• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * workqueue.h --- work queue handling for Linux.
4  */
5 
6 #ifndef _LINUX_WORKQUEUE_H
7 #define _LINUX_WORKQUEUE_H
8 
9 #include <linux/timer.h>
10 #include <linux/linkage.h>
11 #include <linux/bitops.h>
12 #include <linux/lockdep.h>
13 #include <linux/threads.h>
14 #include <linux/atomic.h>
15 #include <linux/cpumask.h>
16 #include <linux/rcupdate.h>
17 
18 struct workqueue_struct;
19 
20 struct work_struct;
21 typedef void (*work_func_t)(struct work_struct *work);
22 void delayed_work_timer_fn(struct timer_list *t);
23 
24 /*
25  * The first word is the work queue pointer and the flags rolled into
26  * one
27  */
28 #define work_data_bits(work) ((unsigned long *)(&(work)->data))
29 
30 enum {
31 	WORK_STRUCT_PENDING_BIT	= 0,	/* work item is pending execution */
32 	WORK_STRUCT_INACTIVE_BIT= 1,	/* work item is inactive */
33 	WORK_STRUCT_PWQ_BIT	= 2,	/* data points to pwq */
34 	WORK_STRUCT_LINKED_BIT	= 3,	/* next work is linked to this one */
35 #ifdef CONFIG_DEBUG_OBJECTS_WORK
36 	WORK_STRUCT_STATIC_BIT	= 4,	/* static initializer (debugobjects) */
37 	WORK_STRUCT_COLOR_SHIFT	= 5,	/* color for workqueue flushing */
38 #else
39 	WORK_STRUCT_COLOR_SHIFT	= 4,	/* color for workqueue flushing */
40 #endif
41 
42 	WORK_STRUCT_COLOR_BITS	= 4,
43 
44 	WORK_STRUCT_PENDING	= 1 << WORK_STRUCT_PENDING_BIT,
45 	WORK_STRUCT_INACTIVE	= 1 << WORK_STRUCT_INACTIVE_BIT,
46 	WORK_STRUCT_PWQ		= 1 << WORK_STRUCT_PWQ_BIT,
47 	WORK_STRUCT_LINKED	= 1 << WORK_STRUCT_LINKED_BIT,
48 #ifdef CONFIG_DEBUG_OBJECTS_WORK
49 	WORK_STRUCT_STATIC	= 1 << WORK_STRUCT_STATIC_BIT,
50 #else
51 	WORK_STRUCT_STATIC	= 0,
52 #endif
53 
54 	WORK_NR_COLORS		= (1 << WORK_STRUCT_COLOR_BITS),
55 
56 	/* not bound to any CPU, prefer the local CPU */
57 	WORK_CPU_UNBOUND	= NR_CPUS,
58 
59 	/*
60 	 * Reserve 8 bits off of pwq pointer w/ debugobjects turned off.
61 	 * This makes pwqs aligned to 256 bytes and allows 16 workqueue
62 	 * flush colors.
63 	 */
64 	WORK_STRUCT_FLAG_BITS	= WORK_STRUCT_COLOR_SHIFT +
65 				  WORK_STRUCT_COLOR_BITS,
66 
67 	/* data contains off-queue information when !WORK_STRUCT_PWQ */
68 	WORK_OFFQ_FLAG_BASE	= WORK_STRUCT_COLOR_SHIFT,
69 
70 	__WORK_OFFQ_CANCELING	= WORK_OFFQ_FLAG_BASE,
71 
72 	/*
73 	 * When a work item is off queue, its high bits point to the last
74 	 * pool it was on.  Cap at 31 bits and use the highest number to
75 	 * indicate that no pool is associated.
76 	 */
77 	WORK_OFFQ_FLAG_BITS	= 1,
78 	WORK_OFFQ_POOL_SHIFT	= WORK_OFFQ_FLAG_BASE + WORK_OFFQ_FLAG_BITS,
79 	WORK_OFFQ_LEFT		= BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT,
80 	WORK_OFFQ_POOL_BITS	= WORK_OFFQ_LEFT <= 31 ? WORK_OFFQ_LEFT : 31,
81 
82 	/* bit mask for work_busy() return values */
83 	WORK_BUSY_PENDING	= 1 << 0,
84 	WORK_BUSY_RUNNING	= 1 << 1,
85 
86 	/* maximum string length for set_worker_desc() */
87 	WORKER_DESC_LEN		= 24,
88 };
89 
90 /* Convenience constants - of type 'unsigned long', not 'enum'! */
91 #define WORK_OFFQ_CANCELING	(1ul << __WORK_OFFQ_CANCELING)
92 #define WORK_OFFQ_POOL_NONE	((1ul << WORK_OFFQ_POOL_BITS) - 1)
93 #define WORK_STRUCT_NO_POOL	(WORK_OFFQ_POOL_NONE << WORK_OFFQ_POOL_SHIFT)
94 
95 #define WORK_STRUCT_FLAG_MASK    ((1ul << WORK_STRUCT_FLAG_BITS) - 1)
96 #define WORK_STRUCT_WQ_DATA_MASK (~WORK_STRUCT_FLAG_MASK)
97 
98 struct work_struct {
99 	atomic_long_t data;
100 	struct list_head entry;
101 	work_func_t func;
102 #ifdef CONFIG_LOCKDEP
103 	struct lockdep_map lockdep_map;
104 #endif
105 };
106 
107 #define WORK_DATA_INIT()	ATOMIC_LONG_INIT((unsigned long)WORK_STRUCT_NO_POOL)
108 #define WORK_DATA_STATIC_INIT()	\
109 	ATOMIC_LONG_INIT((unsigned long)(WORK_STRUCT_NO_POOL | WORK_STRUCT_STATIC))
110 
111 struct delayed_work {
112 	struct work_struct work;
113 	struct timer_list timer;
114 
115 	/* target workqueue and CPU ->timer uses to queue ->work */
116 	struct workqueue_struct *wq;
117 	int cpu;
118 };
119 
120 struct rcu_work {
121 	struct work_struct work;
122 	struct rcu_head rcu;
123 
124 	/* target workqueue ->rcu uses to queue ->work */
125 	struct workqueue_struct *wq;
126 };
127 
128 enum wq_affn_scope {
129 	WQ_AFFN_DFL,			/* use system default */
130 	WQ_AFFN_CPU,			/* one pod per CPU */
131 	WQ_AFFN_SMT,			/* one pod poer SMT */
132 	WQ_AFFN_CACHE,			/* one pod per LLC */
133 	WQ_AFFN_NUMA,			/* one pod per NUMA node */
134 	WQ_AFFN_SYSTEM,			/* one pod across the whole system */
135 
136 	WQ_AFFN_NR_TYPES,
137 };
138 
139 /**
140  * struct workqueue_attrs - A struct for workqueue attributes.
141  *
142  * This can be used to change attributes of an unbound workqueue.
143  */
144 struct workqueue_attrs {
145 	/**
146 	 * @nice: nice level
147 	 */
148 	int nice;
149 
150 	/**
151 	 * @cpumask: allowed CPUs
152 	 *
153 	 * Work items in this workqueue are affine to these CPUs and not allowed
154 	 * to execute on other CPUs. A pool serving a workqueue must have the
155 	 * same @cpumask.
156 	 */
157 	cpumask_var_t cpumask;
158 
159 	/**
160 	 * @__pod_cpumask: internal attribute used to create per-pod pools
161 	 *
162 	 * Internal use only.
163 	 *
164 	 * Per-pod unbound worker pools are used to improve locality. Always a
165 	 * subset of ->cpumask. A workqueue can be associated with multiple
166 	 * worker pools with disjoint @__pod_cpumask's. Whether the enforcement
167 	 * of a pool's @__pod_cpumask is strict depends on @affn_strict.
168 	 */
169 	cpumask_var_t __pod_cpumask;
170 
171 	/**
172 	 * @affn_strict: affinity scope is strict
173 	 *
174 	 * If clear, workqueue will make a best-effort attempt at starting the
175 	 * worker inside @__pod_cpumask but the scheduler is free to migrate it
176 	 * outside.
177 	 *
178 	 * If set, workers are only allowed to run inside @__pod_cpumask.
179 	 */
180 	bool affn_strict;
181 
182 	/*
183 	 * Below fields aren't properties of a worker_pool. They only modify how
184 	 * :c:func:`apply_workqueue_attrs` select pools and thus don't
185 	 * participate in pool hash calculations or equality comparisons.
186 	 */
187 
188 	/**
189 	 * @affn_scope: unbound CPU affinity scope
190 	 *
191 	 * CPU pods are used to improve execution locality of unbound work
192 	 * items. There are multiple pod types, one for each wq_affn_scope, and
193 	 * every CPU in the system belongs to one pod in every pod type. CPUs
194 	 * that belong to the same pod share the worker pool. For example,
195 	 * selecting %WQ_AFFN_NUMA makes the workqueue use a separate worker
196 	 * pool for each NUMA node.
197 	 */
198 	enum wq_affn_scope affn_scope;
199 
200 	/**
201 	 * @ordered: work items must be executed one by one in queueing order
202 	 */
203 	bool ordered;
204 };
205 
to_delayed_work(struct work_struct * work)206 static inline struct delayed_work *to_delayed_work(struct work_struct *work)
207 {
208 	return container_of(work, struct delayed_work, work);
209 }
210 
to_rcu_work(struct work_struct * work)211 static inline struct rcu_work *to_rcu_work(struct work_struct *work)
212 {
213 	return container_of(work, struct rcu_work, work);
214 }
215 
216 struct execute_work {
217 	struct work_struct work;
218 };
219 
220 #ifdef CONFIG_LOCKDEP
221 /*
222  * NB: because we have to copy the lockdep_map, setting _key
223  * here is required, otherwise it could get initialised to the
224  * copy of the lockdep_map!
225  */
226 #define __WORK_INIT_LOCKDEP_MAP(n, k) \
227 	.lockdep_map = STATIC_LOCKDEP_MAP_INIT(n, k),
228 #else
229 #define __WORK_INIT_LOCKDEP_MAP(n, k)
230 #endif
231 
232 #define __WORK_INITIALIZER(n, f) {					\
233 	.data = WORK_DATA_STATIC_INIT(),				\
234 	.entry	= { &(n).entry, &(n).entry },				\
235 	.func = (f),							\
236 	__WORK_INIT_LOCKDEP_MAP(#n, &(n))				\
237 	}
238 
239 #define __DELAYED_WORK_INITIALIZER(n, f, tflags) {			\
240 	.work = __WORK_INITIALIZER((n).work, (f)),			\
241 	.timer = __TIMER_INITIALIZER(delayed_work_timer_fn,\
242 				     (tflags) | TIMER_IRQSAFE),		\
243 	}
244 
245 #define DECLARE_WORK(n, f)						\
246 	struct work_struct n = __WORK_INITIALIZER(n, f)
247 
248 #define DECLARE_DELAYED_WORK(n, f)					\
249 	struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, 0)
250 
251 #define DECLARE_DEFERRABLE_WORK(n, f)					\
252 	struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, TIMER_DEFERRABLE)
253 
254 #ifdef CONFIG_DEBUG_OBJECTS_WORK
255 extern void __init_work(struct work_struct *work, int onstack);
256 extern void destroy_work_on_stack(struct work_struct *work);
257 extern void destroy_delayed_work_on_stack(struct delayed_work *work);
work_static(struct work_struct * work)258 static inline unsigned int work_static(struct work_struct *work)
259 {
260 	return *work_data_bits(work) & WORK_STRUCT_STATIC;
261 }
262 #else
__init_work(struct work_struct * work,int onstack)263 static inline void __init_work(struct work_struct *work, int onstack) { }
destroy_work_on_stack(struct work_struct * work)264 static inline void destroy_work_on_stack(struct work_struct *work) { }
destroy_delayed_work_on_stack(struct delayed_work * work)265 static inline void destroy_delayed_work_on_stack(struct delayed_work *work) { }
work_static(struct work_struct * work)266 static inline unsigned int work_static(struct work_struct *work) { return 0; }
267 #endif
268 
269 /*
270  * initialize all of a work item in one go
271  *
272  * NOTE! No point in using "atomic_long_set()": using a direct
273  * assignment of the work data initializer allows the compiler
274  * to generate better code.
275  */
276 #ifdef CONFIG_LOCKDEP
277 #define __INIT_WORK_KEY(_work, _func, _onstack, _key)			\
278 	do {								\
279 		__init_work((_work), _onstack);				\
280 		(_work)->data = (atomic_long_t) WORK_DATA_INIT();	\
281 		lockdep_init_map(&(_work)->lockdep_map, "(work_completion)"#_work, (_key), 0); \
282 		INIT_LIST_HEAD(&(_work)->entry);			\
283 		(_work)->func = (_func);				\
284 	} while (0)
285 #else
286 #define __INIT_WORK_KEY(_work, _func, _onstack, _key)			\
287 	do {								\
288 		__init_work((_work), _onstack);				\
289 		(_work)->data = (atomic_long_t) WORK_DATA_INIT();	\
290 		INIT_LIST_HEAD(&(_work)->entry);			\
291 		(_work)->func = (_func);				\
292 	} while (0)
293 #endif
294 
295 #define __INIT_WORK(_work, _func, _onstack)				\
296 	do {								\
297 		static __maybe_unused struct lock_class_key __key;	\
298 									\
299 		__INIT_WORK_KEY(_work, _func, _onstack, &__key);	\
300 	} while (0)
301 
302 #define INIT_WORK(_work, _func)						\
303 	__INIT_WORK((_work), (_func), 0)
304 
305 #define INIT_WORK_ONSTACK(_work, _func)					\
306 	__INIT_WORK((_work), (_func), 1)
307 
308 #define INIT_WORK_ONSTACK_KEY(_work, _func, _key)			\
309 	__INIT_WORK_KEY((_work), (_func), 1, _key)
310 
311 #define __INIT_DELAYED_WORK(_work, _func, _tflags)			\
312 	do {								\
313 		INIT_WORK(&(_work)->work, (_func));			\
314 		__init_timer(&(_work)->timer,				\
315 			     delayed_work_timer_fn,			\
316 			     (_tflags) | TIMER_IRQSAFE);		\
317 	} while (0)
318 
319 #define __INIT_DELAYED_WORK_ONSTACK(_work, _func, _tflags)		\
320 	do {								\
321 		INIT_WORK_ONSTACK(&(_work)->work, (_func));		\
322 		__init_timer_on_stack(&(_work)->timer,			\
323 				      delayed_work_timer_fn,		\
324 				      (_tflags) | TIMER_IRQSAFE);	\
325 	} while (0)
326 
327 #define INIT_DELAYED_WORK(_work, _func)					\
328 	__INIT_DELAYED_WORK(_work, _func, 0)
329 
330 #define INIT_DELAYED_WORK_ONSTACK(_work, _func)				\
331 	__INIT_DELAYED_WORK_ONSTACK(_work, _func, 0)
332 
333 #define INIT_DEFERRABLE_WORK(_work, _func)				\
334 	__INIT_DELAYED_WORK(_work, _func, TIMER_DEFERRABLE)
335 
336 #define INIT_DEFERRABLE_WORK_ONSTACK(_work, _func)			\
337 	__INIT_DELAYED_WORK_ONSTACK(_work, _func, TIMER_DEFERRABLE)
338 
339 #define INIT_RCU_WORK(_work, _func)					\
340 	INIT_WORK(&(_work)->work, (_func))
341 
342 #define INIT_RCU_WORK_ONSTACK(_work, _func)				\
343 	INIT_WORK_ONSTACK(&(_work)->work, (_func))
344 
345 /**
346  * work_pending - Find out whether a work item is currently pending
347  * @work: The work item in question
348  */
349 #define work_pending(work) \
350 	test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))
351 
352 /**
353  * delayed_work_pending - Find out whether a delayable work item is currently
354  * pending
355  * @w: The work item in question
356  */
357 #define delayed_work_pending(w) \
358 	work_pending(&(w)->work)
359 
360 /*
361  * Workqueue flags and constants.  For details, please refer to
362  * Documentation/core-api/workqueue.rst.
363  */
364 enum {
365 	WQ_UNBOUND		= 1 << 1, /* not bound to any cpu */
366 	WQ_FREEZABLE		= 1 << 2, /* freeze during suspend */
367 	WQ_MEM_RECLAIM		= 1 << 3, /* may be used for memory reclaim */
368 	WQ_HIGHPRI		= 1 << 4, /* high priority */
369 	WQ_CPU_INTENSIVE	= 1 << 5, /* cpu intensive workqueue */
370 	WQ_SYSFS		= 1 << 6, /* visible in sysfs, see workqueue_sysfs_register() */
371 
372 	/*
373 	 * Per-cpu workqueues are generally preferred because they tend to
374 	 * show better performance thanks to cache locality.  Per-cpu
375 	 * workqueues exclude the scheduler from choosing the CPU to
376 	 * execute the worker threads, which has an unfortunate side effect
377 	 * of increasing power consumption.
378 	 *
379 	 * The scheduler considers a CPU idle if it doesn't have any task
380 	 * to execute and tries to keep idle cores idle to conserve power;
381 	 * however, for example, a per-cpu work item scheduled from an
382 	 * interrupt handler on an idle CPU will force the scheduler to
383 	 * execute the work item on that CPU breaking the idleness, which in
384 	 * turn may lead to more scheduling choices which are sub-optimal
385 	 * in terms of power consumption.
386 	 *
387 	 * Workqueues marked with WQ_POWER_EFFICIENT are per-cpu by default
388 	 * but become unbound if workqueue.power_efficient kernel param is
389 	 * specified.  Per-cpu workqueues which are identified to
390 	 * contribute significantly to power-consumption are identified and
391 	 * marked with this flag and enabling the power_efficient mode
392 	 * leads to noticeable power saving at the cost of small
393 	 * performance disadvantage.
394 	 *
395 	 * http://thread.gmane.org/gmane.linux.kernel/1480396
396 	 */
397 	WQ_POWER_EFFICIENT	= 1 << 7,
398 
399 	__WQ_DESTROYING		= 1 << 15, /* internal: workqueue is destroying */
400 	__WQ_DRAINING		= 1 << 16, /* internal: workqueue is draining */
401 	__WQ_ORDERED		= 1 << 17, /* internal: workqueue is ordered */
402 	__WQ_LEGACY		= 1 << 18, /* internal: create*_workqueue() */
403 	__WQ_ORDERED_EXPLICIT	= 1 << 19, /* internal: alloc_ordered_workqueue() */
404 
405 	WQ_MAX_ACTIVE		= 512,	  /* I like 512, better ideas? */
406 	WQ_UNBOUND_MAX_ACTIVE	= WQ_MAX_ACTIVE,
407 	WQ_DFL_ACTIVE		= WQ_MAX_ACTIVE / 2,
408 
409 	/*
410 	 * Per-node default cap on min_active. Unless explicitly set, min_active
411 	 * is set to min(max_active, WQ_DFL_MIN_ACTIVE). For more details, see
412 	 * workqueue_struct->min_active definition.
413 	 */
414 	WQ_DFL_MIN_ACTIVE	= 8,
415 };
416 
417 /*
418  * System-wide workqueues which are always present.
419  *
420  * system_wq is the one used by schedule[_delayed]_work[_on]().
421  * Multi-CPU multi-threaded.  There are users which expect relatively
422  * short queue flush time.  Don't queue works which can run for too
423  * long.
424  *
425  * system_highpri_wq is similar to system_wq but for work items which
426  * require WQ_HIGHPRI.
427  *
428  * system_long_wq is similar to system_wq but may host long running
429  * works.  Queue flushing might take relatively long.
430  *
431  * system_unbound_wq is unbound workqueue.  Workers are not bound to
432  * any specific CPU, not concurrency managed, and all queued works are
433  * executed immediately as long as max_active limit is not reached and
434  * resources are available.
435  *
436  * system_freezable_wq is equivalent to system_wq except that it's
437  * freezable.
438  *
439  * *_power_efficient_wq are inclined towards saving power and converted
440  * into WQ_UNBOUND variants if 'wq_power_efficient' is enabled; otherwise,
441  * they are same as their non-power-efficient counterparts - e.g.
442  * system_power_efficient_wq is identical to system_wq if
443  * 'wq_power_efficient' is disabled.  See WQ_POWER_EFFICIENT for more info.
444  */
445 extern struct workqueue_struct *system_wq;
446 extern struct workqueue_struct *system_highpri_wq;
447 extern struct workqueue_struct *system_long_wq;
448 extern struct workqueue_struct *system_unbound_wq;
449 extern struct workqueue_struct *system_freezable_wq;
450 extern struct workqueue_struct *system_power_efficient_wq;
451 extern struct workqueue_struct *system_freezable_power_efficient_wq;
452 
453 /**
454  * alloc_workqueue - allocate a workqueue
455  * @fmt: printf format for the name of the workqueue
456  * @flags: WQ_* flags
457  * @max_active: max in-flight work items, 0 for default
458  * remaining args: args for @fmt
459  *
460  * For a per-cpu workqueue, @max_active limits the number of in-flight work
461  * items for each CPU. e.g. @max_active of 1 indicates that each CPU can be
462  * executing at most one work item for the workqueue.
463  *
464  * For unbound workqueues, @max_active limits the number of in-flight work items
465  * for the whole system. e.g. @max_active of 16 indicates that that there can be
466  * at most 16 work items executing for the workqueue in the whole system.
467  *
468  * As sharing the same active counter for an unbound workqueue across multiple
469  * NUMA nodes can be expensive, @max_active is distributed to each NUMA node
470  * according to the proportion of the number of online CPUs and enforced
471  * independently.
472  *
473  * Depending on online CPU distribution, a node may end up with per-node
474  * max_active which is significantly lower than @max_active, which can lead to
475  * deadlocks if the per-node concurrency limit is lower than the maximum number
476  * of interdependent work items for the workqueue.
477  *
478  * To guarantee forward progress regardless of online CPU distribution, the
479  * concurrency limit on every node is guaranteed to be equal to or greater than
480  * min_active which is set to min(@max_active, %WQ_DFL_MIN_ACTIVE). This means
481  * that the sum of per-node max_active's may be larger than @max_active.
482  *
483  * For detailed information on %WQ_* flags, please refer to
484  * Documentation/core-api/workqueue.rst.
485  *
486  * RETURNS:
487  * Pointer to the allocated workqueue on success, %NULL on failure.
488  */
489 __printf(1, 4) struct workqueue_struct *
490 alloc_workqueue(const char *fmt, unsigned int flags, int max_active, ...);
491 
492 /**
493  * alloc_ordered_workqueue - allocate an ordered workqueue
494  * @fmt: printf format for the name of the workqueue
495  * @flags: WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful)
496  * @args: args for @fmt
497  *
498  * Allocate an ordered workqueue.  An ordered workqueue executes at
499  * most one work item at any given time in the queued order.  They are
500  * implemented as unbound workqueues with @max_active of one.
501  *
502  * RETURNS:
503  * Pointer to the allocated workqueue on success, %NULL on failure.
504  */
505 #define alloc_ordered_workqueue(fmt, flags, args...)			\
506 	alloc_workqueue(fmt, WQ_UNBOUND | __WQ_ORDERED |		\
507 			__WQ_ORDERED_EXPLICIT | (flags), 1, ##args)
508 
509 #define create_workqueue(name)						\
510 	alloc_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, 1, (name))
511 #define create_freezable_workqueue(name)				\
512 	alloc_workqueue("%s", __WQ_LEGACY | WQ_FREEZABLE | WQ_UNBOUND |	\
513 			WQ_MEM_RECLAIM, 1, (name))
514 #define create_singlethread_workqueue(name)				\
515 	alloc_ordered_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, name)
516 
517 extern void destroy_workqueue(struct workqueue_struct *wq);
518 
519 struct workqueue_attrs *alloc_workqueue_attrs(void);
520 void free_workqueue_attrs(struct workqueue_attrs *attrs);
521 int apply_workqueue_attrs(struct workqueue_struct *wq,
522 			  const struct workqueue_attrs *attrs);
523 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask);
524 
525 extern bool queue_work_on(int cpu, struct workqueue_struct *wq,
526 			struct work_struct *work);
527 extern bool queue_work_node(int node, struct workqueue_struct *wq,
528 			    struct work_struct *work);
529 extern bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
530 			struct delayed_work *work, unsigned long delay);
531 extern bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
532 			struct delayed_work *dwork, unsigned long delay);
533 extern bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork);
534 
535 extern void __flush_workqueue(struct workqueue_struct *wq);
536 extern void drain_workqueue(struct workqueue_struct *wq);
537 
538 extern int schedule_on_each_cpu(work_func_t func);
539 
540 int execute_in_process_context(work_func_t fn, struct execute_work *);
541 
542 extern bool flush_work(struct work_struct *work);
543 extern bool cancel_work(struct work_struct *work);
544 extern bool cancel_work_sync(struct work_struct *work);
545 
546 extern bool flush_delayed_work(struct delayed_work *dwork);
547 extern bool cancel_delayed_work(struct delayed_work *dwork);
548 extern bool cancel_delayed_work_sync(struct delayed_work *dwork);
549 
550 extern bool flush_rcu_work(struct rcu_work *rwork);
551 
552 extern void workqueue_set_max_active(struct workqueue_struct *wq,
553 				     int max_active);
554 extern struct work_struct *current_work(void);
555 extern bool current_is_workqueue_rescuer(void);
556 extern bool workqueue_congested(int cpu, struct workqueue_struct *wq);
557 extern unsigned int work_busy(struct work_struct *work);
558 extern __printf(1, 2) void set_worker_desc(const char *fmt, ...);
559 extern void print_worker_info(const char *log_lvl, struct task_struct *task);
560 extern void show_all_workqueues(void);
561 extern void show_freezable_workqueues(void);
562 extern void show_one_workqueue(struct workqueue_struct *wq);
563 extern void wq_worker_comm(char *buf, size_t size, struct task_struct *task);
564 
565 /**
566  * queue_work - queue work on a workqueue
567  * @wq: workqueue to use
568  * @work: work to queue
569  *
570  * Returns %false if @work was already on a queue, %true otherwise.
571  *
572  * We queue the work to the CPU on which it was submitted, but if the CPU dies
573  * it can be processed by another CPU.
574  *
575  * Memory-ordering properties:  If it returns %true, guarantees that all stores
576  * preceding the call to queue_work() in the program order will be visible from
577  * the CPU which will execute @work by the time such work executes, e.g.,
578  *
579  * { x is initially 0 }
580  *
581  *   CPU0				CPU1
582  *
583  *   WRITE_ONCE(x, 1);			[ @work is being executed ]
584  *   r0 = queue_work(wq, work);		  r1 = READ_ONCE(x);
585  *
586  * Forbids: r0 == true && r1 == 0
587  */
queue_work(struct workqueue_struct * wq,struct work_struct * work)588 static inline bool queue_work(struct workqueue_struct *wq,
589 			      struct work_struct *work)
590 {
591 	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
592 }
593 
594 /**
595  * queue_delayed_work - queue work on a workqueue after delay
596  * @wq: workqueue to use
597  * @dwork: delayable work to queue
598  * @delay: number of jiffies to wait before queueing
599  *
600  * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
601  */
queue_delayed_work(struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)602 static inline bool queue_delayed_work(struct workqueue_struct *wq,
603 				      struct delayed_work *dwork,
604 				      unsigned long delay)
605 {
606 	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
607 }
608 
609 /**
610  * mod_delayed_work - modify delay of or queue a delayed work
611  * @wq: workqueue to use
612  * @dwork: work to queue
613  * @delay: number of jiffies to wait before queueing
614  *
615  * mod_delayed_work_on() on local CPU.
616  */
mod_delayed_work(struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)617 static inline bool mod_delayed_work(struct workqueue_struct *wq,
618 				    struct delayed_work *dwork,
619 				    unsigned long delay)
620 {
621 	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
622 }
623 
624 /**
625  * schedule_work_on - put work task on a specific cpu
626  * @cpu: cpu to put the work task on
627  * @work: job to be done
628  *
629  * This puts a job on a specific cpu
630  */
schedule_work_on(int cpu,struct work_struct * work)631 static inline bool schedule_work_on(int cpu, struct work_struct *work)
632 {
633 	return queue_work_on(cpu, system_wq, work);
634 }
635 
636 /**
637  * schedule_work - put work task in global workqueue
638  * @work: job to be done
639  *
640  * Returns %false if @work was already on the kernel-global workqueue and
641  * %true otherwise.
642  *
643  * This puts a job in the kernel-global workqueue if it was not already
644  * queued and leaves it in the same position on the kernel-global
645  * workqueue otherwise.
646  *
647  * Shares the same memory-ordering properties of queue_work(), cf. the
648  * DocBook header of queue_work().
649  */
schedule_work(struct work_struct * work)650 static inline bool schedule_work(struct work_struct *work)
651 {
652 	return queue_work(system_wq, work);
653 }
654 
655 /*
656  * Detect attempt to flush system-wide workqueues at compile time when possible.
657  * Warn attempt to flush system-wide workqueues at runtime.
658  *
659  * See https://lkml.kernel.org/r/49925af7-78a8-a3dd-bce6-cfc02e1a9236@I-love.SAKURA.ne.jp
660  * for reasons and steps for converting system-wide workqueues into local workqueues.
661  */
662 extern void __warn_flushing_systemwide_wq(void)
663 	__compiletime_warning("Please avoid flushing system-wide workqueues.");
664 
665 /* Please stop using this function, for this function will be removed in near future. */
666 #define flush_scheduled_work()						\
667 ({									\
668 	__warn_flushing_systemwide_wq();				\
669 	__flush_workqueue(system_wq);					\
670 })
671 
672 #define flush_workqueue(wq)						\
673 ({									\
674 	struct workqueue_struct *_wq = (wq);				\
675 									\
676 	if ((__builtin_constant_p(_wq == system_wq) &&			\
677 	     _wq == system_wq) ||					\
678 	    (__builtin_constant_p(_wq == system_highpri_wq) &&		\
679 	     _wq == system_highpri_wq) ||				\
680 	    (__builtin_constant_p(_wq == system_long_wq) &&		\
681 	     _wq == system_long_wq) ||					\
682 	    (__builtin_constant_p(_wq == system_unbound_wq) &&		\
683 	     _wq == system_unbound_wq) ||				\
684 	    (__builtin_constant_p(_wq == system_freezable_wq) &&	\
685 	     _wq == system_freezable_wq) ||				\
686 	    (__builtin_constant_p(_wq == system_power_efficient_wq) &&	\
687 	     _wq == system_power_efficient_wq) ||			\
688 	    (__builtin_constant_p(_wq == system_freezable_power_efficient_wq) && \
689 	     _wq == system_freezable_power_efficient_wq))		\
690 		__warn_flushing_systemwide_wq();			\
691 	__flush_workqueue(_wq);						\
692 })
693 
694 /**
695  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
696  * @cpu: cpu to use
697  * @dwork: job to be done
698  * @delay: number of jiffies to wait
699  *
700  * After waiting for a given time this puts a job in the kernel-global
701  * workqueue on the specified CPU.
702  */
schedule_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)703 static inline bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
704 					    unsigned long delay)
705 {
706 	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
707 }
708 
709 /**
710  * schedule_delayed_work - put work task in global workqueue after delay
711  * @dwork: job to be done
712  * @delay: number of jiffies to wait or 0 for immediate execution
713  *
714  * After waiting for a given time this puts a job in the kernel-global
715  * workqueue.
716  */
schedule_delayed_work(struct delayed_work * dwork,unsigned long delay)717 static inline bool schedule_delayed_work(struct delayed_work *dwork,
718 					 unsigned long delay)
719 {
720 	return queue_delayed_work(system_wq, dwork, delay);
721 }
722 
723 #ifndef CONFIG_SMP
work_on_cpu(int cpu,long (* fn)(void *),void * arg)724 static inline long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
725 {
726 	return fn(arg);
727 }
work_on_cpu_safe(int cpu,long (* fn)(void *),void * arg)728 static inline long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
729 {
730 	return fn(arg);
731 }
732 #else
733 long work_on_cpu_key(int cpu, long (*fn)(void *),
734 		     void *arg, struct lock_class_key *key);
735 /*
736  * A new key is defined for each caller to make sure the work
737  * associated with the function doesn't share its locking class.
738  */
739 #define work_on_cpu(_cpu, _fn, _arg)			\
740 ({							\
741 	static struct lock_class_key __key;		\
742 							\
743 	work_on_cpu_key(_cpu, _fn, _arg, &__key);	\
744 })
745 
746 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
747 			  void *arg, struct lock_class_key *key);
748 
749 /*
750  * A new key is defined for each caller to make sure the work
751  * associated with the function doesn't share its locking class.
752  */
753 #define work_on_cpu_safe(_cpu, _fn, _arg)		\
754 ({							\
755 	static struct lock_class_key __key;		\
756 							\
757 	work_on_cpu_safe_key(_cpu, _fn, _arg, &__key);	\
758 })
759 #endif /* CONFIG_SMP */
760 
761 #ifdef CONFIG_FREEZER
762 extern void freeze_workqueues_begin(void);
763 extern bool freeze_workqueues_busy(void);
764 extern void thaw_workqueues(void);
765 #endif /* CONFIG_FREEZER */
766 
767 #ifdef CONFIG_SYSFS
768 int workqueue_sysfs_register(struct workqueue_struct *wq);
769 #else	/* CONFIG_SYSFS */
workqueue_sysfs_register(struct workqueue_struct * wq)770 static inline int workqueue_sysfs_register(struct workqueue_struct *wq)
771 { return 0; }
772 #endif	/* CONFIG_SYSFS */
773 
774 #ifdef CONFIG_WQ_WATCHDOG
775 void wq_watchdog_touch(int cpu);
776 #else	/* CONFIG_WQ_WATCHDOG */
wq_watchdog_touch(int cpu)777 static inline void wq_watchdog_touch(int cpu) { }
778 #endif	/* CONFIG_WQ_WATCHDOG */
779 
780 #ifdef CONFIG_SMP
781 int workqueue_prepare_cpu(unsigned int cpu);
782 int workqueue_online_cpu(unsigned int cpu);
783 int workqueue_offline_cpu(unsigned int cpu);
784 #endif
785 
786 void __init workqueue_init_early(void);
787 void __init workqueue_init(void);
788 void __init workqueue_init_topology(void);
789 
790 #endif
791