1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/sched/deadline.h>
60 #include <linux/psi.h>
61 #include <net/sock.h>
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/cgroup.h>
65
66 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
67 MAX_CFTYPE_NAME + 2)
68 /* let's not notify more than 100 times per second */
69 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
70
71 /*
72 * cgroup_mutex is the master lock. Any modification to cgroup or its
73 * hierarchy must be performed while holding it.
74 *
75 * css_set_lock protects task->cgroups pointer, the list of css_set
76 * objects, and the chain of tasks off each css_set.
77 *
78 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
79 * cgroup.h can use them for lockdep annotations.
80 */
81 DEFINE_MUTEX(cgroup_mutex);
82 DEFINE_SPINLOCK(css_set_lock);
83
84 #ifdef CONFIG_PROVE_RCU
85 EXPORT_SYMBOL_GPL(cgroup_mutex);
86 EXPORT_SYMBOL_GPL(css_set_lock);
87 #endif
88
89 DEFINE_SPINLOCK(trace_cgroup_path_lock);
90 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
91 bool cgroup_debug __read_mostly;
92
93 /*
94 * Protects cgroup_idr and css_idr so that IDs can be released without
95 * grabbing cgroup_mutex.
96 */
97 static DEFINE_SPINLOCK(cgroup_idr_lock);
98
99 /*
100 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
101 * against file removal/re-creation across css hiding.
102 */
103 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
104
105 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
106
107 #define cgroup_assert_mutex_or_rcu_locked() \
108 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
109 !lockdep_is_held(&cgroup_mutex), \
110 "cgroup_mutex or RCU read lock required");
111
112 /*
113 * cgroup destruction makes heavy use of work items and there can be a lot
114 * of concurrent destructions. Use a separate workqueue so that cgroup
115 * destruction work items don't end up filling up max_active of system_wq
116 * which may lead to deadlock.
117 */
118 static struct workqueue_struct *cgroup_destroy_wq;
119
120 /* generate an array of cgroup subsystem pointers */
121 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
122 struct cgroup_subsys *cgroup_subsys[] = {
123 #include <linux/cgroup_subsys.h>
124 };
125 #undef SUBSYS
126
127 /* array of cgroup subsystem names */
128 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
129 static const char *cgroup_subsys_name[] = {
130 #include <linux/cgroup_subsys.h>
131 };
132 #undef SUBSYS
133
134 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
135 #define SUBSYS(_x) \
136 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
137 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
138 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
139 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
140 #include <linux/cgroup_subsys.h>
141 #undef SUBSYS
142
143 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
144 static struct static_key_true *cgroup_subsys_enabled_key[] = {
145 #include <linux/cgroup_subsys.h>
146 };
147 #undef SUBSYS
148
149 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
150 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
151 #include <linux/cgroup_subsys.h>
152 };
153 #undef SUBSYS
154
155 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
156
157 /* the default hierarchy */
158 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
159 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
160
161 /*
162 * The default hierarchy always exists but is hidden until mounted for the
163 * first time. This is for backward compatibility.
164 */
165 static bool cgrp_dfl_visible;
166
167 /* some controllers are not supported in the default hierarchy */
168 static u16 cgrp_dfl_inhibit_ss_mask;
169
170 /* some controllers are implicitly enabled on the default hierarchy */
171 static u16 cgrp_dfl_implicit_ss_mask;
172
173 /* some controllers can be threaded on the default hierarchy */
174 static u16 cgrp_dfl_threaded_ss_mask;
175
176 /* The list of hierarchy roots */
177 LIST_HEAD(cgroup_roots);
178 static int cgroup_root_count;
179
180 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
181 static DEFINE_IDR(cgroup_hierarchy_idr);
182
183 /*
184 * Assign a monotonically increasing serial number to csses. It guarantees
185 * cgroups with bigger numbers are newer than those with smaller numbers.
186 * Also, as csses are always appended to the parent's ->children list, it
187 * guarantees that sibling csses are always sorted in the ascending serial
188 * number order on the list. Protected by cgroup_mutex.
189 */
190 static u64 css_serial_nr_next = 1;
191
192 /*
193 * These bitmasks identify subsystems with specific features to avoid
194 * having to do iterative checks repeatedly.
195 */
196 static u16 have_fork_callback __read_mostly;
197 static u16 have_exit_callback __read_mostly;
198 static u16 have_release_callback __read_mostly;
199 static u16 have_canfork_callback __read_mostly;
200
201 /* cgroup namespace for init task */
202 struct cgroup_namespace init_cgroup_ns = {
203 .count = REFCOUNT_INIT(2),
204 .user_ns = &init_user_ns,
205 .ns.ops = &cgroupns_operations,
206 .ns.inum = PROC_CGROUP_INIT_INO,
207 .root_cset = &init_css_set,
208 };
209
210 static struct file_system_type cgroup2_fs_type;
211 static struct cftype cgroup_base_files[];
212
213 static int cgroup_apply_control(struct cgroup *cgrp);
214 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
215 static void css_task_iter_skip(struct css_task_iter *it,
216 struct task_struct *task);
217 static int cgroup_destroy_locked(struct cgroup *cgrp);
218 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
219 struct cgroup_subsys *ss);
220 static void css_release(struct percpu_ref *ref);
221 static void kill_css(struct cgroup_subsys_state *css);
222 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
223 struct cgroup *cgrp, struct cftype cfts[],
224 bool is_add);
225
226 /**
227 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
228 * @ssid: subsys ID of interest
229 *
230 * cgroup_subsys_enabled() can only be used with literal subsys names which
231 * is fine for individual subsystems but unsuitable for cgroup core. This
232 * is slower static_key_enabled() based test indexed by @ssid.
233 */
cgroup_ssid_enabled(int ssid)234 bool cgroup_ssid_enabled(int ssid)
235 {
236 if (CGROUP_SUBSYS_COUNT == 0)
237 return false;
238
239 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
240 }
241
242 /**
243 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
244 * @cgrp: the cgroup of interest
245 *
246 * The default hierarchy is the v2 interface of cgroup and this function
247 * can be used to test whether a cgroup is on the default hierarchy for
248 * cases where a subsystem should behave differnetly depending on the
249 * interface version.
250 *
251 * List of changed behaviors:
252 *
253 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
254 * and "name" are disallowed.
255 *
256 * - When mounting an existing superblock, mount options should match.
257 *
258 * - Remount is disallowed.
259 *
260 * - rename(2) is disallowed.
261 *
262 * - "tasks" is removed. Everything should be at process granularity. Use
263 * "cgroup.procs" instead.
264 *
265 * - "cgroup.procs" is not sorted. pids will be unique unless they got
266 * recycled inbetween reads.
267 *
268 * - "release_agent" and "notify_on_release" are removed. Replacement
269 * notification mechanism will be implemented.
270 *
271 * - "cgroup.clone_children" is removed.
272 *
273 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
274 * and its descendants contain no task; otherwise, 1. The file also
275 * generates kernfs notification which can be monitored through poll and
276 * [di]notify when the value of the file changes.
277 *
278 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
279 * take masks of ancestors with non-empty cpus/mems, instead of being
280 * moved to an ancestor.
281 *
282 * - cpuset: a task can be moved into an empty cpuset, and again it takes
283 * masks of ancestors.
284 *
285 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
286 * is not created.
287 *
288 * - blkcg: blk-throttle becomes properly hierarchical.
289 *
290 * - debug: disallowed on the default hierarchy.
291 */
cgroup_on_dfl(const struct cgroup * cgrp)292 bool cgroup_on_dfl(const struct cgroup *cgrp)
293 {
294 return cgrp->root == &cgrp_dfl_root;
295 }
296
297 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)298 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
299 gfp_t gfp_mask)
300 {
301 int ret;
302
303 idr_preload(gfp_mask);
304 spin_lock_bh(&cgroup_idr_lock);
305 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
306 spin_unlock_bh(&cgroup_idr_lock);
307 idr_preload_end();
308 return ret;
309 }
310
cgroup_idr_replace(struct idr * idr,void * ptr,int id)311 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
312 {
313 void *ret;
314
315 spin_lock_bh(&cgroup_idr_lock);
316 ret = idr_replace(idr, ptr, id);
317 spin_unlock_bh(&cgroup_idr_lock);
318 return ret;
319 }
320
cgroup_idr_remove(struct idr * idr,int id)321 static void cgroup_idr_remove(struct idr *idr, int id)
322 {
323 spin_lock_bh(&cgroup_idr_lock);
324 idr_remove(idr, id);
325 spin_unlock_bh(&cgroup_idr_lock);
326 }
327
cgroup_has_tasks(struct cgroup * cgrp)328 static bool cgroup_has_tasks(struct cgroup *cgrp)
329 {
330 return cgrp->nr_populated_csets;
331 }
332
cgroup_is_threaded(struct cgroup * cgrp)333 bool cgroup_is_threaded(struct cgroup *cgrp)
334 {
335 return cgrp->dom_cgrp != cgrp;
336 }
337
338 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)339 static bool cgroup_is_mixable(struct cgroup *cgrp)
340 {
341 /*
342 * Root isn't under domain level resource control exempting it from
343 * the no-internal-process constraint, so it can serve as a thread
344 * root and a parent of resource domains at the same time.
345 */
346 return !cgroup_parent(cgrp);
347 }
348
349 /* can @cgrp become a thread root? should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)350 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
351 {
352 /* mixables don't care */
353 if (cgroup_is_mixable(cgrp))
354 return true;
355
356 /* domain roots can't be nested under threaded */
357 if (cgroup_is_threaded(cgrp))
358 return false;
359
360 /* can only have either domain or threaded children */
361 if (cgrp->nr_populated_domain_children)
362 return false;
363
364 /* and no domain controllers can be enabled */
365 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
366 return false;
367
368 return true;
369 }
370
371 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)372 bool cgroup_is_thread_root(struct cgroup *cgrp)
373 {
374 /* thread root should be a domain */
375 if (cgroup_is_threaded(cgrp))
376 return false;
377
378 /* a domain w/ threaded children is a thread root */
379 if (cgrp->nr_threaded_children)
380 return true;
381
382 /*
383 * A domain which has tasks and explicit threaded controllers
384 * enabled is a thread root.
385 */
386 if (cgroup_has_tasks(cgrp) &&
387 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
388 return true;
389
390 return false;
391 }
392
393 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)394 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
395 {
396 /* the cgroup itself can be a thread root */
397 if (cgroup_is_threaded(cgrp))
398 return false;
399
400 /* but the ancestors can't be unless mixable */
401 while ((cgrp = cgroup_parent(cgrp))) {
402 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
403 return false;
404 if (cgroup_is_threaded(cgrp))
405 return false;
406 }
407
408 return true;
409 }
410
411 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)412 static u16 cgroup_control(struct cgroup *cgrp)
413 {
414 struct cgroup *parent = cgroup_parent(cgrp);
415 u16 root_ss_mask = cgrp->root->subsys_mask;
416
417 if (parent) {
418 u16 ss_mask = parent->subtree_control;
419
420 /* threaded cgroups can only have threaded controllers */
421 if (cgroup_is_threaded(cgrp))
422 ss_mask &= cgrp_dfl_threaded_ss_mask;
423 return ss_mask;
424 }
425
426 if (cgroup_on_dfl(cgrp))
427 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
428 cgrp_dfl_implicit_ss_mask);
429 return root_ss_mask;
430 }
431
432 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)433 static u16 cgroup_ss_mask(struct cgroup *cgrp)
434 {
435 struct cgroup *parent = cgroup_parent(cgrp);
436
437 if (parent) {
438 u16 ss_mask = parent->subtree_ss_mask;
439
440 /* threaded cgroups can only have threaded controllers */
441 if (cgroup_is_threaded(cgrp))
442 ss_mask &= cgrp_dfl_threaded_ss_mask;
443 return ss_mask;
444 }
445
446 return cgrp->root->subsys_mask;
447 }
448
449 /**
450 * cgroup_css - obtain a cgroup's css for the specified subsystem
451 * @cgrp: the cgroup of interest
452 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
453 *
454 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
455 * function must be called either under cgroup_mutex or rcu_read_lock() and
456 * the caller is responsible for pinning the returned css if it wants to
457 * keep accessing it outside the said locks. This function may return
458 * %NULL if @cgrp doesn't have @subsys_id enabled.
459 */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)460 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
461 struct cgroup_subsys *ss)
462 {
463 if (ss)
464 return rcu_dereference_check(cgrp->subsys[ss->id],
465 lockdep_is_held(&cgroup_mutex));
466 else
467 return &cgrp->self;
468 }
469
470 /**
471 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
472 * @cgrp: the cgroup of interest
473 * @ss: the subsystem of interest
474 *
475 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
476 * or is offline, %NULL is returned.
477 */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)478 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
479 struct cgroup_subsys *ss)
480 {
481 struct cgroup_subsys_state *css;
482
483 rcu_read_lock();
484 css = cgroup_css(cgrp, ss);
485 if (css && !css_tryget_online(css))
486 css = NULL;
487 rcu_read_unlock();
488
489 return css;
490 }
491
492 /**
493 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
494 * @cgrp: the cgroup of interest
495 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
496 *
497 * Similar to cgroup_css() but returns the effective css, which is defined
498 * as the matching css of the nearest ancestor including self which has @ss
499 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
500 * function is guaranteed to return non-NULL css.
501 */
cgroup_e_css_by_mask(struct cgroup * cgrp,struct cgroup_subsys * ss)502 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
503 struct cgroup_subsys *ss)
504 {
505 lockdep_assert_held(&cgroup_mutex);
506
507 if (!ss)
508 return &cgrp->self;
509
510 /*
511 * This function is used while updating css associations and thus
512 * can't test the csses directly. Test ss_mask.
513 */
514 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
515 cgrp = cgroup_parent(cgrp);
516 if (!cgrp)
517 return NULL;
518 }
519
520 return cgroup_css(cgrp, ss);
521 }
522
523 /**
524 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
525 * @cgrp: the cgroup of interest
526 * @ss: the subsystem of interest
527 *
528 * Find and get the effective css of @cgrp for @ss. The effective css is
529 * defined as the matching css of the nearest ancestor including self which
530 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
531 * the root css is returned, so this function always returns a valid css.
532 *
533 * The returned css is not guaranteed to be online, and therefore it is the
534 * callers responsiblity to tryget a reference for it.
535 */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)536 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
537 struct cgroup_subsys *ss)
538 {
539 struct cgroup_subsys_state *css;
540
541 do {
542 css = cgroup_css(cgrp, ss);
543
544 if (css)
545 return css;
546 cgrp = cgroup_parent(cgrp);
547 } while (cgrp);
548
549 return init_css_set.subsys[ss->id];
550 }
551
552 /**
553 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
554 * @cgrp: the cgroup of interest
555 * @ss: the subsystem of interest
556 *
557 * Find and get the effective css of @cgrp for @ss. The effective css is
558 * defined as the matching css of the nearest ancestor including self which
559 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
560 * the root css is returned, so this function always returns a valid css.
561 * The returned css must be put using css_put().
562 */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)563 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
564 struct cgroup_subsys *ss)
565 {
566 struct cgroup_subsys_state *css;
567
568 rcu_read_lock();
569
570 do {
571 css = cgroup_css(cgrp, ss);
572
573 if (css && css_tryget_online(css))
574 goto out_unlock;
575 cgrp = cgroup_parent(cgrp);
576 } while (cgrp);
577
578 css = init_css_set.subsys[ss->id];
579 css_get(css);
580 out_unlock:
581 rcu_read_unlock();
582 return css;
583 }
584
cgroup_get_live(struct cgroup * cgrp)585 static void cgroup_get_live(struct cgroup *cgrp)
586 {
587 WARN_ON_ONCE(cgroup_is_dead(cgrp));
588 css_get(&cgrp->self);
589 }
590
591 /**
592 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
593 * is responsible for taking the css_set_lock.
594 * @cgrp: the cgroup in question
595 */
__cgroup_task_count(const struct cgroup * cgrp)596 int __cgroup_task_count(const struct cgroup *cgrp)
597 {
598 int count = 0;
599 struct cgrp_cset_link *link;
600
601 lockdep_assert_held(&css_set_lock);
602
603 list_for_each_entry(link, &cgrp->cset_links, cset_link)
604 count += link->cset->nr_tasks;
605
606 return count;
607 }
608
609 /**
610 * cgroup_task_count - count the number of tasks in a cgroup.
611 * @cgrp: the cgroup in question
612 */
cgroup_task_count(const struct cgroup * cgrp)613 int cgroup_task_count(const struct cgroup *cgrp)
614 {
615 int count;
616
617 spin_lock_irq(&css_set_lock);
618 count = __cgroup_task_count(cgrp);
619 spin_unlock_irq(&css_set_lock);
620
621 return count;
622 }
623
of_css(struct kernfs_open_file * of)624 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
625 {
626 struct cgroup *cgrp = of->kn->parent->priv;
627 struct cftype *cft = of_cft(of);
628
629 /*
630 * This is open and unprotected implementation of cgroup_css().
631 * seq_css() is only called from a kernfs file operation which has
632 * an active reference on the file. Because all the subsystem
633 * files are drained before a css is disassociated with a cgroup,
634 * the matching css from the cgroup's subsys table is guaranteed to
635 * be and stay valid until the enclosing operation is complete.
636 */
637 if (cft->ss)
638 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
639 else
640 return &cgrp->self;
641 }
642 EXPORT_SYMBOL_GPL(of_css);
643
644 /**
645 * for_each_css - iterate all css's of a cgroup
646 * @css: the iteration cursor
647 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
648 * @cgrp: the target cgroup to iterate css's of
649 *
650 * Should be called under cgroup_[tree_]mutex.
651 */
652 #define for_each_css(css, ssid, cgrp) \
653 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
654 if (!((css) = rcu_dereference_check( \
655 (cgrp)->subsys[(ssid)], \
656 lockdep_is_held(&cgroup_mutex)))) { } \
657 else
658
659 /**
660 * for_each_e_css - iterate all effective css's of a cgroup
661 * @css: the iteration cursor
662 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
663 * @cgrp: the target cgroup to iterate css's of
664 *
665 * Should be called under cgroup_[tree_]mutex.
666 */
667 #define for_each_e_css(css, ssid, cgrp) \
668 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
669 if (!((css) = cgroup_e_css_by_mask(cgrp, \
670 cgroup_subsys[(ssid)]))) \
671 ; \
672 else
673
674 /**
675 * do_each_subsys_mask - filter for_each_subsys with a bitmask
676 * @ss: the iteration cursor
677 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
678 * @ss_mask: the bitmask
679 *
680 * The block will only run for cases where the ssid-th bit (1 << ssid) of
681 * @ss_mask is set.
682 */
683 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
684 unsigned long __ss_mask = (ss_mask); \
685 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
686 (ssid) = 0; \
687 break; \
688 } \
689 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
690 (ss) = cgroup_subsys[ssid]; \
691 {
692
693 #define while_each_subsys_mask() \
694 } \
695 } \
696 } while (false)
697
698 /* iterate over child cgrps, lock should be held throughout iteration */
699 #define cgroup_for_each_live_child(child, cgrp) \
700 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
701 if (({ lockdep_assert_held(&cgroup_mutex); \
702 cgroup_is_dead(child); })) \
703 ; \
704 else
705
706 /* walk live descendants in preorder */
707 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
708 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
709 if (({ lockdep_assert_held(&cgroup_mutex); \
710 (dsct) = (d_css)->cgroup; \
711 cgroup_is_dead(dsct); })) \
712 ; \
713 else
714
715 /* walk live descendants in postorder */
716 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
717 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
718 if (({ lockdep_assert_held(&cgroup_mutex); \
719 (dsct) = (d_css)->cgroup; \
720 cgroup_is_dead(dsct); })) \
721 ; \
722 else
723
724 /*
725 * The default css_set - used by init and its children prior to any
726 * hierarchies being mounted. It contains a pointer to the root state
727 * for each subsystem. Also used to anchor the list of css_sets. Not
728 * reference-counted, to improve performance when child cgroups
729 * haven't been created.
730 */
731 struct css_set init_css_set = {
732 .refcount = REFCOUNT_INIT(1),
733 .dom_cset = &init_css_set,
734 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
735 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
736 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks),
737 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
738 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
739 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
740 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
741 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
742 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
743
744 /*
745 * The following field is re-initialized when this cset gets linked
746 * in cgroup_init(). However, let's initialize the field
747 * statically too so that the default cgroup can be accessed safely
748 * early during boot.
749 */
750 .dfl_cgrp = &cgrp_dfl_root.cgrp,
751 };
752
753 static int css_set_count = 1; /* 1 for init_css_set */
754
css_set_threaded(struct css_set * cset)755 static bool css_set_threaded(struct css_set *cset)
756 {
757 return cset->dom_cset != cset;
758 }
759
760 /**
761 * css_set_populated - does a css_set contain any tasks?
762 * @cset: target css_set
763 *
764 * css_set_populated() should be the same as !!cset->nr_tasks at steady
765 * state. However, css_set_populated() can be called while a task is being
766 * added to or removed from the linked list before the nr_tasks is
767 * properly updated. Hence, we can't just look at ->nr_tasks here.
768 */
css_set_populated(struct css_set * cset)769 static bool css_set_populated(struct css_set *cset)
770 {
771 lockdep_assert_held(&css_set_lock);
772
773 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
774 }
775
776 /**
777 * cgroup_update_populated - update the populated count of a cgroup
778 * @cgrp: the target cgroup
779 * @populated: inc or dec populated count
780 *
781 * One of the css_sets associated with @cgrp is either getting its first
782 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
783 * count is propagated towards root so that a given cgroup's
784 * nr_populated_children is zero iff none of its descendants contain any
785 * tasks.
786 *
787 * @cgrp's interface file "cgroup.populated" is zero if both
788 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
789 * 1 otherwise. When the sum changes from or to zero, userland is notified
790 * that the content of the interface file has changed. This can be used to
791 * detect when @cgrp and its descendants become populated or empty.
792 */
cgroup_update_populated(struct cgroup * cgrp,bool populated)793 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
794 {
795 struct cgroup *child = NULL;
796 int adj = populated ? 1 : -1;
797
798 lockdep_assert_held(&css_set_lock);
799
800 do {
801 bool was_populated = cgroup_is_populated(cgrp);
802
803 if (!child) {
804 cgrp->nr_populated_csets += adj;
805 } else {
806 if (cgroup_is_threaded(child))
807 cgrp->nr_populated_threaded_children += adj;
808 else
809 cgrp->nr_populated_domain_children += adj;
810 }
811
812 if (was_populated == cgroup_is_populated(cgrp))
813 break;
814
815 cgroup1_check_for_release(cgrp);
816 TRACE_CGROUP_PATH(notify_populated, cgrp,
817 cgroup_is_populated(cgrp));
818 cgroup_file_notify(&cgrp->events_file);
819
820 child = cgrp;
821 cgrp = cgroup_parent(cgrp);
822 } while (cgrp);
823 }
824
825 /**
826 * css_set_update_populated - update populated state of a css_set
827 * @cset: target css_set
828 * @populated: whether @cset is populated or depopulated
829 *
830 * @cset is either getting the first task or losing the last. Update the
831 * populated counters of all associated cgroups accordingly.
832 */
css_set_update_populated(struct css_set * cset,bool populated)833 static void css_set_update_populated(struct css_set *cset, bool populated)
834 {
835 struct cgrp_cset_link *link;
836
837 lockdep_assert_held(&css_set_lock);
838
839 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
840 cgroup_update_populated(link->cgrp, populated);
841 }
842
843 /*
844 * @task is leaving, advance task iterators which are pointing to it so
845 * that they can resume at the next position. Advancing an iterator might
846 * remove it from the list, use safe walk. See css_task_iter_skip() for
847 * details.
848 */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)849 static void css_set_skip_task_iters(struct css_set *cset,
850 struct task_struct *task)
851 {
852 struct css_task_iter *it, *pos;
853
854 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
855 css_task_iter_skip(it, task);
856 }
857
858 /**
859 * css_set_move_task - move a task from one css_set to another
860 * @task: task being moved
861 * @from_cset: css_set @task currently belongs to (may be NULL)
862 * @to_cset: new css_set @task is being moved to (may be NULL)
863 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
864 *
865 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
866 * css_set, @from_cset can be NULL. If @task is being disassociated
867 * instead of moved, @to_cset can be NULL.
868 *
869 * This function automatically handles populated counter updates and
870 * css_task_iter adjustments but the caller is responsible for managing
871 * @from_cset and @to_cset's reference counts.
872 */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)873 static void css_set_move_task(struct task_struct *task,
874 struct css_set *from_cset, struct css_set *to_cset,
875 bool use_mg_tasks)
876 {
877 lockdep_assert_held(&css_set_lock);
878
879 if (to_cset && !css_set_populated(to_cset))
880 css_set_update_populated(to_cset, true);
881
882 if (from_cset) {
883 WARN_ON_ONCE(list_empty(&task->cg_list));
884
885 css_set_skip_task_iters(from_cset, task);
886 list_del_init(&task->cg_list);
887 if (!css_set_populated(from_cset))
888 css_set_update_populated(from_cset, false);
889 } else {
890 WARN_ON_ONCE(!list_empty(&task->cg_list));
891 }
892
893 if (to_cset) {
894 /*
895 * We are synchronized through cgroup_threadgroup_rwsem
896 * against PF_EXITING setting such that we can't race
897 * against cgroup_exit()/cgroup_free() dropping the css_set.
898 */
899 WARN_ON_ONCE(task->flags & PF_EXITING);
900
901 cgroup_move_task(task, to_cset);
902 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
903 &to_cset->tasks);
904 }
905 }
906
907 /*
908 * hash table for cgroup groups. This improves the performance to find
909 * an existing css_set. This hash doesn't (currently) take into
910 * account cgroups in empty hierarchies.
911 */
912 #define CSS_SET_HASH_BITS 7
913 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
914
css_set_hash(struct cgroup_subsys_state * css[])915 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
916 {
917 unsigned long key = 0UL;
918 struct cgroup_subsys *ss;
919 int i;
920
921 for_each_subsys(ss, i)
922 key += (unsigned long)css[i];
923 key = (key >> 16) ^ key;
924
925 return key;
926 }
927
put_css_set_locked(struct css_set * cset)928 void put_css_set_locked(struct css_set *cset)
929 {
930 struct cgrp_cset_link *link, *tmp_link;
931 struct cgroup_subsys *ss;
932 int ssid;
933
934 lockdep_assert_held(&css_set_lock);
935
936 if (!refcount_dec_and_test(&cset->refcount))
937 return;
938
939 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
940
941 /* This css_set is dead. unlink it and release cgroup and css refs */
942 for_each_subsys(ss, ssid) {
943 list_del(&cset->e_cset_node[ssid]);
944 css_put(cset->subsys[ssid]);
945 }
946 hash_del(&cset->hlist);
947 css_set_count--;
948
949 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
950 list_del(&link->cset_link);
951 list_del(&link->cgrp_link);
952 if (cgroup_parent(link->cgrp))
953 cgroup_put(link->cgrp);
954 kfree(link);
955 }
956
957 if (css_set_threaded(cset)) {
958 list_del(&cset->threaded_csets_node);
959 put_css_set_locked(cset->dom_cset);
960 }
961
962 kfree_rcu(cset, rcu_head);
963 }
964
965 /**
966 * compare_css_sets - helper function for find_existing_css_set().
967 * @cset: candidate css_set being tested
968 * @old_cset: existing css_set for a task
969 * @new_cgrp: cgroup that's being entered by the task
970 * @template: desired set of css pointers in css_set (pre-calculated)
971 *
972 * Returns true if "cset" matches "old_cset" except for the hierarchy
973 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
974 */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])975 static bool compare_css_sets(struct css_set *cset,
976 struct css_set *old_cset,
977 struct cgroup *new_cgrp,
978 struct cgroup_subsys_state *template[])
979 {
980 struct cgroup *new_dfl_cgrp;
981 struct list_head *l1, *l2;
982
983 /*
984 * On the default hierarchy, there can be csets which are
985 * associated with the same set of cgroups but different csses.
986 * Let's first ensure that csses match.
987 */
988 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
989 return false;
990
991
992 /* @cset's domain should match the default cgroup's */
993 if (cgroup_on_dfl(new_cgrp))
994 new_dfl_cgrp = new_cgrp;
995 else
996 new_dfl_cgrp = old_cset->dfl_cgrp;
997
998 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
999 return false;
1000
1001 /*
1002 * Compare cgroup pointers in order to distinguish between
1003 * different cgroups in hierarchies. As different cgroups may
1004 * share the same effective css, this comparison is always
1005 * necessary.
1006 */
1007 l1 = &cset->cgrp_links;
1008 l2 = &old_cset->cgrp_links;
1009 while (1) {
1010 struct cgrp_cset_link *link1, *link2;
1011 struct cgroup *cgrp1, *cgrp2;
1012
1013 l1 = l1->next;
1014 l2 = l2->next;
1015 /* See if we reached the end - both lists are equal length. */
1016 if (l1 == &cset->cgrp_links) {
1017 BUG_ON(l2 != &old_cset->cgrp_links);
1018 break;
1019 } else {
1020 BUG_ON(l2 == &old_cset->cgrp_links);
1021 }
1022 /* Locate the cgroups associated with these links. */
1023 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1024 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1025 cgrp1 = link1->cgrp;
1026 cgrp2 = link2->cgrp;
1027 /* Hierarchies should be linked in the same order. */
1028 BUG_ON(cgrp1->root != cgrp2->root);
1029
1030 /*
1031 * If this hierarchy is the hierarchy of the cgroup
1032 * that's changing, then we need to check that this
1033 * css_set points to the new cgroup; if it's any other
1034 * hierarchy, then this css_set should point to the
1035 * same cgroup as the old css_set.
1036 */
1037 if (cgrp1->root == new_cgrp->root) {
1038 if (cgrp1 != new_cgrp)
1039 return false;
1040 } else {
1041 if (cgrp1 != cgrp2)
1042 return false;
1043 }
1044 }
1045 return true;
1046 }
1047
1048 /**
1049 * find_existing_css_set - init css array and find the matching css_set
1050 * @old_cset: the css_set that we're using before the cgroup transition
1051 * @cgrp: the cgroup that we're moving into
1052 * @template: out param for the new set of csses, should be clear on entry
1053 */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state * template[])1054 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1055 struct cgroup *cgrp,
1056 struct cgroup_subsys_state *template[])
1057 {
1058 struct cgroup_root *root = cgrp->root;
1059 struct cgroup_subsys *ss;
1060 struct css_set *cset;
1061 unsigned long key;
1062 int i;
1063
1064 /*
1065 * Build the set of subsystem state objects that we want to see in the
1066 * new css_set. while subsystems can change globally, the entries here
1067 * won't change, so no need for locking.
1068 */
1069 for_each_subsys(ss, i) {
1070 if (root->subsys_mask & (1UL << i)) {
1071 /*
1072 * @ss is in this hierarchy, so we want the
1073 * effective css from @cgrp.
1074 */
1075 template[i] = cgroup_e_css_by_mask(cgrp, ss);
1076 } else {
1077 /*
1078 * @ss is not in this hierarchy, so we don't want
1079 * to change the css.
1080 */
1081 template[i] = old_cset->subsys[i];
1082 }
1083 }
1084
1085 key = css_set_hash(template);
1086 hash_for_each_possible(css_set_table, cset, hlist, key) {
1087 if (!compare_css_sets(cset, old_cset, cgrp, template))
1088 continue;
1089
1090 /* This css_set matches what we need */
1091 return cset;
1092 }
1093
1094 /* No existing cgroup group matched */
1095 return NULL;
1096 }
1097
free_cgrp_cset_links(struct list_head * links_to_free)1098 static void free_cgrp_cset_links(struct list_head *links_to_free)
1099 {
1100 struct cgrp_cset_link *link, *tmp_link;
1101
1102 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1103 list_del(&link->cset_link);
1104 kfree(link);
1105 }
1106 }
1107
1108 /**
1109 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1110 * @count: the number of links to allocate
1111 * @tmp_links: list_head the allocated links are put on
1112 *
1113 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1114 * through ->cset_link. Returns 0 on success or -errno.
1115 */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1116 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1117 {
1118 struct cgrp_cset_link *link;
1119 int i;
1120
1121 INIT_LIST_HEAD(tmp_links);
1122
1123 for (i = 0; i < count; i++) {
1124 link = kzalloc(sizeof(*link), GFP_KERNEL);
1125 if (!link) {
1126 free_cgrp_cset_links(tmp_links);
1127 return -ENOMEM;
1128 }
1129 list_add(&link->cset_link, tmp_links);
1130 }
1131 return 0;
1132 }
1133
1134 /**
1135 * link_css_set - a helper function to link a css_set to a cgroup
1136 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1137 * @cset: the css_set to be linked
1138 * @cgrp: the destination cgroup
1139 */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1140 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1141 struct cgroup *cgrp)
1142 {
1143 struct cgrp_cset_link *link;
1144
1145 BUG_ON(list_empty(tmp_links));
1146
1147 if (cgroup_on_dfl(cgrp))
1148 cset->dfl_cgrp = cgrp;
1149
1150 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1151 link->cset = cset;
1152 link->cgrp = cgrp;
1153
1154 /*
1155 * Always add links to the tail of the lists so that the lists are
1156 * in choronological order.
1157 */
1158 list_move_tail(&link->cset_link, &cgrp->cset_links);
1159 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1160
1161 if (cgroup_parent(cgrp))
1162 cgroup_get_live(cgrp);
1163 }
1164
1165 /**
1166 * find_css_set - return a new css_set with one cgroup updated
1167 * @old_cset: the baseline css_set
1168 * @cgrp: the cgroup to be updated
1169 *
1170 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1171 * substituted into the appropriate hierarchy.
1172 */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1173 static struct css_set *find_css_set(struct css_set *old_cset,
1174 struct cgroup *cgrp)
1175 {
1176 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1177 struct css_set *cset;
1178 struct list_head tmp_links;
1179 struct cgrp_cset_link *link;
1180 struct cgroup_subsys *ss;
1181 unsigned long key;
1182 int ssid;
1183
1184 lockdep_assert_held(&cgroup_mutex);
1185
1186 /* First see if we already have a cgroup group that matches
1187 * the desired set */
1188 spin_lock_irq(&css_set_lock);
1189 cset = find_existing_css_set(old_cset, cgrp, template);
1190 if (cset)
1191 get_css_set(cset);
1192 spin_unlock_irq(&css_set_lock);
1193
1194 if (cset)
1195 return cset;
1196
1197 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1198 if (!cset)
1199 return NULL;
1200
1201 /* Allocate all the cgrp_cset_link objects that we'll need */
1202 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1203 kfree(cset);
1204 return NULL;
1205 }
1206
1207 refcount_set(&cset->refcount, 1);
1208 cset->dom_cset = cset;
1209 INIT_LIST_HEAD(&cset->tasks);
1210 INIT_LIST_HEAD(&cset->mg_tasks);
1211 INIT_LIST_HEAD(&cset->dying_tasks);
1212 INIT_LIST_HEAD(&cset->task_iters);
1213 INIT_LIST_HEAD(&cset->threaded_csets);
1214 INIT_HLIST_NODE(&cset->hlist);
1215 INIT_LIST_HEAD(&cset->cgrp_links);
1216 INIT_LIST_HEAD(&cset->mg_src_preload_node);
1217 INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1218 INIT_LIST_HEAD(&cset->mg_node);
1219
1220 /* Copy the set of subsystem state objects generated in
1221 * find_existing_css_set() */
1222 memcpy(cset->subsys, template, sizeof(cset->subsys));
1223
1224 spin_lock_irq(&css_set_lock);
1225 /* Add reference counts and links from the new css_set. */
1226 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1227 struct cgroup *c = link->cgrp;
1228
1229 if (c->root == cgrp->root)
1230 c = cgrp;
1231 link_css_set(&tmp_links, cset, c);
1232 }
1233
1234 BUG_ON(!list_empty(&tmp_links));
1235
1236 css_set_count++;
1237
1238 /* Add @cset to the hash table */
1239 key = css_set_hash(cset->subsys);
1240 hash_add(css_set_table, &cset->hlist, key);
1241
1242 for_each_subsys(ss, ssid) {
1243 struct cgroup_subsys_state *css = cset->subsys[ssid];
1244
1245 list_add_tail(&cset->e_cset_node[ssid],
1246 &css->cgroup->e_csets[ssid]);
1247 css_get(css);
1248 }
1249
1250 spin_unlock_irq(&css_set_lock);
1251
1252 /*
1253 * If @cset should be threaded, look up the matching dom_cset and
1254 * link them up. We first fully initialize @cset then look for the
1255 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1256 * to stay empty until we return.
1257 */
1258 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1259 struct css_set *dcset;
1260
1261 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1262 if (!dcset) {
1263 put_css_set(cset);
1264 return NULL;
1265 }
1266
1267 spin_lock_irq(&css_set_lock);
1268 cset->dom_cset = dcset;
1269 list_add_tail(&cset->threaded_csets_node,
1270 &dcset->threaded_csets);
1271 spin_unlock_irq(&css_set_lock);
1272 }
1273
1274 return cset;
1275 }
1276
cgroup_root_from_kf(struct kernfs_root * kf_root)1277 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1278 {
1279 struct cgroup *root_cgrp = kf_root->kn->priv;
1280
1281 return root_cgrp->root;
1282 }
1283
cgroup_init_root_id(struct cgroup_root * root)1284 static int cgroup_init_root_id(struct cgroup_root *root)
1285 {
1286 int id;
1287
1288 lockdep_assert_held(&cgroup_mutex);
1289
1290 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1291 if (id < 0)
1292 return id;
1293
1294 root->hierarchy_id = id;
1295 return 0;
1296 }
1297
cgroup_exit_root_id(struct cgroup_root * root)1298 static void cgroup_exit_root_id(struct cgroup_root *root)
1299 {
1300 lockdep_assert_held(&cgroup_mutex);
1301
1302 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1303 }
1304
cgroup_free_root(struct cgroup_root * root)1305 void cgroup_free_root(struct cgroup_root *root)
1306 {
1307 kfree(root);
1308 }
1309
cgroup_destroy_root(struct cgroup_root * root)1310 static void cgroup_destroy_root(struct cgroup_root *root)
1311 {
1312 struct cgroup *cgrp = &root->cgrp;
1313 struct cgrp_cset_link *link, *tmp_link;
1314
1315 trace_cgroup_destroy_root(root);
1316
1317 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1318
1319 BUG_ON(atomic_read(&root->nr_cgrps));
1320 BUG_ON(!list_empty(&cgrp->self.children));
1321
1322 /* Rebind all subsystems back to the default hierarchy */
1323 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1324
1325 /*
1326 * Release all the links from cset_links to this hierarchy's
1327 * root cgroup
1328 */
1329 spin_lock_irq(&css_set_lock);
1330
1331 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1332 list_del(&link->cset_link);
1333 list_del(&link->cgrp_link);
1334 kfree(link);
1335 }
1336
1337 spin_unlock_irq(&css_set_lock);
1338
1339 if (!list_empty(&root->root_list)) {
1340 list_del(&root->root_list);
1341 cgroup_root_count--;
1342 }
1343
1344 cgroup_exit_root_id(root);
1345
1346 mutex_unlock(&cgroup_mutex);
1347
1348 kernfs_destroy_root(root->kf_root);
1349 cgroup_free_root(root);
1350 }
1351
1352 /*
1353 * look up cgroup associated with current task's cgroup namespace on the
1354 * specified hierarchy
1355 */
1356 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1357 current_cgns_cgroup_from_root(struct cgroup_root *root)
1358 {
1359 struct cgroup *res = NULL;
1360 struct css_set *cset;
1361
1362 lockdep_assert_held(&css_set_lock);
1363
1364 rcu_read_lock();
1365
1366 cset = current->nsproxy->cgroup_ns->root_cset;
1367 if (cset == &init_css_set) {
1368 res = &root->cgrp;
1369 } else if (root == &cgrp_dfl_root) {
1370 res = cset->dfl_cgrp;
1371 } else {
1372 struct cgrp_cset_link *link;
1373
1374 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1375 struct cgroup *c = link->cgrp;
1376
1377 if (c->root == root) {
1378 res = c;
1379 break;
1380 }
1381 }
1382 }
1383 rcu_read_unlock();
1384
1385 BUG_ON(!res);
1386 return res;
1387 }
1388
1389 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1390 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1391 struct cgroup_root *root)
1392 {
1393 struct cgroup *res = NULL;
1394
1395 lockdep_assert_held(&cgroup_mutex);
1396 lockdep_assert_held(&css_set_lock);
1397
1398 if (cset == &init_css_set) {
1399 res = &root->cgrp;
1400 } else if (root == &cgrp_dfl_root) {
1401 res = cset->dfl_cgrp;
1402 } else {
1403 struct cgrp_cset_link *link;
1404
1405 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1406 struct cgroup *c = link->cgrp;
1407
1408 if (c->root == root) {
1409 res = c;
1410 break;
1411 }
1412 }
1413 }
1414
1415 BUG_ON(!res);
1416 return res;
1417 }
1418
1419 /*
1420 * Return the cgroup for "task" from the given hierarchy. Must be
1421 * called with cgroup_mutex and css_set_lock held.
1422 */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1423 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1424 struct cgroup_root *root)
1425 {
1426 /*
1427 * No need to lock the task - since we hold css_set_lock the
1428 * task can't change groups.
1429 */
1430 return cset_cgroup_from_root(task_css_set(task), root);
1431 }
1432
1433 /*
1434 * A task must hold cgroup_mutex to modify cgroups.
1435 *
1436 * Any task can increment and decrement the count field without lock.
1437 * So in general, code holding cgroup_mutex can't rely on the count
1438 * field not changing. However, if the count goes to zero, then only
1439 * cgroup_attach_task() can increment it again. Because a count of zero
1440 * means that no tasks are currently attached, therefore there is no
1441 * way a task attached to that cgroup can fork (the other way to
1442 * increment the count). So code holding cgroup_mutex can safely
1443 * assume that if the count is zero, it will stay zero. Similarly, if
1444 * a task holds cgroup_mutex on a cgroup with zero count, it
1445 * knows that the cgroup won't be removed, as cgroup_rmdir()
1446 * needs that mutex.
1447 *
1448 * A cgroup can only be deleted if both its 'count' of using tasks
1449 * is zero, and its list of 'children' cgroups is empty. Since all
1450 * tasks in the system use _some_ cgroup, and since there is always at
1451 * least one task in the system (init, pid == 1), therefore, root cgroup
1452 * always has either children cgroups and/or using tasks. So we don't
1453 * need a special hack to ensure that root cgroup cannot be deleted.
1454 *
1455 * P.S. One more locking exception. RCU is used to guard the
1456 * update of a tasks cgroup pointer by cgroup_attach_task()
1457 */
1458
1459 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1460
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1461 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1462 char *buf)
1463 {
1464 struct cgroup_subsys *ss = cft->ss;
1465
1466 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1467 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1468 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1469
1470 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1471 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1472 cft->name);
1473 } else {
1474 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1475 }
1476 return buf;
1477 }
1478
1479 /**
1480 * cgroup_file_mode - deduce file mode of a control file
1481 * @cft: the control file in question
1482 *
1483 * S_IRUGO for read, S_IWUSR for write.
1484 */
cgroup_file_mode(const struct cftype * cft)1485 static umode_t cgroup_file_mode(const struct cftype *cft)
1486 {
1487 umode_t mode = 0;
1488
1489 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1490 mode |= S_IRUGO;
1491
1492 if (cft->write_u64 || cft->write_s64 || cft->write) {
1493 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1494 mode |= S_IWUGO;
1495 else
1496 mode |= S_IWUSR;
1497 }
1498
1499 return mode;
1500 }
1501
1502 /**
1503 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1504 * @subtree_control: the new subtree_control mask to consider
1505 * @this_ss_mask: available subsystems
1506 *
1507 * On the default hierarchy, a subsystem may request other subsystems to be
1508 * enabled together through its ->depends_on mask. In such cases, more
1509 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1510 *
1511 * This function calculates which subsystems need to be enabled if
1512 * @subtree_control is to be applied while restricted to @this_ss_mask.
1513 */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1514 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1515 {
1516 u16 cur_ss_mask = subtree_control;
1517 struct cgroup_subsys *ss;
1518 int ssid;
1519
1520 lockdep_assert_held(&cgroup_mutex);
1521
1522 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1523
1524 while (true) {
1525 u16 new_ss_mask = cur_ss_mask;
1526
1527 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1528 new_ss_mask |= ss->depends_on;
1529 } while_each_subsys_mask();
1530
1531 /*
1532 * Mask out subsystems which aren't available. This can
1533 * happen only if some depended-upon subsystems were bound
1534 * to non-default hierarchies.
1535 */
1536 new_ss_mask &= this_ss_mask;
1537
1538 if (new_ss_mask == cur_ss_mask)
1539 break;
1540 cur_ss_mask = new_ss_mask;
1541 }
1542
1543 return cur_ss_mask;
1544 }
1545
1546 /**
1547 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1548 * @kn: the kernfs_node being serviced
1549 *
1550 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1551 * the method finishes if locking succeeded. Note that once this function
1552 * returns the cgroup returned by cgroup_kn_lock_live() may become
1553 * inaccessible any time. If the caller intends to continue to access the
1554 * cgroup, it should pin it before invoking this function.
1555 */
cgroup_kn_unlock(struct kernfs_node * kn)1556 void cgroup_kn_unlock(struct kernfs_node *kn)
1557 {
1558 struct cgroup *cgrp;
1559
1560 if (kernfs_type(kn) == KERNFS_DIR)
1561 cgrp = kn->priv;
1562 else
1563 cgrp = kn->parent->priv;
1564
1565 mutex_unlock(&cgroup_mutex);
1566
1567 kernfs_unbreak_active_protection(kn);
1568 cgroup_put(cgrp);
1569 }
1570
1571 /**
1572 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1573 * @kn: the kernfs_node being serviced
1574 * @drain_offline: perform offline draining on the cgroup
1575 *
1576 * This helper is to be used by a cgroup kernfs method currently servicing
1577 * @kn. It breaks the active protection, performs cgroup locking and
1578 * verifies that the associated cgroup is alive. Returns the cgroup if
1579 * alive; otherwise, %NULL. A successful return should be undone by a
1580 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1581 * cgroup is drained of offlining csses before return.
1582 *
1583 * Any cgroup kernfs method implementation which requires locking the
1584 * associated cgroup should use this helper. It avoids nesting cgroup
1585 * locking under kernfs active protection and allows all kernfs operations
1586 * including self-removal.
1587 */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1588 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1589 {
1590 struct cgroup *cgrp;
1591
1592 if (kernfs_type(kn) == KERNFS_DIR)
1593 cgrp = kn->priv;
1594 else
1595 cgrp = kn->parent->priv;
1596
1597 /*
1598 * We're gonna grab cgroup_mutex which nests outside kernfs
1599 * active_ref. cgroup liveliness check alone provides enough
1600 * protection against removal. Ensure @cgrp stays accessible and
1601 * break the active_ref protection.
1602 */
1603 if (!cgroup_tryget(cgrp))
1604 return NULL;
1605 kernfs_break_active_protection(kn);
1606
1607 if (drain_offline)
1608 cgroup_lock_and_drain_offline(cgrp);
1609 else
1610 mutex_lock(&cgroup_mutex);
1611
1612 if (!cgroup_is_dead(cgrp))
1613 return cgrp;
1614
1615 cgroup_kn_unlock(kn);
1616 return NULL;
1617 }
1618
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1619 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1620 {
1621 char name[CGROUP_FILE_NAME_MAX];
1622
1623 lockdep_assert_held(&cgroup_mutex);
1624
1625 if (cft->file_offset) {
1626 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1627 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1628
1629 spin_lock_irq(&cgroup_file_kn_lock);
1630 cfile->kn = NULL;
1631 spin_unlock_irq(&cgroup_file_kn_lock);
1632
1633 del_timer_sync(&cfile->notify_timer);
1634 }
1635
1636 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1637 }
1638
1639 /**
1640 * css_clear_dir - remove subsys files in a cgroup directory
1641 * @css: taget css
1642 */
css_clear_dir(struct cgroup_subsys_state * css)1643 static void css_clear_dir(struct cgroup_subsys_state *css)
1644 {
1645 struct cgroup *cgrp = css->cgroup;
1646 struct cftype *cfts;
1647
1648 if (!(css->flags & CSS_VISIBLE))
1649 return;
1650
1651 css->flags &= ~CSS_VISIBLE;
1652
1653 if (!css->ss) {
1654 if (cgroup_on_dfl(cgrp))
1655 cfts = cgroup_base_files;
1656 else
1657 cfts = cgroup1_base_files;
1658
1659 cgroup_addrm_files(css, cgrp, cfts, false);
1660 } else {
1661 list_for_each_entry(cfts, &css->ss->cfts, node)
1662 cgroup_addrm_files(css, cgrp, cfts, false);
1663 }
1664 }
1665
1666 /**
1667 * css_populate_dir - create subsys files in a cgroup directory
1668 * @css: target css
1669 *
1670 * On failure, no file is added.
1671 */
css_populate_dir(struct cgroup_subsys_state * css)1672 static int css_populate_dir(struct cgroup_subsys_state *css)
1673 {
1674 struct cgroup *cgrp = css->cgroup;
1675 struct cftype *cfts, *failed_cfts;
1676 int ret;
1677
1678 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1679 return 0;
1680
1681 if (!css->ss) {
1682 if (cgroup_on_dfl(cgrp))
1683 cfts = cgroup_base_files;
1684 else
1685 cfts = cgroup1_base_files;
1686
1687 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1688 if (ret < 0)
1689 return ret;
1690 } else {
1691 list_for_each_entry(cfts, &css->ss->cfts, node) {
1692 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1693 if (ret < 0) {
1694 failed_cfts = cfts;
1695 goto err;
1696 }
1697 }
1698 }
1699
1700 css->flags |= CSS_VISIBLE;
1701
1702 return 0;
1703 err:
1704 list_for_each_entry(cfts, &css->ss->cfts, node) {
1705 if (cfts == failed_cfts)
1706 break;
1707 cgroup_addrm_files(css, cgrp, cfts, false);
1708 }
1709 return ret;
1710 }
1711
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1712 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1713 {
1714 struct cgroup *dcgrp = &dst_root->cgrp;
1715 struct cgroup_subsys *ss;
1716 int ssid, ret;
1717 u16 dfl_disable_ss_mask = 0;
1718
1719 lockdep_assert_held(&cgroup_mutex);
1720
1721 do_each_subsys_mask(ss, ssid, ss_mask) {
1722 /*
1723 * If @ss has non-root csses attached to it, can't move.
1724 * If @ss is an implicit controller, it is exempt from this
1725 * rule and can be stolen.
1726 */
1727 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1728 !ss->implicit_on_dfl)
1729 return -EBUSY;
1730
1731 /* can't move between two non-dummy roots either */
1732 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1733 return -EBUSY;
1734
1735 /*
1736 * Collect ssid's that need to be disabled from default
1737 * hierarchy.
1738 */
1739 if (ss->root == &cgrp_dfl_root)
1740 dfl_disable_ss_mask |= 1 << ssid;
1741
1742 } while_each_subsys_mask();
1743
1744 if (dfl_disable_ss_mask) {
1745 struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1746
1747 /*
1748 * Controllers from default hierarchy that need to be rebound
1749 * are all disabled together in one go.
1750 */
1751 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1752 WARN_ON(cgroup_apply_control(scgrp));
1753 cgroup_finalize_control(scgrp, 0);
1754 }
1755
1756 do_each_subsys_mask(ss, ssid, ss_mask) {
1757 struct cgroup_root *src_root = ss->root;
1758 struct cgroup *scgrp = &src_root->cgrp;
1759 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1760 struct css_set *cset, *cset_pos;
1761 struct css_task_iter *it;
1762
1763 WARN_ON(!css || cgroup_css(dcgrp, ss));
1764
1765 if (src_root != &cgrp_dfl_root) {
1766 /* disable from the source */
1767 src_root->subsys_mask &= ~(1 << ssid);
1768 WARN_ON(cgroup_apply_control(scgrp));
1769 cgroup_finalize_control(scgrp, 0);
1770 }
1771
1772 /* rebind */
1773 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1774 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1775 ss->root = dst_root;
1776 css->cgroup = dcgrp;
1777
1778 spin_lock_irq(&css_set_lock);
1779 WARN_ON(!list_empty(&dcgrp->e_csets[ss->id]));
1780 list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id],
1781 e_cset_node[ss->id]) {
1782 list_move_tail(&cset->e_cset_node[ss->id],
1783 &dcgrp->e_csets[ss->id]);
1784 /*
1785 * all css_sets of scgrp together in same order to dcgrp,
1786 * patch in-flight iterators to preserve correct iteration.
1787 * since the iterator is always advanced right away and
1788 * finished when it->cset_pos meets it->cset_head, so only
1789 * update it->cset_head is enough here.
1790 */
1791 list_for_each_entry(it, &cset->task_iters, iters_node)
1792 if (it->cset_head == &scgrp->e_csets[ss->id])
1793 it->cset_head = &dcgrp->e_csets[ss->id];
1794 }
1795 spin_unlock_irq(&css_set_lock);
1796
1797 /* default hierarchy doesn't enable controllers by default */
1798 dst_root->subsys_mask |= 1 << ssid;
1799 if (dst_root == &cgrp_dfl_root) {
1800 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1801 } else {
1802 dcgrp->subtree_control |= 1 << ssid;
1803 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1804 }
1805
1806 ret = cgroup_apply_control(dcgrp);
1807 if (ret)
1808 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1809 ss->name, ret);
1810
1811 if (ss->bind)
1812 ss->bind(css);
1813 } while_each_subsys_mask();
1814
1815 kernfs_activate(dcgrp->kn);
1816 return 0;
1817 }
1818
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1819 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1820 struct kernfs_root *kf_root)
1821 {
1822 int len = 0;
1823 char *buf = NULL;
1824 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1825 struct cgroup *ns_cgroup;
1826
1827 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1828 if (!buf)
1829 return -ENOMEM;
1830
1831 spin_lock_irq(&css_set_lock);
1832 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1833 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1834 spin_unlock_irq(&css_set_lock);
1835
1836 if (len >= PATH_MAX)
1837 len = -ERANGE;
1838 else if (len > 0) {
1839 seq_escape(sf, buf, " \t\n\\");
1840 len = 0;
1841 }
1842 kfree(buf);
1843 return len;
1844 }
1845
1846 enum cgroup2_param {
1847 Opt_nsdelegate,
1848 Opt_memory_localevents,
1849 Opt_memory_recursiveprot,
1850 nr__cgroup2_params
1851 };
1852
1853 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1854 fsparam_flag("nsdelegate", Opt_nsdelegate),
1855 fsparam_flag("memory_localevents", Opt_memory_localevents),
1856 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot),
1857 {}
1858 };
1859
cgroup2_parse_param(struct fs_context * fc,struct fs_parameter * param)1860 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1861 {
1862 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1863 struct fs_parse_result result;
1864 int opt;
1865
1866 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1867 if (opt < 0)
1868 return opt;
1869
1870 switch (opt) {
1871 case Opt_nsdelegate:
1872 ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1873 return 0;
1874 case Opt_memory_localevents:
1875 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1876 return 0;
1877 case Opt_memory_recursiveprot:
1878 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1879 return 0;
1880 }
1881 return -EINVAL;
1882 }
1883
apply_cgroup_root_flags(unsigned int root_flags)1884 static void apply_cgroup_root_flags(unsigned int root_flags)
1885 {
1886 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1887 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1888 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1889 else
1890 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1891
1892 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1893 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1894 else
1895 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1896
1897 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1898 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1899 else
1900 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1901 }
1902 }
1903
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)1904 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1905 {
1906 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1907 seq_puts(seq, ",nsdelegate");
1908 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1909 seq_puts(seq, ",memory_localevents");
1910 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1911 seq_puts(seq, ",memory_recursiveprot");
1912 return 0;
1913 }
1914
cgroup_reconfigure(struct fs_context * fc)1915 static int cgroup_reconfigure(struct fs_context *fc)
1916 {
1917 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1918
1919 apply_cgroup_root_flags(ctx->flags);
1920 return 0;
1921 }
1922
init_cgroup_housekeeping(struct cgroup * cgrp)1923 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1924 {
1925 struct cgroup_subsys *ss;
1926 int ssid;
1927
1928 INIT_LIST_HEAD(&cgrp->self.sibling);
1929 INIT_LIST_HEAD(&cgrp->self.children);
1930 INIT_LIST_HEAD(&cgrp->cset_links);
1931 INIT_LIST_HEAD(&cgrp->pidlists);
1932 mutex_init(&cgrp->pidlist_mutex);
1933 cgrp->self.cgroup = cgrp;
1934 cgrp->self.flags |= CSS_ONLINE;
1935 cgrp->dom_cgrp = cgrp;
1936 cgrp->max_descendants = INT_MAX;
1937 cgrp->max_depth = INT_MAX;
1938 INIT_LIST_HEAD(&cgrp->rstat_css_list);
1939 prev_cputime_init(&cgrp->prev_cputime);
1940
1941 for_each_subsys(ss, ssid)
1942 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1943
1944 init_waitqueue_head(&cgrp->offline_waitq);
1945 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1946 }
1947
init_cgroup_root(struct cgroup_fs_context * ctx)1948 void init_cgroup_root(struct cgroup_fs_context *ctx)
1949 {
1950 struct cgroup_root *root = ctx->root;
1951 struct cgroup *cgrp = &root->cgrp;
1952
1953 INIT_LIST_HEAD(&root->root_list);
1954 atomic_set(&root->nr_cgrps, 1);
1955 cgrp->root = root;
1956 init_cgroup_housekeeping(cgrp);
1957 init_waitqueue_head(&root->wait);
1958
1959 root->flags = ctx->flags;
1960 if (ctx->release_agent)
1961 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1962 if (ctx->name)
1963 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1964 if (ctx->cpuset_clone_children)
1965 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1966 }
1967
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)1968 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1969 {
1970 LIST_HEAD(tmp_links);
1971 struct cgroup *root_cgrp = &root->cgrp;
1972 struct kernfs_syscall_ops *kf_sops;
1973 struct css_set *cset;
1974 int i, ret;
1975
1976 lockdep_assert_held(&cgroup_mutex);
1977
1978 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1979 0, GFP_KERNEL);
1980 if (ret)
1981 goto out;
1982
1983 /*
1984 * We're accessing css_set_count without locking css_set_lock here,
1985 * but that's OK - it can only be increased by someone holding
1986 * cgroup_lock, and that's us. Later rebinding may disable
1987 * controllers on the default hierarchy and thus create new csets,
1988 * which can't be more than the existing ones. Allocate 2x.
1989 */
1990 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1991 if (ret)
1992 goto cancel_ref;
1993
1994 ret = cgroup_init_root_id(root);
1995 if (ret)
1996 goto cancel_ref;
1997
1998 kf_sops = root == &cgrp_dfl_root ?
1999 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2000
2001 root->kf_root = kernfs_create_root(kf_sops,
2002 KERNFS_ROOT_CREATE_DEACTIVATED |
2003 KERNFS_ROOT_SUPPORT_EXPORTOP |
2004 KERNFS_ROOT_SUPPORT_USER_XATTR,
2005 root_cgrp);
2006 if (IS_ERR(root->kf_root)) {
2007 ret = PTR_ERR(root->kf_root);
2008 goto exit_root_id;
2009 }
2010 root_cgrp->kn = root->kf_root->kn;
2011 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2012 root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
2013
2014 ret = css_populate_dir(&root_cgrp->self);
2015 if (ret)
2016 goto destroy_root;
2017
2018 ret = rebind_subsystems(root, ss_mask);
2019 if (ret)
2020 goto destroy_root;
2021
2022 ret = cgroup_bpf_inherit(root_cgrp);
2023 WARN_ON_ONCE(ret);
2024
2025 trace_cgroup_setup_root(root);
2026
2027 /*
2028 * There must be no failure case after here, since rebinding takes
2029 * care of subsystems' refcounts, which are explicitly dropped in
2030 * the failure exit path.
2031 */
2032 list_add(&root->root_list, &cgroup_roots);
2033 cgroup_root_count++;
2034
2035 /*
2036 * Link the root cgroup in this hierarchy into all the css_set
2037 * objects.
2038 */
2039 spin_lock_irq(&css_set_lock);
2040 hash_for_each(css_set_table, i, cset, hlist) {
2041 link_css_set(&tmp_links, cset, root_cgrp);
2042 if (css_set_populated(cset))
2043 cgroup_update_populated(root_cgrp, true);
2044 }
2045 spin_unlock_irq(&css_set_lock);
2046
2047 BUG_ON(!list_empty(&root_cgrp->self.children));
2048 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2049
2050 ret = 0;
2051 goto out;
2052
2053 destroy_root:
2054 kernfs_destroy_root(root->kf_root);
2055 root->kf_root = NULL;
2056 exit_root_id:
2057 cgroup_exit_root_id(root);
2058 cancel_ref:
2059 percpu_ref_exit(&root_cgrp->self.refcnt);
2060 out:
2061 free_cgrp_cset_links(&tmp_links);
2062 return ret;
2063 }
2064
cgroup_do_get_tree(struct fs_context * fc)2065 int cgroup_do_get_tree(struct fs_context *fc)
2066 {
2067 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2068 int ret;
2069
2070 ctx->kfc.root = ctx->root->kf_root;
2071 if (fc->fs_type == &cgroup2_fs_type)
2072 ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2073 else
2074 ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2075 ret = kernfs_get_tree(fc);
2076
2077 /*
2078 * In non-init cgroup namespace, instead of root cgroup's dentry,
2079 * we return the dentry corresponding to the cgroupns->root_cgrp.
2080 */
2081 if (!ret && ctx->ns != &init_cgroup_ns) {
2082 struct dentry *nsdentry;
2083 struct super_block *sb = fc->root->d_sb;
2084 struct cgroup *cgrp;
2085
2086 mutex_lock(&cgroup_mutex);
2087 spin_lock_irq(&css_set_lock);
2088
2089 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2090
2091 spin_unlock_irq(&css_set_lock);
2092 mutex_unlock(&cgroup_mutex);
2093
2094 nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2095 dput(fc->root);
2096 if (IS_ERR(nsdentry)) {
2097 deactivate_locked_super(sb);
2098 ret = PTR_ERR(nsdentry);
2099 nsdentry = NULL;
2100 }
2101 fc->root = nsdentry;
2102 }
2103
2104 if (!ctx->kfc.new_sb_created)
2105 cgroup_put(&ctx->root->cgrp);
2106
2107 return ret;
2108 }
2109
2110 /*
2111 * Destroy a cgroup filesystem context.
2112 */
cgroup_fs_context_free(struct fs_context * fc)2113 static void cgroup_fs_context_free(struct fs_context *fc)
2114 {
2115 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2116
2117 kfree(ctx->name);
2118 kfree(ctx->release_agent);
2119 put_cgroup_ns(ctx->ns);
2120 kernfs_free_fs_context(fc);
2121 kfree(ctx);
2122 }
2123
cgroup_get_tree(struct fs_context * fc)2124 static int cgroup_get_tree(struct fs_context *fc)
2125 {
2126 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2127 int ret;
2128
2129 cgrp_dfl_visible = true;
2130 cgroup_get_live(&cgrp_dfl_root.cgrp);
2131 ctx->root = &cgrp_dfl_root;
2132
2133 ret = cgroup_do_get_tree(fc);
2134 if (!ret)
2135 apply_cgroup_root_flags(ctx->flags);
2136 return ret;
2137 }
2138
2139 static const struct fs_context_operations cgroup_fs_context_ops = {
2140 .free = cgroup_fs_context_free,
2141 .parse_param = cgroup2_parse_param,
2142 .get_tree = cgroup_get_tree,
2143 .reconfigure = cgroup_reconfigure,
2144 };
2145
2146 static const struct fs_context_operations cgroup1_fs_context_ops = {
2147 .free = cgroup_fs_context_free,
2148 .parse_param = cgroup1_parse_param,
2149 .get_tree = cgroup1_get_tree,
2150 .reconfigure = cgroup1_reconfigure,
2151 };
2152
2153 /*
2154 * Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2155 * we select the namespace we're going to use.
2156 */
cgroup_init_fs_context(struct fs_context * fc)2157 static int cgroup_init_fs_context(struct fs_context *fc)
2158 {
2159 struct cgroup_fs_context *ctx;
2160
2161 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2162 if (!ctx)
2163 return -ENOMEM;
2164
2165 ctx->ns = current->nsproxy->cgroup_ns;
2166 get_cgroup_ns(ctx->ns);
2167 fc->fs_private = &ctx->kfc;
2168 if (fc->fs_type == &cgroup2_fs_type)
2169 fc->ops = &cgroup_fs_context_ops;
2170 else
2171 fc->ops = &cgroup1_fs_context_ops;
2172 put_user_ns(fc->user_ns);
2173 fc->user_ns = get_user_ns(ctx->ns->user_ns);
2174 fc->global = true;
2175 return 0;
2176 }
2177
cgroup_kill_sb(struct super_block * sb)2178 static void cgroup_kill_sb(struct super_block *sb)
2179 {
2180 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2181 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2182
2183 /*
2184 * Wait if there are cgroups being destroyed, because the destruction
2185 * is asynchronous. On the other hand some controllers like memcg
2186 * may pin cgroups for a very long time, so don't wait forever.
2187 */
2188 if (root != &cgrp_dfl_root) {
2189 wait_event_timeout(root->wait,
2190 list_empty(&root->cgrp.self.children),
2191 msecs_to_jiffies(500));
2192 }
2193
2194 /*
2195 * If @root doesn't have any children, start killing it.
2196 * This prevents new mounts by disabling percpu_ref_tryget_live().
2197 * cgroup_mount() may wait for @root's release.
2198 *
2199 * And don't kill the default root.
2200 */
2201 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2202 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2203 cgroup_bpf_offline(&root->cgrp);
2204 percpu_ref_kill(&root->cgrp.self.refcnt);
2205 }
2206 cgroup_put(&root->cgrp);
2207 kernfs_kill_sb(sb);
2208 }
2209
2210 struct file_system_type cgroup_fs_type = {
2211 .name = "cgroup",
2212 .init_fs_context = cgroup_init_fs_context,
2213 .parameters = cgroup1_fs_parameters,
2214 .kill_sb = cgroup_kill_sb,
2215 .fs_flags = FS_USERNS_MOUNT,
2216 };
2217
2218 static struct file_system_type cgroup2_fs_type = {
2219 .name = "cgroup2",
2220 .init_fs_context = cgroup_init_fs_context,
2221 .parameters = cgroup2_fs_parameters,
2222 .kill_sb = cgroup_kill_sb,
2223 .fs_flags = FS_USERNS_MOUNT,
2224 };
2225
2226 #ifdef CONFIG_CPUSETS
2227 static const struct fs_context_operations cpuset_fs_context_ops = {
2228 .get_tree = cgroup1_get_tree,
2229 .free = cgroup_fs_context_free,
2230 };
2231
2232 /*
2233 * This is ugly, but preserves the userspace API for existing cpuset
2234 * users. If someone tries to mount the "cpuset" filesystem, we
2235 * silently switch it to mount "cgroup" instead
2236 */
cpuset_init_fs_context(struct fs_context * fc)2237 static int cpuset_init_fs_context(struct fs_context *fc)
2238 {
2239 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2240 struct cgroup_fs_context *ctx;
2241 int err;
2242
2243 err = cgroup_init_fs_context(fc);
2244 if (err) {
2245 kfree(agent);
2246 return err;
2247 }
2248
2249 fc->ops = &cpuset_fs_context_ops;
2250
2251 ctx = cgroup_fc2context(fc);
2252 ctx->subsys_mask = 1 << cpuset_cgrp_id;
2253 ctx->flags |= CGRP_ROOT_NOPREFIX;
2254 ctx->release_agent = agent;
2255
2256 get_filesystem(&cgroup_fs_type);
2257 put_filesystem(fc->fs_type);
2258 fc->fs_type = &cgroup_fs_type;
2259
2260 return 0;
2261 }
2262
2263 static struct file_system_type cpuset_fs_type = {
2264 .name = "cpuset",
2265 .init_fs_context = cpuset_init_fs_context,
2266 .fs_flags = FS_USERNS_MOUNT,
2267 };
2268 #endif
2269
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2270 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2271 struct cgroup_namespace *ns)
2272 {
2273 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2274
2275 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2276 }
2277
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2278 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2279 struct cgroup_namespace *ns)
2280 {
2281 int ret;
2282
2283 mutex_lock(&cgroup_mutex);
2284 spin_lock_irq(&css_set_lock);
2285
2286 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2287
2288 spin_unlock_irq(&css_set_lock);
2289 mutex_unlock(&cgroup_mutex);
2290
2291 return ret;
2292 }
2293 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2294
2295 /**
2296 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2297 * @task: target task
2298 * @buf: the buffer to write the path into
2299 * @buflen: the length of the buffer
2300 *
2301 * Determine @task's cgroup on the first (the one with the lowest non-zero
2302 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2303 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2304 * cgroup controller callbacks.
2305 *
2306 * Return value is the same as kernfs_path().
2307 */
task_cgroup_path(struct task_struct * task,char * buf,size_t buflen)2308 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2309 {
2310 struct cgroup_root *root;
2311 struct cgroup *cgrp;
2312 int hierarchy_id = 1;
2313 int ret;
2314
2315 mutex_lock(&cgroup_mutex);
2316 spin_lock_irq(&css_set_lock);
2317
2318 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2319
2320 if (root) {
2321 cgrp = task_cgroup_from_root(task, root);
2322 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2323 } else {
2324 /* if no hierarchy exists, everyone is in "/" */
2325 ret = strlcpy(buf, "/", buflen);
2326 }
2327
2328 spin_unlock_irq(&css_set_lock);
2329 mutex_unlock(&cgroup_mutex);
2330 return ret;
2331 }
2332 EXPORT_SYMBOL_GPL(task_cgroup_path);
2333
2334 /**
2335 * cgroup_attach_lock - Lock for ->attach()
2336 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2337 *
2338 * cgroup migration sometimes needs to stabilize threadgroups against forks and
2339 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2340 * implementations (e.g. cpuset), also need to disable CPU hotplug.
2341 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2342 * lead to deadlocks.
2343 *
2344 * Bringing up a CPU may involve creating and destroying tasks which requires
2345 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2346 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2347 * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2348 * waiting for an on-going CPU hotplug operation which in turn is waiting for
2349 * the threadgroup_rwsem to be released to create new tasks. For more details:
2350 *
2351 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2352 *
2353 * Resolve the situation by always acquiring cpus_read_lock() before optionally
2354 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2355 * CPU hotplug is disabled on entry.
2356 */
cgroup_attach_lock(bool lock_threadgroup)2357 static void cgroup_attach_lock(bool lock_threadgroup)
2358 {
2359 cpus_read_lock();
2360 if (lock_threadgroup)
2361 percpu_down_write(&cgroup_threadgroup_rwsem);
2362 }
2363
2364 /**
2365 * cgroup_attach_unlock - Undo cgroup_attach_lock()
2366 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2367 */
cgroup_attach_unlock(bool lock_threadgroup)2368 static void cgroup_attach_unlock(bool lock_threadgroup)
2369 {
2370 if (lock_threadgroup)
2371 percpu_up_write(&cgroup_threadgroup_rwsem);
2372 cpus_read_unlock();
2373 }
2374
2375 /**
2376 * cgroup_migrate_add_task - add a migration target task to a migration context
2377 * @task: target task
2378 * @mgctx: target migration context
2379 *
2380 * Add @task, which is a migration target, to @mgctx->tset. This function
2381 * becomes noop if @task doesn't need to be migrated. @task's css_set
2382 * should have been added as a migration source and @task->cg_list will be
2383 * moved from the css_set's tasks list to mg_tasks one.
2384 */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2385 static void cgroup_migrate_add_task(struct task_struct *task,
2386 struct cgroup_mgctx *mgctx)
2387 {
2388 struct css_set *cset;
2389
2390 lockdep_assert_held(&css_set_lock);
2391
2392 /* @task either already exited or can't exit until the end */
2393 if (task->flags & PF_EXITING)
2394 return;
2395
2396 /* cgroup_threadgroup_rwsem protects racing against forks */
2397 WARN_ON_ONCE(list_empty(&task->cg_list));
2398
2399 cset = task_css_set(task);
2400 if (!cset->mg_src_cgrp)
2401 return;
2402
2403 mgctx->tset.nr_tasks++;
2404
2405 list_move_tail(&task->cg_list, &cset->mg_tasks);
2406 if (list_empty(&cset->mg_node))
2407 list_add_tail(&cset->mg_node,
2408 &mgctx->tset.src_csets);
2409 if (list_empty(&cset->mg_dst_cset->mg_node))
2410 list_add_tail(&cset->mg_dst_cset->mg_node,
2411 &mgctx->tset.dst_csets);
2412 }
2413
2414 /**
2415 * cgroup_taskset_first - reset taskset and return the first task
2416 * @tset: taskset of interest
2417 * @dst_cssp: output variable for the destination css
2418 *
2419 * @tset iteration is initialized and the first task is returned.
2420 */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2421 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2422 struct cgroup_subsys_state **dst_cssp)
2423 {
2424 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2425 tset->cur_task = NULL;
2426
2427 return cgroup_taskset_next(tset, dst_cssp);
2428 }
2429
2430 /**
2431 * cgroup_taskset_next - iterate to the next task in taskset
2432 * @tset: taskset of interest
2433 * @dst_cssp: output variable for the destination css
2434 *
2435 * Return the next task in @tset. Iteration must have been initialized
2436 * with cgroup_taskset_first().
2437 */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2438 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2439 struct cgroup_subsys_state **dst_cssp)
2440 {
2441 struct css_set *cset = tset->cur_cset;
2442 struct task_struct *task = tset->cur_task;
2443
2444 while (&cset->mg_node != tset->csets) {
2445 if (!task)
2446 task = list_first_entry(&cset->mg_tasks,
2447 struct task_struct, cg_list);
2448 else
2449 task = list_next_entry(task, cg_list);
2450
2451 if (&task->cg_list != &cset->mg_tasks) {
2452 tset->cur_cset = cset;
2453 tset->cur_task = task;
2454
2455 /*
2456 * This function may be called both before and
2457 * after cgroup_taskset_migrate(). The two cases
2458 * can be distinguished by looking at whether @cset
2459 * has its ->mg_dst_cset set.
2460 */
2461 if (cset->mg_dst_cset)
2462 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2463 else
2464 *dst_cssp = cset->subsys[tset->ssid];
2465
2466 return task;
2467 }
2468
2469 cset = list_next_entry(cset, mg_node);
2470 task = NULL;
2471 }
2472
2473 return NULL;
2474 }
2475
2476 /**
2477 * cgroup_taskset_migrate - migrate a taskset
2478 * @mgctx: migration context
2479 *
2480 * Migrate tasks in @mgctx as setup by migration preparation functions.
2481 * This function fails iff one of the ->can_attach callbacks fails and
2482 * guarantees that either all or none of the tasks in @mgctx are migrated.
2483 * @mgctx is consumed regardless of success.
2484 */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2485 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2486 {
2487 struct cgroup_taskset *tset = &mgctx->tset;
2488 struct cgroup_subsys *ss;
2489 struct task_struct *task, *tmp_task;
2490 struct css_set *cset, *tmp_cset;
2491 int ssid, failed_ssid, ret;
2492
2493 /* check that we can legitimately attach to the cgroup */
2494 if (tset->nr_tasks) {
2495 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2496 if (ss->can_attach) {
2497 tset->ssid = ssid;
2498 ret = ss->can_attach(tset);
2499 if (ret) {
2500 failed_ssid = ssid;
2501 goto out_cancel_attach;
2502 }
2503 }
2504 } while_each_subsys_mask();
2505 }
2506
2507 /*
2508 * Now that we're guaranteed success, proceed to move all tasks to
2509 * the new cgroup. There are no failure cases after here, so this
2510 * is the commit point.
2511 */
2512 spin_lock_irq(&css_set_lock);
2513 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2514 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2515 struct css_set *from_cset = task_css_set(task);
2516 struct css_set *to_cset = cset->mg_dst_cset;
2517
2518 get_css_set(to_cset);
2519 to_cset->nr_tasks++;
2520 css_set_move_task(task, from_cset, to_cset, true);
2521 from_cset->nr_tasks--;
2522 /*
2523 * If the source or destination cgroup is frozen,
2524 * the task might require to change its state.
2525 */
2526 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2527 to_cset->dfl_cgrp);
2528 put_css_set_locked(from_cset);
2529
2530 }
2531 }
2532 spin_unlock_irq(&css_set_lock);
2533
2534 /*
2535 * Migration is committed, all target tasks are now on dst_csets.
2536 * Nothing is sensitive to fork() after this point. Notify
2537 * controllers that migration is complete.
2538 */
2539 tset->csets = &tset->dst_csets;
2540
2541 if (tset->nr_tasks) {
2542 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2543 if (ss->attach) {
2544 tset->ssid = ssid;
2545 ss->attach(tset);
2546 }
2547 } while_each_subsys_mask();
2548 }
2549
2550 ret = 0;
2551 goto out_release_tset;
2552
2553 out_cancel_attach:
2554 if (tset->nr_tasks) {
2555 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2556 if (ssid == failed_ssid)
2557 break;
2558 if (ss->cancel_attach) {
2559 tset->ssid = ssid;
2560 ss->cancel_attach(tset);
2561 }
2562 } while_each_subsys_mask();
2563 }
2564 out_release_tset:
2565 spin_lock_irq(&css_set_lock);
2566 list_splice_init(&tset->dst_csets, &tset->src_csets);
2567 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2568 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2569 list_del_init(&cset->mg_node);
2570 }
2571 spin_unlock_irq(&css_set_lock);
2572
2573 /*
2574 * Re-initialize the cgroup_taskset structure in case it is reused
2575 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2576 * iteration.
2577 */
2578 tset->nr_tasks = 0;
2579 tset->csets = &tset->src_csets;
2580 return ret;
2581 }
2582
2583 /**
2584 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2585 * @dst_cgrp: destination cgroup to test
2586 *
2587 * On the default hierarchy, except for the mixable, (possible) thread root
2588 * and threaded cgroups, subtree_control must be zero for migration
2589 * destination cgroups with tasks so that child cgroups don't compete
2590 * against tasks.
2591 */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2592 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2593 {
2594 /* v1 doesn't have any restriction */
2595 if (!cgroup_on_dfl(dst_cgrp))
2596 return 0;
2597
2598 /* verify @dst_cgrp can host resources */
2599 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2600 return -EOPNOTSUPP;
2601
2602 /* mixables don't care */
2603 if (cgroup_is_mixable(dst_cgrp))
2604 return 0;
2605
2606 /*
2607 * If @dst_cgrp is already or can become a thread root or is
2608 * threaded, it doesn't matter.
2609 */
2610 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2611 return 0;
2612
2613 /* apply no-internal-process constraint */
2614 if (dst_cgrp->subtree_control)
2615 return -EBUSY;
2616
2617 return 0;
2618 }
2619
2620 /**
2621 * cgroup_migrate_finish - cleanup after attach
2622 * @mgctx: migration context
2623 *
2624 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2625 * those functions for details.
2626 */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2627 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2628 {
2629 struct css_set *cset, *tmp_cset;
2630
2631 lockdep_assert_held(&cgroup_mutex);
2632
2633 spin_lock_irq(&css_set_lock);
2634
2635 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2636 mg_src_preload_node) {
2637 cset->mg_src_cgrp = NULL;
2638 cset->mg_dst_cgrp = NULL;
2639 cset->mg_dst_cset = NULL;
2640 list_del_init(&cset->mg_src_preload_node);
2641 put_css_set_locked(cset);
2642 }
2643
2644 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2645 mg_dst_preload_node) {
2646 cset->mg_src_cgrp = NULL;
2647 cset->mg_dst_cgrp = NULL;
2648 cset->mg_dst_cset = NULL;
2649 list_del_init(&cset->mg_dst_preload_node);
2650 put_css_set_locked(cset);
2651 }
2652
2653 spin_unlock_irq(&css_set_lock);
2654 }
2655
2656 /**
2657 * cgroup_migrate_add_src - add a migration source css_set
2658 * @src_cset: the source css_set to add
2659 * @dst_cgrp: the destination cgroup
2660 * @mgctx: migration context
2661 *
2662 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2663 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2664 * up by cgroup_migrate_finish().
2665 *
2666 * This function may be called without holding cgroup_threadgroup_rwsem
2667 * even if the target is a process. Threads may be created and destroyed
2668 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2669 * into play and the preloaded css_sets are guaranteed to cover all
2670 * migrations.
2671 */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2672 void cgroup_migrate_add_src(struct css_set *src_cset,
2673 struct cgroup *dst_cgrp,
2674 struct cgroup_mgctx *mgctx)
2675 {
2676 struct cgroup *src_cgrp;
2677
2678 lockdep_assert_held(&cgroup_mutex);
2679 lockdep_assert_held(&css_set_lock);
2680
2681 /*
2682 * If ->dead, @src_set is associated with one or more dead cgroups
2683 * and doesn't contain any migratable tasks. Ignore it early so
2684 * that the rest of migration path doesn't get confused by it.
2685 */
2686 if (src_cset->dead)
2687 return;
2688
2689 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2690
2691 if (!list_empty(&src_cset->mg_src_preload_node))
2692 return;
2693
2694 WARN_ON(src_cset->mg_src_cgrp);
2695 WARN_ON(src_cset->mg_dst_cgrp);
2696 WARN_ON(!list_empty(&src_cset->mg_tasks));
2697 WARN_ON(!list_empty(&src_cset->mg_node));
2698
2699 src_cset->mg_src_cgrp = src_cgrp;
2700 src_cset->mg_dst_cgrp = dst_cgrp;
2701 get_css_set(src_cset);
2702 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2703 }
2704
2705 /**
2706 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2707 * @mgctx: migration context
2708 *
2709 * Tasks are about to be moved and all the source css_sets have been
2710 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2711 * pins all destination css_sets, links each to its source, and append them
2712 * to @mgctx->preloaded_dst_csets.
2713 *
2714 * This function must be called after cgroup_migrate_add_src() has been
2715 * called on each migration source css_set. After migration is performed
2716 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2717 * @mgctx.
2718 */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2719 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2720 {
2721 struct css_set *src_cset, *tmp_cset;
2722
2723 lockdep_assert_held(&cgroup_mutex);
2724
2725 /* look up the dst cset for each src cset and link it to src */
2726 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2727 mg_src_preload_node) {
2728 struct css_set *dst_cset;
2729 struct cgroup_subsys *ss;
2730 int ssid;
2731
2732 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2733 if (!dst_cset)
2734 return -ENOMEM;
2735
2736 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2737
2738 /*
2739 * If src cset equals dst, it's noop. Drop the src.
2740 * cgroup_migrate() will skip the cset too. Note that we
2741 * can't handle src == dst as some nodes are used by both.
2742 */
2743 if (src_cset == dst_cset) {
2744 src_cset->mg_src_cgrp = NULL;
2745 src_cset->mg_dst_cgrp = NULL;
2746 list_del_init(&src_cset->mg_src_preload_node);
2747 put_css_set(src_cset);
2748 put_css_set(dst_cset);
2749 continue;
2750 }
2751
2752 src_cset->mg_dst_cset = dst_cset;
2753
2754 if (list_empty(&dst_cset->mg_dst_preload_node))
2755 list_add_tail(&dst_cset->mg_dst_preload_node,
2756 &mgctx->preloaded_dst_csets);
2757 else
2758 put_css_set(dst_cset);
2759
2760 for_each_subsys(ss, ssid)
2761 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2762 mgctx->ss_mask |= 1 << ssid;
2763 }
2764
2765 return 0;
2766 }
2767
2768 /**
2769 * cgroup_migrate - migrate a process or task to a cgroup
2770 * @leader: the leader of the process or the task to migrate
2771 * @threadgroup: whether @leader points to the whole process or a single task
2772 * @mgctx: migration context
2773 *
2774 * Migrate a process or task denoted by @leader. If migrating a process,
2775 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2776 * responsible for invoking cgroup_migrate_add_src() and
2777 * cgroup_migrate_prepare_dst() on the targets before invoking this
2778 * function and following up with cgroup_migrate_finish().
2779 *
2780 * As long as a controller's ->can_attach() doesn't fail, this function is
2781 * guaranteed to succeed. This means that, excluding ->can_attach()
2782 * failure, when migrating multiple targets, the success or failure can be
2783 * decided for all targets by invoking group_migrate_prepare_dst() before
2784 * actually starting migrating.
2785 */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2786 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2787 struct cgroup_mgctx *mgctx)
2788 {
2789 int err = 0;
2790 struct task_struct *task;
2791
2792 /*
2793 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2794 * already PF_EXITING could be freed from underneath us unless we
2795 * take an rcu_read_lock.
2796 */
2797 spin_lock_irq(&css_set_lock);
2798 rcu_read_lock();
2799 task = leader;
2800 do {
2801 cgroup_migrate_add_task(task, mgctx);
2802 if (!threadgroup) {
2803 if (task->flags & PF_EXITING)
2804 err = -ESRCH;
2805 break;
2806 }
2807 } while_each_thread(leader, task);
2808 rcu_read_unlock();
2809 spin_unlock_irq(&css_set_lock);
2810
2811 return err ? err : cgroup_migrate_execute(mgctx);
2812 }
2813
2814 /**
2815 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2816 * @dst_cgrp: the cgroup to attach to
2817 * @leader: the task or the leader of the threadgroup to be attached
2818 * @threadgroup: attach the whole threadgroup?
2819 *
2820 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2821 */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2822 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2823 bool threadgroup)
2824 {
2825 DEFINE_CGROUP_MGCTX(mgctx);
2826 struct task_struct *task;
2827 int ret = 0;
2828
2829 /* look up all src csets */
2830 spin_lock_irq(&css_set_lock);
2831 rcu_read_lock();
2832 task = leader;
2833 do {
2834 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2835 if (!threadgroup)
2836 break;
2837 } while_each_thread(leader, task);
2838 rcu_read_unlock();
2839 spin_unlock_irq(&css_set_lock);
2840
2841 /* prepare dst csets and commit */
2842 ret = cgroup_migrate_prepare_dst(&mgctx);
2843 if (!ret)
2844 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2845
2846 cgroup_migrate_finish(&mgctx);
2847
2848 if (!ret)
2849 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2850
2851 return ret;
2852 }
2853
cgroup_procs_write_start(char * buf,bool threadgroup,bool * threadgroup_locked)2854 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2855 bool *threadgroup_locked)
2856 {
2857 struct task_struct *tsk;
2858 pid_t pid;
2859
2860 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2861 return ERR_PTR(-EINVAL);
2862
2863 /*
2864 * If we migrate a single thread, we don't care about threadgroup
2865 * stability. If the thread is `current`, it won't exit(2) under our
2866 * hands or change PID through exec(2). We exclude
2867 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2868 * callers by cgroup_mutex.
2869 * Therefore, we can skip the global lock.
2870 */
2871 lockdep_assert_held(&cgroup_mutex);
2872 *threadgroup_locked = pid || threadgroup;
2873 cgroup_attach_lock(*threadgroup_locked);
2874
2875 rcu_read_lock();
2876 if (pid) {
2877 tsk = find_task_by_vpid(pid);
2878 if (!tsk) {
2879 tsk = ERR_PTR(-ESRCH);
2880 goto out_unlock_threadgroup;
2881 }
2882 } else {
2883 tsk = current;
2884 }
2885
2886 if (threadgroup)
2887 tsk = tsk->group_leader;
2888
2889 /*
2890 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2891 * If userland migrates such a kthread to a non-root cgroup, it can
2892 * become trapped in a cpuset, or RT kthread may be born in a
2893 * cgroup with no rt_runtime allocated. Just say no.
2894 */
2895 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2896 tsk = ERR_PTR(-EINVAL);
2897 goto out_unlock_threadgroup;
2898 }
2899
2900 get_task_struct(tsk);
2901 goto out_unlock_rcu;
2902
2903 out_unlock_threadgroup:
2904 cgroup_attach_unlock(*threadgroup_locked);
2905 *threadgroup_locked = false;
2906 out_unlock_rcu:
2907 rcu_read_unlock();
2908 return tsk;
2909 }
2910
cgroup_procs_write_finish(struct task_struct * task,bool threadgroup_locked)2911 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
2912 {
2913 struct cgroup_subsys *ss;
2914 int ssid;
2915
2916 /* release reference from cgroup_procs_write_start() */
2917 put_task_struct(task);
2918
2919 cgroup_attach_unlock(threadgroup_locked);
2920
2921 for_each_subsys(ss, ssid)
2922 if (ss->post_attach)
2923 ss->post_attach();
2924 }
2925
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)2926 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2927 {
2928 struct cgroup_subsys *ss;
2929 bool printed = false;
2930 int ssid;
2931
2932 do_each_subsys_mask(ss, ssid, ss_mask) {
2933 if (printed)
2934 seq_putc(seq, ' ');
2935 seq_puts(seq, ss->name);
2936 printed = true;
2937 } while_each_subsys_mask();
2938 if (printed)
2939 seq_putc(seq, '\n');
2940 }
2941
2942 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)2943 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2944 {
2945 struct cgroup *cgrp = seq_css(seq)->cgroup;
2946
2947 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2948 return 0;
2949 }
2950
2951 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)2952 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2953 {
2954 struct cgroup *cgrp = seq_css(seq)->cgroup;
2955
2956 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2957 return 0;
2958 }
2959
2960 /**
2961 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2962 * @cgrp: root of the subtree to update csses for
2963 *
2964 * @cgrp's control masks have changed and its subtree's css associations
2965 * need to be updated accordingly. This function looks up all css_sets
2966 * which are attached to the subtree, creates the matching updated css_sets
2967 * and migrates the tasks to the new ones.
2968 */
cgroup_update_dfl_csses(struct cgroup * cgrp)2969 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2970 {
2971 DEFINE_CGROUP_MGCTX(mgctx);
2972 struct cgroup_subsys_state *d_css;
2973 struct cgroup *dsct;
2974 struct css_set *src_cset;
2975 bool has_tasks;
2976 int ret;
2977
2978 lockdep_assert_held(&cgroup_mutex);
2979
2980 /* look up all csses currently attached to @cgrp's subtree */
2981 spin_lock_irq(&css_set_lock);
2982 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2983 struct cgrp_cset_link *link;
2984
2985 list_for_each_entry(link, &dsct->cset_links, cset_link)
2986 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2987 }
2988 spin_unlock_irq(&css_set_lock);
2989
2990 /*
2991 * We need to write-lock threadgroup_rwsem while migrating tasks.
2992 * However, if there are no source csets for @cgrp, changing its
2993 * controllers isn't gonna produce any task migrations and the
2994 * write-locking can be skipped safely.
2995 */
2996 has_tasks = !list_empty(&mgctx.preloaded_src_csets);
2997 cgroup_attach_lock(has_tasks);
2998
2999 /* NULL dst indicates self on default hierarchy */
3000 ret = cgroup_migrate_prepare_dst(&mgctx);
3001 if (ret)
3002 goto out_finish;
3003
3004 spin_lock_irq(&css_set_lock);
3005 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3006 mg_src_preload_node) {
3007 struct task_struct *task, *ntask;
3008
3009 /* all tasks in src_csets need to be migrated */
3010 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3011 cgroup_migrate_add_task(task, &mgctx);
3012 }
3013 spin_unlock_irq(&css_set_lock);
3014
3015 ret = cgroup_migrate_execute(&mgctx);
3016 out_finish:
3017 cgroup_migrate_finish(&mgctx);
3018 cgroup_attach_unlock(has_tasks);
3019 return ret;
3020 }
3021
3022 /**
3023 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3024 * @cgrp: root of the target subtree
3025 *
3026 * Because css offlining is asynchronous, userland may try to re-enable a
3027 * controller while the previous css is still around. This function grabs
3028 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3029 */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)3030 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3031 __acquires(&cgroup_mutex)
3032 {
3033 struct cgroup *dsct;
3034 struct cgroup_subsys_state *d_css;
3035 struct cgroup_subsys *ss;
3036 int ssid;
3037
3038 restart:
3039 mutex_lock(&cgroup_mutex);
3040
3041 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3042 for_each_subsys(ss, ssid) {
3043 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3044 DEFINE_WAIT(wait);
3045
3046 if (!css || !percpu_ref_is_dying(&css->refcnt))
3047 continue;
3048
3049 cgroup_get_live(dsct);
3050 prepare_to_wait(&dsct->offline_waitq, &wait,
3051 TASK_UNINTERRUPTIBLE);
3052
3053 mutex_unlock(&cgroup_mutex);
3054 schedule();
3055 finish_wait(&dsct->offline_waitq, &wait);
3056
3057 cgroup_put(dsct);
3058 goto restart;
3059 }
3060 }
3061 }
3062
3063 /**
3064 * cgroup_save_control - save control masks and dom_cgrp of a subtree
3065 * @cgrp: root of the target subtree
3066 *
3067 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3068 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3069 * itself.
3070 */
cgroup_save_control(struct cgroup * cgrp)3071 static void cgroup_save_control(struct cgroup *cgrp)
3072 {
3073 struct cgroup *dsct;
3074 struct cgroup_subsys_state *d_css;
3075
3076 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3077 dsct->old_subtree_control = dsct->subtree_control;
3078 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3079 dsct->old_dom_cgrp = dsct->dom_cgrp;
3080 }
3081 }
3082
3083 /**
3084 * cgroup_propagate_control - refresh control masks of a subtree
3085 * @cgrp: root of the target subtree
3086 *
3087 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3088 * ->subtree_control and propagate controller availability through the
3089 * subtree so that descendants don't have unavailable controllers enabled.
3090 */
cgroup_propagate_control(struct cgroup * cgrp)3091 static void cgroup_propagate_control(struct cgroup *cgrp)
3092 {
3093 struct cgroup *dsct;
3094 struct cgroup_subsys_state *d_css;
3095
3096 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3097 dsct->subtree_control &= cgroup_control(dsct);
3098 dsct->subtree_ss_mask =
3099 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3100 cgroup_ss_mask(dsct));
3101 }
3102 }
3103
3104 /**
3105 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3106 * @cgrp: root of the target subtree
3107 *
3108 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3109 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3110 * itself.
3111 */
cgroup_restore_control(struct cgroup * cgrp)3112 static void cgroup_restore_control(struct cgroup *cgrp)
3113 {
3114 struct cgroup *dsct;
3115 struct cgroup_subsys_state *d_css;
3116
3117 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3118 dsct->subtree_control = dsct->old_subtree_control;
3119 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3120 dsct->dom_cgrp = dsct->old_dom_cgrp;
3121 }
3122 }
3123
css_visible(struct cgroup_subsys_state * css)3124 static bool css_visible(struct cgroup_subsys_state *css)
3125 {
3126 struct cgroup_subsys *ss = css->ss;
3127 struct cgroup *cgrp = css->cgroup;
3128
3129 if (cgroup_control(cgrp) & (1 << ss->id))
3130 return true;
3131 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3132 return false;
3133 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3134 }
3135
3136 /**
3137 * cgroup_apply_control_enable - enable or show csses according to control
3138 * @cgrp: root of the target subtree
3139 *
3140 * Walk @cgrp's subtree and create new csses or make the existing ones
3141 * visible. A css is created invisible if it's being implicitly enabled
3142 * through dependency. An invisible css is made visible when the userland
3143 * explicitly enables it.
3144 *
3145 * Returns 0 on success, -errno on failure. On failure, csses which have
3146 * been processed already aren't cleaned up. The caller is responsible for
3147 * cleaning up with cgroup_apply_control_disable().
3148 */
cgroup_apply_control_enable(struct cgroup * cgrp)3149 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3150 {
3151 struct cgroup *dsct;
3152 struct cgroup_subsys_state *d_css;
3153 struct cgroup_subsys *ss;
3154 int ssid, ret;
3155
3156 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3157 for_each_subsys(ss, ssid) {
3158 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3159
3160 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3161 continue;
3162
3163 if (!css) {
3164 css = css_create(dsct, ss);
3165 if (IS_ERR(css))
3166 return PTR_ERR(css);
3167 }
3168
3169 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3170
3171 if (css_visible(css)) {
3172 ret = css_populate_dir(css);
3173 if (ret)
3174 return ret;
3175 }
3176 }
3177 }
3178
3179 return 0;
3180 }
3181
3182 /**
3183 * cgroup_apply_control_disable - kill or hide csses according to control
3184 * @cgrp: root of the target subtree
3185 *
3186 * Walk @cgrp's subtree and kill and hide csses so that they match
3187 * cgroup_ss_mask() and cgroup_visible_mask().
3188 *
3189 * A css is hidden when the userland requests it to be disabled while other
3190 * subsystems are still depending on it. The css must not actively control
3191 * resources and be in the vanilla state if it's made visible again later.
3192 * Controllers which may be depended upon should provide ->css_reset() for
3193 * this purpose.
3194 */
cgroup_apply_control_disable(struct cgroup * cgrp)3195 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3196 {
3197 struct cgroup *dsct;
3198 struct cgroup_subsys_state *d_css;
3199 struct cgroup_subsys *ss;
3200 int ssid;
3201
3202 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3203 for_each_subsys(ss, ssid) {
3204 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3205
3206 if (!css)
3207 continue;
3208
3209 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3210
3211 if (css->parent &&
3212 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3213 kill_css(css);
3214 } else if (!css_visible(css)) {
3215 css_clear_dir(css);
3216 if (ss->css_reset)
3217 ss->css_reset(css);
3218 }
3219 }
3220 }
3221 }
3222
3223 /**
3224 * cgroup_apply_control - apply control mask updates to the subtree
3225 * @cgrp: root of the target subtree
3226 *
3227 * subsystems can be enabled and disabled in a subtree using the following
3228 * steps.
3229 *
3230 * 1. Call cgroup_save_control() to stash the current state.
3231 * 2. Update ->subtree_control masks in the subtree as desired.
3232 * 3. Call cgroup_apply_control() to apply the changes.
3233 * 4. Optionally perform other related operations.
3234 * 5. Call cgroup_finalize_control() to finish up.
3235 *
3236 * This function implements step 3 and propagates the mask changes
3237 * throughout @cgrp's subtree, updates csses accordingly and perform
3238 * process migrations.
3239 */
cgroup_apply_control(struct cgroup * cgrp)3240 static int cgroup_apply_control(struct cgroup *cgrp)
3241 {
3242 int ret;
3243
3244 cgroup_propagate_control(cgrp);
3245
3246 ret = cgroup_apply_control_enable(cgrp);
3247 if (ret)
3248 return ret;
3249
3250 /*
3251 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3252 * making the following cgroup_update_dfl_csses() properly update
3253 * css associations of all tasks in the subtree.
3254 */
3255 ret = cgroup_update_dfl_csses(cgrp);
3256 if (ret)
3257 return ret;
3258
3259 return 0;
3260 }
3261
3262 /**
3263 * cgroup_finalize_control - finalize control mask update
3264 * @cgrp: root of the target subtree
3265 * @ret: the result of the update
3266 *
3267 * Finalize control mask update. See cgroup_apply_control() for more info.
3268 */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3269 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3270 {
3271 if (ret) {
3272 cgroup_restore_control(cgrp);
3273 cgroup_propagate_control(cgrp);
3274 }
3275
3276 cgroup_apply_control_disable(cgrp);
3277 }
3278
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3279 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3280 {
3281 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3282
3283 /* if nothing is getting enabled, nothing to worry about */
3284 if (!enable)
3285 return 0;
3286
3287 /* can @cgrp host any resources? */
3288 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3289 return -EOPNOTSUPP;
3290
3291 /* mixables don't care */
3292 if (cgroup_is_mixable(cgrp))
3293 return 0;
3294
3295 if (domain_enable) {
3296 /* can't enable domain controllers inside a thread subtree */
3297 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3298 return -EOPNOTSUPP;
3299 } else {
3300 /*
3301 * Threaded controllers can handle internal competitions
3302 * and are always allowed inside a (prospective) thread
3303 * subtree.
3304 */
3305 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3306 return 0;
3307 }
3308
3309 /*
3310 * Controllers can't be enabled for a cgroup with tasks to avoid
3311 * child cgroups competing against tasks.
3312 */
3313 if (cgroup_has_tasks(cgrp))
3314 return -EBUSY;
3315
3316 return 0;
3317 }
3318
3319 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3320 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3321 char *buf, size_t nbytes,
3322 loff_t off)
3323 {
3324 u16 enable = 0, disable = 0;
3325 struct cgroup *cgrp, *child;
3326 struct cgroup_subsys *ss;
3327 char *tok;
3328 int ssid, ret;
3329
3330 /*
3331 * Parse input - space separated list of subsystem names prefixed
3332 * with either + or -.
3333 */
3334 buf = strstrip(buf);
3335 while ((tok = strsep(&buf, " "))) {
3336 if (tok[0] == '\0')
3337 continue;
3338 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3339 if (!cgroup_ssid_enabled(ssid) ||
3340 strcmp(tok + 1, ss->name))
3341 continue;
3342
3343 if (*tok == '+') {
3344 enable |= 1 << ssid;
3345 disable &= ~(1 << ssid);
3346 } else if (*tok == '-') {
3347 disable |= 1 << ssid;
3348 enable &= ~(1 << ssid);
3349 } else {
3350 return -EINVAL;
3351 }
3352 break;
3353 } while_each_subsys_mask();
3354 if (ssid == CGROUP_SUBSYS_COUNT)
3355 return -EINVAL;
3356 }
3357
3358 cgrp = cgroup_kn_lock_live(of->kn, true);
3359 if (!cgrp)
3360 return -ENODEV;
3361
3362 for_each_subsys(ss, ssid) {
3363 if (enable & (1 << ssid)) {
3364 if (cgrp->subtree_control & (1 << ssid)) {
3365 enable &= ~(1 << ssid);
3366 continue;
3367 }
3368
3369 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3370 ret = -ENOENT;
3371 goto out_unlock;
3372 }
3373 } else if (disable & (1 << ssid)) {
3374 if (!(cgrp->subtree_control & (1 << ssid))) {
3375 disable &= ~(1 << ssid);
3376 continue;
3377 }
3378
3379 /* a child has it enabled? */
3380 cgroup_for_each_live_child(child, cgrp) {
3381 if (child->subtree_control & (1 << ssid)) {
3382 ret = -EBUSY;
3383 goto out_unlock;
3384 }
3385 }
3386 }
3387 }
3388
3389 if (!enable && !disable) {
3390 ret = 0;
3391 goto out_unlock;
3392 }
3393
3394 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3395 if (ret)
3396 goto out_unlock;
3397
3398 /* save and update control masks and prepare csses */
3399 cgroup_save_control(cgrp);
3400
3401 cgrp->subtree_control |= enable;
3402 cgrp->subtree_control &= ~disable;
3403
3404 ret = cgroup_apply_control(cgrp);
3405 cgroup_finalize_control(cgrp, ret);
3406 if (ret)
3407 goto out_unlock;
3408
3409 kernfs_activate(cgrp->kn);
3410 out_unlock:
3411 cgroup_kn_unlock(of->kn);
3412 return ret ?: nbytes;
3413 }
3414
3415 /**
3416 * cgroup_enable_threaded - make @cgrp threaded
3417 * @cgrp: the target cgroup
3418 *
3419 * Called when "threaded" is written to the cgroup.type interface file and
3420 * tries to make @cgrp threaded and join the parent's resource domain.
3421 * This function is never called on the root cgroup as cgroup.type doesn't
3422 * exist on it.
3423 */
cgroup_enable_threaded(struct cgroup * cgrp)3424 static int cgroup_enable_threaded(struct cgroup *cgrp)
3425 {
3426 struct cgroup *parent = cgroup_parent(cgrp);
3427 struct cgroup *dom_cgrp = parent->dom_cgrp;
3428 struct cgroup *dsct;
3429 struct cgroup_subsys_state *d_css;
3430 int ret;
3431
3432 lockdep_assert_held(&cgroup_mutex);
3433
3434 /* noop if already threaded */
3435 if (cgroup_is_threaded(cgrp))
3436 return 0;
3437
3438 /*
3439 * If @cgroup is populated or has domain controllers enabled, it
3440 * can't be switched. While the below cgroup_can_be_thread_root()
3441 * test can catch the same conditions, that's only when @parent is
3442 * not mixable, so let's check it explicitly.
3443 */
3444 if (cgroup_is_populated(cgrp) ||
3445 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3446 return -EOPNOTSUPP;
3447
3448 /* we're joining the parent's domain, ensure its validity */
3449 if (!cgroup_is_valid_domain(dom_cgrp) ||
3450 !cgroup_can_be_thread_root(dom_cgrp))
3451 return -EOPNOTSUPP;
3452
3453 /*
3454 * The following shouldn't cause actual migrations and should
3455 * always succeed.
3456 */
3457 cgroup_save_control(cgrp);
3458
3459 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3460 if (dsct == cgrp || cgroup_is_threaded(dsct))
3461 dsct->dom_cgrp = dom_cgrp;
3462
3463 ret = cgroup_apply_control(cgrp);
3464 if (!ret)
3465 parent->nr_threaded_children++;
3466
3467 cgroup_finalize_control(cgrp, ret);
3468 return ret;
3469 }
3470
cgroup_type_show(struct seq_file * seq,void * v)3471 static int cgroup_type_show(struct seq_file *seq, void *v)
3472 {
3473 struct cgroup *cgrp = seq_css(seq)->cgroup;
3474
3475 if (cgroup_is_threaded(cgrp))
3476 seq_puts(seq, "threaded\n");
3477 else if (!cgroup_is_valid_domain(cgrp))
3478 seq_puts(seq, "domain invalid\n");
3479 else if (cgroup_is_thread_root(cgrp))
3480 seq_puts(seq, "domain threaded\n");
3481 else
3482 seq_puts(seq, "domain\n");
3483
3484 return 0;
3485 }
3486
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3487 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3488 size_t nbytes, loff_t off)
3489 {
3490 struct cgroup *cgrp;
3491 int ret;
3492
3493 /* only switching to threaded mode is supported */
3494 if (strcmp(strstrip(buf), "threaded"))
3495 return -EINVAL;
3496
3497 /* drain dying csses before we re-apply (threaded) subtree control */
3498 cgrp = cgroup_kn_lock_live(of->kn, true);
3499 if (!cgrp)
3500 return -ENOENT;
3501
3502 /* threaded can only be enabled */
3503 ret = cgroup_enable_threaded(cgrp);
3504
3505 cgroup_kn_unlock(of->kn);
3506 return ret ?: nbytes;
3507 }
3508
cgroup_max_descendants_show(struct seq_file * seq,void * v)3509 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3510 {
3511 struct cgroup *cgrp = seq_css(seq)->cgroup;
3512 int descendants = READ_ONCE(cgrp->max_descendants);
3513
3514 if (descendants == INT_MAX)
3515 seq_puts(seq, "max\n");
3516 else
3517 seq_printf(seq, "%d\n", descendants);
3518
3519 return 0;
3520 }
3521
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3522 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3523 char *buf, size_t nbytes, loff_t off)
3524 {
3525 struct cgroup *cgrp;
3526 int descendants;
3527 ssize_t ret;
3528
3529 buf = strstrip(buf);
3530 if (!strcmp(buf, "max")) {
3531 descendants = INT_MAX;
3532 } else {
3533 ret = kstrtoint(buf, 0, &descendants);
3534 if (ret)
3535 return ret;
3536 }
3537
3538 if (descendants < 0)
3539 return -ERANGE;
3540
3541 cgrp = cgroup_kn_lock_live(of->kn, false);
3542 if (!cgrp)
3543 return -ENOENT;
3544
3545 cgrp->max_descendants = descendants;
3546
3547 cgroup_kn_unlock(of->kn);
3548
3549 return nbytes;
3550 }
3551
cgroup_max_depth_show(struct seq_file * seq,void * v)3552 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3553 {
3554 struct cgroup *cgrp = seq_css(seq)->cgroup;
3555 int depth = READ_ONCE(cgrp->max_depth);
3556
3557 if (depth == INT_MAX)
3558 seq_puts(seq, "max\n");
3559 else
3560 seq_printf(seq, "%d\n", depth);
3561
3562 return 0;
3563 }
3564
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3565 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3566 char *buf, size_t nbytes, loff_t off)
3567 {
3568 struct cgroup *cgrp;
3569 ssize_t ret;
3570 int depth;
3571
3572 buf = strstrip(buf);
3573 if (!strcmp(buf, "max")) {
3574 depth = INT_MAX;
3575 } else {
3576 ret = kstrtoint(buf, 0, &depth);
3577 if (ret)
3578 return ret;
3579 }
3580
3581 if (depth < 0)
3582 return -ERANGE;
3583
3584 cgrp = cgroup_kn_lock_live(of->kn, false);
3585 if (!cgrp)
3586 return -ENOENT;
3587
3588 cgrp->max_depth = depth;
3589
3590 cgroup_kn_unlock(of->kn);
3591
3592 return nbytes;
3593 }
3594
cgroup_events_show(struct seq_file * seq,void * v)3595 static int cgroup_events_show(struct seq_file *seq, void *v)
3596 {
3597 struct cgroup *cgrp = seq_css(seq)->cgroup;
3598
3599 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3600 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3601
3602 return 0;
3603 }
3604
cgroup_stat_show(struct seq_file * seq,void * v)3605 static int cgroup_stat_show(struct seq_file *seq, void *v)
3606 {
3607 struct cgroup *cgroup = seq_css(seq)->cgroup;
3608
3609 seq_printf(seq, "nr_descendants %d\n",
3610 cgroup->nr_descendants);
3611 seq_printf(seq, "nr_dying_descendants %d\n",
3612 cgroup->nr_dying_descendants);
3613
3614 return 0;
3615 }
3616
cgroup_extra_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3617 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3618 struct cgroup *cgrp, int ssid)
3619 {
3620 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3621 struct cgroup_subsys_state *css;
3622 int ret;
3623
3624 if (!ss->css_extra_stat_show)
3625 return 0;
3626
3627 css = cgroup_tryget_css(cgrp, ss);
3628 if (!css)
3629 return 0;
3630
3631 ret = ss->css_extra_stat_show(seq, css);
3632 css_put(css);
3633 return ret;
3634 }
3635
cpu_stat_show(struct seq_file * seq,void * v)3636 static int cpu_stat_show(struct seq_file *seq, void *v)
3637 {
3638 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3639 int ret = 0;
3640
3641 cgroup_base_stat_cputime_show(seq);
3642 #ifdef CONFIG_CGROUP_SCHED
3643 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3644 #endif
3645 return ret;
3646 }
3647
3648 #ifdef CONFIG_PSI
cgroup_io_pressure_show(struct seq_file * seq,void * v)3649 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3650 {
3651 struct cgroup *cgrp = seq_css(seq)->cgroup;
3652 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3653
3654 return psi_show(seq, psi, PSI_IO);
3655 }
cgroup_memory_pressure_show(struct seq_file * seq,void * v)3656 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3657 {
3658 struct cgroup *cgrp = seq_css(seq)->cgroup;
3659 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3660
3661 return psi_show(seq, psi, PSI_MEM);
3662 }
cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3663 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3664 {
3665 struct cgroup *cgrp = seq_css(seq)->cgroup;
3666 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3667
3668 return psi_show(seq, psi, PSI_CPU);
3669 }
3670
cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3671 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3672 size_t nbytes, enum psi_res res)
3673 {
3674 struct cgroup_file_ctx *ctx = of->priv;
3675 struct psi_trigger *new;
3676 struct cgroup *cgrp;
3677 struct psi_group *psi;
3678
3679 cgrp = cgroup_kn_lock_live(of->kn, false);
3680 if (!cgrp)
3681 return -ENODEV;
3682
3683 cgroup_get(cgrp);
3684 cgroup_kn_unlock(of->kn);
3685
3686 /* Allow only one trigger per file descriptor */
3687 if (of->priv) {
3688 cgroup_put(cgrp);
3689 return -EBUSY;
3690 }
3691
3692 psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3693 new = psi_trigger_create(psi, buf, nbytes, res);
3694 if (IS_ERR(new)) {
3695 cgroup_put(cgrp);
3696 return PTR_ERR(new);
3697 }
3698
3699 smp_store_release(&ctx->psi.trigger, new);
3700 cgroup_put(cgrp);
3701
3702 return nbytes;
3703 }
3704
cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3705 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3706 char *buf, size_t nbytes,
3707 loff_t off)
3708 {
3709 return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3710 }
3711
cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3712 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3713 char *buf, size_t nbytes,
3714 loff_t off)
3715 {
3716 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3717 }
3718
cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3719 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3720 char *buf, size_t nbytes,
3721 loff_t off)
3722 {
3723 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3724 }
3725
cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)3726 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3727 poll_table *pt)
3728 {
3729 struct cgroup_file_ctx *ctx = of->priv;
3730
3731 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3732 }
3733
cgroup_pressure_release(struct kernfs_open_file * of)3734 static void cgroup_pressure_release(struct kernfs_open_file *of)
3735 {
3736 struct cgroup_file_ctx *ctx = of->priv;
3737
3738 psi_trigger_destroy(ctx->psi.trigger);
3739 }
3740 #endif /* CONFIG_PSI */
3741
cgroup_freeze_show(struct seq_file * seq,void * v)3742 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3743 {
3744 struct cgroup *cgrp = seq_css(seq)->cgroup;
3745
3746 seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3747
3748 return 0;
3749 }
3750
cgroup_freeze_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3751 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3752 char *buf, size_t nbytes, loff_t off)
3753 {
3754 struct cgroup *cgrp;
3755 ssize_t ret;
3756 int freeze;
3757
3758 ret = kstrtoint(strstrip(buf), 0, &freeze);
3759 if (ret)
3760 return ret;
3761
3762 if (freeze < 0 || freeze > 1)
3763 return -ERANGE;
3764
3765 cgrp = cgroup_kn_lock_live(of->kn, false);
3766 if (!cgrp)
3767 return -ENOENT;
3768
3769 cgroup_freeze(cgrp, freeze);
3770
3771 cgroup_kn_unlock(of->kn);
3772
3773 return nbytes;
3774 }
3775
cgroup_file_open(struct kernfs_open_file * of)3776 static int cgroup_file_open(struct kernfs_open_file *of)
3777 {
3778 struct cftype *cft = of_cft(of);
3779 struct cgroup_file_ctx *ctx;
3780 int ret;
3781
3782 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3783 if (!ctx)
3784 return -ENOMEM;
3785
3786 ctx->ns = current->nsproxy->cgroup_ns;
3787 get_cgroup_ns(ctx->ns);
3788 of->priv = ctx;
3789
3790 if (!cft->open)
3791 return 0;
3792
3793 ret = cft->open(of);
3794 if (ret) {
3795 put_cgroup_ns(ctx->ns);
3796 kfree(ctx);
3797 }
3798 return ret;
3799 }
3800
cgroup_file_release(struct kernfs_open_file * of)3801 static void cgroup_file_release(struct kernfs_open_file *of)
3802 {
3803 struct cftype *cft = of_cft(of);
3804 struct cgroup_file_ctx *ctx = of->priv;
3805
3806 if (cft->release)
3807 cft->release(of);
3808 put_cgroup_ns(ctx->ns);
3809 kfree(ctx);
3810 }
3811
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3812 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3813 size_t nbytes, loff_t off)
3814 {
3815 struct cgroup_file_ctx *ctx = of->priv;
3816 struct cgroup *cgrp = of->kn->parent->priv;
3817 struct cftype *cft = of_cft(of);
3818 struct cgroup_subsys_state *css;
3819 int ret;
3820
3821 if (!nbytes)
3822 return 0;
3823
3824 /*
3825 * If namespaces are delegation boundaries, disallow writes to
3826 * files in an non-init namespace root from inside the namespace
3827 * except for the files explicitly marked delegatable -
3828 * cgroup.procs and cgroup.subtree_control.
3829 */
3830 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3831 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3832 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
3833 return -EPERM;
3834
3835 if (cft->write)
3836 return cft->write(of, buf, nbytes, off);
3837
3838 /*
3839 * kernfs guarantees that a file isn't deleted with operations in
3840 * flight, which means that the matching css is and stays alive and
3841 * doesn't need to be pinned. The RCU locking is not necessary
3842 * either. It's just for the convenience of using cgroup_css().
3843 */
3844 rcu_read_lock();
3845 css = cgroup_css(cgrp, cft->ss);
3846 rcu_read_unlock();
3847
3848 if (cft->write_u64) {
3849 unsigned long long v;
3850 ret = kstrtoull(buf, 0, &v);
3851 if (!ret)
3852 ret = cft->write_u64(css, cft, v);
3853 } else if (cft->write_s64) {
3854 long long v;
3855 ret = kstrtoll(buf, 0, &v);
3856 if (!ret)
3857 ret = cft->write_s64(css, cft, v);
3858 } else {
3859 ret = -EINVAL;
3860 }
3861
3862 return ret ?: nbytes;
3863 }
3864
cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)3865 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3866 {
3867 struct cftype *cft = of_cft(of);
3868
3869 if (cft->poll)
3870 return cft->poll(of, pt);
3871
3872 return kernfs_generic_poll(of, pt);
3873 }
3874
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)3875 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3876 {
3877 return seq_cft(seq)->seq_start(seq, ppos);
3878 }
3879
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)3880 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3881 {
3882 return seq_cft(seq)->seq_next(seq, v, ppos);
3883 }
3884
cgroup_seqfile_stop(struct seq_file * seq,void * v)3885 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3886 {
3887 if (seq_cft(seq)->seq_stop)
3888 seq_cft(seq)->seq_stop(seq, v);
3889 }
3890
cgroup_seqfile_show(struct seq_file * m,void * arg)3891 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3892 {
3893 struct cftype *cft = seq_cft(m);
3894 struct cgroup_subsys_state *css = seq_css(m);
3895
3896 if (cft->seq_show)
3897 return cft->seq_show(m, arg);
3898
3899 if (cft->read_u64)
3900 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3901 else if (cft->read_s64)
3902 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3903 else
3904 return -EINVAL;
3905 return 0;
3906 }
3907
3908 static struct kernfs_ops cgroup_kf_single_ops = {
3909 .atomic_write_len = PAGE_SIZE,
3910 .open = cgroup_file_open,
3911 .release = cgroup_file_release,
3912 .write = cgroup_file_write,
3913 .poll = cgroup_file_poll,
3914 .seq_show = cgroup_seqfile_show,
3915 };
3916
3917 static struct kernfs_ops cgroup_kf_ops = {
3918 .atomic_write_len = PAGE_SIZE,
3919 .open = cgroup_file_open,
3920 .release = cgroup_file_release,
3921 .write = cgroup_file_write,
3922 .poll = cgroup_file_poll,
3923 .seq_start = cgroup_seqfile_start,
3924 .seq_next = cgroup_seqfile_next,
3925 .seq_stop = cgroup_seqfile_stop,
3926 .seq_show = cgroup_seqfile_show,
3927 };
3928
3929 /* set uid and gid of cgroup dirs and files to that of the creator */
cgroup_kn_set_ugid(struct kernfs_node * kn)3930 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3931 {
3932 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3933 .ia_uid = current_fsuid(),
3934 .ia_gid = current_fsgid(), };
3935
3936 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3937 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3938 return 0;
3939
3940 return kernfs_setattr(kn, &iattr);
3941 }
3942
cgroup_file_notify_timer(struct timer_list * timer)3943 static void cgroup_file_notify_timer(struct timer_list *timer)
3944 {
3945 cgroup_file_notify(container_of(timer, struct cgroup_file,
3946 notify_timer));
3947 }
3948
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)3949 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3950 struct cftype *cft)
3951 {
3952 char name[CGROUP_FILE_NAME_MAX];
3953 struct kernfs_node *kn;
3954 struct lock_class_key *key = NULL;
3955 int ret;
3956
3957 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3958 key = &cft->lockdep_key;
3959 #endif
3960 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3961 cgroup_file_mode(cft),
3962 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3963 0, cft->kf_ops, cft,
3964 NULL, key);
3965 if (IS_ERR(kn))
3966 return PTR_ERR(kn);
3967
3968 ret = cgroup_kn_set_ugid(kn);
3969 if (ret) {
3970 kernfs_remove(kn);
3971 return ret;
3972 }
3973
3974 if (cft->file_offset) {
3975 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3976
3977 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3978
3979 spin_lock_irq(&cgroup_file_kn_lock);
3980 cfile->kn = kn;
3981 spin_unlock_irq(&cgroup_file_kn_lock);
3982 }
3983
3984 return 0;
3985 }
3986
3987 /**
3988 * cgroup_addrm_files - add or remove files to a cgroup directory
3989 * @css: the target css
3990 * @cgrp: the target cgroup (usually css->cgroup)
3991 * @cfts: array of cftypes to be added
3992 * @is_add: whether to add or remove
3993 *
3994 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3995 * For removals, this function never fails.
3996 */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)3997 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3998 struct cgroup *cgrp, struct cftype cfts[],
3999 bool is_add)
4000 {
4001 struct cftype *cft, *cft_end = NULL;
4002 int ret = 0;
4003
4004 lockdep_assert_held(&cgroup_mutex);
4005
4006 restart:
4007 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4008 /* does cft->flags tell us to skip this file on @cgrp? */
4009 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4010 continue;
4011 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4012 continue;
4013 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4014 continue;
4015 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4016 continue;
4017 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4018 continue;
4019 if (is_add) {
4020 ret = cgroup_add_file(css, cgrp, cft);
4021 if (ret) {
4022 pr_warn("%s: failed to add %s, err=%d\n",
4023 __func__, cft->name, ret);
4024 cft_end = cft;
4025 is_add = false;
4026 goto restart;
4027 }
4028 } else {
4029 cgroup_rm_file(cgrp, cft);
4030 }
4031 }
4032 return ret;
4033 }
4034
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)4035 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4036 {
4037 struct cgroup_subsys *ss = cfts[0].ss;
4038 struct cgroup *root = &ss->root->cgrp;
4039 struct cgroup_subsys_state *css;
4040 int ret = 0;
4041
4042 lockdep_assert_held(&cgroup_mutex);
4043
4044 /* add/rm files for all cgroups created before */
4045 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4046 struct cgroup *cgrp = css->cgroup;
4047
4048 if (!(css->flags & CSS_VISIBLE))
4049 continue;
4050
4051 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4052 if (ret)
4053 break;
4054 }
4055
4056 if (is_add && !ret)
4057 kernfs_activate(root->kn);
4058 return ret;
4059 }
4060
cgroup_exit_cftypes(struct cftype * cfts)4061 static void cgroup_exit_cftypes(struct cftype *cfts)
4062 {
4063 struct cftype *cft;
4064
4065 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4066 /* free copy for custom atomic_write_len, see init_cftypes() */
4067 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4068 kfree(cft->kf_ops);
4069 cft->kf_ops = NULL;
4070 cft->ss = NULL;
4071
4072 /* revert flags set by cgroup core while adding @cfts */
4073 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
4074 }
4075 }
4076
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4077 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4078 {
4079 struct cftype *cft;
4080
4081 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4082 struct kernfs_ops *kf_ops;
4083
4084 WARN_ON(cft->ss || cft->kf_ops);
4085
4086 if (cft->seq_start)
4087 kf_ops = &cgroup_kf_ops;
4088 else
4089 kf_ops = &cgroup_kf_single_ops;
4090
4091 /*
4092 * Ugh... if @cft wants a custom max_write_len, we need to
4093 * make a copy of kf_ops to set its atomic_write_len.
4094 */
4095 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4096 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4097 if (!kf_ops) {
4098 cgroup_exit_cftypes(cfts);
4099 return -ENOMEM;
4100 }
4101 kf_ops->atomic_write_len = cft->max_write_len;
4102 }
4103
4104 cft->kf_ops = kf_ops;
4105 cft->ss = ss;
4106 }
4107
4108 return 0;
4109 }
4110
cgroup_rm_cftypes_locked(struct cftype * cfts)4111 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4112 {
4113 lockdep_assert_held(&cgroup_mutex);
4114
4115 if (!cfts || !cfts[0].ss)
4116 return -ENOENT;
4117
4118 list_del(&cfts->node);
4119 cgroup_apply_cftypes(cfts, false);
4120 cgroup_exit_cftypes(cfts);
4121 return 0;
4122 }
4123
4124 /**
4125 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4126 * @cfts: zero-length name terminated array of cftypes
4127 *
4128 * Unregister @cfts. Files described by @cfts are removed from all
4129 * existing cgroups and all future cgroups won't have them either. This
4130 * function can be called anytime whether @cfts' subsys is attached or not.
4131 *
4132 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4133 * registered.
4134 */
cgroup_rm_cftypes(struct cftype * cfts)4135 int cgroup_rm_cftypes(struct cftype *cfts)
4136 {
4137 int ret;
4138
4139 mutex_lock(&cgroup_mutex);
4140 ret = cgroup_rm_cftypes_locked(cfts);
4141 mutex_unlock(&cgroup_mutex);
4142 return ret;
4143 }
4144
4145 /**
4146 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4147 * @ss: target cgroup subsystem
4148 * @cfts: zero-length name terminated array of cftypes
4149 *
4150 * Register @cfts to @ss. Files described by @cfts are created for all
4151 * existing cgroups to which @ss is attached and all future cgroups will
4152 * have them too. This function can be called anytime whether @ss is
4153 * attached or not.
4154 *
4155 * Returns 0 on successful registration, -errno on failure. Note that this
4156 * function currently returns 0 as long as @cfts registration is successful
4157 * even if some file creation attempts on existing cgroups fail.
4158 */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4159 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4160 {
4161 int ret;
4162
4163 if (!cgroup_ssid_enabled(ss->id))
4164 return 0;
4165
4166 if (!cfts || cfts[0].name[0] == '\0')
4167 return 0;
4168
4169 ret = cgroup_init_cftypes(ss, cfts);
4170 if (ret)
4171 return ret;
4172
4173 mutex_lock(&cgroup_mutex);
4174
4175 list_add_tail(&cfts->node, &ss->cfts);
4176 ret = cgroup_apply_cftypes(cfts, true);
4177 if (ret)
4178 cgroup_rm_cftypes_locked(cfts);
4179
4180 mutex_unlock(&cgroup_mutex);
4181 return ret;
4182 }
4183
4184 /**
4185 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4186 * @ss: target cgroup subsystem
4187 * @cfts: zero-length name terminated array of cftypes
4188 *
4189 * Similar to cgroup_add_cftypes() but the added files are only used for
4190 * the default hierarchy.
4191 */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4192 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4193 {
4194 struct cftype *cft;
4195
4196 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4197 cft->flags |= __CFTYPE_ONLY_ON_DFL;
4198 return cgroup_add_cftypes(ss, cfts);
4199 }
4200
4201 /**
4202 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4203 * @ss: target cgroup subsystem
4204 * @cfts: zero-length name terminated array of cftypes
4205 *
4206 * Similar to cgroup_add_cftypes() but the added files are only used for
4207 * the legacy hierarchies.
4208 */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4209 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4210 {
4211 struct cftype *cft;
4212
4213 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4214 cft->flags |= __CFTYPE_NOT_ON_DFL;
4215 return cgroup_add_cftypes(ss, cfts);
4216 }
4217
4218 /**
4219 * cgroup_file_notify - generate a file modified event for a cgroup_file
4220 * @cfile: target cgroup_file
4221 *
4222 * @cfile must have been obtained by setting cftype->file_offset.
4223 */
cgroup_file_notify(struct cgroup_file * cfile)4224 void cgroup_file_notify(struct cgroup_file *cfile)
4225 {
4226 unsigned long flags;
4227
4228 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4229 if (cfile->kn) {
4230 unsigned long last = cfile->notified_at;
4231 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4232
4233 if (time_in_range(jiffies, last, next)) {
4234 timer_reduce(&cfile->notify_timer, next);
4235 } else {
4236 kernfs_notify(cfile->kn);
4237 cfile->notified_at = jiffies;
4238 }
4239 }
4240 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4241 }
4242
4243 /**
4244 * css_next_child - find the next child of a given css
4245 * @pos: the current position (%NULL to initiate traversal)
4246 * @parent: css whose children to walk
4247 *
4248 * This function returns the next child of @parent and should be called
4249 * under either cgroup_mutex or RCU read lock. The only requirement is
4250 * that @parent and @pos are accessible. The next sibling is guaranteed to
4251 * be returned regardless of their states.
4252 *
4253 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4254 * css which finished ->css_online() is guaranteed to be visible in the
4255 * future iterations and will stay visible until the last reference is put.
4256 * A css which hasn't finished ->css_online() or already finished
4257 * ->css_offline() may show up during traversal. It's each subsystem's
4258 * responsibility to synchronize against on/offlining.
4259 */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)4260 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4261 struct cgroup_subsys_state *parent)
4262 {
4263 struct cgroup_subsys_state *next;
4264
4265 cgroup_assert_mutex_or_rcu_locked();
4266
4267 /*
4268 * @pos could already have been unlinked from the sibling list.
4269 * Once a cgroup is removed, its ->sibling.next is no longer
4270 * updated when its next sibling changes. CSS_RELEASED is set when
4271 * @pos is taken off list, at which time its next pointer is valid,
4272 * and, as releases are serialized, the one pointed to by the next
4273 * pointer is guaranteed to not have started release yet. This
4274 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4275 * critical section, the one pointed to by its next pointer is
4276 * guaranteed to not have finished its RCU grace period even if we
4277 * have dropped rcu_read_lock() inbetween iterations.
4278 *
4279 * If @pos has CSS_RELEASED set, its next pointer can't be
4280 * dereferenced; however, as each css is given a monotonically
4281 * increasing unique serial number and always appended to the
4282 * sibling list, the next one can be found by walking the parent's
4283 * children until the first css with higher serial number than
4284 * @pos's. While this path can be slower, it happens iff iteration
4285 * races against release and the race window is very small.
4286 */
4287 if (!pos) {
4288 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4289 } else if (likely(!(pos->flags & CSS_RELEASED))) {
4290 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4291 } else {
4292 list_for_each_entry_rcu(next, &parent->children, sibling,
4293 lockdep_is_held(&cgroup_mutex))
4294 if (next->serial_nr > pos->serial_nr)
4295 break;
4296 }
4297
4298 /*
4299 * @next, if not pointing to the head, can be dereferenced and is
4300 * the next sibling.
4301 */
4302 if (&next->sibling != &parent->children)
4303 return next;
4304 return NULL;
4305 }
4306
4307 /**
4308 * css_next_descendant_pre - find the next descendant for pre-order walk
4309 * @pos: the current position (%NULL to initiate traversal)
4310 * @root: css whose descendants to walk
4311 *
4312 * To be used by css_for_each_descendant_pre(). Find the next descendant
4313 * to visit for pre-order traversal of @root's descendants. @root is
4314 * included in the iteration and the first node to be visited.
4315 *
4316 * While this function requires cgroup_mutex or RCU read locking, it
4317 * doesn't require the whole traversal to be contained in a single critical
4318 * section. This function will return the correct next descendant as long
4319 * as both @pos and @root are accessible and @pos is a descendant of @root.
4320 *
4321 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4322 * css which finished ->css_online() is guaranteed to be visible in the
4323 * future iterations and will stay visible until the last reference is put.
4324 * A css which hasn't finished ->css_online() or already finished
4325 * ->css_offline() may show up during traversal. It's each subsystem's
4326 * responsibility to synchronize against on/offlining.
4327 */
4328 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4329 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4330 struct cgroup_subsys_state *root)
4331 {
4332 struct cgroup_subsys_state *next;
4333
4334 cgroup_assert_mutex_or_rcu_locked();
4335
4336 /* if first iteration, visit @root */
4337 if (!pos)
4338 return root;
4339
4340 /* visit the first child if exists */
4341 next = css_next_child(NULL, pos);
4342 if (next)
4343 return next;
4344
4345 /* no child, visit my or the closest ancestor's next sibling */
4346 while (pos != root) {
4347 next = css_next_child(pos, pos->parent);
4348 if (next)
4349 return next;
4350 pos = pos->parent;
4351 }
4352
4353 return NULL;
4354 }
4355 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4356
4357 /**
4358 * css_rightmost_descendant - return the rightmost descendant of a css
4359 * @pos: css of interest
4360 *
4361 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4362 * is returned. This can be used during pre-order traversal to skip
4363 * subtree of @pos.
4364 *
4365 * While this function requires cgroup_mutex or RCU read locking, it
4366 * doesn't require the whole traversal to be contained in a single critical
4367 * section. This function will return the correct rightmost descendant as
4368 * long as @pos is accessible.
4369 */
4370 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)4371 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4372 {
4373 struct cgroup_subsys_state *last, *tmp;
4374
4375 cgroup_assert_mutex_or_rcu_locked();
4376
4377 do {
4378 last = pos;
4379 /* ->prev isn't RCU safe, walk ->next till the end */
4380 pos = NULL;
4381 css_for_each_child(tmp, last)
4382 pos = tmp;
4383 } while (pos);
4384
4385 return last;
4386 }
4387
4388 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4389 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4390 {
4391 struct cgroup_subsys_state *last;
4392
4393 do {
4394 last = pos;
4395 pos = css_next_child(NULL, pos);
4396 } while (pos);
4397
4398 return last;
4399 }
4400
4401 /**
4402 * css_next_descendant_post - find the next descendant for post-order walk
4403 * @pos: the current position (%NULL to initiate traversal)
4404 * @root: css whose descendants to walk
4405 *
4406 * To be used by css_for_each_descendant_post(). Find the next descendant
4407 * to visit for post-order traversal of @root's descendants. @root is
4408 * included in the iteration and the last node to be visited.
4409 *
4410 * While this function requires cgroup_mutex or RCU read locking, it
4411 * doesn't require the whole traversal to be contained in a single critical
4412 * section. This function will return the correct next descendant as long
4413 * as both @pos and @cgroup are accessible and @pos is a descendant of
4414 * @cgroup.
4415 *
4416 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4417 * css which finished ->css_online() is guaranteed to be visible in the
4418 * future iterations and will stay visible until the last reference is put.
4419 * A css which hasn't finished ->css_online() or already finished
4420 * ->css_offline() may show up during traversal. It's each subsystem's
4421 * responsibility to synchronize against on/offlining.
4422 */
4423 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4424 css_next_descendant_post(struct cgroup_subsys_state *pos,
4425 struct cgroup_subsys_state *root)
4426 {
4427 struct cgroup_subsys_state *next;
4428
4429 cgroup_assert_mutex_or_rcu_locked();
4430
4431 /* if first iteration, visit leftmost descendant which may be @root */
4432 if (!pos)
4433 return css_leftmost_descendant(root);
4434
4435 /* if we visited @root, we're done */
4436 if (pos == root)
4437 return NULL;
4438
4439 /* if there's an unvisited sibling, visit its leftmost descendant */
4440 next = css_next_child(pos, pos->parent);
4441 if (next)
4442 return css_leftmost_descendant(next);
4443
4444 /* no sibling left, visit parent */
4445 return pos->parent;
4446 }
4447
4448 /**
4449 * css_has_online_children - does a css have online children
4450 * @css: the target css
4451 *
4452 * Returns %true if @css has any online children; otherwise, %false. This
4453 * function can be called from any context but the caller is responsible
4454 * for synchronizing against on/offlining as necessary.
4455 */
css_has_online_children(struct cgroup_subsys_state * css)4456 bool css_has_online_children(struct cgroup_subsys_state *css)
4457 {
4458 struct cgroup_subsys_state *child;
4459 bool ret = false;
4460
4461 rcu_read_lock();
4462 css_for_each_child(child, css) {
4463 if (child->flags & CSS_ONLINE) {
4464 ret = true;
4465 break;
4466 }
4467 }
4468 rcu_read_unlock();
4469 return ret;
4470 }
4471
css_task_iter_next_css_set(struct css_task_iter * it)4472 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4473 {
4474 struct list_head *l;
4475 struct cgrp_cset_link *link;
4476 struct css_set *cset;
4477
4478 lockdep_assert_held(&css_set_lock);
4479
4480 /* find the next threaded cset */
4481 if (it->tcset_pos) {
4482 l = it->tcset_pos->next;
4483
4484 if (l != it->tcset_head) {
4485 it->tcset_pos = l;
4486 return container_of(l, struct css_set,
4487 threaded_csets_node);
4488 }
4489
4490 it->tcset_pos = NULL;
4491 }
4492
4493 /* find the next cset */
4494 l = it->cset_pos;
4495 l = l->next;
4496 if (l == it->cset_head) {
4497 it->cset_pos = NULL;
4498 return NULL;
4499 }
4500
4501 if (it->ss) {
4502 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4503 } else {
4504 link = list_entry(l, struct cgrp_cset_link, cset_link);
4505 cset = link->cset;
4506 }
4507
4508 it->cset_pos = l;
4509
4510 /* initialize threaded css_set walking */
4511 if (it->flags & CSS_TASK_ITER_THREADED) {
4512 if (it->cur_dcset)
4513 put_css_set_locked(it->cur_dcset);
4514 it->cur_dcset = cset;
4515 get_css_set(cset);
4516
4517 it->tcset_head = &cset->threaded_csets;
4518 it->tcset_pos = &cset->threaded_csets;
4519 }
4520
4521 return cset;
4522 }
4523
4524 /**
4525 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4526 * @it: the iterator to advance
4527 *
4528 * Advance @it to the next css_set to walk.
4529 */
css_task_iter_advance_css_set(struct css_task_iter * it)4530 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4531 {
4532 struct css_set *cset;
4533
4534 lockdep_assert_held(&css_set_lock);
4535
4536 /* Advance to the next non-empty css_set and find first non-empty tasks list*/
4537 while ((cset = css_task_iter_next_css_set(it))) {
4538 if (!list_empty(&cset->tasks)) {
4539 it->cur_tasks_head = &cset->tasks;
4540 break;
4541 } else if (!list_empty(&cset->mg_tasks)) {
4542 it->cur_tasks_head = &cset->mg_tasks;
4543 break;
4544 } else if (!list_empty(&cset->dying_tasks)) {
4545 it->cur_tasks_head = &cset->dying_tasks;
4546 break;
4547 }
4548 }
4549 if (!cset) {
4550 it->task_pos = NULL;
4551 return;
4552 }
4553 it->task_pos = it->cur_tasks_head->next;
4554
4555 /*
4556 * We don't keep css_sets locked across iteration steps and thus
4557 * need to take steps to ensure that iteration can be resumed after
4558 * the lock is re-acquired. Iteration is performed at two levels -
4559 * css_sets and tasks in them.
4560 *
4561 * Once created, a css_set never leaves its cgroup lists, so a
4562 * pinned css_set is guaranteed to stay put and we can resume
4563 * iteration afterwards.
4564 *
4565 * Tasks may leave @cset across iteration steps. This is resolved
4566 * by registering each iterator with the css_set currently being
4567 * walked and making css_set_move_task() advance iterators whose
4568 * next task is leaving.
4569 */
4570 if (it->cur_cset) {
4571 list_del(&it->iters_node);
4572 put_css_set_locked(it->cur_cset);
4573 }
4574 get_css_set(cset);
4575 it->cur_cset = cset;
4576 list_add(&it->iters_node, &cset->task_iters);
4577 }
4578
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4579 static void css_task_iter_skip(struct css_task_iter *it,
4580 struct task_struct *task)
4581 {
4582 lockdep_assert_held(&css_set_lock);
4583
4584 if (it->task_pos == &task->cg_list) {
4585 it->task_pos = it->task_pos->next;
4586 it->flags |= CSS_TASK_ITER_SKIPPED;
4587 }
4588 }
4589
css_task_iter_advance(struct css_task_iter * it)4590 static void css_task_iter_advance(struct css_task_iter *it)
4591 {
4592 struct task_struct *task;
4593
4594 lockdep_assert_held(&css_set_lock);
4595 repeat:
4596 if (it->task_pos) {
4597 /*
4598 * Advance iterator to find next entry. We go through cset
4599 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4600 * the next cset.
4601 */
4602 if (it->flags & CSS_TASK_ITER_SKIPPED)
4603 it->flags &= ~CSS_TASK_ITER_SKIPPED;
4604 else
4605 it->task_pos = it->task_pos->next;
4606
4607 if (it->task_pos == &it->cur_cset->tasks) {
4608 it->cur_tasks_head = &it->cur_cset->mg_tasks;
4609 it->task_pos = it->cur_tasks_head->next;
4610 }
4611 if (it->task_pos == &it->cur_cset->mg_tasks) {
4612 it->cur_tasks_head = &it->cur_cset->dying_tasks;
4613 it->task_pos = it->cur_tasks_head->next;
4614 }
4615 if (it->task_pos == &it->cur_cset->dying_tasks)
4616 css_task_iter_advance_css_set(it);
4617 } else {
4618 /* called from start, proceed to the first cset */
4619 css_task_iter_advance_css_set(it);
4620 }
4621
4622 if (!it->task_pos)
4623 return;
4624
4625 task = list_entry(it->task_pos, struct task_struct, cg_list);
4626
4627 if (it->flags & CSS_TASK_ITER_PROCS) {
4628 /* if PROCS, skip over tasks which aren't group leaders */
4629 if (!thread_group_leader(task))
4630 goto repeat;
4631
4632 /* and dying leaders w/o live member threads */
4633 if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4634 !atomic_read(&task->signal->live))
4635 goto repeat;
4636 } else {
4637 /* skip all dying ones */
4638 if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4639 goto repeat;
4640 }
4641 }
4642
4643 /**
4644 * css_task_iter_start - initiate task iteration
4645 * @css: the css to walk tasks of
4646 * @flags: CSS_TASK_ITER_* flags
4647 * @it: the task iterator to use
4648 *
4649 * Initiate iteration through the tasks of @css. The caller can call
4650 * css_task_iter_next() to walk through the tasks until the function
4651 * returns NULL. On completion of iteration, css_task_iter_end() must be
4652 * called.
4653 */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)4654 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4655 struct css_task_iter *it)
4656 {
4657 memset(it, 0, sizeof(*it));
4658
4659 spin_lock_irq(&css_set_lock);
4660
4661 it->ss = css->ss;
4662 it->flags = flags;
4663
4664 if (it->ss)
4665 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4666 else
4667 it->cset_pos = &css->cgroup->cset_links;
4668
4669 it->cset_head = it->cset_pos;
4670
4671 css_task_iter_advance(it);
4672
4673 spin_unlock_irq(&css_set_lock);
4674 }
4675
4676 /**
4677 * css_task_iter_next - return the next task for the iterator
4678 * @it: the task iterator being iterated
4679 *
4680 * The "next" function for task iteration. @it should have been
4681 * initialized via css_task_iter_start(). Returns NULL when the iteration
4682 * reaches the end.
4683 */
css_task_iter_next(struct css_task_iter * it)4684 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4685 {
4686 if (it->cur_task) {
4687 put_task_struct(it->cur_task);
4688 it->cur_task = NULL;
4689 }
4690
4691 spin_lock_irq(&css_set_lock);
4692
4693 /* @it may be half-advanced by skips, finish advancing */
4694 if (it->flags & CSS_TASK_ITER_SKIPPED)
4695 css_task_iter_advance(it);
4696
4697 if (it->task_pos) {
4698 it->cur_task = list_entry(it->task_pos, struct task_struct,
4699 cg_list);
4700 get_task_struct(it->cur_task);
4701 css_task_iter_advance(it);
4702 }
4703
4704 spin_unlock_irq(&css_set_lock);
4705
4706 return it->cur_task;
4707 }
4708
4709 /**
4710 * css_task_iter_end - finish task iteration
4711 * @it: the task iterator to finish
4712 *
4713 * Finish task iteration started by css_task_iter_start().
4714 */
css_task_iter_end(struct css_task_iter * it)4715 void css_task_iter_end(struct css_task_iter *it)
4716 {
4717 if (it->cur_cset) {
4718 spin_lock_irq(&css_set_lock);
4719 list_del(&it->iters_node);
4720 put_css_set_locked(it->cur_cset);
4721 spin_unlock_irq(&css_set_lock);
4722 }
4723
4724 if (it->cur_dcset)
4725 put_css_set(it->cur_dcset);
4726
4727 if (it->cur_task)
4728 put_task_struct(it->cur_task);
4729 }
4730
cgroup_procs_release(struct kernfs_open_file * of)4731 static void cgroup_procs_release(struct kernfs_open_file *of)
4732 {
4733 struct cgroup_file_ctx *ctx = of->priv;
4734
4735 if (ctx->procs.started)
4736 css_task_iter_end(&ctx->procs.iter);
4737 }
4738
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)4739 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4740 {
4741 struct kernfs_open_file *of = s->private;
4742 struct cgroup_file_ctx *ctx = of->priv;
4743
4744 if (pos)
4745 (*pos)++;
4746
4747 return css_task_iter_next(&ctx->procs.iter);
4748 }
4749
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)4750 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4751 unsigned int iter_flags)
4752 {
4753 struct kernfs_open_file *of = s->private;
4754 struct cgroup *cgrp = seq_css(s)->cgroup;
4755 struct cgroup_file_ctx *ctx = of->priv;
4756 struct css_task_iter *it = &ctx->procs.iter;
4757
4758 /*
4759 * When a seq_file is seeked, it's always traversed sequentially
4760 * from position 0, so we can simply keep iterating on !0 *pos.
4761 */
4762 if (!ctx->procs.started) {
4763 if (WARN_ON_ONCE((*pos)))
4764 return ERR_PTR(-EINVAL);
4765 css_task_iter_start(&cgrp->self, iter_flags, it);
4766 ctx->procs.started = true;
4767 } else if (!(*pos)) {
4768 css_task_iter_end(it);
4769 css_task_iter_start(&cgrp->self, iter_flags, it);
4770 } else
4771 return it->cur_task;
4772
4773 return cgroup_procs_next(s, NULL, NULL);
4774 }
4775
cgroup_procs_start(struct seq_file * s,loff_t * pos)4776 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4777 {
4778 struct cgroup *cgrp = seq_css(s)->cgroup;
4779
4780 /*
4781 * All processes of a threaded subtree belong to the domain cgroup
4782 * of the subtree. Only threads can be distributed across the
4783 * subtree. Reject reads on cgroup.procs in the subtree proper.
4784 * They're always empty anyway.
4785 */
4786 if (cgroup_is_threaded(cgrp))
4787 return ERR_PTR(-EOPNOTSUPP);
4788
4789 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4790 CSS_TASK_ITER_THREADED);
4791 }
4792
cgroup_procs_show(struct seq_file * s,void * v)4793 static int cgroup_procs_show(struct seq_file *s, void *v)
4794 {
4795 seq_printf(s, "%d\n", task_pid_vnr(v));
4796 return 0;
4797 }
4798
cgroup_may_write(const struct cgroup * cgrp,struct super_block * sb)4799 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4800 {
4801 int ret;
4802 struct inode *inode;
4803
4804 lockdep_assert_held(&cgroup_mutex);
4805
4806 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4807 if (!inode)
4808 return -ENOMEM;
4809
4810 ret = inode_permission(inode, MAY_WRITE);
4811 iput(inode);
4812 return ret;
4813 }
4814
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,struct cgroup_namespace * ns)4815 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4816 struct cgroup *dst_cgrp,
4817 struct super_block *sb,
4818 struct cgroup_namespace *ns)
4819 {
4820 struct cgroup *com_cgrp = src_cgrp;
4821 int ret;
4822
4823 lockdep_assert_held(&cgroup_mutex);
4824
4825 /* find the common ancestor */
4826 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4827 com_cgrp = cgroup_parent(com_cgrp);
4828
4829 /* %current should be authorized to migrate to the common ancestor */
4830 ret = cgroup_may_write(com_cgrp, sb);
4831 if (ret)
4832 return ret;
4833
4834 /*
4835 * If namespaces are delegation boundaries, %current must be able
4836 * to see both source and destination cgroups from its namespace.
4837 */
4838 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4839 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4840 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4841 return -ENOENT;
4842
4843 return 0;
4844 }
4845
cgroup_attach_permissions(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,bool threadgroup,struct cgroup_namespace * ns)4846 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4847 struct cgroup *dst_cgrp,
4848 struct super_block *sb, bool threadgroup,
4849 struct cgroup_namespace *ns)
4850 {
4851 int ret = 0;
4852
4853 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
4854 if (ret)
4855 return ret;
4856
4857 ret = cgroup_migrate_vet_dst(dst_cgrp);
4858 if (ret)
4859 return ret;
4860
4861 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4862 ret = -EOPNOTSUPP;
4863
4864 return ret;
4865 }
4866
__cgroup_procs_write(struct kernfs_open_file * of,char * buf,bool threadgroup)4867 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
4868 bool threadgroup)
4869 {
4870 struct cgroup_file_ctx *ctx = of->priv;
4871 struct cgroup *src_cgrp, *dst_cgrp;
4872 struct task_struct *task;
4873 const struct cred *saved_cred;
4874 ssize_t ret;
4875 bool threadgroup_locked;
4876
4877 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4878 if (!dst_cgrp)
4879 return -ENODEV;
4880
4881 task = cgroup_procs_write_start(buf, true, &threadgroup_locked);
4882 ret = PTR_ERR_OR_ZERO(task);
4883 if (ret)
4884 goto out_unlock;
4885
4886 /* find the source cgroup */
4887 spin_lock_irq(&css_set_lock);
4888 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4889 spin_unlock_irq(&css_set_lock);
4890
4891 /*
4892 * Process and thread migrations follow same delegation rule. Check
4893 * permissions using the credentials from file open to protect against
4894 * inherited fd attacks.
4895 */
4896 saved_cred = override_creds(of->file->f_cred);
4897 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4898 of->file->f_path.dentry->d_sb,
4899 threadgroup, ctx->ns);
4900 revert_creds(saved_cred);
4901 if (ret)
4902 goto out_finish;
4903
4904 ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
4905
4906 out_finish:
4907 cgroup_procs_write_finish(task, threadgroup_locked);
4908 out_unlock:
4909 cgroup_kn_unlock(of->kn);
4910
4911 return ret;
4912 }
4913
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4914 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4915 char *buf, size_t nbytes, loff_t off)
4916 {
4917 return __cgroup_procs_write(of, buf, true) ?: nbytes;
4918 }
4919
cgroup_threads_start(struct seq_file * s,loff_t * pos)4920 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4921 {
4922 return __cgroup_procs_start(s, pos, 0);
4923 }
4924
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4925 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4926 char *buf, size_t nbytes, loff_t off)
4927 {
4928 return __cgroup_procs_write(of, buf, false) ?: nbytes;
4929 }
4930
4931 /* cgroup core interface files for the default hierarchy */
4932 static struct cftype cgroup_base_files[] = {
4933 {
4934 .name = "cgroup.type",
4935 .flags = CFTYPE_NOT_ON_ROOT,
4936 .seq_show = cgroup_type_show,
4937 .write = cgroup_type_write,
4938 },
4939 {
4940 .name = "cgroup.procs",
4941 .flags = CFTYPE_NS_DELEGATABLE,
4942 .file_offset = offsetof(struct cgroup, procs_file),
4943 .release = cgroup_procs_release,
4944 .seq_start = cgroup_procs_start,
4945 .seq_next = cgroup_procs_next,
4946 .seq_show = cgroup_procs_show,
4947 .write = cgroup_procs_write,
4948 },
4949 {
4950 .name = "cgroup.threads",
4951 .flags = CFTYPE_NS_DELEGATABLE,
4952 .release = cgroup_procs_release,
4953 .seq_start = cgroup_threads_start,
4954 .seq_next = cgroup_procs_next,
4955 .seq_show = cgroup_procs_show,
4956 .write = cgroup_threads_write,
4957 },
4958 {
4959 .name = "cgroup.controllers",
4960 .seq_show = cgroup_controllers_show,
4961 },
4962 {
4963 .name = "cgroup.subtree_control",
4964 .flags = CFTYPE_NS_DELEGATABLE,
4965 .seq_show = cgroup_subtree_control_show,
4966 .write = cgroup_subtree_control_write,
4967 },
4968 {
4969 .name = "cgroup.events",
4970 .flags = CFTYPE_NOT_ON_ROOT,
4971 .file_offset = offsetof(struct cgroup, events_file),
4972 .seq_show = cgroup_events_show,
4973 },
4974 {
4975 .name = "cgroup.max.descendants",
4976 .seq_show = cgroup_max_descendants_show,
4977 .write = cgroup_max_descendants_write,
4978 },
4979 {
4980 .name = "cgroup.max.depth",
4981 .seq_show = cgroup_max_depth_show,
4982 .write = cgroup_max_depth_write,
4983 },
4984 {
4985 .name = "cgroup.stat",
4986 .seq_show = cgroup_stat_show,
4987 },
4988 {
4989 .name = "cgroup.freeze",
4990 .flags = CFTYPE_NOT_ON_ROOT,
4991 .seq_show = cgroup_freeze_show,
4992 .write = cgroup_freeze_write,
4993 },
4994 {
4995 .name = "cpu.stat",
4996 .seq_show = cpu_stat_show,
4997 },
4998 #ifdef CONFIG_PSI
4999 {
5000 .name = "io.pressure",
5001 .seq_show = cgroup_io_pressure_show,
5002 .write = cgroup_io_pressure_write,
5003 .poll = cgroup_pressure_poll,
5004 .release = cgroup_pressure_release,
5005 },
5006 {
5007 .name = "memory.pressure",
5008 .seq_show = cgroup_memory_pressure_show,
5009 .write = cgroup_memory_pressure_write,
5010 .poll = cgroup_pressure_poll,
5011 .release = cgroup_pressure_release,
5012 },
5013 {
5014 .name = "cpu.pressure",
5015 .seq_show = cgroup_cpu_pressure_show,
5016 .write = cgroup_cpu_pressure_write,
5017 .poll = cgroup_pressure_poll,
5018 .release = cgroup_pressure_release,
5019 },
5020 #endif /* CONFIG_PSI */
5021 { } /* terminate */
5022 };
5023
5024 /*
5025 * css destruction is four-stage process.
5026 *
5027 * 1. Destruction starts. Killing of the percpu_ref is initiated.
5028 * Implemented in kill_css().
5029 *
5030 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5031 * and thus css_tryget_online() is guaranteed to fail, the css can be
5032 * offlined by invoking offline_css(). After offlining, the base ref is
5033 * put. Implemented in css_killed_work_fn().
5034 *
5035 * 3. When the percpu_ref reaches zero, the only possible remaining
5036 * accessors are inside RCU read sections. css_release() schedules the
5037 * RCU callback.
5038 *
5039 * 4. After the grace period, the css can be freed. Implemented in
5040 * css_free_work_fn().
5041 *
5042 * It is actually hairier because both step 2 and 4 require process context
5043 * and thus involve punting to css->destroy_work adding two additional
5044 * steps to the already complex sequence.
5045 */
css_free_rwork_fn(struct work_struct * work)5046 static void css_free_rwork_fn(struct work_struct *work)
5047 {
5048 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5049 struct cgroup_subsys_state, destroy_rwork);
5050 struct cgroup_subsys *ss = css->ss;
5051 struct cgroup *cgrp = css->cgroup;
5052
5053 percpu_ref_exit(&css->refcnt);
5054
5055 if (ss) {
5056 /* css free path */
5057 struct cgroup_subsys_state *parent = css->parent;
5058 int id = css->id;
5059
5060 ss->css_free(css);
5061 cgroup_idr_remove(&ss->css_idr, id);
5062 cgroup_put(cgrp);
5063
5064 if (parent)
5065 css_put(parent);
5066 } else {
5067 /* cgroup free path */
5068 atomic_dec(&cgrp->root->nr_cgrps);
5069 cgroup1_pidlist_destroy_all(cgrp);
5070 cancel_work_sync(&cgrp->release_agent_work);
5071
5072 if (cgroup_parent(cgrp)) {
5073 /*
5074 * We get a ref to the parent, and put the ref when
5075 * this cgroup is being freed, so it's guaranteed
5076 * that the parent won't be destroyed before its
5077 * children.
5078 */
5079 cgroup_put(cgroup_parent(cgrp));
5080 kernfs_put(cgrp->kn);
5081 psi_cgroup_free(cgrp);
5082 if (cgroup_on_dfl(cgrp))
5083 cgroup_rstat_exit(cgrp);
5084 kfree(cgrp);
5085 } else {
5086 /*
5087 * This is root cgroup's refcnt reaching zero,
5088 * which indicates that the root should be
5089 * released.
5090 */
5091 cgroup_destroy_root(cgrp->root);
5092 }
5093 }
5094 }
5095
css_release_work_fn(struct work_struct * work)5096 static void css_release_work_fn(struct work_struct *work)
5097 {
5098 struct cgroup_subsys_state *css =
5099 container_of(work, struct cgroup_subsys_state, destroy_work);
5100 struct cgroup_subsys *ss = css->ss;
5101 struct cgroup *cgrp = css->cgroup;
5102
5103 mutex_lock(&cgroup_mutex);
5104
5105 css->flags |= CSS_RELEASED;
5106 list_del_rcu(&css->sibling);
5107
5108 if (ss) {
5109 /* css release path */
5110 if (!list_empty(&css->rstat_css_node)) {
5111 cgroup_rstat_flush(cgrp);
5112 list_del_rcu(&css->rstat_css_node);
5113 }
5114
5115 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5116 if (ss->css_released)
5117 ss->css_released(css);
5118 } else {
5119 struct cgroup *tcgrp;
5120
5121 /* cgroup release path */
5122 TRACE_CGROUP_PATH(release, cgrp);
5123
5124 if (cgroup_on_dfl(cgrp))
5125 cgroup_rstat_flush(cgrp);
5126
5127 spin_lock_irq(&css_set_lock);
5128 for (tcgrp = cgroup_parent(cgrp); tcgrp;
5129 tcgrp = cgroup_parent(tcgrp))
5130 tcgrp->nr_dying_descendants--;
5131 spin_unlock_irq(&css_set_lock);
5132
5133 /*
5134 * There are two control paths which try to determine
5135 * cgroup from dentry without going through kernfs -
5136 * cgroupstats_build() and css_tryget_online_from_dir().
5137 * Those are supported by RCU protecting clearing of
5138 * cgrp->kn->priv backpointer.
5139 */
5140 if (cgrp->kn)
5141 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5142 NULL);
5143 if (css->parent && !css->parent->parent &&
5144 list_empty(&css->parent->children))
5145 wake_up(&cgrp->root->wait);
5146 }
5147 mutex_unlock(&cgroup_mutex);
5148
5149 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5150 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5151 }
5152
css_release(struct percpu_ref * ref)5153 static void css_release(struct percpu_ref *ref)
5154 {
5155 struct cgroup_subsys_state *css =
5156 container_of(ref, struct cgroup_subsys_state, refcnt);
5157
5158 INIT_WORK(&css->destroy_work, css_release_work_fn);
5159 queue_work(cgroup_destroy_wq, &css->destroy_work);
5160 }
5161
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5162 static void init_and_link_css(struct cgroup_subsys_state *css,
5163 struct cgroup_subsys *ss, struct cgroup *cgrp)
5164 {
5165 lockdep_assert_held(&cgroup_mutex);
5166
5167 cgroup_get_live(cgrp);
5168
5169 memset(css, 0, sizeof(*css));
5170 css->cgroup = cgrp;
5171 css->ss = ss;
5172 css->id = -1;
5173 INIT_LIST_HEAD(&css->sibling);
5174 INIT_LIST_HEAD(&css->children);
5175 INIT_LIST_HEAD(&css->rstat_css_node);
5176 css->serial_nr = css_serial_nr_next++;
5177 atomic_set(&css->online_cnt, 0);
5178
5179 if (cgroup_parent(cgrp)) {
5180 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5181 css_get(css->parent);
5182 }
5183
5184 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5185 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5186
5187 BUG_ON(cgroup_css(cgrp, ss));
5188 }
5189
5190 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)5191 static int online_css(struct cgroup_subsys_state *css)
5192 {
5193 struct cgroup_subsys *ss = css->ss;
5194 int ret = 0;
5195
5196 lockdep_assert_held(&cgroup_mutex);
5197
5198 if (ss->css_online)
5199 ret = ss->css_online(css);
5200 if (!ret) {
5201 css->flags |= CSS_ONLINE;
5202 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5203
5204 atomic_inc(&css->online_cnt);
5205 if (css->parent)
5206 atomic_inc(&css->parent->online_cnt);
5207 }
5208 return ret;
5209 }
5210
5211 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)5212 static void offline_css(struct cgroup_subsys_state *css)
5213 {
5214 struct cgroup_subsys *ss = css->ss;
5215
5216 lockdep_assert_held(&cgroup_mutex);
5217
5218 if (!(css->flags & CSS_ONLINE))
5219 return;
5220
5221 if (ss->css_offline)
5222 ss->css_offline(css);
5223
5224 css->flags &= ~CSS_ONLINE;
5225 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5226
5227 wake_up_all(&css->cgroup->offline_waitq);
5228 }
5229
5230 /**
5231 * css_create - create a cgroup_subsys_state
5232 * @cgrp: the cgroup new css will be associated with
5233 * @ss: the subsys of new css
5234 *
5235 * Create a new css associated with @cgrp - @ss pair. On success, the new
5236 * css is online and installed in @cgrp. This function doesn't create the
5237 * interface files. Returns 0 on success, -errno on failure.
5238 */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5239 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5240 struct cgroup_subsys *ss)
5241 {
5242 struct cgroup *parent = cgroup_parent(cgrp);
5243 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5244 struct cgroup_subsys_state *css;
5245 int err;
5246
5247 lockdep_assert_held(&cgroup_mutex);
5248
5249 css = ss->css_alloc(parent_css);
5250 if (!css)
5251 css = ERR_PTR(-ENOMEM);
5252 if (IS_ERR(css))
5253 return css;
5254
5255 init_and_link_css(css, ss, cgrp);
5256
5257 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5258 if (err)
5259 goto err_free_css;
5260
5261 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5262 if (err < 0)
5263 goto err_free_css;
5264 css->id = err;
5265
5266 /* @css is ready to be brought online now, make it visible */
5267 list_add_tail_rcu(&css->sibling, &parent_css->children);
5268 cgroup_idr_replace(&ss->css_idr, css, css->id);
5269
5270 err = online_css(css);
5271 if (err)
5272 goto err_list_del;
5273
5274 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5275 cgroup_parent(parent)) {
5276 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5277 current->comm, current->pid, ss->name);
5278 if (!strcmp(ss->name, "memory"))
5279 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5280 ss->warned_broken_hierarchy = true;
5281 }
5282
5283 return css;
5284
5285 err_list_del:
5286 list_del_rcu(&css->sibling);
5287 err_free_css:
5288 list_del_rcu(&css->rstat_css_node);
5289 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5290 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5291 return ERR_PTR(err);
5292 }
5293
5294 /*
5295 * The returned cgroup is fully initialized including its control mask, but
5296 * it isn't associated with its kernfs_node and doesn't have the control
5297 * mask applied.
5298 */
cgroup_create(struct cgroup * parent,const char * name,umode_t mode)5299 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5300 umode_t mode)
5301 {
5302 struct cgroup_root *root = parent->root;
5303 struct cgroup *cgrp, *tcgrp;
5304 struct kernfs_node *kn;
5305 int level = parent->level + 1;
5306 int ret;
5307
5308 /* allocate the cgroup and its ID, 0 is reserved for the root */
5309 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5310 GFP_KERNEL);
5311 if (!cgrp)
5312 return ERR_PTR(-ENOMEM);
5313
5314 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5315 if (ret)
5316 goto out_free_cgrp;
5317
5318 if (cgroup_on_dfl(parent)) {
5319 ret = cgroup_rstat_init(cgrp);
5320 if (ret)
5321 goto out_cancel_ref;
5322 }
5323
5324 /* create the directory */
5325 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5326 if (IS_ERR(kn)) {
5327 ret = PTR_ERR(kn);
5328 goto out_stat_exit;
5329 }
5330 cgrp->kn = kn;
5331
5332 init_cgroup_housekeeping(cgrp);
5333
5334 cgrp->self.parent = &parent->self;
5335 cgrp->root = root;
5336 cgrp->level = level;
5337
5338 ret = psi_cgroup_alloc(cgrp);
5339 if (ret)
5340 goto out_kernfs_remove;
5341
5342 ret = cgroup_bpf_inherit(cgrp);
5343 if (ret)
5344 goto out_psi_free;
5345
5346 /*
5347 * New cgroup inherits effective freeze counter, and
5348 * if the parent has to be frozen, the child has too.
5349 */
5350 cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5351 if (cgrp->freezer.e_freeze) {
5352 /*
5353 * Set the CGRP_FREEZE flag, so when a process will be
5354 * attached to the child cgroup, it will become frozen.
5355 * At this point the new cgroup is unpopulated, so we can
5356 * consider it frozen immediately.
5357 */
5358 set_bit(CGRP_FREEZE, &cgrp->flags);
5359 set_bit(CGRP_FROZEN, &cgrp->flags);
5360 }
5361
5362 spin_lock_irq(&css_set_lock);
5363 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5364 cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5365
5366 if (tcgrp != cgrp) {
5367 tcgrp->nr_descendants++;
5368
5369 /*
5370 * If the new cgroup is frozen, all ancestor cgroups
5371 * get a new frozen descendant, but their state can't
5372 * change because of this.
5373 */
5374 if (cgrp->freezer.e_freeze)
5375 tcgrp->freezer.nr_frozen_descendants++;
5376 }
5377 }
5378 spin_unlock_irq(&css_set_lock);
5379
5380 if (notify_on_release(parent))
5381 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5382
5383 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5384 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5385
5386 cgrp->self.serial_nr = css_serial_nr_next++;
5387
5388 /* allocation complete, commit to creation */
5389 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5390 atomic_inc(&root->nr_cgrps);
5391 cgroup_get_live(parent);
5392
5393 /*
5394 * On the default hierarchy, a child doesn't automatically inherit
5395 * subtree_control from the parent. Each is configured manually.
5396 */
5397 if (!cgroup_on_dfl(cgrp))
5398 cgrp->subtree_control = cgroup_control(cgrp);
5399
5400 cgroup_propagate_control(cgrp);
5401
5402 return cgrp;
5403
5404 out_psi_free:
5405 psi_cgroup_free(cgrp);
5406 out_kernfs_remove:
5407 kernfs_remove(cgrp->kn);
5408 out_stat_exit:
5409 if (cgroup_on_dfl(parent))
5410 cgroup_rstat_exit(cgrp);
5411 out_cancel_ref:
5412 percpu_ref_exit(&cgrp->self.refcnt);
5413 out_free_cgrp:
5414 kfree(cgrp);
5415 return ERR_PTR(ret);
5416 }
5417
cgroup_check_hierarchy_limits(struct cgroup * parent)5418 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5419 {
5420 struct cgroup *cgroup;
5421 int ret = false;
5422 int level = 1;
5423
5424 lockdep_assert_held(&cgroup_mutex);
5425
5426 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5427 if (cgroup->nr_descendants >= cgroup->max_descendants)
5428 goto fail;
5429
5430 if (level > cgroup->max_depth)
5431 goto fail;
5432
5433 level++;
5434 }
5435
5436 ret = true;
5437 fail:
5438 return ret;
5439 }
5440
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5441 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5442 {
5443 struct cgroup *parent, *cgrp;
5444 int ret;
5445
5446 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5447 if (strchr(name, '\n'))
5448 return -EINVAL;
5449
5450 parent = cgroup_kn_lock_live(parent_kn, false);
5451 if (!parent)
5452 return -ENODEV;
5453
5454 if (!cgroup_check_hierarchy_limits(parent)) {
5455 ret = -EAGAIN;
5456 goto out_unlock;
5457 }
5458
5459 cgrp = cgroup_create(parent, name, mode);
5460 if (IS_ERR(cgrp)) {
5461 ret = PTR_ERR(cgrp);
5462 goto out_unlock;
5463 }
5464
5465 /*
5466 * This extra ref will be put in cgroup_free_fn() and guarantees
5467 * that @cgrp->kn is always accessible.
5468 */
5469 kernfs_get(cgrp->kn);
5470
5471 ret = cgroup_kn_set_ugid(cgrp->kn);
5472 if (ret)
5473 goto out_destroy;
5474
5475 ret = css_populate_dir(&cgrp->self);
5476 if (ret)
5477 goto out_destroy;
5478
5479 ret = cgroup_apply_control_enable(cgrp);
5480 if (ret)
5481 goto out_destroy;
5482
5483 TRACE_CGROUP_PATH(mkdir, cgrp);
5484
5485 /* let's create and online css's */
5486 kernfs_activate(cgrp->kn);
5487
5488 ret = 0;
5489 goto out_unlock;
5490
5491 out_destroy:
5492 cgroup_destroy_locked(cgrp);
5493 out_unlock:
5494 cgroup_kn_unlock(parent_kn);
5495 return ret;
5496 }
5497
5498 /*
5499 * This is called when the refcnt of a css is confirmed to be killed.
5500 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5501 * initate destruction and put the css ref from kill_css().
5502 */
css_killed_work_fn(struct work_struct * work)5503 static void css_killed_work_fn(struct work_struct *work)
5504 {
5505 struct cgroup_subsys_state *css =
5506 container_of(work, struct cgroup_subsys_state, destroy_work);
5507
5508 mutex_lock(&cgroup_mutex);
5509
5510 do {
5511 offline_css(css);
5512 css_put(css);
5513 /* @css can't go away while we're holding cgroup_mutex */
5514 css = css->parent;
5515 } while (css && atomic_dec_and_test(&css->online_cnt));
5516
5517 mutex_unlock(&cgroup_mutex);
5518 }
5519
5520 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5521 static void css_killed_ref_fn(struct percpu_ref *ref)
5522 {
5523 struct cgroup_subsys_state *css =
5524 container_of(ref, struct cgroup_subsys_state, refcnt);
5525
5526 if (atomic_dec_and_test(&css->online_cnt)) {
5527 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5528 queue_work(cgroup_destroy_wq, &css->destroy_work);
5529 }
5530 }
5531
5532 /**
5533 * kill_css - destroy a css
5534 * @css: css to destroy
5535 *
5536 * This function initiates destruction of @css by removing cgroup interface
5537 * files and putting its base reference. ->css_offline() will be invoked
5538 * asynchronously once css_tryget_online() is guaranteed to fail and when
5539 * the reference count reaches zero, @css will be released.
5540 */
kill_css(struct cgroup_subsys_state * css)5541 static void kill_css(struct cgroup_subsys_state *css)
5542 {
5543 lockdep_assert_held(&cgroup_mutex);
5544
5545 if (css->flags & CSS_DYING)
5546 return;
5547
5548 css->flags |= CSS_DYING;
5549
5550 /*
5551 * This must happen before css is disassociated with its cgroup.
5552 * See seq_css() for details.
5553 */
5554 css_clear_dir(css);
5555
5556 /*
5557 * Killing would put the base ref, but we need to keep it alive
5558 * until after ->css_offline().
5559 */
5560 css_get(css);
5561
5562 /*
5563 * cgroup core guarantees that, by the time ->css_offline() is
5564 * invoked, no new css reference will be given out via
5565 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5566 * proceed to offlining css's because percpu_ref_kill() doesn't
5567 * guarantee that the ref is seen as killed on all CPUs on return.
5568 *
5569 * Use percpu_ref_kill_and_confirm() to get notifications as each
5570 * css is confirmed to be seen as killed on all CPUs.
5571 */
5572 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5573 }
5574
5575 /**
5576 * cgroup_destroy_locked - the first stage of cgroup destruction
5577 * @cgrp: cgroup to be destroyed
5578 *
5579 * css's make use of percpu refcnts whose killing latency shouldn't be
5580 * exposed to userland and are RCU protected. Also, cgroup core needs to
5581 * guarantee that css_tryget_online() won't succeed by the time
5582 * ->css_offline() is invoked. To satisfy all the requirements,
5583 * destruction is implemented in the following two steps.
5584 *
5585 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5586 * userland visible parts and start killing the percpu refcnts of
5587 * css's. Set up so that the next stage will be kicked off once all
5588 * the percpu refcnts are confirmed to be killed.
5589 *
5590 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5591 * rest of destruction. Once all cgroup references are gone, the
5592 * cgroup is RCU-freed.
5593 *
5594 * This function implements s1. After this step, @cgrp is gone as far as
5595 * the userland is concerned and a new cgroup with the same name may be
5596 * created. As cgroup doesn't care about the names internally, this
5597 * doesn't cause any problem.
5598 */
cgroup_destroy_locked(struct cgroup * cgrp)5599 static int cgroup_destroy_locked(struct cgroup *cgrp)
5600 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5601 {
5602 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5603 struct cgroup_subsys_state *css;
5604 struct cgrp_cset_link *link;
5605 int ssid;
5606
5607 lockdep_assert_held(&cgroup_mutex);
5608
5609 /*
5610 * Only migration can raise populated from zero and we're already
5611 * holding cgroup_mutex.
5612 */
5613 if (cgroup_is_populated(cgrp))
5614 return -EBUSY;
5615
5616 /*
5617 * Make sure there's no live children. We can't test emptiness of
5618 * ->self.children as dead children linger on it while being
5619 * drained; otherwise, "rmdir parent/child parent" may fail.
5620 */
5621 if (css_has_online_children(&cgrp->self))
5622 return -EBUSY;
5623
5624 /*
5625 * Mark @cgrp and the associated csets dead. The former prevents
5626 * further task migration and child creation by disabling
5627 * cgroup_lock_live_group(). The latter makes the csets ignored by
5628 * the migration path.
5629 */
5630 cgrp->self.flags &= ~CSS_ONLINE;
5631
5632 spin_lock_irq(&css_set_lock);
5633 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5634 link->cset->dead = true;
5635 spin_unlock_irq(&css_set_lock);
5636
5637 /* initiate massacre of all css's */
5638 for_each_css(css, ssid, cgrp)
5639 kill_css(css);
5640
5641 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5642 css_clear_dir(&cgrp->self);
5643 kernfs_remove(cgrp->kn);
5644
5645 if (parent && cgroup_is_threaded(cgrp))
5646 parent->nr_threaded_children--;
5647
5648 spin_lock_irq(&css_set_lock);
5649 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5650 tcgrp->nr_descendants--;
5651 tcgrp->nr_dying_descendants++;
5652 /*
5653 * If the dying cgroup is frozen, decrease frozen descendants
5654 * counters of ancestor cgroups.
5655 */
5656 if (test_bit(CGRP_FROZEN, &cgrp->flags))
5657 tcgrp->freezer.nr_frozen_descendants--;
5658 }
5659 spin_unlock_irq(&css_set_lock);
5660
5661 cgroup1_check_for_release(parent);
5662
5663 cgroup_bpf_offline(cgrp);
5664
5665 /* put the base reference */
5666 percpu_ref_kill(&cgrp->self.refcnt);
5667
5668 return 0;
5669 };
5670
cgroup_rmdir(struct kernfs_node * kn)5671 int cgroup_rmdir(struct kernfs_node *kn)
5672 {
5673 struct cgroup *cgrp;
5674 int ret = 0;
5675
5676 cgrp = cgroup_kn_lock_live(kn, false);
5677 if (!cgrp)
5678 return 0;
5679
5680 ret = cgroup_destroy_locked(cgrp);
5681 if (!ret)
5682 TRACE_CGROUP_PATH(rmdir, cgrp);
5683
5684 cgroup_kn_unlock(kn);
5685 return ret;
5686 }
5687
5688 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5689 .show_options = cgroup_show_options,
5690 .mkdir = cgroup_mkdir,
5691 .rmdir = cgroup_rmdir,
5692 .show_path = cgroup_show_path,
5693 };
5694
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)5695 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5696 {
5697 struct cgroup_subsys_state *css;
5698
5699 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5700
5701 mutex_lock(&cgroup_mutex);
5702
5703 idr_init(&ss->css_idr);
5704 INIT_LIST_HEAD(&ss->cfts);
5705
5706 /* Create the root cgroup state for this subsystem */
5707 ss->root = &cgrp_dfl_root;
5708 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5709 /* We don't handle early failures gracefully */
5710 BUG_ON(IS_ERR(css));
5711 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5712
5713 /*
5714 * Root csses are never destroyed and we can't initialize
5715 * percpu_ref during early init. Disable refcnting.
5716 */
5717 css->flags |= CSS_NO_REF;
5718
5719 if (early) {
5720 /* allocation can't be done safely during early init */
5721 css->id = 1;
5722 } else {
5723 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5724 BUG_ON(css->id < 0);
5725 }
5726
5727 /* Update the init_css_set to contain a subsys
5728 * pointer to this state - since the subsystem is
5729 * newly registered, all tasks and hence the
5730 * init_css_set is in the subsystem's root cgroup. */
5731 init_css_set.subsys[ss->id] = css;
5732
5733 have_fork_callback |= (bool)ss->fork << ss->id;
5734 have_exit_callback |= (bool)ss->exit << ss->id;
5735 have_release_callback |= (bool)ss->release << ss->id;
5736 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5737
5738 /* At system boot, before all subsystems have been
5739 * registered, no tasks have been forked, so we don't
5740 * need to invoke fork callbacks here. */
5741 BUG_ON(!list_empty(&init_task.tasks));
5742
5743 BUG_ON(online_css(css));
5744
5745 mutex_unlock(&cgroup_mutex);
5746 }
5747
5748 /**
5749 * cgroup_init_early - cgroup initialization at system boot
5750 *
5751 * Initialize cgroups at system boot, and initialize any
5752 * subsystems that request early init.
5753 */
cgroup_init_early(void)5754 int __init cgroup_init_early(void)
5755 {
5756 static struct cgroup_fs_context __initdata ctx;
5757 struct cgroup_subsys *ss;
5758 int i;
5759
5760 ctx.root = &cgrp_dfl_root;
5761 init_cgroup_root(&ctx);
5762 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5763
5764 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5765
5766 for_each_subsys(ss, i) {
5767 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5768 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5769 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5770 ss->id, ss->name);
5771 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5772 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5773
5774 ss->id = i;
5775 ss->name = cgroup_subsys_name[i];
5776 if (!ss->legacy_name)
5777 ss->legacy_name = cgroup_subsys_name[i];
5778
5779 if (ss->early_init)
5780 cgroup_init_subsys(ss, true);
5781 }
5782 return 0;
5783 }
5784
5785 /**
5786 * cgroup_init - cgroup initialization
5787 *
5788 * Register cgroup filesystem and /proc file, and initialize
5789 * any subsystems that didn't request early init.
5790 */
cgroup_init(void)5791 int __init cgroup_init(void)
5792 {
5793 struct cgroup_subsys *ss;
5794 int ssid;
5795
5796 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5797 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5798 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5799
5800 cgroup_rstat_boot();
5801
5802 /*
5803 * The latency of the synchronize_rcu() is too high for cgroups,
5804 * avoid it at the cost of forcing all readers into the slow path.
5805 */
5806 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5807
5808 get_user_ns(init_cgroup_ns.user_ns);
5809
5810 mutex_lock(&cgroup_mutex);
5811
5812 /*
5813 * Add init_css_set to the hash table so that dfl_root can link to
5814 * it during init.
5815 */
5816 hash_add(css_set_table, &init_css_set.hlist,
5817 css_set_hash(init_css_set.subsys));
5818
5819 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5820
5821 mutex_unlock(&cgroup_mutex);
5822
5823 for_each_subsys(ss, ssid) {
5824 if (ss->early_init) {
5825 struct cgroup_subsys_state *css =
5826 init_css_set.subsys[ss->id];
5827
5828 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5829 GFP_KERNEL);
5830 BUG_ON(css->id < 0);
5831 } else {
5832 cgroup_init_subsys(ss, false);
5833 }
5834
5835 list_add_tail(&init_css_set.e_cset_node[ssid],
5836 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5837
5838 /*
5839 * Setting dfl_root subsys_mask needs to consider the
5840 * disabled flag and cftype registration needs kmalloc,
5841 * both of which aren't available during early_init.
5842 */
5843 if (!cgroup_ssid_enabled(ssid))
5844 continue;
5845
5846 if (cgroup1_ssid_disabled(ssid))
5847 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5848 ss->name);
5849
5850 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5851
5852 /* implicit controllers must be threaded too */
5853 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5854
5855 if (ss->implicit_on_dfl)
5856 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5857 else if (!ss->dfl_cftypes)
5858 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5859
5860 if (ss->threaded)
5861 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5862
5863 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5864 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5865 } else {
5866 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5867 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5868 }
5869
5870 if (ss->bind)
5871 ss->bind(init_css_set.subsys[ssid]);
5872
5873 mutex_lock(&cgroup_mutex);
5874 css_populate_dir(init_css_set.subsys[ssid]);
5875 mutex_unlock(&cgroup_mutex);
5876 }
5877
5878 /* init_css_set.subsys[] has been updated, re-hash */
5879 hash_del(&init_css_set.hlist);
5880 hash_add(css_set_table, &init_css_set.hlist,
5881 css_set_hash(init_css_set.subsys));
5882
5883 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5884 WARN_ON(register_filesystem(&cgroup_fs_type));
5885 WARN_ON(register_filesystem(&cgroup2_fs_type));
5886 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5887 #ifdef CONFIG_CPUSETS
5888 WARN_ON(register_filesystem(&cpuset_fs_type));
5889 #endif
5890
5891 return 0;
5892 }
5893
cgroup_wq_init(void)5894 static int __init cgroup_wq_init(void)
5895 {
5896 /*
5897 * There isn't much point in executing destruction path in
5898 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5899 * Use 1 for @max_active.
5900 *
5901 * We would prefer to do this in cgroup_init() above, but that
5902 * is called before init_workqueues(): so leave this until after.
5903 */
5904 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5905 BUG_ON(!cgroup_destroy_wq);
5906 return 0;
5907 }
5908 core_initcall(cgroup_wq_init);
5909
cgroup_path_from_kernfs_id(u64 id,char * buf,size_t buflen)5910 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5911 {
5912 struct kernfs_node *kn;
5913
5914 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5915 if (!kn)
5916 return;
5917 kernfs_path(kn, buf, buflen);
5918 kernfs_put(kn);
5919 }
5920
5921 /*
5922 * proc_cgroup_show()
5923 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5924 * - Used for /proc/<pid>/cgroup.
5925 */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)5926 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5927 struct pid *pid, struct task_struct *tsk)
5928 {
5929 char *buf;
5930 int retval;
5931 struct cgroup_root *root;
5932
5933 retval = -ENOMEM;
5934 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5935 if (!buf)
5936 goto out;
5937
5938 mutex_lock(&cgroup_mutex);
5939 spin_lock_irq(&css_set_lock);
5940
5941 for_each_root(root) {
5942 struct cgroup_subsys *ss;
5943 struct cgroup *cgrp;
5944 int ssid, count = 0;
5945
5946 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5947 continue;
5948
5949 seq_printf(m, "%d:", root->hierarchy_id);
5950 if (root != &cgrp_dfl_root)
5951 for_each_subsys(ss, ssid)
5952 if (root->subsys_mask & (1 << ssid))
5953 seq_printf(m, "%s%s", count++ ? "," : "",
5954 ss->legacy_name);
5955 if (strlen(root->name))
5956 seq_printf(m, "%sname=%s", count ? "," : "",
5957 root->name);
5958 seq_putc(m, ':');
5959
5960 cgrp = task_cgroup_from_root(tsk, root);
5961
5962 /*
5963 * On traditional hierarchies, all zombie tasks show up as
5964 * belonging to the root cgroup. On the default hierarchy,
5965 * while a zombie doesn't show up in "cgroup.procs" and
5966 * thus can't be migrated, its /proc/PID/cgroup keeps
5967 * reporting the cgroup it belonged to before exiting. If
5968 * the cgroup is removed before the zombie is reaped,
5969 * " (deleted)" is appended to the cgroup path.
5970 */
5971 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5972 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5973 current->nsproxy->cgroup_ns);
5974 if (retval >= PATH_MAX)
5975 retval = -ENAMETOOLONG;
5976 if (retval < 0)
5977 goto out_unlock;
5978
5979 seq_puts(m, buf);
5980 } else {
5981 seq_puts(m, "/");
5982 }
5983
5984 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5985 seq_puts(m, " (deleted)\n");
5986 else
5987 seq_putc(m, '\n');
5988 }
5989
5990 retval = 0;
5991 out_unlock:
5992 spin_unlock_irq(&css_set_lock);
5993 mutex_unlock(&cgroup_mutex);
5994 kfree(buf);
5995 out:
5996 return retval;
5997 }
5998
5999 /**
6000 * cgroup_fork - initialize cgroup related fields during copy_process()
6001 * @child: pointer to task_struct of forking parent process.
6002 *
6003 * A task is associated with the init_css_set until cgroup_post_fork()
6004 * attaches it to the target css_set.
6005 */
cgroup_fork(struct task_struct * child)6006 void cgroup_fork(struct task_struct *child)
6007 {
6008 RCU_INIT_POINTER(child->cgroups, &init_css_set);
6009 INIT_LIST_HEAD(&child->cg_list);
6010 }
6011
cgroup_get_from_file(struct file * f)6012 static struct cgroup *cgroup_get_from_file(struct file *f)
6013 {
6014 struct cgroup_subsys_state *css;
6015 struct cgroup *cgrp;
6016
6017 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6018 if (IS_ERR(css))
6019 return ERR_CAST(css);
6020
6021 cgrp = css->cgroup;
6022 if (!cgroup_on_dfl(cgrp)) {
6023 cgroup_put(cgrp);
6024 return ERR_PTR(-EBADF);
6025 }
6026
6027 return cgrp;
6028 }
6029
6030 /**
6031 * cgroup_css_set_fork - find or create a css_set for a child process
6032 * @kargs: the arguments passed to create the child process
6033 *
6034 * This functions finds or creates a new css_set which the child
6035 * process will be attached to in cgroup_post_fork(). By default,
6036 * the child process will be given the same css_set as its parent.
6037 *
6038 * If CLONE_INTO_CGROUP is specified this function will try to find an
6039 * existing css_set which includes the requested cgroup and if not create
6040 * a new css_set that the child will be attached to later. If this function
6041 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6042 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6043 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6044 * to the target cgroup.
6045 */
cgroup_css_set_fork(struct kernel_clone_args * kargs)6046 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6047 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6048 {
6049 int ret;
6050 struct cgroup *dst_cgrp = NULL;
6051 struct css_set *cset;
6052 struct super_block *sb;
6053 struct file *f;
6054
6055 if (kargs->flags & CLONE_INTO_CGROUP)
6056 mutex_lock(&cgroup_mutex);
6057
6058 cgroup_threadgroup_change_begin(current);
6059
6060 spin_lock_irq(&css_set_lock);
6061 cset = task_css_set(current);
6062 get_css_set(cset);
6063 spin_unlock_irq(&css_set_lock);
6064
6065 if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6066 kargs->cset = cset;
6067 return 0;
6068 }
6069
6070 f = fget_raw(kargs->cgroup);
6071 if (!f) {
6072 ret = -EBADF;
6073 goto err;
6074 }
6075 sb = f->f_path.dentry->d_sb;
6076
6077 dst_cgrp = cgroup_get_from_file(f);
6078 if (IS_ERR(dst_cgrp)) {
6079 ret = PTR_ERR(dst_cgrp);
6080 dst_cgrp = NULL;
6081 goto err;
6082 }
6083
6084 if (cgroup_is_dead(dst_cgrp)) {
6085 ret = -ENODEV;
6086 goto err;
6087 }
6088
6089 /*
6090 * Verify that we the target cgroup is writable for us. This is
6091 * usually done by the vfs layer but since we're not going through
6092 * the vfs layer here we need to do it "manually".
6093 */
6094 ret = cgroup_may_write(dst_cgrp, sb);
6095 if (ret)
6096 goto err;
6097
6098 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6099 !(kargs->flags & CLONE_THREAD),
6100 current->nsproxy->cgroup_ns);
6101 if (ret)
6102 goto err;
6103
6104 kargs->cset = find_css_set(cset, dst_cgrp);
6105 if (!kargs->cset) {
6106 ret = -ENOMEM;
6107 goto err;
6108 }
6109
6110 put_css_set(cset);
6111 fput(f);
6112 kargs->cgrp = dst_cgrp;
6113 return ret;
6114
6115 err:
6116 cgroup_threadgroup_change_end(current);
6117 mutex_unlock(&cgroup_mutex);
6118 if (f)
6119 fput(f);
6120 if (dst_cgrp)
6121 cgroup_put(dst_cgrp);
6122 put_css_set(cset);
6123 if (kargs->cset)
6124 put_css_set(kargs->cset);
6125 return ret;
6126 }
6127
6128 /**
6129 * cgroup_css_set_put_fork - drop references we took during fork
6130 * @kargs: the arguments passed to create the child process
6131 *
6132 * Drop references to the prepared css_set and target cgroup if
6133 * CLONE_INTO_CGROUP was requested.
6134 */
cgroup_css_set_put_fork(struct kernel_clone_args * kargs)6135 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6136 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6137 {
6138 struct cgroup *cgrp = kargs->cgrp;
6139 struct css_set *cset = kargs->cset;
6140
6141 cgroup_threadgroup_change_end(current);
6142
6143 if (cset) {
6144 put_css_set(cset);
6145 kargs->cset = NULL;
6146 }
6147
6148 if (kargs->flags & CLONE_INTO_CGROUP) {
6149 mutex_unlock(&cgroup_mutex);
6150 if (cgrp) {
6151 cgroup_put(cgrp);
6152 kargs->cgrp = NULL;
6153 }
6154 }
6155 }
6156
6157 /**
6158 * cgroup_can_fork - called on a new task before the process is exposed
6159 * @child: the child process
6160 *
6161 * This prepares a new css_set for the child process which the child will
6162 * be attached to in cgroup_post_fork().
6163 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6164 * callback returns an error, the fork aborts with that error code. This
6165 * allows for a cgroup subsystem to conditionally allow or deny new forks.
6166 */
cgroup_can_fork(struct task_struct * child,struct kernel_clone_args * kargs)6167 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6168 {
6169 struct cgroup_subsys *ss;
6170 int i, j, ret;
6171
6172 ret = cgroup_css_set_fork(kargs);
6173 if (ret)
6174 return ret;
6175
6176 do_each_subsys_mask(ss, i, have_canfork_callback) {
6177 ret = ss->can_fork(child, kargs->cset);
6178 if (ret)
6179 goto out_revert;
6180 } while_each_subsys_mask();
6181
6182 return 0;
6183
6184 out_revert:
6185 for_each_subsys(ss, j) {
6186 if (j >= i)
6187 break;
6188 if (ss->cancel_fork)
6189 ss->cancel_fork(child, kargs->cset);
6190 }
6191
6192 cgroup_css_set_put_fork(kargs);
6193
6194 return ret;
6195 }
6196
6197 /**
6198 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6199 * @child: the child process
6200 * @kargs: the arguments passed to create the child process
6201 *
6202 * This calls the cancel_fork() callbacks if a fork failed *after*
6203 * cgroup_can_fork() succeded and cleans up references we took to
6204 * prepare a new css_set for the child process in cgroup_can_fork().
6205 */
cgroup_cancel_fork(struct task_struct * child,struct kernel_clone_args * kargs)6206 void cgroup_cancel_fork(struct task_struct *child,
6207 struct kernel_clone_args *kargs)
6208 {
6209 struct cgroup_subsys *ss;
6210 int i;
6211
6212 for_each_subsys(ss, i)
6213 if (ss->cancel_fork)
6214 ss->cancel_fork(child, kargs->cset);
6215
6216 cgroup_css_set_put_fork(kargs);
6217 }
6218
6219 /**
6220 * cgroup_post_fork - finalize cgroup setup for the child process
6221 * @child: the child process
6222 *
6223 * Attach the child process to its css_set calling the subsystem fork()
6224 * callbacks.
6225 */
cgroup_post_fork(struct task_struct * child,struct kernel_clone_args * kargs)6226 void cgroup_post_fork(struct task_struct *child,
6227 struct kernel_clone_args *kargs)
6228 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6229 {
6230 struct cgroup_subsys *ss;
6231 struct css_set *cset;
6232 int i;
6233
6234 cset = kargs->cset;
6235 kargs->cset = NULL;
6236
6237 spin_lock_irq(&css_set_lock);
6238
6239 /* init tasks are special, only link regular threads */
6240 if (likely(child->pid)) {
6241 WARN_ON_ONCE(!list_empty(&child->cg_list));
6242 cset->nr_tasks++;
6243 css_set_move_task(child, NULL, cset, false);
6244 } else {
6245 put_css_set(cset);
6246 cset = NULL;
6247 }
6248
6249 /*
6250 * If the cgroup has to be frozen, the new task has too. Let's set
6251 * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the
6252 * frozen state.
6253 */
6254 if (unlikely(cgroup_task_freeze(child))) {
6255 spin_lock(&child->sighand->siglock);
6256 WARN_ON_ONCE(child->frozen);
6257 child->jobctl |= JOBCTL_TRAP_FREEZE;
6258 spin_unlock(&child->sighand->siglock);
6259
6260 /*
6261 * Calling cgroup_update_frozen() isn't required here,
6262 * because it will be called anyway a bit later from
6263 * do_freezer_trap(). So we avoid cgroup's transient switch
6264 * from the frozen state and back.
6265 */
6266 }
6267
6268 spin_unlock_irq(&css_set_lock);
6269
6270 /*
6271 * Call ss->fork(). This must happen after @child is linked on
6272 * css_set; otherwise, @child might change state between ->fork()
6273 * and addition to css_set.
6274 */
6275 do_each_subsys_mask(ss, i, have_fork_callback) {
6276 ss->fork(child);
6277 } while_each_subsys_mask();
6278
6279 /* Make the new cset the root_cset of the new cgroup namespace. */
6280 if (kargs->flags & CLONE_NEWCGROUP) {
6281 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6282
6283 get_css_set(cset);
6284 child->nsproxy->cgroup_ns->root_cset = cset;
6285 put_css_set(rcset);
6286 }
6287
6288 cgroup_css_set_put_fork(kargs);
6289 }
6290
6291 /**
6292 * cgroup_exit - detach cgroup from exiting task
6293 * @tsk: pointer to task_struct of exiting process
6294 *
6295 * Description: Detach cgroup from @tsk.
6296 *
6297 */
cgroup_exit(struct task_struct * tsk)6298 void cgroup_exit(struct task_struct *tsk)
6299 {
6300 struct cgroup_subsys *ss;
6301 struct css_set *cset;
6302 int i;
6303
6304 spin_lock_irq(&css_set_lock);
6305
6306 WARN_ON_ONCE(list_empty(&tsk->cg_list));
6307 cset = task_css_set(tsk);
6308 css_set_move_task(tsk, cset, NULL, false);
6309 list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6310 cset->nr_tasks--;
6311
6312 if (dl_task(tsk))
6313 dec_dl_tasks_cs(tsk);
6314
6315 WARN_ON_ONCE(cgroup_task_frozen(tsk));
6316 if (unlikely(cgroup_task_freeze(tsk)))
6317 cgroup_update_frozen(task_dfl_cgroup(tsk));
6318
6319 spin_unlock_irq(&css_set_lock);
6320
6321 /* see cgroup_post_fork() for details */
6322 do_each_subsys_mask(ss, i, have_exit_callback) {
6323 ss->exit(tsk);
6324 } while_each_subsys_mask();
6325 }
6326
cgroup_release(struct task_struct * task)6327 void cgroup_release(struct task_struct *task)
6328 {
6329 struct cgroup_subsys *ss;
6330 int ssid;
6331
6332 do_each_subsys_mask(ss, ssid, have_release_callback) {
6333 ss->release(task);
6334 } while_each_subsys_mask();
6335
6336 spin_lock_irq(&css_set_lock);
6337 css_set_skip_task_iters(task_css_set(task), task);
6338 list_del_init(&task->cg_list);
6339 spin_unlock_irq(&css_set_lock);
6340 }
6341
cgroup_free(struct task_struct * task)6342 void cgroup_free(struct task_struct *task)
6343 {
6344 struct css_set *cset = task_css_set(task);
6345 put_css_set(cset);
6346 }
6347
cgroup_disable(char * str)6348 static int __init cgroup_disable(char *str)
6349 {
6350 struct cgroup_subsys *ss;
6351 char *token;
6352 int i;
6353
6354 while ((token = strsep(&str, ",")) != NULL) {
6355 if (!*token)
6356 continue;
6357
6358 for_each_subsys(ss, i) {
6359 if (strcmp(token, ss->name) &&
6360 strcmp(token, ss->legacy_name))
6361 continue;
6362
6363 static_branch_disable(cgroup_subsys_enabled_key[i]);
6364 pr_info("Disabling %s control group subsystem\n",
6365 ss->name);
6366 }
6367 }
6368 return 1;
6369 }
6370 __setup("cgroup_disable=", cgroup_disable);
6371
enable_debug_cgroup(void)6372 void __init __weak enable_debug_cgroup(void) { }
6373
enable_cgroup_debug(char * str)6374 static int __init enable_cgroup_debug(char *str)
6375 {
6376 cgroup_debug = true;
6377 enable_debug_cgroup();
6378 return 1;
6379 }
6380 __setup("cgroup_debug", enable_cgroup_debug);
6381
6382 /**
6383 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6384 * @dentry: directory dentry of interest
6385 * @ss: subsystem of interest
6386 *
6387 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6388 * to get the corresponding css and return it. If such css doesn't exist
6389 * or can't be pinned, an ERR_PTR value is returned.
6390 */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)6391 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6392 struct cgroup_subsys *ss)
6393 {
6394 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6395 struct file_system_type *s_type = dentry->d_sb->s_type;
6396 struct cgroup_subsys_state *css = NULL;
6397 struct cgroup *cgrp;
6398
6399 /* is @dentry a cgroup dir? */
6400 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6401 !kn || kernfs_type(kn) != KERNFS_DIR)
6402 return ERR_PTR(-EBADF);
6403
6404 rcu_read_lock();
6405
6406 /*
6407 * This path doesn't originate from kernfs and @kn could already
6408 * have been or be removed at any point. @kn->priv is RCU
6409 * protected for this access. See css_release_work_fn() for details.
6410 */
6411 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6412 if (cgrp)
6413 css = cgroup_css(cgrp, ss);
6414
6415 if (!css || !css_tryget_online(css))
6416 css = ERR_PTR(-ENOENT);
6417
6418 rcu_read_unlock();
6419 return css;
6420 }
6421
6422 /**
6423 * css_from_id - lookup css by id
6424 * @id: the cgroup id
6425 * @ss: cgroup subsys to be looked into
6426 *
6427 * Returns the css if there's valid one with @id, otherwise returns NULL.
6428 * Should be called under rcu_read_lock().
6429 */
css_from_id(int id,struct cgroup_subsys * ss)6430 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6431 {
6432 WARN_ON_ONCE(!rcu_read_lock_held());
6433 return idr_find(&ss->css_idr, id);
6434 }
6435
6436 /**
6437 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6438 * @path: path on the default hierarchy
6439 *
6440 * Find the cgroup at @path on the default hierarchy, increment its
6441 * reference count and return it. Returns pointer to the found cgroup on
6442 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6443 * if @path points to a non-directory.
6444 */
cgroup_get_from_path(const char * path)6445 struct cgroup *cgroup_get_from_path(const char *path)
6446 {
6447 struct kernfs_node *kn;
6448 struct cgroup *cgrp;
6449
6450 mutex_lock(&cgroup_mutex);
6451
6452 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6453 if (kn) {
6454 if (kernfs_type(kn) == KERNFS_DIR) {
6455 cgrp = kn->priv;
6456 cgroup_get_live(cgrp);
6457 } else {
6458 cgrp = ERR_PTR(-ENOTDIR);
6459 }
6460 kernfs_put(kn);
6461 } else {
6462 cgrp = ERR_PTR(-ENOENT);
6463 }
6464
6465 mutex_unlock(&cgroup_mutex);
6466 return cgrp;
6467 }
6468 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6469
6470 /**
6471 * cgroup_get_from_fd - get a cgroup pointer from a fd
6472 * @fd: fd obtained by open(cgroup2_dir)
6473 *
6474 * Find the cgroup from a fd which should be obtained
6475 * by opening a cgroup directory. Returns a pointer to the
6476 * cgroup on success. ERR_PTR is returned if the cgroup
6477 * cannot be found.
6478 */
cgroup_get_from_fd(int fd)6479 struct cgroup *cgroup_get_from_fd(int fd)
6480 {
6481 struct cgroup *cgrp;
6482 struct file *f;
6483
6484 f = fget_raw(fd);
6485 if (!f)
6486 return ERR_PTR(-EBADF);
6487
6488 cgrp = cgroup_get_from_file(f);
6489 fput(f);
6490 return cgrp;
6491 }
6492 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6493
power_of_ten(int power)6494 static u64 power_of_ten(int power)
6495 {
6496 u64 v = 1;
6497 while (power--)
6498 v *= 10;
6499 return v;
6500 }
6501
6502 /**
6503 * cgroup_parse_float - parse a floating number
6504 * @input: input string
6505 * @dec_shift: number of decimal digits to shift
6506 * @v: output
6507 *
6508 * Parse a decimal floating point number in @input and store the result in
6509 * @v with decimal point right shifted @dec_shift times. For example, if
6510 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6511 * Returns 0 on success, -errno otherwise.
6512 *
6513 * There's nothing cgroup specific about this function except that it's
6514 * currently the only user.
6515 */
cgroup_parse_float(const char * input,unsigned dec_shift,s64 * v)6516 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6517 {
6518 s64 whole, frac = 0;
6519 int fstart = 0, fend = 0, flen;
6520
6521 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6522 return -EINVAL;
6523 if (frac < 0)
6524 return -EINVAL;
6525
6526 flen = fend > fstart ? fend - fstart : 0;
6527 if (flen < dec_shift)
6528 frac *= power_of_ten(dec_shift - flen);
6529 else
6530 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6531
6532 *v = whole * power_of_ten(dec_shift) + frac;
6533 return 0;
6534 }
6535
6536 /*
6537 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6538 * definition in cgroup-defs.h.
6539 */
6540 #ifdef CONFIG_SOCK_CGROUP_DATA
6541
cgroup_sk_alloc(struct sock_cgroup_data * skcd)6542 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6543 {
6544 struct cgroup *cgroup;
6545
6546 rcu_read_lock();
6547 /* Don't associate the sock with unrelated interrupted task's cgroup. */
6548 if (in_interrupt()) {
6549 cgroup = &cgrp_dfl_root.cgrp;
6550 cgroup_get(cgroup);
6551 goto out;
6552 }
6553
6554 while (true) {
6555 struct css_set *cset;
6556
6557 cset = task_css_set(current);
6558 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6559 cgroup = cset->dfl_cgrp;
6560 break;
6561 }
6562 cpu_relax();
6563 }
6564 out:
6565 skcd->cgroup = cgroup;
6566 cgroup_bpf_get(cgroup);
6567 rcu_read_unlock();
6568 }
6569
cgroup_sk_clone(struct sock_cgroup_data * skcd)6570 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6571 {
6572 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6573
6574 /*
6575 * We might be cloning a socket which is left in an empty
6576 * cgroup and the cgroup might have already been rmdir'd.
6577 * Don't use cgroup_get_live().
6578 */
6579 cgroup_get(cgrp);
6580 cgroup_bpf_get(cgrp);
6581 }
6582
cgroup_sk_free(struct sock_cgroup_data * skcd)6583 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6584 {
6585 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6586
6587 cgroup_bpf_put(cgrp);
6588 cgroup_put(cgrp);
6589 }
6590
6591 #endif /* CONFIG_SOCK_CGROUP_DATA */
6592
6593 #ifdef CONFIG_CGROUP_BPF
cgroup_bpf_attach(struct cgroup * cgrp,struct bpf_prog * prog,struct bpf_prog * replace_prog,struct bpf_cgroup_link * link,enum bpf_attach_type type,u32 flags)6594 int cgroup_bpf_attach(struct cgroup *cgrp,
6595 struct bpf_prog *prog, struct bpf_prog *replace_prog,
6596 struct bpf_cgroup_link *link,
6597 enum bpf_attach_type type,
6598 u32 flags)
6599 {
6600 int ret;
6601
6602 mutex_lock(&cgroup_mutex);
6603 ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
6604 mutex_unlock(&cgroup_mutex);
6605 return ret;
6606 }
6607
cgroup_bpf_detach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type)6608 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6609 enum bpf_attach_type type)
6610 {
6611 int ret;
6612
6613 mutex_lock(&cgroup_mutex);
6614 ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
6615 mutex_unlock(&cgroup_mutex);
6616 return ret;
6617 }
6618
cgroup_bpf_query(struct cgroup * cgrp,const union bpf_attr * attr,union bpf_attr __user * uattr)6619 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6620 union bpf_attr __user *uattr)
6621 {
6622 int ret;
6623
6624 mutex_lock(&cgroup_mutex);
6625 ret = __cgroup_bpf_query(cgrp, attr, uattr);
6626 mutex_unlock(&cgroup_mutex);
6627 return ret;
6628 }
6629 #endif /* CONFIG_CGROUP_BPF */
6630
6631 #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)6632 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6633 ssize_t size, const char *prefix)
6634 {
6635 struct cftype *cft;
6636 ssize_t ret = 0;
6637
6638 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6639 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6640 continue;
6641
6642 if (prefix)
6643 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6644
6645 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6646
6647 if (WARN_ON(ret >= size))
6648 break;
6649 }
6650
6651 return ret;
6652 }
6653
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6654 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6655 char *buf)
6656 {
6657 struct cgroup_subsys *ss;
6658 int ssid;
6659 ssize_t ret = 0;
6660
6661 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6662 NULL);
6663
6664 for_each_subsys(ss, ssid)
6665 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6666 PAGE_SIZE - ret,
6667 cgroup_subsys_name[ssid]);
6668
6669 return ret;
6670 }
6671 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6672
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6673 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6674 char *buf)
6675 {
6676 return snprintf(buf, PAGE_SIZE,
6677 "nsdelegate\n"
6678 "memory_localevents\n"
6679 "memory_recursiveprot\n");
6680 }
6681 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6682
6683 static struct attribute *cgroup_sysfs_attrs[] = {
6684 &cgroup_delegate_attr.attr,
6685 &cgroup_features_attr.attr,
6686 NULL,
6687 };
6688
6689 static const struct attribute_group cgroup_sysfs_attr_group = {
6690 .attrs = cgroup_sysfs_attrs,
6691 .name = "cgroup",
6692 };
6693
cgroup_sysfs_init(void)6694 static int __init cgroup_sysfs_init(void)
6695 {
6696 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6697 }
6698 subsys_initcall(cgroup_sysfs_init);
6699
6700 #endif /* CONFIG_SYSFS */
6701