1 //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is part of the X86 Disassembler.
10 // It contains code to translate the data produced by the decoder into
11 // MCInsts.
12 //
13 //
14 // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
15 // 64-bit X86 instruction sets. The main decode sequence for an assembly
16 // instruction in this disassembler is:
17 //
18 // 1. Read the prefix bytes and determine the attributes of the instruction.
19 // These attributes, recorded in enum attributeBits
20 // (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM
21 // provides a mapping from bitmasks to contexts, which are represented by
22 // enum InstructionContext (ibid.).
23 //
24 // 2. Read the opcode, and determine what kind of opcode it is. The
25 // disassembler distinguishes four kinds of opcodes, which are enumerated in
26 // OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
27 // (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
28 // (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context.
29 //
30 // 3. Depending on the opcode type, look in one of four ClassDecision structures
31 // (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which
32 // OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get
33 // a ModRMDecision (ibid.).
34 //
35 // 4. Some instructions, such as escape opcodes or extended opcodes, or even
36 // instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
37 // ModR/M byte to complete decode. The ModRMDecision's type is an entry from
38 // ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
39 // ModR/M byte is required and how to interpret it.
40 //
41 // 5. After resolving the ModRMDecision, the disassembler has a unique ID
42 // of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in
43 // INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
44 // meanings of its operands.
45 //
46 // 6. For each operand, its encoding is an entry from OperandEncoding
47 // (X86DisassemblerDecoderCommon.h) and its type is an entry from
48 // OperandType (ibid.). The encoding indicates how to read it from the
49 // instruction; the type indicates how to interpret the value once it has
50 // been read. For example, a register operand could be stored in the R/M
51 // field of the ModR/M byte, the REG field of the ModR/M byte, or added to
52 // the main opcode. This is orthogonal from its meaning (an GPR or an XMM
53 // register, for instance). Given this information, the operands can be
54 // extracted and interpreted.
55 //
56 // 7. As the last step, the disassembler translates the instruction information
57 // and operands into a format understandable by the client - in this case, an
58 // MCInst for use by the MC infrastructure.
59 //
60 // The disassembler is broken broadly into two parts: the table emitter that
61 // emits the instruction decode tables discussed above during compilation, and
62 // the disassembler itself. The table emitter is documented in more detail in
63 // utils/TableGen/X86DisassemblerEmitter.h.
64 //
65 // X86Disassembler.cpp contains the code responsible for step 7, and for
66 // invoking the decoder to execute steps 1-6.
67 // X86DisassemblerDecoderCommon.h contains the definitions needed by both the
68 // table emitter and the disassembler.
69 // X86DisassemblerDecoder.h contains the public interface of the decoder,
70 // factored out into C for possible use by other projects.
71 // X86DisassemblerDecoder.c contains the source code of the decoder, which is
72 // responsible for steps 1-6.
73 //
74 //===----------------------------------------------------------------------===//
75
76 #include "MCTargetDesc/X86BaseInfo.h"
77 #include "MCTargetDesc/X86MCTargetDesc.h"
78 #include "TargetInfo/X86TargetInfo.h"
79 #include "X86DisassemblerDecoder.h"
80 #include "llvm/MC/MCContext.h"
81 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
82 #include "llvm/MC/MCExpr.h"
83 #include "llvm/MC/MCInst.h"
84 #include "llvm/MC/MCInstrInfo.h"
85 #include "llvm/MC/MCSubtargetInfo.h"
86 #include "llvm/Support/Debug.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/TargetRegistry.h"
89 #include "llvm/Support/raw_ostream.h"
90
91 using namespace llvm;
92 using namespace llvm::X86Disassembler;
93
94 #define DEBUG_TYPE "x86-disassembler"
95
96 #define debug(s) LLVM_DEBUG(dbgs() << __LINE__ << ": " << s);
97
98 // Specifies whether a ModR/M byte is needed and (if so) which
99 // instruction each possible value of the ModR/M byte corresponds to. Once
100 // this information is known, we have narrowed down to a single instruction.
101 struct ModRMDecision {
102 uint8_t modrm_type;
103 uint16_t instructionIDs;
104 };
105
106 // Specifies which set of ModR/M->instruction tables to look at
107 // given a particular opcode.
108 struct OpcodeDecision {
109 ModRMDecision modRMDecisions[256];
110 };
111
112 // Specifies which opcode->instruction tables to look at given
113 // a particular context (set of attributes). Since there are many possible
114 // contexts, the decoder first uses CONTEXTS_SYM to determine which context
115 // applies given a specific set of attributes. Hence there are only IC_max
116 // entries in this table, rather than 2^(ATTR_max).
117 struct ContextDecision {
118 OpcodeDecision opcodeDecisions[IC_max];
119 };
120
121 #include "X86GenDisassemblerTables.inc"
122
decode(OpcodeType type,InstructionContext insnContext,uint8_t opcode,uint8_t modRM)123 static InstrUID decode(OpcodeType type, InstructionContext insnContext,
124 uint8_t opcode, uint8_t modRM) {
125 const struct ModRMDecision *dec;
126
127 switch (type) {
128 case ONEBYTE:
129 dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
130 break;
131 case TWOBYTE:
132 dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
133 break;
134 case THREEBYTE_38:
135 dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
136 break;
137 case THREEBYTE_3A:
138 dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
139 break;
140 case XOP8_MAP:
141 dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
142 break;
143 case XOP9_MAP:
144 dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
145 break;
146 case XOPA_MAP:
147 dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
148 break;
149 case THREEDNOW_MAP:
150 dec =
151 &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
152 break;
153 }
154
155 switch (dec->modrm_type) {
156 default:
157 llvm_unreachable("Corrupt table! Unknown modrm_type");
158 return 0;
159 case MODRM_ONEENTRY:
160 return modRMTable[dec->instructionIDs];
161 case MODRM_SPLITRM:
162 if (modFromModRM(modRM) == 0x3)
163 return modRMTable[dec->instructionIDs + 1];
164 return modRMTable[dec->instructionIDs];
165 case MODRM_SPLITREG:
166 if (modFromModRM(modRM) == 0x3)
167 return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3) + 8];
168 return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
169 case MODRM_SPLITMISC:
170 if (modFromModRM(modRM) == 0x3)
171 return modRMTable[dec->instructionIDs + (modRM & 0x3f) + 8];
172 return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
173 case MODRM_FULL:
174 return modRMTable[dec->instructionIDs + modRM];
175 }
176 }
177
peek(struct InternalInstruction * insn,uint8_t & byte)178 static bool peek(struct InternalInstruction *insn, uint8_t &byte) {
179 uint64_t offset = insn->readerCursor - insn->startLocation;
180 if (offset >= insn->bytes.size())
181 return true;
182 byte = insn->bytes[offset];
183 return false;
184 }
185
consume(InternalInstruction * insn,T & ptr)186 template <typename T> static bool consume(InternalInstruction *insn, T &ptr) {
187 auto r = insn->bytes;
188 uint64_t offset = insn->readerCursor - insn->startLocation;
189 if (offset + sizeof(T) > r.size())
190 return true;
191 T ret = 0;
192 for (unsigned i = 0; i < sizeof(T); ++i)
193 ret |= (uint64_t)r[offset + i] << (i * 8);
194 ptr = ret;
195 insn->readerCursor += sizeof(T);
196 return false;
197 }
198
isREX(struct InternalInstruction * insn,uint8_t prefix)199 static bool isREX(struct InternalInstruction *insn, uint8_t prefix) {
200 return insn->mode == MODE_64BIT && prefix >= 0x40 && prefix <= 0x4f;
201 }
202
203 // Consumes all of an instruction's prefix bytes, and marks the
204 // instruction as having them. Also sets the instruction's default operand,
205 // address, and other relevant data sizes to report operands correctly.
206 //
207 // insn must not be empty.
readPrefixes(struct InternalInstruction * insn)208 static int readPrefixes(struct InternalInstruction *insn) {
209 bool isPrefix = true;
210 uint8_t byte = 0;
211 uint8_t nextByte;
212
213 LLVM_DEBUG(dbgs() << "readPrefixes()");
214
215 while (isPrefix) {
216 // If we fail reading prefixes, just stop here and let the opcode reader
217 // deal with it.
218 if (consume(insn, byte))
219 break;
220
221 // If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
222 // break and let it be disassembled as a normal "instruction".
223 if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK
224 break;
225
226 if ((byte == 0xf2 || byte == 0xf3) && !peek(insn, nextByte)) {
227 // If the byte is 0xf2 or 0xf3, and any of the following conditions are
228 // met:
229 // - it is followed by a LOCK (0xf0) prefix
230 // - it is followed by an xchg instruction
231 // then it should be disassembled as a xacquire/xrelease not repne/rep.
232 if (((nextByte == 0xf0) ||
233 ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) {
234 insn->xAcquireRelease = true;
235 if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support
236 break;
237 }
238 // Also if the byte is 0xf3, and the following condition is met:
239 // - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
240 // "mov mem, imm" (opcode 0xc6/0xc7) instructions.
241 // then it should be disassembled as an xrelease not rep.
242 if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 ||
243 nextByte == 0xc6 || nextByte == 0xc7)) {
244 insn->xAcquireRelease = true;
245 break;
246 }
247 if (isREX(insn, nextByte)) {
248 uint8_t nnextByte;
249 // Go to REX prefix after the current one
250 if (consume(insn, nnextByte))
251 return -1;
252 // We should be able to read next byte after REX prefix
253 if (peek(insn, nnextByte))
254 return -1;
255 --insn->readerCursor;
256 }
257 }
258
259 switch (byte) {
260 case 0xf0: // LOCK
261 insn->hasLockPrefix = true;
262 break;
263 case 0xf2: // REPNE/REPNZ
264 case 0xf3: { // REP or REPE/REPZ
265 uint8_t nextByte;
266 if (peek(insn, nextByte))
267 break;
268 // TODO:
269 // 1. There could be several 0x66
270 // 2. if (nextByte == 0x66) and nextNextByte != 0x0f then
271 // it's not mandatory prefix
272 // 3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need
273 // 0x0f exactly after it to be mandatory prefix
274 if (isREX(insn, nextByte) || nextByte == 0x0f || nextByte == 0x66)
275 // The last of 0xf2 /0xf3 is mandatory prefix
276 insn->mandatoryPrefix = byte;
277 insn->repeatPrefix = byte;
278 break;
279 }
280 case 0x2e: // CS segment override -OR- Branch not taken
281 insn->segmentOverride = SEG_OVERRIDE_CS;
282 break;
283 case 0x36: // SS segment override -OR- Branch taken
284 insn->segmentOverride = SEG_OVERRIDE_SS;
285 break;
286 case 0x3e: // DS segment override
287 insn->segmentOverride = SEG_OVERRIDE_DS;
288 break;
289 case 0x26: // ES segment override
290 insn->segmentOverride = SEG_OVERRIDE_ES;
291 break;
292 case 0x64: // FS segment override
293 insn->segmentOverride = SEG_OVERRIDE_FS;
294 break;
295 case 0x65: // GS segment override
296 insn->segmentOverride = SEG_OVERRIDE_GS;
297 break;
298 case 0x66: { // Operand-size override {
299 uint8_t nextByte;
300 insn->hasOpSize = true;
301 if (peek(insn, nextByte))
302 break;
303 // 0x66 can't overwrite existing mandatory prefix and should be ignored
304 if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte)))
305 insn->mandatoryPrefix = byte;
306 break;
307 }
308 case 0x67: // Address-size override
309 insn->hasAdSize = true;
310 break;
311 default: // Not a prefix byte
312 isPrefix = false;
313 break;
314 }
315
316 if (isPrefix)
317 LLVM_DEBUG(dbgs() << format("Found prefix 0x%hhx", byte));
318 }
319
320 insn->vectorExtensionType = TYPE_NO_VEX_XOP;
321
322 if (byte == 0x62) {
323 uint8_t byte1, byte2;
324 if (consume(insn, byte1)) {
325 LLVM_DEBUG(dbgs() << "Couldn't read second byte of EVEX prefix");
326 return -1;
327 }
328
329 if (peek(insn, byte2)) {
330 LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
331 return -1;
332 }
333
334 if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) &&
335 ((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) {
336 insn->vectorExtensionType = TYPE_EVEX;
337 } else {
338 --insn->readerCursor; // unconsume byte1
339 --insn->readerCursor; // unconsume byte
340 }
341
342 if (insn->vectorExtensionType == TYPE_EVEX) {
343 insn->vectorExtensionPrefix[0] = byte;
344 insn->vectorExtensionPrefix[1] = byte1;
345 if (consume(insn, insn->vectorExtensionPrefix[2])) {
346 LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
347 return -1;
348 }
349 if (consume(insn, insn->vectorExtensionPrefix[3])) {
350 LLVM_DEBUG(dbgs() << "Couldn't read fourth byte of EVEX prefix");
351 return -1;
352 }
353
354 // We simulate the REX prefix for simplicity's sake
355 if (insn->mode == MODE_64BIT) {
356 insn->rexPrefix = 0x40 |
357 (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) |
358 (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) |
359 (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) |
360 (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
361 }
362
363 LLVM_DEBUG(
364 dbgs() << format(
365 "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
366 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
367 insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]));
368 }
369 } else if (byte == 0xc4) {
370 uint8_t byte1;
371 if (peek(insn, byte1)) {
372 LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
373 return -1;
374 }
375
376 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
377 insn->vectorExtensionType = TYPE_VEX_3B;
378 else
379 --insn->readerCursor;
380
381 if (insn->vectorExtensionType == TYPE_VEX_3B) {
382 insn->vectorExtensionPrefix[0] = byte;
383 consume(insn, insn->vectorExtensionPrefix[1]);
384 consume(insn, insn->vectorExtensionPrefix[2]);
385
386 // We simulate the REX prefix for simplicity's sake
387
388 if (insn->mode == MODE_64BIT)
389 insn->rexPrefix = 0x40 |
390 (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) |
391 (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) |
392 (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) |
393 (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
394
395 LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
396 insn->vectorExtensionPrefix[0],
397 insn->vectorExtensionPrefix[1],
398 insn->vectorExtensionPrefix[2]));
399 }
400 } else if (byte == 0xc5) {
401 uint8_t byte1;
402 if (peek(insn, byte1)) {
403 LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
404 return -1;
405 }
406
407 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
408 insn->vectorExtensionType = TYPE_VEX_2B;
409 else
410 --insn->readerCursor;
411
412 if (insn->vectorExtensionType == TYPE_VEX_2B) {
413 insn->vectorExtensionPrefix[0] = byte;
414 consume(insn, insn->vectorExtensionPrefix[1]);
415
416 if (insn->mode == MODE_64BIT)
417 insn->rexPrefix =
418 0x40 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
419
420 switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
421 default:
422 break;
423 case VEX_PREFIX_66:
424 insn->hasOpSize = true;
425 break;
426 }
427
428 LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx",
429 insn->vectorExtensionPrefix[0],
430 insn->vectorExtensionPrefix[1]));
431 }
432 } else if (byte == 0x8f) {
433 uint8_t byte1;
434 if (peek(insn, byte1)) {
435 LLVM_DEBUG(dbgs() << "Couldn't read second byte of XOP");
436 return -1;
437 }
438
439 if ((byte1 & 0x38) != 0x0) // 0 in these 3 bits is a POP instruction.
440 insn->vectorExtensionType = TYPE_XOP;
441 else
442 --insn->readerCursor;
443
444 if (insn->vectorExtensionType == TYPE_XOP) {
445 insn->vectorExtensionPrefix[0] = byte;
446 consume(insn, insn->vectorExtensionPrefix[1]);
447 consume(insn, insn->vectorExtensionPrefix[2]);
448
449 // We simulate the REX prefix for simplicity's sake
450
451 if (insn->mode == MODE_64BIT)
452 insn->rexPrefix = 0x40 |
453 (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) |
454 (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) |
455 (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) |
456 (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
457
458 switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
459 default:
460 break;
461 case VEX_PREFIX_66:
462 insn->hasOpSize = true;
463 break;
464 }
465
466 LLVM_DEBUG(dbgs() << format("Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
467 insn->vectorExtensionPrefix[0],
468 insn->vectorExtensionPrefix[1],
469 insn->vectorExtensionPrefix[2]));
470 }
471 } else if (isREX(insn, byte)) {
472 if (peek(insn, nextByte))
473 return -1;
474 insn->rexPrefix = byte;
475 LLVM_DEBUG(dbgs() << format("Found REX prefix 0x%hhx", byte));
476 } else
477 --insn->readerCursor;
478
479 if (insn->mode == MODE_16BIT) {
480 insn->registerSize = (insn->hasOpSize ? 4 : 2);
481 insn->addressSize = (insn->hasAdSize ? 4 : 2);
482 insn->displacementSize = (insn->hasAdSize ? 4 : 2);
483 insn->immediateSize = (insn->hasOpSize ? 4 : 2);
484 } else if (insn->mode == MODE_32BIT) {
485 insn->registerSize = (insn->hasOpSize ? 2 : 4);
486 insn->addressSize = (insn->hasAdSize ? 2 : 4);
487 insn->displacementSize = (insn->hasAdSize ? 2 : 4);
488 insn->immediateSize = (insn->hasOpSize ? 2 : 4);
489 } else if (insn->mode == MODE_64BIT) {
490 if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
491 insn->registerSize = 8;
492 insn->addressSize = (insn->hasAdSize ? 4 : 8);
493 insn->displacementSize = 4;
494 insn->immediateSize = 4;
495 } else {
496 insn->registerSize = (insn->hasOpSize ? 2 : 4);
497 insn->addressSize = (insn->hasAdSize ? 4 : 8);
498 insn->displacementSize = (insn->hasOpSize ? 2 : 4);
499 insn->immediateSize = (insn->hasOpSize ? 2 : 4);
500 }
501 }
502
503 return 0;
504 }
505
506 // Consumes the SIB byte to determine addressing information.
readSIB(struct InternalInstruction * insn)507 static int readSIB(struct InternalInstruction *insn) {
508 SIBBase sibBaseBase = SIB_BASE_NONE;
509 uint8_t index, base;
510
511 LLVM_DEBUG(dbgs() << "readSIB()");
512 switch (insn->addressSize) {
513 case 2:
514 default:
515 llvm_unreachable("SIB-based addressing doesn't work in 16-bit mode");
516 case 4:
517 insn->sibIndexBase = SIB_INDEX_EAX;
518 sibBaseBase = SIB_BASE_EAX;
519 break;
520 case 8:
521 insn->sibIndexBase = SIB_INDEX_RAX;
522 sibBaseBase = SIB_BASE_RAX;
523 break;
524 }
525
526 if (consume(insn, insn->sib))
527 return -1;
528
529 index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
530
531 if (index == 0x4) {
532 insn->sibIndex = SIB_INDEX_NONE;
533 } else {
534 insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index);
535 }
536
537 insn->sibScale = 1 << scaleFromSIB(insn->sib);
538
539 base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
540
541 switch (base) {
542 case 0x5:
543 case 0xd:
544 switch (modFromModRM(insn->modRM)) {
545 case 0x0:
546 insn->eaDisplacement = EA_DISP_32;
547 insn->sibBase = SIB_BASE_NONE;
548 break;
549 case 0x1:
550 insn->eaDisplacement = EA_DISP_8;
551 insn->sibBase = (SIBBase)(sibBaseBase + base);
552 break;
553 case 0x2:
554 insn->eaDisplacement = EA_DISP_32;
555 insn->sibBase = (SIBBase)(sibBaseBase + base);
556 break;
557 default:
558 llvm_unreachable("Cannot have Mod = 0b11 and a SIB byte");
559 }
560 break;
561 default:
562 insn->sibBase = (SIBBase)(sibBaseBase + base);
563 break;
564 }
565
566 return 0;
567 }
568
readDisplacement(struct InternalInstruction * insn)569 static int readDisplacement(struct InternalInstruction *insn) {
570 int8_t d8;
571 int16_t d16;
572 int32_t d32;
573 LLVM_DEBUG(dbgs() << "readDisplacement()");
574
575 insn->displacementOffset = insn->readerCursor - insn->startLocation;
576 switch (insn->eaDisplacement) {
577 case EA_DISP_NONE:
578 break;
579 case EA_DISP_8:
580 if (consume(insn, d8))
581 return -1;
582 insn->displacement = d8;
583 break;
584 case EA_DISP_16:
585 if (consume(insn, d16))
586 return -1;
587 insn->displacement = d16;
588 break;
589 case EA_DISP_32:
590 if (consume(insn, d32))
591 return -1;
592 insn->displacement = d32;
593 break;
594 }
595
596 return 0;
597 }
598
599 // Consumes all addressing information (ModR/M byte, SIB byte, and displacement.
readModRM(struct InternalInstruction * insn)600 static int readModRM(struct InternalInstruction *insn) {
601 uint8_t mod, rm, reg, evexrm;
602 LLVM_DEBUG(dbgs() << "readModRM()");
603
604 if (insn->consumedModRM)
605 return 0;
606
607 if (consume(insn, insn->modRM))
608 return -1;
609 insn->consumedModRM = true;
610
611 mod = modFromModRM(insn->modRM);
612 rm = rmFromModRM(insn->modRM);
613 reg = regFromModRM(insn->modRM);
614
615 // This goes by insn->registerSize to pick the correct register, which messes
616 // up if we're using (say) XMM or 8-bit register operands. That gets fixed in
617 // fixupReg().
618 switch (insn->registerSize) {
619 case 2:
620 insn->regBase = MODRM_REG_AX;
621 insn->eaRegBase = EA_REG_AX;
622 break;
623 case 4:
624 insn->regBase = MODRM_REG_EAX;
625 insn->eaRegBase = EA_REG_EAX;
626 break;
627 case 8:
628 insn->regBase = MODRM_REG_RAX;
629 insn->eaRegBase = EA_REG_RAX;
630 break;
631 }
632
633 reg |= rFromREX(insn->rexPrefix) << 3;
634 rm |= bFromREX(insn->rexPrefix) << 3;
635
636 evexrm = 0;
637 if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT) {
638 reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
639 evexrm = xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
640 }
641
642 insn->reg = (Reg)(insn->regBase + reg);
643
644 switch (insn->addressSize) {
645 case 2: {
646 EABase eaBaseBase = EA_BASE_BX_SI;
647
648 switch (mod) {
649 case 0x0:
650 if (rm == 0x6) {
651 insn->eaBase = EA_BASE_NONE;
652 insn->eaDisplacement = EA_DISP_16;
653 if (readDisplacement(insn))
654 return -1;
655 } else {
656 insn->eaBase = (EABase)(eaBaseBase + rm);
657 insn->eaDisplacement = EA_DISP_NONE;
658 }
659 break;
660 case 0x1:
661 insn->eaBase = (EABase)(eaBaseBase + rm);
662 insn->eaDisplacement = EA_DISP_8;
663 insn->displacementSize = 1;
664 if (readDisplacement(insn))
665 return -1;
666 break;
667 case 0x2:
668 insn->eaBase = (EABase)(eaBaseBase + rm);
669 insn->eaDisplacement = EA_DISP_16;
670 if (readDisplacement(insn))
671 return -1;
672 break;
673 case 0x3:
674 insn->eaBase = (EABase)(insn->eaRegBase + rm);
675 if (readDisplacement(insn))
676 return -1;
677 break;
678 }
679 break;
680 }
681 case 4:
682 case 8: {
683 EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
684
685 switch (mod) {
686 case 0x0:
687 insn->eaDisplacement = EA_DISP_NONE; // readSIB may override this
688 // In determining whether RIP-relative mode is used (rm=5),
689 // or whether a SIB byte is present (rm=4),
690 // the extension bits (REX.b and EVEX.x) are ignored.
691 switch (rm & 7) {
692 case 0x4: // SIB byte is present
693 insn->eaBase = (insn->addressSize == 4 ? EA_BASE_sib : EA_BASE_sib64);
694 if (readSIB(insn) || readDisplacement(insn))
695 return -1;
696 break;
697 case 0x5: // RIP-relative
698 insn->eaBase = EA_BASE_NONE;
699 insn->eaDisplacement = EA_DISP_32;
700 if (readDisplacement(insn))
701 return -1;
702 break;
703 default:
704 insn->eaBase = (EABase)(eaBaseBase + rm);
705 break;
706 }
707 break;
708 case 0x1:
709 insn->displacementSize = 1;
710 LLVM_FALLTHROUGH;
711 case 0x2:
712 insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
713 switch (rm & 7) {
714 case 0x4: // SIB byte is present
715 insn->eaBase = EA_BASE_sib;
716 if (readSIB(insn) || readDisplacement(insn))
717 return -1;
718 break;
719 default:
720 insn->eaBase = (EABase)(eaBaseBase + rm);
721 if (readDisplacement(insn))
722 return -1;
723 break;
724 }
725 break;
726 case 0x3:
727 insn->eaDisplacement = EA_DISP_NONE;
728 insn->eaBase = (EABase)(insn->eaRegBase + rm + evexrm);
729 break;
730 }
731 break;
732 }
733 } // switch (insn->addressSize)
734
735 return 0;
736 }
737
738 #define GENERIC_FIXUP_FUNC(name, base, prefix, mask) \
739 static uint16_t name(struct InternalInstruction *insn, OperandType type, \
740 uint8_t index, uint8_t *valid) { \
741 *valid = 1; \
742 switch (type) { \
743 default: \
744 debug("Unhandled register type"); \
745 *valid = 0; \
746 return 0; \
747 case TYPE_Rv: \
748 return base + index; \
749 case TYPE_R8: \
750 index &= mask; \
751 if (index > 0xf) \
752 *valid = 0; \
753 if (insn->rexPrefix && index >= 4 && index <= 7) { \
754 return prefix##_SPL + (index - 4); \
755 } else { \
756 return prefix##_AL + index; \
757 } \
758 case TYPE_R16: \
759 index &= mask; \
760 if (index > 0xf) \
761 *valid = 0; \
762 return prefix##_AX + index; \
763 case TYPE_R32: \
764 index &= mask; \
765 if (index > 0xf) \
766 *valid = 0; \
767 return prefix##_EAX + index; \
768 case TYPE_R64: \
769 index &= mask; \
770 if (index > 0xf) \
771 *valid = 0; \
772 return prefix##_RAX + index; \
773 case TYPE_ZMM: \
774 return prefix##_ZMM0 + index; \
775 case TYPE_YMM: \
776 return prefix##_YMM0 + index; \
777 case TYPE_XMM: \
778 return prefix##_XMM0 + index; \
779 case TYPE_VK: \
780 index &= 0xf; \
781 if (index > 7) \
782 *valid = 0; \
783 return prefix##_K0 + index; \
784 case TYPE_VK_PAIR: \
785 if (index > 7) \
786 *valid = 0; \
787 return prefix##_K0_K1 + (index / 2); \
788 case TYPE_MM64: \
789 return prefix##_MM0 + (index & 0x7); \
790 case TYPE_SEGMENTREG: \
791 if ((index & 7) > 5) \
792 *valid = 0; \
793 return prefix##_ES + (index & 7); \
794 case TYPE_DEBUGREG: \
795 return prefix##_DR0 + index; \
796 case TYPE_CONTROLREG: \
797 return prefix##_CR0 + index; \
798 case TYPE_BNDR: \
799 if (index > 3) \
800 *valid = 0; \
801 return prefix##_BND0 + index; \
802 case TYPE_MVSIBX: \
803 return prefix##_XMM0 + index; \
804 case TYPE_MVSIBY: \
805 return prefix##_YMM0 + index; \
806 case TYPE_MVSIBZ: \
807 return prefix##_ZMM0 + index; \
808 } \
809 }
810
811 // Consult an operand type to determine the meaning of the reg or R/M field. If
812 // the operand is an XMM operand, for example, an operand would be XMM0 instead
813 // of AX, which readModRM() would otherwise misinterpret it as.
814 //
815 // @param insn - The instruction containing the operand.
816 // @param type - The operand type.
817 // @param index - The existing value of the field as reported by readModRM().
818 // @param valid - The address of a uint8_t. The target is set to 1 if the
819 // field is valid for the register class; 0 if not.
820 // @return - The proper value.
821 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG, 0x1f)
822 GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG, 0xf)
823
824 // Consult an operand specifier to determine which of the fixup*Value functions
825 // to use in correcting readModRM()'ss interpretation.
826 //
827 // @param insn - See fixup*Value().
828 // @param op - The operand specifier.
829 // @return - 0 if fixup was successful; -1 if the register returned was
830 // invalid for its class.
fixupReg(struct InternalInstruction * insn,const struct OperandSpecifier * op)831 static int fixupReg(struct InternalInstruction *insn,
832 const struct OperandSpecifier *op) {
833 uint8_t valid;
834 LLVM_DEBUG(dbgs() << "fixupReg()");
835
836 switch ((OperandEncoding)op->encoding) {
837 default:
838 debug("Expected a REG or R/M encoding in fixupReg");
839 return -1;
840 case ENCODING_VVVV:
841 insn->vvvv =
842 (Reg)fixupRegValue(insn, (OperandType)op->type, insn->vvvv, &valid);
843 if (!valid)
844 return -1;
845 break;
846 case ENCODING_REG:
847 insn->reg = (Reg)fixupRegValue(insn, (OperandType)op->type,
848 insn->reg - insn->regBase, &valid);
849 if (!valid)
850 return -1;
851 break;
852 CASE_ENCODING_RM:
853 if (insn->eaBase >= insn->eaRegBase) {
854 insn->eaBase = (EABase)fixupRMValue(
855 insn, (OperandType)op->type, insn->eaBase - insn->eaRegBase, &valid);
856 if (!valid)
857 return -1;
858 }
859 break;
860 }
861
862 return 0;
863 }
864
865 // Read the opcode (except the ModR/M byte in the case of extended or escape
866 // opcodes).
readOpcode(struct InternalInstruction * insn)867 static bool readOpcode(struct InternalInstruction *insn) {
868 uint8_t current;
869 LLVM_DEBUG(dbgs() << "readOpcode()");
870
871 insn->opcodeType = ONEBYTE;
872 if (insn->vectorExtensionType == TYPE_EVEX) {
873 switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
874 default:
875 LLVM_DEBUG(
876 dbgs() << format("Unhandled mm field for instruction (0x%hhx)",
877 mmFromEVEX2of4(insn->vectorExtensionPrefix[1])));
878 return true;
879 case VEX_LOB_0F:
880 insn->opcodeType = TWOBYTE;
881 return consume(insn, insn->opcode);
882 case VEX_LOB_0F38:
883 insn->opcodeType = THREEBYTE_38;
884 return consume(insn, insn->opcode);
885 case VEX_LOB_0F3A:
886 insn->opcodeType = THREEBYTE_3A;
887 return consume(insn, insn->opcode);
888 }
889 } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
890 switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
891 default:
892 LLVM_DEBUG(
893 dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
894 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
895 return true;
896 case VEX_LOB_0F:
897 insn->opcodeType = TWOBYTE;
898 return consume(insn, insn->opcode);
899 case VEX_LOB_0F38:
900 insn->opcodeType = THREEBYTE_38;
901 return consume(insn, insn->opcode);
902 case VEX_LOB_0F3A:
903 insn->opcodeType = THREEBYTE_3A;
904 return consume(insn, insn->opcode);
905 }
906 } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
907 insn->opcodeType = TWOBYTE;
908 return consume(insn, insn->opcode);
909 } else if (insn->vectorExtensionType == TYPE_XOP) {
910 switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
911 default:
912 LLVM_DEBUG(
913 dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
914 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
915 return true;
916 case XOP_MAP_SELECT_8:
917 insn->opcodeType = XOP8_MAP;
918 return consume(insn, insn->opcode);
919 case XOP_MAP_SELECT_9:
920 insn->opcodeType = XOP9_MAP;
921 return consume(insn, insn->opcode);
922 case XOP_MAP_SELECT_A:
923 insn->opcodeType = XOPA_MAP;
924 return consume(insn, insn->opcode);
925 }
926 }
927
928 if (consume(insn, current))
929 return true;
930
931 if (current == 0x0f) {
932 LLVM_DEBUG(
933 dbgs() << format("Found a two-byte escape prefix (0x%hhx)", current));
934 if (consume(insn, current))
935 return true;
936
937 if (current == 0x38) {
938 LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
939 current));
940 if (consume(insn, current))
941 return true;
942
943 insn->opcodeType = THREEBYTE_38;
944 } else if (current == 0x3a) {
945 LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
946 current));
947 if (consume(insn, current))
948 return true;
949
950 insn->opcodeType = THREEBYTE_3A;
951 } else if (current == 0x0f) {
952 LLVM_DEBUG(
953 dbgs() << format("Found a 3dnow escape prefix (0x%hhx)", current));
954
955 // Consume operands before the opcode to comply with the 3DNow encoding
956 if (readModRM(insn))
957 return true;
958
959 if (consume(insn, current))
960 return true;
961
962 insn->opcodeType = THREEDNOW_MAP;
963 } else {
964 LLVM_DEBUG(dbgs() << "Didn't find a three-byte escape prefix");
965 insn->opcodeType = TWOBYTE;
966 }
967 } else if (insn->mandatoryPrefix)
968 // The opcode with mandatory prefix must start with opcode escape.
969 // If not it's legacy repeat prefix
970 insn->mandatoryPrefix = 0;
971
972 // At this point we have consumed the full opcode.
973 // Anything we consume from here on must be unconsumed.
974 insn->opcode = current;
975
976 return false;
977 }
978
979 // Determine whether equiv is the 16-bit equivalent of orig (32-bit or 64-bit).
is16BitEquivalent(const char * orig,const char * equiv)980 static bool is16BitEquivalent(const char *orig, const char *equiv) {
981 for (int i = 0;; i++) {
982 if (orig[i] == '\0' && equiv[i] == '\0')
983 return true;
984 if (orig[i] == '\0' || equiv[i] == '\0')
985 return false;
986 if (orig[i] != equiv[i]) {
987 if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
988 continue;
989 if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
990 continue;
991 if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
992 continue;
993 return false;
994 }
995 }
996 }
997
998 // Determine whether this instruction is a 64-bit instruction.
is64Bit(const char * name)999 static bool is64Bit(const char *name) {
1000 for (int i = 0;; ++i) {
1001 if (name[i] == '\0')
1002 return false;
1003 if (name[i] == '6' && name[i + 1] == '4')
1004 return true;
1005 }
1006 }
1007
1008 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate
1009 // for extended and escape opcodes, and using a supplied attribute mask.
getInstructionIDWithAttrMask(uint16_t * instructionID,struct InternalInstruction * insn,uint16_t attrMask)1010 static int getInstructionIDWithAttrMask(uint16_t *instructionID,
1011 struct InternalInstruction *insn,
1012 uint16_t attrMask) {
1013 auto insnCtx = InstructionContext(x86DisassemblerContexts[attrMask]);
1014 const ContextDecision *decision;
1015 switch (insn->opcodeType) {
1016 case ONEBYTE:
1017 decision = &ONEBYTE_SYM;
1018 break;
1019 case TWOBYTE:
1020 decision = &TWOBYTE_SYM;
1021 break;
1022 case THREEBYTE_38:
1023 decision = &THREEBYTE38_SYM;
1024 break;
1025 case THREEBYTE_3A:
1026 decision = &THREEBYTE3A_SYM;
1027 break;
1028 case XOP8_MAP:
1029 decision = &XOP8_MAP_SYM;
1030 break;
1031 case XOP9_MAP:
1032 decision = &XOP9_MAP_SYM;
1033 break;
1034 case XOPA_MAP:
1035 decision = &XOPA_MAP_SYM;
1036 break;
1037 case THREEDNOW_MAP:
1038 decision = &THREEDNOW_MAP_SYM;
1039 break;
1040 }
1041
1042 if (decision->opcodeDecisions[insnCtx]
1043 .modRMDecisions[insn->opcode]
1044 .modrm_type != MODRM_ONEENTRY) {
1045 if (readModRM(insn))
1046 return -1;
1047 *instructionID =
1048 decode(insn->opcodeType, insnCtx, insn->opcode, insn->modRM);
1049 } else {
1050 *instructionID = decode(insn->opcodeType, insnCtx, insn->opcode, 0);
1051 }
1052
1053 return 0;
1054 }
1055
1056 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate
1057 // for extended and escape opcodes. Determines the attributes and context for
1058 // the instruction before doing so.
getInstructionID(struct InternalInstruction * insn,const MCInstrInfo * mii)1059 static int getInstructionID(struct InternalInstruction *insn,
1060 const MCInstrInfo *mii) {
1061 uint16_t attrMask;
1062 uint16_t instructionID;
1063
1064 LLVM_DEBUG(dbgs() << "getID()");
1065
1066 attrMask = ATTR_NONE;
1067
1068 if (insn->mode == MODE_64BIT)
1069 attrMask |= ATTR_64BIT;
1070
1071 if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1072 attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
1073
1074 if (insn->vectorExtensionType == TYPE_EVEX) {
1075 switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
1076 case VEX_PREFIX_66:
1077 attrMask |= ATTR_OPSIZE;
1078 break;
1079 case VEX_PREFIX_F3:
1080 attrMask |= ATTR_XS;
1081 break;
1082 case VEX_PREFIX_F2:
1083 attrMask |= ATTR_XD;
1084 break;
1085 }
1086
1087 if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1088 attrMask |= ATTR_EVEXKZ;
1089 if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1090 attrMask |= ATTR_EVEXB;
1091 if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1092 attrMask |= ATTR_EVEXK;
1093 if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1094 attrMask |= ATTR_VEXL;
1095 if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1096 attrMask |= ATTR_EVEXL2;
1097 } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
1098 switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
1099 case VEX_PREFIX_66:
1100 attrMask |= ATTR_OPSIZE;
1101 break;
1102 case VEX_PREFIX_F3:
1103 attrMask |= ATTR_XS;
1104 break;
1105 case VEX_PREFIX_F2:
1106 attrMask |= ATTR_XD;
1107 break;
1108 }
1109
1110 if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
1111 attrMask |= ATTR_VEXL;
1112 } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
1113 switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
1114 case VEX_PREFIX_66:
1115 attrMask |= ATTR_OPSIZE;
1116 break;
1117 case VEX_PREFIX_F3:
1118 attrMask |= ATTR_XS;
1119 break;
1120 case VEX_PREFIX_F2:
1121 attrMask |= ATTR_XD;
1122 break;
1123 }
1124
1125 if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
1126 attrMask |= ATTR_VEXL;
1127 } else if (insn->vectorExtensionType == TYPE_XOP) {
1128 switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
1129 case VEX_PREFIX_66:
1130 attrMask |= ATTR_OPSIZE;
1131 break;
1132 case VEX_PREFIX_F3:
1133 attrMask |= ATTR_XS;
1134 break;
1135 case VEX_PREFIX_F2:
1136 attrMask |= ATTR_XD;
1137 break;
1138 }
1139
1140 if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
1141 attrMask |= ATTR_VEXL;
1142 } else {
1143 return -1;
1144 }
1145 } else if (!insn->mandatoryPrefix) {
1146 // If we don't have mandatory prefix we should use legacy prefixes here
1147 if (insn->hasOpSize && (insn->mode != MODE_16BIT))
1148 attrMask |= ATTR_OPSIZE;
1149 if (insn->hasAdSize)
1150 attrMask |= ATTR_ADSIZE;
1151 if (insn->opcodeType == ONEBYTE) {
1152 if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90))
1153 // Special support for PAUSE
1154 attrMask |= ATTR_XS;
1155 } else {
1156 if (insn->repeatPrefix == 0xf2)
1157 attrMask |= ATTR_XD;
1158 else if (insn->repeatPrefix == 0xf3)
1159 attrMask |= ATTR_XS;
1160 }
1161 } else {
1162 switch (insn->mandatoryPrefix) {
1163 case 0xf2:
1164 attrMask |= ATTR_XD;
1165 break;
1166 case 0xf3:
1167 attrMask |= ATTR_XS;
1168 break;
1169 case 0x66:
1170 if (insn->mode != MODE_16BIT)
1171 attrMask |= ATTR_OPSIZE;
1172 break;
1173 case 0x67:
1174 attrMask |= ATTR_ADSIZE;
1175 break;
1176 }
1177 }
1178
1179 if (insn->rexPrefix & 0x08) {
1180 attrMask |= ATTR_REXW;
1181 attrMask &= ~ATTR_ADSIZE;
1182 }
1183
1184 if (insn->mode == MODE_16BIT) {
1185 // JCXZ/JECXZ need special handling for 16-bit mode because the meaning
1186 // of the AdSize prefix is inverted w.r.t. 32-bit mode.
1187 if (insn->opcodeType == ONEBYTE && insn->opcode == 0xE3)
1188 attrMask ^= ATTR_ADSIZE;
1189 // If we're in 16-bit mode and this is one of the relative jumps and opsize
1190 // prefix isn't present, we need to force the opsize attribute since the
1191 // prefix is inverted relative to 32-bit mode.
1192 if (!insn->hasOpSize && insn->opcodeType == ONEBYTE &&
1193 (insn->opcode == 0xE8 || insn->opcode == 0xE9))
1194 attrMask |= ATTR_OPSIZE;
1195
1196 if (!insn->hasOpSize && insn->opcodeType == TWOBYTE &&
1197 insn->opcode >= 0x80 && insn->opcode <= 0x8F)
1198 attrMask |= ATTR_OPSIZE;
1199 }
1200
1201
1202 if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
1203 return -1;
1204
1205 // The following clauses compensate for limitations of the tables.
1206
1207 if (insn->mode != MODE_64BIT &&
1208 insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1209 // The tables can't distinquish between cases where the W-bit is used to
1210 // select register size and cases where its a required part of the opcode.
1211 if ((insn->vectorExtensionType == TYPE_EVEX &&
1212 wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
1213 (insn->vectorExtensionType == TYPE_VEX_3B &&
1214 wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
1215 (insn->vectorExtensionType == TYPE_XOP &&
1216 wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
1217
1218 uint16_t instructionIDWithREXW;
1219 if (getInstructionIDWithAttrMask(&instructionIDWithREXW, insn,
1220 attrMask | ATTR_REXW)) {
1221 insn->instructionID = instructionID;
1222 insn->spec = &INSTRUCTIONS_SYM[instructionID];
1223 return 0;
1224 }
1225
1226 auto SpecName = mii->getName(instructionIDWithREXW);
1227 // If not a 64-bit instruction. Switch the opcode.
1228 if (!is64Bit(SpecName.data())) {
1229 insn->instructionID = instructionIDWithREXW;
1230 insn->spec = &INSTRUCTIONS_SYM[instructionIDWithREXW];
1231 return 0;
1232 }
1233 }
1234 }
1235
1236 // Absolute moves, umonitor, and movdir64b need special handling.
1237 // -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
1238 // inverted w.r.t.
1239 // -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
1240 // any position.
1241 if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) ||
1242 (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) ||
1243 (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8)) {
1244 // Make sure we observed the prefixes in any position.
1245 if (insn->hasAdSize)
1246 attrMask |= ATTR_ADSIZE;
1247 if (insn->hasOpSize)
1248 attrMask |= ATTR_OPSIZE;
1249
1250 // In 16-bit, invert the attributes.
1251 if (insn->mode == MODE_16BIT) {
1252 attrMask ^= ATTR_ADSIZE;
1253
1254 // The OpSize attribute is only valid with the absolute moves.
1255 if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0))
1256 attrMask ^= ATTR_OPSIZE;
1257 }
1258
1259 if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
1260 return -1;
1261
1262 insn->instructionID = instructionID;
1263 insn->spec = &INSTRUCTIONS_SYM[instructionID];
1264 return 0;
1265 }
1266
1267 if ((insn->mode == MODE_16BIT || insn->hasOpSize) &&
1268 !(attrMask & ATTR_OPSIZE)) {
1269 // The instruction tables make no distinction between instructions that
1270 // allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
1271 // particular spot (i.e., many MMX operations). In general we're
1272 // conservative, but in the specific case where OpSize is present but not in
1273 // the right place we check if there's a 16-bit operation.
1274 const struct InstructionSpecifier *spec;
1275 uint16_t instructionIDWithOpsize;
1276 llvm::StringRef specName, specWithOpSizeName;
1277
1278 spec = &INSTRUCTIONS_SYM[instructionID];
1279
1280 if (getInstructionIDWithAttrMask(&instructionIDWithOpsize, insn,
1281 attrMask | ATTR_OPSIZE)) {
1282 // ModRM required with OpSize but not present. Give up and return the
1283 // version without OpSize set.
1284 insn->instructionID = instructionID;
1285 insn->spec = spec;
1286 return 0;
1287 }
1288
1289 specName = mii->getName(instructionID);
1290 specWithOpSizeName = mii->getName(instructionIDWithOpsize);
1291
1292 if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) &&
1293 (insn->mode == MODE_16BIT) ^ insn->hasOpSize) {
1294 insn->instructionID = instructionIDWithOpsize;
1295 insn->spec = &INSTRUCTIONS_SYM[instructionIDWithOpsize];
1296 } else {
1297 insn->instructionID = instructionID;
1298 insn->spec = spec;
1299 }
1300 return 0;
1301 }
1302
1303 if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
1304 insn->rexPrefix & 0x01) {
1305 // NOOP shouldn't decode as NOOP if REX.b is set. Instead it should decode
1306 // as XCHG %r8, %eax.
1307 const struct InstructionSpecifier *spec;
1308 uint16_t instructionIDWithNewOpcode;
1309 const struct InstructionSpecifier *specWithNewOpcode;
1310
1311 spec = &INSTRUCTIONS_SYM[instructionID];
1312
1313 // Borrow opcode from one of the other XCHGar opcodes
1314 insn->opcode = 0x91;
1315
1316 if (getInstructionIDWithAttrMask(&instructionIDWithNewOpcode, insn,
1317 attrMask)) {
1318 insn->opcode = 0x90;
1319
1320 insn->instructionID = instructionID;
1321 insn->spec = spec;
1322 return 0;
1323 }
1324
1325 specWithNewOpcode = &INSTRUCTIONS_SYM[instructionIDWithNewOpcode];
1326
1327 // Change back
1328 insn->opcode = 0x90;
1329
1330 insn->instructionID = instructionIDWithNewOpcode;
1331 insn->spec = specWithNewOpcode;
1332
1333 return 0;
1334 }
1335
1336 insn->instructionID = instructionID;
1337 insn->spec = &INSTRUCTIONS_SYM[insn->instructionID];
1338
1339 return 0;
1340 }
1341
1342 // Read an operand from the opcode field of an instruction and interprets it
1343 // appropriately given the operand width. Handles AddRegFrm instructions.
1344 //
1345 // @param insn - the instruction whose opcode field is to be read.
1346 // @param size - The width (in bytes) of the register being specified.
1347 // 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1348 // RAX.
1349 // @return - 0 on success; nonzero otherwise.
readOpcodeRegister(struct InternalInstruction * insn,uint8_t size)1350 static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) {
1351 LLVM_DEBUG(dbgs() << "readOpcodeRegister()");
1352
1353 if (size == 0)
1354 size = insn->registerSize;
1355
1356 switch (size) {
1357 case 1:
1358 insn->opcodeRegister = (Reg)(
1359 MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
1360 if (insn->rexPrefix && insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1361 insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1362 insn->opcodeRegister =
1363 (Reg)(MODRM_REG_SPL + (insn->opcodeRegister - MODRM_REG_AL - 4));
1364 }
1365
1366 break;
1367 case 2:
1368 insn->opcodeRegister = (Reg)(
1369 MODRM_REG_AX + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
1370 break;
1371 case 4:
1372 insn->opcodeRegister =
1373 (Reg)(MODRM_REG_EAX +
1374 ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
1375 break;
1376 case 8:
1377 insn->opcodeRegister =
1378 (Reg)(MODRM_REG_RAX +
1379 ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
1380 break;
1381 }
1382
1383 return 0;
1384 }
1385
1386 // Consume an immediate operand from an instruction, given the desired operand
1387 // size.
1388 //
1389 // @param insn - The instruction whose operand is to be read.
1390 // @param size - The width (in bytes) of the operand.
1391 // @return - 0 if the immediate was successfully consumed; nonzero
1392 // otherwise.
readImmediate(struct InternalInstruction * insn,uint8_t size)1393 static int readImmediate(struct InternalInstruction *insn, uint8_t size) {
1394 uint8_t imm8;
1395 uint16_t imm16;
1396 uint32_t imm32;
1397 uint64_t imm64;
1398
1399 LLVM_DEBUG(dbgs() << "readImmediate()");
1400
1401 assert(insn->numImmediatesConsumed < 2 && "Already consumed two immediates");
1402
1403 insn->immediateSize = size;
1404 insn->immediateOffset = insn->readerCursor - insn->startLocation;
1405
1406 switch (size) {
1407 case 1:
1408 if (consume(insn, imm8))
1409 return -1;
1410 insn->immediates[insn->numImmediatesConsumed] = imm8;
1411 break;
1412 case 2:
1413 if (consume(insn, imm16))
1414 return -1;
1415 insn->immediates[insn->numImmediatesConsumed] = imm16;
1416 break;
1417 case 4:
1418 if (consume(insn, imm32))
1419 return -1;
1420 insn->immediates[insn->numImmediatesConsumed] = imm32;
1421 break;
1422 case 8:
1423 if (consume(insn, imm64))
1424 return -1;
1425 insn->immediates[insn->numImmediatesConsumed] = imm64;
1426 break;
1427 default:
1428 llvm_unreachable("invalid size");
1429 }
1430
1431 insn->numImmediatesConsumed++;
1432
1433 return 0;
1434 }
1435
1436 // Consume vvvv from an instruction if it has a VEX prefix.
readVVVV(struct InternalInstruction * insn)1437 static int readVVVV(struct InternalInstruction *insn) {
1438 LLVM_DEBUG(dbgs() << "readVVVV()");
1439
1440 int vvvv;
1441 if (insn->vectorExtensionType == TYPE_EVEX)
1442 vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
1443 vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
1444 else if (insn->vectorExtensionType == TYPE_VEX_3B)
1445 vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
1446 else if (insn->vectorExtensionType == TYPE_VEX_2B)
1447 vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
1448 else if (insn->vectorExtensionType == TYPE_XOP)
1449 vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
1450 else
1451 return -1;
1452
1453 if (insn->mode != MODE_64BIT)
1454 vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later.
1455
1456 insn->vvvv = static_cast<Reg>(vvvv);
1457 return 0;
1458 }
1459
1460 // Read an mask register from the opcode field of an instruction.
1461 //
1462 // @param insn - The instruction whose opcode field is to be read.
1463 // @return - 0 on success; nonzero otherwise.
readMaskRegister(struct InternalInstruction * insn)1464 static int readMaskRegister(struct InternalInstruction *insn) {
1465 LLVM_DEBUG(dbgs() << "readMaskRegister()");
1466
1467 if (insn->vectorExtensionType != TYPE_EVEX)
1468 return -1;
1469
1470 insn->writemask =
1471 static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
1472 return 0;
1473 }
1474
1475 // Consults the specifier for an instruction and consumes all
1476 // operands for that instruction, interpreting them as it goes.
readOperands(struct InternalInstruction * insn)1477 static int readOperands(struct InternalInstruction *insn) {
1478 int hasVVVV, needVVVV;
1479 int sawRegImm = 0;
1480
1481 LLVM_DEBUG(dbgs() << "readOperands()");
1482
1483 // If non-zero vvvv specified, make sure one of the operands uses it.
1484 hasVVVV = !readVVVV(insn);
1485 needVVVV = hasVVVV && (insn->vvvv != 0);
1486
1487 for (const auto &Op : x86OperandSets[insn->spec->operands]) {
1488 switch (Op.encoding) {
1489 case ENCODING_NONE:
1490 case ENCODING_SI:
1491 case ENCODING_DI:
1492 break;
1493 CASE_ENCODING_VSIB:
1494 // VSIB can use the V2 bit so check only the other bits.
1495 if (needVVVV)
1496 needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0);
1497 if (readModRM(insn))
1498 return -1;
1499
1500 // Reject if SIB wasn't used.
1501 if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1502 return -1;
1503
1504 // If sibIndex was set to SIB_INDEX_NONE, index offset is 4.
1505 if (insn->sibIndex == SIB_INDEX_NONE)
1506 insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4);
1507
1508 // If EVEX.v2 is set this is one of the 16-31 registers.
1509 if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
1510 v2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1511 insn->sibIndex = (SIBIndex)(insn->sibIndex + 16);
1512
1513 // Adjust the index register to the correct size.
1514 switch ((OperandType)Op.type) {
1515 default:
1516 debug("Unhandled VSIB index type");
1517 return -1;
1518 case TYPE_MVSIBX:
1519 insn->sibIndex =
1520 (SIBIndex)(SIB_INDEX_XMM0 + (insn->sibIndex - insn->sibIndexBase));
1521 break;
1522 case TYPE_MVSIBY:
1523 insn->sibIndex =
1524 (SIBIndex)(SIB_INDEX_YMM0 + (insn->sibIndex - insn->sibIndexBase));
1525 break;
1526 case TYPE_MVSIBZ:
1527 insn->sibIndex =
1528 (SIBIndex)(SIB_INDEX_ZMM0 + (insn->sibIndex - insn->sibIndexBase));
1529 break;
1530 }
1531
1532 // Apply the AVX512 compressed displacement scaling factor.
1533 if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1534 insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB);
1535 break;
1536 case ENCODING_REG:
1537 CASE_ENCODING_RM:
1538 if (readModRM(insn))
1539 return -1;
1540 if (fixupReg(insn, &Op))
1541 return -1;
1542 // Apply the AVX512 compressed displacement scaling factor.
1543 if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1544 insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
1545 break;
1546 case ENCODING_IB:
1547 if (sawRegImm) {
1548 // Saw a register immediate so don't read again and instead split the
1549 // previous immediate. FIXME: This is a hack.
1550 insn->immediates[insn->numImmediatesConsumed] =
1551 insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1552 ++insn->numImmediatesConsumed;
1553 break;
1554 }
1555 if (readImmediate(insn, 1))
1556 return -1;
1557 if (Op.type == TYPE_XMM || Op.type == TYPE_YMM)
1558 sawRegImm = 1;
1559 break;
1560 case ENCODING_IW:
1561 if (readImmediate(insn, 2))
1562 return -1;
1563 break;
1564 case ENCODING_ID:
1565 if (readImmediate(insn, 4))
1566 return -1;
1567 break;
1568 case ENCODING_IO:
1569 if (readImmediate(insn, 8))
1570 return -1;
1571 break;
1572 case ENCODING_Iv:
1573 if (readImmediate(insn, insn->immediateSize))
1574 return -1;
1575 break;
1576 case ENCODING_Ia:
1577 if (readImmediate(insn, insn->addressSize))
1578 return -1;
1579 break;
1580 case ENCODING_IRC:
1581 insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) |
1582 lFromEVEX4of4(insn->vectorExtensionPrefix[3]);
1583 break;
1584 case ENCODING_RB:
1585 if (readOpcodeRegister(insn, 1))
1586 return -1;
1587 break;
1588 case ENCODING_RW:
1589 if (readOpcodeRegister(insn, 2))
1590 return -1;
1591 break;
1592 case ENCODING_RD:
1593 if (readOpcodeRegister(insn, 4))
1594 return -1;
1595 break;
1596 case ENCODING_RO:
1597 if (readOpcodeRegister(insn, 8))
1598 return -1;
1599 break;
1600 case ENCODING_Rv:
1601 if (readOpcodeRegister(insn, 0))
1602 return -1;
1603 break;
1604 case ENCODING_CC:
1605 insn->immediates[1] = insn->opcode & 0xf;
1606 break;
1607 case ENCODING_FP:
1608 break;
1609 case ENCODING_VVVV:
1610 needVVVV = 0; // Mark that we have found a VVVV operand.
1611 if (!hasVVVV)
1612 return -1;
1613 if (insn->mode != MODE_64BIT)
1614 insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7);
1615 if (fixupReg(insn, &Op))
1616 return -1;
1617 break;
1618 case ENCODING_WRITEMASK:
1619 if (readMaskRegister(insn))
1620 return -1;
1621 break;
1622 case ENCODING_DUP:
1623 break;
1624 default:
1625 LLVM_DEBUG(dbgs() << "Encountered an operand with an unknown encoding.");
1626 return -1;
1627 }
1628 }
1629
1630 // If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail
1631 if (needVVVV)
1632 return -1;
1633
1634 return 0;
1635 }
1636
1637 namespace llvm {
1638
1639 // Fill-ins to make the compiler happy. These constants are never actually
1640 // assigned; they are just filler to make an automatically-generated switch
1641 // statement work.
1642 namespace X86 {
1643 enum {
1644 BX_SI = 500,
1645 BX_DI = 501,
1646 BP_SI = 502,
1647 BP_DI = 503,
1648 sib = 504,
1649 sib64 = 505
1650 };
1651 }
1652
1653 }
1654
1655 static bool translateInstruction(MCInst &target,
1656 InternalInstruction &source,
1657 const MCDisassembler *Dis);
1658
1659 namespace {
1660
1661 /// Generic disassembler for all X86 platforms. All each platform class should
1662 /// have to do is subclass the constructor, and provide a different
1663 /// disassemblerMode value.
1664 class X86GenericDisassembler : public MCDisassembler {
1665 std::unique_ptr<const MCInstrInfo> MII;
1666 public:
1667 X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
1668 std::unique_ptr<const MCInstrInfo> MII);
1669 public:
1670 DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
1671 ArrayRef<uint8_t> Bytes, uint64_t Address,
1672 raw_ostream &cStream) const override;
1673
1674 private:
1675 DisassemblerMode fMode;
1676 };
1677
1678 }
1679
X86GenericDisassembler(const MCSubtargetInfo & STI,MCContext & Ctx,std::unique_ptr<const MCInstrInfo> MII)1680 X86GenericDisassembler::X86GenericDisassembler(
1681 const MCSubtargetInfo &STI,
1682 MCContext &Ctx,
1683 std::unique_ptr<const MCInstrInfo> MII)
1684 : MCDisassembler(STI, Ctx), MII(std::move(MII)) {
1685 const FeatureBitset &FB = STI.getFeatureBits();
1686 if (FB[X86::Mode16Bit]) {
1687 fMode = MODE_16BIT;
1688 return;
1689 } else if (FB[X86::Mode32Bit]) {
1690 fMode = MODE_32BIT;
1691 return;
1692 } else if (FB[X86::Mode64Bit]) {
1693 fMode = MODE_64BIT;
1694 return;
1695 }
1696
1697 llvm_unreachable("Invalid CPU mode");
1698 }
1699
getInstruction(MCInst & Instr,uint64_t & Size,ArrayRef<uint8_t> Bytes,uint64_t Address,raw_ostream & CStream) const1700 MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
1701 MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
1702 raw_ostream &CStream) const {
1703 CommentStream = &CStream;
1704
1705 InternalInstruction Insn;
1706 memset(&Insn, 0, sizeof(InternalInstruction));
1707 Insn.bytes = Bytes;
1708 Insn.startLocation = Address;
1709 Insn.readerCursor = Address;
1710 Insn.mode = fMode;
1711
1712 if (Bytes.empty() || readPrefixes(&Insn) || readOpcode(&Insn) ||
1713 getInstructionID(&Insn, MII.get()) || Insn.instructionID == 0 ||
1714 readOperands(&Insn)) {
1715 Size = Insn.readerCursor - Address;
1716 return Fail;
1717 }
1718
1719 Insn.operands = x86OperandSets[Insn.spec->operands];
1720 Insn.length = Insn.readerCursor - Insn.startLocation;
1721 Size = Insn.length;
1722 if (Size > 15)
1723 LLVM_DEBUG(dbgs() << "Instruction exceeds 15-byte limit");
1724
1725 bool Ret = translateInstruction(Instr, Insn, this);
1726 if (!Ret) {
1727 unsigned Flags = X86::IP_NO_PREFIX;
1728 if (Insn.hasAdSize)
1729 Flags |= X86::IP_HAS_AD_SIZE;
1730 if (!Insn.mandatoryPrefix) {
1731 if (Insn.hasOpSize)
1732 Flags |= X86::IP_HAS_OP_SIZE;
1733 if (Insn.repeatPrefix == 0xf2)
1734 Flags |= X86::IP_HAS_REPEAT_NE;
1735 else if (Insn.repeatPrefix == 0xf3 &&
1736 // It should not be 'pause' f3 90
1737 Insn.opcode != 0x90)
1738 Flags |= X86::IP_HAS_REPEAT;
1739 if (Insn.hasLockPrefix)
1740 Flags |= X86::IP_HAS_LOCK;
1741 }
1742 Instr.setFlags(Flags);
1743 }
1744 return (!Ret) ? Success : Fail;
1745 }
1746
1747 //
1748 // Private code that translates from struct InternalInstructions to MCInsts.
1749 //
1750
1751 /// translateRegister - Translates an internal register to the appropriate LLVM
1752 /// register, and appends it as an operand to an MCInst.
1753 ///
1754 /// @param mcInst - The MCInst to append to.
1755 /// @param reg - The Reg to append.
translateRegister(MCInst & mcInst,Reg reg)1756 static void translateRegister(MCInst &mcInst, Reg reg) {
1757 #define ENTRY(x) X86::x,
1758 static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS};
1759 #undef ENTRY
1760
1761 MCPhysReg llvmRegnum = llvmRegnums[reg];
1762 mcInst.addOperand(MCOperand::createReg(llvmRegnum));
1763 }
1764
1765 /// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the
1766 /// immediate Value in the MCInst.
1767 ///
1768 /// @param Value - The immediate Value, has had any PC adjustment made by
1769 /// the caller.
1770 /// @param isBranch - If the instruction is a branch instruction
1771 /// @param Address - The starting address of the instruction
1772 /// @param Offset - The byte offset to this immediate in the instruction
1773 /// @param Width - The byte width of this immediate in the instruction
1774 ///
1775 /// If the getOpInfo() function was set when setupForSymbolicDisassembly() was
1776 /// called then that function is called to get any symbolic information for the
1777 /// immediate in the instruction using the Address, Offset and Width. If that
1778 /// returns non-zero then the symbolic information it returns is used to create
1779 /// an MCExpr and that is added as an operand to the MCInst. If getOpInfo()
1780 /// returns zero and isBranch is true then a symbol look up for immediate Value
1781 /// is done and if a symbol is found an MCExpr is created with that, else
1782 /// an MCExpr with the immediate Value is created. This function returns true
1783 /// if it adds an operand to the MCInst and false otherwise.
tryAddingSymbolicOperand(int64_t Value,bool isBranch,uint64_t Address,uint64_t Offset,uint64_t Width,MCInst & MI,const MCDisassembler * Dis)1784 static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch,
1785 uint64_t Address, uint64_t Offset,
1786 uint64_t Width, MCInst &MI,
1787 const MCDisassembler *Dis) {
1788 return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch,
1789 Offset, Width);
1790 }
1791
1792 /// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being
1793 /// referenced by a load instruction with the base register that is the rip.
1794 /// These can often be addresses in a literal pool. The Address of the
1795 /// instruction and its immediate Value are used to determine the address
1796 /// being referenced in the literal pool entry. The SymbolLookUp call back will
1797 /// return a pointer to a literal 'C' string if the referenced address is an
1798 /// address into a section with 'C' string literals.
tryAddingPcLoadReferenceComment(uint64_t Address,uint64_t Value,const void * Decoder)1799 static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value,
1800 const void *Decoder) {
1801 const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder);
1802 Dis->tryAddingPcLoadReferenceComment(Value, Address);
1803 }
1804
1805 static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
1806 0, // SEG_OVERRIDE_NONE
1807 X86::CS,
1808 X86::SS,
1809 X86::DS,
1810 X86::ES,
1811 X86::FS,
1812 X86::GS
1813 };
1814
1815 /// translateSrcIndex - Appends a source index operand to an MCInst.
1816 ///
1817 /// @param mcInst - The MCInst to append to.
1818 /// @param insn - The internal instruction.
translateSrcIndex(MCInst & mcInst,InternalInstruction & insn)1819 static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
1820 unsigned baseRegNo;
1821
1822 if (insn.mode == MODE_64BIT)
1823 baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI;
1824 else if (insn.mode == MODE_32BIT)
1825 baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI;
1826 else {
1827 assert(insn.mode == MODE_16BIT);
1828 baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI;
1829 }
1830 MCOperand baseReg = MCOperand::createReg(baseRegNo);
1831 mcInst.addOperand(baseReg);
1832
1833 MCOperand segmentReg;
1834 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
1835 mcInst.addOperand(segmentReg);
1836 return false;
1837 }
1838
1839 /// translateDstIndex - Appends a destination index operand to an MCInst.
1840 ///
1841 /// @param mcInst - The MCInst to append to.
1842 /// @param insn - The internal instruction.
1843
translateDstIndex(MCInst & mcInst,InternalInstruction & insn)1844 static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
1845 unsigned baseRegNo;
1846
1847 if (insn.mode == MODE_64BIT)
1848 baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI;
1849 else if (insn.mode == MODE_32BIT)
1850 baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI;
1851 else {
1852 assert(insn.mode == MODE_16BIT);
1853 baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI;
1854 }
1855 MCOperand baseReg = MCOperand::createReg(baseRegNo);
1856 mcInst.addOperand(baseReg);
1857 return false;
1858 }
1859
1860 /// translateImmediate - Appends an immediate operand to an MCInst.
1861 ///
1862 /// @param mcInst - The MCInst to append to.
1863 /// @param immediate - The immediate value to append.
1864 /// @param operand - The operand, as stored in the descriptor table.
1865 /// @param insn - The internal instruction.
translateImmediate(MCInst & mcInst,uint64_t immediate,const OperandSpecifier & operand,InternalInstruction & insn,const MCDisassembler * Dis)1866 static void translateImmediate(MCInst &mcInst, uint64_t immediate,
1867 const OperandSpecifier &operand,
1868 InternalInstruction &insn,
1869 const MCDisassembler *Dis) {
1870 // Sign-extend the immediate if necessary.
1871
1872 OperandType type = (OperandType)operand.type;
1873
1874 bool isBranch = false;
1875 uint64_t pcrel = 0;
1876 if (type == TYPE_REL) {
1877 isBranch = true;
1878 pcrel = insn.startLocation +
1879 insn.immediateOffset + insn.immediateSize;
1880 switch (operand.encoding) {
1881 default:
1882 break;
1883 case ENCODING_Iv:
1884 switch (insn.displacementSize) {
1885 default:
1886 break;
1887 case 1:
1888 if(immediate & 0x80)
1889 immediate |= ~(0xffull);
1890 break;
1891 case 2:
1892 if(immediate & 0x8000)
1893 immediate |= ~(0xffffull);
1894 break;
1895 case 4:
1896 if(immediate & 0x80000000)
1897 immediate |= ~(0xffffffffull);
1898 break;
1899 case 8:
1900 break;
1901 }
1902 break;
1903 case ENCODING_IB:
1904 if(immediate & 0x80)
1905 immediate |= ~(0xffull);
1906 break;
1907 case ENCODING_IW:
1908 if(immediate & 0x8000)
1909 immediate |= ~(0xffffull);
1910 break;
1911 case ENCODING_ID:
1912 if(immediate & 0x80000000)
1913 immediate |= ~(0xffffffffull);
1914 break;
1915 }
1916 }
1917 // By default sign-extend all X86 immediates based on their encoding.
1918 else if (type == TYPE_IMM) {
1919 switch (operand.encoding) {
1920 default:
1921 break;
1922 case ENCODING_IB:
1923 if(immediate & 0x80)
1924 immediate |= ~(0xffull);
1925 break;
1926 case ENCODING_IW:
1927 if(immediate & 0x8000)
1928 immediate |= ~(0xffffull);
1929 break;
1930 case ENCODING_ID:
1931 if(immediate & 0x80000000)
1932 immediate |= ~(0xffffffffull);
1933 break;
1934 case ENCODING_IO:
1935 break;
1936 }
1937 }
1938
1939 switch (type) {
1940 case TYPE_XMM:
1941 mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4)));
1942 return;
1943 case TYPE_YMM:
1944 mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4)));
1945 return;
1946 case TYPE_ZMM:
1947 mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4)));
1948 return;
1949 default:
1950 // operand is 64 bits wide. Do nothing.
1951 break;
1952 }
1953
1954 if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation,
1955 insn.immediateOffset, insn.immediateSize,
1956 mcInst, Dis))
1957 mcInst.addOperand(MCOperand::createImm(immediate));
1958
1959 if (type == TYPE_MOFFS) {
1960 MCOperand segmentReg;
1961 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
1962 mcInst.addOperand(segmentReg);
1963 }
1964 }
1965
1966 /// translateRMRegister - Translates a register stored in the R/M field of the
1967 /// ModR/M byte to its LLVM equivalent and appends it to an MCInst.
1968 /// @param mcInst - The MCInst to append to.
1969 /// @param insn - The internal instruction to extract the R/M field
1970 /// from.
1971 /// @return - 0 on success; -1 otherwise
translateRMRegister(MCInst & mcInst,InternalInstruction & insn)1972 static bool translateRMRegister(MCInst &mcInst,
1973 InternalInstruction &insn) {
1974 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
1975 debug("A R/M register operand may not have a SIB byte");
1976 return true;
1977 }
1978
1979 switch (insn.eaBase) {
1980 default:
1981 debug("Unexpected EA base register");
1982 return true;
1983 case EA_BASE_NONE:
1984 debug("EA_BASE_NONE for ModR/M base");
1985 return true;
1986 #define ENTRY(x) case EA_BASE_##x:
1987 ALL_EA_BASES
1988 #undef ENTRY
1989 debug("A R/M register operand may not have a base; "
1990 "the operand must be a register.");
1991 return true;
1992 #define ENTRY(x) \
1993 case EA_REG_##x: \
1994 mcInst.addOperand(MCOperand::createReg(X86::x)); break;
1995 ALL_REGS
1996 #undef ENTRY
1997 }
1998
1999 return false;
2000 }
2001
2002 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M
2003 /// fields of an internal instruction (and possibly its SIB byte) to a memory
2004 /// operand in LLVM's format, and appends it to an MCInst.
2005 ///
2006 /// @param mcInst - The MCInst to append to.
2007 /// @param insn - The instruction to extract Mod, R/M, and SIB fields
2008 /// from.
2009 /// @return - 0 on success; nonzero otherwise
translateRMMemory(MCInst & mcInst,InternalInstruction & insn,const MCDisassembler * Dis)2010 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
2011 const MCDisassembler *Dis) {
2012 // Addresses in an MCInst are represented as five operands:
2013 // 1. basereg (register) The R/M base, or (if there is a SIB) the
2014 // SIB base
2015 // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified
2016 // scale amount
2017 // 3. indexreg (register) x86_registerNONE, or (if there is a SIB)
2018 // the index (which is multiplied by the
2019 // scale amount)
2020 // 4. displacement (immediate) 0, or the displacement if there is one
2021 // 5. segmentreg (register) x86_registerNONE for now, but could be set
2022 // if we have segment overrides
2023
2024 MCOperand baseReg;
2025 MCOperand scaleAmount;
2026 MCOperand indexReg;
2027 MCOperand displacement;
2028 MCOperand segmentReg;
2029 uint64_t pcrel = 0;
2030
2031 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
2032 if (insn.sibBase != SIB_BASE_NONE) {
2033 switch (insn.sibBase) {
2034 default:
2035 debug("Unexpected sibBase");
2036 return true;
2037 #define ENTRY(x) \
2038 case SIB_BASE_##x: \
2039 baseReg = MCOperand::createReg(X86::x); break;
2040 ALL_SIB_BASES
2041 #undef ENTRY
2042 }
2043 } else {
2044 baseReg = MCOperand::createReg(X86::NoRegister);
2045 }
2046
2047 if (insn.sibIndex != SIB_INDEX_NONE) {
2048 switch (insn.sibIndex) {
2049 default:
2050 debug("Unexpected sibIndex");
2051 return true;
2052 #define ENTRY(x) \
2053 case SIB_INDEX_##x: \
2054 indexReg = MCOperand::createReg(X86::x); break;
2055 EA_BASES_32BIT
2056 EA_BASES_64BIT
2057 REGS_XMM
2058 REGS_YMM
2059 REGS_ZMM
2060 #undef ENTRY
2061 }
2062 } else {
2063 // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present,
2064 // but no index is used and modrm alone should have been enough.
2065 // -No base register in 32-bit mode. In 64-bit mode this is used to
2066 // avoid rip-relative addressing.
2067 // -Any base register used other than ESP/RSP/R12D/R12. Using these as a
2068 // base always requires a SIB byte.
2069 // -A scale other than 1 is used.
2070 if (insn.sibScale != 1 ||
2071 (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) ||
2072 (insn.sibBase != SIB_BASE_NONE &&
2073 insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP &&
2074 insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12)) {
2075 indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ :
2076 X86::RIZ);
2077 } else
2078 indexReg = MCOperand::createReg(X86::NoRegister);
2079 }
2080
2081 scaleAmount = MCOperand::createImm(insn.sibScale);
2082 } else {
2083 switch (insn.eaBase) {
2084 case EA_BASE_NONE:
2085 if (insn.eaDisplacement == EA_DISP_NONE) {
2086 debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
2087 return true;
2088 }
2089 if (insn.mode == MODE_64BIT){
2090 pcrel = insn.startLocation +
2091 insn.displacementOffset + insn.displacementSize;
2092 tryAddingPcLoadReferenceComment(insn.startLocation +
2093 insn.displacementOffset,
2094 insn.displacement + pcrel, Dis);
2095 // Section 2.2.1.6
2096 baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP :
2097 X86::RIP);
2098 }
2099 else
2100 baseReg = MCOperand::createReg(X86::NoRegister);
2101
2102 indexReg = MCOperand::createReg(X86::NoRegister);
2103 break;
2104 case EA_BASE_BX_SI:
2105 baseReg = MCOperand::createReg(X86::BX);
2106 indexReg = MCOperand::createReg(X86::SI);
2107 break;
2108 case EA_BASE_BX_DI:
2109 baseReg = MCOperand::createReg(X86::BX);
2110 indexReg = MCOperand::createReg(X86::DI);
2111 break;
2112 case EA_BASE_BP_SI:
2113 baseReg = MCOperand::createReg(X86::BP);
2114 indexReg = MCOperand::createReg(X86::SI);
2115 break;
2116 case EA_BASE_BP_DI:
2117 baseReg = MCOperand::createReg(X86::BP);
2118 indexReg = MCOperand::createReg(X86::DI);
2119 break;
2120 default:
2121 indexReg = MCOperand::createReg(X86::NoRegister);
2122 switch (insn.eaBase) {
2123 default:
2124 debug("Unexpected eaBase");
2125 return true;
2126 // Here, we will use the fill-ins defined above. However,
2127 // BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
2128 // sib and sib64 were handled in the top-level if, so they're only
2129 // placeholders to keep the compiler happy.
2130 #define ENTRY(x) \
2131 case EA_BASE_##x: \
2132 baseReg = MCOperand::createReg(X86::x); break;
2133 ALL_EA_BASES
2134 #undef ENTRY
2135 #define ENTRY(x) case EA_REG_##x:
2136 ALL_REGS
2137 #undef ENTRY
2138 debug("A R/M memory operand may not be a register; "
2139 "the base field must be a base.");
2140 return true;
2141 }
2142 }
2143
2144 scaleAmount = MCOperand::createImm(1);
2145 }
2146
2147 displacement = MCOperand::createImm(insn.displacement);
2148
2149 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
2150
2151 mcInst.addOperand(baseReg);
2152 mcInst.addOperand(scaleAmount);
2153 mcInst.addOperand(indexReg);
2154 if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false,
2155 insn.startLocation, insn.displacementOffset,
2156 insn.displacementSize, mcInst, Dis))
2157 mcInst.addOperand(displacement);
2158 mcInst.addOperand(segmentReg);
2159 return false;
2160 }
2161
2162 /// translateRM - Translates an operand stored in the R/M (and possibly SIB)
2163 /// byte of an instruction to LLVM form, and appends it to an MCInst.
2164 ///
2165 /// @param mcInst - The MCInst to append to.
2166 /// @param operand - The operand, as stored in the descriptor table.
2167 /// @param insn - The instruction to extract Mod, R/M, and SIB fields
2168 /// from.
2169 /// @return - 0 on success; nonzero otherwise
translateRM(MCInst & mcInst,const OperandSpecifier & operand,InternalInstruction & insn,const MCDisassembler * Dis)2170 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
2171 InternalInstruction &insn, const MCDisassembler *Dis) {
2172 switch (operand.type) {
2173 default:
2174 debug("Unexpected type for a R/M operand");
2175 return true;
2176 case TYPE_R8:
2177 case TYPE_R16:
2178 case TYPE_R32:
2179 case TYPE_R64:
2180 case TYPE_Rv:
2181 case TYPE_MM64:
2182 case TYPE_XMM:
2183 case TYPE_YMM:
2184 case TYPE_ZMM:
2185 case TYPE_VK_PAIR:
2186 case TYPE_VK:
2187 case TYPE_DEBUGREG:
2188 case TYPE_CONTROLREG:
2189 case TYPE_BNDR:
2190 return translateRMRegister(mcInst, insn);
2191 case TYPE_M:
2192 case TYPE_MVSIBX:
2193 case TYPE_MVSIBY:
2194 case TYPE_MVSIBZ:
2195 return translateRMMemory(mcInst, insn, Dis);
2196 }
2197 }
2198
2199 /// translateFPRegister - Translates a stack position on the FPU stack to its
2200 /// LLVM form, and appends it to an MCInst.
2201 ///
2202 /// @param mcInst - The MCInst to append to.
2203 /// @param stackPos - The stack position to translate.
translateFPRegister(MCInst & mcInst,uint8_t stackPos)2204 static void translateFPRegister(MCInst &mcInst,
2205 uint8_t stackPos) {
2206 mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos));
2207 }
2208
2209 /// translateMaskRegister - Translates a 3-bit mask register number to
2210 /// LLVM form, and appends it to an MCInst.
2211 ///
2212 /// @param mcInst - The MCInst to append to.
2213 /// @param maskRegNum - Number of mask register from 0 to 7.
2214 /// @return - false on success; true otherwise.
translateMaskRegister(MCInst & mcInst,uint8_t maskRegNum)2215 static bool translateMaskRegister(MCInst &mcInst,
2216 uint8_t maskRegNum) {
2217 if (maskRegNum >= 8) {
2218 debug("Invalid mask register number");
2219 return true;
2220 }
2221
2222 mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum));
2223 return false;
2224 }
2225
2226 /// translateOperand - Translates an operand stored in an internal instruction
2227 /// to LLVM's format and appends it to an MCInst.
2228 ///
2229 /// @param mcInst - The MCInst to append to.
2230 /// @param operand - The operand, as stored in the descriptor table.
2231 /// @param insn - The internal instruction.
2232 /// @return - false on success; true otherwise.
translateOperand(MCInst & mcInst,const OperandSpecifier & operand,InternalInstruction & insn,const MCDisassembler * Dis)2233 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
2234 InternalInstruction &insn,
2235 const MCDisassembler *Dis) {
2236 switch (operand.encoding) {
2237 default:
2238 debug("Unhandled operand encoding during translation");
2239 return true;
2240 case ENCODING_REG:
2241 translateRegister(mcInst, insn.reg);
2242 return false;
2243 case ENCODING_WRITEMASK:
2244 return translateMaskRegister(mcInst, insn.writemask);
2245 CASE_ENCODING_RM:
2246 CASE_ENCODING_VSIB:
2247 return translateRM(mcInst, operand, insn, Dis);
2248 case ENCODING_IB:
2249 case ENCODING_IW:
2250 case ENCODING_ID:
2251 case ENCODING_IO:
2252 case ENCODING_Iv:
2253 case ENCODING_Ia:
2254 translateImmediate(mcInst,
2255 insn.immediates[insn.numImmediatesTranslated++],
2256 operand,
2257 insn,
2258 Dis);
2259 return false;
2260 case ENCODING_IRC:
2261 mcInst.addOperand(MCOperand::createImm(insn.RC));
2262 return false;
2263 case ENCODING_SI:
2264 return translateSrcIndex(mcInst, insn);
2265 case ENCODING_DI:
2266 return translateDstIndex(mcInst, insn);
2267 case ENCODING_RB:
2268 case ENCODING_RW:
2269 case ENCODING_RD:
2270 case ENCODING_RO:
2271 case ENCODING_Rv:
2272 translateRegister(mcInst, insn.opcodeRegister);
2273 return false;
2274 case ENCODING_CC:
2275 mcInst.addOperand(MCOperand::createImm(insn.immediates[1]));
2276 return false;
2277 case ENCODING_FP:
2278 translateFPRegister(mcInst, insn.modRM & 7);
2279 return false;
2280 case ENCODING_VVVV:
2281 translateRegister(mcInst, insn.vvvv);
2282 return false;
2283 case ENCODING_DUP:
2284 return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
2285 insn, Dis);
2286 }
2287 }
2288
2289 /// translateInstruction - Translates an internal instruction and all its
2290 /// operands to an MCInst.
2291 ///
2292 /// @param mcInst - The MCInst to populate with the instruction's data.
2293 /// @param insn - The internal instruction.
2294 /// @return - false on success; true otherwise.
translateInstruction(MCInst & mcInst,InternalInstruction & insn,const MCDisassembler * Dis)2295 static bool translateInstruction(MCInst &mcInst,
2296 InternalInstruction &insn,
2297 const MCDisassembler *Dis) {
2298 if (!insn.spec) {
2299 debug("Instruction has no specification");
2300 return true;
2301 }
2302
2303 mcInst.clear();
2304 mcInst.setOpcode(insn.instructionID);
2305 // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
2306 // prefix bytes should be disassembled as xrelease and xacquire then set the
2307 // opcode to those instead of the rep and repne opcodes.
2308 if (insn.xAcquireRelease) {
2309 if(mcInst.getOpcode() == X86::REP_PREFIX)
2310 mcInst.setOpcode(X86::XRELEASE_PREFIX);
2311 else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
2312 mcInst.setOpcode(X86::XACQUIRE_PREFIX);
2313 }
2314
2315 insn.numImmediatesTranslated = 0;
2316
2317 for (const auto &Op : insn.operands) {
2318 if (Op.encoding != ENCODING_NONE) {
2319 if (translateOperand(mcInst, Op, insn, Dis)) {
2320 return true;
2321 }
2322 }
2323 }
2324
2325 return false;
2326 }
2327
createX86Disassembler(const Target & T,const MCSubtargetInfo & STI,MCContext & Ctx)2328 static MCDisassembler *createX86Disassembler(const Target &T,
2329 const MCSubtargetInfo &STI,
2330 MCContext &Ctx) {
2331 std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
2332 return new X86GenericDisassembler(STI, Ctx, std::move(MII));
2333 }
2334
LLVMInitializeX86Disassembler()2335 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Disassembler() {
2336 // Register the disassembler.
2337 TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(),
2338 createX86Disassembler);
2339 TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(),
2340 createX86Disassembler);
2341 }
2342