• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/sched/deadline.h>
60 #include <linux/psi.h>
61 #include <net/sock.h>
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/cgroup.h>
65 
66 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
67 					 MAX_CFTYPE_NAME + 2)
68 /* let's not notify more than 100 times per second */
69 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
70 
71 /*
72  * cgroup_mutex is the master lock.  Any modification to cgroup or its
73  * hierarchy must be performed while holding it.
74  *
75  * css_set_lock protects task->cgroups pointer, the list of css_set
76  * objects, and the chain of tasks off each css_set.
77  *
78  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
79  * cgroup.h can use them for lockdep annotations.
80  */
81 DEFINE_MUTEX(cgroup_mutex);
82 DEFINE_SPINLOCK(css_set_lock);
83 
84 #ifdef CONFIG_PROVE_RCU
85 EXPORT_SYMBOL_GPL(cgroup_mutex);
86 EXPORT_SYMBOL_GPL(css_set_lock);
87 #endif
88 
89 DEFINE_SPINLOCK(trace_cgroup_path_lock);
90 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
91 bool cgroup_debug __read_mostly;
92 
93 /*
94  * Protects cgroup_idr and css_idr so that IDs can be released without
95  * grabbing cgroup_mutex.
96  */
97 static DEFINE_SPINLOCK(cgroup_idr_lock);
98 
99 /*
100  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
101  * against file removal/re-creation across css hiding.
102  */
103 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
104 
105 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
106 
107 #define cgroup_assert_mutex_or_rcu_locked()				\
108 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
109 			   !lockdep_is_held(&cgroup_mutex),		\
110 			   "cgroup_mutex or RCU read lock required");
111 
112 /*
113  * cgroup destruction makes heavy use of work items and there can be a lot
114  * of concurrent destructions.  Use a separate workqueue so that cgroup
115  * destruction work items don't end up filling up max_active of system_wq
116  * which may lead to deadlock.
117  */
118 static struct workqueue_struct *cgroup_destroy_wq;
119 
120 /* generate an array of cgroup subsystem pointers */
121 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
122 struct cgroup_subsys *cgroup_subsys[] = {
123 #include <linux/cgroup_subsys.h>
124 };
125 #undef SUBSYS
126 
127 /* array of cgroup subsystem names */
128 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
129 static const char *cgroup_subsys_name[] = {
130 #include <linux/cgroup_subsys.h>
131 };
132 #undef SUBSYS
133 
134 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
135 #define SUBSYS(_x)								\
136 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
137 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
138 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
139 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
140 #include <linux/cgroup_subsys.h>
141 #undef SUBSYS
142 
143 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
144 static struct static_key_true *cgroup_subsys_enabled_key[] = {
145 #include <linux/cgroup_subsys.h>
146 };
147 #undef SUBSYS
148 
149 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
150 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
151 #include <linux/cgroup_subsys.h>
152 };
153 #undef SUBSYS
154 
155 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
156 
157 /* the default hierarchy */
158 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
159 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
160 
161 /*
162  * The default hierarchy always exists but is hidden until mounted for the
163  * first time.  This is for backward compatibility.
164  */
165 static bool cgrp_dfl_visible;
166 
167 /* some controllers are not supported in the default hierarchy */
168 static u16 cgrp_dfl_inhibit_ss_mask;
169 
170 /* some controllers are implicitly enabled on the default hierarchy */
171 static u16 cgrp_dfl_implicit_ss_mask;
172 
173 /* some controllers can be threaded on the default hierarchy */
174 static u16 cgrp_dfl_threaded_ss_mask;
175 
176 /* The list of hierarchy roots */
177 LIST_HEAD(cgroup_roots);
178 static int cgroup_root_count;
179 
180 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
181 static DEFINE_IDR(cgroup_hierarchy_idr);
182 
183 /*
184  * Assign a monotonically increasing serial number to csses.  It guarantees
185  * cgroups with bigger numbers are newer than those with smaller numbers.
186  * Also, as csses are always appended to the parent's ->children list, it
187  * guarantees that sibling csses are always sorted in the ascending serial
188  * number order on the list.  Protected by cgroup_mutex.
189  */
190 static u64 css_serial_nr_next = 1;
191 
192 /*
193  * These bitmasks identify subsystems with specific features to avoid
194  * having to do iterative checks repeatedly.
195  */
196 static u16 have_fork_callback __read_mostly;
197 static u16 have_exit_callback __read_mostly;
198 static u16 have_release_callback __read_mostly;
199 static u16 have_canfork_callback __read_mostly;
200 
201 /* cgroup namespace for init task */
202 struct cgroup_namespace init_cgroup_ns = {
203 	.count		= REFCOUNT_INIT(2),
204 	.user_ns	= &init_user_ns,
205 	.ns.ops		= &cgroupns_operations,
206 	.ns.inum	= PROC_CGROUP_INIT_INO,
207 	.root_cset	= &init_css_set,
208 };
209 
210 static struct file_system_type cgroup2_fs_type;
211 static struct cftype cgroup_base_files[];
212 
213 static int cgroup_apply_control(struct cgroup *cgrp);
214 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
215 static void css_task_iter_skip(struct css_task_iter *it,
216 			       struct task_struct *task);
217 static int cgroup_destroy_locked(struct cgroup *cgrp);
218 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
219 					      struct cgroup_subsys *ss);
220 static void css_release(struct percpu_ref *ref);
221 static void kill_css(struct cgroup_subsys_state *css);
222 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
223 			      struct cgroup *cgrp, struct cftype cfts[],
224 			      bool is_add);
225 
226 /**
227  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
228  * @ssid: subsys ID of interest
229  *
230  * cgroup_subsys_enabled() can only be used with literal subsys names which
231  * is fine for individual subsystems but unsuitable for cgroup core.  This
232  * is slower static_key_enabled() based test indexed by @ssid.
233  */
cgroup_ssid_enabled(int ssid)234 bool cgroup_ssid_enabled(int ssid)
235 {
236 	if (CGROUP_SUBSYS_COUNT == 0)
237 		return false;
238 
239 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
240 }
241 
242 /**
243  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
244  * @cgrp: the cgroup of interest
245  *
246  * The default hierarchy is the v2 interface of cgroup and this function
247  * can be used to test whether a cgroup is on the default hierarchy for
248  * cases where a subsystem should behave differnetly depending on the
249  * interface version.
250  *
251  * List of changed behaviors:
252  *
253  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
254  *   and "name" are disallowed.
255  *
256  * - When mounting an existing superblock, mount options should match.
257  *
258  * - Remount is disallowed.
259  *
260  * - rename(2) is disallowed.
261  *
262  * - "tasks" is removed.  Everything should be at process granularity.  Use
263  *   "cgroup.procs" instead.
264  *
265  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
266  *   recycled inbetween reads.
267  *
268  * - "release_agent" and "notify_on_release" are removed.  Replacement
269  *   notification mechanism will be implemented.
270  *
271  * - "cgroup.clone_children" is removed.
272  *
273  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
274  *   and its descendants contain no task; otherwise, 1.  The file also
275  *   generates kernfs notification which can be monitored through poll and
276  *   [di]notify when the value of the file changes.
277  *
278  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
279  *   take masks of ancestors with non-empty cpus/mems, instead of being
280  *   moved to an ancestor.
281  *
282  * - cpuset: a task can be moved into an empty cpuset, and again it takes
283  *   masks of ancestors.
284  *
285  * - memcg: use_hierarchy is on by default and the cgroup file for the flag
286  *   is not created.
287  *
288  * - blkcg: blk-throttle becomes properly hierarchical.
289  *
290  * - debug: disallowed on the default hierarchy.
291  */
cgroup_on_dfl(const struct cgroup * cgrp)292 bool cgroup_on_dfl(const struct cgroup *cgrp)
293 {
294 	return cgrp->root == &cgrp_dfl_root;
295 }
296 
297 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)298 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
299 			    gfp_t gfp_mask)
300 {
301 	int ret;
302 
303 	idr_preload(gfp_mask);
304 	spin_lock_bh(&cgroup_idr_lock);
305 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
306 	spin_unlock_bh(&cgroup_idr_lock);
307 	idr_preload_end();
308 	return ret;
309 }
310 
cgroup_idr_replace(struct idr * idr,void * ptr,int id)311 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
312 {
313 	void *ret;
314 
315 	spin_lock_bh(&cgroup_idr_lock);
316 	ret = idr_replace(idr, ptr, id);
317 	spin_unlock_bh(&cgroup_idr_lock);
318 	return ret;
319 }
320 
cgroup_idr_remove(struct idr * idr,int id)321 static void cgroup_idr_remove(struct idr *idr, int id)
322 {
323 	spin_lock_bh(&cgroup_idr_lock);
324 	idr_remove(idr, id);
325 	spin_unlock_bh(&cgroup_idr_lock);
326 }
327 
cgroup_has_tasks(struct cgroup * cgrp)328 static bool cgroup_has_tasks(struct cgroup *cgrp)
329 {
330 	return cgrp->nr_populated_csets;
331 }
332 
cgroup_is_threaded(struct cgroup * cgrp)333 bool cgroup_is_threaded(struct cgroup *cgrp)
334 {
335 	return cgrp->dom_cgrp != cgrp;
336 }
337 
338 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)339 static bool cgroup_is_mixable(struct cgroup *cgrp)
340 {
341 	/*
342 	 * Root isn't under domain level resource control exempting it from
343 	 * the no-internal-process constraint, so it can serve as a thread
344 	 * root and a parent of resource domains at the same time.
345 	 */
346 	return !cgroup_parent(cgrp);
347 }
348 
349 /* can @cgrp become a thread root? should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)350 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
351 {
352 	/* mixables don't care */
353 	if (cgroup_is_mixable(cgrp))
354 		return true;
355 
356 	/* domain roots can't be nested under threaded */
357 	if (cgroup_is_threaded(cgrp))
358 		return false;
359 
360 	/* can only have either domain or threaded children */
361 	if (cgrp->nr_populated_domain_children)
362 		return false;
363 
364 	/* and no domain controllers can be enabled */
365 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
366 		return false;
367 
368 	return true;
369 }
370 
371 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)372 bool cgroup_is_thread_root(struct cgroup *cgrp)
373 {
374 	/* thread root should be a domain */
375 	if (cgroup_is_threaded(cgrp))
376 		return false;
377 
378 	/* a domain w/ threaded children is a thread root */
379 	if (cgrp->nr_threaded_children)
380 		return true;
381 
382 	/*
383 	 * A domain which has tasks and explicit threaded controllers
384 	 * enabled is a thread root.
385 	 */
386 	if (cgroup_has_tasks(cgrp) &&
387 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
388 		return true;
389 
390 	return false;
391 }
392 
393 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)394 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
395 {
396 	/* the cgroup itself can be a thread root */
397 	if (cgroup_is_threaded(cgrp))
398 		return false;
399 
400 	/* but the ancestors can't be unless mixable */
401 	while ((cgrp = cgroup_parent(cgrp))) {
402 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
403 			return false;
404 		if (cgroup_is_threaded(cgrp))
405 			return false;
406 	}
407 
408 	return true;
409 }
410 
411 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)412 static u16 cgroup_control(struct cgroup *cgrp)
413 {
414 	struct cgroup *parent = cgroup_parent(cgrp);
415 	u16 root_ss_mask = cgrp->root->subsys_mask;
416 
417 	if (parent) {
418 		u16 ss_mask = parent->subtree_control;
419 
420 		/* threaded cgroups can only have threaded controllers */
421 		if (cgroup_is_threaded(cgrp))
422 			ss_mask &= cgrp_dfl_threaded_ss_mask;
423 		return ss_mask;
424 	}
425 
426 	if (cgroup_on_dfl(cgrp))
427 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
428 				  cgrp_dfl_implicit_ss_mask);
429 	return root_ss_mask;
430 }
431 
432 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)433 static u16 cgroup_ss_mask(struct cgroup *cgrp)
434 {
435 	struct cgroup *parent = cgroup_parent(cgrp);
436 
437 	if (parent) {
438 		u16 ss_mask = parent->subtree_ss_mask;
439 
440 		/* threaded cgroups can only have threaded controllers */
441 		if (cgroup_is_threaded(cgrp))
442 			ss_mask &= cgrp_dfl_threaded_ss_mask;
443 		return ss_mask;
444 	}
445 
446 	return cgrp->root->subsys_mask;
447 }
448 
449 /**
450  * cgroup_css - obtain a cgroup's css for the specified subsystem
451  * @cgrp: the cgroup of interest
452  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
453  *
454  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
455  * function must be called either under cgroup_mutex or rcu_read_lock() and
456  * the caller is responsible for pinning the returned css if it wants to
457  * keep accessing it outside the said locks.  This function may return
458  * %NULL if @cgrp doesn't have @subsys_id enabled.
459  */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)460 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
461 					      struct cgroup_subsys *ss)
462 {
463 	if (ss)
464 		return rcu_dereference_check(cgrp->subsys[ss->id],
465 					lockdep_is_held(&cgroup_mutex));
466 	else
467 		return &cgrp->self;
468 }
469 
470 /**
471  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
472  * @cgrp: the cgroup of interest
473  * @ss: the subsystem of interest
474  *
475  * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
476  * or is offline, %NULL is returned.
477  */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)478 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
479 						     struct cgroup_subsys *ss)
480 {
481 	struct cgroup_subsys_state *css;
482 
483 	rcu_read_lock();
484 	css = cgroup_css(cgrp, ss);
485 	if (css && !css_tryget_online(css))
486 		css = NULL;
487 	rcu_read_unlock();
488 
489 	return css;
490 }
491 
492 /**
493  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
494  * @cgrp: the cgroup of interest
495  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
496  *
497  * Similar to cgroup_css() but returns the effective css, which is defined
498  * as the matching css of the nearest ancestor including self which has @ss
499  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
500  * function is guaranteed to return non-NULL css.
501  */
cgroup_e_css_by_mask(struct cgroup * cgrp,struct cgroup_subsys * ss)502 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
503 							struct cgroup_subsys *ss)
504 {
505 	lockdep_assert_held(&cgroup_mutex);
506 
507 	if (!ss)
508 		return &cgrp->self;
509 
510 	/*
511 	 * This function is used while updating css associations and thus
512 	 * can't test the csses directly.  Test ss_mask.
513 	 */
514 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
515 		cgrp = cgroup_parent(cgrp);
516 		if (!cgrp)
517 			return NULL;
518 	}
519 
520 	return cgroup_css(cgrp, ss);
521 }
522 
523 /**
524  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
525  * @cgrp: the cgroup of interest
526  * @ss: the subsystem of interest
527  *
528  * Find and get the effective css of @cgrp for @ss.  The effective css is
529  * defined as the matching css of the nearest ancestor including self which
530  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
531  * the root css is returned, so this function always returns a valid css.
532  *
533  * The returned css is not guaranteed to be online, and therefore it is the
534  * callers responsiblity to tryget a reference for it.
535  */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)536 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
537 					 struct cgroup_subsys *ss)
538 {
539 	struct cgroup_subsys_state *css;
540 
541 	do {
542 		css = cgroup_css(cgrp, ss);
543 
544 		if (css)
545 			return css;
546 		cgrp = cgroup_parent(cgrp);
547 	} while (cgrp);
548 
549 	return init_css_set.subsys[ss->id];
550 }
551 
552 /**
553  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
554  * @cgrp: the cgroup of interest
555  * @ss: the subsystem of interest
556  *
557  * Find and get the effective css of @cgrp for @ss.  The effective css is
558  * defined as the matching css of the nearest ancestor including self which
559  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
560  * the root css is returned, so this function always returns a valid css.
561  * The returned css must be put using css_put().
562  */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)563 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
564 					     struct cgroup_subsys *ss)
565 {
566 	struct cgroup_subsys_state *css;
567 
568 	rcu_read_lock();
569 
570 	do {
571 		css = cgroup_css(cgrp, ss);
572 
573 		if (css && css_tryget_online(css))
574 			goto out_unlock;
575 		cgrp = cgroup_parent(cgrp);
576 	} while (cgrp);
577 
578 	css = init_css_set.subsys[ss->id];
579 	css_get(css);
580 out_unlock:
581 	rcu_read_unlock();
582 	return css;
583 }
584 
cgroup_get_live(struct cgroup * cgrp)585 static void cgroup_get_live(struct cgroup *cgrp)
586 {
587 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
588 	css_get(&cgrp->self);
589 }
590 
591 /**
592  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
593  * is responsible for taking the css_set_lock.
594  * @cgrp: the cgroup in question
595  */
__cgroup_task_count(const struct cgroup * cgrp)596 int __cgroup_task_count(const struct cgroup *cgrp)
597 {
598 	int count = 0;
599 	struct cgrp_cset_link *link;
600 
601 	lockdep_assert_held(&css_set_lock);
602 
603 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
604 		count += link->cset->nr_tasks;
605 
606 	return count;
607 }
608 
609 /**
610  * cgroup_task_count - count the number of tasks in a cgroup.
611  * @cgrp: the cgroup in question
612  */
cgroup_task_count(const struct cgroup * cgrp)613 int cgroup_task_count(const struct cgroup *cgrp)
614 {
615 	int count;
616 
617 	spin_lock_irq(&css_set_lock);
618 	count = __cgroup_task_count(cgrp);
619 	spin_unlock_irq(&css_set_lock);
620 
621 	return count;
622 }
623 
of_css(struct kernfs_open_file * of)624 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
625 {
626 	struct cgroup *cgrp = of->kn->parent->priv;
627 	struct cftype *cft = of_cft(of);
628 
629 	/*
630 	 * This is open and unprotected implementation of cgroup_css().
631 	 * seq_css() is only called from a kernfs file operation which has
632 	 * an active reference on the file.  Because all the subsystem
633 	 * files are drained before a css is disassociated with a cgroup,
634 	 * the matching css from the cgroup's subsys table is guaranteed to
635 	 * be and stay valid until the enclosing operation is complete.
636 	 */
637 	if (cft->ss)
638 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
639 	else
640 		return &cgrp->self;
641 }
642 EXPORT_SYMBOL_GPL(of_css);
643 
644 /**
645  * for_each_css - iterate all css's of a cgroup
646  * @css: the iteration cursor
647  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
648  * @cgrp: the target cgroup to iterate css's of
649  *
650  * Should be called under cgroup_[tree_]mutex.
651  */
652 #define for_each_css(css, ssid, cgrp)					\
653 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
654 		if (!((css) = rcu_dereference_check(			\
655 				(cgrp)->subsys[(ssid)],			\
656 				lockdep_is_held(&cgroup_mutex)))) { }	\
657 		else
658 
659 /**
660  * for_each_e_css - iterate all effective css's of a cgroup
661  * @css: the iteration cursor
662  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
663  * @cgrp: the target cgroup to iterate css's of
664  *
665  * Should be called under cgroup_[tree_]mutex.
666  */
667 #define for_each_e_css(css, ssid, cgrp)					    \
668 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
669 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
670 						   cgroup_subsys[(ssid)]))) \
671 			;						    \
672 		else
673 
674 /**
675  * do_each_subsys_mask - filter for_each_subsys with a bitmask
676  * @ss: the iteration cursor
677  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
678  * @ss_mask: the bitmask
679  *
680  * The block will only run for cases where the ssid-th bit (1 << ssid) of
681  * @ss_mask is set.
682  */
683 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
684 	unsigned long __ss_mask = (ss_mask);				\
685 	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
686 		(ssid) = 0;						\
687 		break;							\
688 	}								\
689 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
690 		(ss) = cgroup_subsys[ssid];				\
691 		{
692 
693 #define while_each_subsys_mask()					\
694 		}							\
695 	}								\
696 } while (false)
697 
698 /* iterate over child cgrps, lock should be held throughout iteration */
699 #define cgroup_for_each_live_child(child, cgrp)				\
700 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
701 		if (({ lockdep_assert_held(&cgroup_mutex);		\
702 		       cgroup_is_dead(child); }))			\
703 			;						\
704 		else
705 
706 /* walk live descendants in preorder */
707 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
708 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
709 		if (({ lockdep_assert_held(&cgroup_mutex);		\
710 		       (dsct) = (d_css)->cgroup;			\
711 		       cgroup_is_dead(dsct); }))			\
712 			;						\
713 		else
714 
715 /* walk live descendants in postorder */
716 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
717 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
718 		if (({ lockdep_assert_held(&cgroup_mutex);		\
719 		       (dsct) = (d_css)->cgroup;			\
720 		       cgroup_is_dead(dsct); }))			\
721 			;						\
722 		else
723 
724 /*
725  * The default css_set - used by init and its children prior to any
726  * hierarchies being mounted. It contains a pointer to the root state
727  * for each subsystem. Also used to anchor the list of css_sets. Not
728  * reference-counted, to improve performance when child cgroups
729  * haven't been created.
730  */
731 struct css_set init_css_set = {
732 	.refcount		= REFCOUNT_INIT(1),
733 	.dom_cset		= &init_css_set,
734 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
735 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
736 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
737 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
738 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
739 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
740 	.mg_src_preload_node	= LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
741 	.mg_dst_preload_node	= LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
742 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
743 
744 	/*
745 	 * The following field is re-initialized when this cset gets linked
746 	 * in cgroup_init().  However, let's initialize the field
747 	 * statically too so that the default cgroup can be accessed safely
748 	 * early during boot.
749 	 */
750 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
751 };
752 
753 static int css_set_count	= 1;	/* 1 for init_css_set */
754 
css_set_threaded(struct css_set * cset)755 static bool css_set_threaded(struct css_set *cset)
756 {
757 	return cset->dom_cset != cset;
758 }
759 
760 /**
761  * css_set_populated - does a css_set contain any tasks?
762  * @cset: target css_set
763  *
764  * css_set_populated() should be the same as !!cset->nr_tasks at steady
765  * state. However, css_set_populated() can be called while a task is being
766  * added to or removed from the linked list before the nr_tasks is
767  * properly updated. Hence, we can't just look at ->nr_tasks here.
768  */
css_set_populated(struct css_set * cset)769 static bool css_set_populated(struct css_set *cset)
770 {
771 	lockdep_assert_held(&css_set_lock);
772 
773 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
774 }
775 
776 /**
777  * cgroup_update_populated - update the populated count of a cgroup
778  * @cgrp: the target cgroup
779  * @populated: inc or dec populated count
780  *
781  * One of the css_sets associated with @cgrp is either getting its first
782  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
783  * count is propagated towards root so that a given cgroup's
784  * nr_populated_children is zero iff none of its descendants contain any
785  * tasks.
786  *
787  * @cgrp's interface file "cgroup.populated" is zero if both
788  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
789  * 1 otherwise.  When the sum changes from or to zero, userland is notified
790  * that the content of the interface file has changed.  This can be used to
791  * detect when @cgrp and its descendants become populated or empty.
792  */
cgroup_update_populated(struct cgroup * cgrp,bool populated)793 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
794 {
795 	struct cgroup *child = NULL;
796 	int adj = populated ? 1 : -1;
797 
798 	lockdep_assert_held(&css_set_lock);
799 
800 	do {
801 		bool was_populated = cgroup_is_populated(cgrp);
802 
803 		if (!child) {
804 			cgrp->nr_populated_csets += adj;
805 		} else {
806 			if (cgroup_is_threaded(child))
807 				cgrp->nr_populated_threaded_children += adj;
808 			else
809 				cgrp->nr_populated_domain_children += adj;
810 		}
811 
812 		if (was_populated == cgroup_is_populated(cgrp))
813 			break;
814 
815 		cgroup1_check_for_release(cgrp);
816 		TRACE_CGROUP_PATH(notify_populated, cgrp,
817 				  cgroup_is_populated(cgrp));
818 		cgroup_file_notify(&cgrp->events_file);
819 
820 		child = cgrp;
821 		cgrp = cgroup_parent(cgrp);
822 	} while (cgrp);
823 }
824 
825 /**
826  * css_set_update_populated - update populated state of a css_set
827  * @cset: target css_set
828  * @populated: whether @cset is populated or depopulated
829  *
830  * @cset is either getting the first task or losing the last.  Update the
831  * populated counters of all associated cgroups accordingly.
832  */
css_set_update_populated(struct css_set * cset,bool populated)833 static void css_set_update_populated(struct css_set *cset, bool populated)
834 {
835 	struct cgrp_cset_link *link;
836 
837 	lockdep_assert_held(&css_set_lock);
838 
839 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
840 		cgroup_update_populated(link->cgrp, populated);
841 }
842 
843 /*
844  * @task is leaving, advance task iterators which are pointing to it so
845  * that they can resume at the next position.  Advancing an iterator might
846  * remove it from the list, use safe walk.  See css_task_iter_skip() for
847  * details.
848  */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)849 static void css_set_skip_task_iters(struct css_set *cset,
850 				    struct task_struct *task)
851 {
852 	struct css_task_iter *it, *pos;
853 
854 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
855 		css_task_iter_skip(it, task);
856 }
857 
858 /**
859  * css_set_move_task - move a task from one css_set to another
860  * @task: task being moved
861  * @from_cset: css_set @task currently belongs to (may be NULL)
862  * @to_cset: new css_set @task is being moved to (may be NULL)
863  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
864  *
865  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
866  * css_set, @from_cset can be NULL.  If @task is being disassociated
867  * instead of moved, @to_cset can be NULL.
868  *
869  * This function automatically handles populated counter updates and
870  * css_task_iter adjustments but the caller is responsible for managing
871  * @from_cset and @to_cset's reference counts.
872  */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)873 static void css_set_move_task(struct task_struct *task,
874 			      struct css_set *from_cset, struct css_set *to_cset,
875 			      bool use_mg_tasks)
876 {
877 	lockdep_assert_held(&css_set_lock);
878 
879 	if (to_cset && !css_set_populated(to_cset))
880 		css_set_update_populated(to_cset, true);
881 
882 	if (from_cset) {
883 		WARN_ON_ONCE(list_empty(&task->cg_list));
884 
885 		css_set_skip_task_iters(from_cset, task);
886 		list_del_init(&task->cg_list);
887 		if (!css_set_populated(from_cset))
888 			css_set_update_populated(from_cset, false);
889 	} else {
890 		WARN_ON_ONCE(!list_empty(&task->cg_list));
891 	}
892 
893 	if (to_cset) {
894 		/*
895 		 * We are synchronized through cgroup_threadgroup_rwsem
896 		 * against PF_EXITING setting such that we can't race
897 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
898 		 */
899 		WARN_ON_ONCE(task->flags & PF_EXITING);
900 
901 		cgroup_move_task(task, to_cset);
902 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
903 							     &to_cset->tasks);
904 	}
905 }
906 
907 /*
908  * hash table for cgroup groups. This improves the performance to find
909  * an existing css_set. This hash doesn't (currently) take into
910  * account cgroups in empty hierarchies.
911  */
912 #define CSS_SET_HASH_BITS	7
913 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
914 
css_set_hash(struct cgroup_subsys_state * css[])915 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
916 {
917 	unsigned long key = 0UL;
918 	struct cgroup_subsys *ss;
919 	int i;
920 
921 	for_each_subsys(ss, i)
922 		key += (unsigned long)css[i];
923 	key = (key >> 16) ^ key;
924 
925 	return key;
926 }
927 
put_css_set_locked(struct css_set * cset)928 void put_css_set_locked(struct css_set *cset)
929 {
930 	struct cgrp_cset_link *link, *tmp_link;
931 	struct cgroup_subsys *ss;
932 	int ssid;
933 
934 	lockdep_assert_held(&css_set_lock);
935 
936 	if (!refcount_dec_and_test(&cset->refcount))
937 		return;
938 
939 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
940 
941 	/* This css_set is dead. unlink it and release cgroup and css refs */
942 	for_each_subsys(ss, ssid) {
943 		list_del(&cset->e_cset_node[ssid]);
944 		css_put(cset->subsys[ssid]);
945 	}
946 	hash_del(&cset->hlist);
947 	css_set_count--;
948 
949 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
950 		list_del(&link->cset_link);
951 		list_del(&link->cgrp_link);
952 		if (cgroup_parent(link->cgrp))
953 			cgroup_put(link->cgrp);
954 		kfree(link);
955 	}
956 
957 	if (css_set_threaded(cset)) {
958 		list_del(&cset->threaded_csets_node);
959 		put_css_set_locked(cset->dom_cset);
960 	}
961 
962 	kfree_rcu(cset, rcu_head);
963 }
964 
965 /**
966  * compare_css_sets - helper function for find_existing_css_set().
967  * @cset: candidate css_set being tested
968  * @old_cset: existing css_set for a task
969  * @new_cgrp: cgroup that's being entered by the task
970  * @template: desired set of css pointers in css_set (pre-calculated)
971  *
972  * Returns true if "cset" matches "old_cset" except for the hierarchy
973  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
974  */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])975 static bool compare_css_sets(struct css_set *cset,
976 			     struct css_set *old_cset,
977 			     struct cgroup *new_cgrp,
978 			     struct cgroup_subsys_state *template[])
979 {
980 	struct cgroup *new_dfl_cgrp;
981 	struct list_head *l1, *l2;
982 
983 	/*
984 	 * On the default hierarchy, there can be csets which are
985 	 * associated with the same set of cgroups but different csses.
986 	 * Let's first ensure that csses match.
987 	 */
988 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
989 		return false;
990 
991 
992 	/* @cset's domain should match the default cgroup's */
993 	if (cgroup_on_dfl(new_cgrp))
994 		new_dfl_cgrp = new_cgrp;
995 	else
996 		new_dfl_cgrp = old_cset->dfl_cgrp;
997 
998 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
999 		return false;
1000 
1001 	/*
1002 	 * Compare cgroup pointers in order to distinguish between
1003 	 * different cgroups in hierarchies.  As different cgroups may
1004 	 * share the same effective css, this comparison is always
1005 	 * necessary.
1006 	 */
1007 	l1 = &cset->cgrp_links;
1008 	l2 = &old_cset->cgrp_links;
1009 	while (1) {
1010 		struct cgrp_cset_link *link1, *link2;
1011 		struct cgroup *cgrp1, *cgrp2;
1012 
1013 		l1 = l1->next;
1014 		l2 = l2->next;
1015 		/* See if we reached the end - both lists are equal length. */
1016 		if (l1 == &cset->cgrp_links) {
1017 			BUG_ON(l2 != &old_cset->cgrp_links);
1018 			break;
1019 		} else {
1020 			BUG_ON(l2 == &old_cset->cgrp_links);
1021 		}
1022 		/* Locate the cgroups associated with these links. */
1023 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1024 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1025 		cgrp1 = link1->cgrp;
1026 		cgrp2 = link2->cgrp;
1027 		/* Hierarchies should be linked in the same order. */
1028 		BUG_ON(cgrp1->root != cgrp2->root);
1029 
1030 		/*
1031 		 * If this hierarchy is the hierarchy of the cgroup
1032 		 * that's changing, then we need to check that this
1033 		 * css_set points to the new cgroup; if it's any other
1034 		 * hierarchy, then this css_set should point to the
1035 		 * same cgroup as the old css_set.
1036 		 */
1037 		if (cgrp1->root == new_cgrp->root) {
1038 			if (cgrp1 != new_cgrp)
1039 				return false;
1040 		} else {
1041 			if (cgrp1 != cgrp2)
1042 				return false;
1043 		}
1044 	}
1045 	return true;
1046 }
1047 
1048 /**
1049  * find_existing_css_set - init css array and find the matching css_set
1050  * @old_cset: the css_set that we're using before the cgroup transition
1051  * @cgrp: the cgroup that we're moving into
1052  * @template: out param for the new set of csses, should be clear on entry
1053  */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state * template[])1054 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1055 					struct cgroup *cgrp,
1056 					struct cgroup_subsys_state *template[])
1057 {
1058 	struct cgroup_root *root = cgrp->root;
1059 	struct cgroup_subsys *ss;
1060 	struct css_set *cset;
1061 	unsigned long key;
1062 	int i;
1063 
1064 	/*
1065 	 * Build the set of subsystem state objects that we want to see in the
1066 	 * new css_set. while subsystems can change globally, the entries here
1067 	 * won't change, so no need for locking.
1068 	 */
1069 	for_each_subsys(ss, i) {
1070 		if (root->subsys_mask & (1UL << i)) {
1071 			/*
1072 			 * @ss is in this hierarchy, so we want the
1073 			 * effective css from @cgrp.
1074 			 */
1075 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1076 		} else {
1077 			/*
1078 			 * @ss is not in this hierarchy, so we don't want
1079 			 * to change the css.
1080 			 */
1081 			template[i] = old_cset->subsys[i];
1082 		}
1083 	}
1084 
1085 	key = css_set_hash(template);
1086 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1087 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1088 			continue;
1089 
1090 		/* This css_set matches what we need */
1091 		return cset;
1092 	}
1093 
1094 	/* No existing cgroup group matched */
1095 	return NULL;
1096 }
1097 
free_cgrp_cset_links(struct list_head * links_to_free)1098 static void free_cgrp_cset_links(struct list_head *links_to_free)
1099 {
1100 	struct cgrp_cset_link *link, *tmp_link;
1101 
1102 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1103 		list_del(&link->cset_link);
1104 		kfree(link);
1105 	}
1106 }
1107 
1108 /**
1109  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1110  * @count: the number of links to allocate
1111  * @tmp_links: list_head the allocated links are put on
1112  *
1113  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1114  * through ->cset_link.  Returns 0 on success or -errno.
1115  */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1116 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1117 {
1118 	struct cgrp_cset_link *link;
1119 	int i;
1120 
1121 	INIT_LIST_HEAD(tmp_links);
1122 
1123 	for (i = 0; i < count; i++) {
1124 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1125 		if (!link) {
1126 			free_cgrp_cset_links(tmp_links);
1127 			return -ENOMEM;
1128 		}
1129 		list_add(&link->cset_link, tmp_links);
1130 	}
1131 	return 0;
1132 }
1133 
1134 /**
1135  * link_css_set - a helper function to link a css_set to a cgroup
1136  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1137  * @cset: the css_set to be linked
1138  * @cgrp: the destination cgroup
1139  */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1140 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1141 			 struct cgroup *cgrp)
1142 {
1143 	struct cgrp_cset_link *link;
1144 
1145 	BUG_ON(list_empty(tmp_links));
1146 
1147 	if (cgroup_on_dfl(cgrp))
1148 		cset->dfl_cgrp = cgrp;
1149 
1150 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1151 	link->cset = cset;
1152 	link->cgrp = cgrp;
1153 
1154 	/*
1155 	 * Always add links to the tail of the lists so that the lists are
1156 	 * in choronological order.
1157 	 */
1158 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1159 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1160 
1161 	if (cgroup_parent(cgrp))
1162 		cgroup_get_live(cgrp);
1163 }
1164 
1165 /**
1166  * find_css_set - return a new css_set with one cgroup updated
1167  * @old_cset: the baseline css_set
1168  * @cgrp: the cgroup to be updated
1169  *
1170  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1171  * substituted into the appropriate hierarchy.
1172  */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1173 static struct css_set *find_css_set(struct css_set *old_cset,
1174 				    struct cgroup *cgrp)
1175 {
1176 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1177 	struct css_set *cset;
1178 	struct list_head tmp_links;
1179 	struct cgrp_cset_link *link;
1180 	struct cgroup_subsys *ss;
1181 	unsigned long key;
1182 	int ssid;
1183 
1184 	lockdep_assert_held(&cgroup_mutex);
1185 
1186 	/* First see if we already have a cgroup group that matches
1187 	 * the desired set */
1188 	spin_lock_irq(&css_set_lock);
1189 	cset = find_existing_css_set(old_cset, cgrp, template);
1190 	if (cset)
1191 		get_css_set(cset);
1192 	spin_unlock_irq(&css_set_lock);
1193 
1194 	if (cset)
1195 		return cset;
1196 
1197 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1198 	if (!cset)
1199 		return NULL;
1200 
1201 	/* Allocate all the cgrp_cset_link objects that we'll need */
1202 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1203 		kfree(cset);
1204 		return NULL;
1205 	}
1206 
1207 	refcount_set(&cset->refcount, 1);
1208 	cset->dom_cset = cset;
1209 	INIT_LIST_HEAD(&cset->tasks);
1210 	INIT_LIST_HEAD(&cset->mg_tasks);
1211 	INIT_LIST_HEAD(&cset->dying_tasks);
1212 	INIT_LIST_HEAD(&cset->task_iters);
1213 	INIT_LIST_HEAD(&cset->threaded_csets);
1214 	INIT_HLIST_NODE(&cset->hlist);
1215 	INIT_LIST_HEAD(&cset->cgrp_links);
1216 	INIT_LIST_HEAD(&cset->mg_src_preload_node);
1217 	INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1218 	INIT_LIST_HEAD(&cset->mg_node);
1219 
1220 	/* Copy the set of subsystem state objects generated in
1221 	 * find_existing_css_set() */
1222 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1223 
1224 	spin_lock_irq(&css_set_lock);
1225 	/* Add reference counts and links from the new css_set. */
1226 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1227 		struct cgroup *c = link->cgrp;
1228 
1229 		if (c->root == cgrp->root)
1230 			c = cgrp;
1231 		link_css_set(&tmp_links, cset, c);
1232 	}
1233 
1234 	BUG_ON(!list_empty(&tmp_links));
1235 
1236 	css_set_count++;
1237 
1238 	/* Add @cset to the hash table */
1239 	key = css_set_hash(cset->subsys);
1240 	hash_add(css_set_table, &cset->hlist, key);
1241 
1242 	for_each_subsys(ss, ssid) {
1243 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1244 
1245 		list_add_tail(&cset->e_cset_node[ssid],
1246 			      &css->cgroup->e_csets[ssid]);
1247 		css_get(css);
1248 	}
1249 
1250 	spin_unlock_irq(&css_set_lock);
1251 
1252 	/*
1253 	 * If @cset should be threaded, look up the matching dom_cset and
1254 	 * link them up.  We first fully initialize @cset then look for the
1255 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1256 	 * to stay empty until we return.
1257 	 */
1258 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1259 		struct css_set *dcset;
1260 
1261 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1262 		if (!dcset) {
1263 			put_css_set(cset);
1264 			return NULL;
1265 		}
1266 
1267 		spin_lock_irq(&css_set_lock);
1268 		cset->dom_cset = dcset;
1269 		list_add_tail(&cset->threaded_csets_node,
1270 			      &dcset->threaded_csets);
1271 		spin_unlock_irq(&css_set_lock);
1272 	}
1273 
1274 	return cset;
1275 }
1276 
cgroup_root_from_kf(struct kernfs_root * kf_root)1277 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1278 {
1279 	struct cgroup *root_cgrp = kf_root->kn->priv;
1280 
1281 	return root_cgrp->root;
1282 }
1283 
cgroup_init_root_id(struct cgroup_root * root)1284 static int cgroup_init_root_id(struct cgroup_root *root)
1285 {
1286 	int id;
1287 
1288 	lockdep_assert_held(&cgroup_mutex);
1289 
1290 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1291 	if (id < 0)
1292 		return id;
1293 
1294 	root->hierarchy_id = id;
1295 	return 0;
1296 }
1297 
cgroup_exit_root_id(struct cgroup_root * root)1298 static void cgroup_exit_root_id(struct cgroup_root *root)
1299 {
1300 	lockdep_assert_held(&cgroup_mutex);
1301 
1302 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1303 }
1304 
cgroup_free_root(struct cgroup_root * root)1305 void cgroup_free_root(struct cgroup_root *root)
1306 {
1307 	kfree(root);
1308 }
1309 
cgroup_destroy_root(struct cgroup_root * root)1310 static void cgroup_destroy_root(struct cgroup_root *root)
1311 {
1312 	struct cgroup *cgrp = &root->cgrp;
1313 	struct cgrp_cset_link *link, *tmp_link;
1314 
1315 	trace_cgroup_destroy_root(root);
1316 
1317 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1318 
1319 	BUG_ON(atomic_read(&root->nr_cgrps));
1320 	BUG_ON(!list_empty(&cgrp->self.children));
1321 
1322 	/* Rebind all subsystems back to the default hierarchy */
1323 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1324 
1325 	/*
1326 	 * Release all the links from cset_links to this hierarchy's
1327 	 * root cgroup
1328 	 */
1329 	spin_lock_irq(&css_set_lock);
1330 
1331 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1332 		list_del(&link->cset_link);
1333 		list_del(&link->cgrp_link);
1334 		kfree(link);
1335 	}
1336 
1337 	spin_unlock_irq(&css_set_lock);
1338 
1339 	if (!list_empty(&root->root_list)) {
1340 		list_del(&root->root_list);
1341 		cgroup_root_count--;
1342 	}
1343 
1344 	cgroup_exit_root_id(root);
1345 
1346 	mutex_unlock(&cgroup_mutex);
1347 
1348 	kernfs_destroy_root(root->kf_root);
1349 	cgroup_free_root(root);
1350 }
1351 
1352 /*
1353  * look up cgroup associated with current task's cgroup namespace on the
1354  * specified hierarchy
1355  */
1356 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1357 current_cgns_cgroup_from_root(struct cgroup_root *root)
1358 {
1359 	struct cgroup *res = NULL;
1360 	struct css_set *cset;
1361 
1362 	lockdep_assert_held(&css_set_lock);
1363 
1364 	rcu_read_lock();
1365 
1366 	cset = current->nsproxy->cgroup_ns->root_cset;
1367 	if (cset == &init_css_set) {
1368 		res = &root->cgrp;
1369 	} else if (root == &cgrp_dfl_root) {
1370 		res = cset->dfl_cgrp;
1371 	} else {
1372 		struct cgrp_cset_link *link;
1373 
1374 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1375 			struct cgroup *c = link->cgrp;
1376 
1377 			if (c->root == root) {
1378 				res = c;
1379 				break;
1380 			}
1381 		}
1382 	}
1383 	rcu_read_unlock();
1384 
1385 	BUG_ON(!res);
1386 	return res;
1387 }
1388 
1389 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1390 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1391 					    struct cgroup_root *root)
1392 {
1393 	struct cgroup *res = NULL;
1394 
1395 	lockdep_assert_held(&cgroup_mutex);
1396 	lockdep_assert_held(&css_set_lock);
1397 
1398 	if (cset == &init_css_set) {
1399 		res = &root->cgrp;
1400 	} else if (root == &cgrp_dfl_root) {
1401 		res = cset->dfl_cgrp;
1402 	} else {
1403 		struct cgrp_cset_link *link;
1404 
1405 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1406 			struct cgroup *c = link->cgrp;
1407 
1408 			if (c->root == root) {
1409 				res = c;
1410 				break;
1411 			}
1412 		}
1413 	}
1414 
1415 	BUG_ON(!res);
1416 	return res;
1417 }
1418 
1419 /*
1420  * Return the cgroup for "task" from the given hierarchy. Must be
1421  * called with cgroup_mutex and css_set_lock held.
1422  */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1423 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1424 				     struct cgroup_root *root)
1425 {
1426 	/*
1427 	 * No need to lock the task - since we hold css_set_lock the
1428 	 * task can't change groups.
1429 	 */
1430 	return cset_cgroup_from_root(task_css_set(task), root);
1431 }
1432 
1433 /*
1434  * A task must hold cgroup_mutex to modify cgroups.
1435  *
1436  * Any task can increment and decrement the count field without lock.
1437  * So in general, code holding cgroup_mutex can't rely on the count
1438  * field not changing.  However, if the count goes to zero, then only
1439  * cgroup_attach_task() can increment it again.  Because a count of zero
1440  * means that no tasks are currently attached, therefore there is no
1441  * way a task attached to that cgroup can fork (the other way to
1442  * increment the count).  So code holding cgroup_mutex can safely
1443  * assume that if the count is zero, it will stay zero. Similarly, if
1444  * a task holds cgroup_mutex on a cgroup with zero count, it
1445  * knows that the cgroup won't be removed, as cgroup_rmdir()
1446  * needs that mutex.
1447  *
1448  * A cgroup can only be deleted if both its 'count' of using tasks
1449  * is zero, and its list of 'children' cgroups is empty.  Since all
1450  * tasks in the system use _some_ cgroup, and since there is always at
1451  * least one task in the system (init, pid == 1), therefore, root cgroup
1452  * always has either children cgroups and/or using tasks.  So we don't
1453  * need a special hack to ensure that root cgroup cannot be deleted.
1454  *
1455  * P.S.  One more locking exception.  RCU is used to guard the
1456  * update of a tasks cgroup pointer by cgroup_attach_task()
1457  */
1458 
1459 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1460 
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1461 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1462 			      char *buf)
1463 {
1464 	struct cgroup_subsys *ss = cft->ss;
1465 
1466 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1467 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1468 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1469 
1470 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1471 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1472 			 cft->name);
1473 	} else {
1474 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1475 	}
1476 	return buf;
1477 }
1478 
1479 /**
1480  * cgroup_file_mode - deduce file mode of a control file
1481  * @cft: the control file in question
1482  *
1483  * S_IRUGO for read, S_IWUSR for write.
1484  */
cgroup_file_mode(const struct cftype * cft)1485 static umode_t cgroup_file_mode(const struct cftype *cft)
1486 {
1487 	umode_t mode = 0;
1488 
1489 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1490 		mode |= S_IRUGO;
1491 
1492 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1493 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1494 			mode |= S_IWUGO;
1495 		else
1496 			mode |= S_IWUSR;
1497 	}
1498 
1499 	return mode;
1500 }
1501 
1502 /**
1503  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1504  * @subtree_control: the new subtree_control mask to consider
1505  * @this_ss_mask: available subsystems
1506  *
1507  * On the default hierarchy, a subsystem may request other subsystems to be
1508  * enabled together through its ->depends_on mask.  In such cases, more
1509  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1510  *
1511  * This function calculates which subsystems need to be enabled if
1512  * @subtree_control is to be applied while restricted to @this_ss_mask.
1513  */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1514 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1515 {
1516 	u16 cur_ss_mask = subtree_control;
1517 	struct cgroup_subsys *ss;
1518 	int ssid;
1519 
1520 	lockdep_assert_held(&cgroup_mutex);
1521 
1522 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1523 
1524 	while (true) {
1525 		u16 new_ss_mask = cur_ss_mask;
1526 
1527 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1528 			new_ss_mask |= ss->depends_on;
1529 		} while_each_subsys_mask();
1530 
1531 		/*
1532 		 * Mask out subsystems which aren't available.  This can
1533 		 * happen only if some depended-upon subsystems were bound
1534 		 * to non-default hierarchies.
1535 		 */
1536 		new_ss_mask &= this_ss_mask;
1537 
1538 		if (new_ss_mask == cur_ss_mask)
1539 			break;
1540 		cur_ss_mask = new_ss_mask;
1541 	}
1542 
1543 	return cur_ss_mask;
1544 }
1545 
1546 /**
1547  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1548  * @kn: the kernfs_node being serviced
1549  *
1550  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1551  * the method finishes if locking succeeded.  Note that once this function
1552  * returns the cgroup returned by cgroup_kn_lock_live() may become
1553  * inaccessible any time.  If the caller intends to continue to access the
1554  * cgroup, it should pin it before invoking this function.
1555  */
cgroup_kn_unlock(struct kernfs_node * kn)1556 void cgroup_kn_unlock(struct kernfs_node *kn)
1557 {
1558 	struct cgroup *cgrp;
1559 
1560 	if (kernfs_type(kn) == KERNFS_DIR)
1561 		cgrp = kn->priv;
1562 	else
1563 		cgrp = kn->parent->priv;
1564 
1565 	mutex_unlock(&cgroup_mutex);
1566 
1567 	kernfs_unbreak_active_protection(kn);
1568 	cgroup_put(cgrp);
1569 }
1570 
1571 /**
1572  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1573  * @kn: the kernfs_node being serviced
1574  * @drain_offline: perform offline draining on the cgroup
1575  *
1576  * This helper is to be used by a cgroup kernfs method currently servicing
1577  * @kn.  It breaks the active protection, performs cgroup locking and
1578  * verifies that the associated cgroup is alive.  Returns the cgroup if
1579  * alive; otherwise, %NULL.  A successful return should be undone by a
1580  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1581  * cgroup is drained of offlining csses before return.
1582  *
1583  * Any cgroup kernfs method implementation which requires locking the
1584  * associated cgroup should use this helper.  It avoids nesting cgroup
1585  * locking under kernfs active protection and allows all kernfs operations
1586  * including self-removal.
1587  */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1588 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1589 {
1590 	struct cgroup *cgrp;
1591 
1592 	if (kernfs_type(kn) == KERNFS_DIR)
1593 		cgrp = kn->priv;
1594 	else
1595 		cgrp = kn->parent->priv;
1596 
1597 	/*
1598 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1599 	 * active_ref.  cgroup liveliness check alone provides enough
1600 	 * protection against removal.  Ensure @cgrp stays accessible and
1601 	 * break the active_ref protection.
1602 	 */
1603 	if (!cgroup_tryget(cgrp))
1604 		return NULL;
1605 	kernfs_break_active_protection(kn);
1606 
1607 	if (drain_offline)
1608 		cgroup_lock_and_drain_offline(cgrp);
1609 	else
1610 		mutex_lock(&cgroup_mutex);
1611 
1612 	if (!cgroup_is_dead(cgrp))
1613 		return cgrp;
1614 
1615 	cgroup_kn_unlock(kn);
1616 	return NULL;
1617 }
1618 
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1619 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1620 {
1621 	char name[CGROUP_FILE_NAME_MAX];
1622 
1623 	lockdep_assert_held(&cgroup_mutex);
1624 
1625 	if (cft->file_offset) {
1626 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1627 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1628 
1629 		spin_lock_irq(&cgroup_file_kn_lock);
1630 		cfile->kn = NULL;
1631 		spin_unlock_irq(&cgroup_file_kn_lock);
1632 
1633 		del_timer_sync(&cfile->notify_timer);
1634 	}
1635 
1636 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1637 }
1638 
1639 /**
1640  * css_clear_dir - remove subsys files in a cgroup directory
1641  * @css: taget css
1642  */
css_clear_dir(struct cgroup_subsys_state * css)1643 static void css_clear_dir(struct cgroup_subsys_state *css)
1644 {
1645 	struct cgroup *cgrp = css->cgroup;
1646 	struct cftype *cfts;
1647 
1648 	if (!(css->flags & CSS_VISIBLE))
1649 		return;
1650 
1651 	css->flags &= ~CSS_VISIBLE;
1652 
1653 	if (!css->ss) {
1654 		if (cgroup_on_dfl(cgrp))
1655 			cfts = cgroup_base_files;
1656 		else
1657 			cfts = cgroup1_base_files;
1658 
1659 		cgroup_addrm_files(css, cgrp, cfts, false);
1660 	} else {
1661 		list_for_each_entry(cfts, &css->ss->cfts, node)
1662 			cgroup_addrm_files(css, cgrp, cfts, false);
1663 	}
1664 }
1665 
1666 /**
1667  * css_populate_dir - create subsys files in a cgroup directory
1668  * @css: target css
1669  *
1670  * On failure, no file is added.
1671  */
css_populate_dir(struct cgroup_subsys_state * css)1672 static int css_populate_dir(struct cgroup_subsys_state *css)
1673 {
1674 	struct cgroup *cgrp = css->cgroup;
1675 	struct cftype *cfts, *failed_cfts;
1676 	int ret;
1677 
1678 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1679 		return 0;
1680 
1681 	if (!css->ss) {
1682 		if (cgroup_on_dfl(cgrp))
1683 			cfts = cgroup_base_files;
1684 		else
1685 			cfts = cgroup1_base_files;
1686 
1687 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1688 		if (ret < 0)
1689 			return ret;
1690 	} else {
1691 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1692 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1693 			if (ret < 0) {
1694 				failed_cfts = cfts;
1695 				goto err;
1696 			}
1697 		}
1698 	}
1699 
1700 	css->flags |= CSS_VISIBLE;
1701 
1702 	return 0;
1703 err:
1704 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1705 		if (cfts == failed_cfts)
1706 			break;
1707 		cgroup_addrm_files(css, cgrp, cfts, false);
1708 	}
1709 	return ret;
1710 }
1711 
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1712 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1713 {
1714 	struct cgroup *dcgrp = &dst_root->cgrp;
1715 	struct cgroup_subsys *ss;
1716 	int ssid, ret;
1717 	u16 dfl_disable_ss_mask = 0;
1718 
1719 	lockdep_assert_held(&cgroup_mutex);
1720 
1721 	do_each_subsys_mask(ss, ssid, ss_mask) {
1722 		/*
1723 		 * If @ss has non-root csses attached to it, can't move.
1724 		 * If @ss is an implicit controller, it is exempt from this
1725 		 * rule and can be stolen.
1726 		 */
1727 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1728 		    !ss->implicit_on_dfl)
1729 			return -EBUSY;
1730 
1731 		/* can't move between two non-dummy roots either */
1732 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1733 			return -EBUSY;
1734 
1735 		/*
1736 		 * Collect ssid's that need to be disabled from default
1737 		 * hierarchy.
1738 		 */
1739 		if (ss->root == &cgrp_dfl_root)
1740 			dfl_disable_ss_mask |= 1 << ssid;
1741 
1742 	} while_each_subsys_mask();
1743 
1744 	if (dfl_disable_ss_mask) {
1745 		struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1746 
1747 		/*
1748 		 * Controllers from default hierarchy that need to be rebound
1749 		 * are all disabled together in one go.
1750 		 */
1751 		cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1752 		WARN_ON(cgroup_apply_control(scgrp));
1753 		cgroup_finalize_control(scgrp, 0);
1754 	}
1755 
1756 	do_each_subsys_mask(ss, ssid, ss_mask) {
1757 		struct cgroup_root *src_root = ss->root;
1758 		struct cgroup *scgrp = &src_root->cgrp;
1759 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1760 		struct css_set *cset, *cset_pos;
1761 		struct css_task_iter *it;
1762 
1763 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1764 
1765 		if (src_root != &cgrp_dfl_root) {
1766 			/* disable from the source */
1767 			src_root->subsys_mask &= ~(1 << ssid);
1768 			WARN_ON(cgroup_apply_control(scgrp));
1769 			cgroup_finalize_control(scgrp, 0);
1770 		}
1771 
1772 		/* rebind */
1773 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1774 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1775 		ss->root = dst_root;
1776 		css->cgroup = dcgrp;
1777 
1778 		spin_lock_irq(&css_set_lock);
1779 		WARN_ON(!list_empty(&dcgrp->e_csets[ss->id]));
1780 		list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id],
1781 					 e_cset_node[ss->id]) {
1782 			list_move_tail(&cset->e_cset_node[ss->id],
1783 				       &dcgrp->e_csets[ss->id]);
1784 			/*
1785 			 * all css_sets of scgrp together in same order to dcgrp,
1786 			 * patch in-flight iterators to preserve correct iteration.
1787 			 * since the iterator is always advanced right away and
1788 			 * finished when it->cset_pos meets it->cset_head, so only
1789 			 * update it->cset_head is enough here.
1790 			 */
1791 			list_for_each_entry(it, &cset->task_iters, iters_node)
1792 				if (it->cset_head == &scgrp->e_csets[ss->id])
1793 					it->cset_head = &dcgrp->e_csets[ss->id];
1794 		}
1795 		spin_unlock_irq(&css_set_lock);
1796 
1797 		/* default hierarchy doesn't enable controllers by default */
1798 		dst_root->subsys_mask |= 1 << ssid;
1799 		if (dst_root == &cgrp_dfl_root) {
1800 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1801 		} else {
1802 			dcgrp->subtree_control |= 1 << ssid;
1803 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1804 		}
1805 
1806 		ret = cgroup_apply_control(dcgrp);
1807 		if (ret)
1808 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1809 				ss->name, ret);
1810 
1811 		if (ss->bind)
1812 			ss->bind(css);
1813 	} while_each_subsys_mask();
1814 
1815 	kernfs_activate(dcgrp->kn);
1816 	return 0;
1817 }
1818 
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1819 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1820 		     struct kernfs_root *kf_root)
1821 {
1822 	int len = 0;
1823 	char *buf = NULL;
1824 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1825 	struct cgroup *ns_cgroup;
1826 
1827 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1828 	if (!buf)
1829 		return -ENOMEM;
1830 
1831 	spin_lock_irq(&css_set_lock);
1832 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1833 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1834 	spin_unlock_irq(&css_set_lock);
1835 
1836 	if (len >= PATH_MAX)
1837 		len = -ERANGE;
1838 	else if (len > 0) {
1839 		seq_escape(sf, buf, " \t\n\\");
1840 		len = 0;
1841 	}
1842 	kfree(buf);
1843 	return len;
1844 }
1845 
1846 enum cgroup2_param {
1847 	Opt_nsdelegate,
1848 	Opt_memory_localevents,
1849 	Opt_memory_recursiveprot,
1850 	nr__cgroup2_params
1851 };
1852 
1853 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1854 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1855 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1856 	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1857 	{}
1858 };
1859 
cgroup2_parse_param(struct fs_context * fc,struct fs_parameter * param)1860 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1861 {
1862 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1863 	struct fs_parse_result result;
1864 	int opt;
1865 
1866 	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1867 	if (opt < 0)
1868 		return opt;
1869 
1870 	switch (opt) {
1871 	case Opt_nsdelegate:
1872 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1873 		return 0;
1874 	case Opt_memory_localevents:
1875 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1876 		return 0;
1877 	case Opt_memory_recursiveprot:
1878 		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1879 		return 0;
1880 	}
1881 	return -EINVAL;
1882 }
1883 
apply_cgroup_root_flags(unsigned int root_flags)1884 static void apply_cgroup_root_flags(unsigned int root_flags)
1885 {
1886 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1887 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1888 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1889 		else
1890 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1891 
1892 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1893 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1894 		else
1895 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1896 
1897 		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1898 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1899 		else
1900 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1901 	}
1902 }
1903 
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)1904 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1905 {
1906 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1907 		seq_puts(seq, ",nsdelegate");
1908 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1909 		seq_puts(seq, ",memory_localevents");
1910 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1911 		seq_puts(seq, ",memory_recursiveprot");
1912 	return 0;
1913 }
1914 
cgroup_reconfigure(struct fs_context * fc)1915 static int cgroup_reconfigure(struct fs_context *fc)
1916 {
1917 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1918 
1919 	apply_cgroup_root_flags(ctx->flags);
1920 	return 0;
1921 }
1922 
init_cgroup_housekeeping(struct cgroup * cgrp)1923 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1924 {
1925 	struct cgroup_subsys *ss;
1926 	int ssid;
1927 
1928 	INIT_LIST_HEAD(&cgrp->self.sibling);
1929 	INIT_LIST_HEAD(&cgrp->self.children);
1930 	INIT_LIST_HEAD(&cgrp->cset_links);
1931 	INIT_LIST_HEAD(&cgrp->pidlists);
1932 	mutex_init(&cgrp->pidlist_mutex);
1933 	cgrp->self.cgroup = cgrp;
1934 	cgrp->self.flags |= CSS_ONLINE;
1935 	cgrp->dom_cgrp = cgrp;
1936 	cgrp->max_descendants = INT_MAX;
1937 	cgrp->max_depth = INT_MAX;
1938 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1939 	prev_cputime_init(&cgrp->prev_cputime);
1940 
1941 	for_each_subsys(ss, ssid)
1942 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1943 
1944 	init_waitqueue_head(&cgrp->offline_waitq);
1945 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1946 }
1947 
init_cgroup_root(struct cgroup_fs_context * ctx)1948 void init_cgroup_root(struct cgroup_fs_context *ctx)
1949 {
1950 	struct cgroup_root *root = ctx->root;
1951 	struct cgroup *cgrp = &root->cgrp;
1952 
1953 	INIT_LIST_HEAD(&root->root_list);
1954 	atomic_set(&root->nr_cgrps, 1);
1955 	cgrp->root = root;
1956 	init_cgroup_housekeeping(cgrp);
1957 	init_waitqueue_head(&root->wait);
1958 
1959 	root->flags = ctx->flags;
1960 	if (ctx->release_agent)
1961 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1962 	if (ctx->name)
1963 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1964 	if (ctx->cpuset_clone_children)
1965 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1966 }
1967 
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)1968 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1969 {
1970 	LIST_HEAD(tmp_links);
1971 	struct cgroup *root_cgrp = &root->cgrp;
1972 	struct kernfs_syscall_ops *kf_sops;
1973 	struct css_set *cset;
1974 	int i, ret;
1975 
1976 	lockdep_assert_held(&cgroup_mutex);
1977 
1978 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1979 			      0, GFP_KERNEL);
1980 	if (ret)
1981 		goto out;
1982 
1983 	/*
1984 	 * We're accessing css_set_count without locking css_set_lock here,
1985 	 * but that's OK - it can only be increased by someone holding
1986 	 * cgroup_lock, and that's us.  Later rebinding may disable
1987 	 * controllers on the default hierarchy and thus create new csets,
1988 	 * which can't be more than the existing ones.  Allocate 2x.
1989 	 */
1990 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1991 	if (ret)
1992 		goto cancel_ref;
1993 
1994 	ret = cgroup_init_root_id(root);
1995 	if (ret)
1996 		goto cancel_ref;
1997 
1998 	kf_sops = root == &cgrp_dfl_root ?
1999 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2000 
2001 	root->kf_root = kernfs_create_root(kf_sops,
2002 					   KERNFS_ROOT_CREATE_DEACTIVATED |
2003 					   KERNFS_ROOT_SUPPORT_EXPORTOP |
2004 					   KERNFS_ROOT_SUPPORT_USER_XATTR,
2005 					   root_cgrp);
2006 	if (IS_ERR(root->kf_root)) {
2007 		ret = PTR_ERR(root->kf_root);
2008 		goto exit_root_id;
2009 	}
2010 	root_cgrp->kn = root->kf_root->kn;
2011 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2012 	root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
2013 
2014 	ret = css_populate_dir(&root_cgrp->self);
2015 	if (ret)
2016 		goto destroy_root;
2017 
2018 	ret = rebind_subsystems(root, ss_mask);
2019 	if (ret)
2020 		goto destroy_root;
2021 
2022 	ret = cgroup_bpf_inherit(root_cgrp);
2023 	WARN_ON_ONCE(ret);
2024 
2025 	trace_cgroup_setup_root(root);
2026 
2027 	/*
2028 	 * There must be no failure case after here, since rebinding takes
2029 	 * care of subsystems' refcounts, which are explicitly dropped in
2030 	 * the failure exit path.
2031 	 */
2032 	list_add(&root->root_list, &cgroup_roots);
2033 	cgroup_root_count++;
2034 
2035 	/*
2036 	 * Link the root cgroup in this hierarchy into all the css_set
2037 	 * objects.
2038 	 */
2039 	spin_lock_irq(&css_set_lock);
2040 	hash_for_each(css_set_table, i, cset, hlist) {
2041 		link_css_set(&tmp_links, cset, root_cgrp);
2042 		if (css_set_populated(cset))
2043 			cgroup_update_populated(root_cgrp, true);
2044 	}
2045 	spin_unlock_irq(&css_set_lock);
2046 
2047 	BUG_ON(!list_empty(&root_cgrp->self.children));
2048 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2049 
2050 	ret = 0;
2051 	goto out;
2052 
2053 destroy_root:
2054 	kernfs_destroy_root(root->kf_root);
2055 	root->kf_root = NULL;
2056 exit_root_id:
2057 	cgroup_exit_root_id(root);
2058 cancel_ref:
2059 	percpu_ref_exit(&root_cgrp->self.refcnt);
2060 out:
2061 	free_cgrp_cset_links(&tmp_links);
2062 	return ret;
2063 }
2064 
cgroup_do_get_tree(struct fs_context * fc)2065 int cgroup_do_get_tree(struct fs_context *fc)
2066 {
2067 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2068 	int ret;
2069 
2070 	ctx->kfc.root = ctx->root->kf_root;
2071 	if (fc->fs_type == &cgroup2_fs_type)
2072 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2073 	else
2074 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2075 	ret = kernfs_get_tree(fc);
2076 
2077 	/*
2078 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2079 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2080 	 */
2081 	if (!ret && ctx->ns != &init_cgroup_ns) {
2082 		struct dentry *nsdentry;
2083 		struct super_block *sb = fc->root->d_sb;
2084 		struct cgroup *cgrp;
2085 
2086 		mutex_lock(&cgroup_mutex);
2087 		spin_lock_irq(&css_set_lock);
2088 
2089 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2090 
2091 		spin_unlock_irq(&css_set_lock);
2092 		mutex_unlock(&cgroup_mutex);
2093 
2094 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2095 		dput(fc->root);
2096 		if (IS_ERR(nsdentry)) {
2097 			deactivate_locked_super(sb);
2098 			ret = PTR_ERR(nsdentry);
2099 			nsdentry = NULL;
2100 		}
2101 		fc->root = nsdentry;
2102 	}
2103 
2104 	if (!ctx->kfc.new_sb_created)
2105 		cgroup_put(&ctx->root->cgrp);
2106 
2107 	return ret;
2108 }
2109 
2110 /*
2111  * Destroy a cgroup filesystem context.
2112  */
cgroup_fs_context_free(struct fs_context * fc)2113 static void cgroup_fs_context_free(struct fs_context *fc)
2114 {
2115 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2116 
2117 	kfree(ctx->name);
2118 	kfree(ctx->release_agent);
2119 	put_cgroup_ns(ctx->ns);
2120 	kernfs_free_fs_context(fc);
2121 	kfree(ctx);
2122 }
2123 
cgroup_get_tree(struct fs_context * fc)2124 static int cgroup_get_tree(struct fs_context *fc)
2125 {
2126 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2127 	int ret;
2128 
2129 	cgrp_dfl_visible = true;
2130 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2131 	ctx->root = &cgrp_dfl_root;
2132 
2133 	ret = cgroup_do_get_tree(fc);
2134 	if (!ret)
2135 		apply_cgroup_root_flags(ctx->flags);
2136 	return ret;
2137 }
2138 
2139 static const struct fs_context_operations cgroup_fs_context_ops = {
2140 	.free		= cgroup_fs_context_free,
2141 	.parse_param	= cgroup2_parse_param,
2142 	.get_tree	= cgroup_get_tree,
2143 	.reconfigure	= cgroup_reconfigure,
2144 };
2145 
2146 static const struct fs_context_operations cgroup1_fs_context_ops = {
2147 	.free		= cgroup_fs_context_free,
2148 	.parse_param	= cgroup1_parse_param,
2149 	.get_tree	= cgroup1_get_tree,
2150 	.reconfigure	= cgroup1_reconfigure,
2151 };
2152 
2153 /*
2154  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2155  * we select the namespace we're going to use.
2156  */
cgroup_init_fs_context(struct fs_context * fc)2157 static int cgroup_init_fs_context(struct fs_context *fc)
2158 {
2159 	struct cgroup_fs_context *ctx;
2160 
2161 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2162 	if (!ctx)
2163 		return -ENOMEM;
2164 
2165 	ctx->ns = current->nsproxy->cgroup_ns;
2166 	get_cgroup_ns(ctx->ns);
2167 	fc->fs_private = &ctx->kfc;
2168 	if (fc->fs_type == &cgroup2_fs_type)
2169 		fc->ops = &cgroup_fs_context_ops;
2170 	else
2171 		fc->ops = &cgroup1_fs_context_ops;
2172 	put_user_ns(fc->user_ns);
2173 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2174 	fc->global = true;
2175 	return 0;
2176 }
2177 
cgroup_kill_sb(struct super_block * sb)2178 static void cgroup_kill_sb(struct super_block *sb)
2179 {
2180 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2181 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2182 
2183 	/*
2184 	 * Wait if there are cgroups being destroyed, because the destruction
2185 	 * is asynchronous. On the other hand some controllers like memcg
2186 	 * may pin cgroups for a very long time, so don't wait forever.
2187 	 */
2188 	if (root != &cgrp_dfl_root) {
2189 		wait_event_timeout(root->wait,
2190 				   list_empty(&root->cgrp.self.children),
2191 				   msecs_to_jiffies(500));
2192 	}
2193 
2194 	/*
2195 	 * If @root doesn't have any children, start killing it.
2196 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2197 	 * cgroup_mount() may wait for @root's release.
2198 	 *
2199 	 * And don't kill the default root.
2200 	 */
2201 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2202 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2203 		cgroup_bpf_offline(&root->cgrp);
2204 		percpu_ref_kill(&root->cgrp.self.refcnt);
2205 	}
2206 	cgroup_put(&root->cgrp);
2207 	kernfs_kill_sb(sb);
2208 }
2209 
2210 struct file_system_type cgroup_fs_type = {
2211 	.name			= "cgroup",
2212 	.init_fs_context	= cgroup_init_fs_context,
2213 	.parameters		= cgroup1_fs_parameters,
2214 	.kill_sb		= cgroup_kill_sb,
2215 	.fs_flags		= FS_USERNS_MOUNT,
2216 };
2217 
2218 static struct file_system_type cgroup2_fs_type = {
2219 	.name			= "cgroup2",
2220 	.init_fs_context	= cgroup_init_fs_context,
2221 	.parameters		= cgroup2_fs_parameters,
2222 	.kill_sb		= cgroup_kill_sb,
2223 	.fs_flags		= FS_USERNS_MOUNT,
2224 };
2225 
2226 #ifdef CONFIG_CPUSETS
2227 static const struct fs_context_operations cpuset_fs_context_ops = {
2228 	.get_tree	= cgroup1_get_tree,
2229 	.free		= cgroup_fs_context_free,
2230 };
2231 
2232 /*
2233  * This is ugly, but preserves the userspace API for existing cpuset
2234  * users. If someone tries to mount the "cpuset" filesystem, we
2235  * silently switch it to mount "cgroup" instead
2236  */
cpuset_init_fs_context(struct fs_context * fc)2237 static int cpuset_init_fs_context(struct fs_context *fc)
2238 {
2239 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2240 	struct cgroup_fs_context *ctx;
2241 	int err;
2242 
2243 	err = cgroup_init_fs_context(fc);
2244 	if (err) {
2245 		kfree(agent);
2246 		return err;
2247 	}
2248 
2249 	fc->ops = &cpuset_fs_context_ops;
2250 
2251 	ctx = cgroup_fc2context(fc);
2252 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2253 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2254 	ctx->release_agent = agent;
2255 
2256 	get_filesystem(&cgroup_fs_type);
2257 	put_filesystem(fc->fs_type);
2258 	fc->fs_type = &cgroup_fs_type;
2259 
2260 	return 0;
2261 }
2262 
2263 static struct file_system_type cpuset_fs_type = {
2264 	.name			= "cpuset",
2265 	.init_fs_context	= cpuset_init_fs_context,
2266 	.fs_flags		= FS_USERNS_MOUNT,
2267 };
2268 #endif
2269 
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2270 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2271 			  struct cgroup_namespace *ns)
2272 {
2273 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2274 
2275 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2276 }
2277 
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2278 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2279 		   struct cgroup_namespace *ns)
2280 {
2281 	int ret;
2282 
2283 	mutex_lock(&cgroup_mutex);
2284 	spin_lock_irq(&css_set_lock);
2285 
2286 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2287 
2288 	spin_unlock_irq(&css_set_lock);
2289 	mutex_unlock(&cgroup_mutex);
2290 
2291 	return ret;
2292 }
2293 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2294 
2295 /**
2296  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2297  * @task: target task
2298  * @buf: the buffer to write the path into
2299  * @buflen: the length of the buffer
2300  *
2301  * Determine @task's cgroup on the first (the one with the lowest non-zero
2302  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2303  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2304  * cgroup controller callbacks.
2305  *
2306  * Return value is the same as kernfs_path().
2307  */
task_cgroup_path(struct task_struct * task,char * buf,size_t buflen)2308 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2309 {
2310 	struct cgroup_root *root;
2311 	struct cgroup *cgrp;
2312 	int hierarchy_id = 1;
2313 	int ret;
2314 
2315 	mutex_lock(&cgroup_mutex);
2316 	spin_lock_irq(&css_set_lock);
2317 
2318 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2319 
2320 	if (root) {
2321 		cgrp = task_cgroup_from_root(task, root);
2322 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2323 	} else {
2324 		/* if no hierarchy exists, everyone is in "/" */
2325 		ret = strlcpy(buf, "/", buflen);
2326 	}
2327 
2328 	spin_unlock_irq(&css_set_lock);
2329 	mutex_unlock(&cgroup_mutex);
2330 	return ret;
2331 }
2332 EXPORT_SYMBOL_GPL(task_cgroup_path);
2333 
2334 /**
2335  * cgroup_attach_lock - Lock for ->attach()
2336  * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2337  *
2338  * cgroup migration sometimes needs to stabilize threadgroups against forks and
2339  * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2340  * implementations (e.g. cpuset), also need to disable CPU hotplug.
2341  * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2342  * lead to deadlocks.
2343  *
2344  * Bringing up a CPU may involve creating and destroying tasks which requires
2345  * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2346  * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2347  * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2348  * waiting for an on-going CPU hotplug operation which in turn is waiting for
2349  * the threadgroup_rwsem to be released to create new tasks. For more details:
2350  *
2351  *   http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2352  *
2353  * Resolve the situation by always acquiring cpus_read_lock() before optionally
2354  * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2355  * CPU hotplug is disabled on entry.
2356  */
cgroup_attach_lock(bool lock_threadgroup)2357 static void cgroup_attach_lock(bool lock_threadgroup)
2358 {
2359 	cpus_read_lock();
2360 	if (lock_threadgroup)
2361 		percpu_down_write(&cgroup_threadgroup_rwsem);
2362 }
2363 
2364 /**
2365  * cgroup_attach_unlock - Undo cgroup_attach_lock()
2366  * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2367  */
cgroup_attach_unlock(bool lock_threadgroup)2368 static void cgroup_attach_unlock(bool lock_threadgroup)
2369 {
2370 	if (lock_threadgroup)
2371 		percpu_up_write(&cgroup_threadgroup_rwsem);
2372 	cpus_read_unlock();
2373 }
2374 
2375 /**
2376  * cgroup_migrate_add_task - add a migration target task to a migration context
2377  * @task: target task
2378  * @mgctx: target migration context
2379  *
2380  * Add @task, which is a migration target, to @mgctx->tset.  This function
2381  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2382  * should have been added as a migration source and @task->cg_list will be
2383  * moved from the css_set's tasks list to mg_tasks one.
2384  */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2385 static void cgroup_migrate_add_task(struct task_struct *task,
2386 				    struct cgroup_mgctx *mgctx)
2387 {
2388 	struct css_set *cset;
2389 
2390 	lockdep_assert_held(&css_set_lock);
2391 
2392 	/* @task either already exited or can't exit until the end */
2393 	if (task->flags & PF_EXITING)
2394 		return;
2395 
2396 	/* cgroup_threadgroup_rwsem protects racing against forks */
2397 	WARN_ON_ONCE(list_empty(&task->cg_list));
2398 
2399 	cset = task_css_set(task);
2400 	if (!cset->mg_src_cgrp)
2401 		return;
2402 
2403 	mgctx->tset.nr_tasks++;
2404 
2405 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2406 	if (list_empty(&cset->mg_node))
2407 		list_add_tail(&cset->mg_node,
2408 			      &mgctx->tset.src_csets);
2409 	if (list_empty(&cset->mg_dst_cset->mg_node))
2410 		list_add_tail(&cset->mg_dst_cset->mg_node,
2411 			      &mgctx->tset.dst_csets);
2412 }
2413 
2414 /**
2415  * cgroup_taskset_first - reset taskset and return the first task
2416  * @tset: taskset of interest
2417  * @dst_cssp: output variable for the destination css
2418  *
2419  * @tset iteration is initialized and the first task is returned.
2420  */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2421 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2422 					 struct cgroup_subsys_state **dst_cssp)
2423 {
2424 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2425 	tset->cur_task = NULL;
2426 
2427 	return cgroup_taskset_next(tset, dst_cssp);
2428 }
2429 
2430 /**
2431  * cgroup_taskset_next - iterate to the next task in taskset
2432  * @tset: taskset of interest
2433  * @dst_cssp: output variable for the destination css
2434  *
2435  * Return the next task in @tset.  Iteration must have been initialized
2436  * with cgroup_taskset_first().
2437  */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2438 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2439 					struct cgroup_subsys_state **dst_cssp)
2440 {
2441 	struct css_set *cset = tset->cur_cset;
2442 	struct task_struct *task = tset->cur_task;
2443 
2444 	while (&cset->mg_node != tset->csets) {
2445 		if (!task)
2446 			task = list_first_entry(&cset->mg_tasks,
2447 						struct task_struct, cg_list);
2448 		else
2449 			task = list_next_entry(task, cg_list);
2450 
2451 		if (&task->cg_list != &cset->mg_tasks) {
2452 			tset->cur_cset = cset;
2453 			tset->cur_task = task;
2454 
2455 			/*
2456 			 * This function may be called both before and
2457 			 * after cgroup_taskset_migrate().  The two cases
2458 			 * can be distinguished by looking at whether @cset
2459 			 * has its ->mg_dst_cset set.
2460 			 */
2461 			if (cset->mg_dst_cset)
2462 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2463 			else
2464 				*dst_cssp = cset->subsys[tset->ssid];
2465 
2466 			return task;
2467 		}
2468 
2469 		cset = list_next_entry(cset, mg_node);
2470 		task = NULL;
2471 	}
2472 
2473 	return NULL;
2474 }
2475 
2476 /**
2477  * cgroup_taskset_migrate - migrate a taskset
2478  * @mgctx: migration context
2479  *
2480  * Migrate tasks in @mgctx as setup by migration preparation functions.
2481  * This function fails iff one of the ->can_attach callbacks fails and
2482  * guarantees that either all or none of the tasks in @mgctx are migrated.
2483  * @mgctx is consumed regardless of success.
2484  */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2485 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2486 {
2487 	struct cgroup_taskset *tset = &mgctx->tset;
2488 	struct cgroup_subsys *ss;
2489 	struct task_struct *task, *tmp_task;
2490 	struct css_set *cset, *tmp_cset;
2491 	int ssid, failed_ssid, ret;
2492 
2493 	/* check that we can legitimately attach to the cgroup */
2494 	if (tset->nr_tasks) {
2495 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2496 			if (ss->can_attach) {
2497 				tset->ssid = ssid;
2498 				ret = ss->can_attach(tset);
2499 				if (ret) {
2500 					failed_ssid = ssid;
2501 					goto out_cancel_attach;
2502 				}
2503 			}
2504 		} while_each_subsys_mask();
2505 	}
2506 
2507 	/*
2508 	 * Now that we're guaranteed success, proceed to move all tasks to
2509 	 * the new cgroup.  There are no failure cases after here, so this
2510 	 * is the commit point.
2511 	 */
2512 	spin_lock_irq(&css_set_lock);
2513 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2514 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2515 			struct css_set *from_cset = task_css_set(task);
2516 			struct css_set *to_cset = cset->mg_dst_cset;
2517 
2518 			get_css_set(to_cset);
2519 			to_cset->nr_tasks++;
2520 			css_set_move_task(task, from_cset, to_cset, true);
2521 			from_cset->nr_tasks--;
2522 			/*
2523 			 * If the source or destination cgroup is frozen,
2524 			 * the task might require to change its state.
2525 			 */
2526 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2527 						    to_cset->dfl_cgrp);
2528 			put_css_set_locked(from_cset);
2529 
2530 		}
2531 	}
2532 	spin_unlock_irq(&css_set_lock);
2533 
2534 	/*
2535 	 * Migration is committed, all target tasks are now on dst_csets.
2536 	 * Nothing is sensitive to fork() after this point.  Notify
2537 	 * controllers that migration is complete.
2538 	 */
2539 	tset->csets = &tset->dst_csets;
2540 
2541 	if (tset->nr_tasks) {
2542 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2543 			if (ss->attach) {
2544 				tset->ssid = ssid;
2545 				ss->attach(tset);
2546 			}
2547 		} while_each_subsys_mask();
2548 	}
2549 
2550 	ret = 0;
2551 	goto out_release_tset;
2552 
2553 out_cancel_attach:
2554 	if (tset->nr_tasks) {
2555 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2556 			if (ssid == failed_ssid)
2557 				break;
2558 			if (ss->cancel_attach) {
2559 				tset->ssid = ssid;
2560 				ss->cancel_attach(tset);
2561 			}
2562 		} while_each_subsys_mask();
2563 	}
2564 out_release_tset:
2565 	spin_lock_irq(&css_set_lock);
2566 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2567 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2568 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2569 		list_del_init(&cset->mg_node);
2570 	}
2571 	spin_unlock_irq(&css_set_lock);
2572 
2573 	/*
2574 	 * Re-initialize the cgroup_taskset structure in case it is reused
2575 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2576 	 * iteration.
2577 	 */
2578 	tset->nr_tasks = 0;
2579 	tset->csets    = &tset->src_csets;
2580 	return ret;
2581 }
2582 
2583 /**
2584  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2585  * @dst_cgrp: destination cgroup to test
2586  *
2587  * On the default hierarchy, except for the mixable, (possible) thread root
2588  * and threaded cgroups, subtree_control must be zero for migration
2589  * destination cgroups with tasks so that child cgroups don't compete
2590  * against tasks.
2591  */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2592 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2593 {
2594 	/* v1 doesn't have any restriction */
2595 	if (!cgroup_on_dfl(dst_cgrp))
2596 		return 0;
2597 
2598 	/* verify @dst_cgrp can host resources */
2599 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2600 		return -EOPNOTSUPP;
2601 
2602 	/* mixables don't care */
2603 	if (cgroup_is_mixable(dst_cgrp))
2604 		return 0;
2605 
2606 	/*
2607 	 * If @dst_cgrp is already or can become a thread root or is
2608 	 * threaded, it doesn't matter.
2609 	 */
2610 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2611 		return 0;
2612 
2613 	/* apply no-internal-process constraint */
2614 	if (dst_cgrp->subtree_control)
2615 		return -EBUSY;
2616 
2617 	return 0;
2618 }
2619 
2620 /**
2621  * cgroup_migrate_finish - cleanup after attach
2622  * @mgctx: migration context
2623  *
2624  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2625  * those functions for details.
2626  */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2627 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2628 {
2629 	struct css_set *cset, *tmp_cset;
2630 
2631 	lockdep_assert_held(&cgroup_mutex);
2632 
2633 	spin_lock_irq(&css_set_lock);
2634 
2635 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2636 				 mg_src_preload_node) {
2637 		cset->mg_src_cgrp = NULL;
2638 		cset->mg_dst_cgrp = NULL;
2639 		cset->mg_dst_cset = NULL;
2640 		list_del_init(&cset->mg_src_preload_node);
2641 		put_css_set_locked(cset);
2642 	}
2643 
2644 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2645 				 mg_dst_preload_node) {
2646 		cset->mg_src_cgrp = NULL;
2647 		cset->mg_dst_cgrp = NULL;
2648 		cset->mg_dst_cset = NULL;
2649 		list_del_init(&cset->mg_dst_preload_node);
2650 		put_css_set_locked(cset);
2651 	}
2652 
2653 	spin_unlock_irq(&css_set_lock);
2654 }
2655 
2656 /**
2657  * cgroup_migrate_add_src - add a migration source css_set
2658  * @src_cset: the source css_set to add
2659  * @dst_cgrp: the destination cgroup
2660  * @mgctx: migration context
2661  *
2662  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2663  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2664  * up by cgroup_migrate_finish().
2665  *
2666  * This function may be called without holding cgroup_threadgroup_rwsem
2667  * even if the target is a process.  Threads may be created and destroyed
2668  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2669  * into play and the preloaded css_sets are guaranteed to cover all
2670  * migrations.
2671  */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2672 void cgroup_migrate_add_src(struct css_set *src_cset,
2673 			    struct cgroup *dst_cgrp,
2674 			    struct cgroup_mgctx *mgctx)
2675 {
2676 	struct cgroup *src_cgrp;
2677 
2678 	lockdep_assert_held(&cgroup_mutex);
2679 	lockdep_assert_held(&css_set_lock);
2680 
2681 	/*
2682 	 * If ->dead, @src_set is associated with one or more dead cgroups
2683 	 * and doesn't contain any migratable tasks.  Ignore it early so
2684 	 * that the rest of migration path doesn't get confused by it.
2685 	 */
2686 	if (src_cset->dead)
2687 		return;
2688 
2689 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2690 
2691 	if (!list_empty(&src_cset->mg_src_preload_node))
2692 		return;
2693 
2694 	WARN_ON(src_cset->mg_src_cgrp);
2695 	WARN_ON(src_cset->mg_dst_cgrp);
2696 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2697 	WARN_ON(!list_empty(&src_cset->mg_node));
2698 
2699 	src_cset->mg_src_cgrp = src_cgrp;
2700 	src_cset->mg_dst_cgrp = dst_cgrp;
2701 	get_css_set(src_cset);
2702 	list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2703 }
2704 
2705 /**
2706  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2707  * @mgctx: migration context
2708  *
2709  * Tasks are about to be moved and all the source css_sets have been
2710  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2711  * pins all destination css_sets, links each to its source, and append them
2712  * to @mgctx->preloaded_dst_csets.
2713  *
2714  * This function must be called after cgroup_migrate_add_src() has been
2715  * called on each migration source css_set.  After migration is performed
2716  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2717  * @mgctx.
2718  */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2719 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2720 {
2721 	struct css_set *src_cset, *tmp_cset;
2722 
2723 	lockdep_assert_held(&cgroup_mutex);
2724 
2725 	/* look up the dst cset for each src cset and link it to src */
2726 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2727 				 mg_src_preload_node) {
2728 		struct css_set *dst_cset;
2729 		struct cgroup_subsys *ss;
2730 		int ssid;
2731 
2732 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2733 		if (!dst_cset)
2734 			return -ENOMEM;
2735 
2736 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2737 
2738 		/*
2739 		 * If src cset equals dst, it's noop.  Drop the src.
2740 		 * cgroup_migrate() will skip the cset too.  Note that we
2741 		 * can't handle src == dst as some nodes are used by both.
2742 		 */
2743 		if (src_cset == dst_cset) {
2744 			src_cset->mg_src_cgrp = NULL;
2745 			src_cset->mg_dst_cgrp = NULL;
2746 			list_del_init(&src_cset->mg_src_preload_node);
2747 			put_css_set(src_cset);
2748 			put_css_set(dst_cset);
2749 			continue;
2750 		}
2751 
2752 		src_cset->mg_dst_cset = dst_cset;
2753 
2754 		if (list_empty(&dst_cset->mg_dst_preload_node))
2755 			list_add_tail(&dst_cset->mg_dst_preload_node,
2756 				      &mgctx->preloaded_dst_csets);
2757 		else
2758 			put_css_set(dst_cset);
2759 
2760 		for_each_subsys(ss, ssid)
2761 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2762 				mgctx->ss_mask |= 1 << ssid;
2763 	}
2764 
2765 	return 0;
2766 }
2767 
2768 /**
2769  * cgroup_migrate - migrate a process or task to a cgroup
2770  * @leader: the leader of the process or the task to migrate
2771  * @threadgroup: whether @leader points to the whole process or a single task
2772  * @mgctx: migration context
2773  *
2774  * Migrate a process or task denoted by @leader.  If migrating a process,
2775  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2776  * responsible for invoking cgroup_migrate_add_src() and
2777  * cgroup_migrate_prepare_dst() on the targets before invoking this
2778  * function and following up with cgroup_migrate_finish().
2779  *
2780  * As long as a controller's ->can_attach() doesn't fail, this function is
2781  * guaranteed to succeed.  This means that, excluding ->can_attach()
2782  * failure, when migrating multiple targets, the success or failure can be
2783  * decided for all targets by invoking group_migrate_prepare_dst() before
2784  * actually starting migrating.
2785  */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2786 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2787 		   struct cgroup_mgctx *mgctx)
2788 {
2789 	int err = 0;
2790 	struct task_struct *task;
2791 
2792 	/*
2793 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2794 	 * already PF_EXITING could be freed from underneath us unless we
2795 	 * take an rcu_read_lock.
2796 	 */
2797 	spin_lock_irq(&css_set_lock);
2798 	rcu_read_lock();
2799 	task = leader;
2800 	do {
2801 		cgroup_migrate_add_task(task, mgctx);
2802 		if (!threadgroup) {
2803 			if (task->flags & PF_EXITING)
2804 				err = -ESRCH;
2805 			break;
2806 		}
2807 	} while_each_thread(leader, task);
2808 	rcu_read_unlock();
2809 	spin_unlock_irq(&css_set_lock);
2810 
2811 	return err ? err : cgroup_migrate_execute(mgctx);
2812 }
2813 
2814 /**
2815  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2816  * @dst_cgrp: the cgroup to attach to
2817  * @leader: the task or the leader of the threadgroup to be attached
2818  * @threadgroup: attach the whole threadgroup?
2819  *
2820  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2821  */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2822 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2823 		       bool threadgroup)
2824 {
2825 	DEFINE_CGROUP_MGCTX(mgctx);
2826 	struct task_struct *task;
2827 	int ret = 0;
2828 
2829 	/* look up all src csets */
2830 	spin_lock_irq(&css_set_lock);
2831 	rcu_read_lock();
2832 	task = leader;
2833 	do {
2834 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2835 		if (!threadgroup)
2836 			break;
2837 	} while_each_thread(leader, task);
2838 	rcu_read_unlock();
2839 	spin_unlock_irq(&css_set_lock);
2840 
2841 	/* prepare dst csets and commit */
2842 	ret = cgroup_migrate_prepare_dst(&mgctx);
2843 	if (!ret)
2844 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2845 
2846 	cgroup_migrate_finish(&mgctx);
2847 
2848 	if (!ret)
2849 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2850 
2851 	return ret;
2852 }
2853 
cgroup_procs_write_start(char * buf,bool threadgroup,bool * threadgroup_locked)2854 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2855 					     bool *threadgroup_locked)
2856 {
2857 	struct task_struct *tsk;
2858 	pid_t pid;
2859 
2860 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2861 		return ERR_PTR(-EINVAL);
2862 
2863 	/*
2864 	 * If we migrate a single thread, we don't care about threadgroup
2865 	 * stability. If the thread is `current`, it won't exit(2) under our
2866 	 * hands or change PID through exec(2). We exclude
2867 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2868 	 * callers by cgroup_mutex.
2869 	 * Therefore, we can skip the global lock.
2870 	 */
2871 	lockdep_assert_held(&cgroup_mutex);
2872 	*threadgroup_locked = pid || threadgroup;
2873 	cgroup_attach_lock(*threadgroup_locked);
2874 
2875 	rcu_read_lock();
2876 	if (pid) {
2877 		tsk = find_task_by_vpid(pid);
2878 		if (!tsk) {
2879 			tsk = ERR_PTR(-ESRCH);
2880 			goto out_unlock_threadgroup;
2881 		}
2882 	} else {
2883 		tsk = current;
2884 	}
2885 
2886 	if (threadgroup)
2887 		tsk = tsk->group_leader;
2888 
2889 	/*
2890 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2891 	 * If userland migrates such a kthread to a non-root cgroup, it can
2892 	 * become trapped in a cpuset, or RT kthread may be born in a
2893 	 * cgroup with no rt_runtime allocated.  Just say no.
2894 	 */
2895 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2896 		tsk = ERR_PTR(-EINVAL);
2897 		goto out_unlock_threadgroup;
2898 	}
2899 
2900 	get_task_struct(tsk);
2901 	goto out_unlock_rcu;
2902 
2903 out_unlock_threadgroup:
2904 	cgroup_attach_unlock(*threadgroup_locked);
2905 	*threadgroup_locked = false;
2906 out_unlock_rcu:
2907 	rcu_read_unlock();
2908 	return tsk;
2909 }
2910 
cgroup_procs_write_finish(struct task_struct * task,bool threadgroup_locked)2911 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
2912 {
2913 	struct cgroup_subsys *ss;
2914 	int ssid;
2915 
2916 	/* release reference from cgroup_procs_write_start() */
2917 	put_task_struct(task);
2918 
2919 	cgroup_attach_unlock(threadgroup_locked);
2920 
2921 	for_each_subsys(ss, ssid)
2922 		if (ss->post_attach)
2923 			ss->post_attach();
2924 }
2925 
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)2926 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2927 {
2928 	struct cgroup_subsys *ss;
2929 	bool printed = false;
2930 	int ssid;
2931 
2932 	do_each_subsys_mask(ss, ssid, ss_mask) {
2933 		if (printed)
2934 			seq_putc(seq, ' ');
2935 		seq_puts(seq, ss->name);
2936 		printed = true;
2937 	} while_each_subsys_mask();
2938 	if (printed)
2939 		seq_putc(seq, '\n');
2940 }
2941 
2942 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)2943 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2944 {
2945 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2946 
2947 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2948 	return 0;
2949 }
2950 
2951 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)2952 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2953 {
2954 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2955 
2956 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2957 	return 0;
2958 }
2959 
2960 /**
2961  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2962  * @cgrp: root of the subtree to update csses for
2963  *
2964  * @cgrp's control masks have changed and its subtree's css associations
2965  * need to be updated accordingly.  This function looks up all css_sets
2966  * which are attached to the subtree, creates the matching updated css_sets
2967  * and migrates the tasks to the new ones.
2968  */
cgroup_update_dfl_csses(struct cgroup * cgrp)2969 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2970 {
2971 	DEFINE_CGROUP_MGCTX(mgctx);
2972 	struct cgroup_subsys_state *d_css;
2973 	struct cgroup *dsct;
2974 	struct css_set *src_cset;
2975 	bool has_tasks;
2976 	int ret;
2977 
2978 	lockdep_assert_held(&cgroup_mutex);
2979 
2980 	/* look up all csses currently attached to @cgrp's subtree */
2981 	spin_lock_irq(&css_set_lock);
2982 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2983 		struct cgrp_cset_link *link;
2984 
2985 		list_for_each_entry(link, &dsct->cset_links, cset_link)
2986 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2987 	}
2988 	spin_unlock_irq(&css_set_lock);
2989 
2990 	/*
2991 	 * We need to write-lock threadgroup_rwsem while migrating tasks.
2992 	 * However, if there are no source csets for @cgrp, changing its
2993 	 * controllers isn't gonna produce any task migrations and the
2994 	 * write-locking can be skipped safely.
2995 	 */
2996 	has_tasks = !list_empty(&mgctx.preloaded_src_csets);
2997 	cgroup_attach_lock(has_tasks);
2998 
2999 	/* NULL dst indicates self on default hierarchy */
3000 	ret = cgroup_migrate_prepare_dst(&mgctx);
3001 	if (ret)
3002 		goto out_finish;
3003 
3004 	spin_lock_irq(&css_set_lock);
3005 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3006 			    mg_src_preload_node) {
3007 		struct task_struct *task, *ntask;
3008 
3009 		/* all tasks in src_csets need to be migrated */
3010 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3011 			cgroup_migrate_add_task(task, &mgctx);
3012 	}
3013 	spin_unlock_irq(&css_set_lock);
3014 
3015 	ret = cgroup_migrate_execute(&mgctx);
3016 out_finish:
3017 	cgroup_migrate_finish(&mgctx);
3018 	cgroup_attach_unlock(has_tasks);
3019 	return ret;
3020 }
3021 
3022 /**
3023  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3024  * @cgrp: root of the target subtree
3025  *
3026  * Because css offlining is asynchronous, userland may try to re-enable a
3027  * controller while the previous css is still around.  This function grabs
3028  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3029  */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)3030 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3031 	__acquires(&cgroup_mutex)
3032 {
3033 	struct cgroup *dsct;
3034 	struct cgroup_subsys_state *d_css;
3035 	struct cgroup_subsys *ss;
3036 	int ssid;
3037 
3038 restart:
3039 	mutex_lock(&cgroup_mutex);
3040 
3041 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3042 		for_each_subsys(ss, ssid) {
3043 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3044 			DEFINE_WAIT(wait);
3045 
3046 			if (!css || !percpu_ref_is_dying(&css->refcnt))
3047 				continue;
3048 
3049 			cgroup_get_live(dsct);
3050 			prepare_to_wait(&dsct->offline_waitq, &wait,
3051 					TASK_UNINTERRUPTIBLE);
3052 
3053 			mutex_unlock(&cgroup_mutex);
3054 			schedule();
3055 			finish_wait(&dsct->offline_waitq, &wait);
3056 
3057 			cgroup_put(dsct);
3058 			goto restart;
3059 		}
3060 	}
3061 }
3062 
3063 /**
3064  * cgroup_save_control - save control masks and dom_cgrp of a subtree
3065  * @cgrp: root of the target subtree
3066  *
3067  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3068  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3069  * itself.
3070  */
cgroup_save_control(struct cgroup * cgrp)3071 static void cgroup_save_control(struct cgroup *cgrp)
3072 {
3073 	struct cgroup *dsct;
3074 	struct cgroup_subsys_state *d_css;
3075 
3076 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3077 		dsct->old_subtree_control = dsct->subtree_control;
3078 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3079 		dsct->old_dom_cgrp = dsct->dom_cgrp;
3080 	}
3081 }
3082 
3083 /**
3084  * cgroup_propagate_control - refresh control masks of a subtree
3085  * @cgrp: root of the target subtree
3086  *
3087  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3088  * ->subtree_control and propagate controller availability through the
3089  * subtree so that descendants don't have unavailable controllers enabled.
3090  */
cgroup_propagate_control(struct cgroup * cgrp)3091 static void cgroup_propagate_control(struct cgroup *cgrp)
3092 {
3093 	struct cgroup *dsct;
3094 	struct cgroup_subsys_state *d_css;
3095 
3096 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3097 		dsct->subtree_control &= cgroup_control(dsct);
3098 		dsct->subtree_ss_mask =
3099 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3100 						    cgroup_ss_mask(dsct));
3101 	}
3102 }
3103 
3104 /**
3105  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3106  * @cgrp: root of the target subtree
3107  *
3108  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3109  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3110  * itself.
3111  */
cgroup_restore_control(struct cgroup * cgrp)3112 static void cgroup_restore_control(struct cgroup *cgrp)
3113 {
3114 	struct cgroup *dsct;
3115 	struct cgroup_subsys_state *d_css;
3116 
3117 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3118 		dsct->subtree_control = dsct->old_subtree_control;
3119 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3120 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3121 	}
3122 }
3123 
css_visible(struct cgroup_subsys_state * css)3124 static bool css_visible(struct cgroup_subsys_state *css)
3125 {
3126 	struct cgroup_subsys *ss = css->ss;
3127 	struct cgroup *cgrp = css->cgroup;
3128 
3129 	if (cgroup_control(cgrp) & (1 << ss->id))
3130 		return true;
3131 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3132 		return false;
3133 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3134 }
3135 
3136 /**
3137  * cgroup_apply_control_enable - enable or show csses according to control
3138  * @cgrp: root of the target subtree
3139  *
3140  * Walk @cgrp's subtree and create new csses or make the existing ones
3141  * visible.  A css is created invisible if it's being implicitly enabled
3142  * through dependency.  An invisible css is made visible when the userland
3143  * explicitly enables it.
3144  *
3145  * Returns 0 on success, -errno on failure.  On failure, csses which have
3146  * been processed already aren't cleaned up.  The caller is responsible for
3147  * cleaning up with cgroup_apply_control_disable().
3148  */
cgroup_apply_control_enable(struct cgroup * cgrp)3149 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3150 {
3151 	struct cgroup *dsct;
3152 	struct cgroup_subsys_state *d_css;
3153 	struct cgroup_subsys *ss;
3154 	int ssid, ret;
3155 
3156 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3157 		for_each_subsys(ss, ssid) {
3158 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3159 
3160 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3161 				continue;
3162 
3163 			if (!css) {
3164 				css = css_create(dsct, ss);
3165 				if (IS_ERR(css))
3166 					return PTR_ERR(css);
3167 			}
3168 
3169 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3170 
3171 			if (css_visible(css)) {
3172 				ret = css_populate_dir(css);
3173 				if (ret)
3174 					return ret;
3175 			}
3176 		}
3177 	}
3178 
3179 	return 0;
3180 }
3181 
3182 /**
3183  * cgroup_apply_control_disable - kill or hide csses according to control
3184  * @cgrp: root of the target subtree
3185  *
3186  * Walk @cgrp's subtree and kill and hide csses so that they match
3187  * cgroup_ss_mask() and cgroup_visible_mask().
3188  *
3189  * A css is hidden when the userland requests it to be disabled while other
3190  * subsystems are still depending on it.  The css must not actively control
3191  * resources and be in the vanilla state if it's made visible again later.
3192  * Controllers which may be depended upon should provide ->css_reset() for
3193  * this purpose.
3194  */
cgroup_apply_control_disable(struct cgroup * cgrp)3195 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3196 {
3197 	struct cgroup *dsct;
3198 	struct cgroup_subsys_state *d_css;
3199 	struct cgroup_subsys *ss;
3200 	int ssid;
3201 
3202 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3203 		for_each_subsys(ss, ssid) {
3204 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3205 
3206 			if (!css)
3207 				continue;
3208 
3209 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3210 
3211 			if (css->parent &&
3212 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3213 				kill_css(css);
3214 			} else if (!css_visible(css)) {
3215 				css_clear_dir(css);
3216 				if (ss->css_reset)
3217 					ss->css_reset(css);
3218 			}
3219 		}
3220 	}
3221 }
3222 
3223 /**
3224  * cgroup_apply_control - apply control mask updates to the subtree
3225  * @cgrp: root of the target subtree
3226  *
3227  * subsystems can be enabled and disabled in a subtree using the following
3228  * steps.
3229  *
3230  * 1. Call cgroup_save_control() to stash the current state.
3231  * 2. Update ->subtree_control masks in the subtree as desired.
3232  * 3. Call cgroup_apply_control() to apply the changes.
3233  * 4. Optionally perform other related operations.
3234  * 5. Call cgroup_finalize_control() to finish up.
3235  *
3236  * This function implements step 3 and propagates the mask changes
3237  * throughout @cgrp's subtree, updates csses accordingly and perform
3238  * process migrations.
3239  */
cgroup_apply_control(struct cgroup * cgrp)3240 static int cgroup_apply_control(struct cgroup *cgrp)
3241 {
3242 	int ret;
3243 
3244 	cgroup_propagate_control(cgrp);
3245 
3246 	ret = cgroup_apply_control_enable(cgrp);
3247 	if (ret)
3248 		return ret;
3249 
3250 	/*
3251 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3252 	 * making the following cgroup_update_dfl_csses() properly update
3253 	 * css associations of all tasks in the subtree.
3254 	 */
3255 	ret = cgroup_update_dfl_csses(cgrp);
3256 	if (ret)
3257 		return ret;
3258 
3259 	return 0;
3260 }
3261 
3262 /**
3263  * cgroup_finalize_control - finalize control mask update
3264  * @cgrp: root of the target subtree
3265  * @ret: the result of the update
3266  *
3267  * Finalize control mask update.  See cgroup_apply_control() for more info.
3268  */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3269 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3270 {
3271 	if (ret) {
3272 		cgroup_restore_control(cgrp);
3273 		cgroup_propagate_control(cgrp);
3274 	}
3275 
3276 	cgroup_apply_control_disable(cgrp);
3277 }
3278 
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3279 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3280 {
3281 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3282 
3283 	/* if nothing is getting enabled, nothing to worry about */
3284 	if (!enable)
3285 		return 0;
3286 
3287 	/* can @cgrp host any resources? */
3288 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3289 		return -EOPNOTSUPP;
3290 
3291 	/* mixables don't care */
3292 	if (cgroup_is_mixable(cgrp))
3293 		return 0;
3294 
3295 	if (domain_enable) {
3296 		/* can't enable domain controllers inside a thread subtree */
3297 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3298 			return -EOPNOTSUPP;
3299 	} else {
3300 		/*
3301 		 * Threaded controllers can handle internal competitions
3302 		 * and are always allowed inside a (prospective) thread
3303 		 * subtree.
3304 		 */
3305 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3306 			return 0;
3307 	}
3308 
3309 	/*
3310 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3311 	 * child cgroups competing against tasks.
3312 	 */
3313 	if (cgroup_has_tasks(cgrp))
3314 		return -EBUSY;
3315 
3316 	return 0;
3317 }
3318 
3319 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3320 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3321 					    char *buf, size_t nbytes,
3322 					    loff_t off)
3323 {
3324 	u16 enable = 0, disable = 0;
3325 	struct cgroup *cgrp, *child;
3326 	struct cgroup_subsys *ss;
3327 	char *tok;
3328 	int ssid, ret;
3329 
3330 	/*
3331 	 * Parse input - space separated list of subsystem names prefixed
3332 	 * with either + or -.
3333 	 */
3334 	buf = strstrip(buf);
3335 	while ((tok = strsep(&buf, " "))) {
3336 		if (tok[0] == '\0')
3337 			continue;
3338 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3339 			if (!cgroup_ssid_enabled(ssid) ||
3340 			    strcmp(tok + 1, ss->name))
3341 				continue;
3342 
3343 			if (*tok == '+') {
3344 				enable |= 1 << ssid;
3345 				disable &= ~(1 << ssid);
3346 			} else if (*tok == '-') {
3347 				disable |= 1 << ssid;
3348 				enable &= ~(1 << ssid);
3349 			} else {
3350 				return -EINVAL;
3351 			}
3352 			break;
3353 		} while_each_subsys_mask();
3354 		if (ssid == CGROUP_SUBSYS_COUNT)
3355 			return -EINVAL;
3356 	}
3357 
3358 	cgrp = cgroup_kn_lock_live(of->kn, true);
3359 	if (!cgrp)
3360 		return -ENODEV;
3361 
3362 	for_each_subsys(ss, ssid) {
3363 		if (enable & (1 << ssid)) {
3364 			if (cgrp->subtree_control & (1 << ssid)) {
3365 				enable &= ~(1 << ssid);
3366 				continue;
3367 			}
3368 
3369 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3370 				ret = -ENOENT;
3371 				goto out_unlock;
3372 			}
3373 		} else if (disable & (1 << ssid)) {
3374 			if (!(cgrp->subtree_control & (1 << ssid))) {
3375 				disable &= ~(1 << ssid);
3376 				continue;
3377 			}
3378 
3379 			/* a child has it enabled? */
3380 			cgroup_for_each_live_child(child, cgrp) {
3381 				if (child->subtree_control & (1 << ssid)) {
3382 					ret = -EBUSY;
3383 					goto out_unlock;
3384 				}
3385 			}
3386 		}
3387 	}
3388 
3389 	if (!enable && !disable) {
3390 		ret = 0;
3391 		goto out_unlock;
3392 	}
3393 
3394 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3395 	if (ret)
3396 		goto out_unlock;
3397 
3398 	/* save and update control masks and prepare csses */
3399 	cgroup_save_control(cgrp);
3400 
3401 	cgrp->subtree_control |= enable;
3402 	cgrp->subtree_control &= ~disable;
3403 
3404 	ret = cgroup_apply_control(cgrp);
3405 	cgroup_finalize_control(cgrp, ret);
3406 	if (ret)
3407 		goto out_unlock;
3408 
3409 	kernfs_activate(cgrp->kn);
3410 out_unlock:
3411 	cgroup_kn_unlock(of->kn);
3412 	return ret ?: nbytes;
3413 }
3414 
3415 /**
3416  * cgroup_enable_threaded - make @cgrp threaded
3417  * @cgrp: the target cgroup
3418  *
3419  * Called when "threaded" is written to the cgroup.type interface file and
3420  * tries to make @cgrp threaded and join the parent's resource domain.
3421  * This function is never called on the root cgroup as cgroup.type doesn't
3422  * exist on it.
3423  */
cgroup_enable_threaded(struct cgroup * cgrp)3424 static int cgroup_enable_threaded(struct cgroup *cgrp)
3425 {
3426 	struct cgroup *parent = cgroup_parent(cgrp);
3427 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3428 	struct cgroup *dsct;
3429 	struct cgroup_subsys_state *d_css;
3430 	int ret;
3431 
3432 	lockdep_assert_held(&cgroup_mutex);
3433 
3434 	/* noop if already threaded */
3435 	if (cgroup_is_threaded(cgrp))
3436 		return 0;
3437 
3438 	/*
3439 	 * If @cgroup is populated or has domain controllers enabled, it
3440 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3441 	 * test can catch the same conditions, that's only when @parent is
3442 	 * not mixable, so let's check it explicitly.
3443 	 */
3444 	if (cgroup_is_populated(cgrp) ||
3445 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3446 		return -EOPNOTSUPP;
3447 
3448 	/* we're joining the parent's domain, ensure its validity */
3449 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3450 	    !cgroup_can_be_thread_root(dom_cgrp))
3451 		return -EOPNOTSUPP;
3452 
3453 	/*
3454 	 * The following shouldn't cause actual migrations and should
3455 	 * always succeed.
3456 	 */
3457 	cgroup_save_control(cgrp);
3458 
3459 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3460 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3461 			dsct->dom_cgrp = dom_cgrp;
3462 
3463 	ret = cgroup_apply_control(cgrp);
3464 	if (!ret)
3465 		parent->nr_threaded_children++;
3466 
3467 	cgroup_finalize_control(cgrp, ret);
3468 	return ret;
3469 }
3470 
cgroup_type_show(struct seq_file * seq,void * v)3471 static int cgroup_type_show(struct seq_file *seq, void *v)
3472 {
3473 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3474 
3475 	if (cgroup_is_threaded(cgrp))
3476 		seq_puts(seq, "threaded\n");
3477 	else if (!cgroup_is_valid_domain(cgrp))
3478 		seq_puts(seq, "domain invalid\n");
3479 	else if (cgroup_is_thread_root(cgrp))
3480 		seq_puts(seq, "domain threaded\n");
3481 	else
3482 		seq_puts(seq, "domain\n");
3483 
3484 	return 0;
3485 }
3486 
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3487 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3488 				 size_t nbytes, loff_t off)
3489 {
3490 	struct cgroup *cgrp;
3491 	int ret;
3492 
3493 	/* only switching to threaded mode is supported */
3494 	if (strcmp(strstrip(buf), "threaded"))
3495 		return -EINVAL;
3496 
3497 	/* drain dying csses before we re-apply (threaded) subtree control */
3498 	cgrp = cgroup_kn_lock_live(of->kn, true);
3499 	if (!cgrp)
3500 		return -ENOENT;
3501 
3502 	/* threaded can only be enabled */
3503 	ret = cgroup_enable_threaded(cgrp);
3504 
3505 	cgroup_kn_unlock(of->kn);
3506 	return ret ?: nbytes;
3507 }
3508 
cgroup_max_descendants_show(struct seq_file * seq,void * v)3509 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3510 {
3511 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3512 	int descendants = READ_ONCE(cgrp->max_descendants);
3513 
3514 	if (descendants == INT_MAX)
3515 		seq_puts(seq, "max\n");
3516 	else
3517 		seq_printf(seq, "%d\n", descendants);
3518 
3519 	return 0;
3520 }
3521 
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3522 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3523 					   char *buf, size_t nbytes, loff_t off)
3524 {
3525 	struct cgroup *cgrp;
3526 	int descendants;
3527 	ssize_t ret;
3528 
3529 	buf = strstrip(buf);
3530 	if (!strcmp(buf, "max")) {
3531 		descendants = INT_MAX;
3532 	} else {
3533 		ret = kstrtoint(buf, 0, &descendants);
3534 		if (ret)
3535 			return ret;
3536 	}
3537 
3538 	if (descendants < 0)
3539 		return -ERANGE;
3540 
3541 	cgrp = cgroup_kn_lock_live(of->kn, false);
3542 	if (!cgrp)
3543 		return -ENOENT;
3544 
3545 	cgrp->max_descendants = descendants;
3546 
3547 	cgroup_kn_unlock(of->kn);
3548 
3549 	return nbytes;
3550 }
3551 
cgroup_max_depth_show(struct seq_file * seq,void * v)3552 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3553 {
3554 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3555 	int depth = READ_ONCE(cgrp->max_depth);
3556 
3557 	if (depth == INT_MAX)
3558 		seq_puts(seq, "max\n");
3559 	else
3560 		seq_printf(seq, "%d\n", depth);
3561 
3562 	return 0;
3563 }
3564 
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3565 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3566 				      char *buf, size_t nbytes, loff_t off)
3567 {
3568 	struct cgroup *cgrp;
3569 	ssize_t ret;
3570 	int depth;
3571 
3572 	buf = strstrip(buf);
3573 	if (!strcmp(buf, "max")) {
3574 		depth = INT_MAX;
3575 	} else {
3576 		ret = kstrtoint(buf, 0, &depth);
3577 		if (ret)
3578 			return ret;
3579 	}
3580 
3581 	if (depth < 0)
3582 		return -ERANGE;
3583 
3584 	cgrp = cgroup_kn_lock_live(of->kn, false);
3585 	if (!cgrp)
3586 		return -ENOENT;
3587 
3588 	cgrp->max_depth = depth;
3589 
3590 	cgroup_kn_unlock(of->kn);
3591 
3592 	return nbytes;
3593 }
3594 
cgroup_events_show(struct seq_file * seq,void * v)3595 static int cgroup_events_show(struct seq_file *seq, void *v)
3596 {
3597 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3598 
3599 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3600 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3601 
3602 	return 0;
3603 }
3604 
cgroup_stat_show(struct seq_file * seq,void * v)3605 static int cgroup_stat_show(struct seq_file *seq, void *v)
3606 {
3607 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3608 
3609 	seq_printf(seq, "nr_descendants %d\n",
3610 		   cgroup->nr_descendants);
3611 	seq_printf(seq, "nr_dying_descendants %d\n",
3612 		   cgroup->nr_dying_descendants);
3613 
3614 	return 0;
3615 }
3616 
cgroup_extra_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3617 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3618 						 struct cgroup *cgrp, int ssid)
3619 {
3620 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3621 	struct cgroup_subsys_state *css;
3622 	int ret;
3623 
3624 	if (!ss->css_extra_stat_show)
3625 		return 0;
3626 
3627 	css = cgroup_tryget_css(cgrp, ss);
3628 	if (!css)
3629 		return 0;
3630 
3631 	ret = ss->css_extra_stat_show(seq, css);
3632 	css_put(css);
3633 	return ret;
3634 }
3635 
cpu_stat_show(struct seq_file * seq,void * v)3636 static int cpu_stat_show(struct seq_file *seq, void *v)
3637 {
3638 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3639 	int ret = 0;
3640 
3641 	cgroup_base_stat_cputime_show(seq);
3642 #ifdef CONFIG_CGROUP_SCHED
3643 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3644 #endif
3645 	return ret;
3646 }
3647 
3648 #ifdef CONFIG_PSI
cgroup_io_pressure_show(struct seq_file * seq,void * v)3649 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3650 {
3651 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3652 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3653 
3654 	return psi_show(seq, psi, PSI_IO);
3655 }
cgroup_memory_pressure_show(struct seq_file * seq,void * v)3656 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3657 {
3658 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3659 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3660 
3661 	return psi_show(seq, psi, PSI_MEM);
3662 }
cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3663 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3664 {
3665 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3666 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3667 
3668 	return psi_show(seq, psi, PSI_CPU);
3669 }
3670 
cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3671 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3672 					  size_t nbytes, enum psi_res res)
3673 {
3674 	struct cgroup_file_ctx *ctx = of->priv;
3675 	struct psi_trigger *new;
3676 	struct cgroup *cgrp;
3677 	struct psi_group *psi;
3678 
3679 	cgrp = cgroup_kn_lock_live(of->kn, false);
3680 	if (!cgrp)
3681 		return -ENODEV;
3682 
3683 	cgroup_get(cgrp);
3684 	cgroup_kn_unlock(of->kn);
3685 
3686 	/* Allow only one trigger per file descriptor */
3687 	if (of->priv) {
3688 		cgroup_put(cgrp);
3689 		return -EBUSY;
3690 	}
3691 
3692 	psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3693 	new = psi_trigger_create(psi, buf, nbytes, res);
3694 	if (IS_ERR(new)) {
3695 		cgroup_put(cgrp);
3696 		return PTR_ERR(new);
3697 	}
3698 
3699 	smp_store_release(&ctx->psi.trigger, new);
3700 	cgroup_put(cgrp);
3701 
3702 	return nbytes;
3703 }
3704 
cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3705 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3706 					  char *buf, size_t nbytes,
3707 					  loff_t off)
3708 {
3709 	return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3710 }
3711 
cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3712 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3713 					  char *buf, size_t nbytes,
3714 					  loff_t off)
3715 {
3716 	return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3717 }
3718 
cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3719 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3720 					  char *buf, size_t nbytes,
3721 					  loff_t off)
3722 {
3723 	return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3724 }
3725 
cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)3726 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3727 					  poll_table *pt)
3728 {
3729 	struct cgroup_file_ctx *ctx = of->priv;
3730 
3731 	return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3732 }
3733 
cgroup_pressure_release(struct kernfs_open_file * of)3734 static void cgroup_pressure_release(struct kernfs_open_file *of)
3735 {
3736 	struct cgroup_file_ctx *ctx = of->priv;
3737 
3738 	psi_trigger_destroy(ctx->psi.trigger);
3739 }
3740 #endif /* CONFIG_PSI */
3741 
cgroup_freeze_show(struct seq_file * seq,void * v)3742 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3743 {
3744 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3745 
3746 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3747 
3748 	return 0;
3749 }
3750 
cgroup_freeze_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3751 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3752 				   char *buf, size_t nbytes, loff_t off)
3753 {
3754 	struct cgroup *cgrp;
3755 	ssize_t ret;
3756 	int freeze;
3757 
3758 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3759 	if (ret)
3760 		return ret;
3761 
3762 	if (freeze < 0 || freeze > 1)
3763 		return -ERANGE;
3764 
3765 	cgrp = cgroup_kn_lock_live(of->kn, false);
3766 	if (!cgrp)
3767 		return -ENOENT;
3768 
3769 	cgroup_freeze(cgrp, freeze);
3770 
3771 	cgroup_kn_unlock(of->kn);
3772 
3773 	return nbytes;
3774 }
3775 
cgroup_file_open(struct kernfs_open_file * of)3776 static int cgroup_file_open(struct kernfs_open_file *of)
3777 {
3778 	struct cftype *cft = of_cft(of);
3779 	struct cgroup_file_ctx *ctx;
3780 	int ret;
3781 
3782 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3783 	if (!ctx)
3784 		return -ENOMEM;
3785 
3786 	ctx->ns = current->nsproxy->cgroup_ns;
3787 	get_cgroup_ns(ctx->ns);
3788 	of->priv = ctx;
3789 
3790 	if (!cft->open)
3791 		return 0;
3792 
3793 	ret = cft->open(of);
3794 	if (ret) {
3795 		put_cgroup_ns(ctx->ns);
3796 		kfree(ctx);
3797 	}
3798 	return ret;
3799 }
3800 
cgroup_file_release(struct kernfs_open_file * of)3801 static void cgroup_file_release(struct kernfs_open_file *of)
3802 {
3803 	struct cftype *cft = of_cft(of);
3804 	struct cgroup_file_ctx *ctx = of->priv;
3805 
3806 	if (cft->release)
3807 		cft->release(of);
3808 	put_cgroup_ns(ctx->ns);
3809 	kfree(ctx);
3810 }
3811 
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3812 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3813 				 size_t nbytes, loff_t off)
3814 {
3815 	struct cgroup_file_ctx *ctx = of->priv;
3816 	struct cgroup *cgrp = of->kn->parent->priv;
3817 	struct cftype *cft = of_cft(of);
3818 	struct cgroup_subsys_state *css;
3819 	int ret;
3820 
3821 	if (!nbytes)
3822 		return 0;
3823 
3824 	/*
3825 	 * If namespaces are delegation boundaries, disallow writes to
3826 	 * files in an non-init namespace root from inside the namespace
3827 	 * except for the files explicitly marked delegatable -
3828 	 * cgroup.procs and cgroup.subtree_control.
3829 	 */
3830 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3831 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3832 	    ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
3833 		return -EPERM;
3834 
3835 	if (cft->write)
3836 		return cft->write(of, buf, nbytes, off);
3837 
3838 	/*
3839 	 * kernfs guarantees that a file isn't deleted with operations in
3840 	 * flight, which means that the matching css is and stays alive and
3841 	 * doesn't need to be pinned.  The RCU locking is not necessary
3842 	 * either.  It's just for the convenience of using cgroup_css().
3843 	 */
3844 	rcu_read_lock();
3845 	css = cgroup_css(cgrp, cft->ss);
3846 	rcu_read_unlock();
3847 
3848 	if (cft->write_u64) {
3849 		unsigned long long v;
3850 		ret = kstrtoull(buf, 0, &v);
3851 		if (!ret)
3852 			ret = cft->write_u64(css, cft, v);
3853 	} else if (cft->write_s64) {
3854 		long long v;
3855 		ret = kstrtoll(buf, 0, &v);
3856 		if (!ret)
3857 			ret = cft->write_s64(css, cft, v);
3858 	} else {
3859 		ret = -EINVAL;
3860 	}
3861 
3862 	return ret ?: nbytes;
3863 }
3864 
cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)3865 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3866 {
3867 	struct cftype *cft = of_cft(of);
3868 
3869 	if (cft->poll)
3870 		return cft->poll(of, pt);
3871 
3872 	return kernfs_generic_poll(of, pt);
3873 }
3874 
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)3875 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3876 {
3877 	return seq_cft(seq)->seq_start(seq, ppos);
3878 }
3879 
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)3880 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3881 {
3882 	return seq_cft(seq)->seq_next(seq, v, ppos);
3883 }
3884 
cgroup_seqfile_stop(struct seq_file * seq,void * v)3885 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3886 {
3887 	if (seq_cft(seq)->seq_stop)
3888 		seq_cft(seq)->seq_stop(seq, v);
3889 }
3890 
cgroup_seqfile_show(struct seq_file * m,void * arg)3891 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3892 {
3893 	struct cftype *cft = seq_cft(m);
3894 	struct cgroup_subsys_state *css = seq_css(m);
3895 
3896 	if (cft->seq_show)
3897 		return cft->seq_show(m, arg);
3898 
3899 	if (cft->read_u64)
3900 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3901 	else if (cft->read_s64)
3902 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3903 	else
3904 		return -EINVAL;
3905 	return 0;
3906 }
3907 
3908 static struct kernfs_ops cgroup_kf_single_ops = {
3909 	.atomic_write_len	= PAGE_SIZE,
3910 	.open			= cgroup_file_open,
3911 	.release		= cgroup_file_release,
3912 	.write			= cgroup_file_write,
3913 	.poll			= cgroup_file_poll,
3914 	.seq_show		= cgroup_seqfile_show,
3915 };
3916 
3917 static struct kernfs_ops cgroup_kf_ops = {
3918 	.atomic_write_len	= PAGE_SIZE,
3919 	.open			= cgroup_file_open,
3920 	.release		= cgroup_file_release,
3921 	.write			= cgroup_file_write,
3922 	.poll			= cgroup_file_poll,
3923 	.seq_start		= cgroup_seqfile_start,
3924 	.seq_next		= cgroup_seqfile_next,
3925 	.seq_stop		= cgroup_seqfile_stop,
3926 	.seq_show		= cgroup_seqfile_show,
3927 };
3928 
3929 /* set uid and gid of cgroup dirs and files to that of the creator */
cgroup_kn_set_ugid(struct kernfs_node * kn)3930 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3931 {
3932 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3933 			       .ia_uid = current_fsuid(),
3934 			       .ia_gid = current_fsgid(), };
3935 
3936 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3937 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3938 		return 0;
3939 
3940 	return kernfs_setattr(kn, &iattr);
3941 }
3942 
cgroup_file_notify_timer(struct timer_list * timer)3943 static void cgroup_file_notify_timer(struct timer_list *timer)
3944 {
3945 	cgroup_file_notify(container_of(timer, struct cgroup_file,
3946 					notify_timer));
3947 }
3948 
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)3949 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3950 			   struct cftype *cft)
3951 {
3952 	char name[CGROUP_FILE_NAME_MAX];
3953 	struct kernfs_node *kn;
3954 	struct lock_class_key *key = NULL;
3955 	int ret;
3956 
3957 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3958 	key = &cft->lockdep_key;
3959 #endif
3960 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3961 				  cgroup_file_mode(cft),
3962 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3963 				  0, cft->kf_ops, cft,
3964 				  NULL, key);
3965 	if (IS_ERR(kn))
3966 		return PTR_ERR(kn);
3967 
3968 	ret = cgroup_kn_set_ugid(kn);
3969 	if (ret) {
3970 		kernfs_remove(kn);
3971 		return ret;
3972 	}
3973 
3974 	if (cft->file_offset) {
3975 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3976 
3977 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3978 
3979 		spin_lock_irq(&cgroup_file_kn_lock);
3980 		cfile->kn = kn;
3981 		spin_unlock_irq(&cgroup_file_kn_lock);
3982 	}
3983 
3984 	return 0;
3985 }
3986 
3987 /**
3988  * cgroup_addrm_files - add or remove files to a cgroup directory
3989  * @css: the target css
3990  * @cgrp: the target cgroup (usually css->cgroup)
3991  * @cfts: array of cftypes to be added
3992  * @is_add: whether to add or remove
3993  *
3994  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3995  * For removals, this function never fails.
3996  */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)3997 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3998 			      struct cgroup *cgrp, struct cftype cfts[],
3999 			      bool is_add)
4000 {
4001 	struct cftype *cft, *cft_end = NULL;
4002 	int ret = 0;
4003 
4004 	lockdep_assert_held(&cgroup_mutex);
4005 
4006 restart:
4007 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4008 		/* does cft->flags tell us to skip this file on @cgrp? */
4009 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4010 			continue;
4011 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4012 			continue;
4013 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4014 			continue;
4015 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4016 			continue;
4017 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4018 			continue;
4019 		if (is_add) {
4020 			ret = cgroup_add_file(css, cgrp, cft);
4021 			if (ret) {
4022 				pr_warn("%s: failed to add %s, err=%d\n",
4023 					__func__, cft->name, ret);
4024 				cft_end = cft;
4025 				is_add = false;
4026 				goto restart;
4027 			}
4028 		} else {
4029 			cgroup_rm_file(cgrp, cft);
4030 		}
4031 	}
4032 	return ret;
4033 }
4034 
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)4035 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4036 {
4037 	struct cgroup_subsys *ss = cfts[0].ss;
4038 	struct cgroup *root = &ss->root->cgrp;
4039 	struct cgroup_subsys_state *css;
4040 	int ret = 0;
4041 
4042 	lockdep_assert_held(&cgroup_mutex);
4043 
4044 	/* add/rm files for all cgroups created before */
4045 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4046 		struct cgroup *cgrp = css->cgroup;
4047 
4048 		if (!(css->flags & CSS_VISIBLE))
4049 			continue;
4050 
4051 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4052 		if (ret)
4053 			break;
4054 	}
4055 
4056 	if (is_add && !ret)
4057 		kernfs_activate(root->kn);
4058 	return ret;
4059 }
4060 
cgroup_exit_cftypes(struct cftype * cfts)4061 static void cgroup_exit_cftypes(struct cftype *cfts)
4062 {
4063 	struct cftype *cft;
4064 
4065 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4066 		/* free copy for custom atomic_write_len, see init_cftypes() */
4067 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4068 			kfree(cft->kf_ops);
4069 		cft->kf_ops = NULL;
4070 		cft->ss = NULL;
4071 
4072 		/* revert flags set by cgroup core while adding @cfts */
4073 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
4074 	}
4075 }
4076 
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4077 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4078 {
4079 	struct cftype *cft;
4080 
4081 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4082 		struct kernfs_ops *kf_ops;
4083 
4084 		WARN_ON(cft->ss || cft->kf_ops);
4085 
4086 		if (cft->seq_start)
4087 			kf_ops = &cgroup_kf_ops;
4088 		else
4089 			kf_ops = &cgroup_kf_single_ops;
4090 
4091 		/*
4092 		 * Ugh... if @cft wants a custom max_write_len, we need to
4093 		 * make a copy of kf_ops to set its atomic_write_len.
4094 		 */
4095 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4096 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4097 			if (!kf_ops) {
4098 				cgroup_exit_cftypes(cfts);
4099 				return -ENOMEM;
4100 			}
4101 			kf_ops->atomic_write_len = cft->max_write_len;
4102 		}
4103 
4104 		cft->kf_ops = kf_ops;
4105 		cft->ss = ss;
4106 	}
4107 
4108 	return 0;
4109 }
4110 
cgroup_rm_cftypes_locked(struct cftype * cfts)4111 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4112 {
4113 	lockdep_assert_held(&cgroup_mutex);
4114 
4115 	if (!cfts || !cfts[0].ss)
4116 		return -ENOENT;
4117 
4118 	list_del(&cfts->node);
4119 	cgroup_apply_cftypes(cfts, false);
4120 	cgroup_exit_cftypes(cfts);
4121 	return 0;
4122 }
4123 
4124 /**
4125  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4126  * @cfts: zero-length name terminated array of cftypes
4127  *
4128  * Unregister @cfts.  Files described by @cfts are removed from all
4129  * existing cgroups and all future cgroups won't have them either.  This
4130  * function can be called anytime whether @cfts' subsys is attached or not.
4131  *
4132  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4133  * registered.
4134  */
cgroup_rm_cftypes(struct cftype * cfts)4135 int cgroup_rm_cftypes(struct cftype *cfts)
4136 {
4137 	int ret;
4138 
4139 	mutex_lock(&cgroup_mutex);
4140 	ret = cgroup_rm_cftypes_locked(cfts);
4141 	mutex_unlock(&cgroup_mutex);
4142 	return ret;
4143 }
4144 
4145 /**
4146  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4147  * @ss: target cgroup subsystem
4148  * @cfts: zero-length name terminated array of cftypes
4149  *
4150  * Register @cfts to @ss.  Files described by @cfts are created for all
4151  * existing cgroups to which @ss is attached and all future cgroups will
4152  * have them too.  This function can be called anytime whether @ss is
4153  * attached or not.
4154  *
4155  * Returns 0 on successful registration, -errno on failure.  Note that this
4156  * function currently returns 0 as long as @cfts registration is successful
4157  * even if some file creation attempts on existing cgroups fail.
4158  */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4159 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4160 {
4161 	int ret;
4162 
4163 	if (!cgroup_ssid_enabled(ss->id))
4164 		return 0;
4165 
4166 	if (!cfts || cfts[0].name[0] == '\0')
4167 		return 0;
4168 
4169 	ret = cgroup_init_cftypes(ss, cfts);
4170 	if (ret)
4171 		return ret;
4172 
4173 	mutex_lock(&cgroup_mutex);
4174 
4175 	list_add_tail(&cfts->node, &ss->cfts);
4176 	ret = cgroup_apply_cftypes(cfts, true);
4177 	if (ret)
4178 		cgroup_rm_cftypes_locked(cfts);
4179 
4180 	mutex_unlock(&cgroup_mutex);
4181 	return ret;
4182 }
4183 
4184 /**
4185  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4186  * @ss: target cgroup subsystem
4187  * @cfts: zero-length name terminated array of cftypes
4188  *
4189  * Similar to cgroup_add_cftypes() but the added files are only used for
4190  * the default hierarchy.
4191  */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4192 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4193 {
4194 	struct cftype *cft;
4195 
4196 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4197 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4198 	return cgroup_add_cftypes(ss, cfts);
4199 }
4200 
4201 /**
4202  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4203  * @ss: target cgroup subsystem
4204  * @cfts: zero-length name terminated array of cftypes
4205  *
4206  * Similar to cgroup_add_cftypes() but the added files are only used for
4207  * the legacy hierarchies.
4208  */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4209 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4210 {
4211 	struct cftype *cft;
4212 
4213 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4214 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4215 	return cgroup_add_cftypes(ss, cfts);
4216 }
4217 
4218 /**
4219  * cgroup_file_notify - generate a file modified event for a cgroup_file
4220  * @cfile: target cgroup_file
4221  *
4222  * @cfile must have been obtained by setting cftype->file_offset.
4223  */
cgroup_file_notify(struct cgroup_file * cfile)4224 void cgroup_file_notify(struct cgroup_file *cfile)
4225 {
4226 	unsigned long flags;
4227 
4228 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4229 	if (cfile->kn) {
4230 		unsigned long last = cfile->notified_at;
4231 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4232 
4233 		if (time_in_range(jiffies, last, next)) {
4234 			timer_reduce(&cfile->notify_timer, next);
4235 		} else {
4236 			kernfs_notify(cfile->kn);
4237 			cfile->notified_at = jiffies;
4238 		}
4239 	}
4240 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4241 }
4242 
4243 /**
4244  * css_next_child - find the next child of a given css
4245  * @pos: the current position (%NULL to initiate traversal)
4246  * @parent: css whose children to walk
4247  *
4248  * This function returns the next child of @parent and should be called
4249  * under either cgroup_mutex or RCU read lock.  The only requirement is
4250  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4251  * be returned regardless of their states.
4252  *
4253  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4254  * css which finished ->css_online() is guaranteed to be visible in the
4255  * future iterations and will stay visible until the last reference is put.
4256  * A css which hasn't finished ->css_online() or already finished
4257  * ->css_offline() may show up during traversal.  It's each subsystem's
4258  * responsibility to synchronize against on/offlining.
4259  */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)4260 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4261 					   struct cgroup_subsys_state *parent)
4262 {
4263 	struct cgroup_subsys_state *next;
4264 
4265 	cgroup_assert_mutex_or_rcu_locked();
4266 
4267 	/*
4268 	 * @pos could already have been unlinked from the sibling list.
4269 	 * Once a cgroup is removed, its ->sibling.next is no longer
4270 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4271 	 * @pos is taken off list, at which time its next pointer is valid,
4272 	 * and, as releases are serialized, the one pointed to by the next
4273 	 * pointer is guaranteed to not have started release yet.  This
4274 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4275 	 * critical section, the one pointed to by its next pointer is
4276 	 * guaranteed to not have finished its RCU grace period even if we
4277 	 * have dropped rcu_read_lock() inbetween iterations.
4278 	 *
4279 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4280 	 * dereferenced; however, as each css is given a monotonically
4281 	 * increasing unique serial number and always appended to the
4282 	 * sibling list, the next one can be found by walking the parent's
4283 	 * children until the first css with higher serial number than
4284 	 * @pos's.  While this path can be slower, it happens iff iteration
4285 	 * races against release and the race window is very small.
4286 	 */
4287 	if (!pos) {
4288 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4289 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4290 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4291 	} else {
4292 		list_for_each_entry_rcu(next, &parent->children, sibling,
4293 					lockdep_is_held(&cgroup_mutex))
4294 			if (next->serial_nr > pos->serial_nr)
4295 				break;
4296 	}
4297 
4298 	/*
4299 	 * @next, if not pointing to the head, can be dereferenced and is
4300 	 * the next sibling.
4301 	 */
4302 	if (&next->sibling != &parent->children)
4303 		return next;
4304 	return NULL;
4305 }
4306 
4307 /**
4308  * css_next_descendant_pre - find the next descendant for pre-order walk
4309  * @pos: the current position (%NULL to initiate traversal)
4310  * @root: css whose descendants to walk
4311  *
4312  * To be used by css_for_each_descendant_pre().  Find the next descendant
4313  * to visit for pre-order traversal of @root's descendants.  @root is
4314  * included in the iteration and the first node to be visited.
4315  *
4316  * While this function requires cgroup_mutex or RCU read locking, it
4317  * doesn't require the whole traversal to be contained in a single critical
4318  * section.  This function will return the correct next descendant as long
4319  * as both @pos and @root are accessible and @pos is a descendant of @root.
4320  *
4321  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4322  * css which finished ->css_online() is guaranteed to be visible in the
4323  * future iterations and will stay visible until the last reference is put.
4324  * A css which hasn't finished ->css_online() or already finished
4325  * ->css_offline() may show up during traversal.  It's each subsystem's
4326  * responsibility to synchronize against on/offlining.
4327  */
4328 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4329 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4330 			struct cgroup_subsys_state *root)
4331 {
4332 	struct cgroup_subsys_state *next;
4333 
4334 	cgroup_assert_mutex_or_rcu_locked();
4335 
4336 	/* if first iteration, visit @root */
4337 	if (!pos)
4338 		return root;
4339 
4340 	/* visit the first child if exists */
4341 	next = css_next_child(NULL, pos);
4342 	if (next)
4343 		return next;
4344 
4345 	/* no child, visit my or the closest ancestor's next sibling */
4346 	while (pos != root) {
4347 		next = css_next_child(pos, pos->parent);
4348 		if (next)
4349 			return next;
4350 		pos = pos->parent;
4351 	}
4352 
4353 	return NULL;
4354 }
4355 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4356 
4357 /**
4358  * css_rightmost_descendant - return the rightmost descendant of a css
4359  * @pos: css of interest
4360  *
4361  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4362  * is returned.  This can be used during pre-order traversal to skip
4363  * subtree of @pos.
4364  *
4365  * While this function requires cgroup_mutex or RCU read locking, it
4366  * doesn't require the whole traversal to be contained in a single critical
4367  * section.  This function will return the correct rightmost descendant as
4368  * long as @pos is accessible.
4369  */
4370 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)4371 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4372 {
4373 	struct cgroup_subsys_state *last, *tmp;
4374 
4375 	cgroup_assert_mutex_or_rcu_locked();
4376 
4377 	do {
4378 		last = pos;
4379 		/* ->prev isn't RCU safe, walk ->next till the end */
4380 		pos = NULL;
4381 		css_for_each_child(tmp, last)
4382 			pos = tmp;
4383 	} while (pos);
4384 
4385 	return last;
4386 }
4387 
4388 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4389 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4390 {
4391 	struct cgroup_subsys_state *last;
4392 
4393 	do {
4394 		last = pos;
4395 		pos = css_next_child(NULL, pos);
4396 	} while (pos);
4397 
4398 	return last;
4399 }
4400 
4401 /**
4402  * css_next_descendant_post - find the next descendant for post-order walk
4403  * @pos: the current position (%NULL to initiate traversal)
4404  * @root: css whose descendants to walk
4405  *
4406  * To be used by css_for_each_descendant_post().  Find the next descendant
4407  * to visit for post-order traversal of @root's descendants.  @root is
4408  * included in the iteration and the last node to be visited.
4409  *
4410  * While this function requires cgroup_mutex or RCU read locking, it
4411  * doesn't require the whole traversal to be contained in a single critical
4412  * section.  This function will return the correct next descendant as long
4413  * as both @pos and @cgroup are accessible and @pos is a descendant of
4414  * @cgroup.
4415  *
4416  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4417  * css which finished ->css_online() is guaranteed to be visible in the
4418  * future iterations and will stay visible until the last reference is put.
4419  * A css which hasn't finished ->css_online() or already finished
4420  * ->css_offline() may show up during traversal.  It's each subsystem's
4421  * responsibility to synchronize against on/offlining.
4422  */
4423 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4424 css_next_descendant_post(struct cgroup_subsys_state *pos,
4425 			 struct cgroup_subsys_state *root)
4426 {
4427 	struct cgroup_subsys_state *next;
4428 
4429 	cgroup_assert_mutex_or_rcu_locked();
4430 
4431 	/* if first iteration, visit leftmost descendant which may be @root */
4432 	if (!pos)
4433 		return css_leftmost_descendant(root);
4434 
4435 	/* if we visited @root, we're done */
4436 	if (pos == root)
4437 		return NULL;
4438 
4439 	/* if there's an unvisited sibling, visit its leftmost descendant */
4440 	next = css_next_child(pos, pos->parent);
4441 	if (next)
4442 		return css_leftmost_descendant(next);
4443 
4444 	/* no sibling left, visit parent */
4445 	return pos->parent;
4446 }
4447 
4448 /**
4449  * css_has_online_children - does a css have online children
4450  * @css: the target css
4451  *
4452  * Returns %true if @css has any online children; otherwise, %false.  This
4453  * function can be called from any context but the caller is responsible
4454  * for synchronizing against on/offlining as necessary.
4455  */
css_has_online_children(struct cgroup_subsys_state * css)4456 bool css_has_online_children(struct cgroup_subsys_state *css)
4457 {
4458 	struct cgroup_subsys_state *child;
4459 	bool ret = false;
4460 
4461 	rcu_read_lock();
4462 	css_for_each_child(child, css) {
4463 		if (child->flags & CSS_ONLINE) {
4464 			ret = true;
4465 			break;
4466 		}
4467 	}
4468 	rcu_read_unlock();
4469 	return ret;
4470 }
4471 
css_task_iter_next_css_set(struct css_task_iter * it)4472 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4473 {
4474 	struct list_head *l;
4475 	struct cgrp_cset_link *link;
4476 	struct css_set *cset;
4477 
4478 	lockdep_assert_held(&css_set_lock);
4479 
4480 	/* find the next threaded cset */
4481 	if (it->tcset_pos) {
4482 		l = it->tcset_pos->next;
4483 
4484 		if (l != it->tcset_head) {
4485 			it->tcset_pos = l;
4486 			return container_of(l, struct css_set,
4487 					    threaded_csets_node);
4488 		}
4489 
4490 		it->tcset_pos = NULL;
4491 	}
4492 
4493 	/* find the next cset */
4494 	l = it->cset_pos;
4495 	l = l->next;
4496 	if (l == it->cset_head) {
4497 		it->cset_pos = NULL;
4498 		return NULL;
4499 	}
4500 
4501 	if (it->ss) {
4502 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4503 	} else {
4504 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4505 		cset = link->cset;
4506 	}
4507 
4508 	it->cset_pos = l;
4509 
4510 	/* initialize threaded css_set walking */
4511 	if (it->flags & CSS_TASK_ITER_THREADED) {
4512 		if (it->cur_dcset)
4513 			put_css_set_locked(it->cur_dcset);
4514 		it->cur_dcset = cset;
4515 		get_css_set(cset);
4516 
4517 		it->tcset_head = &cset->threaded_csets;
4518 		it->tcset_pos = &cset->threaded_csets;
4519 	}
4520 
4521 	return cset;
4522 }
4523 
4524 /**
4525  * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4526  * @it: the iterator to advance
4527  *
4528  * Advance @it to the next css_set to walk.
4529  */
css_task_iter_advance_css_set(struct css_task_iter * it)4530 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4531 {
4532 	struct css_set *cset;
4533 
4534 	lockdep_assert_held(&css_set_lock);
4535 
4536 	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4537 	while ((cset = css_task_iter_next_css_set(it))) {
4538 		if (!list_empty(&cset->tasks)) {
4539 			it->cur_tasks_head = &cset->tasks;
4540 			break;
4541 		} else if (!list_empty(&cset->mg_tasks)) {
4542 			it->cur_tasks_head = &cset->mg_tasks;
4543 			break;
4544 		} else if (!list_empty(&cset->dying_tasks)) {
4545 			it->cur_tasks_head = &cset->dying_tasks;
4546 			break;
4547 		}
4548 	}
4549 	if (!cset) {
4550 		it->task_pos = NULL;
4551 		return;
4552 	}
4553 	it->task_pos = it->cur_tasks_head->next;
4554 
4555 	/*
4556 	 * We don't keep css_sets locked across iteration steps and thus
4557 	 * need to take steps to ensure that iteration can be resumed after
4558 	 * the lock is re-acquired.  Iteration is performed at two levels -
4559 	 * css_sets and tasks in them.
4560 	 *
4561 	 * Once created, a css_set never leaves its cgroup lists, so a
4562 	 * pinned css_set is guaranteed to stay put and we can resume
4563 	 * iteration afterwards.
4564 	 *
4565 	 * Tasks may leave @cset across iteration steps.  This is resolved
4566 	 * by registering each iterator with the css_set currently being
4567 	 * walked and making css_set_move_task() advance iterators whose
4568 	 * next task is leaving.
4569 	 */
4570 	if (it->cur_cset) {
4571 		list_del(&it->iters_node);
4572 		put_css_set_locked(it->cur_cset);
4573 	}
4574 	get_css_set(cset);
4575 	it->cur_cset = cset;
4576 	list_add(&it->iters_node, &cset->task_iters);
4577 }
4578 
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4579 static void css_task_iter_skip(struct css_task_iter *it,
4580 			       struct task_struct *task)
4581 {
4582 	lockdep_assert_held(&css_set_lock);
4583 
4584 	if (it->task_pos == &task->cg_list) {
4585 		it->task_pos = it->task_pos->next;
4586 		it->flags |= CSS_TASK_ITER_SKIPPED;
4587 	}
4588 }
4589 
css_task_iter_advance(struct css_task_iter * it)4590 static void css_task_iter_advance(struct css_task_iter *it)
4591 {
4592 	struct task_struct *task;
4593 
4594 	lockdep_assert_held(&css_set_lock);
4595 repeat:
4596 	if (it->task_pos) {
4597 		/*
4598 		 * Advance iterator to find next entry. We go through cset
4599 		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4600 		 * the next cset.
4601 		 */
4602 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4603 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4604 		else
4605 			it->task_pos = it->task_pos->next;
4606 
4607 		if (it->task_pos == &it->cur_cset->tasks) {
4608 			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4609 			it->task_pos = it->cur_tasks_head->next;
4610 		}
4611 		if (it->task_pos == &it->cur_cset->mg_tasks) {
4612 			it->cur_tasks_head = &it->cur_cset->dying_tasks;
4613 			it->task_pos = it->cur_tasks_head->next;
4614 		}
4615 		if (it->task_pos == &it->cur_cset->dying_tasks)
4616 			css_task_iter_advance_css_set(it);
4617 	} else {
4618 		/* called from start, proceed to the first cset */
4619 		css_task_iter_advance_css_set(it);
4620 	}
4621 
4622 	if (!it->task_pos)
4623 		return;
4624 
4625 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4626 
4627 	if (it->flags & CSS_TASK_ITER_PROCS) {
4628 		/* if PROCS, skip over tasks which aren't group leaders */
4629 		if (!thread_group_leader(task))
4630 			goto repeat;
4631 
4632 		/* and dying leaders w/o live member threads */
4633 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4634 		    !atomic_read(&task->signal->live))
4635 			goto repeat;
4636 	} else {
4637 		/* skip all dying ones */
4638 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4639 			goto repeat;
4640 	}
4641 }
4642 
4643 /**
4644  * css_task_iter_start - initiate task iteration
4645  * @css: the css to walk tasks of
4646  * @flags: CSS_TASK_ITER_* flags
4647  * @it: the task iterator to use
4648  *
4649  * Initiate iteration through the tasks of @css.  The caller can call
4650  * css_task_iter_next() to walk through the tasks until the function
4651  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4652  * called.
4653  */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)4654 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4655 			 struct css_task_iter *it)
4656 {
4657 	memset(it, 0, sizeof(*it));
4658 
4659 	spin_lock_irq(&css_set_lock);
4660 
4661 	it->ss = css->ss;
4662 	it->flags = flags;
4663 
4664 	if (it->ss)
4665 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4666 	else
4667 		it->cset_pos = &css->cgroup->cset_links;
4668 
4669 	it->cset_head = it->cset_pos;
4670 
4671 	css_task_iter_advance(it);
4672 
4673 	spin_unlock_irq(&css_set_lock);
4674 }
4675 
4676 /**
4677  * css_task_iter_next - return the next task for the iterator
4678  * @it: the task iterator being iterated
4679  *
4680  * The "next" function for task iteration.  @it should have been
4681  * initialized via css_task_iter_start().  Returns NULL when the iteration
4682  * reaches the end.
4683  */
css_task_iter_next(struct css_task_iter * it)4684 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4685 {
4686 	if (it->cur_task) {
4687 		put_task_struct(it->cur_task);
4688 		it->cur_task = NULL;
4689 	}
4690 
4691 	spin_lock_irq(&css_set_lock);
4692 
4693 	/* @it may be half-advanced by skips, finish advancing */
4694 	if (it->flags & CSS_TASK_ITER_SKIPPED)
4695 		css_task_iter_advance(it);
4696 
4697 	if (it->task_pos) {
4698 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4699 					  cg_list);
4700 		get_task_struct(it->cur_task);
4701 		css_task_iter_advance(it);
4702 	}
4703 
4704 	spin_unlock_irq(&css_set_lock);
4705 
4706 	return it->cur_task;
4707 }
4708 
4709 /**
4710  * css_task_iter_end - finish task iteration
4711  * @it: the task iterator to finish
4712  *
4713  * Finish task iteration started by css_task_iter_start().
4714  */
css_task_iter_end(struct css_task_iter * it)4715 void css_task_iter_end(struct css_task_iter *it)
4716 {
4717 	if (it->cur_cset) {
4718 		spin_lock_irq(&css_set_lock);
4719 		list_del(&it->iters_node);
4720 		put_css_set_locked(it->cur_cset);
4721 		spin_unlock_irq(&css_set_lock);
4722 	}
4723 
4724 	if (it->cur_dcset)
4725 		put_css_set(it->cur_dcset);
4726 
4727 	if (it->cur_task)
4728 		put_task_struct(it->cur_task);
4729 }
4730 
cgroup_procs_release(struct kernfs_open_file * of)4731 static void cgroup_procs_release(struct kernfs_open_file *of)
4732 {
4733 	struct cgroup_file_ctx *ctx = of->priv;
4734 
4735 	if (ctx->procs.started)
4736 		css_task_iter_end(&ctx->procs.iter);
4737 }
4738 
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)4739 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4740 {
4741 	struct kernfs_open_file *of = s->private;
4742 	struct cgroup_file_ctx *ctx = of->priv;
4743 
4744 	if (pos)
4745 		(*pos)++;
4746 
4747 	return css_task_iter_next(&ctx->procs.iter);
4748 }
4749 
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)4750 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4751 				  unsigned int iter_flags)
4752 {
4753 	struct kernfs_open_file *of = s->private;
4754 	struct cgroup *cgrp = seq_css(s)->cgroup;
4755 	struct cgroup_file_ctx *ctx = of->priv;
4756 	struct css_task_iter *it = &ctx->procs.iter;
4757 
4758 	/*
4759 	 * When a seq_file is seeked, it's always traversed sequentially
4760 	 * from position 0, so we can simply keep iterating on !0 *pos.
4761 	 */
4762 	if (!ctx->procs.started) {
4763 		if (WARN_ON_ONCE((*pos)))
4764 			return ERR_PTR(-EINVAL);
4765 		css_task_iter_start(&cgrp->self, iter_flags, it);
4766 		ctx->procs.started = true;
4767 	} else if (!(*pos)) {
4768 		css_task_iter_end(it);
4769 		css_task_iter_start(&cgrp->self, iter_flags, it);
4770 	} else
4771 		return it->cur_task;
4772 
4773 	return cgroup_procs_next(s, NULL, NULL);
4774 }
4775 
cgroup_procs_start(struct seq_file * s,loff_t * pos)4776 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4777 {
4778 	struct cgroup *cgrp = seq_css(s)->cgroup;
4779 
4780 	/*
4781 	 * All processes of a threaded subtree belong to the domain cgroup
4782 	 * of the subtree.  Only threads can be distributed across the
4783 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4784 	 * They're always empty anyway.
4785 	 */
4786 	if (cgroup_is_threaded(cgrp))
4787 		return ERR_PTR(-EOPNOTSUPP);
4788 
4789 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4790 					    CSS_TASK_ITER_THREADED);
4791 }
4792 
cgroup_procs_show(struct seq_file * s,void * v)4793 static int cgroup_procs_show(struct seq_file *s, void *v)
4794 {
4795 	seq_printf(s, "%d\n", task_pid_vnr(v));
4796 	return 0;
4797 }
4798 
cgroup_may_write(const struct cgroup * cgrp,struct super_block * sb)4799 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4800 {
4801 	int ret;
4802 	struct inode *inode;
4803 
4804 	lockdep_assert_held(&cgroup_mutex);
4805 
4806 	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4807 	if (!inode)
4808 		return -ENOMEM;
4809 
4810 	ret = inode_permission(inode, MAY_WRITE);
4811 	iput(inode);
4812 	return ret;
4813 }
4814 
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,struct cgroup_namespace * ns)4815 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4816 					 struct cgroup *dst_cgrp,
4817 					 struct super_block *sb,
4818 					 struct cgroup_namespace *ns)
4819 {
4820 	struct cgroup *com_cgrp = src_cgrp;
4821 	int ret;
4822 
4823 	lockdep_assert_held(&cgroup_mutex);
4824 
4825 	/* find the common ancestor */
4826 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4827 		com_cgrp = cgroup_parent(com_cgrp);
4828 
4829 	/* %current should be authorized to migrate to the common ancestor */
4830 	ret = cgroup_may_write(com_cgrp, sb);
4831 	if (ret)
4832 		return ret;
4833 
4834 	/*
4835 	 * If namespaces are delegation boundaries, %current must be able
4836 	 * to see both source and destination cgroups from its namespace.
4837 	 */
4838 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4839 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4840 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4841 		return -ENOENT;
4842 
4843 	return 0;
4844 }
4845 
cgroup_attach_permissions(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,bool threadgroup,struct cgroup_namespace * ns)4846 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4847 				     struct cgroup *dst_cgrp,
4848 				     struct super_block *sb, bool threadgroup,
4849 				     struct cgroup_namespace *ns)
4850 {
4851 	int ret = 0;
4852 
4853 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
4854 	if (ret)
4855 		return ret;
4856 
4857 	ret = cgroup_migrate_vet_dst(dst_cgrp);
4858 	if (ret)
4859 		return ret;
4860 
4861 	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4862 		ret = -EOPNOTSUPP;
4863 
4864 	return ret;
4865 }
4866 
__cgroup_procs_write(struct kernfs_open_file * of,char * buf,bool threadgroup)4867 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
4868 				    bool threadgroup)
4869 {
4870 	struct cgroup_file_ctx *ctx = of->priv;
4871 	struct cgroup *src_cgrp, *dst_cgrp;
4872 	struct task_struct *task;
4873 	const struct cred *saved_cred;
4874 	ssize_t ret;
4875 	bool threadgroup_locked;
4876 
4877 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4878 	if (!dst_cgrp)
4879 		return -ENODEV;
4880 
4881 	task = cgroup_procs_write_start(buf, true, &threadgroup_locked);
4882 	ret = PTR_ERR_OR_ZERO(task);
4883 	if (ret)
4884 		goto out_unlock;
4885 
4886 	/* find the source cgroup */
4887 	spin_lock_irq(&css_set_lock);
4888 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4889 	spin_unlock_irq(&css_set_lock);
4890 
4891 	/*
4892 	 * Process and thread migrations follow same delegation rule. Check
4893 	 * permissions using the credentials from file open to protect against
4894 	 * inherited fd attacks.
4895 	 */
4896 	saved_cred = override_creds(of->file->f_cred);
4897 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4898 					of->file->f_path.dentry->d_sb,
4899 					threadgroup, ctx->ns);
4900 	revert_creds(saved_cred);
4901 	if (ret)
4902 		goto out_finish;
4903 
4904 	ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
4905 
4906 out_finish:
4907 	cgroup_procs_write_finish(task, threadgroup_locked);
4908 out_unlock:
4909 	cgroup_kn_unlock(of->kn);
4910 
4911 	return ret;
4912 }
4913 
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4914 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4915 				  char *buf, size_t nbytes, loff_t off)
4916 {
4917 	return __cgroup_procs_write(of, buf, true) ?: nbytes;
4918 }
4919 
cgroup_threads_start(struct seq_file * s,loff_t * pos)4920 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4921 {
4922 	return __cgroup_procs_start(s, pos, 0);
4923 }
4924 
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4925 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4926 				    char *buf, size_t nbytes, loff_t off)
4927 {
4928 	return __cgroup_procs_write(of, buf, false) ?: nbytes;
4929 }
4930 
4931 /* cgroup core interface files for the default hierarchy */
4932 static struct cftype cgroup_base_files[] = {
4933 	{
4934 		.name = "cgroup.type",
4935 		.flags = CFTYPE_NOT_ON_ROOT,
4936 		.seq_show = cgroup_type_show,
4937 		.write = cgroup_type_write,
4938 	},
4939 	{
4940 		.name = "cgroup.procs",
4941 		.flags = CFTYPE_NS_DELEGATABLE,
4942 		.file_offset = offsetof(struct cgroup, procs_file),
4943 		.release = cgroup_procs_release,
4944 		.seq_start = cgroup_procs_start,
4945 		.seq_next = cgroup_procs_next,
4946 		.seq_show = cgroup_procs_show,
4947 		.write = cgroup_procs_write,
4948 	},
4949 	{
4950 		.name = "cgroup.threads",
4951 		.flags = CFTYPE_NS_DELEGATABLE,
4952 		.release = cgroup_procs_release,
4953 		.seq_start = cgroup_threads_start,
4954 		.seq_next = cgroup_procs_next,
4955 		.seq_show = cgroup_procs_show,
4956 		.write = cgroup_threads_write,
4957 	},
4958 	{
4959 		.name = "cgroup.controllers",
4960 		.seq_show = cgroup_controllers_show,
4961 	},
4962 	{
4963 		.name = "cgroup.subtree_control",
4964 		.flags = CFTYPE_NS_DELEGATABLE,
4965 		.seq_show = cgroup_subtree_control_show,
4966 		.write = cgroup_subtree_control_write,
4967 	},
4968 	{
4969 		.name = "cgroup.events",
4970 		.flags = CFTYPE_NOT_ON_ROOT,
4971 		.file_offset = offsetof(struct cgroup, events_file),
4972 		.seq_show = cgroup_events_show,
4973 	},
4974 	{
4975 		.name = "cgroup.max.descendants",
4976 		.seq_show = cgroup_max_descendants_show,
4977 		.write = cgroup_max_descendants_write,
4978 	},
4979 	{
4980 		.name = "cgroup.max.depth",
4981 		.seq_show = cgroup_max_depth_show,
4982 		.write = cgroup_max_depth_write,
4983 	},
4984 	{
4985 		.name = "cgroup.stat",
4986 		.seq_show = cgroup_stat_show,
4987 	},
4988 	{
4989 		.name = "cgroup.freeze",
4990 		.flags = CFTYPE_NOT_ON_ROOT,
4991 		.seq_show = cgroup_freeze_show,
4992 		.write = cgroup_freeze_write,
4993 	},
4994 	{
4995 		.name = "cpu.stat",
4996 		.seq_show = cpu_stat_show,
4997 	},
4998 #ifdef CONFIG_PSI
4999 	{
5000 		.name = "io.pressure",
5001 		.seq_show = cgroup_io_pressure_show,
5002 		.write = cgroup_io_pressure_write,
5003 		.poll = cgroup_pressure_poll,
5004 		.release = cgroup_pressure_release,
5005 	},
5006 	{
5007 		.name = "memory.pressure",
5008 		.seq_show = cgroup_memory_pressure_show,
5009 		.write = cgroup_memory_pressure_write,
5010 		.poll = cgroup_pressure_poll,
5011 		.release = cgroup_pressure_release,
5012 	},
5013 	{
5014 		.name = "cpu.pressure",
5015 		.seq_show = cgroup_cpu_pressure_show,
5016 		.write = cgroup_cpu_pressure_write,
5017 		.poll = cgroup_pressure_poll,
5018 		.release = cgroup_pressure_release,
5019 	},
5020 #endif /* CONFIG_PSI */
5021 	{ }	/* terminate */
5022 };
5023 
5024 /*
5025  * css destruction is four-stage process.
5026  *
5027  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
5028  *    Implemented in kill_css().
5029  *
5030  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5031  *    and thus css_tryget_online() is guaranteed to fail, the css can be
5032  *    offlined by invoking offline_css().  After offlining, the base ref is
5033  *    put.  Implemented in css_killed_work_fn().
5034  *
5035  * 3. When the percpu_ref reaches zero, the only possible remaining
5036  *    accessors are inside RCU read sections.  css_release() schedules the
5037  *    RCU callback.
5038  *
5039  * 4. After the grace period, the css can be freed.  Implemented in
5040  *    css_free_work_fn().
5041  *
5042  * It is actually hairier because both step 2 and 4 require process context
5043  * and thus involve punting to css->destroy_work adding two additional
5044  * steps to the already complex sequence.
5045  */
css_free_rwork_fn(struct work_struct * work)5046 static void css_free_rwork_fn(struct work_struct *work)
5047 {
5048 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5049 				struct cgroup_subsys_state, destroy_rwork);
5050 	struct cgroup_subsys *ss = css->ss;
5051 	struct cgroup *cgrp = css->cgroup;
5052 
5053 	percpu_ref_exit(&css->refcnt);
5054 
5055 	if (ss) {
5056 		/* css free path */
5057 		struct cgroup_subsys_state *parent = css->parent;
5058 		int id = css->id;
5059 
5060 		ss->css_free(css);
5061 		cgroup_idr_remove(&ss->css_idr, id);
5062 		cgroup_put(cgrp);
5063 
5064 		if (parent)
5065 			css_put(parent);
5066 	} else {
5067 		/* cgroup free path */
5068 		atomic_dec(&cgrp->root->nr_cgrps);
5069 		cgroup1_pidlist_destroy_all(cgrp);
5070 		cancel_work_sync(&cgrp->release_agent_work);
5071 
5072 		if (cgroup_parent(cgrp)) {
5073 			/*
5074 			 * We get a ref to the parent, and put the ref when
5075 			 * this cgroup is being freed, so it's guaranteed
5076 			 * that the parent won't be destroyed before its
5077 			 * children.
5078 			 */
5079 			cgroup_put(cgroup_parent(cgrp));
5080 			kernfs_put(cgrp->kn);
5081 			psi_cgroup_free(cgrp);
5082 			if (cgroup_on_dfl(cgrp))
5083 				cgroup_rstat_exit(cgrp);
5084 			kfree(cgrp);
5085 		} else {
5086 			/*
5087 			 * This is root cgroup's refcnt reaching zero,
5088 			 * which indicates that the root should be
5089 			 * released.
5090 			 */
5091 			cgroup_destroy_root(cgrp->root);
5092 		}
5093 	}
5094 }
5095 
css_release_work_fn(struct work_struct * work)5096 static void css_release_work_fn(struct work_struct *work)
5097 {
5098 	struct cgroup_subsys_state *css =
5099 		container_of(work, struct cgroup_subsys_state, destroy_work);
5100 	struct cgroup_subsys *ss = css->ss;
5101 	struct cgroup *cgrp = css->cgroup;
5102 
5103 	mutex_lock(&cgroup_mutex);
5104 
5105 	css->flags |= CSS_RELEASED;
5106 	list_del_rcu(&css->sibling);
5107 
5108 	if (ss) {
5109 		/* css release path */
5110 		if (!list_empty(&css->rstat_css_node)) {
5111 			cgroup_rstat_flush(cgrp);
5112 			list_del_rcu(&css->rstat_css_node);
5113 		}
5114 
5115 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5116 		if (ss->css_released)
5117 			ss->css_released(css);
5118 	} else {
5119 		struct cgroup *tcgrp;
5120 
5121 		/* cgroup release path */
5122 		TRACE_CGROUP_PATH(release, cgrp);
5123 
5124 		if (cgroup_on_dfl(cgrp))
5125 			cgroup_rstat_flush(cgrp);
5126 
5127 		spin_lock_irq(&css_set_lock);
5128 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5129 		     tcgrp = cgroup_parent(tcgrp))
5130 			tcgrp->nr_dying_descendants--;
5131 		spin_unlock_irq(&css_set_lock);
5132 
5133 		/*
5134 		 * There are two control paths which try to determine
5135 		 * cgroup from dentry without going through kernfs -
5136 		 * cgroupstats_build() and css_tryget_online_from_dir().
5137 		 * Those are supported by RCU protecting clearing of
5138 		 * cgrp->kn->priv backpointer.
5139 		 */
5140 		if (cgrp->kn)
5141 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5142 					 NULL);
5143 		if (css->parent && !css->parent->parent &&
5144 		    list_empty(&css->parent->children))
5145 			wake_up(&cgrp->root->wait);
5146 	}
5147 	mutex_unlock(&cgroup_mutex);
5148 
5149 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5150 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5151 }
5152 
css_release(struct percpu_ref * ref)5153 static void css_release(struct percpu_ref *ref)
5154 {
5155 	struct cgroup_subsys_state *css =
5156 		container_of(ref, struct cgroup_subsys_state, refcnt);
5157 
5158 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5159 	queue_work(cgroup_destroy_wq, &css->destroy_work);
5160 }
5161 
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5162 static void init_and_link_css(struct cgroup_subsys_state *css,
5163 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5164 {
5165 	lockdep_assert_held(&cgroup_mutex);
5166 
5167 	cgroup_get_live(cgrp);
5168 
5169 	memset(css, 0, sizeof(*css));
5170 	css->cgroup = cgrp;
5171 	css->ss = ss;
5172 	css->id = -1;
5173 	INIT_LIST_HEAD(&css->sibling);
5174 	INIT_LIST_HEAD(&css->children);
5175 	INIT_LIST_HEAD(&css->rstat_css_node);
5176 	css->serial_nr = css_serial_nr_next++;
5177 	atomic_set(&css->online_cnt, 0);
5178 
5179 	if (cgroup_parent(cgrp)) {
5180 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5181 		css_get(css->parent);
5182 	}
5183 
5184 	if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5185 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5186 
5187 	BUG_ON(cgroup_css(cgrp, ss));
5188 }
5189 
5190 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)5191 static int online_css(struct cgroup_subsys_state *css)
5192 {
5193 	struct cgroup_subsys *ss = css->ss;
5194 	int ret = 0;
5195 
5196 	lockdep_assert_held(&cgroup_mutex);
5197 
5198 	if (ss->css_online)
5199 		ret = ss->css_online(css);
5200 	if (!ret) {
5201 		css->flags |= CSS_ONLINE;
5202 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5203 
5204 		atomic_inc(&css->online_cnt);
5205 		if (css->parent)
5206 			atomic_inc(&css->parent->online_cnt);
5207 	}
5208 	return ret;
5209 }
5210 
5211 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)5212 static void offline_css(struct cgroup_subsys_state *css)
5213 {
5214 	struct cgroup_subsys *ss = css->ss;
5215 
5216 	lockdep_assert_held(&cgroup_mutex);
5217 
5218 	if (!(css->flags & CSS_ONLINE))
5219 		return;
5220 
5221 	if (ss->css_offline)
5222 		ss->css_offline(css);
5223 
5224 	css->flags &= ~CSS_ONLINE;
5225 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5226 
5227 	wake_up_all(&css->cgroup->offline_waitq);
5228 }
5229 
5230 /**
5231  * css_create - create a cgroup_subsys_state
5232  * @cgrp: the cgroup new css will be associated with
5233  * @ss: the subsys of new css
5234  *
5235  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5236  * css is online and installed in @cgrp.  This function doesn't create the
5237  * interface files.  Returns 0 on success, -errno on failure.
5238  */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5239 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5240 					      struct cgroup_subsys *ss)
5241 {
5242 	struct cgroup *parent = cgroup_parent(cgrp);
5243 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5244 	struct cgroup_subsys_state *css;
5245 	int err;
5246 
5247 	lockdep_assert_held(&cgroup_mutex);
5248 
5249 	css = ss->css_alloc(parent_css);
5250 	if (!css)
5251 		css = ERR_PTR(-ENOMEM);
5252 	if (IS_ERR(css))
5253 		return css;
5254 
5255 	init_and_link_css(css, ss, cgrp);
5256 
5257 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5258 	if (err)
5259 		goto err_free_css;
5260 
5261 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5262 	if (err < 0)
5263 		goto err_free_css;
5264 	css->id = err;
5265 
5266 	/* @css is ready to be brought online now, make it visible */
5267 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5268 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5269 
5270 	err = online_css(css);
5271 	if (err)
5272 		goto err_list_del;
5273 
5274 	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5275 	    cgroup_parent(parent)) {
5276 		pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5277 			current->comm, current->pid, ss->name);
5278 		if (!strcmp(ss->name, "memory"))
5279 			pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5280 		ss->warned_broken_hierarchy = true;
5281 	}
5282 
5283 	return css;
5284 
5285 err_list_del:
5286 	list_del_rcu(&css->sibling);
5287 err_free_css:
5288 	list_del_rcu(&css->rstat_css_node);
5289 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5290 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5291 	return ERR_PTR(err);
5292 }
5293 
5294 /*
5295  * The returned cgroup is fully initialized including its control mask, but
5296  * it isn't associated with its kernfs_node and doesn't have the control
5297  * mask applied.
5298  */
cgroup_create(struct cgroup * parent,const char * name,umode_t mode)5299 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5300 				    umode_t mode)
5301 {
5302 	struct cgroup_root *root = parent->root;
5303 	struct cgroup *cgrp, *tcgrp;
5304 	struct kernfs_node *kn;
5305 	int level = parent->level + 1;
5306 	int ret;
5307 
5308 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5309 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5310 		       GFP_KERNEL);
5311 	if (!cgrp)
5312 		return ERR_PTR(-ENOMEM);
5313 
5314 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5315 	if (ret)
5316 		goto out_free_cgrp;
5317 
5318 	if (cgroup_on_dfl(parent)) {
5319 		ret = cgroup_rstat_init(cgrp);
5320 		if (ret)
5321 			goto out_cancel_ref;
5322 	}
5323 
5324 	/* create the directory */
5325 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5326 	if (IS_ERR(kn)) {
5327 		ret = PTR_ERR(kn);
5328 		goto out_stat_exit;
5329 	}
5330 	cgrp->kn = kn;
5331 
5332 	init_cgroup_housekeeping(cgrp);
5333 
5334 	cgrp->self.parent = &parent->self;
5335 	cgrp->root = root;
5336 	cgrp->level = level;
5337 
5338 	ret = psi_cgroup_alloc(cgrp);
5339 	if (ret)
5340 		goto out_kernfs_remove;
5341 
5342 	ret = cgroup_bpf_inherit(cgrp);
5343 	if (ret)
5344 		goto out_psi_free;
5345 
5346 	/*
5347 	 * New cgroup inherits effective freeze counter, and
5348 	 * if the parent has to be frozen, the child has too.
5349 	 */
5350 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5351 	if (cgrp->freezer.e_freeze) {
5352 		/*
5353 		 * Set the CGRP_FREEZE flag, so when a process will be
5354 		 * attached to the child cgroup, it will become frozen.
5355 		 * At this point the new cgroup is unpopulated, so we can
5356 		 * consider it frozen immediately.
5357 		 */
5358 		set_bit(CGRP_FREEZE, &cgrp->flags);
5359 		set_bit(CGRP_FROZEN, &cgrp->flags);
5360 	}
5361 
5362 	spin_lock_irq(&css_set_lock);
5363 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5364 		cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5365 
5366 		if (tcgrp != cgrp) {
5367 			tcgrp->nr_descendants++;
5368 
5369 			/*
5370 			 * If the new cgroup is frozen, all ancestor cgroups
5371 			 * get a new frozen descendant, but their state can't
5372 			 * change because of this.
5373 			 */
5374 			if (cgrp->freezer.e_freeze)
5375 				tcgrp->freezer.nr_frozen_descendants++;
5376 		}
5377 	}
5378 	spin_unlock_irq(&css_set_lock);
5379 
5380 	if (notify_on_release(parent))
5381 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5382 
5383 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5384 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5385 
5386 	cgrp->self.serial_nr = css_serial_nr_next++;
5387 
5388 	/* allocation complete, commit to creation */
5389 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5390 	atomic_inc(&root->nr_cgrps);
5391 	cgroup_get_live(parent);
5392 
5393 	/*
5394 	 * On the default hierarchy, a child doesn't automatically inherit
5395 	 * subtree_control from the parent.  Each is configured manually.
5396 	 */
5397 	if (!cgroup_on_dfl(cgrp))
5398 		cgrp->subtree_control = cgroup_control(cgrp);
5399 
5400 	cgroup_propagate_control(cgrp);
5401 
5402 	return cgrp;
5403 
5404 out_psi_free:
5405 	psi_cgroup_free(cgrp);
5406 out_kernfs_remove:
5407 	kernfs_remove(cgrp->kn);
5408 out_stat_exit:
5409 	if (cgroup_on_dfl(parent))
5410 		cgroup_rstat_exit(cgrp);
5411 out_cancel_ref:
5412 	percpu_ref_exit(&cgrp->self.refcnt);
5413 out_free_cgrp:
5414 	kfree(cgrp);
5415 	return ERR_PTR(ret);
5416 }
5417 
cgroup_check_hierarchy_limits(struct cgroup * parent)5418 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5419 {
5420 	struct cgroup *cgroup;
5421 	int ret = false;
5422 	int level = 1;
5423 
5424 	lockdep_assert_held(&cgroup_mutex);
5425 
5426 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5427 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5428 			goto fail;
5429 
5430 		if (level > cgroup->max_depth)
5431 			goto fail;
5432 
5433 		level++;
5434 	}
5435 
5436 	ret = true;
5437 fail:
5438 	return ret;
5439 }
5440 
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5441 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5442 {
5443 	struct cgroup *parent, *cgrp;
5444 	int ret;
5445 
5446 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5447 	if (strchr(name, '\n'))
5448 		return -EINVAL;
5449 
5450 	parent = cgroup_kn_lock_live(parent_kn, false);
5451 	if (!parent)
5452 		return -ENODEV;
5453 
5454 	if (!cgroup_check_hierarchy_limits(parent)) {
5455 		ret = -EAGAIN;
5456 		goto out_unlock;
5457 	}
5458 
5459 	cgrp = cgroup_create(parent, name, mode);
5460 	if (IS_ERR(cgrp)) {
5461 		ret = PTR_ERR(cgrp);
5462 		goto out_unlock;
5463 	}
5464 
5465 	/*
5466 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5467 	 * that @cgrp->kn is always accessible.
5468 	 */
5469 	kernfs_get(cgrp->kn);
5470 
5471 	ret = cgroup_kn_set_ugid(cgrp->kn);
5472 	if (ret)
5473 		goto out_destroy;
5474 
5475 	ret = css_populate_dir(&cgrp->self);
5476 	if (ret)
5477 		goto out_destroy;
5478 
5479 	ret = cgroup_apply_control_enable(cgrp);
5480 	if (ret)
5481 		goto out_destroy;
5482 
5483 	TRACE_CGROUP_PATH(mkdir, cgrp);
5484 
5485 	/* let's create and online css's */
5486 	kernfs_activate(cgrp->kn);
5487 
5488 	ret = 0;
5489 	goto out_unlock;
5490 
5491 out_destroy:
5492 	cgroup_destroy_locked(cgrp);
5493 out_unlock:
5494 	cgroup_kn_unlock(parent_kn);
5495 	return ret;
5496 }
5497 
5498 /*
5499  * This is called when the refcnt of a css is confirmed to be killed.
5500  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5501  * initate destruction and put the css ref from kill_css().
5502  */
css_killed_work_fn(struct work_struct * work)5503 static void css_killed_work_fn(struct work_struct *work)
5504 {
5505 	struct cgroup_subsys_state *css =
5506 		container_of(work, struct cgroup_subsys_state, destroy_work);
5507 
5508 	mutex_lock(&cgroup_mutex);
5509 
5510 	do {
5511 		offline_css(css);
5512 		css_put(css);
5513 		/* @css can't go away while we're holding cgroup_mutex */
5514 		css = css->parent;
5515 	} while (css && atomic_dec_and_test(&css->online_cnt));
5516 
5517 	mutex_unlock(&cgroup_mutex);
5518 }
5519 
5520 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5521 static void css_killed_ref_fn(struct percpu_ref *ref)
5522 {
5523 	struct cgroup_subsys_state *css =
5524 		container_of(ref, struct cgroup_subsys_state, refcnt);
5525 
5526 	if (atomic_dec_and_test(&css->online_cnt)) {
5527 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5528 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5529 	}
5530 }
5531 
5532 /**
5533  * kill_css - destroy a css
5534  * @css: css to destroy
5535  *
5536  * This function initiates destruction of @css by removing cgroup interface
5537  * files and putting its base reference.  ->css_offline() will be invoked
5538  * asynchronously once css_tryget_online() is guaranteed to fail and when
5539  * the reference count reaches zero, @css will be released.
5540  */
kill_css(struct cgroup_subsys_state * css)5541 static void kill_css(struct cgroup_subsys_state *css)
5542 {
5543 	lockdep_assert_held(&cgroup_mutex);
5544 
5545 	if (css->flags & CSS_DYING)
5546 		return;
5547 
5548 	css->flags |= CSS_DYING;
5549 
5550 	/*
5551 	 * This must happen before css is disassociated with its cgroup.
5552 	 * See seq_css() for details.
5553 	 */
5554 	css_clear_dir(css);
5555 
5556 	/*
5557 	 * Killing would put the base ref, but we need to keep it alive
5558 	 * until after ->css_offline().
5559 	 */
5560 	css_get(css);
5561 
5562 	/*
5563 	 * cgroup core guarantees that, by the time ->css_offline() is
5564 	 * invoked, no new css reference will be given out via
5565 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5566 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5567 	 * guarantee that the ref is seen as killed on all CPUs on return.
5568 	 *
5569 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5570 	 * css is confirmed to be seen as killed on all CPUs.
5571 	 */
5572 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5573 }
5574 
5575 /**
5576  * cgroup_destroy_locked - the first stage of cgroup destruction
5577  * @cgrp: cgroup to be destroyed
5578  *
5579  * css's make use of percpu refcnts whose killing latency shouldn't be
5580  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5581  * guarantee that css_tryget_online() won't succeed by the time
5582  * ->css_offline() is invoked.  To satisfy all the requirements,
5583  * destruction is implemented in the following two steps.
5584  *
5585  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5586  *     userland visible parts and start killing the percpu refcnts of
5587  *     css's.  Set up so that the next stage will be kicked off once all
5588  *     the percpu refcnts are confirmed to be killed.
5589  *
5590  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5591  *     rest of destruction.  Once all cgroup references are gone, the
5592  *     cgroup is RCU-freed.
5593  *
5594  * This function implements s1.  After this step, @cgrp is gone as far as
5595  * the userland is concerned and a new cgroup with the same name may be
5596  * created.  As cgroup doesn't care about the names internally, this
5597  * doesn't cause any problem.
5598  */
cgroup_destroy_locked(struct cgroup * cgrp)5599 static int cgroup_destroy_locked(struct cgroup *cgrp)
5600 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5601 {
5602 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5603 	struct cgroup_subsys_state *css;
5604 	struct cgrp_cset_link *link;
5605 	int ssid;
5606 
5607 	lockdep_assert_held(&cgroup_mutex);
5608 
5609 	/*
5610 	 * Only migration can raise populated from zero and we're already
5611 	 * holding cgroup_mutex.
5612 	 */
5613 	if (cgroup_is_populated(cgrp))
5614 		return -EBUSY;
5615 
5616 	/*
5617 	 * Make sure there's no live children.  We can't test emptiness of
5618 	 * ->self.children as dead children linger on it while being
5619 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5620 	 */
5621 	if (css_has_online_children(&cgrp->self))
5622 		return -EBUSY;
5623 
5624 	/*
5625 	 * Mark @cgrp and the associated csets dead.  The former prevents
5626 	 * further task migration and child creation by disabling
5627 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5628 	 * the migration path.
5629 	 */
5630 	cgrp->self.flags &= ~CSS_ONLINE;
5631 
5632 	spin_lock_irq(&css_set_lock);
5633 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5634 		link->cset->dead = true;
5635 	spin_unlock_irq(&css_set_lock);
5636 
5637 	/* initiate massacre of all css's */
5638 	for_each_css(css, ssid, cgrp)
5639 		kill_css(css);
5640 
5641 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5642 	css_clear_dir(&cgrp->self);
5643 	kernfs_remove(cgrp->kn);
5644 
5645 	if (parent && cgroup_is_threaded(cgrp))
5646 		parent->nr_threaded_children--;
5647 
5648 	spin_lock_irq(&css_set_lock);
5649 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5650 		tcgrp->nr_descendants--;
5651 		tcgrp->nr_dying_descendants++;
5652 		/*
5653 		 * If the dying cgroup is frozen, decrease frozen descendants
5654 		 * counters of ancestor cgroups.
5655 		 */
5656 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5657 			tcgrp->freezer.nr_frozen_descendants--;
5658 	}
5659 	spin_unlock_irq(&css_set_lock);
5660 
5661 	cgroup1_check_for_release(parent);
5662 
5663 	cgroup_bpf_offline(cgrp);
5664 
5665 	/* put the base reference */
5666 	percpu_ref_kill(&cgrp->self.refcnt);
5667 
5668 	return 0;
5669 };
5670 
cgroup_rmdir(struct kernfs_node * kn)5671 int cgroup_rmdir(struct kernfs_node *kn)
5672 {
5673 	struct cgroup *cgrp;
5674 	int ret = 0;
5675 
5676 	cgrp = cgroup_kn_lock_live(kn, false);
5677 	if (!cgrp)
5678 		return 0;
5679 
5680 	ret = cgroup_destroy_locked(cgrp);
5681 	if (!ret)
5682 		TRACE_CGROUP_PATH(rmdir, cgrp);
5683 
5684 	cgroup_kn_unlock(kn);
5685 	return ret;
5686 }
5687 
5688 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5689 	.show_options		= cgroup_show_options,
5690 	.mkdir			= cgroup_mkdir,
5691 	.rmdir			= cgroup_rmdir,
5692 	.show_path		= cgroup_show_path,
5693 };
5694 
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)5695 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5696 {
5697 	struct cgroup_subsys_state *css;
5698 
5699 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5700 
5701 	mutex_lock(&cgroup_mutex);
5702 
5703 	idr_init(&ss->css_idr);
5704 	INIT_LIST_HEAD(&ss->cfts);
5705 
5706 	/* Create the root cgroup state for this subsystem */
5707 	ss->root = &cgrp_dfl_root;
5708 	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5709 	/* We don't handle early failures gracefully */
5710 	BUG_ON(IS_ERR(css));
5711 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5712 
5713 	/*
5714 	 * Root csses are never destroyed and we can't initialize
5715 	 * percpu_ref during early init.  Disable refcnting.
5716 	 */
5717 	css->flags |= CSS_NO_REF;
5718 
5719 	if (early) {
5720 		/* allocation can't be done safely during early init */
5721 		css->id = 1;
5722 	} else {
5723 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5724 		BUG_ON(css->id < 0);
5725 	}
5726 
5727 	/* Update the init_css_set to contain a subsys
5728 	 * pointer to this state - since the subsystem is
5729 	 * newly registered, all tasks and hence the
5730 	 * init_css_set is in the subsystem's root cgroup. */
5731 	init_css_set.subsys[ss->id] = css;
5732 
5733 	have_fork_callback |= (bool)ss->fork << ss->id;
5734 	have_exit_callback |= (bool)ss->exit << ss->id;
5735 	have_release_callback |= (bool)ss->release << ss->id;
5736 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5737 
5738 	/* At system boot, before all subsystems have been
5739 	 * registered, no tasks have been forked, so we don't
5740 	 * need to invoke fork callbacks here. */
5741 	BUG_ON(!list_empty(&init_task.tasks));
5742 
5743 	BUG_ON(online_css(css));
5744 
5745 	mutex_unlock(&cgroup_mutex);
5746 }
5747 
5748 /**
5749  * cgroup_init_early - cgroup initialization at system boot
5750  *
5751  * Initialize cgroups at system boot, and initialize any
5752  * subsystems that request early init.
5753  */
cgroup_init_early(void)5754 int __init cgroup_init_early(void)
5755 {
5756 	static struct cgroup_fs_context __initdata ctx;
5757 	struct cgroup_subsys *ss;
5758 	int i;
5759 
5760 	ctx.root = &cgrp_dfl_root;
5761 	init_cgroup_root(&ctx);
5762 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5763 
5764 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5765 
5766 	for_each_subsys(ss, i) {
5767 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5768 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5769 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5770 		     ss->id, ss->name);
5771 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5772 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5773 
5774 		ss->id = i;
5775 		ss->name = cgroup_subsys_name[i];
5776 		if (!ss->legacy_name)
5777 			ss->legacy_name = cgroup_subsys_name[i];
5778 
5779 		if (ss->early_init)
5780 			cgroup_init_subsys(ss, true);
5781 	}
5782 	return 0;
5783 }
5784 
5785 /**
5786  * cgroup_init - cgroup initialization
5787  *
5788  * Register cgroup filesystem and /proc file, and initialize
5789  * any subsystems that didn't request early init.
5790  */
cgroup_init(void)5791 int __init cgroup_init(void)
5792 {
5793 	struct cgroup_subsys *ss;
5794 	int ssid;
5795 
5796 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5797 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5798 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5799 
5800 	cgroup_rstat_boot();
5801 
5802 	/*
5803 	 * The latency of the synchronize_rcu() is too high for cgroups,
5804 	 * avoid it at the cost of forcing all readers into the slow path.
5805 	 */
5806 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5807 
5808 	get_user_ns(init_cgroup_ns.user_ns);
5809 
5810 	mutex_lock(&cgroup_mutex);
5811 
5812 	/*
5813 	 * Add init_css_set to the hash table so that dfl_root can link to
5814 	 * it during init.
5815 	 */
5816 	hash_add(css_set_table, &init_css_set.hlist,
5817 		 css_set_hash(init_css_set.subsys));
5818 
5819 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5820 
5821 	mutex_unlock(&cgroup_mutex);
5822 
5823 	for_each_subsys(ss, ssid) {
5824 		if (ss->early_init) {
5825 			struct cgroup_subsys_state *css =
5826 				init_css_set.subsys[ss->id];
5827 
5828 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5829 						   GFP_KERNEL);
5830 			BUG_ON(css->id < 0);
5831 		} else {
5832 			cgroup_init_subsys(ss, false);
5833 		}
5834 
5835 		list_add_tail(&init_css_set.e_cset_node[ssid],
5836 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5837 
5838 		/*
5839 		 * Setting dfl_root subsys_mask needs to consider the
5840 		 * disabled flag and cftype registration needs kmalloc,
5841 		 * both of which aren't available during early_init.
5842 		 */
5843 		if (!cgroup_ssid_enabled(ssid))
5844 			continue;
5845 
5846 		if (cgroup1_ssid_disabled(ssid))
5847 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5848 			       ss->name);
5849 
5850 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5851 
5852 		/* implicit controllers must be threaded too */
5853 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5854 
5855 		if (ss->implicit_on_dfl)
5856 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5857 		else if (!ss->dfl_cftypes)
5858 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5859 
5860 		if (ss->threaded)
5861 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5862 
5863 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5864 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5865 		} else {
5866 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5867 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5868 		}
5869 
5870 		if (ss->bind)
5871 			ss->bind(init_css_set.subsys[ssid]);
5872 
5873 		mutex_lock(&cgroup_mutex);
5874 		css_populate_dir(init_css_set.subsys[ssid]);
5875 		mutex_unlock(&cgroup_mutex);
5876 	}
5877 
5878 	/* init_css_set.subsys[] has been updated, re-hash */
5879 	hash_del(&init_css_set.hlist);
5880 	hash_add(css_set_table, &init_css_set.hlist,
5881 		 css_set_hash(init_css_set.subsys));
5882 
5883 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5884 	WARN_ON(register_filesystem(&cgroup_fs_type));
5885 	WARN_ON(register_filesystem(&cgroup2_fs_type));
5886 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5887 #ifdef CONFIG_CPUSETS
5888 	WARN_ON(register_filesystem(&cpuset_fs_type));
5889 #endif
5890 
5891 	return 0;
5892 }
5893 
cgroup_wq_init(void)5894 static int __init cgroup_wq_init(void)
5895 {
5896 	/*
5897 	 * There isn't much point in executing destruction path in
5898 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5899 	 * Use 1 for @max_active.
5900 	 *
5901 	 * We would prefer to do this in cgroup_init() above, but that
5902 	 * is called before init_workqueues(): so leave this until after.
5903 	 */
5904 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5905 	BUG_ON(!cgroup_destroy_wq);
5906 	return 0;
5907 }
5908 core_initcall(cgroup_wq_init);
5909 
cgroup_path_from_kernfs_id(u64 id,char * buf,size_t buflen)5910 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5911 {
5912 	struct kernfs_node *kn;
5913 
5914 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5915 	if (!kn)
5916 		return;
5917 	kernfs_path(kn, buf, buflen);
5918 	kernfs_put(kn);
5919 }
5920 
5921 /*
5922  * proc_cgroup_show()
5923  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5924  *  - Used for /proc/<pid>/cgroup.
5925  */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)5926 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5927 		     struct pid *pid, struct task_struct *tsk)
5928 {
5929 	char *buf;
5930 	int retval;
5931 	struct cgroup_root *root;
5932 
5933 	retval = -ENOMEM;
5934 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5935 	if (!buf)
5936 		goto out;
5937 
5938 	mutex_lock(&cgroup_mutex);
5939 	spin_lock_irq(&css_set_lock);
5940 
5941 	for_each_root(root) {
5942 		struct cgroup_subsys *ss;
5943 		struct cgroup *cgrp;
5944 		int ssid, count = 0;
5945 
5946 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5947 			continue;
5948 
5949 		seq_printf(m, "%d:", root->hierarchy_id);
5950 		if (root != &cgrp_dfl_root)
5951 			for_each_subsys(ss, ssid)
5952 				if (root->subsys_mask & (1 << ssid))
5953 					seq_printf(m, "%s%s", count++ ? "," : "",
5954 						   ss->legacy_name);
5955 		if (strlen(root->name))
5956 			seq_printf(m, "%sname=%s", count ? "," : "",
5957 				   root->name);
5958 		seq_putc(m, ':');
5959 
5960 		cgrp = task_cgroup_from_root(tsk, root);
5961 
5962 		/*
5963 		 * On traditional hierarchies, all zombie tasks show up as
5964 		 * belonging to the root cgroup.  On the default hierarchy,
5965 		 * while a zombie doesn't show up in "cgroup.procs" and
5966 		 * thus can't be migrated, its /proc/PID/cgroup keeps
5967 		 * reporting the cgroup it belonged to before exiting.  If
5968 		 * the cgroup is removed before the zombie is reaped,
5969 		 * " (deleted)" is appended to the cgroup path.
5970 		 */
5971 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5972 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5973 						current->nsproxy->cgroup_ns);
5974 			if (retval >= PATH_MAX)
5975 				retval = -ENAMETOOLONG;
5976 			if (retval < 0)
5977 				goto out_unlock;
5978 
5979 			seq_puts(m, buf);
5980 		} else {
5981 			seq_puts(m, "/");
5982 		}
5983 
5984 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5985 			seq_puts(m, " (deleted)\n");
5986 		else
5987 			seq_putc(m, '\n');
5988 	}
5989 
5990 	retval = 0;
5991 out_unlock:
5992 	spin_unlock_irq(&css_set_lock);
5993 	mutex_unlock(&cgroup_mutex);
5994 	kfree(buf);
5995 out:
5996 	return retval;
5997 }
5998 
5999 /**
6000  * cgroup_fork - initialize cgroup related fields during copy_process()
6001  * @child: pointer to task_struct of forking parent process.
6002  *
6003  * A task is associated with the init_css_set until cgroup_post_fork()
6004  * attaches it to the target css_set.
6005  */
cgroup_fork(struct task_struct * child)6006 void cgroup_fork(struct task_struct *child)
6007 {
6008 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
6009 	INIT_LIST_HEAD(&child->cg_list);
6010 }
6011 
cgroup_get_from_file(struct file * f)6012 static struct cgroup *cgroup_get_from_file(struct file *f)
6013 {
6014 	struct cgroup_subsys_state *css;
6015 	struct cgroup *cgrp;
6016 
6017 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6018 	if (IS_ERR(css))
6019 		return ERR_CAST(css);
6020 
6021 	cgrp = css->cgroup;
6022 	if (!cgroup_on_dfl(cgrp)) {
6023 		cgroup_put(cgrp);
6024 		return ERR_PTR(-EBADF);
6025 	}
6026 
6027 	return cgrp;
6028 }
6029 
6030 /**
6031  * cgroup_css_set_fork - find or create a css_set for a child process
6032  * @kargs: the arguments passed to create the child process
6033  *
6034  * This functions finds or creates a new css_set which the child
6035  * process will be attached to in cgroup_post_fork(). By default,
6036  * the child process will be given the same css_set as its parent.
6037  *
6038  * If CLONE_INTO_CGROUP is specified this function will try to find an
6039  * existing css_set which includes the requested cgroup and if not create
6040  * a new css_set that the child will be attached to later. If this function
6041  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6042  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6043  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6044  * to the target cgroup.
6045  */
cgroup_css_set_fork(struct kernel_clone_args * kargs)6046 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6047 	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6048 {
6049 	int ret;
6050 	struct cgroup *dst_cgrp = NULL;
6051 	struct css_set *cset;
6052 	struct super_block *sb;
6053 	struct file *f;
6054 
6055 	if (kargs->flags & CLONE_INTO_CGROUP)
6056 		mutex_lock(&cgroup_mutex);
6057 
6058 	cgroup_threadgroup_change_begin(current);
6059 
6060 	spin_lock_irq(&css_set_lock);
6061 	cset = task_css_set(current);
6062 	get_css_set(cset);
6063 	spin_unlock_irq(&css_set_lock);
6064 
6065 	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6066 		kargs->cset = cset;
6067 		return 0;
6068 	}
6069 
6070 	f = fget_raw(kargs->cgroup);
6071 	if (!f) {
6072 		ret = -EBADF;
6073 		goto err;
6074 	}
6075 	sb = f->f_path.dentry->d_sb;
6076 
6077 	dst_cgrp = cgroup_get_from_file(f);
6078 	if (IS_ERR(dst_cgrp)) {
6079 		ret = PTR_ERR(dst_cgrp);
6080 		dst_cgrp = NULL;
6081 		goto err;
6082 	}
6083 
6084 	if (cgroup_is_dead(dst_cgrp)) {
6085 		ret = -ENODEV;
6086 		goto err;
6087 	}
6088 
6089 	/*
6090 	 * Verify that we the target cgroup is writable for us. This is
6091 	 * usually done by the vfs layer but since we're not going through
6092 	 * the vfs layer here we need to do it "manually".
6093 	 */
6094 	ret = cgroup_may_write(dst_cgrp, sb);
6095 	if (ret)
6096 		goto err;
6097 
6098 	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6099 					!(kargs->flags & CLONE_THREAD),
6100 					current->nsproxy->cgroup_ns);
6101 	if (ret)
6102 		goto err;
6103 
6104 	kargs->cset = find_css_set(cset, dst_cgrp);
6105 	if (!kargs->cset) {
6106 		ret = -ENOMEM;
6107 		goto err;
6108 	}
6109 
6110 	put_css_set(cset);
6111 	fput(f);
6112 	kargs->cgrp = dst_cgrp;
6113 	return ret;
6114 
6115 err:
6116 	cgroup_threadgroup_change_end(current);
6117 	mutex_unlock(&cgroup_mutex);
6118 	if (f)
6119 		fput(f);
6120 	if (dst_cgrp)
6121 		cgroup_put(dst_cgrp);
6122 	put_css_set(cset);
6123 	if (kargs->cset)
6124 		put_css_set(kargs->cset);
6125 	return ret;
6126 }
6127 
6128 /**
6129  * cgroup_css_set_put_fork - drop references we took during fork
6130  * @kargs: the arguments passed to create the child process
6131  *
6132  * Drop references to the prepared css_set and target cgroup if
6133  * CLONE_INTO_CGROUP was requested.
6134  */
cgroup_css_set_put_fork(struct kernel_clone_args * kargs)6135 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6136 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6137 {
6138 	struct cgroup *cgrp = kargs->cgrp;
6139 	struct css_set *cset = kargs->cset;
6140 
6141 	cgroup_threadgroup_change_end(current);
6142 
6143 	if (cset) {
6144 		put_css_set(cset);
6145 		kargs->cset = NULL;
6146 	}
6147 
6148 	if (kargs->flags & CLONE_INTO_CGROUP) {
6149 		mutex_unlock(&cgroup_mutex);
6150 		if (cgrp) {
6151 			cgroup_put(cgrp);
6152 			kargs->cgrp = NULL;
6153 		}
6154 	}
6155 }
6156 
6157 /**
6158  * cgroup_can_fork - called on a new task before the process is exposed
6159  * @child: the child process
6160  *
6161  * This prepares a new css_set for the child process which the child will
6162  * be attached to in cgroup_post_fork().
6163  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6164  * callback returns an error, the fork aborts with that error code. This
6165  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6166  */
cgroup_can_fork(struct task_struct * child,struct kernel_clone_args * kargs)6167 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6168 {
6169 	struct cgroup_subsys *ss;
6170 	int i, j, ret;
6171 
6172 	ret = cgroup_css_set_fork(kargs);
6173 	if (ret)
6174 		return ret;
6175 
6176 	do_each_subsys_mask(ss, i, have_canfork_callback) {
6177 		ret = ss->can_fork(child, kargs->cset);
6178 		if (ret)
6179 			goto out_revert;
6180 	} while_each_subsys_mask();
6181 
6182 	return 0;
6183 
6184 out_revert:
6185 	for_each_subsys(ss, j) {
6186 		if (j >= i)
6187 			break;
6188 		if (ss->cancel_fork)
6189 			ss->cancel_fork(child, kargs->cset);
6190 	}
6191 
6192 	cgroup_css_set_put_fork(kargs);
6193 
6194 	return ret;
6195 }
6196 
6197 /**
6198  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6199  * @child: the child process
6200  * @kargs: the arguments passed to create the child process
6201  *
6202  * This calls the cancel_fork() callbacks if a fork failed *after*
6203  * cgroup_can_fork() succeded and cleans up references we took to
6204  * prepare a new css_set for the child process in cgroup_can_fork().
6205  */
cgroup_cancel_fork(struct task_struct * child,struct kernel_clone_args * kargs)6206 void cgroup_cancel_fork(struct task_struct *child,
6207 			struct kernel_clone_args *kargs)
6208 {
6209 	struct cgroup_subsys *ss;
6210 	int i;
6211 
6212 	for_each_subsys(ss, i)
6213 		if (ss->cancel_fork)
6214 			ss->cancel_fork(child, kargs->cset);
6215 
6216 	cgroup_css_set_put_fork(kargs);
6217 }
6218 
6219 /**
6220  * cgroup_post_fork - finalize cgroup setup for the child process
6221  * @child: the child process
6222  *
6223  * Attach the child process to its css_set calling the subsystem fork()
6224  * callbacks.
6225  */
cgroup_post_fork(struct task_struct * child,struct kernel_clone_args * kargs)6226 void cgroup_post_fork(struct task_struct *child,
6227 		      struct kernel_clone_args *kargs)
6228 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6229 {
6230 	struct cgroup_subsys *ss;
6231 	struct css_set *cset;
6232 	int i;
6233 
6234 	cset = kargs->cset;
6235 	kargs->cset = NULL;
6236 
6237 	spin_lock_irq(&css_set_lock);
6238 
6239 	/* init tasks are special, only link regular threads */
6240 	if (likely(child->pid)) {
6241 		WARN_ON_ONCE(!list_empty(&child->cg_list));
6242 		cset->nr_tasks++;
6243 		css_set_move_task(child, NULL, cset, false);
6244 	} else {
6245 		put_css_set(cset);
6246 		cset = NULL;
6247 	}
6248 
6249 	/*
6250 	 * If the cgroup has to be frozen, the new task has too.  Let's set
6251 	 * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the
6252 	 * frozen state.
6253 	 */
6254 	if (unlikely(cgroup_task_freeze(child))) {
6255 		spin_lock(&child->sighand->siglock);
6256 		WARN_ON_ONCE(child->frozen);
6257 		child->jobctl |= JOBCTL_TRAP_FREEZE;
6258 		spin_unlock(&child->sighand->siglock);
6259 
6260 		/*
6261 		 * Calling cgroup_update_frozen() isn't required here,
6262 		 * because it will be called anyway a bit later from
6263 		 * do_freezer_trap(). So we avoid cgroup's transient switch
6264 		 * from the frozen state and back.
6265 		 */
6266 	}
6267 
6268 	spin_unlock_irq(&css_set_lock);
6269 
6270 	/*
6271 	 * Call ss->fork().  This must happen after @child is linked on
6272 	 * css_set; otherwise, @child might change state between ->fork()
6273 	 * and addition to css_set.
6274 	 */
6275 	do_each_subsys_mask(ss, i, have_fork_callback) {
6276 		ss->fork(child);
6277 	} while_each_subsys_mask();
6278 
6279 	/* Make the new cset the root_cset of the new cgroup namespace. */
6280 	if (kargs->flags & CLONE_NEWCGROUP) {
6281 		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6282 
6283 		get_css_set(cset);
6284 		child->nsproxy->cgroup_ns->root_cset = cset;
6285 		put_css_set(rcset);
6286 	}
6287 
6288 	cgroup_css_set_put_fork(kargs);
6289 }
6290 
6291 /**
6292  * cgroup_exit - detach cgroup from exiting task
6293  * @tsk: pointer to task_struct of exiting process
6294  *
6295  * Description: Detach cgroup from @tsk.
6296  *
6297  */
cgroup_exit(struct task_struct * tsk)6298 void cgroup_exit(struct task_struct *tsk)
6299 {
6300 	struct cgroup_subsys *ss;
6301 	struct css_set *cset;
6302 	int i;
6303 
6304 	spin_lock_irq(&css_set_lock);
6305 
6306 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6307 	cset = task_css_set(tsk);
6308 	css_set_move_task(tsk, cset, NULL, false);
6309 	list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6310 	cset->nr_tasks--;
6311 
6312 	if (dl_task(tsk))
6313 		dec_dl_tasks_cs(tsk);
6314 
6315 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6316 	if (unlikely(cgroup_task_freeze(tsk)))
6317 		cgroup_update_frozen(task_dfl_cgroup(tsk));
6318 
6319 	spin_unlock_irq(&css_set_lock);
6320 
6321 	/* see cgroup_post_fork() for details */
6322 	do_each_subsys_mask(ss, i, have_exit_callback) {
6323 		ss->exit(tsk);
6324 	} while_each_subsys_mask();
6325 }
6326 
cgroup_release(struct task_struct * task)6327 void cgroup_release(struct task_struct *task)
6328 {
6329 	struct cgroup_subsys *ss;
6330 	int ssid;
6331 
6332 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6333 		ss->release(task);
6334 	} while_each_subsys_mask();
6335 
6336 	spin_lock_irq(&css_set_lock);
6337 	css_set_skip_task_iters(task_css_set(task), task);
6338 	list_del_init(&task->cg_list);
6339 	spin_unlock_irq(&css_set_lock);
6340 }
6341 
cgroup_free(struct task_struct * task)6342 void cgroup_free(struct task_struct *task)
6343 {
6344 	struct css_set *cset = task_css_set(task);
6345 	put_css_set(cset);
6346 }
6347 
cgroup_disable(char * str)6348 static int __init cgroup_disable(char *str)
6349 {
6350 	struct cgroup_subsys *ss;
6351 	char *token;
6352 	int i;
6353 
6354 	while ((token = strsep(&str, ",")) != NULL) {
6355 		if (!*token)
6356 			continue;
6357 
6358 		for_each_subsys(ss, i) {
6359 			if (strcmp(token, ss->name) &&
6360 			    strcmp(token, ss->legacy_name))
6361 				continue;
6362 
6363 			static_branch_disable(cgroup_subsys_enabled_key[i]);
6364 			pr_info("Disabling %s control group subsystem\n",
6365 				ss->name);
6366 		}
6367 	}
6368 	return 1;
6369 }
6370 __setup("cgroup_disable=", cgroup_disable);
6371 
enable_debug_cgroup(void)6372 void __init __weak enable_debug_cgroup(void) { }
6373 
enable_cgroup_debug(char * str)6374 static int __init enable_cgroup_debug(char *str)
6375 {
6376 	cgroup_debug = true;
6377 	enable_debug_cgroup();
6378 	return 1;
6379 }
6380 __setup("cgroup_debug", enable_cgroup_debug);
6381 
6382 /**
6383  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6384  * @dentry: directory dentry of interest
6385  * @ss: subsystem of interest
6386  *
6387  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6388  * to get the corresponding css and return it.  If such css doesn't exist
6389  * or can't be pinned, an ERR_PTR value is returned.
6390  */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)6391 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6392 						       struct cgroup_subsys *ss)
6393 {
6394 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6395 	struct file_system_type *s_type = dentry->d_sb->s_type;
6396 	struct cgroup_subsys_state *css = NULL;
6397 	struct cgroup *cgrp;
6398 
6399 	/* is @dentry a cgroup dir? */
6400 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6401 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6402 		return ERR_PTR(-EBADF);
6403 
6404 	rcu_read_lock();
6405 
6406 	/*
6407 	 * This path doesn't originate from kernfs and @kn could already
6408 	 * have been or be removed at any point.  @kn->priv is RCU
6409 	 * protected for this access.  See css_release_work_fn() for details.
6410 	 */
6411 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6412 	if (cgrp)
6413 		css = cgroup_css(cgrp, ss);
6414 
6415 	if (!css || !css_tryget_online(css))
6416 		css = ERR_PTR(-ENOENT);
6417 
6418 	rcu_read_unlock();
6419 	return css;
6420 }
6421 
6422 /**
6423  * css_from_id - lookup css by id
6424  * @id: the cgroup id
6425  * @ss: cgroup subsys to be looked into
6426  *
6427  * Returns the css if there's valid one with @id, otherwise returns NULL.
6428  * Should be called under rcu_read_lock().
6429  */
css_from_id(int id,struct cgroup_subsys * ss)6430 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6431 {
6432 	WARN_ON_ONCE(!rcu_read_lock_held());
6433 	return idr_find(&ss->css_idr, id);
6434 }
6435 
6436 /**
6437  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6438  * @path: path on the default hierarchy
6439  *
6440  * Find the cgroup at @path on the default hierarchy, increment its
6441  * reference count and return it.  Returns pointer to the found cgroup on
6442  * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6443  * if @path points to a non-directory.
6444  */
cgroup_get_from_path(const char * path)6445 struct cgroup *cgroup_get_from_path(const char *path)
6446 {
6447 	struct kernfs_node *kn;
6448 	struct cgroup *cgrp;
6449 
6450 	mutex_lock(&cgroup_mutex);
6451 
6452 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6453 	if (kn) {
6454 		if (kernfs_type(kn) == KERNFS_DIR) {
6455 			cgrp = kn->priv;
6456 			cgroup_get_live(cgrp);
6457 		} else {
6458 			cgrp = ERR_PTR(-ENOTDIR);
6459 		}
6460 		kernfs_put(kn);
6461 	} else {
6462 		cgrp = ERR_PTR(-ENOENT);
6463 	}
6464 
6465 	mutex_unlock(&cgroup_mutex);
6466 	return cgrp;
6467 }
6468 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6469 
6470 /**
6471  * cgroup_get_from_fd - get a cgroup pointer from a fd
6472  * @fd: fd obtained by open(cgroup2_dir)
6473  *
6474  * Find the cgroup from a fd which should be obtained
6475  * by opening a cgroup directory.  Returns a pointer to the
6476  * cgroup on success. ERR_PTR is returned if the cgroup
6477  * cannot be found.
6478  */
cgroup_get_from_fd(int fd)6479 struct cgroup *cgroup_get_from_fd(int fd)
6480 {
6481 	struct cgroup *cgrp;
6482 	struct file *f;
6483 
6484 	f = fget_raw(fd);
6485 	if (!f)
6486 		return ERR_PTR(-EBADF);
6487 
6488 	cgrp = cgroup_get_from_file(f);
6489 	fput(f);
6490 	return cgrp;
6491 }
6492 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6493 
power_of_ten(int power)6494 static u64 power_of_ten(int power)
6495 {
6496 	u64 v = 1;
6497 	while (power--)
6498 		v *= 10;
6499 	return v;
6500 }
6501 
6502 /**
6503  * cgroup_parse_float - parse a floating number
6504  * @input: input string
6505  * @dec_shift: number of decimal digits to shift
6506  * @v: output
6507  *
6508  * Parse a decimal floating point number in @input and store the result in
6509  * @v with decimal point right shifted @dec_shift times.  For example, if
6510  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6511  * Returns 0 on success, -errno otherwise.
6512  *
6513  * There's nothing cgroup specific about this function except that it's
6514  * currently the only user.
6515  */
cgroup_parse_float(const char * input,unsigned dec_shift,s64 * v)6516 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6517 {
6518 	s64 whole, frac = 0;
6519 	int fstart = 0, fend = 0, flen;
6520 
6521 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6522 		return -EINVAL;
6523 	if (frac < 0)
6524 		return -EINVAL;
6525 
6526 	flen = fend > fstart ? fend - fstart : 0;
6527 	if (flen < dec_shift)
6528 		frac *= power_of_ten(dec_shift - flen);
6529 	else
6530 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6531 
6532 	*v = whole * power_of_ten(dec_shift) + frac;
6533 	return 0;
6534 }
6535 
6536 /*
6537  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6538  * definition in cgroup-defs.h.
6539  */
6540 #ifdef CONFIG_SOCK_CGROUP_DATA
6541 
cgroup_sk_alloc(struct sock_cgroup_data * skcd)6542 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6543 {
6544 	struct cgroup *cgroup;
6545 
6546 	rcu_read_lock();
6547 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
6548 	if (in_interrupt()) {
6549 		cgroup = &cgrp_dfl_root.cgrp;
6550 		cgroup_get(cgroup);
6551 		goto out;
6552 	}
6553 
6554 	while (true) {
6555 		struct css_set *cset;
6556 
6557 		cset = task_css_set(current);
6558 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6559 			cgroup = cset->dfl_cgrp;
6560 			break;
6561 		}
6562 		cpu_relax();
6563 	}
6564 out:
6565 	skcd->cgroup = cgroup;
6566 	cgroup_bpf_get(cgroup);
6567 	rcu_read_unlock();
6568 }
6569 
cgroup_sk_clone(struct sock_cgroup_data * skcd)6570 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6571 {
6572 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6573 
6574 	/*
6575 	 * We might be cloning a socket which is left in an empty
6576 	 * cgroup and the cgroup might have already been rmdir'd.
6577 	 * Don't use cgroup_get_live().
6578 	 */
6579 	cgroup_get(cgrp);
6580 	cgroup_bpf_get(cgrp);
6581 }
6582 
cgroup_sk_free(struct sock_cgroup_data * skcd)6583 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6584 {
6585 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6586 
6587 	cgroup_bpf_put(cgrp);
6588 	cgroup_put(cgrp);
6589 }
6590 
6591 #endif	/* CONFIG_SOCK_CGROUP_DATA */
6592 
6593 #ifdef CONFIG_CGROUP_BPF
cgroup_bpf_attach(struct cgroup * cgrp,struct bpf_prog * prog,struct bpf_prog * replace_prog,struct bpf_cgroup_link * link,enum bpf_attach_type type,u32 flags)6594 int cgroup_bpf_attach(struct cgroup *cgrp,
6595 		      struct bpf_prog *prog, struct bpf_prog *replace_prog,
6596 		      struct bpf_cgroup_link *link,
6597 		      enum bpf_attach_type type,
6598 		      u32 flags)
6599 {
6600 	int ret;
6601 
6602 	mutex_lock(&cgroup_mutex);
6603 	ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
6604 	mutex_unlock(&cgroup_mutex);
6605 	return ret;
6606 }
6607 
cgroup_bpf_detach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type)6608 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6609 		      enum bpf_attach_type type)
6610 {
6611 	int ret;
6612 
6613 	mutex_lock(&cgroup_mutex);
6614 	ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
6615 	mutex_unlock(&cgroup_mutex);
6616 	return ret;
6617 }
6618 
cgroup_bpf_query(struct cgroup * cgrp,const union bpf_attr * attr,union bpf_attr __user * uattr)6619 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6620 		     union bpf_attr __user *uattr)
6621 {
6622 	int ret;
6623 
6624 	mutex_lock(&cgroup_mutex);
6625 	ret = __cgroup_bpf_query(cgrp, attr, uattr);
6626 	mutex_unlock(&cgroup_mutex);
6627 	return ret;
6628 }
6629 #endif /* CONFIG_CGROUP_BPF */
6630 
6631 #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)6632 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6633 				      ssize_t size, const char *prefix)
6634 {
6635 	struct cftype *cft;
6636 	ssize_t ret = 0;
6637 
6638 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6639 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6640 			continue;
6641 
6642 		if (prefix)
6643 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6644 
6645 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6646 
6647 		if (WARN_ON(ret >= size))
6648 			break;
6649 	}
6650 
6651 	return ret;
6652 }
6653 
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6654 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6655 			      char *buf)
6656 {
6657 	struct cgroup_subsys *ss;
6658 	int ssid;
6659 	ssize_t ret = 0;
6660 
6661 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6662 				     NULL);
6663 
6664 	for_each_subsys(ss, ssid)
6665 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6666 					      PAGE_SIZE - ret,
6667 					      cgroup_subsys_name[ssid]);
6668 
6669 	return ret;
6670 }
6671 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6672 
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6673 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6674 			     char *buf)
6675 {
6676 	return snprintf(buf, PAGE_SIZE,
6677 			"nsdelegate\n"
6678 			"memory_localevents\n"
6679 			"memory_recursiveprot\n");
6680 }
6681 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6682 
6683 static struct attribute *cgroup_sysfs_attrs[] = {
6684 	&cgroup_delegate_attr.attr,
6685 	&cgroup_features_attr.attr,
6686 	NULL,
6687 };
6688 
6689 static const struct attribute_group cgroup_sysfs_attr_group = {
6690 	.attrs = cgroup_sysfs_attrs,
6691 	.name = "cgroup",
6692 };
6693 
cgroup_sysfs_init(void)6694 static int __init cgroup_sysfs_init(void)
6695 {
6696 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6697 }
6698 subsys_initcall(cgroup_sysfs_init);
6699 
6700 #endif /* CONFIG_SYSFS */
6701