
1405     }
1406 
1407     if (timer_pending(t)) {
1408         return "active";
1409     }
1410 
1411     return "expired";
1412 }
1413 
intel_engine_print_registers(struct intel_engine_cs * engine,struct drm_printer * m)1414 static void intel_engine_print_registers(struct intel_engine_cs *engine, struct drm_printer *m)
1415 {
1416     struct drm_i915_private *dev_priv = engine->i915;
1417     struct intel_engine_execlists *const execlists = &engine->execlists;
1418     u64 addr;
1419 
1420     if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 0x4, 0x7)) {
1421         drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1422     }
1423     if (HAS_EXECLISTS(dev_priv)) {
1424         drm_printf(m, "\tEL_STAT_HI: 0x%08x\n", ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
1425         drm_printf(m, "\tEL_STAT_LO: 0x%08x\n", ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
1426     }
1427     drm_printf(m, "\tRING_START: 0x%08x\n", ENGINE_READ(engine, RING_START));
1428     drm_printf(m, "\tRING_HEAD:  0x%08x\n", ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1429     drm_printf(m, "\tRING_TAIL:  0x%08x\n", ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1430     drm_printf(m, "\tRING_CTL:   0x%08x%s\n", ENGINE_READ(engine, RING_CTL),
1431                ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1432     if (INTEL_GEN(engine->i915) > 0x2) {
1433         drm_printf(m, "\tRING_MODE:  0x%08x%s\n", ENGINE_READ(engine, RING_MI_MODE),
1434                    ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1435     }
1436 
1437     if (INTEL_GEN(dev_priv) >= 0x6) {
1438         drm_printf(m, "\tRING_IMR:   0x%08x\n", ENGINE_READ(engine, RING_IMR));
1439         drm_printf(m, "\tRING_ESR:   0x%08x\n", ENGINE_READ(engine, RING_ESR));
1440         drm_printf(m, "\tRING_EMR:   0x%08x\n", ENGINE_READ(engine, RING_EMR));
1441         drm_printf(m, "\tRING_EIR:   0x%08x\n", ENGINE_READ(engine, RING_EIR));
1442     }
1443 
1444     addr = intel_engine_get_active_head(engine);
1445     drm_printf(m, "\tACTHD:  0x%08x_%08x\n", upper_32_bits(addr), lower_32_bits(addr));
1446     addr = intel_engine_get_last_batch_head(engine);
1447     drm_printf(m, "\tBBADDR: 0x%08x_%08x\n", upper_32_bits(addr), lower_32_bits(addr));
1448     if (INTEL_GEN(dev_priv) >= 0x8) {
1449         addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1450     } else if (INTEL_GEN(dev_priv) >= 0x4) {
1451         addr = ENGINE_READ(engine, RING_DMA_FADD);
1452     } else {
1453         addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1454     }
1455     drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n", upper_32_bits(addr), lower_32_bits(addr));
1456     if (INTEL_GEN(dev_priv) >= 0x4) {
1457         drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, RING_IPEIR));
1458         drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, RING_IPEHR));
1459     } else {
1460         drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1461         drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1462     }
1463 
1464     if (HAS_EXECLISTS(dev_priv)) {
1465         struct i915_request *const *port, *rq;
1466         const u32 *hws = &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1467         const u8 num_entries = execlists->csb_size;
1468         unsigned int idx;
1469         u8 read, write;
1470 
1471         drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1472                    yesno(test_bit(TASKLET_STATE_SCHED, &engine->execlists.tasklet.state)),
1473                    enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1474                    repr_timer(&engine->execlists.preempt), repr_timer(&engine->execlists.timer));
1475 
1476         read = execlists->csb_head;
1477         write = READ_ONCE(*execlists->csb_write);
1478 
1479         drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1480                    ENGINE_READ(engine, RING_EXECLIST_STATUS_LO), ENGINE_READ(engine, RING_EXECLIST_STATUS_HI), read,
1481                    write, num_entries);
1482 
1483         if (read >= num_entries) {
1484             read = 0;
1485         }
1486         if (write >= num_entries) {
1487             write = 0;
1488         }
1489         if (read > write) {
1490             write += num_entries;
1491         }
1492         while (read < write) {
1493             idx = ++read % num_entries;
1494             drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n", idx, hws[idx * 0x2], hws[idx * 0x2 + 1]);
1495         }
1496 
1497         execlists_active_lock_bh(execlists);
1498         rcu_read_lock();
1499         for (port = execlists->active; (rq = *port); port++) {
1500             char hdr[0xa0];
1501             int len;
1502 
1503             len = scnprintf(hdr, sizeof(hdr), "\t\tActive[%d]:  ccid:%08x%s%s, ", (int)(port - execlists->active),
1504                             rq->context->lrc.ccid, intel_context_is_closed(rq->context) ? "!" : "",
1505                             intel_context_is_banned(rq->context) ? "*" : "");
1506             len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1507             scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1508             print_request(m, rq, hdr);
1509         }
1510         for (port = execlists->pending; (rq = *port); port++) {
1511             char hdr[0xa0];
1512             int len;
1513 
1514             len = scnprintf(hdr, sizeof(hdr), "\t\tPending[%d]: ccid:%08x%s%s, ", (int)(port - execlists->pending),
1515                             rq->context->lrc.ccid, intel_context_is_closed(rq->context) ? "!" : "",
1516                             intel_context_is_banned(rq->context) ? "*" : "");
1517             len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1518             scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1519             print_request(m, rq, hdr);
1520         }
1521         rcu_read_unlock();
1522         execlists_active_unlock_bh(execlists);
1523     } else if (INTEL_GEN(dev_priv) > 0x6) {
1524         drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n", ENGINE_READ(engine, RING_PP_DIR_BASE));
1525         drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n", ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1526         drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n", ENGINE_READ(engine, RING_PP_DIR_DCLV));
1527     }
1528 }
1529 
print_request_ring(struct drm_printer * m,struct i915_request * rq)1530 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
1531 {
1532     void *ring;
1533     int size;
1534 
1535     drm_printf(m, "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n", rq->head, rq->postfix, rq->tail,
1536                rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
1537                rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
1538 
1539     size = rq->tail - rq->head;
1540     if (rq->tail < rq->head) {
1541         size += rq->ring->size;
1542     }
1543 
1544     ring = kmalloc(size, GFP_ATOMIC);
1545     if (ring) {
1546         const void *vaddr = rq->ring->vaddr;
1547         unsigned int head = rq->head;
1548         unsigned int len = 0;
1549 
1550         if (rq->tail < head) {
1551             len = rq->ring->size - head;
1552             memcpy(ring, vaddr + head, len);
1553             head = 0;
1554         }
1555         memcpy(ring + len, vaddr + head, size - len);
1556 
1557         hexdump(m, ring, size);
1558         kfree(ring);
1559     }
1560 }
1561 
list_count(struct list_head * list)1562 static unsigned long list_count(struct list_head *list)
1563 {
1564     struct list_head *pos;
1565     unsigned long count = 0;
1566 
1567     list_for_each(pos, list) count++;
1568 
1569     return count;
1570 }
1571 
intel_engine_dump(struct intel_engine_cs * engine,struct drm_printer * m,const char * header,...)1572 void intel_engine_dump(struct intel_engine_cs *engine, struct drm_printer *m, const char *header, ...)
1573 {
1574     struct i915_gpu_error *const error = &engine->i915->gpu_error;
1575     struct i915_request *rq;
1576     intel_wakeref_t wakeref;
1577     unsigned long flags;
1578     ktime_t dummy;
1579 
1580     if (header) {
1581         va_list ap;
1582 
1583         va_start(ap, header);
1584         drm_vprintf(m, header, &ap);
1585         va_end(ap);
1586     }
1587 
1588     if (intel_gt_is_wedged(engine->gt)) {
1589         drm_printf(m, "*** WEDGED ***\n");
1590     }
1591 
1592     drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1593     drm_printf(m, "\tBarriers?: %s\n", yesno(!llist_empty(&engine->barrier_tasks)));
1594     drm_printf(m, "\tLatency: %luus\n", ewma__engine_latency_read(&engine->latency));
1595     if (intel_engine_supports_stats(engine)) {
1596         drm_printf(m, "\tRuntime: %llums\n", ktime_to_ms(intel_engine_get_busy_time(engine, &dummy)));
1597     }
1598     drm_printf(m, "\tForcewake: %x domains, %d active\n", engine->fw_domain, atomic_read(&engine->fw_active));
1599 
1600     rcu_read_lock();
1601     rq = READ_ONCE(engine->heartbeat.systole);
1602     if (rq) {
1603         drm_printf(m, "\tHeartbeat: %d ms ago\n", jiffies_to_msecs(jiffies - rq->emitted_jiffies));
1604     }
1605     rcu_read_unlock();
1606     drm_printf(m, "\tReset count: %d (global %d)\n", i915_reset_engine_count(error, engine), i915_reset_count(error));
1607 
1608     drm_printf(m, "\tRequests:\n");
1609 
1610     spin_lock_irqsave(&engine->active.lock, flags);
1611     rq = intel_engine_find_active_request(engine);
1612     if (rq) {
1613         struct intel_timeline *tl = get_timeline(rq);
1614 
1615         print_request(m, rq, "\t\tactive ");
1616 
1617         drm_printf(m, "\t\tring->start:  0x%08x\n", i915_ggtt_offset(rq->ring->vma));
1618         drm_printf(m, "\t\tring->head:   0x%08x\n", rq->ring->head);
1619         drm_printf(m, "\t\tring->tail:   0x%08x\n", rq->ring->tail);
1620         drm_printf(m, "\t\tring->emit:   0x%08x\n", rq->ring->emit);
1621         drm_printf(m, "\t\tring->space:  0x%08x\n", rq->ring->space);
1622 
1623         if (tl) {
1624             drm_printf(m, "\t\tring->hwsp:   0x%08x\n", tl->hwsp_offset);
1625             intel_timeline_put(tl);
1626         }
1627 
1628         print_request_ring(m, rq);
1629 
1630         if (rq->context->lrc_reg_state) {
1631             drm_printf(m, "Logical Ring Context:\n");
1632             hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1633         }
1634     }
1635     drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1636     spin_unlock_irqrestore(&engine->active.lock, flags);
1637 
1638     drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1639     wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1640     if (wakeref) {
1641         intel_engine_print_registers(engine, m);
1642         intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1643     } else {
1644         drm_printf(m, "\tDevice is asleep; skipping register dump\n");
1645     }
1646 
1647     intel_execlists_show_requests(engine, m, print_request, 0x8);
1648 
1649     drm_printf(m, "HWSP:\n");
1650     hexdump(m, engine->status_page.addr, PAGE_SIZE);
1651 
1652     drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1653 
1654     intel_engine_print_breadcrumbs(engine, m);
1655 }
1656 
_intel_engine_get_busy_time(struct intel_engine_cs * engine,ktime_t * now)1657 static ktime_t _intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1658 {
1659     ktime_t total = engine->stats.total;
1660 
1661     /*
1662      * If the engine is executing something at the moment
1663      * add it to the total.
1664      */
1665     *now = ktime_get();
1666     if (atomic_read(&engine->stats.active)) {
1667         total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1668     }
1669 
1670     return total;
1671 }
1672 
1673 /**
1674  * intel_engine_get_busy_time() - Return current accumulated engine busyness
1675  * @engine: engine to report on
1676  * @now: monotonic timestamp of sampling
1677  *
1678  * Returns accumulated time @engine was busy since engine stats were enabled.
1679  */
intel_engine_get_busy_time(struct intel_engine_cs * engine,ktime_t * now)1680 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1681 {
1682     unsigned int seq;
1683     ktime_t total;
1684 
1685     do {
1686         seq = read_seqbegin(&engine->stats.lock);
1687         total = _intel_engine_get_busy_time(engine, now);
1688     } while (read_seqretry(&engine->stats.lock, seq));
1689 
1690     return total;
1691 }
1692 
match_ring(struct i915_request * rq)1693 static bool match_ring(struct i915_request *rq)
1694 {
1695     u32 ring = ENGINE_READ(rq->engine, RING_START);
1696 
1697     return ring == i915_ggtt_offset(rq->ring->vma);
1698 }
1699 
intel_engine_find_active_request(struct intel_engine_cs * engine)1700 struct i915_request *intel_engine_find_active_request(struct intel_engine_cs *engine)
1701 {
1702     struct i915_request *request, *active = NULL;
1703 
1704     /*
1705      * We are called by the error capture, reset and to dump engine
1706      * state at random points in time. In particular, note that neither is
1707      * crucially ordered with an interrupt. After a hang, the GPU is dead
1708      * and we assume that no more writes can happen (we waited long enough
1709      * for all writes that were in transaction to be flushed) - adding an
1710      * extra delay for a recent interrupt is pointless. Hence, we do
1711      * not need an engine->irq_seqno_barrier() before the seqno reads.
1712      * At all other times, we must assume the GPU is still running, but
1713      * we only care about the snapshot of this moment.
1714      */
1715     lockdep_assert_held(&engine->active.lock);
1716 
1717     rcu_read_lock();
1718     request = execlists_active(&engine->execlists);
1719     if (request) {
1720         struct intel_timeline *tl = request->context->timeline;
1721 
1722         list_for_each_entry_from_reverse(request, &tl->requests, link)
1723         {
1724             if (i915_request_completed(request)) {
1725                 break;
1726             }
1727 
1728             active = request;
1729         }
1730     }
1731     rcu_read_unlock();
1732     if (active) {
1733         return active;
1734     }
1735 
1736     list_for_each_entry(request, &engine->active.requests, sched.link)
1737     {
1738         if (i915_request_completed(request)) {
1739             continue;
1740         }
1741 
1742         if (!i915_request_started(request)) {
1743             continue;
1744         }
1745 
1746         /* More than one preemptible request may match! */
1747         if (!match_ring(request)) {
1748             continue;
1749         }
1750 
1751         active = request;
1752         break;
1753     }
1754 
1755     return active;
1756 }
1757 
1758 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1759 #include "mock_engine.c"
1760 #include "selftest_engine.c"
1761 #include "selftest_engine_cs.c"
1762 #endif
1763