• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7 
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/rseq_api.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/smt.h>
19 #include <linux/sched/stat.h>
20 #include <linux/sched/sysctl.h>
21 #include <linux/sched/task_flags.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/topology.h>
24 
25 #include <linux/atomic.h>
26 #include <linux/bitmap.h>
27 #include <linux/bug.h>
28 #include <linux/capability.h>
29 #include <linux/cgroup_api.h>
30 #include <linux/cgroup.h>
31 #include <linux/context_tracking.h>
32 #include <linux/cpufreq.h>
33 #include <linux/cpumask_api.h>
34 #include <linux/ctype.h>
35 #include <linux/file.h>
36 #include <linux/fs_api.h>
37 #include <linux/hrtimer_api.h>
38 #include <linux/interrupt.h>
39 #include <linux/irq_work.h>
40 #include <linux/jiffies.h>
41 #include <linux/kref_api.h>
42 #include <linux/kthread.h>
43 #include <linux/ktime_api.h>
44 #include <linux/lockdep_api.h>
45 #include <linux/lockdep.h>
46 #include <linux/minmax.h>
47 #include <linux/mm.h>
48 #include <linux/module.h>
49 #include <linux/mutex_api.h>
50 #include <linux/plist.h>
51 #include <linux/poll.h>
52 #include <linux/proc_fs.h>
53 #include <linux/profile.h>
54 #include <linux/psi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/seq_file.h>
57 #include <linux/seqlock.h>
58 #include <linux/softirq.h>
59 #include <linux/spinlock_api.h>
60 #include <linux/static_key.h>
61 #include <linux/stop_machine.h>
62 #include <linux/syscalls_api.h>
63 #include <linux/syscalls.h>
64 #include <linux/tick.h>
65 #include <linux/topology.h>
66 #include <linux/types.h>
67 #include <linux/u64_stats_sync_api.h>
68 #include <linux/uaccess.h>
69 #include <linux/wait_api.h>
70 #include <linux/wait_bit.h>
71 #include <linux/workqueue_api.h>
72 
73 #include <trace/events/power.h>
74 #include <trace/events/sched.h>
75 
76 #include "../workqueue_internal.h"
77 
78 #ifdef CONFIG_CGROUP_SCHED
79 #include <linux/cgroup.h>
80 #include <linux/psi.h>
81 #endif
82 
83 #ifdef CONFIG_SCHED_DEBUG
84 # include <linux/static_key.h>
85 #endif
86 
87 #ifdef CONFIG_PARAVIRT
88 # include <asm/paravirt.h>
89 # include <asm/paravirt_api_clock.h>
90 #endif
91 
92 #include "cpupri.h"
93 #include "cpudeadline.h"
94 
95 #ifdef CONFIG_SCHED_DEBUG
96 # define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
97 #else
98 # define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
99 #endif
100 
101 struct rq;
102 struct cpuidle_state;
103 
104 /* task_struct::on_rq states: */
105 #define TASK_ON_RQ_QUEUED	1
106 #define TASK_ON_RQ_MIGRATING	2
107 
108 extern __read_mostly int scheduler_running;
109 
110 extern unsigned long calc_load_update;
111 extern atomic_long_t calc_load_tasks;
112 
113 extern unsigned int sysctl_sched_child_runs_first;
114 
115 extern void calc_global_load_tick(struct rq *this_rq);
116 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
117 
118 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
119 
120 extern unsigned int sysctl_sched_rt_period;
121 extern int sysctl_sched_rt_runtime;
122 extern int sched_rr_timeslice;
123 
124 /*
125  * Helpers for converting nanosecond timing to jiffy resolution
126  */
127 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
128 
129 #ifdef CONFIG_SCHED_LATENCY_NICE
130 /*
131  * Latency nice is meant to provide scheduler hints about the relative
132  * latency requirements of a task with respect to other tasks.
133  * Thus a task with latency_nice == 19 can be hinted as the task with no
134  * latency requirements, in contrast to the task with latency_nice == -20
135  * which should be given priority in terms of lower latency.
136  */
137 #define MAX_LATENCY_NICE	19
138 #define MIN_LATENCY_NICE	-20
139 
140 #define LATENCY_NICE_WIDTH	\
141 	(MAX_LATENCY_NICE - MIN_LATENCY_NICE + 1)
142 
143 /*
144  * Default tasks should be treated as a task with latency_nice = 0.
145  */
146 #define DEFAULT_LATENCY_NICE	0
147 #define DEFAULT_LATENCY_PRIO	(DEFAULT_LATENCY_NICE + LATENCY_NICE_WIDTH/2)
148 
149 /*
150  * Convert user-nice values [ -20 ... 0 ... 19 ]
151  * to static latency [ 0..39 ],
152  * and back.
153  */
154 #define NICE_TO_LATENCY(nice)	((nice) + DEFAULT_LATENCY_PRIO)
155 #define LATENCY_TO_NICE(prio)	((prio) - DEFAULT_LATENCY_PRIO)
156 #define NICE_LATENCY_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
157 #define NICE_LATENCY_WEIGHT_MAX	(1L << NICE_LATENCY_SHIFT)
158 #endif /* CONFIG_SCHED_LATENCY_NICE */
159 
160 /*
161  * Increase resolution of nice-level calculations for 64-bit architectures.
162  * The extra resolution improves shares distribution and load balancing of
163  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
164  * hierarchies, especially on larger systems. This is not a user-visible change
165  * and does not change the user-interface for setting shares/weights.
166  *
167  * We increase resolution only if we have enough bits to allow this increased
168  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
169  * are pretty high and the returns do not justify the increased costs.
170  *
171  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
172  * increase coverage and consistency always enable it on 64-bit platforms.
173  */
174 #ifdef CONFIG_64BIT
175 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
176 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
177 # define scale_load_down(w) \
178 ({ \
179 	unsigned long __w = (w); \
180 	if (__w) \
181 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
182 	__w; \
183 })
184 #else
185 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
186 # define scale_load(w)		(w)
187 # define scale_load_down(w)	(w)
188 #endif
189 
190 /*
191  * Task weight (visible to users) and its load (invisible to users) have
192  * independent resolution, but they should be well calibrated. We use
193  * scale_load() and scale_load_down(w) to convert between them. The
194  * following must be true:
195  *
196  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
197  *
198  */
199 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
200 
201 /*
202  * Single value that decides SCHED_DEADLINE internal math precision.
203  * 10 -> just above 1us
204  * 9  -> just above 0.5us
205  */
206 #define DL_SCALE		10
207 
208 /*
209  * Single value that denotes runtime == period, ie unlimited time.
210  */
211 #define RUNTIME_INF		((u64)~0ULL)
212 
idle_policy(int policy)213 static inline int idle_policy(int policy)
214 {
215 	return policy == SCHED_IDLE;
216 }
fair_policy(int policy)217 static inline int fair_policy(int policy)
218 {
219 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
220 }
221 
rt_policy(int policy)222 static inline int rt_policy(int policy)
223 {
224 	return policy == SCHED_FIFO || policy == SCHED_RR;
225 }
226 
dl_policy(int policy)227 static inline int dl_policy(int policy)
228 {
229 	return policy == SCHED_DEADLINE;
230 }
valid_policy(int policy)231 static inline bool valid_policy(int policy)
232 {
233 	return idle_policy(policy) || fair_policy(policy) ||
234 		rt_policy(policy) || dl_policy(policy);
235 }
236 
task_has_idle_policy(struct task_struct * p)237 static inline int task_has_idle_policy(struct task_struct *p)
238 {
239 	return idle_policy(p->policy);
240 }
241 
task_has_rt_policy(struct task_struct * p)242 static inline int task_has_rt_policy(struct task_struct *p)
243 {
244 	return rt_policy(p->policy);
245 }
246 
task_has_dl_policy(struct task_struct * p)247 static inline int task_has_dl_policy(struct task_struct *p)
248 {
249 	return dl_policy(p->policy);
250 }
251 
252 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
253 
update_avg(u64 * avg,u64 sample)254 static inline void update_avg(u64 *avg, u64 sample)
255 {
256 	s64 diff = sample - *avg;
257 	*avg += diff / 8;
258 }
259 
260 /*
261  * Shifting a value by an exponent greater *or equal* to the size of said value
262  * is UB; cap at size-1.
263  */
264 #define shr_bound(val, shift)							\
265 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
266 
267 /*
268  * !! For sched_setattr_nocheck() (kernel) only !!
269  *
270  * This is actually gross. :(
271  *
272  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
273  * tasks, but still be able to sleep. We need this on platforms that cannot
274  * atomically change clock frequency. Remove once fast switching will be
275  * available on such platforms.
276  *
277  * SUGOV stands for SchedUtil GOVernor.
278  */
279 #define SCHED_FLAG_SUGOV	0x10000000
280 
281 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
282 
dl_entity_is_special(const struct sched_dl_entity * dl_se)283 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
284 {
285 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
286 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
287 #else
288 	return false;
289 #endif
290 }
291 
292 /*
293  * Tells if entity @a should preempt entity @b.
294  */
dl_entity_preempt(const struct sched_dl_entity * a,const struct sched_dl_entity * b)295 static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
296 				     const struct sched_dl_entity *b)
297 {
298 	return dl_entity_is_special(a) ||
299 	       dl_time_before(a->deadline, b->deadline);
300 }
301 
302 /*
303  * This is the priority-queue data structure of the RT scheduling class:
304  */
305 struct rt_prio_array {
306 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
307 	struct list_head queue[MAX_RT_PRIO];
308 };
309 
310 struct rt_bandwidth {
311 	/* nests inside the rq lock: */
312 	raw_spinlock_t		rt_runtime_lock;
313 	ktime_t			rt_period;
314 	u64			rt_runtime;
315 	struct hrtimer		rt_period_timer;
316 	unsigned int		rt_period_active;
317 };
318 
319 void __dl_clear_params(struct task_struct *p);
320 
dl_bandwidth_enabled(void)321 static inline int dl_bandwidth_enabled(void)
322 {
323 	return sysctl_sched_rt_runtime >= 0;
324 }
325 
326 /*
327  * To keep the bandwidth of -deadline tasks under control
328  * we need some place where:
329  *  - store the maximum -deadline bandwidth of each cpu;
330  *  - cache the fraction of bandwidth that is currently allocated in
331  *    each root domain;
332  *
333  * This is all done in the data structure below. It is similar to the
334  * one used for RT-throttling (rt_bandwidth), with the main difference
335  * that, since here we are only interested in admission control, we
336  * do not decrease any runtime while the group "executes", neither we
337  * need a timer to replenish it.
338  *
339  * With respect to SMP, bandwidth is given on a per root domain basis,
340  * meaning that:
341  *  - bw (< 100%) is the deadline bandwidth of each CPU;
342  *  - total_bw is the currently allocated bandwidth in each root domain;
343  */
344 struct dl_bw {
345 	raw_spinlock_t		lock;
346 	u64			bw;
347 	u64			total_bw;
348 };
349 
350 extern void init_dl_bw(struct dl_bw *dl_b);
351 extern int  sched_dl_global_validate(void);
352 extern void sched_dl_do_global(void);
353 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
354 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
355 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
356 extern bool __checkparam_dl(const struct sched_attr *attr);
357 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
358 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
359 extern int  dl_bw_check_overflow(int cpu);
360 
361 #ifdef CONFIG_CGROUP_SCHED
362 
363 struct cfs_rq;
364 struct rt_rq;
365 
366 extern struct list_head task_groups;
367 
368 struct cfs_bandwidth {
369 #ifdef CONFIG_CFS_BANDWIDTH
370 	raw_spinlock_t		lock;
371 	ktime_t			period;
372 	u64			quota;
373 	u64			runtime;
374 	u64			burst;
375 	u64			runtime_snap;
376 	s64			hierarchical_quota;
377 
378 	u8			idle;
379 	u8			period_active;
380 	u8			slack_started;
381 	struct hrtimer		period_timer;
382 	struct hrtimer		slack_timer;
383 	struct list_head	throttled_cfs_rq;
384 
385 	/* Statistics: */
386 	int			nr_periods;
387 	int			nr_throttled;
388 	int			nr_burst;
389 	u64			throttled_time;
390 	u64			burst_time;
391 #endif
392 };
393 
394 /* Task group related information */
395 struct task_group {
396 	struct cgroup_subsys_state css;
397 
398 #ifdef CONFIG_FAIR_GROUP_SCHED
399 	/* schedulable entities of this group on each CPU */
400 	struct sched_entity	**se;
401 	/* runqueue "owned" by this group on each CPU */
402 	struct cfs_rq		**cfs_rq;
403 	unsigned long		shares;
404 
405 	/* A positive value indicates that this is a SCHED_IDLE group. */
406 	int			idle;
407 
408 #ifdef	CONFIG_SMP
409 	/*
410 	 * load_avg can be heavily contended at clock tick time, so put
411 	 * it in its own cacheline separated from the fields above which
412 	 * will also be accessed at each tick.
413 	 */
414 	atomic_long_t		load_avg ____cacheline_aligned;
415 #endif
416 #endif
417 
418 #ifdef CONFIG_RT_GROUP_SCHED
419 	struct sched_rt_entity	**rt_se;
420 	struct rt_rq		**rt_rq;
421 
422 	struct rt_bandwidth	rt_bandwidth;
423 #endif
424 
425 	struct rcu_head		rcu;
426 	struct list_head	list;
427 
428 	struct task_group	*parent;
429 	struct list_head	siblings;
430 	struct list_head	children;
431 
432 #ifdef CONFIG_SCHED_AUTOGROUP
433 	struct autogroup	*autogroup;
434 #endif
435 
436 	struct cfs_bandwidth	cfs_bandwidth;
437 
438 #ifdef CONFIG_UCLAMP_TASK_GROUP
439 	/* The two decimal precision [%] value requested from user-space */
440 	unsigned int		uclamp_pct[UCLAMP_CNT];
441 	/* Clamp values requested for a task group */
442 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
443 	/* Effective clamp values used for a task group */
444 	struct uclamp_se	uclamp[UCLAMP_CNT];
445 #endif
446 
447 };
448 
449 #ifdef CONFIG_FAIR_GROUP_SCHED
450 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
451 
452 /*
453  * A weight of 0 or 1 can cause arithmetics problems.
454  * A weight of a cfs_rq is the sum of weights of which entities
455  * are queued on this cfs_rq, so a weight of a entity should not be
456  * too large, so as the shares value of a task group.
457  * (The default weight is 1024 - so there's no practical
458  *  limitation from this.)
459  */
460 #define MIN_SHARES		(1UL <<  1)
461 #define MAX_SHARES		(1UL << 18)
462 #endif
463 
464 typedef int (*tg_visitor)(struct task_group *, void *);
465 
466 extern int walk_tg_tree_from(struct task_group *from,
467 			     tg_visitor down, tg_visitor up, void *data);
468 
469 /*
470  * Iterate the full tree, calling @down when first entering a node and @up when
471  * leaving it for the final time.
472  *
473  * Caller must hold rcu_lock or sufficient equivalent.
474  */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)475 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
476 {
477 	return walk_tg_tree_from(&root_task_group, down, up, data);
478 }
479 
480 extern int tg_nop(struct task_group *tg, void *data);
481 
482 extern void free_fair_sched_group(struct task_group *tg);
483 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
484 extern void online_fair_sched_group(struct task_group *tg);
485 extern void unregister_fair_sched_group(struct task_group *tg);
486 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
487 			struct sched_entity *se, int cpu,
488 			struct sched_entity *parent);
489 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
490 
491 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
492 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
493 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
494 extern bool cfs_task_bw_constrained(struct task_struct *p);
495 
496 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
497 		struct sched_rt_entity *rt_se, int cpu,
498 		struct sched_rt_entity *parent);
499 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
500 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
501 extern long sched_group_rt_runtime(struct task_group *tg);
502 extern long sched_group_rt_period(struct task_group *tg);
503 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
504 
505 extern struct task_group *sched_create_group(struct task_group *parent);
506 extern void sched_online_group(struct task_group *tg,
507 			       struct task_group *parent);
508 extern void sched_destroy_group(struct task_group *tg);
509 extern void sched_release_group(struct task_group *tg);
510 
511 extern void sched_move_task(struct task_struct *tsk);
512 
513 #ifdef CONFIG_FAIR_GROUP_SCHED
514 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
515 
516 extern int sched_group_set_idle(struct task_group *tg, long idle);
517 
518 #ifdef CONFIG_SMP
519 extern void set_task_rq_fair(struct sched_entity *se,
520 			     struct cfs_rq *prev, struct cfs_rq *next);
521 #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)522 static inline void set_task_rq_fair(struct sched_entity *se,
523 			     struct cfs_rq *prev, struct cfs_rq *next) { }
524 #endif /* CONFIG_SMP */
525 #endif /* CONFIG_FAIR_GROUP_SCHED */
526 
527 #else /* CONFIG_CGROUP_SCHED */
528 
529 struct cfs_bandwidth { };
cfs_task_bw_constrained(struct task_struct * p)530 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
531 
532 #endif	/* CONFIG_CGROUP_SCHED */
533 
534 extern void unregister_rt_sched_group(struct task_group *tg);
535 extern void free_rt_sched_group(struct task_group *tg);
536 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
537 
538 /*
539  * u64_u32_load/u64_u32_store
540  *
541  * Use a copy of a u64 value to protect against data race. This is only
542  * applicable for 32-bits architectures.
543  */
544 #ifdef CONFIG_64BIT
545 # define u64_u32_load_copy(var, copy)       var
546 # define u64_u32_store_copy(var, copy, val) (var = val)
547 #else
548 # define u64_u32_load_copy(var, copy)					\
549 ({									\
550 	u64 __val, __val_copy;						\
551 	do {								\
552 		__val_copy = copy;					\
553 		/*							\
554 		 * paired with u64_u32_store_copy(), ordering access	\
555 		 * to var and copy.					\
556 		 */							\
557 		smp_rmb();						\
558 		__val = var;						\
559 	} while (__val != __val_copy);					\
560 	__val;								\
561 })
562 # define u64_u32_store_copy(var, copy, val)				\
563 do {									\
564 	typeof(val) __val = (val);					\
565 	var = __val;							\
566 	/*								\
567 	 * paired with u64_u32_load_copy(), ordering access to var and	\
568 	 * copy.							\
569 	 */								\
570 	smp_wmb();							\
571 	copy = __val;							\
572 } while (0)
573 #endif
574 # define u64_u32_load(var)      u64_u32_load_copy(var, var##_copy)
575 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
576 
577 /* CFS-related fields in a runqueue */
578 struct cfs_rq {
579 	struct load_weight	load;
580 	unsigned int		nr_running;
581 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
582 	unsigned int		idle_nr_running;   /* SCHED_IDLE */
583 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
584 
585 	s64			avg_vruntime;
586 	u64			avg_load;
587 
588 	u64			exec_clock;
589 	u64			min_vruntime;
590 #ifdef CONFIG_SCHED_CORE
591 	unsigned int		forceidle_seq;
592 	u64			min_vruntime_fi;
593 #endif
594 
595 #ifndef CONFIG_64BIT
596 	u64			min_vruntime_copy;
597 #endif
598 
599 	struct rb_root_cached	tasks_timeline;
600 
601 	/*
602 	 * 'curr' points to currently running entity on this cfs_rq.
603 	 * It is set to NULL otherwise (i.e when none are currently running).
604 	 */
605 	struct sched_entity	*curr;
606 	struct sched_entity	*next;
607 
608 #ifdef	CONFIG_SCHED_DEBUG
609 	unsigned int		nr_spread_over;
610 #endif
611 
612 #ifdef CONFIG_SMP
613 	/*
614 	 * CFS load tracking
615 	 */
616 	struct sched_avg	avg;
617 #ifndef CONFIG_64BIT
618 	u64			last_update_time_copy;
619 #endif
620 	struct {
621 		raw_spinlock_t	lock ____cacheline_aligned;
622 		int		nr;
623 		unsigned long	load_avg;
624 		unsigned long	util_avg;
625 		unsigned long	runnable_avg;
626 	} removed;
627 
628 #ifdef CONFIG_FAIR_GROUP_SCHED
629 	unsigned long		tg_load_avg_contrib;
630 	long			propagate;
631 	long			prop_runnable_sum;
632 
633 	/*
634 	 *   h_load = weight * f(tg)
635 	 *
636 	 * Where f(tg) is the recursive weight fraction assigned to
637 	 * this group.
638 	 */
639 	unsigned long		h_load;
640 	u64			last_h_load_update;
641 	struct sched_entity	*h_load_next;
642 #endif /* CONFIG_FAIR_GROUP_SCHED */
643 #endif /* CONFIG_SMP */
644 
645 #ifdef CONFIG_FAIR_GROUP_SCHED
646 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
647 
648 	/*
649 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
650 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
651 	 * (like users, containers etc.)
652 	 *
653 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
654 	 * This list is used during load balance.
655 	 */
656 	int			on_list;
657 	struct list_head	leaf_cfs_rq_list;
658 	struct task_group	*tg;	/* group that "owns" this runqueue */
659 
660 	/* Locally cached copy of our task_group's idle value */
661 	int			idle;
662 
663 #ifdef CONFIG_CFS_BANDWIDTH
664 	int			runtime_enabled;
665 	s64			runtime_remaining;
666 
667 	u64			throttled_pelt_idle;
668 #ifndef CONFIG_64BIT
669 	u64                     throttled_pelt_idle_copy;
670 #endif
671 	u64			throttled_clock;
672 	u64			throttled_clock_pelt;
673 	u64			throttled_clock_pelt_time;
674 	u64			throttled_clock_self;
675 	u64			throttled_clock_self_time;
676 	int			throttled;
677 	int			throttle_count;
678 	struct list_head	throttled_list;
679 #ifdef CONFIG_SMP
680 	struct list_head	throttled_csd_list;
681 #endif
682 #endif /* CONFIG_CFS_BANDWIDTH */
683 #endif /* CONFIG_FAIR_GROUP_SCHED */
684 };
685 
rt_bandwidth_enabled(void)686 static inline int rt_bandwidth_enabled(void)
687 {
688 	return sysctl_sched_rt_runtime >= 0;
689 }
690 
691 /* RT IPI pull logic requires IRQ_WORK */
692 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
693 # define HAVE_RT_PUSH_IPI
694 #endif
695 
696 /* Real-Time classes' related field in a runqueue: */
697 struct rt_rq {
698 	struct rt_prio_array	active;
699 	unsigned int		rt_nr_running;
700 	unsigned int		rr_nr_running;
701 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
702 	struct {
703 		int		curr; /* highest queued rt task prio */
704 #ifdef CONFIG_SMP
705 		int		next; /* next highest */
706 #endif
707 	} highest_prio;
708 #endif
709 #ifdef CONFIG_SMP
710 	unsigned int		rt_nr_migratory;
711 	unsigned int		rt_nr_total;
712 	int			overloaded;
713 	struct plist_head	pushable_tasks;
714 
715 #endif /* CONFIG_SMP */
716 	int			rt_queued;
717 
718 	int			rt_throttled;
719 	u64			rt_time;
720 	u64			rt_runtime;
721 	/* Nests inside the rq lock: */
722 	raw_spinlock_t		rt_runtime_lock;
723 
724 #ifdef CONFIG_RT_GROUP_SCHED
725 	unsigned int		rt_nr_boosted;
726 
727 	struct rq		*rq;
728 	struct task_group	*tg;
729 #endif
730 };
731 
rt_rq_is_runnable(struct rt_rq * rt_rq)732 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
733 {
734 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
735 }
736 
737 /* Deadline class' related fields in a runqueue */
738 struct dl_rq {
739 	/* runqueue is an rbtree, ordered by deadline */
740 	struct rb_root_cached	root;
741 
742 	unsigned int		dl_nr_running;
743 
744 #ifdef CONFIG_SMP
745 	/*
746 	 * Deadline values of the currently executing and the
747 	 * earliest ready task on this rq. Caching these facilitates
748 	 * the decision whether or not a ready but not running task
749 	 * should migrate somewhere else.
750 	 */
751 	struct {
752 		u64		curr;
753 		u64		next;
754 	} earliest_dl;
755 
756 	unsigned int		dl_nr_migratory;
757 	int			overloaded;
758 
759 	/*
760 	 * Tasks on this rq that can be pushed away. They are kept in
761 	 * an rb-tree, ordered by tasks' deadlines, with caching
762 	 * of the leftmost (earliest deadline) element.
763 	 */
764 	struct rb_root_cached	pushable_dl_tasks_root;
765 #else
766 	struct dl_bw		dl_bw;
767 #endif
768 	/*
769 	 * "Active utilization" for this runqueue: increased when a
770 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
771 	 * task blocks
772 	 */
773 	u64			running_bw;
774 
775 	/*
776 	 * Utilization of the tasks "assigned" to this runqueue (including
777 	 * the tasks that are in runqueue and the tasks that executed on this
778 	 * CPU and blocked). Increased when a task moves to this runqueue, and
779 	 * decreased when the task moves away (migrates, changes scheduling
780 	 * policy, or terminates).
781 	 * This is needed to compute the "inactive utilization" for the
782 	 * runqueue (inactive utilization = this_bw - running_bw).
783 	 */
784 	u64			this_bw;
785 	u64			extra_bw;
786 
787 	/*
788 	 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
789 	 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
790 	 */
791 	u64			max_bw;
792 
793 	/*
794 	 * Inverse of the fraction of CPU utilization that can be reclaimed
795 	 * by the GRUB algorithm.
796 	 */
797 	u64			bw_ratio;
798 };
799 
800 #ifdef CONFIG_FAIR_GROUP_SCHED
801 /* An entity is a task if it doesn't "own" a runqueue */
802 #define entity_is_task(se)	(!se->my_q)
803 
se_update_runnable(struct sched_entity * se)804 static inline void se_update_runnable(struct sched_entity *se)
805 {
806 	if (!entity_is_task(se))
807 		se->runnable_weight = se->my_q->h_nr_running;
808 }
809 
se_runnable(struct sched_entity * se)810 static inline long se_runnable(struct sched_entity *se)
811 {
812 	if (entity_is_task(se))
813 		return !!se->on_rq;
814 	else
815 		return se->runnable_weight;
816 }
817 
818 #else
819 #define entity_is_task(se)	1
820 
se_update_runnable(struct sched_entity * se)821 static inline void se_update_runnable(struct sched_entity *se) {}
822 
se_runnable(struct sched_entity * se)823 static inline long se_runnable(struct sched_entity *se)
824 {
825 	return !!se->on_rq;
826 }
827 #endif
828 
829 #ifdef CONFIG_SMP
830 /*
831  * XXX we want to get rid of these helpers and use the full load resolution.
832  */
se_weight(struct sched_entity * se)833 static inline long se_weight(struct sched_entity *se)
834 {
835 	return scale_load_down(se->load.weight);
836 }
837 
838 
sched_asym_prefer(int a,int b)839 static inline bool sched_asym_prefer(int a, int b)
840 {
841 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
842 }
843 
844 struct perf_domain {
845 	struct em_perf_domain *em_pd;
846 	struct perf_domain *next;
847 	struct rcu_head rcu;
848 };
849 
850 /* Scheduling group status flags */
851 #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
852 #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
853 
854 /*
855  * We add the notion of a root-domain which will be used to define per-domain
856  * variables. Each exclusive cpuset essentially defines an island domain by
857  * fully partitioning the member CPUs from any other cpuset. Whenever a new
858  * exclusive cpuset is created, we also create and attach a new root-domain
859  * object.
860  *
861  */
862 struct root_domain {
863 	atomic_t		refcount;
864 	atomic_t		rto_count;
865 	struct rcu_head		rcu;
866 	cpumask_var_t		span;
867 	cpumask_var_t		online;
868 
869 	/*
870 	 * Indicate pullable load on at least one CPU, e.g:
871 	 * - More than one runnable task
872 	 * - Running task is misfit
873 	 */
874 	int			overload;
875 
876 	/* Indicate one or more cpus over-utilized (tipping point) */
877 	int			overutilized;
878 
879 	/*
880 	 * The bit corresponding to a CPU gets set here if such CPU has more
881 	 * than one runnable -deadline task (as it is below for RT tasks).
882 	 */
883 	cpumask_var_t		dlo_mask;
884 	atomic_t		dlo_count;
885 	struct dl_bw		dl_bw;
886 	struct cpudl		cpudl;
887 
888 	/*
889 	 * Indicate whether a root_domain's dl_bw has been checked or
890 	 * updated. It's monotonously increasing value.
891 	 *
892 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
893 	 * that u64 is 'big enough'. So that shouldn't be a concern.
894 	 */
895 	u64 visit_gen;
896 
897 #ifdef HAVE_RT_PUSH_IPI
898 	/*
899 	 * For IPI pull requests, loop across the rto_mask.
900 	 */
901 	struct irq_work		rto_push_work;
902 	raw_spinlock_t		rto_lock;
903 	/* These are only updated and read within rto_lock */
904 	int			rto_loop;
905 	int			rto_cpu;
906 	/* These atomics are updated outside of a lock */
907 	atomic_t		rto_loop_next;
908 	atomic_t		rto_loop_start;
909 #endif
910 	/*
911 	 * The "RT overload" flag: it gets set if a CPU has more than
912 	 * one runnable RT task.
913 	 */
914 	cpumask_var_t		rto_mask;
915 	struct cpupri		cpupri;
916 
917 	unsigned long		max_cpu_capacity;
918 
919 	/*
920 	 * NULL-terminated list of performance domains intersecting with the
921 	 * CPUs of the rd. Protected by RCU.
922 	 */
923 	struct perf_domain __rcu *pd;
924 };
925 
926 extern void init_defrootdomain(void);
927 extern int sched_init_domains(const struct cpumask *cpu_map);
928 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
929 extern void sched_get_rd(struct root_domain *rd);
930 extern void sched_put_rd(struct root_domain *rd);
931 
932 #ifdef HAVE_RT_PUSH_IPI
933 extern void rto_push_irq_work_func(struct irq_work *work);
934 #endif
935 #endif /* CONFIG_SMP */
936 
937 #ifdef CONFIG_UCLAMP_TASK
938 /*
939  * struct uclamp_bucket - Utilization clamp bucket
940  * @value: utilization clamp value for tasks on this clamp bucket
941  * @tasks: number of RUNNABLE tasks on this clamp bucket
942  *
943  * Keep track of how many tasks are RUNNABLE for a given utilization
944  * clamp value.
945  */
946 struct uclamp_bucket {
947 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
948 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
949 };
950 
951 /*
952  * struct uclamp_rq - rq's utilization clamp
953  * @value: currently active clamp values for a rq
954  * @bucket: utilization clamp buckets affecting a rq
955  *
956  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
957  * A clamp value is affecting a rq when there is at least one task RUNNABLE
958  * (or actually running) with that value.
959  *
960  * There are up to UCLAMP_CNT possible different clamp values, currently there
961  * are only two: minimum utilization and maximum utilization.
962  *
963  * All utilization clamping values are MAX aggregated, since:
964  * - for util_min: we want to run the CPU at least at the max of the minimum
965  *   utilization required by its currently RUNNABLE tasks.
966  * - for util_max: we want to allow the CPU to run up to the max of the
967  *   maximum utilization allowed by its currently RUNNABLE tasks.
968  *
969  * Since on each system we expect only a limited number of different
970  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
971  * the metrics required to compute all the per-rq utilization clamp values.
972  */
973 struct uclamp_rq {
974 	unsigned int value;
975 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
976 };
977 
978 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
979 #endif /* CONFIG_UCLAMP_TASK */
980 
981 struct rq;
982 struct balance_callback {
983 	struct balance_callback *next;
984 	void (*func)(struct rq *rq);
985 };
986 
987 /*
988  * This is the main, per-CPU runqueue data structure.
989  *
990  * Locking rule: those places that want to lock multiple runqueues
991  * (such as the load balancing or the thread migration code), lock
992  * acquire operations must be ordered by ascending &runqueue.
993  */
994 struct rq {
995 	/* runqueue lock: */
996 	raw_spinlock_t		__lock;
997 
998 	/*
999 	 * nr_running and cpu_load should be in the same cacheline because
1000 	 * remote CPUs use both these fields when doing load calculation.
1001 	 */
1002 	unsigned int		nr_running;
1003 #ifdef CONFIG_NUMA_BALANCING
1004 	unsigned int		nr_numa_running;
1005 	unsigned int		nr_preferred_running;
1006 	unsigned int		numa_migrate_on;
1007 #endif
1008 #ifdef CONFIG_NO_HZ_COMMON
1009 #ifdef CONFIG_SMP
1010 	unsigned long		last_blocked_load_update_tick;
1011 	unsigned int		has_blocked_load;
1012 	call_single_data_t	nohz_csd;
1013 #endif /* CONFIG_SMP */
1014 	unsigned int		nohz_tick_stopped;
1015 	atomic_t		nohz_flags;
1016 #endif /* CONFIG_NO_HZ_COMMON */
1017 
1018 #ifdef CONFIG_SMP
1019 	unsigned int		ttwu_pending;
1020 #endif
1021 	u64			nr_switches;
1022 
1023 #ifdef CONFIG_UCLAMP_TASK
1024 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
1025 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
1026 	unsigned int		uclamp_flags;
1027 #define UCLAMP_FLAG_IDLE 0x01
1028 #endif
1029 
1030 	struct cfs_rq		cfs;
1031 	struct rt_rq		rt;
1032 	struct dl_rq		dl;
1033 
1034 #ifdef CONFIG_FAIR_GROUP_SCHED
1035 	/* list of leaf cfs_rq on this CPU: */
1036 	struct list_head	leaf_cfs_rq_list;
1037 	struct list_head	*tmp_alone_branch;
1038 #endif /* CONFIG_FAIR_GROUP_SCHED */
1039 
1040 	/*
1041 	 * This is part of a global counter where only the total sum
1042 	 * over all CPUs matters. A task can increase this counter on
1043 	 * one CPU and if it got migrated afterwards it may decrease
1044 	 * it on another CPU. Always updated under the runqueue lock:
1045 	 */
1046 	unsigned int		nr_uninterruptible;
1047 
1048 	struct task_struct __rcu	*curr;
1049 	struct task_struct	*idle;
1050 	struct task_struct	*stop;
1051 	unsigned long		next_balance;
1052 	struct mm_struct	*prev_mm;
1053 
1054 	unsigned int		clock_update_flags;
1055 	u64			clock;
1056 	/* Ensure that all clocks are in the same cache line */
1057 	u64			clock_task ____cacheline_aligned;
1058 	u64			clock_pelt;
1059 	unsigned long		lost_idle_time;
1060 	u64			clock_pelt_idle;
1061 	u64			clock_idle;
1062 #ifndef CONFIG_64BIT
1063 	u64			clock_pelt_idle_copy;
1064 	u64			clock_idle_copy;
1065 #endif
1066 
1067 	atomic_t		nr_iowait;
1068 
1069 #ifdef CONFIG_SCHED_DEBUG
1070 	u64 last_seen_need_resched_ns;
1071 	int ticks_without_resched;
1072 #endif
1073 
1074 #ifdef CONFIG_MEMBARRIER
1075 	int membarrier_state;
1076 #endif
1077 
1078 #ifdef CONFIG_SMP
1079 	struct root_domain		*rd;
1080 	struct sched_domain __rcu	*sd;
1081 
1082 	unsigned long		cpu_capacity;
1083 	unsigned long		cpu_capacity_orig;
1084 
1085 	struct balance_callback *balance_callback;
1086 
1087 	unsigned char		nohz_idle_balance;
1088 	unsigned char		idle_balance;
1089 
1090 	unsigned long		misfit_task_load;
1091 
1092 	/* For active balancing */
1093 	int			active_balance;
1094 	int			push_cpu;
1095 	struct cpu_stop_work	active_balance_work;
1096 
1097 	/* CPU of this runqueue: */
1098 	int			cpu;
1099 	int			online;
1100 
1101 	struct list_head cfs_tasks;
1102 
1103 	struct sched_avg	avg_rt;
1104 	struct sched_avg	avg_dl;
1105 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1106 	struct sched_avg	avg_irq;
1107 #endif
1108 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1109 	struct sched_avg	avg_thermal;
1110 #endif
1111 	u64			idle_stamp;
1112 	u64			avg_idle;
1113 
1114 	unsigned long		wake_stamp;
1115 	u64			wake_avg_idle;
1116 
1117 	/* This is used to determine avg_idle's max value */
1118 	u64			max_idle_balance_cost;
1119 
1120 #ifdef CONFIG_HOTPLUG_CPU
1121 	struct rcuwait		hotplug_wait;
1122 #endif
1123 #endif /* CONFIG_SMP */
1124 
1125 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1126 	u64			prev_irq_time;
1127 #endif
1128 #ifdef CONFIG_PARAVIRT
1129 	u64			prev_steal_time;
1130 #endif
1131 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1132 	u64			prev_steal_time_rq;
1133 #endif
1134 
1135 	/* calc_load related fields */
1136 	unsigned long		calc_load_update;
1137 	long			calc_load_active;
1138 
1139 #ifdef CONFIG_SCHED_HRTICK
1140 #ifdef CONFIG_SMP
1141 	call_single_data_t	hrtick_csd;
1142 #endif
1143 	struct hrtimer		hrtick_timer;
1144 	ktime_t 		hrtick_time;
1145 #endif
1146 
1147 #ifdef CONFIG_SCHEDSTATS
1148 	/* latency stats */
1149 	struct sched_info	rq_sched_info;
1150 	unsigned long long	rq_cpu_time;
1151 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1152 
1153 	/* sys_sched_yield() stats */
1154 	unsigned int		yld_count;
1155 
1156 	/* schedule() stats */
1157 	unsigned int		sched_count;
1158 	unsigned int		sched_goidle;
1159 
1160 	/* try_to_wake_up() stats */
1161 	unsigned int		ttwu_count;
1162 	unsigned int		ttwu_local;
1163 #endif
1164 
1165 #ifdef CONFIG_CPU_IDLE
1166 	/* Must be inspected within a rcu lock section */
1167 	struct cpuidle_state	*idle_state;
1168 #endif
1169 
1170 #ifdef CONFIG_SMP
1171 	unsigned int		nr_pinned;
1172 #endif
1173 	unsigned int		push_busy;
1174 	struct cpu_stop_work	push_work;
1175 
1176 #ifdef CONFIG_SCHED_CORE
1177 	/* per rq */
1178 	struct rq		*core;
1179 	struct task_struct	*core_pick;
1180 	unsigned int		core_enabled;
1181 	unsigned int		core_sched_seq;
1182 	struct rb_root		core_tree;
1183 
1184 	/* shared state -- careful with sched_core_cpu_deactivate() */
1185 	unsigned int		core_task_seq;
1186 	unsigned int		core_pick_seq;
1187 	unsigned long		core_cookie;
1188 	unsigned int		core_forceidle_count;
1189 	unsigned int		core_forceidle_seq;
1190 	unsigned int		core_forceidle_occupation;
1191 	u64			core_forceidle_start;
1192 #endif
1193 
1194 	/* Scratch cpumask to be temporarily used under rq_lock */
1195 	cpumask_var_t		scratch_mask;
1196 
1197 #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
1198 	call_single_data_t	cfsb_csd;
1199 	struct list_head	cfsb_csd_list;
1200 #endif
1201 };
1202 
1203 #ifdef CONFIG_FAIR_GROUP_SCHED
1204 
1205 /* CPU runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)1206 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1207 {
1208 	return cfs_rq->rq;
1209 }
1210 
1211 #else
1212 
rq_of(struct cfs_rq * cfs_rq)1213 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1214 {
1215 	return container_of(cfs_rq, struct rq, cfs);
1216 }
1217 #endif
1218 
cpu_of(struct rq * rq)1219 static inline int cpu_of(struct rq *rq)
1220 {
1221 #ifdef CONFIG_SMP
1222 	return rq->cpu;
1223 #else
1224 	return 0;
1225 #endif
1226 }
1227 
1228 #define MDF_PUSH	0x01
1229 
is_migration_disabled(struct task_struct * p)1230 static inline bool is_migration_disabled(struct task_struct *p)
1231 {
1232 #ifdef CONFIG_SMP
1233 	return p->migration_disabled;
1234 #else
1235 	return false;
1236 #endif
1237 }
1238 
1239 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1240 
1241 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1242 #define this_rq()		this_cpu_ptr(&runqueues)
1243 #define task_rq(p)		cpu_rq(task_cpu(p))
1244 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1245 #define raw_rq()		raw_cpu_ptr(&runqueues)
1246 
1247 struct sched_group;
1248 #ifdef CONFIG_SCHED_CORE
1249 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1250 
1251 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1252 
sched_core_enabled(struct rq * rq)1253 static inline bool sched_core_enabled(struct rq *rq)
1254 {
1255 	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1256 }
1257 
sched_core_disabled(void)1258 static inline bool sched_core_disabled(void)
1259 {
1260 	return !static_branch_unlikely(&__sched_core_enabled);
1261 }
1262 
1263 /*
1264  * Be careful with this function; not for general use. The return value isn't
1265  * stable unless you actually hold a relevant rq->__lock.
1266  */
rq_lockp(struct rq * rq)1267 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1268 {
1269 	if (sched_core_enabled(rq))
1270 		return &rq->core->__lock;
1271 
1272 	return &rq->__lock;
1273 }
1274 
__rq_lockp(struct rq * rq)1275 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1276 {
1277 	if (rq->core_enabled)
1278 		return &rq->core->__lock;
1279 
1280 	return &rq->__lock;
1281 }
1282 
1283 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
1284 			bool fi);
1285 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
1286 
1287 /*
1288  * Helpers to check if the CPU's core cookie matches with the task's cookie
1289  * when core scheduling is enabled.
1290  * A special case is that the task's cookie always matches with CPU's core
1291  * cookie if the CPU is in an idle core.
1292  */
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1293 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1294 {
1295 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1296 	if (!sched_core_enabled(rq))
1297 		return true;
1298 
1299 	return rq->core->core_cookie == p->core_cookie;
1300 }
1301 
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1302 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1303 {
1304 	bool idle_core = true;
1305 	int cpu;
1306 
1307 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1308 	if (!sched_core_enabled(rq))
1309 		return true;
1310 
1311 	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1312 		if (!available_idle_cpu(cpu)) {
1313 			idle_core = false;
1314 			break;
1315 		}
1316 	}
1317 
1318 	/*
1319 	 * A CPU in an idle core is always the best choice for tasks with
1320 	 * cookies.
1321 	 */
1322 	return idle_core || rq->core->core_cookie == p->core_cookie;
1323 }
1324 
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1325 static inline bool sched_group_cookie_match(struct rq *rq,
1326 					    struct task_struct *p,
1327 					    struct sched_group *group)
1328 {
1329 	int cpu;
1330 
1331 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1332 	if (!sched_core_enabled(rq))
1333 		return true;
1334 
1335 	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1336 		if (sched_core_cookie_match(cpu_rq(cpu), p))
1337 			return true;
1338 	}
1339 	return false;
1340 }
1341 
sched_core_enqueued(struct task_struct * p)1342 static inline bool sched_core_enqueued(struct task_struct *p)
1343 {
1344 	return !RB_EMPTY_NODE(&p->core_node);
1345 }
1346 
1347 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1348 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1349 
1350 extern void sched_core_get(void);
1351 extern void sched_core_put(void);
1352 
1353 #else /* !CONFIG_SCHED_CORE */
1354 
sched_core_enabled(struct rq * rq)1355 static inline bool sched_core_enabled(struct rq *rq)
1356 {
1357 	return false;
1358 }
1359 
sched_core_disabled(void)1360 static inline bool sched_core_disabled(void)
1361 {
1362 	return true;
1363 }
1364 
rq_lockp(struct rq * rq)1365 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1366 {
1367 	return &rq->__lock;
1368 }
1369 
__rq_lockp(struct rq * rq)1370 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1371 {
1372 	return &rq->__lock;
1373 }
1374 
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1375 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1376 {
1377 	return true;
1378 }
1379 
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1380 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1381 {
1382 	return true;
1383 }
1384 
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1385 static inline bool sched_group_cookie_match(struct rq *rq,
1386 					    struct task_struct *p,
1387 					    struct sched_group *group)
1388 {
1389 	return true;
1390 }
1391 #endif /* CONFIG_SCHED_CORE */
1392 
lockdep_assert_rq_held(struct rq * rq)1393 static inline void lockdep_assert_rq_held(struct rq *rq)
1394 {
1395 	lockdep_assert_held(__rq_lockp(rq));
1396 }
1397 
1398 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1399 extern bool raw_spin_rq_trylock(struct rq *rq);
1400 extern void raw_spin_rq_unlock(struct rq *rq);
1401 
raw_spin_rq_lock(struct rq * rq)1402 static inline void raw_spin_rq_lock(struct rq *rq)
1403 {
1404 	raw_spin_rq_lock_nested(rq, 0);
1405 }
1406 
raw_spin_rq_lock_irq(struct rq * rq)1407 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1408 {
1409 	local_irq_disable();
1410 	raw_spin_rq_lock(rq);
1411 }
1412 
raw_spin_rq_unlock_irq(struct rq * rq)1413 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1414 {
1415 	raw_spin_rq_unlock(rq);
1416 	local_irq_enable();
1417 }
1418 
_raw_spin_rq_lock_irqsave(struct rq * rq)1419 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1420 {
1421 	unsigned long flags;
1422 	local_irq_save(flags);
1423 	raw_spin_rq_lock(rq);
1424 	return flags;
1425 }
1426 
raw_spin_rq_unlock_irqrestore(struct rq * rq,unsigned long flags)1427 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1428 {
1429 	raw_spin_rq_unlock(rq);
1430 	local_irq_restore(flags);
1431 }
1432 
1433 #define raw_spin_rq_lock_irqsave(rq, flags)	\
1434 do {						\
1435 	flags = _raw_spin_rq_lock_irqsave(rq);	\
1436 } while (0)
1437 
1438 #ifdef CONFIG_SCHED_SMT
1439 extern void __update_idle_core(struct rq *rq);
1440 
update_idle_core(struct rq * rq)1441 static inline void update_idle_core(struct rq *rq)
1442 {
1443 	if (static_branch_unlikely(&sched_smt_present))
1444 		__update_idle_core(rq);
1445 }
1446 
1447 #else
update_idle_core(struct rq * rq)1448 static inline void update_idle_core(struct rq *rq) { }
1449 #endif
1450 
1451 #ifdef CONFIG_FAIR_GROUP_SCHED
task_of(struct sched_entity * se)1452 static inline struct task_struct *task_of(struct sched_entity *se)
1453 {
1454 	SCHED_WARN_ON(!entity_is_task(se));
1455 	return container_of(se, struct task_struct, se);
1456 }
1457 
task_cfs_rq(struct task_struct * p)1458 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1459 {
1460 	return p->se.cfs_rq;
1461 }
1462 
1463 /* runqueue on which this entity is (to be) queued */
cfs_rq_of(const struct sched_entity * se)1464 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1465 {
1466 	return se->cfs_rq;
1467 }
1468 
1469 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1470 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1471 {
1472 	return grp->my_q;
1473 }
1474 
1475 #else
1476 
1477 #define task_of(_se)	container_of(_se, struct task_struct, se)
1478 
task_cfs_rq(const struct task_struct * p)1479 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1480 {
1481 	return &task_rq(p)->cfs;
1482 }
1483 
cfs_rq_of(const struct sched_entity * se)1484 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1485 {
1486 	const struct task_struct *p = task_of(se);
1487 	struct rq *rq = task_rq(p);
1488 
1489 	return &rq->cfs;
1490 }
1491 
1492 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1493 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1494 {
1495 	return NULL;
1496 }
1497 #endif
1498 
1499 extern void update_rq_clock(struct rq *rq);
1500 
1501 /*
1502  * rq::clock_update_flags bits
1503  *
1504  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1505  *  call to __schedule(). This is an optimisation to avoid
1506  *  neighbouring rq clock updates.
1507  *
1508  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1509  *  in effect and calls to update_rq_clock() are being ignored.
1510  *
1511  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1512  *  made to update_rq_clock() since the last time rq::lock was pinned.
1513  *
1514  * If inside of __schedule(), clock_update_flags will have been
1515  * shifted left (a left shift is a cheap operation for the fast path
1516  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1517  *
1518  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1519  *
1520  * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1521  * one position though, because the next rq_unpin_lock() will shift it
1522  * back.
1523  */
1524 #define RQCF_REQ_SKIP		0x01
1525 #define RQCF_ACT_SKIP		0x02
1526 #define RQCF_UPDATED		0x04
1527 
assert_clock_updated(struct rq * rq)1528 static inline void assert_clock_updated(struct rq *rq)
1529 {
1530 	/*
1531 	 * The only reason for not seeing a clock update since the
1532 	 * last rq_pin_lock() is if we're currently skipping updates.
1533 	 */
1534 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1535 }
1536 
rq_clock(struct rq * rq)1537 static inline u64 rq_clock(struct rq *rq)
1538 {
1539 	lockdep_assert_rq_held(rq);
1540 	assert_clock_updated(rq);
1541 
1542 	return rq->clock;
1543 }
1544 
rq_clock_task(struct rq * rq)1545 static inline u64 rq_clock_task(struct rq *rq)
1546 {
1547 	lockdep_assert_rq_held(rq);
1548 	assert_clock_updated(rq);
1549 
1550 	return rq->clock_task;
1551 }
1552 
1553 /**
1554  * By default the decay is the default pelt decay period.
1555  * The decay shift can change the decay period in
1556  * multiples of 32.
1557  *  Decay shift		Decay period(ms)
1558  *	0			32
1559  *	1			64
1560  *	2			128
1561  *	3			256
1562  *	4			512
1563  */
1564 extern int sched_thermal_decay_shift;
1565 
rq_clock_thermal(struct rq * rq)1566 static inline u64 rq_clock_thermal(struct rq *rq)
1567 {
1568 	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1569 }
1570 
rq_clock_skip_update(struct rq * rq)1571 static inline void rq_clock_skip_update(struct rq *rq)
1572 {
1573 	lockdep_assert_rq_held(rq);
1574 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1575 }
1576 
1577 /*
1578  * See rt task throttling, which is the only time a skip
1579  * request is canceled.
1580  */
rq_clock_cancel_skipupdate(struct rq * rq)1581 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1582 {
1583 	lockdep_assert_rq_held(rq);
1584 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1585 }
1586 
1587 /*
1588  * During cpu offlining and rq wide unthrottling, we can trigger
1589  * an update_rq_clock() for several cfs and rt runqueues (Typically
1590  * when using list_for_each_entry_*)
1591  * rq_clock_start_loop_update() can be called after updating the clock
1592  * once and before iterating over the list to prevent multiple update.
1593  * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1594  * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1595  */
rq_clock_start_loop_update(struct rq * rq)1596 static inline void rq_clock_start_loop_update(struct rq *rq)
1597 {
1598 	lockdep_assert_rq_held(rq);
1599 	SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP);
1600 	rq->clock_update_flags |= RQCF_ACT_SKIP;
1601 }
1602 
rq_clock_stop_loop_update(struct rq * rq)1603 static inline void rq_clock_stop_loop_update(struct rq *rq)
1604 {
1605 	lockdep_assert_rq_held(rq);
1606 	rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1607 }
1608 
1609 struct rq_flags {
1610 	unsigned long flags;
1611 	struct pin_cookie cookie;
1612 #ifdef CONFIG_SCHED_DEBUG
1613 	/*
1614 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1615 	 * current pin context is stashed here in case it needs to be
1616 	 * restored in rq_repin_lock().
1617 	 */
1618 	unsigned int clock_update_flags;
1619 #endif
1620 };
1621 
1622 extern struct balance_callback balance_push_callback;
1623 
1624 /*
1625  * Lockdep annotation that avoids accidental unlocks; it's like a
1626  * sticky/continuous lockdep_assert_held().
1627  *
1628  * This avoids code that has access to 'struct rq *rq' (basically everything in
1629  * the scheduler) from accidentally unlocking the rq if they do not also have a
1630  * copy of the (on-stack) 'struct rq_flags rf'.
1631  *
1632  * Also see Documentation/locking/lockdep-design.rst.
1633  */
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1634 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1635 {
1636 	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1637 
1638 #ifdef CONFIG_SCHED_DEBUG
1639 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1640 	rf->clock_update_flags = 0;
1641 #ifdef CONFIG_SMP
1642 	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1643 #endif
1644 #endif
1645 }
1646 
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1647 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1648 {
1649 #ifdef CONFIG_SCHED_DEBUG
1650 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1651 		rf->clock_update_flags = RQCF_UPDATED;
1652 #endif
1653 
1654 	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1655 }
1656 
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1657 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1658 {
1659 	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1660 
1661 #ifdef CONFIG_SCHED_DEBUG
1662 	/*
1663 	 * Restore the value we stashed in @rf for this pin context.
1664 	 */
1665 	rq->clock_update_flags |= rf->clock_update_flags;
1666 #endif
1667 }
1668 
1669 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1670 	__acquires(rq->lock);
1671 
1672 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1673 	__acquires(p->pi_lock)
1674 	__acquires(rq->lock);
1675 
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1676 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1677 	__releases(rq->lock)
1678 {
1679 	rq_unpin_lock(rq, rf);
1680 	raw_spin_rq_unlock(rq);
1681 }
1682 
1683 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1684 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1685 	__releases(rq->lock)
1686 	__releases(p->pi_lock)
1687 {
1688 	rq_unpin_lock(rq, rf);
1689 	raw_spin_rq_unlock(rq);
1690 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1691 }
1692 
1693 static inline void
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1694 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1695 	__acquires(rq->lock)
1696 {
1697 	raw_spin_rq_lock_irqsave(rq, rf->flags);
1698 	rq_pin_lock(rq, rf);
1699 }
1700 
1701 static inline void
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1702 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1703 	__acquires(rq->lock)
1704 {
1705 	raw_spin_rq_lock_irq(rq);
1706 	rq_pin_lock(rq, rf);
1707 }
1708 
1709 static inline void
rq_lock(struct rq * rq,struct rq_flags * rf)1710 rq_lock(struct rq *rq, struct rq_flags *rf)
1711 	__acquires(rq->lock)
1712 {
1713 	raw_spin_rq_lock(rq);
1714 	rq_pin_lock(rq, rf);
1715 }
1716 
1717 static inline void
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1718 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1719 	__releases(rq->lock)
1720 {
1721 	rq_unpin_lock(rq, rf);
1722 	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1723 }
1724 
1725 static inline void
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1726 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1727 	__releases(rq->lock)
1728 {
1729 	rq_unpin_lock(rq, rf);
1730 	raw_spin_rq_unlock_irq(rq);
1731 }
1732 
1733 static inline void
rq_unlock(struct rq * rq,struct rq_flags * rf)1734 rq_unlock(struct rq *rq, struct rq_flags *rf)
1735 	__releases(rq->lock)
1736 {
1737 	rq_unpin_lock(rq, rf);
1738 	raw_spin_rq_unlock(rq);
1739 }
1740 
1741 DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
1742 		    rq_lock(_T->lock, &_T->rf),
1743 		    rq_unlock(_T->lock, &_T->rf),
1744 		    struct rq_flags rf)
1745 
1746 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
1747 		    rq_lock_irq(_T->lock, &_T->rf),
1748 		    rq_unlock_irq(_T->lock, &_T->rf),
1749 		    struct rq_flags rf)
1750 
1751 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
1752 		    rq_lock_irqsave(_T->lock, &_T->rf),
1753 		    rq_unlock_irqrestore(_T->lock, &_T->rf),
1754 		    struct rq_flags rf)
1755 
1756 static inline struct rq *
this_rq_lock_irq(struct rq_flags * rf)1757 this_rq_lock_irq(struct rq_flags *rf)
1758 	__acquires(rq->lock)
1759 {
1760 	struct rq *rq;
1761 
1762 	local_irq_disable();
1763 	rq = this_rq();
1764 	rq_lock(rq, rf);
1765 	return rq;
1766 }
1767 
1768 #ifdef CONFIG_NUMA
1769 enum numa_topology_type {
1770 	NUMA_DIRECT,
1771 	NUMA_GLUELESS_MESH,
1772 	NUMA_BACKPLANE,
1773 };
1774 extern enum numa_topology_type sched_numa_topology_type;
1775 extern int sched_max_numa_distance;
1776 extern bool find_numa_distance(int distance);
1777 extern void sched_init_numa(int offline_node);
1778 extern void sched_update_numa(int cpu, bool online);
1779 extern void sched_domains_numa_masks_set(unsigned int cpu);
1780 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1781 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1782 #else
sched_init_numa(int offline_node)1783 static inline void sched_init_numa(int offline_node) { }
sched_update_numa(int cpu,bool online)1784 static inline void sched_update_numa(int cpu, bool online) { }
sched_domains_numa_masks_set(unsigned int cpu)1785 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1786 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
sched_numa_find_closest(const struct cpumask * cpus,int cpu)1787 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1788 {
1789 	return nr_cpu_ids;
1790 }
1791 #endif
1792 
1793 #ifdef CONFIG_NUMA_BALANCING
1794 /* The regions in numa_faults array from task_struct */
1795 enum numa_faults_stats {
1796 	NUMA_MEM = 0,
1797 	NUMA_CPU,
1798 	NUMA_MEMBUF,
1799 	NUMA_CPUBUF
1800 };
1801 extern void sched_setnuma(struct task_struct *p, int node);
1802 extern int migrate_task_to(struct task_struct *p, int cpu);
1803 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1804 			int cpu, int scpu);
1805 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1806 #else
1807 static inline void
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)1808 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1809 {
1810 }
1811 #endif /* CONFIG_NUMA_BALANCING */
1812 
1813 #ifdef CONFIG_SMP
1814 
1815 static inline void
queue_balance_callback(struct rq * rq,struct balance_callback * head,void (* func)(struct rq * rq))1816 queue_balance_callback(struct rq *rq,
1817 		       struct balance_callback *head,
1818 		       void (*func)(struct rq *rq))
1819 {
1820 	lockdep_assert_rq_held(rq);
1821 
1822 	/*
1823 	 * Don't (re)queue an already queued item; nor queue anything when
1824 	 * balance_push() is active, see the comment with
1825 	 * balance_push_callback.
1826 	 */
1827 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1828 		return;
1829 
1830 	head->func = func;
1831 	head->next = rq->balance_callback;
1832 	rq->balance_callback = head;
1833 }
1834 
1835 #define rcu_dereference_check_sched_domain(p) \
1836 	rcu_dereference_check((p), \
1837 			      lockdep_is_held(&sched_domains_mutex))
1838 
1839 /*
1840  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1841  * See destroy_sched_domains: call_rcu for details.
1842  *
1843  * The domain tree of any CPU may only be accessed from within
1844  * preempt-disabled sections.
1845  */
1846 #define for_each_domain(cpu, __sd) \
1847 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1848 			__sd; __sd = __sd->parent)
1849 
1850 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
1851 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
1852 static const unsigned int SD_SHARED_CHILD_MASK =
1853 #include <linux/sched/sd_flags.h>
1854 0;
1855 #undef SD_FLAG
1856 
1857 /**
1858  * highest_flag_domain - Return highest sched_domain containing flag.
1859  * @cpu:	The CPU whose highest level of sched domain is to
1860  *		be returned.
1861  * @flag:	The flag to check for the highest sched_domain
1862  *		for the given CPU.
1863  *
1864  * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
1865  * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
1866  */
highest_flag_domain(int cpu,int flag)1867 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1868 {
1869 	struct sched_domain *sd, *hsd = NULL;
1870 
1871 	for_each_domain(cpu, sd) {
1872 		if (sd->flags & flag) {
1873 			hsd = sd;
1874 			continue;
1875 		}
1876 
1877 		/*
1878 		 * Stop the search if @flag is known to be shared at lower
1879 		 * levels. It will not be found further up.
1880 		 */
1881 		if (flag & SD_SHARED_CHILD_MASK)
1882 			break;
1883 	}
1884 
1885 	return hsd;
1886 }
1887 
lowest_flag_domain(int cpu,int flag)1888 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1889 {
1890 	struct sched_domain *sd;
1891 
1892 	for_each_domain(cpu, sd) {
1893 		if (sd->flags & flag)
1894 			break;
1895 	}
1896 
1897 	return sd;
1898 }
1899 
1900 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1901 DECLARE_PER_CPU(int, sd_llc_size);
1902 DECLARE_PER_CPU(int, sd_llc_id);
1903 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1904 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1905 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1906 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1907 extern struct static_key_false sched_asym_cpucapacity;
1908 
sched_asym_cpucap_active(void)1909 static __always_inline bool sched_asym_cpucap_active(void)
1910 {
1911 	return static_branch_unlikely(&sched_asym_cpucapacity);
1912 }
1913 
1914 struct sched_group_capacity {
1915 	atomic_t		ref;
1916 	/*
1917 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1918 	 * for a single CPU.
1919 	 */
1920 	unsigned long		capacity;
1921 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1922 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1923 	unsigned long		next_update;
1924 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1925 
1926 #ifdef CONFIG_SCHED_DEBUG
1927 	int			id;
1928 #endif
1929 
1930 	unsigned long		cpumask[];		/* Balance mask */
1931 };
1932 
1933 struct sched_group {
1934 	struct sched_group	*next;			/* Must be a circular list */
1935 	atomic_t		ref;
1936 
1937 	unsigned int		group_weight;
1938 	unsigned int		cores;
1939 	struct sched_group_capacity *sgc;
1940 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1941 	int			flags;
1942 
1943 	/*
1944 	 * The CPUs this group covers.
1945 	 *
1946 	 * NOTE: this field is variable length. (Allocated dynamically
1947 	 * by attaching extra space to the end of the structure,
1948 	 * depending on how many CPUs the kernel has booted up with)
1949 	 */
1950 	unsigned long		cpumask[];
1951 };
1952 
sched_group_span(struct sched_group * sg)1953 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1954 {
1955 	return to_cpumask(sg->cpumask);
1956 }
1957 
1958 /*
1959  * See build_balance_mask().
1960  */
group_balance_mask(struct sched_group * sg)1961 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1962 {
1963 	return to_cpumask(sg->sgc->cpumask);
1964 }
1965 
1966 extern int group_balance_cpu(struct sched_group *sg);
1967 
1968 #ifdef CONFIG_SCHED_DEBUG
1969 void update_sched_domain_debugfs(void);
1970 void dirty_sched_domain_sysctl(int cpu);
1971 #else
update_sched_domain_debugfs(void)1972 static inline void update_sched_domain_debugfs(void)
1973 {
1974 }
dirty_sched_domain_sysctl(int cpu)1975 static inline void dirty_sched_domain_sysctl(int cpu)
1976 {
1977 }
1978 #endif
1979 
1980 extern int sched_update_scaling(void);
1981 
task_user_cpus(struct task_struct * p)1982 static inline const struct cpumask *task_user_cpus(struct task_struct *p)
1983 {
1984 	if (!p->user_cpus_ptr)
1985 		return cpu_possible_mask; /* &init_task.cpus_mask */
1986 	return p->user_cpus_ptr;
1987 }
1988 #endif /* CONFIG_SMP */
1989 
1990 #include "stats.h"
1991 
1992 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
1993 
1994 extern void __sched_core_account_forceidle(struct rq *rq);
1995 
sched_core_account_forceidle(struct rq * rq)1996 static inline void sched_core_account_forceidle(struct rq *rq)
1997 {
1998 	if (schedstat_enabled())
1999 		__sched_core_account_forceidle(rq);
2000 }
2001 
2002 extern void __sched_core_tick(struct rq *rq);
2003 
sched_core_tick(struct rq * rq)2004 static inline void sched_core_tick(struct rq *rq)
2005 {
2006 	if (sched_core_enabled(rq) && schedstat_enabled())
2007 		__sched_core_tick(rq);
2008 }
2009 
2010 #else
2011 
sched_core_account_forceidle(struct rq * rq)2012 static inline void sched_core_account_forceidle(struct rq *rq) {}
2013 
sched_core_tick(struct rq * rq)2014 static inline void sched_core_tick(struct rq *rq) {}
2015 
2016 #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
2017 
2018 #ifdef CONFIG_CGROUP_SCHED
2019 
2020 /*
2021  * Return the group to which this tasks belongs.
2022  *
2023  * We cannot use task_css() and friends because the cgroup subsystem
2024  * changes that value before the cgroup_subsys::attach() method is called,
2025  * therefore we cannot pin it and might observe the wrong value.
2026  *
2027  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
2028  * core changes this before calling sched_move_task().
2029  *
2030  * Instead we use a 'copy' which is updated from sched_move_task() while
2031  * holding both task_struct::pi_lock and rq::lock.
2032  */
task_group(struct task_struct * p)2033 static inline struct task_group *task_group(struct task_struct *p)
2034 {
2035 	return p->sched_task_group;
2036 }
2037 
2038 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)2039 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
2040 {
2041 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
2042 	struct task_group *tg = task_group(p);
2043 #endif
2044 
2045 #ifdef CONFIG_FAIR_GROUP_SCHED
2046 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
2047 	p->se.cfs_rq = tg->cfs_rq[cpu];
2048 	p->se.parent = tg->se[cpu];
2049 	p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
2050 #endif
2051 
2052 #ifdef CONFIG_RT_GROUP_SCHED
2053 	p->rt.rt_rq  = tg->rt_rq[cpu];
2054 	p->rt.parent = tg->rt_se[cpu];
2055 #endif
2056 }
2057 
2058 #else /* CONFIG_CGROUP_SCHED */
2059 
set_task_rq(struct task_struct * p,unsigned int cpu)2060 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)2061 static inline struct task_group *task_group(struct task_struct *p)
2062 {
2063 	return NULL;
2064 }
2065 
2066 #endif /* CONFIG_CGROUP_SCHED */
2067 
__set_task_cpu(struct task_struct * p,unsigned int cpu)2068 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2069 {
2070 	set_task_rq(p, cpu);
2071 #ifdef CONFIG_SMP
2072 	/*
2073 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2074 	 * successfully executed on another CPU. We must ensure that updates of
2075 	 * per-task data have been completed by this moment.
2076 	 */
2077 	smp_wmb();
2078 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2079 	p->wake_cpu = cpu;
2080 #endif
2081 }
2082 
2083 /*
2084  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
2085  */
2086 #ifdef CONFIG_SCHED_DEBUG
2087 # define const_debug __read_mostly
2088 #else
2089 # define const_debug const
2090 #endif
2091 
2092 #define SCHED_FEAT(name, enabled)	\
2093 	__SCHED_FEAT_##name ,
2094 
2095 enum {
2096 #include "features.h"
2097 	__SCHED_FEAT_NR,
2098 };
2099 
2100 #undef SCHED_FEAT
2101 
2102 #ifdef CONFIG_SCHED_DEBUG
2103 
2104 /*
2105  * To support run-time toggling of sched features, all the translation units
2106  * (but core.c) reference the sysctl_sched_features defined in core.c.
2107  */
2108 extern const_debug unsigned int sysctl_sched_features;
2109 
2110 #ifdef CONFIG_JUMP_LABEL
2111 #define SCHED_FEAT(name, enabled)					\
2112 static __always_inline bool static_branch_##name(struct static_key *key) \
2113 {									\
2114 	return static_key_##enabled(key);				\
2115 }
2116 
2117 #include "features.h"
2118 #undef SCHED_FEAT
2119 
2120 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2121 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2122 
2123 #else /* !CONFIG_JUMP_LABEL */
2124 
2125 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2126 
2127 #endif /* CONFIG_JUMP_LABEL */
2128 
2129 #else /* !SCHED_DEBUG */
2130 
2131 /*
2132  * Each translation unit has its own copy of sysctl_sched_features to allow
2133  * constants propagation at compile time and compiler optimization based on
2134  * features default.
2135  */
2136 #define SCHED_FEAT(name, enabled)	\
2137 	(1UL << __SCHED_FEAT_##name) * enabled |
2138 static const_debug __maybe_unused unsigned int sysctl_sched_features =
2139 #include "features.h"
2140 	0;
2141 #undef SCHED_FEAT
2142 
2143 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2144 
2145 #endif /* SCHED_DEBUG */
2146 
2147 extern struct static_key_false sched_numa_balancing;
2148 extern struct static_key_false sched_schedstats;
2149 
global_rt_period(void)2150 static inline u64 global_rt_period(void)
2151 {
2152 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2153 }
2154 
global_rt_runtime(void)2155 static inline u64 global_rt_runtime(void)
2156 {
2157 	if (sysctl_sched_rt_runtime < 0)
2158 		return RUNTIME_INF;
2159 
2160 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2161 }
2162 
task_current(struct rq * rq,struct task_struct * p)2163 static inline int task_current(struct rq *rq, struct task_struct *p)
2164 {
2165 	return rq->curr == p;
2166 }
2167 
task_on_cpu(struct rq * rq,struct task_struct * p)2168 static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2169 {
2170 #ifdef CONFIG_SMP
2171 	return p->on_cpu;
2172 #else
2173 	return task_current(rq, p);
2174 #endif
2175 }
2176 
task_on_rq_queued(struct task_struct * p)2177 static inline int task_on_rq_queued(struct task_struct *p)
2178 {
2179 	return p->on_rq == TASK_ON_RQ_QUEUED;
2180 }
2181 
task_on_rq_migrating(struct task_struct * p)2182 static inline int task_on_rq_migrating(struct task_struct *p)
2183 {
2184 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2185 }
2186 
2187 /* Wake flags. The first three directly map to some SD flag value */
2188 #define WF_EXEC         0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2189 #define WF_FORK         0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2190 #define WF_TTWU         0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2191 
2192 #define WF_SYNC         0x10 /* Waker goes to sleep after wakeup */
2193 #define WF_MIGRATED     0x20 /* Internal use, task got migrated */
2194 #define WF_CURRENT_CPU  0x40 /* Prefer to move the wakee to the current CPU. */
2195 
2196 #ifdef CONFIG_SMP
2197 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2198 static_assert(WF_FORK == SD_BALANCE_FORK);
2199 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2200 #endif
2201 
2202 /*
2203  * To aid in avoiding the subversion of "niceness" due to uneven distribution
2204  * of tasks with abnormal "nice" values across CPUs the contribution that
2205  * each task makes to its run queue's load is weighted according to its
2206  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2207  * scaled version of the new time slice allocation that they receive on time
2208  * slice expiry etc.
2209  */
2210 
2211 #define WEIGHT_IDLEPRIO		3
2212 #define WMULT_IDLEPRIO		1431655765
2213 
2214 extern const int		sched_prio_to_weight[40];
2215 extern const u32		sched_prio_to_wmult[40];
2216 #ifdef CONFIG_SCHED_LATENCY_NICE
2217 extern const int		sched_latency_to_weight[40];
2218 #endif
2219 
2220 /*
2221  * {de,en}queue flags:
2222  *
2223  * DEQUEUE_SLEEP  - task is no longer runnable
2224  * ENQUEUE_WAKEUP - task just became runnable
2225  *
2226  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2227  *                are in a known state which allows modification. Such pairs
2228  *                should preserve as much state as possible.
2229  *
2230  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2231  *        in the runqueue.
2232  *
2233  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2234  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2235  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2236  *
2237  */
2238 
2239 #define DEQUEUE_SLEEP		0x01
2240 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2241 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2242 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2243 
2244 #define ENQUEUE_WAKEUP		0x01
2245 #define ENQUEUE_RESTORE		0x02
2246 #define ENQUEUE_MOVE		0x04
2247 #define ENQUEUE_NOCLOCK		0x08
2248 
2249 #define ENQUEUE_HEAD		0x10
2250 #define ENQUEUE_REPLENISH	0x20
2251 #ifdef CONFIG_SMP
2252 #define ENQUEUE_MIGRATED	0x40
2253 #else
2254 #define ENQUEUE_MIGRATED	0x00
2255 #endif
2256 #define ENQUEUE_INITIAL		0x80
2257 
2258 #define RETRY_TASK		((void *)-1UL)
2259 
2260 struct affinity_context {
2261 	const struct cpumask *new_mask;
2262 	struct cpumask *user_mask;
2263 	unsigned int flags;
2264 };
2265 
2266 struct sched_class {
2267 
2268 #ifdef CONFIG_UCLAMP_TASK
2269 	int uclamp_enabled;
2270 #endif
2271 
2272 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2273 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2274 	void (*yield_task)   (struct rq *rq);
2275 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2276 
2277 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
2278 
2279 	struct task_struct *(*pick_next_task)(struct rq *rq);
2280 
2281 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2282 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2283 
2284 #ifdef CONFIG_SMP
2285 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2286 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2287 
2288 	struct task_struct * (*pick_task)(struct rq *rq);
2289 
2290 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2291 
2292 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2293 
2294 	void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2295 
2296 	void (*rq_online)(struct rq *rq);
2297 	void (*rq_offline)(struct rq *rq);
2298 
2299 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2300 #endif
2301 
2302 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2303 	void (*task_fork)(struct task_struct *p);
2304 	void (*task_dead)(struct task_struct *p);
2305 
2306 	/*
2307 	 * The switched_from() call is allowed to drop rq->lock, therefore we
2308 	 * cannot assume the switched_from/switched_to pair is serialized by
2309 	 * rq->lock. They are however serialized by p->pi_lock.
2310 	 */
2311 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2312 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2313 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2314 			      int oldprio);
2315 
2316 	unsigned int (*get_rr_interval)(struct rq *rq,
2317 					struct task_struct *task);
2318 
2319 	void (*update_curr)(struct rq *rq);
2320 
2321 #ifdef CONFIG_FAIR_GROUP_SCHED
2322 	void (*task_change_group)(struct task_struct *p);
2323 #endif
2324 
2325 #ifdef CONFIG_SCHED_CORE
2326 	int (*task_is_throttled)(struct task_struct *p, int cpu);
2327 #endif
2328 };
2329 
put_prev_task(struct rq * rq,struct task_struct * prev)2330 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2331 {
2332 	WARN_ON_ONCE(rq->curr != prev);
2333 	prev->sched_class->put_prev_task(rq, prev);
2334 }
2335 
set_next_task(struct rq * rq,struct task_struct * next)2336 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2337 {
2338 	next->sched_class->set_next_task(rq, next, false);
2339 }
2340 
2341 
2342 /*
2343  * Helper to define a sched_class instance; each one is placed in a separate
2344  * section which is ordered by the linker script:
2345  *
2346  *   include/asm-generic/vmlinux.lds.h
2347  *
2348  * *CAREFUL* they are laid out in *REVERSE* order!!!
2349  *
2350  * Also enforce alignment on the instance, not the type, to guarantee layout.
2351  */
2352 #define DEFINE_SCHED_CLASS(name) \
2353 const struct sched_class name##_sched_class \
2354 	__aligned(__alignof__(struct sched_class)) \
2355 	__section("__" #name "_sched_class")
2356 
2357 /* Defined in include/asm-generic/vmlinux.lds.h */
2358 extern struct sched_class __sched_class_highest[];
2359 extern struct sched_class __sched_class_lowest[];
2360 
2361 #define for_class_range(class, _from, _to) \
2362 	for (class = (_from); class < (_to); class++)
2363 
2364 #define for_each_class(class) \
2365 	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2366 
2367 #define sched_class_above(_a, _b)	((_a) < (_b))
2368 
2369 extern const struct sched_class stop_sched_class;
2370 extern const struct sched_class dl_sched_class;
2371 extern const struct sched_class rt_sched_class;
2372 extern const struct sched_class fair_sched_class;
2373 extern const struct sched_class idle_sched_class;
2374 
sched_stop_runnable(struct rq * rq)2375 static inline bool sched_stop_runnable(struct rq *rq)
2376 {
2377 	return rq->stop && task_on_rq_queued(rq->stop);
2378 }
2379 
sched_dl_runnable(struct rq * rq)2380 static inline bool sched_dl_runnable(struct rq *rq)
2381 {
2382 	return rq->dl.dl_nr_running > 0;
2383 }
2384 
sched_rt_runnable(struct rq * rq)2385 static inline bool sched_rt_runnable(struct rq *rq)
2386 {
2387 	return rq->rt.rt_queued > 0;
2388 }
2389 
sched_fair_runnable(struct rq * rq)2390 static inline bool sched_fair_runnable(struct rq *rq)
2391 {
2392 	return rq->cfs.nr_running > 0;
2393 }
2394 
2395 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2396 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2397 
2398 #define SCA_CHECK		0x01
2399 #define SCA_MIGRATE_DISABLE	0x02
2400 #define SCA_MIGRATE_ENABLE	0x04
2401 #define SCA_USER		0x08
2402 
2403 #ifdef CONFIG_SMP
2404 
2405 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2406 
2407 extern void trigger_load_balance(struct rq *rq);
2408 
2409 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2410 
get_push_task(struct rq * rq)2411 static inline struct task_struct *get_push_task(struct rq *rq)
2412 {
2413 	struct task_struct *p = rq->curr;
2414 
2415 	lockdep_assert_rq_held(rq);
2416 
2417 	if (rq->push_busy)
2418 		return NULL;
2419 
2420 	if (p->nr_cpus_allowed == 1)
2421 		return NULL;
2422 
2423 	if (p->migration_disabled)
2424 		return NULL;
2425 
2426 	rq->push_busy = true;
2427 	return get_task_struct(p);
2428 }
2429 
2430 extern int push_cpu_stop(void *arg);
2431 
2432 #endif
2433 
2434 #ifdef CONFIG_CPU_IDLE
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2435 static inline void idle_set_state(struct rq *rq,
2436 				  struct cpuidle_state *idle_state)
2437 {
2438 	rq->idle_state = idle_state;
2439 }
2440 
idle_get_state(struct rq * rq)2441 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2442 {
2443 	SCHED_WARN_ON(!rcu_read_lock_held());
2444 
2445 	return rq->idle_state;
2446 }
2447 #else
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2448 static inline void idle_set_state(struct rq *rq,
2449 				  struct cpuidle_state *idle_state)
2450 {
2451 }
2452 
idle_get_state(struct rq * rq)2453 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2454 {
2455 	return NULL;
2456 }
2457 #endif
2458 
2459 extern void schedule_idle(void);
2460 asmlinkage void schedule_user(void);
2461 
2462 extern void sysrq_sched_debug_show(void);
2463 extern void sched_init_granularity(void);
2464 extern void update_max_interval(void);
2465 
2466 extern void init_sched_dl_class(void);
2467 extern void init_sched_rt_class(void);
2468 extern void init_sched_fair_class(void);
2469 
2470 extern void reweight_task(struct task_struct *p, int prio);
2471 
2472 extern void resched_curr(struct rq *rq);
2473 extern void resched_cpu(int cpu);
2474 
2475 extern struct rt_bandwidth def_rt_bandwidth;
2476 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2477 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2478 
2479 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2480 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2481 
2482 #define BW_SHIFT		20
2483 #define BW_UNIT			(1 << BW_SHIFT)
2484 #define RATIO_SHIFT		8
2485 #define MAX_BW_BITS		(64 - BW_SHIFT)
2486 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2487 unsigned long to_ratio(u64 period, u64 runtime);
2488 
2489 extern void init_entity_runnable_average(struct sched_entity *se);
2490 extern void post_init_entity_util_avg(struct task_struct *p);
2491 
2492 #ifdef CONFIG_NO_HZ_FULL
2493 extern bool sched_can_stop_tick(struct rq *rq);
2494 extern int __init sched_tick_offload_init(void);
2495 
2496 /*
2497  * Tick may be needed by tasks in the runqueue depending on their policy and
2498  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2499  * nohz mode if necessary.
2500  */
sched_update_tick_dependency(struct rq * rq)2501 static inline void sched_update_tick_dependency(struct rq *rq)
2502 {
2503 	int cpu = cpu_of(rq);
2504 
2505 	if (!tick_nohz_full_cpu(cpu))
2506 		return;
2507 
2508 	if (sched_can_stop_tick(rq))
2509 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2510 	else
2511 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2512 }
2513 #else
sched_tick_offload_init(void)2514 static inline int sched_tick_offload_init(void) { return 0; }
sched_update_tick_dependency(struct rq * rq)2515 static inline void sched_update_tick_dependency(struct rq *rq) { }
2516 #endif
2517 
add_nr_running(struct rq * rq,unsigned count)2518 static inline void add_nr_running(struct rq *rq, unsigned count)
2519 {
2520 	unsigned prev_nr = rq->nr_running;
2521 
2522 	rq->nr_running = prev_nr + count;
2523 	if (trace_sched_update_nr_running_tp_enabled()) {
2524 		call_trace_sched_update_nr_running(rq, count);
2525 	}
2526 
2527 #ifdef CONFIG_SMP
2528 	if (prev_nr < 2 && rq->nr_running >= 2) {
2529 		if (!READ_ONCE(rq->rd->overload))
2530 			WRITE_ONCE(rq->rd->overload, 1);
2531 	}
2532 #endif
2533 
2534 	sched_update_tick_dependency(rq);
2535 }
2536 
sub_nr_running(struct rq * rq,unsigned count)2537 static inline void sub_nr_running(struct rq *rq, unsigned count)
2538 {
2539 	rq->nr_running -= count;
2540 	if (trace_sched_update_nr_running_tp_enabled()) {
2541 		call_trace_sched_update_nr_running(rq, -count);
2542 	}
2543 
2544 	/* Check if we still need preemption */
2545 	sched_update_tick_dependency(rq);
2546 }
2547 
2548 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2549 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2550 
2551 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2552 
2553 #ifdef CONFIG_PREEMPT_RT
2554 #define SCHED_NR_MIGRATE_BREAK 8
2555 #else
2556 #define SCHED_NR_MIGRATE_BREAK 32
2557 #endif
2558 
2559 extern const_debug unsigned int sysctl_sched_nr_migrate;
2560 extern const_debug unsigned int sysctl_sched_migration_cost;
2561 
2562 extern unsigned int sysctl_sched_base_slice;
2563 
2564 #ifdef CONFIG_SCHED_DEBUG
2565 extern int sysctl_resched_latency_warn_ms;
2566 extern int sysctl_resched_latency_warn_once;
2567 
2568 extern unsigned int sysctl_sched_tunable_scaling;
2569 
2570 extern unsigned int sysctl_numa_balancing_scan_delay;
2571 extern unsigned int sysctl_numa_balancing_scan_period_min;
2572 extern unsigned int sysctl_numa_balancing_scan_period_max;
2573 extern unsigned int sysctl_numa_balancing_scan_size;
2574 extern unsigned int sysctl_numa_balancing_hot_threshold;
2575 #endif
2576 
2577 #ifdef CONFIG_SCHED_HRTICK
2578 
2579 /*
2580  * Use hrtick when:
2581  *  - enabled by features
2582  *  - hrtimer is actually high res
2583  */
hrtick_enabled(struct rq * rq)2584 static inline int hrtick_enabled(struct rq *rq)
2585 {
2586 	if (!cpu_active(cpu_of(rq)))
2587 		return 0;
2588 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2589 }
2590 
hrtick_enabled_fair(struct rq * rq)2591 static inline int hrtick_enabled_fair(struct rq *rq)
2592 {
2593 	if (!sched_feat(HRTICK))
2594 		return 0;
2595 	return hrtick_enabled(rq);
2596 }
2597 
hrtick_enabled_dl(struct rq * rq)2598 static inline int hrtick_enabled_dl(struct rq *rq)
2599 {
2600 	if (!sched_feat(HRTICK_DL))
2601 		return 0;
2602 	return hrtick_enabled(rq);
2603 }
2604 
2605 void hrtick_start(struct rq *rq, u64 delay);
2606 
2607 #else
2608 
hrtick_enabled_fair(struct rq * rq)2609 static inline int hrtick_enabled_fair(struct rq *rq)
2610 {
2611 	return 0;
2612 }
2613 
hrtick_enabled_dl(struct rq * rq)2614 static inline int hrtick_enabled_dl(struct rq *rq)
2615 {
2616 	return 0;
2617 }
2618 
hrtick_enabled(struct rq * rq)2619 static inline int hrtick_enabled(struct rq *rq)
2620 {
2621 	return 0;
2622 }
2623 
2624 #endif /* CONFIG_SCHED_HRTICK */
2625 
2626 #ifndef arch_scale_freq_tick
2627 static __always_inline
arch_scale_freq_tick(void)2628 void arch_scale_freq_tick(void)
2629 {
2630 }
2631 #endif
2632 
2633 #ifndef arch_scale_freq_capacity
2634 /**
2635  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2636  * @cpu: the CPU in question.
2637  *
2638  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2639  *
2640  *     f_curr
2641  *     ------ * SCHED_CAPACITY_SCALE
2642  *     f_max
2643  */
2644 static __always_inline
arch_scale_freq_capacity(int cpu)2645 unsigned long arch_scale_freq_capacity(int cpu)
2646 {
2647 	return SCHED_CAPACITY_SCALE;
2648 }
2649 #endif
2650 
2651 #ifdef CONFIG_SCHED_DEBUG
2652 /*
2653  * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2654  * acquire rq lock instead of rq_lock(). So at the end of these two functions
2655  * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2656  * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2657  */
double_rq_clock_clear_update(struct rq * rq1,struct rq * rq2)2658 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2659 {
2660 	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2661 	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2662 #ifdef CONFIG_SMP
2663 	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2664 #endif
2665 }
2666 #else
double_rq_clock_clear_update(struct rq * rq1,struct rq * rq2)2667 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
2668 #endif
2669 
2670 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...)		\
2671 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \
2672 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \
2673 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t;	\
2674   _lock; return _t; }
2675 
2676 #ifdef CONFIG_SMP
2677 
rq_order_less(struct rq * rq1,struct rq * rq2)2678 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2679 {
2680 #ifdef CONFIG_SCHED_CORE
2681 	/*
2682 	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2683 	 * order by core-id first and cpu-id second.
2684 	 *
2685 	 * Notably:
2686 	 *
2687 	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2688 	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2689 	 *
2690 	 * when only cpu-id is considered.
2691 	 */
2692 	if (rq1->core->cpu < rq2->core->cpu)
2693 		return true;
2694 	if (rq1->core->cpu > rq2->core->cpu)
2695 		return false;
2696 
2697 	/*
2698 	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2699 	 */
2700 #endif
2701 	return rq1->cpu < rq2->cpu;
2702 }
2703 
2704 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2705 
2706 #ifdef CONFIG_PREEMPTION
2707 
2708 /*
2709  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2710  * way at the expense of forcing extra atomic operations in all
2711  * invocations.  This assures that the double_lock is acquired using the
2712  * same underlying policy as the spinlock_t on this architecture, which
2713  * reduces latency compared to the unfair variant below.  However, it
2714  * also adds more overhead and therefore may reduce throughput.
2715  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2716 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2717 	__releases(this_rq->lock)
2718 	__acquires(busiest->lock)
2719 	__acquires(this_rq->lock)
2720 {
2721 	raw_spin_rq_unlock(this_rq);
2722 	double_rq_lock(this_rq, busiest);
2723 
2724 	return 1;
2725 }
2726 
2727 #else
2728 /*
2729  * Unfair double_lock_balance: Optimizes throughput at the expense of
2730  * latency by eliminating extra atomic operations when the locks are
2731  * already in proper order on entry.  This favors lower CPU-ids and will
2732  * grant the double lock to lower CPUs over higher ids under contention,
2733  * regardless of entry order into the function.
2734  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2735 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2736 	__releases(this_rq->lock)
2737 	__acquires(busiest->lock)
2738 	__acquires(this_rq->lock)
2739 {
2740 	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2741 	    likely(raw_spin_rq_trylock(busiest))) {
2742 		double_rq_clock_clear_update(this_rq, busiest);
2743 		return 0;
2744 	}
2745 
2746 	if (rq_order_less(this_rq, busiest)) {
2747 		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2748 		double_rq_clock_clear_update(this_rq, busiest);
2749 		return 0;
2750 	}
2751 
2752 	raw_spin_rq_unlock(this_rq);
2753 	double_rq_lock(this_rq, busiest);
2754 
2755 	return 1;
2756 }
2757 
2758 #endif /* CONFIG_PREEMPTION */
2759 
2760 /*
2761  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2762  */
double_lock_balance(struct rq * this_rq,struct rq * busiest)2763 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2764 {
2765 	lockdep_assert_irqs_disabled();
2766 
2767 	return _double_lock_balance(this_rq, busiest);
2768 }
2769 
double_unlock_balance(struct rq * this_rq,struct rq * busiest)2770 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2771 	__releases(busiest->lock)
2772 {
2773 	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2774 		raw_spin_rq_unlock(busiest);
2775 	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2776 }
2777 
double_lock(spinlock_t * l1,spinlock_t * l2)2778 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2779 {
2780 	if (l1 > l2)
2781 		swap(l1, l2);
2782 
2783 	spin_lock(l1);
2784 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2785 }
2786 
double_lock_irq(spinlock_t * l1,spinlock_t * l2)2787 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2788 {
2789 	if (l1 > l2)
2790 		swap(l1, l2);
2791 
2792 	spin_lock_irq(l1);
2793 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2794 }
2795 
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)2796 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2797 {
2798 	if (l1 > l2)
2799 		swap(l1, l2);
2800 
2801 	raw_spin_lock(l1);
2802 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2803 }
2804 
double_raw_unlock(raw_spinlock_t * l1,raw_spinlock_t * l2)2805 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2806 {
2807 	raw_spin_unlock(l1);
2808 	raw_spin_unlock(l2);
2809 }
2810 
2811 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
2812 		    double_raw_lock(_T->lock, _T->lock2),
2813 		    double_raw_unlock(_T->lock, _T->lock2))
2814 
2815 /*
2816  * double_rq_unlock - safely unlock two runqueues
2817  *
2818  * Note this does not restore interrupts like task_rq_unlock,
2819  * you need to do so manually after calling.
2820  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2821 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2822 	__releases(rq1->lock)
2823 	__releases(rq2->lock)
2824 {
2825 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
2826 		raw_spin_rq_unlock(rq2);
2827 	else
2828 		__release(rq2->lock);
2829 	raw_spin_rq_unlock(rq1);
2830 }
2831 
2832 extern void set_rq_online (struct rq *rq);
2833 extern void set_rq_offline(struct rq *rq);
2834 extern bool sched_smp_initialized;
2835 
2836 #else /* CONFIG_SMP */
2837 
2838 /*
2839  * double_rq_lock - safely lock two runqueues
2840  *
2841  * Note this does not disable interrupts like task_rq_lock,
2842  * you need to do so manually before calling.
2843  */
double_rq_lock(struct rq * rq1,struct rq * rq2)2844 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2845 	__acquires(rq1->lock)
2846 	__acquires(rq2->lock)
2847 {
2848 	WARN_ON_ONCE(!irqs_disabled());
2849 	WARN_ON_ONCE(rq1 != rq2);
2850 	raw_spin_rq_lock(rq1);
2851 	__acquire(rq2->lock);	/* Fake it out ;) */
2852 	double_rq_clock_clear_update(rq1, rq2);
2853 }
2854 
2855 /*
2856  * double_rq_unlock - safely unlock two runqueues
2857  *
2858  * Note this does not restore interrupts like task_rq_unlock,
2859  * you need to do so manually after calling.
2860  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2861 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2862 	__releases(rq1->lock)
2863 	__releases(rq2->lock)
2864 {
2865 	WARN_ON_ONCE(rq1 != rq2);
2866 	raw_spin_rq_unlock(rq1);
2867 	__release(rq2->lock);
2868 }
2869 
2870 #endif
2871 
2872 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
2873 		    double_rq_lock(_T->lock, _T->lock2),
2874 		    double_rq_unlock(_T->lock, _T->lock2))
2875 
2876 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2877 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2878 
2879 #ifdef	CONFIG_SCHED_DEBUG
2880 extern bool sched_debug_verbose;
2881 
2882 extern void print_cfs_stats(struct seq_file *m, int cpu);
2883 extern void print_rt_stats(struct seq_file *m, int cpu);
2884 extern void print_dl_stats(struct seq_file *m, int cpu);
2885 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2886 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2887 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2888 
2889 extern void resched_latency_warn(int cpu, u64 latency);
2890 #ifdef CONFIG_NUMA_BALANCING
2891 extern void
2892 show_numa_stats(struct task_struct *p, struct seq_file *m);
2893 extern void
2894 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2895 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2896 #endif /* CONFIG_NUMA_BALANCING */
2897 #else
resched_latency_warn(int cpu,u64 latency)2898 static inline void resched_latency_warn(int cpu, u64 latency) {}
2899 #endif /* CONFIG_SCHED_DEBUG */
2900 
2901 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2902 extern void init_rt_rq(struct rt_rq *rt_rq);
2903 extern void init_dl_rq(struct dl_rq *dl_rq);
2904 
2905 extern void cfs_bandwidth_usage_inc(void);
2906 extern void cfs_bandwidth_usage_dec(void);
2907 
2908 #ifdef CONFIG_NO_HZ_COMMON
2909 #define NOHZ_BALANCE_KICK_BIT	0
2910 #define NOHZ_STATS_KICK_BIT	1
2911 #define NOHZ_NEWILB_KICK_BIT	2
2912 #define NOHZ_NEXT_KICK_BIT	3
2913 
2914 /* Run rebalance_domains() */
2915 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2916 /* Update blocked load */
2917 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2918 /* Update blocked load when entering idle */
2919 #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
2920 /* Update nohz.next_balance */
2921 #define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
2922 
2923 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2924 
2925 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2926 
2927 extern void nohz_balance_exit_idle(struct rq *rq);
2928 #else
nohz_balance_exit_idle(struct rq * rq)2929 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2930 #endif
2931 
2932 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2933 extern void nohz_run_idle_balance(int cpu);
2934 #else
nohz_run_idle_balance(int cpu)2935 static inline void nohz_run_idle_balance(int cpu) { }
2936 #endif
2937 
2938 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2939 struct irqtime {
2940 	u64			total;
2941 	u64			tick_delta;
2942 	u64			irq_start_time;
2943 	struct u64_stats_sync	sync;
2944 };
2945 
2946 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2947 
2948 /*
2949  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2950  * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2951  * and never move forward.
2952  */
irq_time_read(int cpu)2953 static inline u64 irq_time_read(int cpu)
2954 {
2955 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2956 	unsigned int seq;
2957 	u64 total;
2958 
2959 	do {
2960 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2961 		total = irqtime->total;
2962 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2963 
2964 	return total;
2965 }
2966 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2967 
2968 #ifdef CONFIG_CPU_FREQ
2969 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2970 
2971 /**
2972  * cpufreq_update_util - Take a note about CPU utilization changes.
2973  * @rq: Runqueue to carry out the update for.
2974  * @flags: Update reason flags.
2975  *
2976  * This function is called by the scheduler on the CPU whose utilization is
2977  * being updated.
2978  *
2979  * It can only be called from RCU-sched read-side critical sections.
2980  *
2981  * The way cpufreq is currently arranged requires it to evaluate the CPU
2982  * performance state (frequency/voltage) on a regular basis to prevent it from
2983  * being stuck in a completely inadequate performance level for too long.
2984  * That is not guaranteed to happen if the updates are only triggered from CFS
2985  * and DL, though, because they may not be coming in if only RT tasks are
2986  * active all the time (or there are RT tasks only).
2987  *
2988  * As a workaround for that issue, this function is called periodically by the
2989  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2990  * but that really is a band-aid.  Going forward it should be replaced with
2991  * solutions targeted more specifically at RT tasks.
2992  */
cpufreq_update_util(struct rq * rq,unsigned int flags)2993 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2994 {
2995 	struct update_util_data *data;
2996 
2997 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2998 						  cpu_of(rq)));
2999 	if (data)
3000 		data->func(data, rq_clock(rq), flags);
3001 }
3002 #else
cpufreq_update_util(struct rq * rq,unsigned int flags)3003 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
3004 #endif /* CONFIG_CPU_FREQ */
3005 
3006 #ifdef arch_scale_freq_capacity
3007 # ifndef arch_scale_freq_invariant
3008 #  define arch_scale_freq_invariant()	true
3009 # endif
3010 #else
3011 # define arch_scale_freq_invariant()	false
3012 #endif
3013 
3014 #ifdef CONFIG_SMP
capacity_orig_of(int cpu)3015 static inline unsigned long capacity_orig_of(int cpu)
3016 {
3017 	return cpu_rq(cpu)->cpu_capacity_orig;
3018 }
3019 
3020 /**
3021  * enum cpu_util_type - CPU utilization type
3022  * @FREQUENCY_UTIL:	Utilization used to select frequency
3023  * @ENERGY_UTIL:	Utilization used during energy calculation
3024  *
3025  * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
3026  * need to be aggregated differently depending on the usage made of them. This
3027  * enum is used within effective_cpu_util() to differentiate the types of
3028  * utilization expected by the callers, and adjust the aggregation accordingly.
3029  */
3030 enum cpu_util_type {
3031 	FREQUENCY_UTIL,
3032 	ENERGY_UTIL,
3033 };
3034 
3035 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
3036 				 enum cpu_util_type type,
3037 				 struct task_struct *p);
3038 
3039 /*
3040  * Verify the fitness of task @p to run on @cpu taking into account the
3041  * CPU original capacity and the runtime/deadline ratio of the task.
3042  *
3043  * The function will return true if the original capacity of @cpu is
3044  * greater than or equal to task's deadline density right shifted by
3045  * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
3046  */
dl_task_fits_capacity(struct task_struct * p,int cpu)3047 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
3048 {
3049 	unsigned long cap = arch_scale_cpu_capacity(cpu);
3050 
3051 	return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
3052 }
3053 
cpu_bw_dl(struct rq * rq)3054 static inline unsigned long cpu_bw_dl(struct rq *rq)
3055 {
3056 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3057 }
3058 
cpu_util_dl(struct rq * rq)3059 static inline unsigned long cpu_util_dl(struct rq *rq)
3060 {
3061 	return READ_ONCE(rq->avg_dl.util_avg);
3062 }
3063 
3064 
3065 extern unsigned long cpu_util_cfs(int cpu);
3066 extern unsigned long cpu_util_cfs_boost(int cpu);
3067 
cpu_util_rt(struct rq * rq)3068 static inline unsigned long cpu_util_rt(struct rq *rq)
3069 {
3070 	return READ_ONCE(rq->avg_rt.util_avg);
3071 }
3072 #endif
3073 
3074 #ifdef CONFIG_UCLAMP_TASK
3075 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3076 
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)3077 static inline unsigned long uclamp_rq_get(struct rq *rq,
3078 					  enum uclamp_id clamp_id)
3079 {
3080 	return READ_ONCE(rq->uclamp[clamp_id].value);
3081 }
3082 
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)3083 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3084 				 unsigned int value)
3085 {
3086 	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3087 }
3088 
uclamp_rq_is_idle(struct rq * rq)3089 static inline bool uclamp_rq_is_idle(struct rq *rq)
3090 {
3091 	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3092 }
3093 
3094 /**
3095  * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
3096  * @rq:		The rq to clamp against. Must not be NULL.
3097  * @util:	The util value to clamp.
3098  * @p:		The task to clamp against. Can be NULL if you want to clamp
3099  *		against @rq only.
3100  *
3101  * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
3102  *
3103  * If sched_uclamp_used static key is disabled, then just return the util
3104  * without any clamping since uclamp aggregation at the rq level in the fast
3105  * path is disabled, rendering this operation a NOP.
3106  *
3107  * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
3108  * will return the correct effective uclamp value of the task even if the
3109  * static key is disabled.
3110  */
3111 static __always_inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)3112 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3113 				  struct task_struct *p)
3114 {
3115 	unsigned long min_util = 0;
3116 	unsigned long max_util = 0;
3117 
3118 	if (!static_branch_likely(&sched_uclamp_used))
3119 		return util;
3120 
3121 	if (p) {
3122 		min_util = uclamp_eff_value(p, UCLAMP_MIN);
3123 		max_util = uclamp_eff_value(p, UCLAMP_MAX);
3124 
3125 		/*
3126 		 * Ignore last runnable task's max clamp, as this task will
3127 		 * reset it. Similarly, no need to read the rq's min clamp.
3128 		 */
3129 		if (uclamp_rq_is_idle(rq))
3130 			goto out;
3131 	}
3132 
3133 	min_util = max_t(unsigned long, min_util, uclamp_rq_get(rq, UCLAMP_MIN));
3134 	max_util = max_t(unsigned long, max_util, uclamp_rq_get(rq, UCLAMP_MAX));
3135 out:
3136 	/*
3137 	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
3138 	 * RUNNABLE tasks with _different_ clamps, we can end up with an
3139 	 * inversion. Fix it now when the clamps are applied.
3140 	 */
3141 	if (unlikely(min_util >= max_util))
3142 		return min_util;
3143 
3144 	return clamp(util, min_util, max_util);
3145 }
3146 
3147 /* Is the rq being capped/throttled by uclamp_max? */
uclamp_rq_is_capped(struct rq * rq)3148 static inline bool uclamp_rq_is_capped(struct rq *rq)
3149 {
3150 	unsigned long rq_util;
3151 	unsigned long max_util;
3152 
3153 	if (!static_branch_likely(&sched_uclamp_used))
3154 		return false;
3155 
3156 	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3157 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3158 
3159 	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3160 }
3161 
3162 /*
3163  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3164  * by default in the fast path and only gets turned on once userspace performs
3165  * an operation that requires it.
3166  *
3167  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3168  * hence is active.
3169  */
uclamp_is_used(void)3170 static inline bool uclamp_is_used(void)
3171 {
3172 	return static_branch_likely(&sched_uclamp_used);
3173 }
3174 #else /* CONFIG_UCLAMP_TASK */
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)3175 static inline unsigned long uclamp_eff_value(struct task_struct *p,
3176 					     enum uclamp_id clamp_id)
3177 {
3178 	if (clamp_id == UCLAMP_MIN)
3179 		return 0;
3180 
3181 	return SCHED_CAPACITY_SCALE;
3182 }
3183 
3184 static inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)3185 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3186 				  struct task_struct *p)
3187 {
3188 	return util;
3189 }
3190 
uclamp_rq_is_capped(struct rq * rq)3191 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3192 
uclamp_is_used(void)3193 static inline bool uclamp_is_used(void)
3194 {
3195 	return false;
3196 }
3197 
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)3198 static inline unsigned long uclamp_rq_get(struct rq *rq,
3199 					  enum uclamp_id clamp_id)
3200 {
3201 	if (clamp_id == UCLAMP_MIN)
3202 		return 0;
3203 
3204 	return SCHED_CAPACITY_SCALE;
3205 }
3206 
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)3207 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3208 				 unsigned int value)
3209 {
3210 }
3211 
uclamp_rq_is_idle(struct rq * rq)3212 static inline bool uclamp_rq_is_idle(struct rq *rq)
3213 {
3214 	return false;
3215 }
3216 #endif /* CONFIG_UCLAMP_TASK */
3217 
3218 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
cpu_util_irq(struct rq * rq)3219 static inline unsigned long cpu_util_irq(struct rq *rq)
3220 {
3221 	return rq->avg_irq.util_avg;
3222 }
3223 
3224 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3225 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3226 {
3227 	util *= (max - irq);
3228 	util /= max;
3229 
3230 	return util;
3231 
3232 }
3233 #else
cpu_util_irq(struct rq * rq)3234 static inline unsigned long cpu_util_irq(struct rq *rq)
3235 {
3236 	return 0;
3237 }
3238 
3239 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3240 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3241 {
3242 	return util;
3243 }
3244 #endif
3245 
3246 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3247 
3248 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3249 
3250 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3251 
sched_energy_enabled(void)3252 static inline bool sched_energy_enabled(void)
3253 {
3254 	return static_branch_unlikely(&sched_energy_present);
3255 }
3256 
3257 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3258 
3259 #define perf_domain_span(pd) NULL
sched_energy_enabled(void)3260 static inline bool sched_energy_enabled(void) { return false; }
3261 
3262 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3263 
3264 #ifdef CONFIG_MEMBARRIER
3265 /*
3266  * The scheduler provides memory barriers required by membarrier between:
3267  * - prior user-space memory accesses and store to rq->membarrier_state,
3268  * - store to rq->membarrier_state and following user-space memory accesses.
3269  * In the same way it provides those guarantees around store to rq->curr.
3270  */
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3271 static inline void membarrier_switch_mm(struct rq *rq,
3272 					struct mm_struct *prev_mm,
3273 					struct mm_struct *next_mm)
3274 {
3275 	int membarrier_state;
3276 
3277 	if (prev_mm == next_mm)
3278 		return;
3279 
3280 	membarrier_state = atomic_read(&next_mm->membarrier_state);
3281 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3282 		return;
3283 
3284 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3285 }
3286 #else
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3287 static inline void membarrier_switch_mm(struct rq *rq,
3288 					struct mm_struct *prev_mm,
3289 					struct mm_struct *next_mm)
3290 {
3291 }
3292 #endif
3293 
3294 #ifdef CONFIG_SMP
is_per_cpu_kthread(struct task_struct * p)3295 static inline bool is_per_cpu_kthread(struct task_struct *p)
3296 {
3297 	if (!(p->flags & PF_KTHREAD))
3298 		return false;
3299 
3300 	if (p->nr_cpus_allowed != 1)
3301 		return false;
3302 
3303 	return true;
3304 }
3305 #endif
3306 
3307 extern void swake_up_all_locked(struct swait_queue_head *q);
3308 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3309 
3310 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
3311 
3312 #ifdef CONFIG_PREEMPT_DYNAMIC
3313 extern int preempt_dynamic_mode;
3314 extern int sched_dynamic_mode(const char *str);
3315 extern void sched_dynamic_update(int mode);
3316 #endif
3317 
update_current_exec_runtime(struct task_struct * curr,u64 now,u64 delta_exec)3318 static inline void update_current_exec_runtime(struct task_struct *curr,
3319 						u64 now, u64 delta_exec)
3320 {
3321 	curr->se.sum_exec_runtime += delta_exec;
3322 	account_group_exec_runtime(curr, delta_exec);
3323 
3324 	curr->se.exec_start = now;
3325 	cgroup_account_cputime(curr, delta_exec);
3326 }
3327 
3328 #ifdef CONFIG_SCHED_MM_CID
3329 
3330 #define SCHED_MM_CID_PERIOD_NS	(100ULL * 1000000)	/* 100ms */
3331 #define MM_CID_SCAN_DELAY	100			/* 100ms */
3332 
3333 extern raw_spinlock_t cid_lock;
3334 extern int use_cid_lock;
3335 
3336 extern void sched_mm_cid_migrate_from(struct task_struct *t);
3337 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3338 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3339 extern void init_sched_mm_cid(struct task_struct *t);
3340 
__mm_cid_put(struct mm_struct * mm,int cid)3341 static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3342 {
3343 	if (cid < 0)
3344 		return;
3345 	cpumask_clear_cpu(cid, mm_cidmask(mm));
3346 }
3347 
3348 /*
3349  * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3350  * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3351  * be held to transition to other states.
3352  *
3353  * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3354  * consistent across cpus, which prevents use of this_cpu_cmpxchg.
3355  */
mm_cid_put_lazy(struct task_struct * t)3356 static inline void mm_cid_put_lazy(struct task_struct *t)
3357 {
3358 	struct mm_struct *mm = t->mm;
3359 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3360 	int cid;
3361 
3362 	lockdep_assert_irqs_disabled();
3363 	cid = __this_cpu_read(pcpu_cid->cid);
3364 	if (!mm_cid_is_lazy_put(cid) ||
3365 	    !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3366 		return;
3367 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3368 }
3369 
mm_cid_pcpu_unset(struct mm_struct * mm)3370 static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3371 {
3372 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3373 	int cid, res;
3374 
3375 	lockdep_assert_irqs_disabled();
3376 	cid = __this_cpu_read(pcpu_cid->cid);
3377 	for (;;) {
3378 		if (mm_cid_is_unset(cid))
3379 			return MM_CID_UNSET;
3380 		/*
3381 		 * Attempt transition from valid or lazy-put to unset.
3382 		 */
3383 		res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3384 		if (res == cid)
3385 			break;
3386 		cid = res;
3387 	}
3388 	return cid;
3389 }
3390 
mm_cid_put(struct mm_struct * mm)3391 static inline void mm_cid_put(struct mm_struct *mm)
3392 {
3393 	int cid;
3394 
3395 	lockdep_assert_irqs_disabled();
3396 	cid = mm_cid_pcpu_unset(mm);
3397 	if (cid == MM_CID_UNSET)
3398 		return;
3399 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3400 }
3401 
__mm_cid_try_get(struct mm_struct * mm)3402 static inline int __mm_cid_try_get(struct mm_struct *mm)
3403 {
3404 	struct cpumask *cpumask;
3405 	int cid;
3406 
3407 	cpumask = mm_cidmask(mm);
3408 	/*
3409 	 * Retry finding first zero bit if the mask is temporarily
3410 	 * filled. This only happens during concurrent remote-clear
3411 	 * which owns a cid without holding a rq lock.
3412 	 */
3413 	for (;;) {
3414 		cid = cpumask_first_zero(cpumask);
3415 		if (cid < nr_cpu_ids)
3416 			break;
3417 		cpu_relax();
3418 	}
3419 	if (cpumask_test_and_set_cpu(cid, cpumask))
3420 		return -1;
3421 	return cid;
3422 }
3423 
3424 /*
3425  * Save a snapshot of the current runqueue time of this cpu
3426  * with the per-cpu cid value, allowing to estimate how recently it was used.
3427  */
mm_cid_snapshot_time(struct rq * rq,struct mm_struct * mm)3428 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
3429 {
3430 	struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3431 
3432 	lockdep_assert_rq_held(rq);
3433 	WRITE_ONCE(pcpu_cid->time, rq->clock);
3434 }
3435 
__mm_cid_get(struct rq * rq,struct mm_struct * mm)3436 static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
3437 {
3438 	int cid;
3439 
3440 	/*
3441 	 * All allocations (even those using the cid_lock) are lock-free. If
3442 	 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3443 	 * guarantee forward progress.
3444 	 */
3445 	if (!READ_ONCE(use_cid_lock)) {
3446 		cid = __mm_cid_try_get(mm);
3447 		if (cid >= 0)
3448 			goto end;
3449 		raw_spin_lock(&cid_lock);
3450 	} else {
3451 		raw_spin_lock(&cid_lock);
3452 		cid = __mm_cid_try_get(mm);
3453 		if (cid >= 0)
3454 			goto unlock;
3455 	}
3456 
3457 	/*
3458 	 * cid concurrently allocated. Retry while forcing following
3459 	 * allocations to use the cid_lock to ensure forward progress.
3460 	 */
3461 	WRITE_ONCE(use_cid_lock, 1);
3462 	/*
3463 	 * Set use_cid_lock before allocation. Only care about program order
3464 	 * because this is only required for forward progress.
3465 	 */
3466 	barrier();
3467 	/*
3468 	 * Retry until it succeeds. It is guaranteed to eventually succeed once
3469 	 * all newcoming allocations observe the use_cid_lock flag set.
3470 	 */
3471 	do {
3472 		cid = __mm_cid_try_get(mm);
3473 		cpu_relax();
3474 	} while (cid < 0);
3475 	/*
3476 	 * Allocate before clearing use_cid_lock. Only care about
3477 	 * program order because this is for forward progress.
3478 	 */
3479 	barrier();
3480 	WRITE_ONCE(use_cid_lock, 0);
3481 unlock:
3482 	raw_spin_unlock(&cid_lock);
3483 end:
3484 	mm_cid_snapshot_time(rq, mm);
3485 	return cid;
3486 }
3487 
mm_cid_get(struct rq * rq,struct mm_struct * mm)3488 static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
3489 {
3490 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3491 	struct cpumask *cpumask;
3492 	int cid;
3493 
3494 	lockdep_assert_rq_held(rq);
3495 	cpumask = mm_cidmask(mm);
3496 	cid = __this_cpu_read(pcpu_cid->cid);
3497 	if (mm_cid_is_valid(cid)) {
3498 		mm_cid_snapshot_time(rq, mm);
3499 		return cid;
3500 	}
3501 	if (mm_cid_is_lazy_put(cid)) {
3502 		if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3503 			__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3504 	}
3505 	cid = __mm_cid_get(rq, mm);
3506 	__this_cpu_write(pcpu_cid->cid, cid);
3507 	return cid;
3508 }
3509 
switch_mm_cid(struct rq * rq,struct task_struct * prev,struct task_struct * next)3510 static inline void switch_mm_cid(struct rq *rq,
3511 				 struct task_struct *prev,
3512 				 struct task_struct *next)
3513 {
3514 	/*
3515 	 * Provide a memory barrier between rq->curr store and load of
3516 	 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3517 	 *
3518 	 * Should be adapted if context_switch() is modified.
3519 	 */
3520 	if (!next->mm) {                                // to kernel
3521 		/*
3522 		 * user -> kernel transition does not guarantee a barrier, but
3523 		 * we can use the fact that it performs an atomic operation in
3524 		 * mmgrab().
3525 		 */
3526 		if (prev->mm)                           // from user
3527 			smp_mb__after_mmgrab();
3528 		/*
3529 		 * kernel -> kernel transition does not change rq->curr->mm
3530 		 * state. It stays NULL.
3531 		 */
3532 	} else {                                        // to user
3533 		/*
3534 		 * kernel -> user transition does not provide a barrier
3535 		 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3536 		 * Provide it here.
3537 		 */
3538 		if (!prev->mm)                          // from kernel
3539 			smp_mb();
3540 		/*
3541 		 * user -> user transition guarantees a memory barrier through
3542 		 * switch_mm() when current->mm changes. If current->mm is
3543 		 * unchanged, no barrier is needed.
3544 		 */
3545 	}
3546 	if (prev->mm_cid_active) {
3547 		mm_cid_snapshot_time(rq, prev->mm);
3548 		mm_cid_put_lazy(prev);
3549 		prev->mm_cid = -1;
3550 	}
3551 	if (next->mm_cid_active)
3552 		next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm);
3553 }
3554 
3555 #else
switch_mm_cid(struct rq * rq,struct task_struct * prev,struct task_struct * next)3556 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
sched_mm_cid_migrate_from(struct task_struct * t)3557 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
sched_mm_cid_migrate_to(struct rq * dst_rq,struct task_struct * t)3558 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
task_tick_mm_cid(struct rq * rq,struct task_struct * curr)3559 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
init_sched_mm_cid(struct task_struct * t)3560 static inline void init_sched_mm_cid(struct task_struct *t) { }
3561 #endif
3562 
3563 extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
3564 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
3565 
3566 #endif /* _KERNEL_SCHED_SCHED_H */
3567