// Copyright 2021 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_CODEGEN_LOONG64_ASSEMBLER_LOONG64_INL_H_ #define V8_CODEGEN_LOONG64_ASSEMBLER_LOONG64_INL_H_ #include "src/codegen/assembler.h" #include "src/codegen/loong64/assembler-loong64.h" #include "src/debug/debug.h" #include "src/objects/objects-inl.h" namespace v8 { namespace internal { bool CpuFeatures::SupportsOptimizer() { return IsSupported(FPU); } // ----------------------------------------------------------------------------- // Operand and MemOperand. bool Operand::is_reg() const { return rm_.is_valid(); } int64_t Operand::immediate() const { DCHECK(!is_reg()); DCHECK(!IsHeapObjectRequest()); return value_.immediate; } // ----------------------------------------------------------------------------- // RelocInfo. void RelocInfo::apply(intptr_t delta) { if (IsInternalReference(rmode_)) { // Absolute code pointer inside code object moves with the code object. Assembler::RelocateInternalReference(rmode_, pc_, delta); } else { DCHECK(IsRelativeCodeTarget(rmode_)); Assembler::RelocateRelativeReference(rmode_, pc_, delta); } } Address RelocInfo::target_address() { DCHECK(IsCodeTargetMode(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_)); return Assembler::target_address_at(pc_, constant_pool_); } Address RelocInfo::target_address_address() { DCHECK(HasTargetAddressAddress()); // Read the address of the word containing the target_address in an // instruction stream. // The only architecture-independent user of this function is the serializer. // The serializer uses it to find out how many raw bytes of instruction to // output before the next target. // For an instruction like LUI/ORI where the target bits are mixed into the // instruction bits, the size of the target will be zero, indicating that the // serializer should not step forward in memory after a target is resolved // and written. In this case the target_address_address function should // return the end of the instructions to be patched, allowing the // deserializer to deserialize the instructions as raw bytes and put them in // place, ready to be patched with the target. After jump optimization, // that is the address of the instruction that follows J/JAL/JR/JALR // instruction. return pc_ + Assembler::kInstructionsFor64BitConstant * kInstrSize; } Address RelocInfo::constant_pool_entry_address() { UNREACHABLE(); } int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; } void Assembler::deserialization_set_special_target_at( Address instruction_payload, Code code, Address target) { set_target_address_at(instruction_payload, !code.is_null() ? code.constant_pool() : kNullAddress, target); } int Assembler::deserialization_special_target_size( Address instruction_payload) { return kSpecialTargetSize; } void Assembler::deserialization_set_target_internal_reference_at( Address pc, Address target, RelocInfo::Mode mode) { WriteUnalignedValue
(pc, target); } HeapObject RelocInfo::target_object(PtrComprCageBase cage_base) { DCHECK(IsCodeTarget(rmode_) || IsFullEmbeddedObject(rmode_) || IsDataEmbeddedObject(rmode_)); if (IsDataEmbeddedObject(rmode_)) { return HeapObject::cast(Object(ReadUnalignedValue(pc_))); } return HeapObject::cast( Object(Assembler::target_address_at(pc_, constant_pool_))); } Handle Assembler::relative_code_target_object_handle_at(
Address pc) const {
Instr instr = Assembler::instr_at(pc);
int32_t code_target_index = instr & kImm26Mask;
code_target_index = ((code_target_index & 0x3ff) << 22 >> 6) |
((code_target_index >> 10) & kImm16Mask);
return GetCodeTarget(code_target_index);
}
Address RelocInfo::target_runtime_entry(Assembler* origin) {
DCHECK(IsRuntimeEntry(rmode_));
return target_address();
}
void RelocInfo::set_target_runtime_entry(Address target,
WriteBarrierMode write_barrier_mode,
ICacheFlushMode icache_flush_mode) {
DCHECK(IsRuntimeEntry(rmode_));
if (target_address() != target)
set_target_address(target, write_barrier_mode, icache_flush_mode);
}
Address RelocInfo::target_off_heap_target() {
DCHECK(IsOffHeapTarget(rmode_));
return Assembler::target_address_at(pc_, constant_pool_);
}
void RelocInfo::WipeOut() {
DCHECK(IsFullEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
IsInternalReference(rmode_) || IsOffHeapTarget(rmode_));
if (IsInternalReference(rmode_)) {
Memory(pc_) = kNullAddress;
} else {
Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress);
}
}
// -----------------------------------------------------------------------------
// Assembler.
void Assembler::CheckBuffer() {
if (buffer_space() <= kGap) {
GrowBuffer();
}
}
void Assembler::EmitHelper(Instr x) {
*reinterpret_cast(pc_) = x;
pc_ += kInstrSize;
CheckTrampolinePoolQuick();
}
template <>
inline void Assembler::EmitHelper(uint8_t x);
template
void Assembler::EmitHelper(T x) {
*reinterpret_cast(pc_) = x;
pc_ += sizeof(x);
CheckTrampolinePoolQuick();
}
template <>
void Assembler::EmitHelper(uint8_t x) {
*reinterpret_cast(pc_) = x;
pc_ += sizeof(x);
if (reinterpret_cast(pc_) % kInstrSize == 0) {
CheckTrampolinePoolQuick();
}
}
void Assembler::emit(Instr x) {
if (!is_buffer_growth_blocked()) {
CheckBuffer();
}
EmitHelper(x);
}
void Assembler::emit(uint64_t data) {
// CheckForEmitInForbiddenSlot();
if (!is_buffer_growth_blocked()) {
CheckBuffer();
}
EmitHelper(data);
}
EnsureSpace::EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); }
} // namespace internal
} // namespace v8
#endif // V8_CODEGEN_LOONG64_ASSEMBLER_LOONG64_INL_H_