1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5 */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <net/xdp.h>
30
31 #include "disasm.h"
32
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
35 [_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #define BPF_LINK_TYPE(_id, _name)
38 #include <linux/bpf_types.h>
39 #undef BPF_PROG_TYPE
40 #undef BPF_MAP_TYPE
41 #undef BPF_LINK_TYPE
42 };
43
44 /* bpf_check() is a static code analyzer that walks eBPF program
45 * instruction by instruction and updates register/stack state.
46 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
47 *
48 * The first pass is depth-first-search to check that the program is a DAG.
49 * It rejects the following programs:
50 * - larger than BPF_MAXINSNS insns
51 * - if loop is present (detected via back-edge)
52 * - unreachable insns exist (shouldn't be a forest. program = one function)
53 * - out of bounds or malformed jumps
54 * The second pass is all possible path descent from the 1st insn.
55 * Since it's analyzing all paths through the program, the length of the
56 * analysis is limited to 64k insn, which may be hit even if total number of
57 * insn is less then 4K, but there are too many branches that change stack/regs.
58 * Number of 'branches to be analyzed' is limited to 1k
59 *
60 * On entry to each instruction, each register has a type, and the instruction
61 * changes the types of the registers depending on instruction semantics.
62 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
63 * copied to R1.
64 *
65 * All registers are 64-bit.
66 * R0 - return register
67 * R1-R5 argument passing registers
68 * R6-R9 callee saved registers
69 * R10 - frame pointer read-only
70 *
71 * At the start of BPF program the register R1 contains a pointer to bpf_context
72 * and has type PTR_TO_CTX.
73 *
74 * Verifier tracks arithmetic operations on pointers in case:
75 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
76 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
77 * 1st insn copies R10 (which has FRAME_PTR) type into R1
78 * and 2nd arithmetic instruction is pattern matched to recognize
79 * that it wants to construct a pointer to some element within stack.
80 * So after 2nd insn, the register R1 has type PTR_TO_STACK
81 * (and -20 constant is saved for further stack bounds checking).
82 * Meaning that this reg is a pointer to stack plus known immediate constant.
83 *
84 * Most of the time the registers have SCALAR_VALUE type, which
85 * means the register has some value, but it's not a valid pointer.
86 * (like pointer plus pointer becomes SCALAR_VALUE type)
87 *
88 * When verifier sees load or store instructions the type of base register
89 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
90 * four pointer types recognized by check_mem_access() function.
91 *
92 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
93 * and the range of [ptr, ptr + map's value_size) is accessible.
94 *
95 * registers used to pass values to function calls are checked against
96 * function argument constraints.
97 *
98 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
99 * It means that the register type passed to this function must be
100 * PTR_TO_STACK and it will be used inside the function as
101 * 'pointer to map element key'
102 *
103 * For example the argument constraints for bpf_map_lookup_elem():
104 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
105 * .arg1_type = ARG_CONST_MAP_PTR,
106 * .arg2_type = ARG_PTR_TO_MAP_KEY,
107 *
108 * ret_type says that this function returns 'pointer to map elem value or null'
109 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
110 * 2nd argument should be a pointer to stack, which will be used inside
111 * the helper function as a pointer to map element key.
112 *
113 * On the kernel side the helper function looks like:
114 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
115 * {
116 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
117 * void *key = (void *) (unsigned long) r2;
118 * void *value;
119 *
120 * here kernel can access 'key' and 'map' pointers safely, knowing that
121 * [key, key + map->key_size) bytes are valid and were initialized on
122 * the stack of eBPF program.
123 * }
124 *
125 * Corresponding eBPF program may look like:
126 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
127 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
128 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
129 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
130 * here verifier looks at prototype of map_lookup_elem() and sees:
131 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
132 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
133 *
134 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
135 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
136 * and were initialized prior to this call.
137 * If it's ok, then verifier allows this BPF_CALL insn and looks at
138 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
139 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
140 * returns either pointer to map value or NULL.
141 *
142 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
143 * insn, the register holding that pointer in the true branch changes state to
144 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
145 * branch. See check_cond_jmp_op().
146 *
147 * After the call R0 is set to return type of the function and registers R1-R5
148 * are set to NOT_INIT to indicate that they are no longer readable.
149 *
150 * The following reference types represent a potential reference to a kernel
151 * resource which, after first being allocated, must be checked and freed by
152 * the BPF program:
153 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
154 *
155 * When the verifier sees a helper call return a reference type, it allocates a
156 * pointer id for the reference and stores it in the current function state.
157 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
158 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
159 * passes through a NULL-check conditional. For the branch wherein the state is
160 * changed to CONST_IMM, the verifier releases the reference.
161 *
162 * For each helper function that allocates a reference, such as
163 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
164 * bpf_sk_release(). When a reference type passes into the release function,
165 * the verifier also releases the reference. If any unchecked or unreleased
166 * reference remains at the end of the program, the verifier rejects it.
167 */
168
169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
170 struct bpf_verifier_stack_elem {
171 /* verifer state is 'st'
172 * before processing instruction 'insn_idx'
173 * and after processing instruction 'prev_insn_idx'
174 */
175 struct bpf_verifier_state st;
176 int insn_idx;
177 int prev_insn_idx;
178 struct bpf_verifier_stack_elem *next;
179 /* length of verifier log at the time this state was pushed on stack */
180 u32 log_pos;
181 };
182
183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
184 #define BPF_COMPLEXITY_LIMIT_STATES 64
185
186 #define BPF_MAP_KEY_POISON (1ULL << 63)
187 #define BPF_MAP_KEY_SEEN (1ULL << 62)
188
189 #define BPF_MAP_PTR_UNPRIV 1UL
190 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
191 POISON_POINTER_DELTA))
192 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
193
194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
198 static int ref_set_non_owning(struct bpf_verifier_env *env,
199 struct bpf_reg_state *reg);
200 static void specialize_kfunc(struct bpf_verifier_env *env,
201 u32 func_id, u16 offset, unsigned long *addr);
202 static bool is_trusted_reg(const struct bpf_reg_state *reg);
203
bpf_map_ptr_poisoned(const struct bpf_insn_aux_data * aux)204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
205 {
206 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
207 }
208
bpf_map_ptr_unpriv(const struct bpf_insn_aux_data * aux)209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
210 {
211 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
212 }
213
bpf_map_ptr_store(struct bpf_insn_aux_data * aux,const struct bpf_map * map,bool unpriv)214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
215 const struct bpf_map *map, bool unpriv)
216 {
217 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
218 unpriv |= bpf_map_ptr_unpriv(aux);
219 aux->map_ptr_state = (unsigned long)map |
220 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
221 }
222
bpf_map_key_poisoned(const struct bpf_insn_aux_data * aux)223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
224 {
225 return aux->map_key_state & BPF_MAP_KEY_POISON;
226 }
227
bpf_map_key_unseen(const struct bpf_insn_aux_data * aux)228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
229 {
230 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
231 }
232
bpf_map_key_immediate(const struct bpf_insn_aux_data * aux)233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
234 {
235 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
236 }
237
bpf_map_key_store(struct bpf_insn_aux_data * aux,u64 state)238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
239 {
240 bool poisoned = bpf_map_key_poisoned(aux);
241
242 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
243 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
244 }
245
bpf_helper_call(const struct bpf_insn * insn)246 static bool bpf_helper_call(const struct bpf_insn *insn)
247 {
248 return insn->code == (BPF_JMP | BPF_CALL) &&
249 insn->src_reg == 0;
250 }
251
bpf_pseudo_call(const struct bpf_insn * insn)252 static bool bpf_pseudo_call(const struct bpf_insn *insn)
253 {
254 return insn->code == (BPF_JMP | BPF_CALL) &&
255 insn->src_reg == BPF_PSEUDO_CALL;
256 }
257
bpf_pseudo_kfunc_call(const struct bpf_insn * insn)258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
259 {
260 return insn->code == (BPF_JMP | BPF_CALL) &&
261 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
262 }
263
264 struct bpf_call_arg_meta {
265 struct bpf_map *map_ptr;
266 bool raw_mode;
267 bool pkt_access;
268 u8 release_regno;
269 int regno;
270 int access_size;
271 int mem_size;
272 u64 msize_max_value;
273 int ref_obj_id;
274 int dynptr_id;
275 int map_uid;
276 int func_id;
277 struct btf *btf;
278 u32 btf_id;
279 struct btf *ret_btf;
280 u32 ret_btf_id;
281 u32 subprogno;
282 struct btf_field *kptr_field;
283 };
284
285 struct bpf_kfunc_call_arg_meta {
286 /* In parameters */
287 struct btf *btf;
288 u32 func_id;
289 u32 kfunc_flags;
290 const struct btf_type *func_proto;
291 const char *func_name;
292 /* Out parameters */
293 u32 ref_obj_id;
294 u8 release_regno;
295 bool r0_rdonly;
296 u32 ret_btf_id;
297 u64 r0_size;
298 u32 subprogno;
299 struct {
300 u64 value;
301 bool found;
302 } arg_constant;
303
304 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
305 * generally to pass info about user-defined local kptr types to later
306 * verification logic
307 * bpf_obj_drop
308 * Record the local kptr type to be drop'd
309 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
310 * Record the local kptr type to be refcount_incr'd and use
311 * arg_owning_ref to determine whether refcount_acquire should be
312 * fallible
313 */
314 struct btf *arg_btf;
315 u32 arg_btf_id;
316 bool arg_owning_ref;
317
318 struct {
319 struct btf_field *field;
320 } arg_list_head;
321 struct {
322 struct btf_field *field;
323 } arg_rbtree_root;
324 struct {
325 enum bpf_dynptr_type type;
326 u32 id;
327 u32 ref_obj_id;
328 } initialized_dynptr;
329 struct {
330 u8 spi;
331 u8 frameno;
332 } iter;
333 u64 mem_size;
334 };
335
336 struct btf *btf_vmlinux;
337
338 static DEFINE_MUTEX(bpf_verifier_lock);
339
340 static const struct bpf_line_info *
find_linfo(const struct bpf_verifier_env * env,u32 insn_off)341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
342 {
343 const struct bpf_line_info *linfo;
344 const struct bpf_prog *prog;
345 u32 i, nr_linfo;
346
347 prog = env->prog;
348 nr_linfo = prog->aux->nr_linfo;
349
350 if (!nr_linfo || insn_off >= prog->len)
351 return NULL;
352
353 linfo = prog->aux->linfo;
354 for (i = 1; i < nr_linfo; i++)
355 if (insn_off < linfo[i].insn_off)
356 break;
357
358 return &linfo[i - 1];
359 }
360
verbose(void * private_data,const char * fmt,...)361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
362 {
363 struct bpf_verifier_env *env = private_data;
364 va_list args;
365
366 if (!bpf_verifier_log_needed(&env->log))
367 return;
368
369 va_start(args, fmt);
370 bpf_verifier_vlog(&env->log, fmt, args);
371 va_end(args);
372 }
373
ltrim(const char * s)374 static const char *ltrim(const char *s)
375 {
376 while (isspace(*s))
377 s++;
378
379 return s;
380 }
381
verbose_linfo(struct bpf_verifier_env * env,u32 insn_off,const char * prefix_fmt,...)382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
383 u32 insn_off,
384 const char *prefix_fmt, ...)
385 {
386 const struct bpf_line_info *linfo;
387
388 if (!bpf_verifier_log_needed(&env->log))
389 return;
390
391 linfo = find_linfo(env, insn_off);
392 if (!linfo || linfo == env->prev_linfo)
393 return;
394
395 if (prefix_fmt) {
396 va_list args;
397
398 va_start(args, prefix_fmt);
399 bpf_verifier_vlog(&env->log, prefix_fmt, args);
400 va_end(args);
401 }
402
403 verbose(env, "%s\n",
404 ltrim(btf_name_by_offset(env->prog->aux->btf,
405 linfo->line_off)));
406
407 env->prev_linfo = linfo;
408 }
409
verbose_invalid_scalar(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct tnum * range,const char * ctx,const char * reg_name)410 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
411 struct bpf_reg_state *reg,
412 struct tnum *range, const char *ctx,
413 const char *reg_name)
414 {
415 char tn_buf[48];
416
417 verbose(env, "At %s the register %s ", ctx, reg_name);
418 if (!tnum_is_unknown(reg->var_off)) {
419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
420 verbose(env, "has value %s", tn_buf);
421 } else {
422 verbose(env, "has unknown scalar value");
423 }
424 tnum_strn(tn_buf, sizeof(tn_buf), *range);
425 verbose(env, " should have been in %s\n", tn_buf);
426 }
427
type_is_pkt_pointer(enum bpf_reg_type type)428 static bool type_is_pkt_pointer(enum bpf_reg_type type)
429 {
430 type = base_type(type);
431 return type == PTR_TO_PACKET ||
432 type == PTR_TO_PACKET_META;
433 }
434
type_is_sk_pointer(enum bpf_reg_type type)435 static bool type_is_sk_pointer(enum bpf_reg_type type)
436 {
437 return type == PTR_TO_SOCKET ||
438 type == PTR_TO_SOCK_COMMON ||
439 type == PTR_TO_TCP_SOCK ||
440 type == PTR_TO_XDP_SOCK;
441 }
442
type_may_be_null(u32 type)443 static bool type_may_be_null(u32 type)
444 {
445 return type & PTR_MAYBE_NULL;
446 }
447
reg_not_null(const struct bpf_reg_state * reg)448 static bool reg_not_null(const struct bpf_reg_state *reg)
449 {
450 enum bpf_reg_type type;
451
452 type = reg->type;
453 if (type_may_be_null(type))
454 return false;
455
456 type = base_type(type);
457 return type == PTR_TO_SOCKET ||
458 type == PTR_TO_TCP_SOCK ||
459 type == PTR_TO_MAP_VALUE ||
460 type == PTR_TO_MAP_KEY ||
461 type == PTR_TO_SOCK_COMMON ||
462 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
463 type == PTR_TO_MEM;
464 }
465
type_is_ptr_alloc_obj(u32 type)466 static bool type_is_ptr_alloc_obj(u32 type)
467 {
468 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
469 }
470
type_is_non_owning_ref(u32 type)471 static bool type_is_non_owning_ref(u32 type)
472 {
473 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
474 }
475
reg_btf_record(const struct bpf_reg_state * reg)476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
477 {
478 struct btf_record *rec = NULL;
479 struct btf_struct_meta *meta;
480
481 if (reg->type == PTR_TO_MAP_VALUE) {
482 rec = reg->map_ptr->record;
483 } else if (type_is_ptr_alloc_obj(reg->type)) {
484 meta = btf_find_struct_meta(reg->btf, reg->btf_id);
485 if (meta)
486 rec = meta->record;
487 }
488 return rec;
489 }
490
subprog_is_global(const struct bpf_verifier_env * env,int subprog)491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
492 {
493 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
494
495 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
496 }
497
reg_may_point_to_spin_lock(const struct bpf_reg_state * reg)498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
499 {
500 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
501 }
502
type_is_rdonly_mem(u32 type)503 static bool type_is_rdonly_mem(u32 type)
504 {
505 return type & MEM_RDONLY;
506 }
507
is_acquire_function(enum bpf_func_id func_id,const struct bpf_map * map)508 static bool is_acquire_function(enum bpf_func_id func_id,
509 const struct bpf_map *map)
510 {
511 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
512
513 if (func_id == BPF_FUNC_sk_lookup_tcp ||
514 func_id == BPF_FUNC_sk_lookup_udp ||
515 func_id == BPF_FUNC_skc_lookup_tcp ||
516 func_id == BPF_FUNC_ringbuf_reserve ||
517 func_id == BPF_FUNC_kptr_xchg)
518 return true;
519
520 if (func_id == BPF_FUNC_map_lookup_elem &&
521 (map_type == BPF_MAP_TYPE_SOCKMAP ||
522 map_type == BPF_MAP_TYPE_SOCKHASH))
523 return true;
524
525 return false;
526 }
527
is_ptr_cast_function(enum bpf_func_id func_id)528 static bool is_ptr_cast_function(enum bpf_func_id func_id)
529 {
530 return func_id == BPF_FUNC_tcp_sock ||
531 func_id == BPF_FUNC_sk_fullsock ||
532 func_id == BPF_FUNC_skc_to_tcp_sock ||
533 func_id == BPF_FUNC_skc_to_tcp6_sock ||
534 func_id == BPF_FUNC_skc_to_udp6_sock ||
535 func_id == BPF_FUNC_skc_to_mptcp_sock ||
536 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537 func_id == BPF_FUNC_skc_to_tcp_request_sock;
538 }
539
is_dynptr_ref_function(enum bpf_func_id func_id)540 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
541 {
542 return func_id == BPF_FUNC_dynptr_data;
543 }
544
545 static bool is_sync_callback_calling_kfunc(u32 btf_id);
546
is_sync_callback_calling_function(enum bpf_func_id func_id)547 static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
548 {
549 return func_id == BPF_FUNC_for_each_map_elem ||
550 func_id == BPF_FUNC_find_vma ||
551 func_id == BPF_FUNC_loop ||
552 func_id == BPF_FUNC_user_ringbuf_drain;
553 }
554
is_async_callback_calling_function(enum bpf_func_id func_id)555 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
556 {
557 return func_id == BPF_FUNC_timer_set_callback;
558 }
559
is_callback_calling_function(enum bpf_func_id func_id)560 static bool is_callback_calling_function(enum bpf_func_id func_id)
561 {
562 return is_sync_callback_calling_function(func_id) ||
563 is_async_callback_calling_function(func_id);
564 }
565
is_sync_callback_calling_insn(struct bpf_insn * insn)566 static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
567 {
568 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) ||
569 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm));
570 }
571
is_storage_get_function(enum bpf_func_id func_id)572 static bool is_storage_get_function(enum bpf_func_id func_id)
573 {
574 return func_id == BPF_FUNC_sk_storage_get ||
575 func_id == BPF_FUNC_inode_storage_get ||
576 func_id == BPF_FUNC_task_storage_get ||
577 func_id == BPF_FUNC_cgrp_storage_get;
578 }
579
helper_multiple_ref_obj_use(enum bpf_func_id func_id,const struct bpf_map * map)580 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
581 const struct bpf_map *map)
582 {
583 int ref_obj_uses = 0;
584
585 if (is_ptr_cast_function(func_id))
586 ref_obj_uses++;
587 if (is_acquire_function(func_id, map))
588 ref_obj_uses++;
589 if (is_dynptr_ref_function(func_id))
590 ref_obj_uses++;
591
592 return ref_obj_uses > 1;
593 }
594
is_cmpxchg_insn(const struct bpf_insn * insn)595 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
596 {
597 return BPF_CLASS(insn->code) == BPF_STX &&
598 BPF_MODE(insn->code) == BPF_ATOMIC &&
599 insn->imm == BPF_CMPXCHG;
600 }
601
602 /* string representation of 'enum bpf_reg_type'
603 *
604 * Note that reg_type_str() can not appear more than once in a single verbose()
605 * statement.
606 */
reg_type_str(struct bpf_verifier_env * env,enum bpf_reg_type type)607 static const char *reg_type_str(struct bpf_verifier_env *env,
608 enum bpf_reg_type type)
609 {
610 char postfix[16] = {0}, prefix[64] = {0};
611 static const char * const str[] = {
612 [NOT_INIT] = "?",
613 [SCALAR_VALUE] = "scalar",
614 [PTR_TO_CTX] = "ctx",
615 [CONST_PTR_TO_MAP] = "map_ptr",
616 [PTR_TO_MAP_VALUE] = "map_value",
617 [PTR_TO_STACK] = "fp",
618 [PTR_TO_PACKET] = "pkt",
619 [PTR_TO_PACKET_META] = "pkt_meta",
620 [PTR_TO_PACKET_END] = "pkt_end",
621 [PTR_TO_FLOW_KEYS] = "flow_keys",
622 [PTR_TO_SOCKET] = "sock",
623 [PTR_TO_SOCK_COMMON] = "sock_common",
624 [PTR_TO_TCP_SOCK] = "tcp_sock",
625 [PTR_TO_TP_BUFFER] = "tp_buffer",
626 [PTR_TO_XDP_SOCK] = "xdp_sock",
627 [PTR_TO_BTF_ID] = "ptr_",
628 [PTR_TO_MEM] = "mem",
629 [PTR_TO_BUF] = "buf",
630 [PTR_TO_FUNC] = "func",
631 [PTR_TO_MAP_KEY] = "map_key",
632 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr",
633 };
634
635 if (type & PTR_MAYBE_NULL) {
636 if (base_type(type) == PTR_TO_BTF_ID)
637 strncpy(postfix, "or_null_", 16);
638 else
639 strncpy(postfix, "_or_null", 16);
640 }
641
642 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
643 type & MEM_RDONLY ? "rdonly_" : "",
644 type & MEM_RINGBUF ? "ringbuf_" : "",
645 type & MEM_USER ? "user_" : "",
646 type & MEM_PERCPU ? "percpu_" : "",
647 type & MEM_RCU ? "rcu_" : "",
648 type & PTR_UNTRUSTED ? "untrusted_" : "",
649 type & PTR_TRUSTED ? "trusted_" : ""
650 );
651
652 snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s",
653 prefix, str[base_type(type)], postfix);
654 return env->tmp_str_buf;
655 }
656
657 static char slot_type_char[] = {
658 [STACK_INVALID] = '?',
659 [STACK_SPILL] = 'r',
660 [STACK_MISC] = 'm',
661 [STACK_ZERO] = '0',
662 [STACK_DYNPTR] = 'd',
663 [STACK_ITER] = 'i',
664 };
665
print_liveness(struct bpf_verifier_env * env,enum bpf_reg_liveness live)666 static void print_liveness(struct bpf_verifier_env *env,
667 enum bpf_reg_liveness live)
668 {
669 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
670 verbose(env, "_");
671 if (live & REG_LIVE_READ)
672 verbose(env, "r");
673 if (live & REG_LIVE_WRITTEN)
674 verbose(env, "w");
675 if (live & REG_LIVE_DONE)
676 verbose(env, "D");
677 }
678
__get_spi(s32 off)679 static int __get_spi(s32 off)
680 {
681 return (-off - 1) / BPF_REG_SIZE;
682 }
683
func(struct bpf_verifier_env * env,const struct bpf_reg_state * reg)684 static struct bpf_func_state *func(struct bpf_verifier_env *env,
685 const struct bpf_reg_state *reg)
686 {
687 struct bpf_verifier_state *cur = env->cur_state;
688
689 return cur->frame[reg->frameno];
690 }
691
is_spi_bounds_valid(struct bpf_func_state * state,int spi,int nr_slots)692 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
693 {
694 int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
695
696 /* We need to check that slots between [spi - nr_slots + 1, spi] are
697 * within [0, allocated_stack).
698 *
699 * Please note that the spi grows downwards. For example, a dynptr
700 * takes the size of two stack slots; the first slot will be at
701 * spi and the second slot will be at spi - 1.
702 */
703 return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
704 }
705
stack_slot_obj_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * obj_kind,int nr_slots)706 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
707 const char *obj_kind, int nr_slots)
708 {
709 int off, spi;
710
711 if (!tnum_is_const(reg->var_off)) {
712 verbose(env, "%s has to be at a constant offset\n", obj_kind);
713 return -EINVAL;
714 }
715
716 off = reg->off + reg->var_off.value;
717 if (off % BPF_REG_SIZE) {
718 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
719 return -EINVAL;
720 }
721
722 spi = __get_spi(off);
723 if (spi + 1 < nr_slots) {
724 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
725 return -EINVAL;
726 }
727
728 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
729 return -ERANGE;
730 return spi;
731 }
732
dynptr_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg)733 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
734 {
735 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
736 }
737
iter_get_spi(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)738 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
739 {
740 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
741 }
742
btf_type_name(const struct btf * btf,u32 id)743 static const char *btf_type_name(const struct btf *btf, u32 id)
744 {
745 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
746 }
747
dynptr_type_str(enum bpf_dynptr_type type)748 static const char *dynptr_type_str(enum bpf_dynptr_type type)
749 {
750 switch (type) {
751 case BPF_DYNPTR_TYPE_LOCAL:
752 return "local";
753 case BPF_DYNPTR_TYPE_RINGBUF:
754 return "ringbuf";
755 case BPF_DYNPTR_TYPE_SKB:
756 return "skb";
757 case BPF_DYNPTR_TYPE_XDP:
758 return "xdp";
759 case BPF_DYNPTR_TYPE_INVALID:
760 return "<invalid>";
761 default:
762 WARN_ONCE(1, "unknown dynptr type %d\n", type);
763 return "<unknown>";
764 }
765 }
766
iter_type_str(const struct btf * btf,u32 btf_id)767 static const char *iter_type_str(const struct btf *btf, u32 btf_id)
768 {
769 if (!btf || btf_id == 0)
770 return "<invalid>";
771
772 /* we already validated that type is valid and has conforming name */
773 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
774 }
775
iter_state_str(enum bpf_iter_state state)776 static const char *iter_state_str(enum bpf_iter_state state)
777 {
778 switch (state) {
779 case BPF_ITER_STATE_ACTIVE:
780 return "active";
781 case BPF_ITER_STATE_DRAINED:
782 return "drained";
783 case BPF_ITER_STATE_INVALID:
784 return "<invalid>";
785 default:
786 WARN_ONCE(1, "unknown iter state %d\n", state);
787 return "<unknown>";
788 }
789 }
790
mark_reg_scratched(struct bpf_verifier_env * env,u32 regno)791 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
792 {
793 env->scratched_regs |= 1U << regno;
794 }
795
mark_stack_slot_scratched(struct bpf_verifier_env * env,u32 spi)796 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
797 {
798 env->scratched_stack_slots |= 1ULL << spi;
799 }
800
reg_scratched(const struct bpf_verifier_env * env,u32 regno)801 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
802 {
803 return (env->scratched_regs >> regno) & 1;
804 }
805
stack_slot_scratched(const struct bpf_verifier_env * env,u64 regno)806 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
807 {
808 return (env->scratched_stack_slots >> regno) & 1;
809 }
810
verifier_state_scratched(const struct bpf_verifier_env * env)811 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
812 {
813 return env->scratched_regs || env->scratched_stack_slots;
814 }
815
mark_verifier_state_clean(struct bpf_verifier_env * env)816 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
817 {
818 env->scratched_regs = 0U;
819 env->scratched_stack_slots = 0ULL;
820 }
821
822 /* Used for printing the entire verifier state. */
mark_verifier_state_scratched(struct bpf_verifier_env * env)823 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
824 {
825 env->scratched_regs = ~0U;
826 env->scratched_stack_slots = ~0ULL;
827 }
828
arg_to_dynptr_type(enum bpf_arg_type arg_type)829 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
830 {
831 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
832 case DYNPTR_TYPE_LOCAL:
833 return BPF_DYNPTR_TYPE_LOCAL;
834 case DYNPTR_TYPE_RINGBUF:
835 return BPF_DYNPTR_TYPE_RINGBUF;
836 case DYNPTR_TYPE_SKB:
837 return BPF_DYNPTR_TYPE_SKB;
838 case DYNPTR_TYPE_XDP:
839 return BPF_DYNPTR_TYPE_XDP;
840 default:
841 return BPF_DYNPTR_TYPE_INVALID;
842 }
843 }
844
get_dynptr_type_flag(enum bpf_dynptr_type type)845 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
846 {
847 switch (type) {
848 case BPF_DYNPTR_TYPE_LOCAL:
849 return DYNPTR_TYPE_LOCAL;
850 case BPF_DYNPTR_TYPE_RINGBUF:
851 return DYNPTR_TYPE_RINGBUF;
852 case BPF_DYNPTR_TYPE_SKB:
853 return DYNPTR_TYPE_SKB;
854 case BPF_DYNPTR_TYPE_XDP:
855 return DYNPTR_TYPE_XDP;
856 default:
857 return 0;
858 }
859 }
860
dynptr_type_refcounted(enum bpf_dynptr_type type)861 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
862 {
863 return type == BPF_DYNPTR_TYPE_RINGBUF;
864 }
865
866 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
867 enum bpf_dynptr_type type,
868 bool first_slot, int dynptr_id);
869
870 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
871 struct bpf_reg_state *reg);
872
mark_dynptr_stack_regs(struct bpf_verifier_env * env,struct bpf_reg_state * sreg1,struct bpf_reg_state * sreg2,enum bpf_dynptr_type type)873 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
874 struct bpf_reg_state *sreg1,
875 struct bpf_reg_state *sreg2,
876 enum bpf_dynptr_type type)
877 {
878 int id = ++env->id_gen;
879
880 __mark_dynptr_reg(sreg1, type, true, id);
881 __mark_dynptr_reg(sreg2, type, false, id);
882 }
883
mark_dynptr_cb_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_dynptr_type type)884 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
885 struct bpf_reg_state *reg,
886 enum bpf_dynptr_type type)
887 {
888 __mark_dynptr_reg(reg, type, true, ++env->id_gen);
889 }
890
891 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
892 struct bpf_func_state *state, int spi);
893
mark_stack_slots_dynptr(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_arg_type arg_type,int insn_idx,int clone_ref_obj_id)894 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
895 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
896 {
897 struct bpf_func_state *state = func(env, reg);
898 enum bpf_dynptr_type type;
899 int spi, i, err;
900
901 spi = dynptr_get_spi(env, reg);
902 if (spi < 0)
903 return spi;
904
905 /* We cannot assume both spi and spi - 1 belong to the same dynptr,
906 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
907 * to ensure that for the following example:
908 * [d1][d1][d2][d2]
909 * spi 3 2 1 0
910 * So marking spi = 2 should lead to destruction of both d1 and d2. In
911 * case they do belong to same dynptr, second call won't see slot_type
912 * as STACK_DYNPTR and will simply skip destruction.
913 */
914 err = destroy_if_dynptr_stack_slot(env, state, spi);
915 if (err)
916 return err;
917 err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
918 if (err)
919 return err;
920
921 for (i = 0; i < BPF_REG_SIZE; i++) {
922 state->stack[spi].slot_type[i] = STACK_DYNPTR;
923 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
924 }
925
926 type = arg_to_dynptr_type(arg_type);
927 if (type == BPF_DYNPTR_TYPE_INVALID)
928 return -EINVAL;
929
930 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
931 &state->stack[spi - 1].spilled_ptr, type);
932
933 if (dynptr_type_refcounted(type)) {
934 /* The id is used to track proper releasing */
935 int id;
936
937 if (clone_ref_obj_id)
938 id = clone_ref_obj_id;
939 else
940 id = acquire_reference_state(env, insn_idx);
941
942 if (id < 0)
943 return id;
944
945 state->stack[spi].spilled_ptr.ref_obj_id = id;
946 state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
947 }
948
949 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
950 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
951
952 return 0;
953 }
954
invalidate_dynptr(struct bpf_verifier_env * env,struct bpf_func_state * state,int spi)955 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
956 {
957 int i;
958
959 for (i = 0; i < BPF_REG_SIZE; i++) {
960 state->stack[spi].slot_type[i] = STACK_INVALID;
961 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
962 }
963
964 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
965 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
966
967 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
968 *
969 * While we don't allow reading STACK_INVALID, it is still possible to
970 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
971 * helpers or insns can do partial read of that part without failing,
972 * but check_stack_range_initialized, check_stack_read_var_off, and
973 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
974 * the slot conservatively. Hence we need to prevent those liveness
975 * marking walks.
976 *
977 * This was not a problem before because STACK_INVALID is only set by
978 * default (where the default reg state has its reg->parent as NULL), or
979 * in clean_live_states after REG_LIVE_DONE (at which point
980 * mark_reg_read won't walk reg->parent chain), but not randomly during
981 * verifier state exploration (like we did above). Hence, for our case
982 * parentage chain will still be live (i.e. reg->parent may be
983 * non-NULL), while earlier reg->parent was NULL, so we need
984 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
985 * done later on reads or by mark_dynptr_read as well to unnecessary
986 * mark registers in verifier state.
987 */
988 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
989 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
990 }
991
unmark_stack_slots_dynptr(struct bpf_verifier_env * env,struct bpf_reg_state * reg)992 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
993 {
994 struct bpf_func_state *state = func(env, reg);
995 int spi, ref_obj_id, i;
996
997 spi = dynptr_get_spi(env, reg);
998 if (spi < 0)
999 return spi;
1000
1001 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1002 invalidate_dynptr(env, state, spi);
1003 return 0;
1004 }
1005
1006 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
1007
1008 /* If the dynptr has a ref_obj_id, then we need to invalidate
1009 * two things:
1010 *
1011 * 1) Any dynptrs with a matching ref_obj_id (clones)
1012 * 2) Any slices derived from this dynptr.
1013 */
1014
1015 /* Invalidate any slices associated with this dynptr */
1016 WARN_ON_ONCE(release_reference(env, ref_obj_id));
1017
1018 /* Invalidate any dynptr clones */
1019 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1020 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
1021 continue;
1022
1023 /* it should always be the case that if the ref obj id
1024 * matches then the stack slot also belongs to a
1025 * dynptr
1026 */
1027 if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
1028 verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
1029 return -EFAULT;
1030 }
1031 if (state->stack[i].spilled_ptr.dynptr.first_slot)
1032 invalidate_dynptr(env, state, i);
1033 }
1034
1035 return 0;
1036 }
1037
1038 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1039 struct bpf_reg_state *reg);
1040
mark_reg_invalid(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1041 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1042 {
1043 if (!env->allow_ptr_leaks)
1044 __mark_reg_not_init(env, reg);
1045 else
1046 __mark_reg_unknown(env, reg);
1047 }
1048
destroy_if_dynptr_stack_slot(struct bpf_verifier_env * env,struct bpf_func_state * state,int spi)1049 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
1050 struct bpf_func_state *state, int spi)
1051 {
1052 struct bpf_func_state *fstate;
1053 struct bpf_reg_state *dreg;
1054 int i, dynptr_id;
1055
1056 /* We always ensure that STACK_DYNPTR is never set partially,
1057 * hence just checking for slot_type[0] is enough. This is
1058 * different for STACK_SPILL, where it may be only set for
1059 * 1 byte, so code has to use is_spilled_reg.
1060 */
1061 if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
1062 return 0;
1063
1064 /* Reposition spi to first slot */
1065 if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1066 spi = spi + 1;
1067
1068 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1069 verbose(env, "cannot overwrite referenced dynptr\n");
1070 return -EINVAL;
1071 }
1072
1073 mark_stack_slot_scratched(env, spi);
1074 mark_stack_slot_scratched(env, spi - 1);
1075
1076 /* Writing partially to one dynptr stack slot destroys both. */
1077 for (i = 0; i < BPF_REG_SIZE; i++) {
1078 state->stack[spi].slot_type[i] = STACK_INVALID;
1079 state->stack[spi - 1].slot_type[i] = STACK_INVALID;
1080 }
1081
1082 dynptr_id = state->stack[spi].spilled_ptr.id;
1083 /* Invalidate any slices associated with this dynptr */
1084 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
1085 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
1086 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
1087 continue;
1088 if (dreg->dynptr_id == dynptr_id)
1089 mark_reg_invalid(env, dreg);
1090 }));
1091
1092 /* Do not release reference state, we are destroying dynptr on stack,
1093 * not using some helper to release it. Just reset register.
1094 */
1095 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
1096 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
1097
1098 /* Same reason as unmark_stack_slots_dynptr above */
1099 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1100 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1101
1102 return 0;
1103 }
1104
is_dynptr_reg_valid_uninit(struct bpf_verifier_env * env,struct bpf_reg_state * reg)1105 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1106 {
1107 int spi;
1108
1109 if (reg->type == CONST_PTR_TO_DYNPTR)
1110 return false;
1111
1112 spi = dynptr_get_spi(env, reg);
1113
1114 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
1115 * error because this just means the stack state hasn't been updated yet.
1116 * We will do check_mem_access to check and update stack bounds later.
1117 */
1118 if (spi < 0 && spi != -ERANGE)
1119 return false;
1120
1121 /* We don't need to check if the stack slots are marked by previous
1122 * dynptr initializations because we allow overwriting existing unreferenced
1123 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
1124 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
1125 * touching are completely destructed before we reinitialize them for a new
1126 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
1127 * instead of delaying it until the end where the user will get "Unreleased
1128 * reference" error.
1129 */
1130 return true;
1131 }
1132
is_dynptr_reg_valid_init(struct bpf_verifier_env * env,struct bpf_reg_state * reg)1133 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1134 {
1135 struct bpf_func_state *state = func(env, reg);
1136 int i, spi;
1137
1138 /* This already represents first slot of initialized bpf_dynptr.
1139 *
1140 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
1141 * check_func_arg_reg_off's logic, so we don't need to check its
1142 * offset and alignment.
1143 */
1144 if (reg->type == CONST_PTR_TO_DYNPTR)
1145 return true;
1146
1147 spi = dynptr_get_spi(env, reg);
1148 if (spi < 0)
1149 return false;
1150 if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1151 return false;
1152
1153 for (i = 0; i < BPF_REG_SIZE; i++) {
1154 if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1155 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1156 return false;
1157 }
1158
1159 return true;
1160 }
1161
is_dynptr_type_expected(struct bpf_verifier_env * env,struct bpf_reg_state * reg,enum bpf_arg_type arg_type)1162 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1163 enum bpf_arg_type arg_type)
1164 {
1165 struct bpf_func_state *state = func(env, reg);
1166 enum bpf_dynptr_type dynptr_type;
1167 int spi;
1168
1169 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1170 if (arg_type == ARG_PTR_TO_DYNPTR)
1171 return true;
1172
1173 dynptr_type = arg_to_dynptr_type(arg_type);
1174 if (reg->type == CONST_PTR_TO_DYNPTR) {
1175 return reg->dynptr.type == dynptr_type;
1176 } else {
1177 spi = dynptr_get_spi(env, reg);
1178 if (spi < 0)
1179 return false;
1180 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1181 }
1182 }
1183
1184 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1185
mark_stack_slots_iter(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int insn_idx,struct btf * btf,u32 btf_id,int nr_slots)1186 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1187 struct bpf_reg_state *reg, int insn_idx,
1188 struct btf *btf, u32 btf_id, int nr_slots)
1189 {
1190 struct bpf_func_state *state = func(env, reg);
1191 int spi, i, j, id;
1192
1193 spi = iter_get_spi(env, reg, nr_slots);
1194 if (spi < 0)
1195 return spi;
1196
1197 id = acquire_reference_state(env, insn_idx);
1198 if (id < 0)
1199 return id;
1200
1201 for (i = 0; i < nr_slots; i++) {
1202 struct bpf_stack_state *slot = &state->stack[spi - i];
1203 struct bpf_reg_state *st = &slot->spilled_ptr;
1204
1205 __mark_reg_known_zero(st);
1206 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1207 st->live |= REG_LIVE_WRITTEN;
1208 st->ref_obj_id = i == 0 ? id : 0;
1209 st->iter.btf = btf;
1210 st->iter.btf_id = btf_id;
1211 st->iter.state = BPF_ITER_STATE_ACTIVE;
1212 st->iter.depth = 0;
1213
1214 for (j = 0; j < BPF_REG_SIZE; j++)
1215 slot->slot_type[j] = STACK_ITER;
1216
1217 mark_stack_slot_scratched(env, spi - i);
1218 }
1219
1220 return 0;
1221 }
1222
unmark_stack_slots_iter(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)1223 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1224 struct bpf_reg_state *reg, int nr_slots)
1225 {
1226 struct bpf_func_state *state = func(env, reg);
1227 int spi, i, j;
1228
1229 spi = iter_get_spi(env, reg, nr_slots);
1230 if (spi < 0)
1231 return spi;
1232
1233 for (i = 0; i < nr_slots; i++) {
1234 struct bpf_stack_state *slot = &state->stack[spi - i];
1235 struct bpf_reg_state *st = &slot->spilled_ptr;
1236
1237 if (i == 0)
1238 WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1239
1240 __mark_reg_not_init(env, st);
1241
1242 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1243 st->live |= REG_LIVE_WRITTEN;
1244
1245 for (j = 0; j < BPF_REG_SIZE; j++)
1246 slot->slot_type[j] = STACK_INVALID;
1247
1248 mark_stack_slot_scratched(env, spi - i);
1249 }
1250
1251 return 0;
1252 }
1253
is_iter_reg_valid_uninit(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int nr_slots)1254 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1255 struct bpf_reg_state *reg, int nr_slots)
1256 {
1257 struct bpf_func_state *state = func(env, reg);
1258 int spi, i, j;
1259
1260 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1261 * will do check_mem_access to check and update stack bounds later, so
1262 * return true for that case.
1263 */
1264 spi = iter_get_spi(env, reg, nr_slots);
1265 if (spi == -ERANGE)
1266 return true;
1267 if (spi < 0)
1268 return false;
1269
1270 for (i = 0; i < nr_slots; i++) {
1271 struct bpf_stack_state *slot = &state->stack[spi - i];
1272
1273 for (j = 0; j < BPF_REG_SIZE; j++)
1274 if (slot->slot_type[j] == STACK_ITER)
1275 return false;
1276 }
1277
1278 return true;
1279 }
1280
is_iter_reg_valid_init(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct btf * btf,u32 btf_id,int nr_slots)1281 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1282 struct btf *btf, u32 btf_id, int nr_slots)
1283 {
1284 struct bpf_func_state *state = func(env, reg);
1285 int spi, i, j;
1286
1287 spi = iter_get_spi(env, reg, nr_slots);
1288 if (spi < 0)
1289 return false;
1290
1291 for (i = 0; i < nr_slots; i++) {
1292 struct bpf_stack_state *slot = &state->stack[spi - i];
1293 struct bpf_reg_state *st = &slot->spilled_ptr;
1294
1295 /* only main (first) slot has ref_obj_id set */
1296 if (i == 0 && !st->ref_obj_id)
1297 return false;
1298 if (i != 0 && st->ref_obj_id)
1299 return false;
1300 if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1301 return false;
1302
1303 for (j = 0; j < BPF_REG_SIZE; j++)
1304 if (slot->slot_type[j] != STACK_ITER)
1305 return false;
1306 }
1307
1308 return true;
1309 }
1310
1311 /* Check if given stack slot is "special":
1312 * - spilled register state (STACK_SPILL);
1313 * - dynptr state (STACK_DYNPTR);
1314 * - iter state (STACK_ITER).
1315 */
is_stack_slot_special(const struct bpf_stack_state * stack)1316 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1317 {
1318 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1319
1320 switch (type) {
1321 case STACK_SPILL:
1322 case STACK_DYNPTR:
1323 case STACK_ITER:
1324 return true;
1325 case STACK_INVALID:
1326 case STACK_MISC:
1327 case STACK_ZERO:
1328 return false;
1329 default:
1330 WARN_ONCE(1, "unknown stack slot type %d\n", type);
1331 return true;
1332 }
1333 }
1334
1335 /* The reg state of a pointer or a bounded scalar was saved when
1336 * it was spilled to the stack.
1337 */
is_spilled_reg(const struct bpf_stack_state * stack)1338 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1339 {
1340 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1341 }
1342
is_spilled_scalar_reg(const struct bpf_stack_state * stack)1343 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1344 {
1345 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1346 stack->spilled_ptr.type == SCALAR_VALUE;
1347 }
1348
scrub_spilled_slot(u8 * stype)1349 static void scrub_spilled_slot(u8 *stype)
1350 {
1351 if (*stype != STACK_INVALID)
1352 *stype = STACK_MISC;
1353 }
1354
print_verifier_state(struct bpf_verifier_env * env,const struct bpf_func_state * state,bool print_all)1355 static void print_verifier_state(struct bpf_verifier_env *env,
1356 const struct bpf_func_state *state,
1357 bool print_all)
1358 {
1359 const struct bpf_reg_state *reg;
1360 enum bpf_reg_type t;
1361 int i;
1362
1363 if (state->frameno)
1364 verbose(env, " frame%d:", state->frameno);
1365 for (i = 0; i < MAX_BPF_REG; i++) {
1366 reg = &state->regs[i];
1367 t = reg->type;
1368 if (t == NOT_INIT)
1369 continue;
1370 if (!print_all && !reg_scratched(env, i))
1371 continue;
1372 verbose(env, " R%d", i);
1373 print_liveness(env, reg->live);
1374 verbose(env, "=");
1375 if (t == SCALAR_VALUE && reg->precise)
1376 verbose(env, "P");
1377 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1378 tnum_is_const(reg->var_off)) {
1379 /* reg->off should be 0 for SCALAR_VALUE */
1380 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1381 verbose(env, "%lld", reg->var_off.value + reg->off);
1382 } else {
1383 const char *sep = "";
1384
1385 verbose(env, "%s", reg_type_str(env, t));
1386 if (base_type(t) == PTR_TO_BTF_ID)
1387 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
1388 verbose(env, "(");
1389 /*
1390 * _a stands for append, was shortened to avoid multiline statements below.
1391 * This macro is used to output a comma separated list of attributes.
1392 */
1393 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1394
1395 if (reg->id)
1396 verbose_a("id=%d", reg->id);
1397 if (reg->ref_obj_id)
1398 verbose_a("ref_obj_id=%d", reg->ref_obj_id);
1399 if (type_is_non_owning_ref(reg->type))
1400 verbose_a("%s", "non_own_ref");
1401 if (t != SCALAR_VALUE)
1402 verbose_a("off=%d", reg->off);
1403 if (type_is_pkt_pointer(t))
1404 verbose_a("r=%d", reg->range);
1405 else if (base_type(t) == CONST_PTR_TO_MAP ||
1406 base_type(t) == PTR_TO_MAP_KEY ||
1407 base_type(t) == PTR_TO_MAP_VALUE)
1408 verbose_a("ks=%d,vs=%d",
1409 reg->map_ptr->key_size,
1410 reg->map_ptr->value_size);
1411 if (tnum_is_const(reg->var_off)) {
1412 /* Typically an immediate SCALAR_VALUE, but
1413 * could be a pointer whose offset is too big
1414 * for reg->off
1415 */
1416 verbose_a("imm=%llx", reg->var_off.value);
1417 } else {
1418 if (reg->smin_value != reg->umin_value &&
1419 reg->smin_value != S64_MIN)
1420 verbose_a("smin=%lld", (long long)reg->smin_value);
1421 if (reg->smax_value != reg->umax_value &&
1422 reg->smax_value != S64_MAX)
1423 verbose_a("smax=%lld", (long long)reg->smax_value);
1424 if (reg->umin_value != 0)
1425 verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
1426 if (reg->umax_value != U64_MAX)
1427 verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
1428 if (!tnum_is_unknown(reg->var_off)) {
1429 char tn_buf[48];
1430
1431 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1432 verbose_a("var_off=%s", tn_buf);
1433 }
1434 if (reg->s32_min_value != reg->smin_value &&
1435 reg->s32_min_value != S32_MIN)
1436 verbose_a("s32_min=%d", (int)(reg->s32_min_value));
1437 if (reg->s32_max_value != reg->smax_value &&
1438 reg->s32_max_value != S32_MAX)
1439 verbose_a("s32_max=%d", (int)(reg->s32_max_value));
1440 if (reg->u32_min_value != reg->umin_value &&
1441 reg->u32_min_value != U32_MIN)
1442 verbose_a("u32_min=%d", (int)(reg->u32_min_value));
1443 if (reg->u32_max_value != reg->umax_value &&
1444 reg->u32_max_value != U32_MAX)
1445 verbose_a("u32_max=%d", (int)(reg->u32_max_value));
1446 }
1447 #undef verbose_a
1448
1449 verbose(env, ")");
1450 }
1451 }
1452 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1453 char types_buf[BPF_REG_SIZE + 1];
1454 bool valid = false;
1455 int j;
1456
1457 for (j = 0; j < BPF_REG_SIZE; j++) {
1458 if (state->stack[i].slot_type[j] != STACK_INVALID)
1459 valid = true;
1460 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1461 }
1462 types_buf[BPF_REG_SIZE] = 0;
1463 if (!valid)
1464 continue;
1465 if (!print_all && !stack_slot_scratched(env, i))
1466 continue;
1467 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
1468 case STACK_SPILL:
1469 reg = &state->stack[i].spilled_ptr;
1470 t = reg->type;
1471
1472 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1473 print_liveness(env, reg->live);
1474 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1475 if (t == SCALAR_VALUE && reg->precise)
1476 verbose(env, "P");
1477 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1478 verbose(env, "%lld", reg->var_off.value + reg->off);
1479 break;
1480 case STACK_DYNPTR:
1481 i += BPF_DYNPTR_NR_SLOTS - 1;
1482 reg = &state->stack[i].spilled_ptr;
1483
1484 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1485 print_liveness(env, reg->live);
1486 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type));
1487 if (reg->ref_obj_id)
1488 verbose(env, "(ref_id=%d)", reg->ref_obj_id);
1489 break;
1490 case STACK_ITER:
1491 /* only main slot has ref_obj_id set; skip others */
1492 reg = &state->stack[i].spilled_ptr;
1493 if (!reg->ref_obj_id)
1494 continue;
1495
1496 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1497 print_liveness(env, reg->live);
1498 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
1499 iter_type_str(reg->iter.btf, reg->iter.btf_id),
1500 reg->ref_obj_id, iter_state_str(reg->iter.state),
1501 reg->iter.depth);
1502 break;
1503 case STACK_MISC:
1504 case STACK_ZERO:
1505 default:
1506 reg = &state->stack[i].spilled_ptr;
1507
1508 for (j = 0; j < BPF_REG_SIZE; j++)
1509 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1510 types_buf[BPF_REG_SIZE] = 0;
1511
1512 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1513 print_liveness(env, reg->live);
1514 verbose(env, "=%s", types_buf);
1515 break;
1516 }
1517 }
1518 if (state->acquired_refs && state->refs[0].id) {
1519 verbose(env, " refs=%d", state->refs[0].id);
1520 for (i = 1; i < state->acquired_refs; i++)
1521 if (state->refs[i].id)
1522 verbose(env, ",%d", state->refs[i].id);
1523 }
1524 if (state->in_callback_fn)
1525 verbose(env, " cb");
1526 if (state->in_async_callback_fn)
1527 verbose(env, " async_cb");
1528 verbose(env, "\n");
1529 if (!print_all)
1530 mark_verifier_state_clean(env);
1531 }
1532
vlog_alignment(u32 pos)1533 static inline u32 vlog_alignment(u32 pos)
1534 {
1535 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1536 BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1537 }
1538
print_insn_state(struct bpf_verifier_env * env,const struct bpf_func_state * state)1539 static void print_insn_state(struct bpf_verifier_env *env,
1540 const struct bpf_func_state *state)
1541 {
1542 if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
1543 /* remove new line character */
1544 bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
1545 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
1546 } else {
1547 verbose(env, "%d:", env->insn_idx);
1548 }
1549 print_verifier_state(env, state, false);
1550 }
1551
1552 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1553 * small to hold src. This is different from krealloc since we don't want to preserve
1554 * the contents of dst.
1555 *
1556 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1557 * not be allocated.
1558 */
copy_array(void * dst,const void * src,size_t n,size_t size,gfp_t flags)1559 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1560 {
1561 size_t alloc_bytes;
1562 void *orig = dst;
1563 size_t bytes;
1564
1565 if (ZERO_OR_NULL_PTR(src))
1566 goto out;
1567
1568 if (unlikely(check_mul_overflow(n, size, &bytes)))
1569 return NULL;
1570
1571 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1572 dst = krealloc(orig, alloc_bytes, flags);
1573 if (!dst) {
1574 kfree(orig);
1575 return NULL;
1576 }
1577
1578 memcpy(dst, src, bytes);
1579 out:
1580 return dst ? dst : ZERO_SIZE_PTR;
1581 }
1582
1583 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1584 * small to hold new_n items. new items are zeroed out if the array grows.
1585 *
1586 * Contrary to krealloc_array, does not free arr if new_n is zero.
1587 */
realloc_array(void * arr,size_t old_n,size_t new_n,size_t size)1588 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1589 {
1590 size_t alloc_size;
1591 void *new_arr;
1592
1593 if (!new_n || old_n == new_n)
1594 goto out;
1595
1596 alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1597 new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1598 if (!new_arr) {
1599 kfree(arr);
1600 return NULL;
1601 }
1602 arr = new_arr;
1603
1604 if (new_n > old_n)
1605 memset(arr + old_n * size, 0, (new_n - old_n) * size);
1606
1607 out:
1608 return arr ? arr : ZERO_SIZE_PTR;
1609 }
1610
copy_reference_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1611 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1612 {
1613 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1614 sizeof(struct bpf_reference_state), GFP_KERNEL);
1615 if (!dst->refs)
1616 return -ENOMEM;
1617
1618 dst->acquired_refs = src->acquired_refs;
1619 return 0;
1620 }
1621
copy_stack_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1622 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1623 {
1624 size_t n = src->allocated_stack / BPF_REG_SIZE;
1625
1626 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1627 GFP_KERNEL);
1628 if (!dst->stack)
1629 return -ENOMEM;
1630
1631 dst->allocated_stack = src->allocated_stack;
1632 return 0;
1633 }
1634
resize_reference_state(struct bpf_func_state * state,size_t n)1635 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1636 {
1637 state->refs = realloc_array(state->refs, state->acquired_refs, n,
1638 sizeof(struct bpf_reference_state));
1639 if (!state->refs)
1640 return -ENOMEM;
1641
1642 state->acquired_refs = n;
1643 return 0;
1644 }
1645
1646 /* Possibly update state->allocated_stack to be at least size bytes. Also
1647 * possibly update the function's high-water mark in its bpf_subprog_info.
1648 */
grow_stack_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int size)1649 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size)
1650 {
1651 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1652
1653 if (old_n >= n)
1654 return 0;
1655
1656 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1657 if (!state->stack)
1658 return -ENOMEM;
1659
1660 state->allocated_stack = size;
1661
1662 /* update known max for given subprogram */
1663 if (env->subprog_info[state->subprogno].stack_depth < size)
1664 env->subprog_info[state->subprogno].stack_depth = size;
1665
1666 return 0;
1667 }
1668
1669 /* Acquire a pointer id from the env and update the state->refs to include
1670 * this new pointer reference.
1671 * On success, returns a valid pointer id to associate with the register
1672 * On failure, returns a negative errno.
1673 */
acquire_reference_state(struct bpf_verifier_env * env,int insn_idx)1674 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1675 {
1676 struct bpf_func_state *state = cur_func(env);
1677 int new_ofs = state->acquired_refs;
1678 int id, err;
1679
1680 err = resize_reference_state(state, state->acquired_refs + 1);
1681 if (err)
1682 return err;
1683 id = ++env->id_gen;
1684 state->refs[new_ofs].id = id;
1685 state->refs[new_ofs].insn_idx = insn_idx;
1686 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1687
1688 return id;
1689 }
1690
1691 /* release function corresponding to acquire_reference_state(). Idempotent. */
release_reference_state(struct bpf_func_state * state,int ptr_id)1692 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1693 {
1694 int i, last_idx;
1695
1696 last_idx = state->acquired_refs - 1;
1697 for (i = 0; i < state->acquired_refs; i++) {
1698 if (state->refs[i].id == ptr_id) {
1699 /* Cannot release caller references in callbacks */
1700 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1701 return -EINVAL;
1702 if (last_idx && i != last_idx)
1703 memcpy(&state->refs[i], &state->refs[last_idx],
1704 sizeof(*state->refs));
1705 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1706 state->acquired_refs--;
1707 return 0;
1708 }
1709 }
1710 return -EINVAL;
1711 }
1712
free_func_state(struct bpf_func_state * state)1713 static void free_func_state(struct bpf_func_state *state)
1714 {
1715 if (!state)
1716 return;
1717 kfree(state->refs);
1718 kfree(state->stack);
1719 kfree(state);
1720 }
1721
clear_jmp_history(struct bpf_verifier_state * state)1722 static void clear_jmp_history(struct bpf_verifier_state *state)
1723 {
1724 kfree(state->jmp_history);
1725 state->jmp_history = NULL;
1726 state->jmp_history_cnt = 0;
1727 }
1728
free_verifier_state(struct bpf_verifier_state * state,bool free_self)1729 static void free_verifier_state(struct bpf_verifier_state *state,
1730 bool free_self)
1731 {
1732 int i;
1733
1734 for (i = 0; i <= state->curframe; i++) {
1735 free_func_state(state->frame[i]);
1736 state->frame[i] = NULL;
1737 }
1738 clear_jmp_history(state);
1739 if (free_self)
1740 kfree(state);
1741 }
1742
1743 /* copy verifier state from src to dst growing dst stack space
1744 * when necessary to accommodate larger src stack
1745 */
copy_func_state(struct bpf_func_state * dst,const struct bpf_func_state * src)1746 static int copy_func_state(struct bpf_func_state *dst,
1747 const struct bpf_func_state *src)
1748 {
1749 int err;
1750
1751 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1752 err = copy_reference_state(dst, src);
1753 if (err)
1754 return err;
1755 return copy_stack_state(dst, src);
1756 }
1757
copy_verifier_state(struct bpf_verifier_state * dst_state,const struct bpf_verifier_state * src)1758 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1759 const struct bpf_verifier_state *src)
1760 {
1761 struct bpf_func_state *dst;
1762 int i, err;
1763
1764 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1765 src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1766 GFP_USER);
1767 if (!dst_state->jmp_history)
1768 return -ENOMEM;
1769 dst_state->jmp_history_cnt = src->jmp_history_cnt;
1770
1771 /* if dst has more stack frames then src frame, free them */
1772 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1773 free_func_state(dst_state->frame[i]);
1774 dst_state->frame[i] = NULL;
1775 }
1776 dst_state->speculative = src->speculative;
1777 dst_state->active_rcu_lock = src->active_rcu_lock;
1778 dst_state->curframe = src->curframe;
1779 dst_state->active_lock.ptr = src->active_lock.ptr;
1780 dst_state->active_lock.id = src->active_lock.id;
1781 dst_state->branches = src->branches;
1782 dst_state->parent = src->parent;
1783 dst_state->first_insn_idx = src->first_insn_idx;
1784 dst_state->last_insn_idx = src->last_insn_idx;
1785 dst_state->dfs_depth = src->dfs_depth;
1786 dst_state->callback_unroll_depth = src->callback_unroll_depth;
1787 dst_state->used_as_loop_entry = src->used_as_loop_entry;
1788 for (i = 0; i <= src->curframe; i++) {
1789 dst = dst_state->frame[i];
1790 if (!dst) {
1791 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1792 if (!dst)
1793 return -ENOMEM;
1794 dst_state->frame[i] = dst;
1795 }
1796 err = copy_func_state(dst, src->frame[i]);
1797 if (err)
1798 return err;
1799 }
1800 return 0;
1801 }
1802
state_htab_size(struct bpf_verifier_env * env)1803 static u32 state_htab_size(struct bpf_verifier_env *env)
1804 {
1805 return env->prog->len;
1806 }
1807
explored_state(struct bpf_verifier_env * env,int idx)1808 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx)
1809 {
1810 struct bpf_verifier_state *cur = env->cur_state;
1811 struct bpf_func_state *state = cur->frame[cur->curframe];
1812
1813 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1814 }
1815
same_callsites(struct bpf_verifier_state * a,struct bpf_verifier_state * b)1816 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1817 {
1818 int fr;
1819
1820 if (a->curframe != b->curframe)
1821 return false;
1822
1823 for (fr = a->curframe; fr >= 0; fr--)
1824 if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1825 return false;
1826
1827 return true;
1828 }
1829
1830 /* Open coded iterators allow back-edges in the state graph in order to
1831 * check unbounded loops that iterators.
1832 *
1833 * In is_state_visited() it is necessary to know if explored states are
1834 * part of some loops in order to decide whether non-exact states
1835 * comparison could be used:
1836 * - non-exact states comparison establishes sub-state relation and uses
1837 * read and precision marks to do so, these marks are propagated from
1838 * children states and thus are not guaranteed to be final in a loop;
1839 * - exact states comparison just checks if current and explored states
1840 * are identical (and thus form a back-edge).
1841 *
1842 * Paper "A New Algorithm for Identifying Loops in Decompilation"
1843 * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient
1844 * algorithm for loop structure detection and gives an overview of
1845 * relevant terminology. It also has helpful illustrations.
1846 *
1847 * [1] https://api.semanticscholar.org/CorpusID:15784067
1848 *
1849 * We use a similar algorithm but because loop nested structure is
1850 * irrelevant for verifier ours is significantly simpler and resembles
1851 * strongly connected components algorithm from Sedgewick's textbook.
1852 *
1853 * Define topmost loop entry as a first node of the loop traversed in a
1854 * depth first search starting from initial state. The goal of the loop
1855 * tracking algorithm is to associate topmost loop entries with states
1856 * derived from these entries.
1857 *
1858 * For each step in the DFS states traversal algorithm needs to identify
1859 * the following situations:
1860 *
1861 * initial initial initial
1862 * | | |
1863 * V V V
1864 * ... ... .---------> hdr
1865 * | | | |
1866 * V V | V
1867 * cur .-> succ | .------...
1868 * | | | | | |
1869 * V | V | V V
1870 * succ '-- cur | ... ...
1871 * | | |
1872 * | V V
1873 * | succ <- cur
1874 * | |
1875 * | V
1876 * | ...
1877 * | |
1878 * '----'
1879 *
1880 * (A) successor state of cur (B) successor state of cur or it's entry
1881 * not yet traversed are in current DFS path, thus cur and succ
1882 * are members of the same outermost loop
1883 *
1884 * initial initial
1885 * | |
1886 * V V
1887 * ... ...
1888 * | |
1889 * V V
1890 * .------... .------...
1891 * | | | |
1892 * V V V V
1893 * .-> hdr ... ... ...
1894 * | | | | |
1895 * | V V V V
1896 * | succ <- cur succ <- cur
1897 * | | |
1898 * | V V
1899 * | ... ...
1900 * | | |
1901 * '----' exit
1902 *
1903 * (C) successor state of cur is a part of some loop but this loop
1904 * does not include cur or successor state is not in a loop at all.
1905 *
1906 * Algorithm could be described as the following python code:
1907 *
1908 * traversed = set() # Set of traversed nodes
1909 * entries = {} # Mapping from node to loop entry
1910 * depths = {} # Depth level assigned to graph node
1911 * path = set() # Current DFS path
1912 *
1913 * # Find outermost loop entry known for n
1914 * def get_loop_entry(n):
1915 * h = entries.get(n, None)
1916 * while h in entries and entries[h] != h:
1917 * h = entries[h]
1918 * return h
1919 *
1920 * # Update n's loop entry if h's outermost entry comes
1921 * # before n's outermost entry in current DFS path.
1922 * def update_loop_entry(n, h):
1923 * n1 = get_loop_entry(n) or n
1924 * h1 = get_loop_entry(h) or h
1925 * if h1 in path and depths[h1] <= depths[n1]:
1926 * entries[n] = h1
1927 *
1928 * def dfs(n, depth):
1929 * traversed.add(n)
1930 * path.add(n)
1931 * depths[n] = depth
1932 * for succ in G.successors(n):
1933 * if succ not in traversed:
1934 * # Case A: explore succ and update cur's loop entry
1935 * # only if succ's entry is in current DFS path.
1936 * dfs(succ, depth + 1)
1937 * h = get_loop_entry(succ)
1938 * update_loop_entry(n, h)
1939 * else:
1940 * # Case B or C depending on `h1 in path` check in update_loop_entry().
1941 * update_loop_entry(n, succ)
1942 * path.remove(n)
1943 *
1944 * To adapt this algorithm for use with verifier:
1945 * - use st->branch == 0 as a signal that DFS of succ had been finished
1946 * and cur's loop entry has to be updated (case A), handle this in
1947 * update_branch_counts();
1948 * - use st->branch > 0 as a signal that st is in the current DFS path;
1949 * - handle cases B and C in is_state_visited();
1950 * - update topmost loop entry for intermediate states in get_loop_entry().
1951 */
get_loop_entry(struct bpf_verifier_state * st)1952 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st)
1953 {
1954 struct bpf_verifier_state *topmost = st->loop_entry, *old;
1955
1956 while (topmost && topmost->loop_entry && topmost != topmost->loop_entry)
1957 topmost = topmost->loop_entry;
1958 /* Update loop entries for intermediate states to avoid this
1959 * traversal in future get_loop_entry() calls.
1960 */
1961 while (st && st->loop_entry != topmost) {
1962 old = st->loop_entry;
1963 st->loop_entry = topmost;
1964 st = old;
1965 }
1966 return topmost;
1967 }
1968
update_loop_entry(struct bpf_verifier_state * cur,struct bpf_verifier_state * hdr)1969 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr)
1970 {
1971 struct bpf_verifier_state *cur1, *hdr1;
1972
1973 cur1 = get_loop_entry(cur) ?: cur;
1974 hdr1 = get_loop_entry(hdr) ?: hdr;
1975 /* The head1->branches check decides between cases B and C in
1976 * comment for get_loop_entry(). If hdr1->branches == 0 then
1977 * head's topmost loop entry is not in current DFS path,
1978 * hence 'cur' and 'hdr' are not in the same loop and there is
1979 * no need to update cur->loop_entry.
1980 */
1981 if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) {
1982 cur->loop_entry = hdr;
1983 hdr->used_as_loop_entry = true;
1984 }
1985 }
1986
update_branch_counts(struct bpf_verifier_env * env,struct bpf_verifier_state * st)1987 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1988 {
1989 while (st) {
1990 u32 br = --st->branches;
1991
1992 /* br == 0 signals that DFS exploration for 'st' is finished,
1993 * thus it is necessary to update parent's loop entry if it
1994 * turned out that st is a part of some loop.
1995 * This is a part of 'case A' in get_loop_entry() comment.
1996 */
1997 if (br == 0 && st->parent && st->loop_entry)
1998 update_loop_entry(st->parent, st->loop_entry);
1999
2000 /* WARN_ON(br > 1) technically makes sense here,
2001 * but see comment in push_stack(), hence:
2002 */
2003 WARN_ONCE((int)br < 0,
2004 "BUG update_branch_counts:branches_to_explore=%d\n",
2005 br);
2006 if (br)
2007 break;
2008 st = st->parent;
2009 }
2010 }
2011
pop_stack(struct bpf_verifier_env * env,int * prev_insn_idx,int * insn_idx,bool pop_log)2012 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
2013 int *insn_idx, bool pop_log)
2014 {
2015 struct bpf_verifier_state *cur = env->cur_state;
2016 struct bpf_verifier_stack_elem *elem, *head = env->head;
2017 int err;
2018
2019 if (env->head == NULL)
2020 return -ENOENT;
2021
2022 if (cur) {
2023 err = copy_verifier_state(cur, &head->st);
2024 if (err)
2025 return err;
2026 }
2027 if (pop_log)
2028 bpf_vlog_reset(&env->log, head->log_pos);
2029 if (insn_idx)
2030 *insn_idx = head->insn_idx;
2031 if (prev_insn_idx)
2032 *prev_insn_idx = head->prev_insn_idx;
2033 elem = head->next;
2034 free_verifier_state(&head->st, false);
2035 kfree(head);
2036 env->head = elem;
2037 env->stack_size--;
2038 return 0;
2039 }
2040
push_stack(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,bool speculative)2041 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
2042 int insn_idx, int prev_insn_idx,
2043 bool speculative)
2044 {
2045 struct bpf_verifier_state *cur = env->cur_state;
2046 struct bpf_verifier_stack_elem *elem;
2047 int err;
2048
2049 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2050 if (!elem)
2051 goto err;
2052
2053 elem->insn_idx = insn_idx;
2054 elem->prev_insn_idx = prev_insn_idx;
2055 elem->next = env->head;
2056 elem->log_pos = env->log.end_pos;
2057 env->head = elem;
2058 env->stack_size++;
2059 err = copy_verifier_state(&elem->st, cur);
2060 if (err)
2061 goto err;
2062 elem->st.speculative |= speculative;
2063 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2064 verbose(env, "The sequence of %d jumps is too complex.\n",
2065 env->stack_size);
2066 goto err;
2067 }
2068 if (elem->st.parent) {
2069 ++elem->st.parent->branches;
2070 /* WARN_ON(branches > 2) technically makes sense here,
2071 * but
2072 * 1. speculative states will bump 'branches' for non-branch
2073 * instructions
2074 * 2. is_state_visited() heuristics may decide not to create
2075 * a new state for a sequence of branches and all such current
2076 * and cloned states will be pointing to a single parent state
2077 * which might have large 'branches' count.
2078 */
2079 }
2080 return &elem->st;
2081 err:
2082 free_verifier_state(env->cur_state, true);
2083 env->cur_state = NULL;
2084 /* pop all elements and return */
2085 while (!pop_stack(env, NULL, NULL, false));
2086 return NULL;
2087 }
2088
2089 #define CALLER_SAVED_REGS 6
2090 static const int caller_saved[CALLER_SAVED_REGS] = {
2091 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
2092 };
2093
2094 /* This helper doesn't clear reg->id */
___mark_reg_known(struct bpf_reg_state * reg,u64 imm)2095 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2096 {
2097 reg->var_off = tnum_const(imm);
2098 reg->smin_value = (s64)imm;
2099 reg->smax_value = (s64)imm;
2100 reg->umin_value = imm;
2101 reg->umax_value = imm;
2102
2103 reg->s32_min_value = (s32)imm;
2104 reg->s32_max_value = (s32)imm;
2105 reg->u32_min_value = (u32)imm;
2106 reg->u32_max_value = (u32)imm;
2107 }
2108
2109 /* Mark the unknown part of a register (variable offset or scalar value) as
2110 * known to have the value @imm.
2111 */
__mark_reg_known(struct bpf_reg_state * reg,u64 imm)2112 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2113 {
2114 /* Clear off and union(map_ptr, range) */
2115 memset(((u8 *)reg) + sizeof(reg->type), 0,
2116 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
2117 reg->id = 0;
2118 reg->ref_obj_id = 0;
2119 ___mark_reg_known(reg, imm);
2120 }
2121
__mark_reg32_known(struct bpf_reg_state * reg,u64 imm)2122 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
2123 {
2124 reg->var_off = tnum_const_subreg(reg->var_off, imm);
2125 reg->s32_min_value = (s32)imm;
2126 reg->s32_max_value = (s32)imm;
2127 reg->u32_min_value = (u32)imm;
2128 reg->u32_max_value = (u32)imm;
2129 }
2130
2131 /* Mark the 'variable offset' part of a register as zero. This should be
2132 * used only on registers holding a pointer type.
2133 */
__mark_reg_known_zero(struct bpf_reg_state * reg)2134 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
2135 {
2136 __mark_reg_known(reg, 0);
2137 }
2138
__mark_reg_const_zero(struct bpf_reg_state * reg)2139 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
2140 {
2141 __mark_reg_known(reg, 0);
2142 reg->type = SCALAR_VALUE;
2143 }
2144
mark_reg_known_zero(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2145 static void mark_reg_known_zero(struct bpf_verifier_env *env,
2146 struct bpf_reg_state *regs, u32 regno)
2147 {
2148 if (WARN_ON(regno >= MAX_BPF_REG)) {
2149 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
2150 /* Something bad happened, let's kill all regs */
2151 for (regno = 0; regno < MAX_BPF_REG; regno++)
2152 __mark_reg_not_init(env, regs + regno);
2153 return;
2154 }
2155 __mark_reg_known_zero(regs + regno);
2156 }
2157
__mark_dynptr_reg(struct bpf_reg_state * reg,enum bpf_dynptr_type type,bool first_slot,int dynptr_id)2158 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
2159 bool first_slot, int dynptr_id)
2160 {
2161 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
2162 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
2163 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
2164 */
2165 __mark_reg_known_zero(reg);
2166 reg->type = CONST_PTR_TO_DYNPTR;
2167 /* Give each dynptr a unique id to uniquely associate slices to it. */
2168 reg->id = dynptr_id;
2169 reg->dynptr.type = type;
2170 reg->dynptr.first_slot = first_slot;
2171 }
2172
mark_ptr_not_null_reg(struct bpf_reg_state * reg)2173 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
2174 {
2175 if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
2176 const struct bpf_map *map = reg->map_ptr;
2177
2178 if (map->inner_map_meta) {
2179 reg->type = CONST_PTR_TO_MAP;
2180 reg->map_ptr = map->inner_map_meta;
2181 /* transfer reg's id which is unique for every map_lookup_elem
2182 * as UID of the inner map.
2183 */
2184 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
2185 reg->map_uid = reg->id;
2186 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
2187 reg->type = PTR_TO_XDP_SOCK;
2188 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
2189 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
2190 reg->type = PTR_TO_SOCKET;
2191 } else {
2192 reg->type = PTR_TO_MAP_VALUE;
2193 }
2194 return;
2195 }
2196
2197 reg->type &= ~PTR_MAYBE_NULL;
2198 }
2199
mark_reg_graph_node(struct bpf_reg_state * regs,u32 regno,struct btf_field_graph_root * ds_head)2200 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
2201 struct btf_field_graph_root *ds_head)
2202 {
2203 __mark_reg_known_zero(®s[regno]);
2204 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
2205 regs[regno].btf = ds_head->btf;
2206 regs[regno].btf_id = ds_head->value_btf_id;
2207 regs[regno].off = ds_head->node_offset;
2208 }
2209
reg_is_pkt_pointer(const struct bpf_reg_state * reg)2210 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
2211 {
2212 return type_is_pkt_pointer(reg->type);
2213 }
2214
reg_is_pkt_pointer_any(const struct bpf_reg_state * reg)2215 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
2216 {
2217 return reg_is_pkt_pointer(reg) ||
2218 reg->type == PTR_TO_PACKET_END;
2219 }
2220
reg_is_dynptr_slice_pkt(const struct bpf_reg_state * reg)2221 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
2222 {
2223 return base_type(reg->type) == PTR_TO_MEM &&
2224 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
2225 }
2226
2227 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
reg_is_init_pkt_pointer(const struct bpf_reg_state * reg,enum bpf_reg_type which)2228 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2229 enum bpf_reg_type which)
2230 {
2231 /* The register can already have a range from prior markings.
2232 * This is fine as long as it hasn't been advanced from its
2233 * origin.
2234 */
2235 return reg->type == which &&
2236 reg->id == 0 &&
2237 reg->off == 0 &&
2238 tnum_equals_const(reg->var_off, 0);
2239 }
2240
2241 /* Reset the min/max bounds of a register */
__mark_reg_unbounded(struct bpf_reg_state * reg)2242 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2243 {
2244 reg->smin_value = S64_MIN;
2245 reg->smax_value = S64_MAX;
2246 reg->umin_value = 0;
2247 reg->umax_value = U64_MAX;
2248
2249 reg->s32_min_value = S32_MIN;
2250 reg->s32_max_value = S32_MAX;
2251 reg->u32_min_value = 0;
2252 reg->u32_max_value = U32_MAX;
2253 }
2254
__mark_reg64_unbounded(struct bpf_reg_state * reg)2255 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2256 {
2257 reg->smin_value = S64_MIN;
2258 reg->smax_value = S64_MAX;
2259 reg->umin_value = 0;
2260 reg->umax_value = U64_MAX;
2261 }
2262
__mark_reg32_unbounded(struct bpf_reg_state * reg)2263 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2264 {
2265 reg->s32_min_value = S32_MIN;
2266 reg->s32_max_value = S32_MAX;
2267 reg->u32_min_value = 0;
2268 reg->u32_max_value = U32_MAX;
2269 }
2270
__update_reg32_bounds(struct bpf_reg_state * reg)2271 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2272 {
2273 struct tnum var32_off = tnum_subreg(reg->var_off);
2274
2275 /* min signed is max(sign bit) | min(other bits) */
2276 reg->s32_min_value = max_t(s32, reg->s32_min_value,
2277 var32_off.value | (var32_off.mask & S32_MIN));
2278 /* max signed is min(sign bit) | max(other bits) */
2279 reg->s32_max_value = min_t(s32, reg->s32_max_value,
2280 var32_off.value | (var32_off.mask & S32_MAX));
2281 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2282 reg->u32_max_value = min(reg->u32_max_value,
2283 (u32)(var32_off.value | var32_off.mask));
2284 }
2285
__update_reg64_bounds(struct bpf_reg_state * reg)2286 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2287 {
2288 /* min signed is max(sign bit) | min(other bits) */
2289 reg->smin_value = max_t(s64, reg->smin_value,
2290 reg->var_off.value | (reg->var_off.mask & S64_MIN));
2291 /* max signed is min(sign bit) | max(other bits) */
2292 reg->smax_value = min_t(s64, reg->smax_value,
2293 reg->var_off.value | (reg->var_off.mask & S64_MAX));
2294 reg->umin_value = max(reg->umin_value, reg->var_off.value);
2295 reg->umax_value = min(reg->umax_value,
2296 reg->var_off.value | reg->var_off.mask);
2297 }
2298
__update_reg_bounds(struct bpf_reg_state * reg)2299 static void __update_reg_bounds(struct bpf_reg_state *reg)
2300 {
2301 __update_reg32_bounds(reg);
2302 __update_reg64_bounds(reg);
2303 }
2304
2305 /* Uses signed min/max values to inform unsigned, and vice-versa */
__reg32_deduce_bounds(struct bpf_reg_state * reg)2306 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2307 {
2308 /* Learn sign from signed bounds.
2309 * If we cannot cross the sign boundary, then signed and unsigned bounds
2310 * are the same, so combine. This works even in the negative case, e.g.
2311 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2312 */
2313 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
2314 reg->s32_min_value = reg->u32_min_value =
2315 max_t(u32, reg->s32_min_value, reg->u32_min_value);
2316 reg->s32_max_value = reg->u32_max_value =
2317 min_t(u32, reg->s32_max_value, reg->u32_max_value);
2318 return;
2319 }
2320 /* Learn sign from unsigned bounds. Signed bounds cross the sign
2321 * boundary, so we must be careful.
2322 */
2323 if ((s32)reg->u32_max_value >= 0) {
2324 /* Positive. We can't learn anything from the smin, but smax
2325 * is positive, hence safe.
2326 */
2327 reg->s32_min_value = reg->u32_min_value;
2328 reg->s32_max_value = reg->u32_max_value =
2329 min_t(u32, reg->s32_max_value, reg->u32_max_value);
2330 } else if ((s32)reg->u32_min_value < 0) {
2331 /* Negative. We can't learn anything from the smax, but smin
2332 * is negative, hence safe.
2333 */
2334 reg->s32_min_value = reg->u32_min_value =
2335 max_t(u32, reg->s32_min_value, reg->u32_min_value);
2336 reg->s32_max_value = reg->u32_max_value;
2337 }
2338 }
2339
__reg64_deduce_bounds(struct bpf_reg_state * reg)2340 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2341 {
2342 /* Learn sign from signed bounds.
2343 * If we cannot cross the sign boundary, then signed and unsigned bounds
2344 * are the same, so combine. This works even in the negative case, e.g.
2345 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2346 */
2347 if (reg->smin_value >= 0 || reg->smax_value < 0) {
2348 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2349 reg->umin_value);
2350 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2351 reg->umax_value);
2352 return;
2353 }
2354 /* Learn sign from unsigned bounds. Signed bounds cross the sign
2355 * boundary, so we must be careful.
2356 */
2357 if ((s64)reg->umax_value >= 0) {
2358 /* Positive. We can't learn anything from the smin, but smax
2359 * is positive, hence safe.
2360 */
2361 reg->smin_value = reg->umin_value;
2362 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2363 reg->umax_value);
2364 } else if ((s64)reg->umin_value < 0) {
2365 /* Negative. We can't learn anything from the smax, but smin
2366 * is negative, hence safe.
2367 */
2368 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2369 reg->umin_value);
2370 reg->smax_value = reg->umax_value;
2371 }
2372 }
2373
__reg_deduce_bounds(struct bpf_reg_state * reg)2374 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2375 {
2376 __reg32_deduce_bounds(reg);
2377 __reg64_deduce_bounds(reg);
2378 }
2379
2380 /* Attempts to improve var_off based on unsigned min/max information */
__reg_bound_offset(struct bpf_reg_state * reg)2381 static void __reg_bound_offset(struct bpf_reg_state *reg)
2382 {
2383 struct tnum var64_off = tnum_intersect(reg->var_off,
2384 tnum_range(reg->umin_value,
2385 reg->umax_value));
2386 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2387 tnum_range(reg->u32_min_value,
2388 reg->u32_max_value));
2389
2390 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2391 }
2392
reg_bounds_sync(struct bpf_reg_state * reg)2393 static void reg_bounds_sync(struct bpf_reg_state *reg)
2394 {
2395 /* We might have learned new bounds from the var_off. */
2396 __update_reg_bounds(reg);
2397 /* We might have learned something about the sign bit. */
2398 __reg_deduce_bounds(reg);
2399 /* We might have learned some bits from the bounds. */
2400 __reg_bound_offset(reg);
2401 /* Intersecting with the old var_off might have improved our bounds
2402 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2403 * then new var_off is (0; 0x7f...fc) which improves our umax.
2404 */
2405 __update_reg_bounds(reg);
2406 }
2407
__reg32_bound_s64(s32 a)2408 static bool __reg32_bound_s64(s32 a)
2409 {
2410 return a >= 0 && a <= S32_MAX;
2411 }
2412
__reg_assign_32_into_64(struct bpf_reg_state * reg)2413 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2414 {
2415 reg->umin_value = reg->u32_min_value;
2416 reg->umax_value = reg->u32_max_value;
2417
2418 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2419 * be positive otherwise set to worse case bounds and refine later
2420 * from tnum.
2421 */
2422 if (__reg32_bound_s64(reg->s32_min_value) &&
2423 __reg32_bound_s64(reg->s32_max_value)) {
2424 reg->smin_value = reg->s32_min_value;
2425 reg->smax_value = reg->s32_max_value;
2426 } else {
2427 reg->smin_value = 0;
2428 reg->smax_value = U32_MAX;
2429 }
2430 }
2431
__reg_combine_32_into_64(struct bpf_reg_state * reg)2432 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
2433 {
2434 /* special case when 64-bit register has upper 32-bit register
2435 * zeroed. Typically happens after zext or <<32, >>32 sequence
2436 * allowing us to use 32-bit bounds directly,
2437 */
2438 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
2439 __reg_assign_32_into_64(reg);
2440 } else {
2441 /* Otherwise the best we can do is push lower 32bit known and
2442 * unknown bits into register (var_off set from jmp logic)
2443 * then learn as much as possible from the 64-bit tnum
2444 * known and unknown bits. The previous smin/smax bounds are
2445 * invalid here because of jmp32 compare so mark them unknown
2446 * so they do not impact tnum bounds calculation.
2447 */
2448 __mark_reg64_unbounded(reg);
2449 }
2450 reg_bounds_sync(reg);
2451 }
2452
__reg64_bound_s32(s64 a)2453 static bool __reg64_bound_s32(s64 a)
2454 {
2455 return a >= S32_MIN && a <= S32_MAX;
2456 }
2457
__reg64_bound_u32(u64 a)2458 static bool __reg64_bound_u32(u64 a)
2459 {
2460 return a >= U32_MIN && a <= U32_MAX;
2461 }
2462
__reg_combine_64_into_32(struct bpf_reg_state * reg)2463 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
2464 {
2465 __mark_reg32_unbounded(reg);
2466 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
2467 reg->s32_min_value = (s32)reg->smin_value;
2468 reg->s32_max_value = (s32)reg->smax_value;
2469 }
2470 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
2471 reg->u32_min_value = (u32)reg->umin_value;
2472 reg->u32_max_value = (u32)reg->umax_value;
2473 }
2474 reg_bounds_sync(reg);
2475 }
2476
2477 /* Mark a register as having a completely unknown (scalar) value. */
__mark_reg_unknown(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)2478 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2479 struct bpf_reg_state *reg)
2480 {
2481 /*
2482 * Clear type, off, and union(map_ptr, range) and
2483 * padding between 'type' and union
2484 */
2485 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2486 reg->type = SCALAR_VALUE;
2487 reg->id = 0;
2488 reg->ref_obj_id = 0;
2489 reg->var_off = tnum_unknown;
2490 reg->frameno = 0;
2491 reg->precise = !env->bpf_capable;
2492 __mark_reg_unbounded(reg);
2493 }
2494
mark_reg_unknown(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2495 static void mark_reg_unknown(struct bpf_verifier_env *env,
2496 struct bpf_reg_state *regs, u32 regno)
2497 {
2498 if (WARN_ON(regno >= MAX_BPF_REG)) {
2499 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2500 /* Something bad happened, let's kill all regs except FP */
2501 for (regno = 0; regno < BPF_REG_FP; regno++)
2502 __mark_reg_not_init(env, regs + regno);
2503 return;
2504 }
2505 __mark_reg_unknown(env, regs + regno);
2506 }
2507
__mark_reg_not_init(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)2508 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2509 struct bpf_reg_state *reg)
2510 {
2511 __mark_reg_unknown(env, reg);
2512 reg->type = NOT_INIT;
2513 }
2514
mark_reg_not_init(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)2515 static void mark_reg_not_init(struct bpf_verifier_env *env,
2516 struct bpf_reg_state *regs, u32 regno)
2517 {
2518 if (WARN_ON(regno >= MAX_BPF_REG)) {
2519 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2520 /* Something bad happened, let's kill all regs except FP */
2521 for (regno = 0; regno < BPF_REG_FP; regno++)
2522 __mark_reg_not_init(env, regs + regno);
2523 return;
2524 }
2525 __mark_reg_not_init(env, regs + regno);
2526 }
2527
mark_btf_ld_reg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum bpf_reg_type reg_type,struct btf * btf,u32 btf_id,enum bpf_type_flag flag)2528 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2529 struct bpf_reg_state *regs, u32 regno,
2530 enum bpf_reg_type reg_type,
2531 struct btf *btf, u32 btf_id,
2532 enum bpf_type_flag flag)
2533 {
2534 if (reg_type == SCALAR_VALUE) {
2535 mark_reg_unknown(env, regs, regno);
2536 return;
2537 }
2538 mark_reg_known_zero(env, regs, regno);
2539 regs[regno].type = PTR_TO_BTF_ID | flag;
2540 regs[regno].btf = btf;
2541 regs[regno].btf_id = btf_id;
2542 }
2543
2544 #define DEF_NOT_SUBREG (0)
init_reg_state(struct bpf_verifier_env * env,struct bpf_func_state * state)2545 static void init_reg_state(struct bpf_verifier_env *env,
2546 struct bpf_func_state *state)
2547 {
2548 struct bpf_reg_state *regs = state->regs;
2549 int i;
2550
2551 for (i = 0; i < MAX_BPF_REG; i++) {
2552 mark_reg_not_init(env, regs, i);
2553 regs[i].live = REG_LIVE_NONE;
2554 regs[i].parent = NULL;
2555 regs[i].subreg_def = DEF_NOT_SUBREG;
2556 }
2557
2558 /* frame pointer */
2559 regs[BPF_REG_FP].type = PTR_TO_STACK;
2560 mark_reg_known_zero(env, regs, BPF_REG_FP);
2561 regs[BPF_REG_FP].frameno = state->frameno;
2562 }
2563
2564 #define BPF_MAIN_FUNC (-1)
init_func_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int callsite,int frameno,int subprogno)2565 static void init_func_state(struct bpf_verifier_env *env,
2566 struct bpf_func_state *state,
2567 int callsite, int frameno, int subprogno)
2568 {
2569 state->callsite = callsite;
2570 state->frameno = frameno;
2571 state->subprogno = subprogno;
2572 state->callback_ret_range = tnum_range(0, 0);
2573 init_reg_state(env, state);
2574 mark_verifier_state_scratched(env);
2575 }
2576
2577 /* Similar to push_stack(), but for async callbacks */
push_async_cb(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,int subprog)2578 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2579 int insn_idx, int prev_insn_idx,
2580 int subprog)
2581 {
2582 struct bpf_verifier_stack_elem *elem;
2583 struct bpf_func_state *frame;
2584
2585 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2586 if (!elem)
2587 goto err;
2588
2589 elem->insn_idx = insn_idx;
2590 elem->prev_insn_idx = prev_insn_idx;
2591 elem->next = env->head;
2592 elem->log_pos = env->log.end_pos;
2593 env->head = elem;
2594 env->stack_size++;
2595 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2596 verbose(env,
2597 "The sequence of %d jumps is too complex for async cb.\n",
2598 env->stack_size);
2599 goto err;
2600 }
2601 /* Unlike push_stack() do not copy_verifier_state().
2602 * The caller state doesn't matter.
2603 * This is async callback. It starts in a fresh stack.
2604 * Initialize it similar to do_check_common().
2605 */
2606 elem->st.branches = 1;
2607 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2608 if (!frame)
2609 goto err;
2610 init_func_state(env, frame,
2611 BPF_MAIN_FUNC /* callsite */,
2612 0 /* frameno within this callchain */,
2613 subprog /* subprog number within this prog */);
2614 elem->st.frame[0] = frame;
2615 return &elem->st;
2616 err:
2617 free_verifier_state(env->cur_state, true);
2618 env->cur_state = NULL;
2619 /* pop all elements and return */
2620 while (!pop_stack(env, NULL, NULL, false));
2621 return NULL;
2622 }
2623
2624
2625 enum reg_arg_type {
2626 SRC_OP, /* register is used as source operand */
2627 DST_OP, /* register is used as destination operand */
2628 DST_OP_NO_MARK /* same as above, check only, don't mark */
2629 };
2630
cmp_subprogs(const void * a,const void * b)2631 static int cmp_subprogs(const void *a, const void *b)
2632 {
2633 return ((struct bpf_subprog_info *)a)->start -
2634 ((struct bpf_subprog_info *)b)->start;
2635 }
2636
find_subprog(struct bpf_verifier_env * env,int off)2637 static int find_subprog(struct bpf_verifier_env *env, int off)
2638 {
2639 struct bpf_subprog_info *p;
2640
2641 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2642 sizeof(env->subprog_info[0]), cmp_subprogs);
2643 if (!p)
2644 return -ENOENT;
2645 return p - env->subprog_info;
2646
2647 }
2648
add_subprog(struct bpf_verifier_env * env,int off)2649 static int add_subprog(struct bpf_verifier_env *env, int off)
2650 {
2651 int insn_cnt = env->prog->len;
2652 int ret;
2653
2654 if (off >= insn_cnt || off < 0) {
2655 verbose(env, "call to invalid destination\n");
2656 return -EINVAL;
2657 }
2658 ret = find_subprog(env, off);
2659 if (ret >= 0)
2660 return ret;
2661 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2662 verbose(env, "too many subprograms\n");
2663 return -E2BIG;
2664 }
2665 /* determine subprog starts. The end is one before the next starts */
2666 env->subprog_info[env->subprog_cnt++].start = off;
2667 sort(env->subprog_info, env->subprog_cnt,
2668 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2669 return env->subprog_cnt - 1;
2670 }
2671
2672 #define MAX_KFUNC_DESCS 256
2673 #define MAX_KFUNC_BTFS 256
2674
2675 struct bpf_kfunc_desc {
2676 struct btf_func_model func_model;
2677 u32 func_id;
2678 s32 imm;
2679 u16 offset;
2680 unsigned long addr;
2681 };
2682
2683 struct bpf_kfunc_btf {
2684 struct btf *btf;
2685 struct module *module;
2686 u16 offset;
2687 };
2688
2689 struct bpf_kfunc_desc_tab {
2690 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2691 * verification. JITs do lookups by bpf_insn, where func_id may not be
2692 * available, therefore at the end of verification do_misc_fixups()
2693 * sorts this by imm and offset.
2694 */
2695 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2696 u32 nr_descs;
2697 };
2698
2699 struct bpf_kfunc_btf_tab {
2700 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2701 u32 nr_descs;
2702 };
2703
kfunc_desc_cmp_by_id_off(const void * a,const void * b)2704 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2705 {
2706 const struct bpf_kfunc_desc *d0 = a;
2707 const struct bpf_kfunc_desc *d1 = b;
2708
2709 /* func_id is not greater than BTF_MAX_TYPE */
2710 return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2711 }
2712
kfunc_btf_cmp_by_off(const void * a,const void * b)2713 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2714 {
2715 const struct bpf_kfunc_btf *d0 = a;
2716 const struct bpf_kfunc_btf *d1 = b;
2717
2718 return d0->offset - d1->offset;
2719 }
2720
2721 static const struct bpf_kfunc_desc *
find_kfunc_desc(const struct bpf_prog * prog,u32 func_id,u16 offset)2722 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2723 {
2724 struct bpf_kfunc_desc desc = {
2725 .func_id = func_id,
2726 .offset = offset,
2727 };
2728 struct bpf_kfunc_desc_tab *tab;
2729
2730 tab = prog->aux->kfunc_tab;
2731 return bsearch(&desc, tab->descs, tab->nr_descs,
2732 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2733 }
2734
bpf_get_kfunc_addr(const struct bpf_prog * prog,u32 func_id,u16 btf_fd_idx,u8 ** func_addr)2735 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2736 u16 btf_fd_idx, u8 **func_addr)
2737 {
2738 const struct bpf_kfunc_desc *desc;
2739
2740 desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2741 if (!desc)
2742 return -EFAULT;
2743
2744 *func_addr = (u8 *)desc->addr;
2745 return 0;
2746 }
2747
__find_kfunc_desc_btf(struct bpf_verifier_env * env,s16 offset)2748 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2749 s16 offset)
2750 {
2751 struct bpf_kfunc_btf kf_btf = { .offset = offset };
2752 struct bpf_kfunc_btf_tab *tab;
2753 struct bpf_kfunc_btf *b;
2754 struct module *mod;
2755 struct btf *btf;
2756 int btf_fd;
2757
2758 tab = env->prog->aux->kfunc_btf_tab;
2759 b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2760 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2761 if (!b) {
2762 if (tab->nr_descs == MAX_KFUNC_BTFS) {
2763 verbose(env, "too many different module BTFs\n");
2764 return ERR_PTR(-E2BIG);
2765 }
2766
2767 if (bpfptr_is_null(env->fd_array)) {
2768 verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2769 return ERR_PTR(-EPROTO);
2770 }
2771
2772 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2773 offset * sizeof(btf_fd),
2774 sizeof(btf_fd)))
2775 return ERR_PTR(-EFAULT);
2776
2777 btf = btf_get_by_fd(btf_fd);
2778 if (IS_ERR(btf)) {
2779 verbose(env, "invalid module BTF fd specified\n");
2780 return btf;
2781 }
2782
2783 if (!btf_is_module(btf)) {
2784 verbose(env, "BTF fd for kfunc is not a module BTF\n");
2785 btf_put(btf);
2786 return ERR_PTR(-EINVAL);
2787 }
2788
2789 mod = btf_try_get_module(btf);
2790 if (!mod) {
2791 btf_put(btf);
2792 return ERR_PTR(-ENXIO);
2793 }
2794
2795 b = &tab->descs[tab->nr_descs++];
2796 b->btf = btf;
2797 b->module = mod;
2798 b->offset = offset;
2799
2800 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2801 kfunc_btf_cmp_by_off, NULL);
2802 }
2803 return b->btf;
2804 }
2805
bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab * tab)2806 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2807 {
2808 if (!tab)
2809 return;
2810
2811 while (tab->nr_descs--) {
2812 module_put(tab->descs[tab->nr_descs].module);
2813 btf_put(tab->descs[tab->nr_descs].btf);
2814 }
2815 kfree(tab);
2816 }
2817
find_kfunc_desc_btf(struct bpf_verifier_env * env,s16 offset)2818 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2819 {
2820 if (offset) {
2821 if (offset < 0) {
2822 /* In the future, this can be allowed to increase limit
2823 * of fd index into fd_array, interpreted as u16.
2824 */
2825 verbose(env, "negative offset disallowed for kernel module function call\n");
2826 return ERR_PTR(-EINVAL);
2827 }
2828
2829 return __find_kfunc_desc_btf(env, offset);
2830 }
2831 return btf_vmlinux ?: ERR_PTR(-ENOENT);
2832 }
2833
add_kfunc_call(struct bpf_verifier_env * env,u32 func_id,s16 offset)2834 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2835 {
2836 const struct btf_type *func, *func_proto;
2837 struct bpf_kfunc_btf_tab *btf_tab;
2838 struct bpf_kfunc_desc_tab *tab;
2839 struct bpf_prog_aux *prog_aux;
2840 struct bpf_kfunc_desc *desc;
2841 const char *func_name;
2842 struct btf *desc_btf;
2843 unsigned long call_imm;
2844 unsigned long addr;
2845 int err;
2846
2847 prog_aux = env->prog->aux;
2848 tab = prog_aux->kfunc_tab;
2849 btf_tab = prog_aux->kfunc_btf_tab;
2850 if (!tab) {
2851 if (!btf_vmlinux) {
2852 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2853 return -ENOTSUPP;
2854 }
2855
2856 if (!env->prog->jit_requested) {
2857 verbose(env, "JIT is required for calling kernel function\n");
2858 return -ENOTSUPP;
2859 }
2860
2861 if (!bpf_jit_supports_kfunc_call()) {
2862 verbose(env, "JIT does not support calling kernel function\n");
2863 return -ENOTSUPP;
2864 }
2865
2866 if (!env->prog->gpl_compatible) {
2867 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2868 return -EINVAL;
2869 }
2870
2871 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2872 if (!tab)
2873 return -ENOMEM;
2874 prog_aux->kfunc_tab = tab;
2875 }
2876
2877 /* func_id == 0 is always invalid, but instead of returning an error, be
2878 * conservative and wait until the code elimination pass before returning
2879 * error, so that invalid calls that get pruned out can be in BPF programs
2880 * loaded from userspace. It is also required that offset be untouched
2881 * for such calls.
2882 */
2883 if (!func_id && !offset)
2884 return 0;
2885
2886 if (!btf_tab && offset) {
2887 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2888 if (!btf_tab)
2889 return -ENOMEM;
2890 prog_aux->kfunc_btf_tab = btf_tab;
2891 }
2892
2893 desc_btf = find_kfunc_desc_btf(env, offset);
2894 if (IS_ERR(desc_btf)) {
2895 verbose(env, "failed to find BTF for kernel function\n");
2896 return PTR_ERR(desc_btf);
2897 }
2898
2899 if (find_kfunc_desc(env->prog, func_id, offset))
2900 return 0;
2901
2902 if (tab->nr_descs == MAX_KFUNC_DESCS) {
2903 verbose(env, "too many different kernel function calls\n");
2904 return -E2BIG;
2905 }
2906
2907 func = btf_type_by_id(desc_btf, func_id);
2908 if (!func || !btf_type_is_func(func)) {
2909 verbose(env, "kernel btf_id %u is not a function\n",
2910 func_id);
2911 return -EINVAL;
2912 }
2913 func_proto = btf_type_by_id(desc_btf, func->type);
2914 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2915 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2916 func_id);
2917 return -EINVAL;
2918 }
2919
2920 func_name = btf_name_by_offset(desc_btf, func->name_off);
2921 addr = kallsyms_lookup_name(func_name);
2922 if (!addr) {
2923 verbose(env, "cannot find address for kernel function %s\n",
2924 func_name);
2925 return -EINVAL;
2926 }
2927 specialize_kfunc(env, func_id, offset, &addr);
2928
2929 if (bpf_jit_supports_far_kfunc_call()) {
2930 call_imm = func_id;
2931 } else {
2932 call_imm = BPF_CALL_IMM(addr);
2933 /* Check whether the relative offset overflows desc->imm */
2934 if ((unsigned long)(s32)call_imm != call_imm) {
2935 verbose(env, "address of kernel function %s is out of range\n",
2936 func_name);
2937 return -EINVAL;
2938 }
2939 }
2940
2941 if (bpf_dev_bound_kfunc_id(func_id)) {
2942 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2943 if (err)
2944 return err;
2945 }
2946
2947 desc = &tab->descs[tab->nr_descs++];
2948 desc->func_id = func_id;
2949 desc->imm = call_imm;
2950 desc->offset = offset;
2951 desc->addr = addr;
2952 err = btf_distill_func_proto(&env->log, desc_btf,
2953 func_proto, func_name,
2954 &desc->func_model);
2955 if (!err)
2956 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2957 kfunc_desc_cmp_by_id_off, NULL);
2958 return err;
2959 }
2960
kfunc_desc_cmp_by_imm_off(const void * a,const void * b)2961 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2962 {
2963 const struct bpf_kfunc_desc *d0 = a;
2964 const struct bpf_kfunc_desc *d1 = b;
2965
2966 if (d0->imm != d1->imm)
2967 return d0->imm < d1->imm ? -1 : 1;
2968 if (d0->offset != d1->offset)
2969 return d0->offset < d1->offset ? -1 : 1;
2970 return 0;
2971 }
2972
sort_kfunc_descs_by_imm_off(struct bpf_prog * prog)2973 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
2974 {
2975 struct bpf_kfunc_desc_tab *tab;
2976
2977 tab = prog->aux->kfunc_tab;
2978 if (!tab)
2979 return;
2980
2981 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2982 kfunc_desc_cmp_by_imm_off, NULL);
2983 }
2984
bpf_prog_has_kfunc_call(const struct bpf_prog * prog)2985 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2986 {
2987 return !!prog->aux->kfunc_tab;
2988 }
2989
2990 const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog * prog,const struct bpf_insn * insn)2991 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2992 const struct bpf_insn *insn)
2993 {
2994 const struct bpf_kfunc_desc desc = {
2995 .imm = insn->imm,
2996 .offset = insn->off,
2997 };
2998 const struct bpf_kfunc_desc *res;
2999 struct bpf_kfunc_desc_tab *tab;
3000
3001 tab = prog->aux->kfunc_tab;
3002 res = bsearch(&desc, tab->descs, tab->nr_descs,
3003 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
3004
3005 return res ? &res->func_model : NULL;
3006 }
3007
add_subprog_and_kfunc(struct bpf_verifier_env * env)3008 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
3009 {
3010 struct bpf_subprog_info *subprog = env->subprog_info;
3011 struct bpf_insn *insn = env->prog->insnsi;
3012 int i, ret, insn_cnt = env->prog->len;
3013
3014 /* Add entry function. */
3015 ret = add_subprog(env, 0);
3016 if (ret)
3017 return ret;
3018
3019 for (i = 0; i < insn_cnt; i++, insn++) {
3020 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
3021 !bpf_pseudo_kfunc_call(insn))
3022 continue;
3023
3024 if (!env->bpf_capable) {
3025 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
3026 return -EPERM;
3027 }
3028
3029 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
3030 ret = add_subprog(env, i + insn->imm + 1);
3031 else
3032 ret = add_kfunc_call(env, insn->imm, insn->off);
3033
3034 if (ret < 0)
3035 return ret;
3036 }
3037
3038 /* Add a fake 'exit' subprog which could simplify subprog iteration
3039 * logic. 'subprog_cnt' should not be increased.
3040 */
3041 subprog[env->subprog_cnt].start = insn_cnt;
3042
3043 if (env->log.level & BPF_LOG_LEVEL2)
3044 for (i = 0; i < env->subprog_cnt; i++)
3045 verbose(env, "func#%d @%d\n", i, subprog[i].start);
3046
3047 return 0;
3048 }
3049
check_subprogs(struct bpf_verifier_env * env)3050 static int check_subprogs(struct bpf_verifier_env *env)
3051 {
3052 int i, subprog_start, subprog_end, off, cur_subprog = 0;
3053 struct bpf_subprog_info *subprog = env->subprog_info;
3054 struct bpf_insn *insn = env->prog->insnsi;
3055 int insn_cnt = env->prog->len;
3056
3057 /* now check that all jumps are within the same subprog */
3058 subprog_start = subprog[cur_subprog].start;
3059 subprog_end = subprog[cur_subprog + 1].start;
3060 for (i = 0; i < insn_cnt; i++) {
3061 u8 code = insn[i].code;
3062
3063 if (code == (BPF_JMP | BPF_CALL) &&
3064 insn[i].src_reg == 0 &&
3065 insn[i].imm == BPF_FUNC_tail_call)
3066 subprog[cur_subprog].has_tail_call = true;
3067 if (BPF_CLASS(code) == BPF_LD &&
3068 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
3069 subprog[cur_subprog].has_ld_abs = true;
3070 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
3071 goto next;
3072 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
3073 goto next;
3074 if (code == (BPF_JMP32 | BPF_JA))
3075 off = i + insn[i].imm + 1;
3076 else
3077 off = i + insn[i].off + 1;
3078 if (off < subprog_start || off >= subprog_end) {
3079 verbose(env, "jump out of range from insn %d to %d\n", i, off);
3080 return -EINVAL;
3081 }
3082 next:
3083 if (i == subprog_end - 1) {
3084 /* to avoid fall-through from one subprog into another
3085 * the last insn of the subprog should be either exit
3086 * or unconditional jump back
3087 */
3088 if (code != (BPF_JMP | BPF_EXIT) &&
3089 code != (BPF_JMP32 | BPF_JA) &&
3090 code != (BPF_JMP | BPF_JA)) {
3091 verbose(env, "last insn is not an exit or jmp\n");
3092 return -EINVAL;
3093 }
3094 subprog_start = subprog_end;
3095 cur_subprog++;
3096 if (cur_subprog < env->subprog_cnt)
3097 subprog_end = subprog[cur_subprog + 1].start;
3098 }
3099 }
3100 return 0;
3101 }
3102
3103 /* Parentage chain of this register (or stack slot) should take care of all
3104 * issues like callee-saved registers, stack slot allocation time, etc.
3105 */
mark_reg_read(struct bpf_verifier_env * env,const struct bpf_reg_state * state,struct bpf_reg_state * parent,u8 flag)3106 static int mark_reg_read(struct bpf_verifier_env *env,
3107 const struct bpf_reg_state *state,
3108 struct bpf_reg_state *parent, u8 flag)
3109 {
3110 bool writes = parent == state->parent; /* Observe write marks */
3111 int cnt = 0;
3112
3113 while (parent) {
3114 /* if read wasn't screened by an earlier write ... */
3115 if (writes && state->live & REG_LIVE_WRITTEN)
3116 break;
3117 if (parent->live & REG_LIVE_DONE) {
3118 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
3119 reg_type_str(env, parent->type),
3120 parent->var_off.value, parent->off);
3121 return -EFAULT;
3122 }
3123 /* The first condition is more likely to be true than the
3124 * second, checked it first.
3125 */
3126 if ((parent->live & REG_LIVE_READ) == flag ||
3127 parent->live & REG_LIVE_READ64)
3128 /* The parentage chain never changes and
3129 * this parent was already marked as LIVE_READ.
3130 * There is no need to keep walking the chain again and
3131 * keep re-marking all parents as LIVE_READ.
3132 * This case happens when the same register is read
3133 * multiple times without writes into it in-between.
3134 * Also, if parent has the stronger REG_LIVE_READ64 set,
3135 * then no need to set the weak REG_LIVE_READ32.
3136 */
3137 break;
3138 /* ... then we depend on parent's value */
3139 parent->live |= flag;
3140 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
3141 if (flag == REG_LIVE_READ64)
3142 parent->live &= ~REG_LIVE_READ32;
3143 state = parent;
3144 parent = state->parent;
3145 writes = true;
3146 cnt++;
3147 }
3148
3149 if (env->longest_mark_read_walk < cnt)
3150 env->longest_mark_read_walk = cnt;
3151 return 0;
3152 }
3153
mark_dynptr_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg)3154 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3155 {
3156 struct bpf_func_state *state = func(env, reg);
3157 int spi, ret;
3158
3159 /* For CONST_PTR_TO_DYNPTR, it must have already been done by
3160 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3161 * check_kfunc_call.
3162 */
3163 if (reg->type == CONST_PTR_TO_DYNPTR)
3164 return 0;
3165 spi = dynptr_get_spi(env, reg);
3166 if (spi < 0)
3167 return spi;
3168 /* Caller ensures dynptr is valid and initialized, which means spi is in
3169 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3170 * read.
3171 */
3172 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
3173 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
3174 if (ret)
3175 return ret;
3176 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
3177 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
3178 }
3179
mark_iter_read(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int spi,int nr_slots)3180 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3181 int spi, int nr_slots)
3182 {
3183 struct bpf_func_state *state = func(env, reg);
3184 int err, i;
3185
3186 for (i = 0; i < nr_slots; i++) {
3187 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
3188
3189 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3190 if (err)
3191 return err;
3192
3193 mark_stack_slot_scratched(env, spi - i);
3194 }
3195
3196 return 0;
3197 }
3198
3199 /* This function is supposed to be used by the following 32-bit optimization
3200 * code only. It returns TRUE if the source or destination register operates
3201 * on 64-bit, otherwise return FALSE.
3202 */
is_reg64(struct bpf_verifier_env * env,struct bpf_insn * insn,u32 regno,struct bpf_reg_state * reg,enum reg_arg_type t)3203 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3204 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3205 {
3206 u8 code, class, op;
3207
3208 code = insn->code;
3209 class = BPF_CLASS(code);
3210 op = BPF_OP(code);
3211 if (class == BPF_JMP) {
3212 /* BPF_EXIT for "main" will reach here. Return TRUE
3213 * conservatively.
3214 */
3215 if (op == BPF_EXIT)
3216 return true;
3217 if (op == BPF_CALL) {
3218 /* BPF to BPF call will reach here because of marking
3219 * caller saved clobber with DST_OP_NO_MARK for which we
3220 * don't care the register def because they are anyway
3221 * marked as NOT_INIT already.
3222 */
3223 if (insn->src_reg == BPF_PSEUDO_CALL)
3224 return false;
3225 /* Helper call will reach here because of arg type
3226 * check, conservatively return TRUE.
3227 */
3228 if (t == SRC_OP)
3229 return true;
3230
3231 return false;
3232 }
3233 }
3234
3235 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3236 return false;
3237
3238 if (class == BPF_ALU64 || class == BPF_JMP ||
3239 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3240 return true;
3241
3242 if (class == BPF_ALU || class == BPF_JMP32)
3243 return false;
3244
3245 if (class == BPF_LDX) {
3246 if (t != SRC_OP)
3247 return BPF_SIZE(code) == BPF_DW;
3248 /* LDX source must be ptr. */
3249 return true;
3250 }
3251
3252 if (class == BPF_STX) {
3253 /* BPF_STX (including atomic variants) has multiple source
3254 * operands, one of which is a ptr. Check whether the caller is
3255 * asking about it.
3256 */
3257 if (t == SRC_OP && reg->type != SCALAR_VALUE)
3258 return true;
3259 return BPF_SIZE(code) == BPF_DW;
3260 }
3261
3262 if (class == BPF_LD) {
3263 u8 mode = BPF_MODE(code);
3264
3265 /* LD_IMM64 */
3266 if (mode == BPF_IMM)
3267 return true;
3268
3269 /* Both LD_IND and LD_ABS return 32-bit data. */
3270 if (t != SRC_OP)
3271 return false;
3272
3273 /* Implicit ctx ptr. */
3274 if (regno == BPF_REG_6)
3275 return true;
3276
3277 /* Explicit source could be any width. */
3278 return true;
3279 }
3280
3281 if (class == BPF_ST)
3282 /* The only source register for BPF_ST is a ptr. */
3283 return true;
3284
3285 /* Conservatively return true at default. */
3286 return true;
3287 }
3288
3289 /* Return the regno defined by the insn, or -1. */
insn_def_regno(const struct bpf_insn * insn)3290 static int insn_def_regno(const struct bpf_insn *insn)
3291 {
3292 switch (BPF_CLASS(insn->code)) {
3293 case BPF_JMP:
3294 case BPF_JMP32:
3295 case BPF_ST:
3296 return -1;
3297 case BPF_STX:
3298 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3299 (insn->imm & BPF_FETCH)) {
3300 if (insn->imm == BPF_CMPXCHG)
3301 return BPF_REG_0;
3302 else
3303 return insn->src_reg;
3304 } else {
3305 return -1;
3306 }
3307 default:
3308 return insn->dst_reg;
3309 }
3310 }
3311
3312 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
insn_has_def32(struct bpf_verifier_env * env,struct bpf_insn * insn)3313 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3314 {
3315 int dst_reg = insn_def_regno(insn);
3316
3317 if (dst_reg == -1)
3318 return false;
3319
3320 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3321 }
3322
mark_insn_zext(struct bpf_verifier_env * env,struct bpf_reg_state * reg)3323 static void mark_insn_zext(struct bpf_verifier_env *env,
3324 struct bpf_reg_state *reg)
3325 {
3326 s32 def_idx = reg->subreg_def;
3327
3328 if (def_idx == DEF_NOT_SUBREG)
3329 return;
3330
3331 env->insn_aux_data[def_idx - 1].zext_dst = true;
3332 /* The dst will be zero extended, so won't be sub-register anymore. */
3333 reg->subreg_def = DEF_NOT_SUBREG;
3334 }
3335
__check_reg_arg(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno,enum reg_arg_type t)3336 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno,
3337 enum reg_arg_type t)
3338 {
3339 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3340 struct bpf_reg_state *reg;
3341 bool rw64;
3342
3343 if (regno >= MAX_BPF_REG) {
3344 verbose(env, "R%d is invalid\n", regno);
3345 return -EINVAL;
3346 }
3347
3348 mark_reg_scratched(env, regno);
3349
3350 reg = ®s[regno];
3351 rw64 = is_reg64(env, insn, regno, reg, t);
3352 if (t == SRC_OP) {
3353 /* check whether register used as source operand can be read */
3354 if (reg->type == NOT_INIT) {
3355 verbose(env, "R%d !read_ok\n", regno);
3356 return -EACCES;
3357 }
3358 /* We don't need to worry about FP liveness because it's read-only */
3359 if (regno == BPF_REG_FP)
3360 return 0;
3361
3362 if (rw64)
3363 mark_insn_zext(env, reg);
3364
3365 return mark_reg_read(env, reg, reg->parent,
3366 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3367 } else {
3368 /* check whether register used as dest operand can be written to */
3369 if (regno == BPF_REG_FP) {
3370 verbose(env, "frame pointer is read only\n");
3371 return -EACCES;
3372 }
3373 reg->live |= REG_LIVE_WRITTEN;
3374 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3375 if (t == DST_OP)
3376 mark_reg_unknown(env, regs, regno);
3377 }
3378 return 0;
3379 }
3380
check_reg_arg(struct bpf_verifier_env * env,u32 regno,enum reg_arg_type t)3381 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3382 enum reg_arg_type t)
3383 {
3384 struct bpf_verifier_state *vstate = env->cur_state;
3385 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3386
3387 return __check_reg_arg(env, state->regs, regno, t);
3388 }
3389
mark_jmp_point(struct bpf_verifier_env * env,int idx)3390 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3391 {
3392 env->insn_aux_data[idx].jmp_point = true;
3393 }
3394
is_jmp_point(struct bpf_verifier_env * env,int insn_idx)3395 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3396 {
3397 return env->insn_aux_data[insn_idx].jmp_point;
3398 }
3399
3400 /* for any branch, call, exit record the history of jmps in the given state */
push_jmp_history(struct bpf_verifier_env * env,struct bpf_verifier_state * cur)3401 static int push_jmp_history(struct bpf_verifier_env *env,
3402 struct bpf_verifier_state *cur)
3403 {
3404 u32 cnt = cur->jmp_history_cnt;
3405 struct bpf_idx_pair *p;
3406 size_t alloc_size;
3407
3408 if (!is_jmp_point(env, env->insn_idx))
3409 return 0;
3410
3411 cnt++;
3412 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3413 p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3414 if (!p)
3415 return -ENOMEM;
3416 p[cnt - 1].idx = env->insn_idx;
3417 p[cnt - 1].prev_idx = env->prev_insn_idx;
3418 cur->jmp_history = p;
3419 cur->jmp_history_cnt = cnt;
3420 return 0;
3421 }
3422
3423 /* Backtrack one insn at a time. If idx is not at the top of recorded
3424 * history then previous instruction came from straight line execution.
3425 * Return -ENOENT if we exhausted all instructions within given state.
3426 *
3427 * It's legal to have a bit of a looping with the same starting and ending
3428 * insn index within the same state, e.g.: 3->4->5->3, so just because current
3429 * instruction index is the same as state's first_idx doesn't mean we are
3430 * done. If there is still some jump history left, we should keep going. We
3431 * need to take into account that we might have a jump history between given
3432 * state's parent and itself, due to checkpointing. In this case, we'll have
3433 * history entry recording a jump from last instruction of parent state and
3434 * first instruction of given state.
3435 */
get_prev_insn_idx(struct bpf_verifier_state * st,int i,u32 * history)3436 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3437 u32 *history)
3438 {
3439 u32 cnt = *history;
3440
3441 if (i == st->first_insn_idx) {
3442 if (cnt == 0)
3443 return -ENOENT;
3444 if (cnt == 1 && st->jmp_history[0].idx == i)
3445 return -ENOENT;
3446 }
3447
3448 if (cnt && st->jmp_history[cnt - 1].idx == i) {
3449 i = st->jmp_history[cnt - 1].prev_idx;
3450 (*history)--;
3451 } else {
3452 i--;
3453 }
3454 return i;
3455 }
3456
disasm_kfunc_name(void * data,const struct bpf_insn * insn)3457 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3458 {
3459 const struct btf_type *func;
3460 struct btf *desc_btf;
3461
3462 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3463 return NULL;
3464
3465 desc_btf = find_kfunc_desc_btf(data, insn->off);
3466 if (IS_ERR(desc_btf))
3467 return "<error>";
3468
3469 func = btf_type_by_id(desc_btf, insn->imm);
3470 return btf_name_by_offset(desc_btf, func->name_off);
3471 }
3472
bt_init(struct backtrack_state * bt,u32 frame)3473 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3474 {
3475 bt->frame = frame;
3476 }
3477
bt_reset(struct backtrack_state * bt)3478 static inline void bt_reset(struct backtrack_state *bt)
3479 {
3480 struct bpf_verifier_env *env = bt->env;
3481
3482 memset(bt, 0, sizeof(*bt));
3483 bt->env = env;
3484 }
3485
bt_empty(struct backtrack_state * bt)3486 static inline u32 bt_empty(struct backtrack_state *bt)
3487 {
3488 u64 mask = 0;
3489 int i;
3490
3491 for (i = 0; i <= bt->frame; i++)
3492 mask |= bt->reg_masks[i] | bt->stack_masks[i];
3493
3494 return mask == 0;
3495 }
3496
bt_subprog_enter(struct backtrack_state * bt)3497 static inline int bt_subprog_enter(struct backtrack_state *bt)
3498 {
3499 if (bt->frame == MAX_CALL_FRAMES - 1) {
3500 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3501 WARN_ONCE(1, "verifier backtracking bug");
3502 return -EFAULT;
3503 }
3504 bt->frame++;
3505 return 0;
3506 }
3507
bt_subprog_exit(struct backtrack_state * bt)3508 static inline int bt_subprog_exit(struct backtrack_state *bt)
3509 {
3510 if (bt->frame == 0) {
3511 verbose(bt->env, "BUG subprog exit from frame 0\n");
3512 WARN_ONCE(1, "verifier backtracking bug");
3513 return -EFAULT;
3514 }
3515 bt->frame--;
3516 return 0;
3517 }
3518
bt_set_frame_reg(struct backtrack_state * bt,u32 frame,u32 reg)3519 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3520 {
3521 bt->reg_masks[frame] |= 1 << reg;
3522 }
3523
bt_clear_frame_reg(struct backtrack_state * bt,u32 frame,u32 reg)3524 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3525 {
3526 bt->reg_masks[frame] &= ~(1 << reg);
3527 }
3528
bt_set_reg(struct backtrack_state * bt,u32 reg)3529 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3530 {
3531 bt_set_frame_reg(bt, bt->frame, reg);
3532 }
3533
bt_clear_reg(struct backtrack_state * bt,u32 reg)3534 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3535 {
3536 bt_clear_frame_reg(bt, bt->frame, reg);
3537 }
3538
bt_set_frame_slot(struct backtrack_state * bt,u32 frame,u32 slot)3539 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3540 {
3541 bt->stack_masks[frame] |= 1ull << slot;
3542 }
3543
bt_clear_frame_slot(struct backtrack_state * bt,u32 frame,u32 slot)3544 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3545 {
3546 bt->stack_masks[frame] &= ~(1ull << slot);
3547 }
3548
bt_set_slot(struct backtrack_state * bt,u32 slot)3549 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot)
3550 {
3551 bt_set_frame_slot(bt, bt->frame, slot);
3552 }
3553
bt_clear_slot(struct backtrack_state * bt,u32 slot)3554 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot)
3555 {
3556 bt_clear_frame_slot(bt, bt->frame, slot);
3557 }
3558
bt_frame_reg_mask(struct backtrack_state * bt,u32 frame)3559 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3560 {
3561 return bt->reg_masks[frame];
3562 }
3563
bt_reg_mask(struct backtrack_state * bt)3564 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3565 {
3566 return bt->reg_masks[bt->frame];
3567 }
3568
bt_frame_stack_mask(struct backtrack_state * bt,u32 frame)3569 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3570 {
3571 return bt->stack_masks[frame];
3572 }
3573
bt_stack_mask(struct backtrack_state * bt)3574 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3575 {
3576 return bt->stack_masks[bt->frame];
3577 }
3578
bt_is_reg_set(struct backtrack_state * bt,u32 reg)3579 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3580 {
3581 return bt->reg_masks[bt->frame] & (1 << reg);
3582 }
3583
bt_is_slot_set(struct backtrack_state * bt,u32 slot)3584 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot)
3585 {
3586 return bt->stack_masks[bt->frame] & (1ull << slot);
3587 }
3588
3589 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
fmt_reg_mask(char * buf,ssize_t buf_sz,u32 reg_mask)3590 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3591 {
3592 DECLARE_BITMAP(mask, 64);
3593 bool first = true;
3594 int i, n;
3595
3596 buf[0] = '\0';
3597
3598 bitmap_from_u64(mask, reg_mask);
3599 for_each_set_bit(i, mask, 32) {
3600 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3601 first = false;
3602 buf += n;
3603 buf_sz -= n;
3604 if (buf_sz < 0)
3605 break;
3606 }
3607 }
3608 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
fmt_stack_mask(char * buf,ssize_t buf_sz,u64 stack_mask)3609 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3610 {
3611 DECLARE_BITMAP(mask, 64);
3612 bool first = true;
3613 int i, n;
3614
3615 buf[0] = '\0';
3616
3617 bitmap_from_u64(mask, stack_mask);
3618 for_each_set_bit(i, mask, 64) {
3619 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3620 first = false;
3621 buf += n;
3622 buf_sz -= n;
3623 if (buf_sz < 0)
3624 break;
3625 }
3626 }
3627
3628 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx);
3629
3630 /* For given verifier state backtrack_insn() is called from the last insn to
3631 * the first insn. Its purpose is to compute a bitmask of registers and
3632 * stack slots that needs precision in the parent verifier state.
3633 *
3634 * @idx is an index of the instruction we are currently processing;
3635 * @subseq_idx is an index of the subsequent instruction that:
3636 * - *would be* executed next, if jump history is viewed in forward order;
3637 * - *was* processed previously during backtracking.
3638 */
backtrack_insn(struct bpf_verifier_env * env,int idx,int subseq_idx,struct backtrack_state * bt)3639 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3640 struct backtrack_state *bt)
3641 {
3642 const struct bpf_insn_cbs cbs = {
3643 .cb_call = disasm_kfunc_name,
3644 .cb_print = verbose,
3645 .private_data = env,
3646 };
3647 struct bpf_insn *insn = env->prog->insnsi + idx;
3648 u8 class = BPF_CLASS(insn->code);
3649 u8 opcode = BPF_OP(insn->code);
3650 u8 mode = BPF_MODE(insn->code);
3651 u32 dreg = insn->dst_reg;
3652 u32 sreg = insn->src_reg;
3653 u32 spi, i;
3654
3655 if (insn->code == 0)
3656 return 0;
3657 if (env->log.level & BPF_LOG_LEVEL2) {
3658 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3659 verbose(env, "mark_precise: frame%d: regs=%s ",
3660 bt->frame, env->tmp_str_buf);
3661 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3662 verbose(env, "stack=%s before ", env->tmp_str_buf);
3663 verbose(env, "%d: ", idx);
3664 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3665 }
3666
3667 if (class == BPF_ALU || class == BPF_ALU64) {
3668 if (!bt_is_reg_set(bt, dreg))
3669 return 0;
3670 if (opcode == BPF_END || opcode == BPF_NEG) {
3671 /* sreg is reserved and unused
3672 * dreg still need precision before this insn
3673 */
3674 return 0;
3675 } else if (opcode == BPF_MOV) {
3676 if (BPF_SRC(insn->code) == BPF_X) {
3677 /* dreg = sreg or dreg = (s8, s16, s32)sreg
3678 * dreg needs precision after this insn
3679 * sreg needs precision before this insn
3680 */
3681 bt_clear_reg(bt, dreg);
3682 bt_set_reg(bt, sreg);
3683 } else {
3684 /* dreg = K
3685 * dreg needs precision after this insn.
3686 * Corresponding register is already marked
3687 * as precise=true in this verifier state.
3688 * No further markings in parent are necessary
3689 */
3690 bt_clear_reg(bt, dreg);
3691 }
3692 } else {
3693 if (BPF_SRC(insn->code) == BPF_X) {
3694 /* dreg += sreg
3695 * both dreg and sreg need precision
3696 * before this insn
3697 */
3698 bt_set_reg(bt, sreg);
3699 } /* else dreg += K
3700 * dreg still needs precision before this insn
3701 */
3702 }
3703 } else if (class == BPF_LDX) {
3704 if (!bt_is_reg_set(bt, dreg))
3705 return 0;
3706 bt_clear_reg(bt, dreg);
3707
3708 /* scalars can only be spilled into stack w/o losing precision.
3709 * Load from any other memory can be zero extended.
3710 * The desire to keep that precision is already indicated
3711 * by 'precise' mark in corresponding register of this state.
3712 * No further tracking necessary.
3713 */
3714 if (insn->src_reg != BPF_REG_FP)
3715 return 0;
3716
3717 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
3718 * that [fp - off] slot contains scalar that needs to be
3719 * tracked with precision
3720 */
3721 spi = (-insn->off - 1) / BPF_REG_SIZE;
3722 if (spi >= 64) {
3723 verbose(env, "BUG spi %d\n", spi);
3724 WARN_ONCE(1, "verifier backtracking bug");
3725 return -EFAULT;
3726 }
3727 bt_set_slot(bt, spi);
3728 } else if (class == BPF_STX || class == BPF_ST) {
3729 if (bt_is_reg_set(bt, dreg))
3730 /* stx & st shouldn't be using _scalar_ dst_reg
3731 * to access memory. It means backtracking
3732 * encountered a case of pointer subtraction.
3733 */
3734 return -ENOTSUPP;
3735 /* scalars can only be spilled into stack */
3736 if (insn->dst_reg != BPF_REG_FP)
3737 return 0;
3738 spi = (-insn->off - 1) / BPF_REG_SIZE;
3739 if (spi >= 64) {
3740 verbose(env, "BUG spi %d\n", spi);
3741 WARN_ONCE(1, "verifier backtracking bug");
3742 return -EFAULT;
3743 }
3744 if (!bt_is_slot_set(bt, spi))
3745 return 0;
3746 bt_clear_slot(bt, spi);
3747 if (class == BPF_STX)
3748 bt_set_reg(bt, sreg);
3749 } else if (class == BPF_JMP || class == BPF_JMP32) {
3750 if (bpf_pseudo_call(insn)) {
3751 int subprog_insn_idx, subprog;
3752
3753 subprog_insn_idx = idx + insn->imm + 1;
3754 subprog = find_subprog(env, subprog_insn_idx);
3755 if (subprog < 0)
3756 return -EFAULT;
3757
3758 if (subprog_is_global(env, subprog)) {
3759 /* check that jump history doesn't have any
3760 * extra instructions from subprog; the next
3761 * instruction after call to global subprog
3762 * should be literally next instruction in
3763 * caller program
3764 */
3765 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3766 /* r1-r5 are invalidated after subprog call,
3767 * so for global func call it shouldn't be set
3768 * anymore
3769 */
3770 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3771 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3772 WARN_ONCE(1, "verifier backtracking bug");
3773 return -EFAULT;
3774 }
3775 /* global subprog always sets R0 */
3776 bt_clear_reg(bt, BPF_REG_0);
3777 return 0;
3778 } else {
3779 /* static subprog call instruction, which
3780 * means that we are exiting current subprog,
3781 * so only r1-r5 could be still requested as
3782 * precise, r0 and r6-r10 or any stack slot in
3783 * the current frame should be zero by now
3784 */
3785 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3786 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3787 WARN_ONCE(1, "verifier backtracking bug");
3788 return -EFAULT;
3789 }
3790 /* we don't track register spills perfectly,
3791 * so fallback to force-precise instead of failing */
3792 if (bt_stack_mask(bt) != 0)
3793 return -ENOTSUPP;
3794 /* propagate r1-r5 to the caller */
3795 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3796 if (bt_is_reg_set(bt, i)) {
3797 bt_clear_reg(bt, i);
3798 bt_set_frame_reg(bt, bt->frame - 1, i);
3799 }
3800 }
3801 if (bt_subprog_exit(bt))
3802 return -EFAULT;
3803 return 0;
3804 }
3805 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) {
3806 /* exit from callback subprog to callback-calling helper or
3807 * kfunc call. Use idx/subseq_idx check to discern it from
3808 * straight line code backtracking.
3809 * Unlike the subprog call handling above, we shouldn't
3810 * propagate precision of r1-r5 (if any requested), as they are
3811 * not actually arguments passed directly to callback subprogs
3812 */
3813 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3814 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3815 WARN_ONCE(1, "verifier backtracking bug");
3816 return -EFAULT;
3817 }
3818 if (bt_stack_mask(bt) != 0)
3819 return -ENOTSUPP;
3820 /* clear r1-r5 in callback subprog's mask */
3821 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3822 bt_clear_reg(bt, i);
3823 if (bt_subprog_exit(bt))
3824 return -EFAULT;
3825 return 0;
3826 } else if (opcode == BPF_CALL) {
3827 /* kfunc with imm==0 is invalid and fixup_kfunc_call will
3828 * catch this error later. Make backtracking conservative
3829 * with ENOTSUPP.
3830 */
3831 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3832 return -ENOTSUPP;
3833 /* regular helper call sets R0 */
3834 bt_clear_reg(bt, BPF_REG_0);
3835 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3836 /* if backtracing was looking for registers R1-R5
3837 * they should have been found already.
3838 */
3839 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3840 WARN_ONCE(1, "verifier backtracking bug");
3841 return -EFAULT;
3842 }
3843 } else if (opcode == BPF_EXIT) {
3844 bool r0_precise;
3845
3846 /* Backtracking to a nested function call, 'idx' is a part of
3847 * the inner frame 'subseq_idx' is a part of the outer frame.
3848 * In case of a regular function call, instructions giving
3849 * precision to registers R1-R5 should have been found already.
3850 * In case of a callback, it is ok to have R1-R5 marked for
3851 * backtracking, as these registers are set by the function
3852 * invoking callback.
3853 */
3854 if (subseq_idx >= 0 && calls_callback(env, subseq_idx))
3855 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3856 bt_clear_reg(bt, i);
3857 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3858 verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3859 WARN_ONCE(1, "verifier backtracking bug");
3860 return -EFAULT;
3861 }
3862
3863 /* BPF_EXIT in subprog or callback always returns
3864 * right after the call instruction, so by checking
3865 * whether the instruction at subseq_idx-1 is subprog
3866 * call or not we can distinguish actual exit from
3867 * *subprog* from exit from *callback*. In the former
3868 * case, we need to propagate r0 precision, if
3869 * necessary. In the former we never do that.
3870 */
3871 r0_precise = subseq_idx - 1 >= 0 &&
3872 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3873 bt_is_reg_set(bt, BPF_REG_0);
3874
3875 bt_clear_reg(bt, BPF_REG_0);
3876 if (bt_subprog_enter(bt))
3877 return -EFAULT;
3878
3879 if (r0_precise)
3880 bt_set_reg(bt, BPF_REG_0);
3881 /* r6-r9 and stack slots will stay set in caller frame
3882 * bitmasks until we return back from callee(s)
3883 */
3884 return 0;
3885 } else if (BPF_SRC(insn->code) == BPF_X) {
3886 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
3887 return 0;
3888 /* dreg <cond> sreg
3889 * Both dreg and sreg need precision before
3890 * this insn. If only sreg was marked precise
3891 * before it would be equally necessary to
3892 * propagate it to dreg.
3893 */
3894 bt_set_reg(bt, dreg);
3895 bt_set_reg(bt, sreg);
3896 /* else dreg <cond> K
3897 * Only dreg still needs precision before
3898 * this insn, so for the K-based conditional
3899 * there is nothing new to be marked.
3900 */
3901 }
3902 } else if (class == BPF_LD) {
3903 if (!bt_is_reg_set(bt, dreg))
3904 return 0;
3905 bt_clear_reg(bt, dreg);
3906 /* It's ld_imm64 or ld_abs or ld_ind.
3907 * For ld_imm64 no further tracking of precision
3908 * into parent is necessary
3909 */
3910 if (mode == BPF_IND || mode == BPF_ABS)
3911 /* to be analyzed */
3912 return -ENOTSUPP;
3913 }
3914 return 0;
3915 }
3916
3917 /* the scalar precision tracking algorithm:
3918 * . at the start all registers have precise=false.
3919 * . scalar ranges are tracked as normal through alu and jmp insns.
3920 * . once precise value of the scalar register is used in:
3921 * . ptr + scalar alu
3922 * . if (scalar cond K|scalar)
3923 * . helper_call(.., scalar, ...) where ARG_CONST is expected
3924 * backtrack through the verifier states and mark all registers and
3925 * stack slots with spilled constants that these scalar regisers
3926 * should be precise.
3927 * . during state pruning two registers (or spilled stack slots)
3928 * are equivalent if both are not precise.
3929 *
3930 * Note the verifier cannot simply walk register parentage chain,
3931 * since many different registers and stack slots could have been
3932 * used to compute single precise scalar.
3933 *
3934 * The approach of starting with precise=true for all registers and then
3935 * backtrack to mark a register as not precise when the verifier detects
3936 * that program doesn't care about specific value (e.g., when helper
3937 * takes register as ARG_ANYTHING parameter) is not safe.
3938 *
3939 * It's ok to walk single parentage chain of the verifier states.
3940 * It's possible that this backtracking will go all the way till 1st insn.
3941 * All other branches will be explored for needing precision later.
3942 *
3943 * The backtracking needs to deal with cases like:
3944 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3945 * r9 -= r8
3946 * r5 = r9
3947 * if r5 > 0x79f goto pc+7
3948 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
3949 * r5 += 1
3950 * ...
3951 * call bpf_perf_event_output#25
3952 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
3953 *
3954 * and this case:
3955 * r6 = 1
3956 * call foo // uses callee's r6 inside to compute r0
3957 * r0 += r6
3958 * if r0 == 0 goto
3959 *
3960 * to track above reg_mask/stack_mask needs to be independent for each frame.
3961 *
3962 * Also if parent's curframe > frame where backtracking started,
3963 * the verifier need to mark registers in both frames, otherwise callees
3964 * may incorrectly prune callers. This is similar to
3965 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3966 *
3967 * For now backtracking falls back into conservative marking.
3968 */
mark_all_scalars_precise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)3969 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
3970 struct bpf_verifier_state *st)
3971 {
3972 struct bpf_func_state *func;
3973 struct bpf_reg_state *reg;
3974 int i, j;
3975
3976 if (env->log.level & BPF_LOG_LEVEL2) {
3977 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
3978 st->curframe);
3979 }
3980
3981 /* big hammer: mark all scalars precise in this path.
3982 * pop_stack may still get !precise scalars.
3983 * We also skip current state and go straight to first parent state,
3984 * because precision markings in current non-checkpointed state are
3985 * not needed. See why in the comment in __mark_chain_precision below.
3986 */
3987 for (st = st->parent; st; st = st->parent) {
3988 for (i = 0; i <= st->curframe; i++) {
3989 func = st->frame[i];
3990 for (j = 0; j < BPF_REG_FP; j++) {
3991 reg = &func->regs[j];
3992 if (reg->type != SCALAR_VALUE || reg->precise)
3993 continue;
3994 reg->precise = true;
3995 if (env->log.level & BPF_LOG_LEVEL2) {
3996 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
3997 i, j);
3998 }
3999 }
4000 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4001 if (!is_spilled_reg(&func->stack[j]))
4002 continue;
4003 reg = &func->stack[j].spilled_ptr;
4004 if (reg->type != SCALAR_VALUE || reg->precise)
4005 continue;
4006 reg->precise = true;
4007 if (env->log.level & BPF_LOG_LEVEL2) {
4008 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
4009 i, -(j + 1) * 8);
4010 }
4011 }
4012 }
4013 }
4014 }
4015
mark_all_scalars_imprecise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)4016 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4017 {
4018 struct bpf_func_state *func;
4019 struct bpf_reg_state *reg;
4020 int i, j;
4021
4022 for (i = 0; i <= st->curframe; i++) {
4023 func = st->frame[i];
4024 for (j = 0; j < BPF_REG_FP; j++) {
4025 reg = &func->regs[j];
4026 if (reg->type != SCALAR_VALUE)
4027 continue;
4028 reg->precise = false;
4029 }
4030 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4031 if (!is_spilled_reg(&func->stack[j]))
4032 continue;
4033 reg = &func->stack[j].spilled_ptr;
4034 if (reg->type != SCALAR_VALUE)
4035 continue;
4036 reg->precise = false;
4037 }
4038 }
4039 }
4040
idset_contains(struct bpf_idset * s,u32 id)4041 static bool idset_contains(struct bpf_idset *s, u32 id)
4042 {
4043 u32 i;
4044
4045 for (i = 0; i < s->count; ++i)
4046 if (s->ids[i] == id)
4047 return true;
4048
4049 return false;
4050 }
4051
idset_push(struct bpf_idset * s,u32 id)4052 static int idset_push(struct bpf_idset *s, u32 id)
4053 {
4054 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
4055 return -EFAULT;
4056 s->ids[s->count++] = id;
4057 return 0;
4058 }
4059
idset_reset(struct bpf_idset * s)4060 static void idset_reset(struct bpf_idset *s)
4061 {
4062 s->count = 0;
4063 }
4064
4065 /* Collect a set of IDs for all registers currently marked as precise in env->bt.
4066 * Mark all registers with these IDs as precise.
4067 */
mark_precise_scalar_ids(struct bpf_verifier_env * env,struct bpf_verifier_state * st)4068 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4069 {
4070 struct bpf_idset *precise_ids = &env->idset_scratch;
4071 struct backtrack_state *bt = &env->bt;
4072 struct bpf_func_state *func;
4073 struct bpf_reg_state *reg;
4074 DECLARE_BITMAP(mask, 64);
4075 int i, fr;
4076
4077 idset_reset(precise_ids);
4078
4079 for (fr = bt->frame; fr >= 0; fr--) {
4080 func = st->frame[fr];
4081
4082 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4083 for_each_set_bit(i, mask, 32) {
4084 reg = &func->regs[i];
4085 if (!reg->id || reg->type != SCALAR_VALUE)
4086 continue;
4087 if (idset_push(precise_ids, reg->id))
4088 return -EFAULT;
4089 }
4090
4091 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4092 for_each_set_bit(i, mask, 64) {
4093 if (i >= func->allocated_stack / BPF_REG_SIZE)
4094 break;
4095 if (!is_spilled_scalar_reg(&func->stack[i]))
4096 continue;
4097 reg = &func->stack[i].spilled_ptr;
4098 if (!reg->id)
4099 continue;
4100 if (idset_push(precise_ids, reg->id))
4101 return -EFAULT;
4102 }
4103 }
4104
4105 for (fr = 0; fr <= st->curframe; ++fr) {
4106 func = st->frame[fr];
4107
4108 for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
4109 reg = &func->regs[i];
4110 if (!reg->id)
4111 continue;
4112 if (!idset_contains(precise_ids, reg->id))
4113 continue;
4114 bt_set_frame_reg(bt, fr, i);
4115 }
4116 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
4117 if (!is_spilled_scalar_reg(&func->stack[i]))
4118 continue;
4119 reg = &func->stack[i].spilled_ptr;
4120 if (!reg->id)
4121 continue;
4122 if (!idset_contains(precise_ids, reg->id))
4123 continue;
4124 bt_set_frame_slot(bt, fr, i);
4125 }
4126 }
4127
4128 return 0;
4129 }
4130
4131 /*
4132 * __mark_chain_precision() backtracks BPF program instruction sequence and
4133 * chain of verifier states making sure that register *regno* (if regno >= 0)
4134 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4135 * SCALARS, as well as any other registers and slots that contribute to
4136 * a tracked state of given registers/stack slots, depending on specific BPF
4137 * assembly instructions (see backtrack_insns() for exact instruction handling
4138 * logic). This backtracking relies on recorded jmp_history and is able to
4139 * traverse entire chain of parent states. This process ends only when all the
4140 * necessary registers/slots and their transitive dependencies are marked as
4141 * precise.
4142 *
4143 * One important and subtle aspect is that precise marks *do not matter* in
4144 * the currently verified state (current state). It is important to understand
4145 * why this is the case.
4146 *
4147 * First, note that current state is the state that is not yet "checkpointed",
4148 * i.e., it is not yet put into env->explored_states, and it has no children
4149 * states as well. It's ephemeral, and can end up either a) being discarded if
4150 * compatible explored state is found at some point or BPF_EXIT instruction is
4151 * reached or b) checkpointed and put into env->explored_states, branching out
4152 * into one or more children states.
4153 *
4154 * In the former case, precise markings in current state are completely
4155 * ignored by state comparison code (see regsafe() for details). Only
4156 * checkpointed ("old") state precise markings are important, and if old
4157 * state's register/slot is precise, regsafe() assumes current state's
4158 * register/slot as precise and checks value ranges exactly and precisely. If
4159 * states turn out to be compatible, current state's necessary precise
4160 * markings and any required parent states' precise markings are enforced
4161 * after the fact with propagate_precision() logic, after the fact. But it's
4162 * important to realize that in this case, even after marking current state
4163 * registers/slots as precise, we immediately discard current state. So what
4164 * actually matters is any of the precise markings propagated into current
4165 * state's parent states, which are always checkpointed (due to b) case above).
4166 * As such, for scenario a) it doesn't matter if current state has precise
4167 * markings set or not.
4168 *
4169 * Now, for the scenario b), checkpointing and forking into child(ren)
4170 * state(s). Note that before current state gets to checkpointing step, any
4171 * processed instruction always assumes precise SCALAR register/slot
4172 * knowledge: if precise value or range is useful to prune jump branch, BPF
4173 * verifier takes this opportunity enthusiastically. Similarly, when
4174 * register's value is used to calculate offset or memory address, exact
4175 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4176 * what we mentioned above about state comparison ignoring precise markings
4177 * during state comparison, BPF verifier ignores and also assumes precise
4178 * markings *at will* during instruction verification process. But as verifier
4179 * assumes precision, it also propagates any precision dependencies across
4180 * parent states, which are not yet finalized, so can be further restricted
4181 * based on new knowledge gained from restrictions enforced by their children
4182 * states. This is so that once those parent states are finalized, i.e., when
4183 * they have no more active children state, state comparison logic in
4184 * is_state_visited() would enforce strict and precise SCALAR ranges, if
4185 * required for correctness.
4186 *
4187 * To build a bit more intuition, note also that once a state is checkpointed,
4188 * the path we took to get to that state is not important. This is crucial
4189 * property for state pruning. When state is checkpointed and finalized at
4190 * some instruction index, it can be correctly and safely used to "short
4191 * circuit" any *compatible* state that reaches exactly the same instruction
4192 * index. I.e., if we jumped to that instruction from a completely different
4193 * code path than original finalized state was derived from, it doesn't
4194 * matter, current state can be discarded because from that instruction
4195 * forward having a compatible state will ensure we will safely reach the
4196 * exit. States describe preconditions for further exploration, but completely
4197 * forget the history of how we got here.
4198 *
4199 * This also means that even if we needed precise SCALAR range to get to
4200 * finalized state, but from that point forward *that same* SCALAR register is
4201 * never used in a precise context (i.e., it's precise value is not needed for
4202 * correctness), it's correct and safe to mark such register as "imprecise"
4203 * (i.e., precise marking set to false). This is what we rely on when we do
4204 * not set precise marking in current state. If no child state requires
4205 * precision for any given SCALAR register, it's safe to dictate that it can
4206 * be imprecise. If any child state does require this register to be precise,
4207 * we'll mark it precise later retroactively during precise markings
4208 * propagation from child state to parent states.
4209 *
4210 * Skipping precise marking setting in current state is a mild version of
4211 * relying on the above observation. But we can utilize this property even
4212 * more aggressively by proactively forgetting any precise marking in the
4213 * current state (which we inherited from the parent state), right before we
4214 * checkpoint it and branch off into new child state. This is done by
4215 * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4216 * finalized states which help in short circuiting more future states.
4217 */
__mark_chain_precision(struct bpf_verifier_env * env,int regno)4218 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
4219 {
4220 struct backtrack_state *bt = &env->bt;
4221 struct bpf_verifier_state *st = env->cur_state;
4222 int first_idx = st->first_insn_idx;
4223 int last_idx = env->insn_idx;
4224 int subseq_idx = -1;
4225 struct bpf_func_state *func;
4226 struct bpf_reg_state *reg;
4227 bool skip_first = true;
4228 int i, fr, err;
4229
4230 if (!env->bpf_capable)
4231 return 0;
4232
4233 /* set frame number from which we are starting to backtrack */
4234 bt_init(bt, env->cur_state->curframe);
4235
4236 /* Do sanity checks against current state of register and/or stack
4237 * slot, but don't set precise flag in current state, as precision
4238 * tracking in the current state is unnecessary.
4239 */
4240 func = st->frame[bt->frame];
4241 if (regno >= 0) {
4242 reg = &func->regs[regno];
4243 if (reg->type != SCALAR_VALUE) {
4244 WARN_ONCE(1, "backtracing misuse");
4245 return -EFAULT;
4246 }
4247 bt_set_reg(bt, regno);
4248 }
4249
4250 if (bt_empty(bt))
4251 return 0;
4252
4253 for (;;) {
4254 DECLARE_BITMAP(mask, 64);
4255 u32 history = st->jmp_history_cnt;
4256
4257 if (env->log.level & BPF_LOG_LEVEL2) {
4258 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4259 bt->frame, last_idx, first_idx, subseq_idx);
4260 }
4261
4262 /* If some register with scalar ID is marked as precise,
4263 * make sure that all registers sharing this ID are also precise.
4264 * This is needed to estimate effect of find_equal_scalars().
4265 * Do this at the last instruction of each state,
4266 * bpf_reg_state::id fields are valid for these instructions.
4267 *
4268 * Allows to track precision in situation like below:
4269 *
4270 * r2 = unknown value
4271 * ...
4272 * --- state #0 ---
4273 * ...
4274 * r1 = r2 // r1 and r2 now share the same ID
4275 * ...
4276 * --- state #1 {r1.id = A, r2.id = A} ---
4277 * ...
4278 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4279 * ...
4280 * --- state #2 {r1.id = A, r2.id = A} ---
4281 * r3 = r10
4282 * r3 += r1 // need to mark both r1 and r2
4283 */
4284 if (mark_precise_scalar_ids(env, st))
4285 return -EFAULT;
4286
4287 if (last_idx < 0) {
4288 /* we are at the entry into subprog, which
4289 * is expected for global funcs, but only if
4290 * requested precise registers are R1-R5
4291 * (which are global func's input arguments)
4292 */
4293 if (st->curframe == 0 &&
4294 st->frame[0]->subprogno > 0 &&
4295 st->frame[0]->callsite == BPF_MAIN_FUNC &&
4296 bt_stack_mask(bt) == 0 &&
4297 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4298 bitmap_from_u64(mask, bt_reg_mask(bt));
4299 for_each_set_bit(i, mask, 32) {
4300 reg = &st->frame[0]->regs[i];
4301 bt_clear_reg(bt, i);
4302 if (reg->type == SCALAR_VALUE)
4303 reg->precise = true;
4304 }
4305 return 0;
4306 }
4307
4308 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4309 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4310 WARN_ONCE(1, "verifier backtracking bug");
4311 return -EFAULT;
4312 }
4313
4314 for (i = last_idx;;) {
4315 if (skip_first) {
4316 err = 0;
4317 skip_first = false;
4318 } else {
4319 err = backtrack_insn(env, i, subseq_idx, bt);
4320 }
4321 if (err == -ENOTSUPP) {
4322 mark_all_scalars_precise(env, env->cur_state);
4323 bt_reset(bt);
4324 return 0;
4325 } else if (err) {
4326 return err;
4327 }
4328 if (bt_empty(bt))
4329 /* Found assignment(s) into tracked register in this state.
4330 * Since this state is already marked, just return.
4331 * Nothing to be tracked further in the parent state.
4332 */
4333 return 0;
4334 subseq_idx = i;
4335 i = get_prev_insn_idx(st, i, &history);
4336 if (i == -ENOENT)
4337 break;
4338 if (i >= env->prog->len) {
4339 /* This can happen if backtracking reached insn 0
4340 * and there are still reg_mask or stack_mask
4341 * to backtrack.
4342 * It means the backtracking missed the spot where
4343 * particular register was initialized with a constant.
4344 */
4345 verbose(env, "BUG backtracking idx %d\n", i);
4346 WARN_ONCE(1, "verifier backtracking bug");
4347 return -EFAULT;
4348 }
4349 }
4350 st = st->parent;
4351 if (!st)
4352 break;
4353
4354 for (fr = bt->frame; fr >= 0; fr--) {
4355 func = st->frame[fr];
4356 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4357 for_each_set_bit(i, mask, 32) {
4358 reg = &func->regs[i];
4359 if (reg->type != SCALAR_VALUE) {
4360 bt_clear_frame_reg(bt, fr, i);
4361 continue;
4362 }
4363 if (reg->precise)
4364 bt_clear_frame_reg(bt, fr, i);
4365 else
4366 reg->precise = true;
4367 }
4368
4369 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4370 for_each_set_bit(i, mask, 64) {
4371 if (i >= func->allocated_stack / BPF_REG_SIZE) {
4372 /* the sequence of instructions:
4373 * 2: (bf) r3 = r10
4374 * 3: (7b) *(u64 *)(r3 -8) = r0
4375 * 4: (79) r4 = *(u64 *)(r10 -8)
4376 * doesn't contain jmps. It's backtracked
4377 * as a single block.
4378 * During backtracking insn 3 is not recognized as
4379 * stack access, so at the end of backtracking
4380 * stack slot fp-8 is still marked in stack_mask.
4381 * However the parent state may not have accessed
4382 * fp-8 and it's "unallocated" stack space.
4383 * In such case fallback to conservative.
4384 */
4385 mark_all_scalars_precise(env, env->cur_state);
4386 bt_reset(bt);
4387 return 0;
4388 }
4389
4390 if (!is_spilled_scalar_reg(&func->stack[i])) {
4391 bt_clear_frame_slot(bt, fr, i);
4392 continue;
4393 }
4394 reg = &func->stack[i].spilled_ptr;
4395 if (reg->precise)
4396 bt_clear_frame_slot(bt, fr, i);
4397 else
4398 reg->precise = true;
4399 }
4400 if (env->log.level & BPF_LOG_LEVEL2) {
4401 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4402 bt_frame_reg_mask(bt, fr));
4403 verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4404 fr, env->tmp_str_buf);
4405 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4406 bt_frame_stack_mask(bt, fr));
4407 verbose(env, "stack=%s: ", env->tmp_str_buf);
4408 print_verifier_state(env, func, true);
4409 }
4410 }
4411
4412 if (bt_empty(bt))
4413 return 0;
4414
4415 subseq_idx = first_idx;
4416 last_idx = st->last_insn_idx;
4417 first_idx = st->first_insn_idx;
4418 }
4419
4420 /* if we still have requested precise regs or slots, we missed
4421 * something (e.g., stack access through non-r10 register), so
4422 * fallback to marking all precise
4423 */
4424 if (!bt_empty(bt)) {
4425 mark_all_scalars_precise(env, env->cur_state);
4426 bt_reset(bt);
4427 }
4428
4429 return 0;
4430 }
4431
mark_chain_precision(struct bpf_verifier_env * env,int regno)4432 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4433 {
4434 return __mark_chain_precision(env, regno);
4435 }
4436
4437 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4438 * desired reg and stack masks across all relevant frames
4439 */
mark_chain_precision_batch(struct bpf_verifier_env * env)4440 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4441 {
4442 return __mark_chain_precision(env, -1);
4443 }
4444
is_spillable_regtype(enum bpf_reg_type type)4445 static bool is_spillable_regtype(enum bpf_reg_type type)
4446 {
4447 switch (base_type(type)) {
4448 case PTR_TO_MAP_VALUE:
4449 case PTR_TO_STACK:
4450 case PTR_TO_CTX:
4451 case PTR_TO_PACKET:
4452 case PTR_TO_PACKET_META:
4453 case PTR_TO_PACKET_END:
4454 case PTR_TO_FLOW_KEYS:
4455 case CONST_PTR_TO_MAP:
4456 case PTR_TO_SOCKET:
4457 case PTR_TO_SOCK_COMMON:
4458 case PTR_TO_TCP_SOCK:
4459 case PTR_TO_XDP_SOCK:
4460 case PTR_TO_BTF_ID:
4461 case PTR_TO_BUF:
4462 case PTR_TO_MEM:
4463 case PTR_TO_FUNC:
4464 case PTR_TO_MAP_KEY:
4465 return true;
4466 default:
4467 return false;
4468 }
4469 }
4470
4471 /* Does this register contain a constant zero? */
register_is_null(struct bpf_reg_state * reg)4472 static bool register_is_null(struct bpf_reg_state *reg)
4473 {
4474 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4475 }
4476
register_is_const(struct bpf_reg_state * reg)4477 static bool register_is_const(struct bpf_reg_state *reg)
4478 {
4479 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
4480 }
4481
__is_scalar_unbounded(struct bpf_reg_state * reg)4482 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
4483 {
4484 return tnum_is_unknown(reg->var_off) &&
4485 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
4486 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
4487 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
4488 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
4489 }
4490
register_is_bounded(struct bpf_reg_state * reg)4491 static bool register_is_bounded(struct bpf_reg_state *reg)
4492 {
4493 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
4494 }
4495
__is_pointer_value(bool allow_ptr_leaks,const struct bpf_reg_state * reg)4496 static bool __is_pointer_value(bool allow_ptr_leaks,
4497 const struct bpf_reg_state *reg)
4498 {
4499 if (allow_ptr_leaks)
4500 return false;
4501
4502 return reg->type != SCALAR_VALUE;
4503 }
4504
4505 /* Copy src state preserving dst->parent and dst->live fields */
copy_register_state(struct bpf_reg_state * dst,const struct bpf_reg_state * src)4506 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4507 {
4508 struct bpf_reg_state *parent = dst->parent;
4509 enum bpf_reg_liveness live = dst->live;
4510
4511 *dst = *src;
4512 dst->parent = parent;
4513 dst->live = live;
4514 }
4515
save_register_state(struct bpf_func_state * state,int spi,struct bpf_reg_state * reg,int size)4516 static void save_register_state(struct bpf_func_state *state,
4517 int spi, struct bpf_reg_state *reg,
4518 int size)
4519 {
4520 int i;
4521
4522 copy_register_state(&state->stack[spi].spilled_ptr, reg);
4523 if (size == BPF_REG_SIZE)
4524 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4525
4526 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4527 state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4528
4529 /* size < 8 bytes spill */
4530 for (; i; i--)
4531 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
4532 }
4533
is_bpf_st_mem(struct bpf_insn * insn)4534 static bool is_bpf_st_mem(struct bpf_insn *insn)
4535 {
4536 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4537 }
4538
4539 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4540 * stack boundary and alignment are checked in check_mem_access()
4541 */
check_stack_write_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int off,int size,int value_regno,int insn_idx)4542 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4543 /* stack frame we're writing to */
4544 struct bpf_func_state *state,
4545 int off, int size, int value_regno,
4546 int insn_idx)
4547 {
4548 struct bpf_func_state *cur; /* state of the current function */
4549 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4550 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4551 struct bpf_reg_state *reg = NULL;
4552 u32 dst_reg = insn->dst_reg;
4553
4554 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4555 * so it's aligned access and [off, off + size) are within stack limits
4556 */
4557 if (!env->allow_ptr_leaks &&
4558 is_spilled_reg(&state->stack[spi]) &&
4559 size != BPF_REG_SIZE) {
4560 verbose(env, "attempt to corrupt spilled pointer on stack\n");
4561 return -EACCES;
4562 }
4563
4564 cur = env->cur_state->frame[env->cur_state->curframe];
4565 if (value_regno >= 0)
4566 reg = &cur->regs[value_regno];
4567 if (!env->bypass_spec_v4) {
4568 bool sanitize = reg && is_spillable_regtype(reg->type);
4569
4570 for (i = 0; i < size; i++) {
4571 u8 type = state->stack[spi].slot_type[i];
4572
4573 if (type != STACK_MISC && type != STACK_ZERO) {
4574 sanitize = true;
4575 break;
4576 }
4577 }
4578
4579 if (sanitize)
4580 env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4581 }
4582
4583 err = destroy_if_dynptr_stack_slot(env, state, spi);
4584 if (err)
4585 return err;
4586
4587 mark_stack_slot_scratched(env, spi);
4588 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
4589 !register_is_null(reg) && env->bpf_capable) {
4590 if (dst_reg != BPF_REG_FP) {
4591 /* The backtracking logic can only recognize explicit
4592 * stack slot address like [fp - 8]. Other spill of
4593 * scalar via different register has to be conservative.
4594 * Backtrack from here and mark all registers as precise
4595 * that contributed into 'reg' being a constant.
4596 */
4597 err = mark_chain_precision(env, value_regno);
4598 if (err)
4599 return err;
4600 }
4601 save_register_state(state, spi, reg, size);
4602 /* Break the relation on a narrowing spill. */
4603 if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
4604 state->stack[spi].spilled_ptr.id = 0;
4605 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4606 insn->imm != 0 && env->bpf_capable) {
4607 struct bpf_reg_state fake_reg = {};
4608
4609 __mark_reg_known(&fake_reg, insn->imm);
4610 fake_reg.type = SCALAR_VALUE;
4611 save_register_state(state, spi, &fake_reg, size);
4612 } else if (reg && is_spillable_regtype(reg->type)) {
4613 /* register containing pointer is being spilled into stack */
4614 if (size != BPF_REG_SIZE) {
4615 verbose_linfo(env, insn_idx, "; ");
4616 verbose(env, "invalid size of register spill\n");
4617 return -EACCES;
4618 }
4619 if (state != cur && reg->type == PTR_TO_STACK) {
4620 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4621 return -EINVAL;
4622 }
4623 save_register_state(state, spi, reg, size);
4624 } else {
4625 u8 type = STACK_MISC;
4626
4627 /* regular write of data into stack destroys any spilled ptr */
4628 state->stack[spi].spilled_ptr.type = NOT_INIT;
4629 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4630 if (is_stack_slot_special(&state->stack[spi]))
4631 for (i = 0; i < BPF_REG_SIZE; i++)
4632 scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4633
4634 /* only mark the slot as written if all 8 bytes were written
4635 * otherwise read propagation may incorrectly stop too soon
4636 * when stack slots are partially written.
4637 * This heuristic means that read propagation will be
4638 * conservative, since it will add reg_live_read marks
4639 * to stack slots all the way to first state when programs
4640 * writes+reads less than 8 bytes
4641 */
4642 if (size == BPF_REG_SIZE)
4643 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4644
4645 /* when we zero initialize stack slots mark them as such */
4646 if ((reg && register_is_null(reg)) ||
4647 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4648 /* backtracking doesn't work for STACK_ZERO yet. */
4649 err = mark_chain_precision(env, value_regno);
4650 if (err)
4651 return err;
4652 type = STACK_ZERO;
4653 }
4654
4655 /* Mark slots affected by this stack write. */
4656 for (i = 0; i < size; i++)
4657 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
4658 type;
4659 }
4660 return 0;
4661 }
4662
4663 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4664 * known to contain a variable offset.
4665 * This function checks whether the write is permitted and conservatively
4666 * tracks the effects of the write, considering that each stack slot in the
4667 * dynamic range is potentially written to.
4668 *
4669 * 'off' includes 'regno->off'.
4670 * 'value_regno' can be -1, meaning that an unknown value is being written to
4671 * the stack.
4672 *
4673 * Spilled pointers in range are not marked as written because we don't know
4674 * what's going to be actually written. This means that read propagation for
4675 * future reads cannot be terminated by this write.
4676 *
4677 * For privileged programs, uninitialized stack slots are considered
4678 * initialized by this write (even though we don't know exactly what offsets
4679 * are going to be written to). The idea is that we don't want the verifier to
4680 * reject future reads that access slots written to through variable offsets.
4681 */
check_stack_write_var_off(struct bpf_verifier_env * env,struct bpf_func_state * state,int ptr_regno,int off,int size,int value_regno,int insn_idx)4682 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4683 /* func where register points to */
4684 struct bpf_func_state *state,
4685 int ptr_regno, int off, int size,
4686 int value_regno, int insn_idx)
4687 {
4688 struct bpf_func_state *cur; /* state of the current function */
4689 int min_off, max_off;
4690 int i, err;
4691 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4692 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4693 bool writing_zero = false;
4694 /* set if the fact that we're writing a zero is used to let any
4695 * stack slots remain STACK_ZERO
4696 */
4697 bool zero_used = false;
4698
4699 cur = env->cur_state->frame[env->cur_state->curframe];
4700 ptr_reg = &cur->regs[ptr_regno];
4701 min_off = ptr_reg->smin_value + off;
4702 max_off = ptr_reg->smax_value + off + size;
4703 if (value_regno >= 0)
4704 value_reg = &cur->regs[value_regno];
4705 if ((value_reg && register_is_null(value_reg)) ||
4706 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4707 writing_zero = true;
4708
4709 for (i = min_off; i < max_off; i++) {
4710 int spi;
4711
4712 spi = __get_spi(i);
4713 err = destroy_if_dynptr_stack_slot(env, state, spi);
4714 if (err)
4715 return err;
4716 }
4717
4718 /* Variable offset writes destroy any spilled pointers in range. */
4719 for (i = min_off; i < max_off; i++) {
4720 u8 new_type, *stype;
4721 int slot, spi;
4722
4723 slot = -i - 1;
4724 spi = slot / BPF_REG_SIZE;
4725 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4726 mark_stack_slot_scratched(env, spi);
4727
4728 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4729 /* Reject the write if range we may write to has not
4730 * been initialized beforehand. If we didn't reject
4731 * here, the ptr status would be erased below (even
4732 * though not all slots are actually overwritten),
4733 * possibly opening the door to leaks.
4734 *
4735 * We do however catch STACK_INVALID case below, and
4736 * only allow reading possibly uninitialized memory
4737 * later for CAP_PERFMON, as the write may not happen to
4738 * that slot.
4739 */
4740 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4741 insn_idx, i);
4742 return -EINVAL;
4743 }
4744
4745 /* Erase all spilled pointers. */
4746 state->stack[spi].spilled_ptr.type = NOT_INIT;
4747
4748 /* Update the slot type. */
4749 new_type = STACK_MISC;
4750 if (writing_zero && *stype == STACK_ZERO) {
4751 new_type = STACK_ZERO;
4752 zero_used = true;
4753 }
4754 /* If the slot is STACK_INVALID, we check whether it's OK to
4755 * pretend that it will be initialized by this write. The slot
4756 * might not actually be written to, and so if we mark it as
4757 * initialized future reads might leak uninitialized memory.
4758 * For privileged programs, we will accept such reads to slots
4759 * that may or may not be written because, if we're reject
4760 * them, the error would be too confusing.
4761 */
4762 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4763 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4764 insn_idx, i);
4765 return -EINVAL;
4766 }
4767 *stype = new_type;
4768 }
4769 if (zero_used) {
4770 /* backtracking doesn't work for STACK_ZERO yet. */
4771 err = mark_chain_precision(env, value_regno);
4772 if (err)
4773 return err;
4774 }
4775 return 0;
4776 }
4777
4778 /* When register 'dst_regno' is assigned some values from stack[min_off,
4779 * max_off), we set the register's type according to the types of the
4780 * respective stack slots. If all the stack values are known to be zeros, then
4781 * so is the destination reg. Otherwise, the register is considered to be
4782 * SCALAR. This function does not deal with register filling; the caller must
4783 * ensure that all spilled registers in the stack range have been marked as
4784 * read.
4785 */
mark_reg_stack_read(struct bpf_verifier_env * env,struct bpf_func_state * ptr_state,int min_off,int max_off,int dst_regno)4786 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4787 /* func where src register points to */
4788 struct bpf_func_state *ptr_state,
4789 int min_off, int max_off, int dst_regno)
4790 {
4791 struct bpf_verifier_state *vstate = env->cur_state;
4792 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4793 int i, slot, spi;
4794 u8 *stype;
4795 int zeros = 0;
4796
4797 for (i = min_off; i < max_off; i++) {
4798 slot = -i - 1;
4799 spi = slot / BPF_REG_SIZE;
4800 mark_stack_slot_scratched(env, spi);
4801 stype = ptr_state->stack[spi].slot_type;
4802 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4803 break;
4804 zeros++;
4805 }
4806 if (zeros == max_off - min_off) {
4807 /* any access_size read into register is zero extended,
4808 * so the whole register == const_zero
4809 */
4810 __mark_reg_const_zero(&state->regs[dst_regno]);
4811 /* backtracking doesn't support STACK_ZERO yet,
4812 * so mark it precise here, so that later
4813 * backtracking can stop here.
4814 * Backtracking may not need this if this register
4815 * doesn't participate in pointer adjustment.
4816 * Forward propagation of precise flag is not
4817 * necessary either. This mark is only to stop
4818 * backtracking. Any register that contributed
4819 * to const 0 was marked precise before spill.
4820 */
4821 state->regs[dst_regno].precise = true;
4822 } else {
4823 /* have read misc data from the stack */
4824 mark_reg_unknown(env, state->regs, dst_regno);
4825 }
4826 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4827 }
4828
4829 /* Read the stack at 'off' and put the results into the register indicated by
4830 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4831 * spilled reg.
4832 *
4833 * 'dst_regno' can be -1, meaning that the read value is not going to a
4834 * register.
4835 *
4836 * The access is assumed to be within the current stack bounds.
4837 */
check_stack_read_fixed_off(struct bpf_verifier_env * env,struct bpf_func_state * reg_state,int off,int size,int dst_regno)4838 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4839 /* func where src register points to */
4840 struct bpf_func_state *reg_state,
4841 int off, int size, int dst_regno)
4842 {
4843 struct bpf_verifier_state *vstate = env->cur_state;
4844 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4845 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4846 struct bpf_reg_state *reg;
4847 u8 *stype, type;
4848
4849 stype = reg_state->stack[spi].slot_type;
4850 reg = ®_state->stack[spi].spilled_ptr;
4851
4852 mark_stack_slot_scratched(env, spi);
4853
4854 if (is_spilled_reg(®_state->stack[spi])) {
4855 u8 spill_size = 1;
4856
4857 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4858 spill_size++;
4859
4860 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4861 if (reg->type != SCALAR_VALUE) {
4862 verbose_linfo(env, env->insn_idx, "; ");
4863 verbose(env, "invalid size of register fill\n");
4864 return -EACCES;
4865 }
4866
4867 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4868 if (dst_regno < 0)
4869 return 0;
4870
4871 if (!(off % BPF_REG_SIZE) && size == spill_size) {
4872 /* The earlier check_reg_arg() has decided the
4873 * subreg_def for this insn. Save it first.
4874 */
4875 s32 subreg_def = state->regs[dst_regno].subreg_def;
4876
4877 copy_register_state(&state->regs[dst_regno], reg);
4878 state->regs[dst_regno].subreg_def = subreg_def;
4879 } else {
4880 for (i = 0; i < size; i++) {
4881 type = stype[(slot - i) % BPF_REG_SIZE];
4882 if (type == STACK_SPILL)
4883 continue;
4884 if (type == STACK_MISC)
4885 continue;
4886 if (type == STACK_INVALID && env->allow_uninit_stack)
4887 continue;
4888 verbose(env, "invalid read from stack off %d+%d size %d\n",
4889 off, i, size);
4890 return -EACCES;
4891 }
4892 mark_reg_unknown(env, state->regs, dst_regno);
4893 }
4894 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4895 return 0;
4896 }
4897
4898 if (dst_regno >= 0) {
4899 /* restore register state from stack */
4900 copy_register_state(&state->regs[dst_regno], reg);
4901 /* mark reg as written since spilled pointer state likely
4902 * has its liveness marks cleared by is_state_visited()
4903 * which resets stack/reg liveness for state transitions
4904 */
4905 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4906 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4907 /* If dst_regno==-1, the caller is asking us whether
4908 * it is acceptable to use this value as a SCALAR_VALUE
4909 * (e.g. for XADD).
4910 * We must not allow unprivileged callers to do that
4911 * with spilled pointers.
4912 */
4913 verbose(env, "leaking pointer from stack off %d\n",
4914 off);
4915 return -EACCES;
4916 }
4917 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4918 } else {
4919 for (i = 0; i < size; i++) {
4920 type = stype[(slot - i) % BPF_REG_SIZE];
4921 if (type == STACK_MISC)
4922 continue;
4923 if (type == STACK_ZERO)
4924 continue;
4925 if (type == STACK_INVALID && env->allow_uninit_stack)
4926 continue;
4927 verbose(env, "invalid read from stack off %d+%d size %d\n",
4928 off, i, size);
4929 return -EACCES;
4930 }
4931 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4932 if (dst_regno >= 0)
4933 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
4934 }
4935 return 0;
4936 }
4937
4938 enum bpf_access_src {
4939 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
4940 ACCESS_HELPER = 2, /* the access is performed by a helper */
4941 };
4942
4943 static int check_stack_range_initialized(struct bpf_verifier_env *env,
4944 int regno, int off, int access_size,
4945 bool zero_size_allowed,
4946 enum bpf_access_src type,
4947 struct bpf_call_arg_meta *meta);
4948
reg_state(struct bpf_verifier_env * env,int regno)4949 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4950 {
4951 return cur_regs(env) + regno;
4952 }
4953
4954 /* Read the stack at 'ptr_regno + off' and put the result into the register
4955 * 'dst_regno'.
4956 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4957 * but not its variable offset.
4958 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4959 *
4960 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
4961 * filling registers (i.e. reads of spilled register cannot be detected when
4962 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
4963 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
4964 * offset; for a fixed offset check_stack_read_fixed_off should be used
4965 * instead.
4966 */
check_stack_read_var_off(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)4967 static int check_stack_read_var_off(struct bpf_verifier_env *env,
4968 int ptr_regno, int off, int size, int dst_regno)
4969 {
4970 /* The state of the source register. */
4971 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4972 struct bpf_func_state *ptr_state = func(env, reg);
4973 int err;
4974 int min_off, max_off;
4975
4976 /* Note that we pass a NULL meta, so raw access will not be permitted.
4977 */
4978 err = check_stack_range_initialized(env, ptr_regno, off, size,
4979 false, ACCESS_DIRECT, NULL);
4980 if (err)
4981 return err;
4982
4983 min_off = reg->smin_value + off;
4984 max_off = reg->smax_value + off;
4985 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
4986 return 0;
4987 }
4988
4989 /* check_stack_read dispatches to check_stack_read_fixed_off or
4990 * check_stack_read_var_off.
4991 *
4992 * The caller must ensure that the offset falls within the allocated stack
4993 * bounds.
4994 *
4995 * 'dst_regno' is a register which will receive the value from the stack. It
4996 * can be -1, meaning that the read value is not going to a register.
4997 */
check_stack_read(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int dst_regno)4998 static int check_stack_read(struct bpf_verifier_env *env,
4999 int ptr_regno, int off, int size,
5000 int dst_regno)
5001 {
5002 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5003 struct bpf_func_state *state = func(env, reg);
5004 int err;
5005 /* Some accesses are only permitted with a static offset. */
5006 bool var_off = !tnum_is_const(reg->var_off);
5007
5008 /* The offset is required to be static when reads don't go to a
5009 * register, in order to not leak pointers (see
5010 * check_stack_read_fixed_off).
5011 */
5012 if (dst_regno < 0 && var_off) {
5013 char tn_buf[48];
5014
5015 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5016 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
5017 tn_buf, off, size);
5018 return -EACCES;
5019 }
5020 /* Variable offset is prohibited for unprivileged mode for simplicity
5021 * since it requires corresponding support in Spectre masking for stack
5022 * ALU. See also retrieve_ptr_limit(). The check in
5023 * check_stack_access_for_ptr_arithmetic() called by
5024 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
5025 * with variable offsets, therefore no check is required here. Further,
5026 * just checking it here would be insufficient as speculative stack
5027 * writes could still lead to unsafe speculative behaviour.
5028 */
5029 if (!var_off) {
5030 off += reg->var_off.value;
5031 err = check_stack_read_fixed_off(env, state, off, size,
5032 dst_regno);
5033 } else {
5034 /* Variable offset stack reads need more conservative handling
5035 * than fixed offset ones. Note that dst_regno >= 0 on this
5036 * branch.
5037 */
5038 err = check_stack_read_var_off(env, ptr_regno, off, size,
5039 dst_regno);
5040 }
5041 return err;
5042 }
5043
5044
5045 /* check_stack_write dispatches to check_stack_write_fixed_off or
5046 * check_stack_write_var_off.
5047 *
5048 * 'ptr_regno' is the register used as a pointer into the stack.
5049 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
5050 * 'value_regno' is the register whose value we're writing to the stack. It can
5051 * be -1, meaning that we're not writing from a register.
5052 *
5053 * The caller must ensure that the offset falls within the maximum stack size.
5054 */
check_stack_write(struct bpf_verifier_env * env,int ptr_regno,int off,int size,int value_regno,int insn_idx)5055 static int check_stack_write(struct bpf_verifier_env *env,
5056 int ptr_regno, int off, int size,
5057 int value_regno, int insn_idx)
5058 {
5059 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5060 struct bpf_func_state *state = func(env, reg);
5061 int err;
5062
5063 if (tnum_is_const(reg->var_off)) {
5064 off += reg->var_off.value;
5065 err = check_stack_write_fixed_off(env, state, off, size,
5066 value_regno, insn_idx);
5067 } else {
5068 /* Variable offset stack reads need more conservative handling
5069 * than fixed offset ones.
5070 */
5071 err = check_stack_write_var_off(env, state,
5072 ptr_regno, off, size,
5073 value_regno, insn_idx);
5074 }
5075 return err;
5076 }
5077
check_map_access_type(struct bpf_verifier_env * env,u32 regno,int off,int size,enum bpf_access_type type)5078 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
5079 int off, int size, enum bpf_access_type type)
5080 {
5081 struct bpf_reg_state *regs = cur_regs(env);
5082 struct bpf_map *map = regs[regno].map_ptr;
5083 u32 cap = bpf_map_flags_to_cap(map);
5084
5085 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
5086 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
5087 map->value_size, off, size);
5088 return -EACCES;
5089 }
5090
5091 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5092 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5093 map->value_size, off, size);
5094 return -EACCES;
5095 }
5096
5097 return 0;
5098 }
5099
5100 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
__check_mem_access(struct bpf_verifier_env * env,int regno,int off,int size,u32 mem_size,bool zero_size_allowed)5101 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5102 int off, int size, u32 mem_size,
5103 bool zero_size_allowed)
5104 {
5105 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5106 struct bpf_reg_state *reg;
5107
5108 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5109 return 0;
5110
5111 reg = &cur_regs(env)[regno];
5112 switch (reg->type) {
5113 case PTR_TO_MAP_KEY:
5114 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5115 mem_size, off, size);
5116 break;
5117 case PTR_TO_MAP_VALUE:
5118 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5119 mem_size, off, size);
5120 break;
5121 case PTR_TO_PACKET:
5122 case PTR_TO_PACKET_META:
5123 case PTR_TO_PACKET_END:
5124 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5125 off, size, regno, reg->id, off, mem_size);
5126 break;
5127 case PTR_TO_MEM:
5128 default:
5129 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5130 mem_size, off, size);
5131 }
5132
5133 return -EACCES;
5134 }
5135
5136 /* check read/write into a memory region with possible variable offset */
check_mem_region_access(struct bpf_verifier_env * env,u32 regno,int off,int size,u32 mem_size,bool zero_size_allowed)5137 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5138 int off, int size, u32 mem_size,
5139 bool zero_size_allowed)
5140 {
5141 struct bpf_verifier_state *vstate = env->cur_state;
5142 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5143 struct bpf_reg_state *reg = &state->regs[regno];
5144 int err;
5145
5146 /* We may have adjusted the register pointing to memory region, so we
5147 * need to try adding each of min_value and max_value to off
5148 * to make sure our theoretical access will be safe.
5149 *
5150 * The minimum value is only important with signed
5151 * comparisons where we can't assume the floor of a
5152 * value is 0. If we are using signed variables for our
5153 * index'es we need to make sure that whatever we use
5154 * will have a set floor within our range.
5155 */
5156 if (reg->smin_value < 0 &&
5157 (reg->smin_value == S64_MIN ||
5158 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5159 reg->smin_value + off < 0)) {
5160 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5161 regno);
5162 return -EACCES;
5163 }
5164 err = __check_mem_access(env, regno, reg->smin_value + off, size,
5165 mem_size, zero_size_allowed);
5166 if (err) {
5167 verbose(env, "R%d min value is outside of the allowed memory range\n",
5168 regno);
5169 return err;
5170 }
5171
5172 /* If we haven't set a max value then we need to bail since we can't be
5173 * sure we won't do bad things.
5174 * If reg->umax_value + off could overflow, treat that as unbounded too.
5175 */
5176 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5177 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5178 regno);
5179 return -EACCES;
5180 }
5181 err = __check_mem_access(env, regno, reg->umax_value + off, size,
5182 mem_size, zero_size_allowed);
5183 if (err) {
5184 verbose(env, "R%d max value is outside of the allowed memory range\n",
5185 regno);
5186 return err;
5187 }
5188
5189 return 0;
5190 }
5191
__check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,bool fixed_off_ok)5192 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5193 const struct bpf_reg_state *reg, int regno,
5194 bool fixed_off_ok)
5195 {
5196 /* Access to this pointer-typed register or passing it to a helper
5197 * is only allowed in its original, unmodified form.
5198 */
5199
5200 if (reg->off < 0) {
5201 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5202 reg_type_str(env, reg->type), regno, reg->off);
5203 return -EACCES;
5204 }
5205
5206 if (!fixed_off_ok && reg->off) {
5207 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5208 reg_type_str(env, reg->type), regno, reg->off);
5209 return -EACCES;
5210 }
5211
5212 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5213 char tn_buf[48];
5214
5215 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5216 verbose(env, "variable %s access var_off=%s disallowed\n",
5217 reg_type_str(env, reg->type), tn_buf);
5218 return -EACCES;
5219 }
5220
5221 return 0;
5222 }
5223
check_ptr_off_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno)5224 int check_ptr_off_reg(struct bpf_verifier_env *env,
5225 const struct bpf_reg_state *reg, int regno)
5226 {
5227 return __check_ptr_off_reg(env, reg, regno, false);
5228 }
5229
map_kptr_match_type(struct bpf_verifier_env * env,struct btf_field * kptr_field,struct bpf_reg_state * reg,u32 regno)5230 static int map_kptr_match_type(struct bpf_verifier_env *env,
5231 struct btf_field *kptr_field,
5232 struct bpf_reg_state *reg, u32 regno)
5233 {
5234 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5235 int perm_flags;
5236 const char *reg_name = "";
5237
5238 if (btf_is_kernel(reg->btf)) {
5239 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5240
5241 /* Only unreferenced case accepts untrusted pointers */
5242 if (kptr_field->type == BPF_KPTR_UNREF)
5243 perm_flags |= PTR_UNTRUSTED;
5244 } else {
5245 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5246 }
5247
5248 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5249 goto bad_type;
5250
5251 /* We need to verify reg->type and reg->btf, before accessing reg->btf */
5252 reg_name = btf_type_name(reg->btf, reg->btf_id);
5253
5254 /* For ref_ptr case, release function check should ensure we get one
5255 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5256 * normal store of unreferenced kptr, we must ensure var_off is zero.
5257 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5258 * reg->off and reg->ref_obj_id are not needed here.
5259 */
5260 if (__check_ptr_off_reg(env, reg, regno, true))
5261 return -EACCES;
5262
5263 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5264 * we also need to take into account the reg->off.
5265 *
5266 * We want to support cases like:
5267 *
5268 * struct foo {
5269 * struct bar br;
5270 * struct baz bz;
5271 * };
5272 *
5273 * struct foo *v;
5274 * v = func(); // PTR_TO_BTF_ID
5275 * val->foo = v; // reg->off is zero, btf and btf_id match type
5276 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5277 * // first member type of struct after comparison fails
5278 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5279 * // to match type
5280 *
5281 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5282 * is zero. We must also ensure that btf_struct_ids_match does not walk
5283 * the struct to match type against first member of struct, i.e. reject
5284 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5285 * strict mode to true for type match.
5286 */
5287 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5288 kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5289 kptr_field->type == BPF_KPTR_REF))
5290 goto bad_type;
5291 return 0;
5292 bad_type:
5293 verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5294 reg_type_str(env, reg->type), reg_name);
5295 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5296 if (kptr_field->type == BPF_KPTR_UNREF)
5297 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5298 targ_name);
5299 else
5300 verbose(env, "\n");
5301 return -EINVAL;
5302 }
5303
5304 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5305 * can dereference RCU protected pointers and result is PTR_TRUSTED.
5306 */
in_rcu_cs(struct bpf_verifier_env * env)5307 static bool in_rcu_cs(struct bpf_verifier_env *env)
5308 {
5309 return env->cur_state->active_rcu_lock ||
5310 env->cur_state->active_lock.ptr ||
5311 !env->prog->aux->sleepable;
5312 }
5313
5314 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5315 BTF_SET_START(rcu_protected_types)
BTF_ID(struct,prog_test_ref_kfunc)5316 BTF_ID(struct, prog_test_ref_kfunc)
5317 BTF_ID(struct, cgroup)
5318 BTF_ID(struct, bpf_cpumask)
5319 BTF_ID(struct, task_struct)
5320 BTF_SET_END(rcu_protected_types)
5321
5322 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5323 {
5324 if (!btf_is_kernel(btf))
5325 return false;
5326 return btf_id_set_contains(&rcu_protected_types, btf_id);
5327 }
5328
rcu_safe_kptr(const struct btf_field * field)5329 static bool rcu_safe_kptr(const struct btf_field *field)
5330 {
5331 const struct btf_field_kptr *kptr = &field->kptr;
5332
5333 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id);
5334 }
5335
check_map_kptr_access(struct bpf_verifier_env * env,u32 regno,int value_regno,int insn_idx,struct btf_field * kptr_field)5336 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5337 int value_regno, int insn_idx,
5338 struct btf_field *kptr_field)
5339 {
5340 struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5341 int class = BPF_CLASS(insn->code);
5342 struct bpf_reg_state *val_reg;
5343
5344 /* Things we already checked for in check_map_access and caller:
5345 * - Reject cases where variable offset may touch kptr
5346 * - size of access (must be BPF_DW)
5347 * - tnum_is_const(reg->var_off)
5348 * - kptr_field->offset == off + reg->var_off.value
5349 */
5350 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5351 if (BPF_MODE(insn->code) != BPF_MEM) {
5352 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5353 return -EACCES;
5354 }
5355
5356 /* We only allow loading referenced kptr, since it will be marked as
5357 * untrusted, similar to unreferenced kptr.
5358 */
5359 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
5360 verbose(env, "store to referenced kptr disallowed\n");
5361 return -EACCES;
5362 }
5363
5364 if (class == BPF_LDX) {
5365 val_reg = reg_state(env, value_regno);
5366 /* We can simply mark the value_regno receiving the pointer
5367 * value from map as PTR_TO_BTF_ID, with the correct type.
5368 */
5369 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5370 kptr_field->kptr.btf_id,
5371 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ?
5372 PTR_MAYBE_NULL | MEM_RCU :
5373 PTR_MAYBE_NULL | PTR_UNTRUSTED);
5374 /* For mark_ptr_or_null_reg */
5375 val_reg->id = ++env->id_gen;
5376 } else if (class == BPF_STX) {
5377 val_reg = reg_state(env, value_regno);
5378 if (!register_is_null(val_reg) &&
5379 map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5380 return -EACCES;
5381 } else if (class == BPF_ST) {
5382 if (insn->imm) {
5383 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5384 kptr_field->offset);
5385 return -EACCES;
5386 }
5387 } else {
5388 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5389 return -EACCES;
5390 }
5391 return 0;
5392 }
5393
5394 /* check read/write into a map element with possible variable offset */
check_map_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed,enum bpf_access_src src)5395 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5396 int off, int size, bool zero_size_allowed,
5397 enum bpf_access_src src)
5398 {
5399 struct bpf_verifier_state *vstate = env->cur_state;
5400 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5401 struct bpf_reg_state *reg = &state->regs[regno];
5402 struct bpf_map *map = reg->map_ptr;
5403 struct btf_record *rec;
5404 int err, i;
5405
5406 err = check_mem_region_access(env, regno, off, size, map->value_size,
5407 zero_size_allowed);
5408 if (err)
5409 return err;
5410
5411 if (IS_ERR_OR_NULL(map->record))
5412 return 0;
5413 rec = map->record;
5414 for (i = 0; i < rec->cnt; i++) {
5415 struct btf_field *field = &rec->fields[i];
5416 u32 p = field->offset;
5417
5418 /* If any part of a field can be touched by load/store, reject
5419 * this program. To check that [x1, x2) overlaps with [y1, y2),
5420 * it is sufficient to check x1 < y2 && y1 < x2.
5421 */
5422 if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5423 p < reg->umax_value + off + size) {
5424 switch (field->type) {
5425 case BPF_KPTR_UNREF:
5426 case BPF_KPTR_REF:
5427 if (src != ACCESS_DIRECT) {
5428 verbose(env, "kptr cannot be accessed indirectly by helper\n");
5429 return -EACCES;
5430 }
5431 if (!tnum_is_const(reg->var_off)) {
5432 verbose(env, "kptr access cannot have variable offset\n");
5433 return -EACCES;
5434 }
5435 if (p != off + reg->var_off.value) {
5436 verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5437 p, off + reg->var_off.value);
5438 return -EACCES;
5439 }
5440 if (size != bpf_size_to_bytes(BPF_DW)) {
5441 verbose(env, "kptr access size must be BPF_DW\n");
5442 return -EACCES;
5443 }
5444 break;
5445 default:
5446 verbose(env, "%s cannot be accessed directly by load/store\n",
5447 btf_field_type_name(field->type));
5448 return -EACCES;
5449 }
5450 }
5451 }
5452 return 0;
5453 }
5454
5455 #define MAX_PACKET_OFF 0xffff
5456
may_access_direct_pkt_data(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_access_type t)5457 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5458 const struct bpf_call_arg_meta *meta,
5459 enum bpf_access_type t)
5460 {
5461 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5462
5463 switch (prog_type) {
5464 /* Program types only with direct read access go here! */
5465 case BPF_PROG_TYPE_LWT_IN:
5466 case BPF_PROG_TYPE_LWT_OUT:
5467 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5468 case BPF_PROG_TYPE_SK_REUSEPORT:
5469 case BPF_PROG_TYPE_FLOW_DISSECTOR:
5470 case BPF_PROG_TYPE_CGROUP_SKB:
5471 if (t == BPF_WRITE)
5472 return false;
5473 fallthrough;
5474
5475 /* Program types with direct read + write access go here! */
5476 case BPF_PROG_TYPE_SCHED_CLS:
5477 case BPF_PROG_TYPE_SCHED_ACT:
5478 case BPF_PROG_TYPE_XDP:
5479 case BPF_PROG_TYPE_LWT_XMIT:
5480 case BPF_PROG_TYPE_SK_SKB:
5481 case BPF_PROG_TYPE_SK_MSG:
5482 if (meta)
5483 return meta->pkt_access;
5484
5485 env->seen_direct_write = true;
5486 return true;
5487
5488 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5489 if (t == BPF_WRITE)
5490 env->seen_direct_write = true;
5491
5492 return true;
5493
5494 default:
5495 return false;
5496 }
5497 }
5498
check_packet_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)5499 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5500 int size, bool zero_size_allowed)
5501 {
5502 struct bpf_reg_state *regs = cur_regs(env);
5503 struct bpf_reg_state *reg = ®s[regno];
5504 int err;
5505
5506 /* We may have added a variable offset to the packet pointer; but any
5507 * reg->range we have comes after that. We are only checking the fixed
5508 * offset.
5509 */
5510
5511 /* We don't allow negative numbers, because we aren't tracking enough
5512 * detail to prove they're safe.
5513 */
5514 if (reg->smin_value < 0) {
5515 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5516 regno);
5517 return -EACCES;
5518 }
5519
5520 err = reg->range < 0 ? -EINVAL :
5521 __check_mem_access(env, regno, off, size, reg->range,
5522 zero_size_allowed);
5523 if (err) {
5524 verbose(env, "R%d offset is outside of the packet\n", regno);
5525 return err;
5526 }
5527
5528 /* __check_mem_access has made sure "off + size - 1" is within u16.
5529 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5530 * otherwise find_good_pkt_pointers would have refused to set range info
5531 * that __check_mem_access would have rejected this pkt access.
5532 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5533 */
5534 env->prog->aux->max_pkt_offset =
5535 max_t(u32, env->prog->aux->max_pkt_offset,
5536 off + reg->umax_value + size - 1);
5537
5538 return err;
5539 }
5540
5541 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
check_ctx_access(struct bpf_verifier_env * env,int insn_idx,int off,int size,enum bpf_access_type t,enum bpf_reg_type * reg_type,struct btf ** btf,u32 * btf_id)5542 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5543 enum bpf_access_type t, enum bpf_reg_type *reg_type,
5544 struct btf **btf, u32 *btf_id)
5545 {
5546 struct bpf_insn_access_aux info = {
5547 .reg_type = *reg_type,
5548 .log = &env->log,
5549 };
5550
5551 if (env->ops->is_valid_access &&
5552 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5553 /* A non zero info.ctx_field_size indicates that this field is a
5554 * candidate for later verifier transformation to load the whole
5555 * field and then apply a mask when accessed with a narrower
5556 * access than actual ctx access size. A zero info.ctx_field_size
5557 * will only allow for whole field access and rejects any other
5558 * type of narrower access.
5559 */
5560 *reg_type = info.reg_type;
5561
5562 if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5563 *btf = info.btf;
5564 *btf_id = info.btf_id;
5565 } else {
5566 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5567 }
5568 /* remember the offset of last byte accessed in ctx */
5569 if (env->prog->aux->max_ctx_offset < off + size)
5570 env->prog->aux->max_ctx_offset = off + size;
5571 return 0;
5572 }
5573
5574 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5575 return -EACCES;
5576 }
5577
check_flow_keys_access(struct bpf_verifier_env * env,int off,int size)5578 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5579 int size)
5580 {
5581 if (size < 0 || off < 0 ||
5582 (u64)off + size > sizeof(struct bpf_flow_keys)) {
5583 verbose(env, "invalid access to flow keys off=%d size=%d\n",
5584 off, size);
5585 return -EACCES;
5586 }
5587 return 0;
5588 }
5589
check_sock_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int size,enum bpf_access_type t)5590 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5591 u32 regno, int off, int size,
5592 enum bpf_access_type t)
5593 {
5594 struct bpf_reg_state *regs = cur_regs(env);
5595 struct bpf_reg_state *reg = ®s[regno];
5596 struct bpf_insn_access_aux info = {};
5597 bool valid;
5598
5599 if (reg->smin_value < 0) {
5600 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5601 regno);
5602 return -EACCES;
5603 }
5604
5605 switch (reg->type) {
5606 case PTR_TO_SOCK_COMMON:
5607 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5608 break;
5609 case PTR_TO_SOCKET:
5610 valid = bpf_sock_is_valid_access(off, size, t, &info);
5611 break;
5612 case PTR_TO_TCP_SOCK:
5613 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5614 break;
5615 case PTR_TO_XDP_SOCK:
5616 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5617 break;
5618 default:
5619 valid = false;
5620 }
5621
5622
5623 if (valid) {
5624 env->insn_aux_data[insn_idx].ctx_field_size =
5625 info.ctx_field_size;
5626 return 0;
5627 }
5628
5629 verbose(env, "R%d invalid %s access off=%d size=%d\n",
5630 regno, reg_type_str(env, reg->type), off, size);
5631
5632 return -EACCES;
5633 }
5634
is_pointer_value(struct bpf_verifier_env * env,int regno)5635 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5636 {
5637 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5638 }
5639
is_ctx_reg(struct bpf_verifier_env * env,int regno)5640 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5641 {
5642 const struct bpf_reg_state *reg = reg_state(env, regno);
5643
5644 return reg->type == PTR_TO_CTX;
5645 }
5646
is_sk_reg(struct bpf_verifier_env * env,int regno)5647 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5648 {
5649 const struct bpf_reg_state *reg = reg_state(env, regno);
5650
5651 return type_is_sk_pointer(reg->type);
5652 }
5653
is_pkt_reg(struct bpf_verifier_env * env,int regno)5654 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5655 {
5656 const struct bpf_reg_state *reg = reg_state(env, regno);
5657
5658 return type_is_pkt_pointer(reg->type);
5659 }
5660
is_flow_key_reg(struct bpf_verifier_env * env,int regno)5661 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5662 {
5663 const struct bpf_reg_state *reg = reg_state(env, regno);
5664
5665 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5666 return reg->type == PTR_TO_FLOW_KEYS;
5667 }
5668
5669 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5670 #ifdef CONFIG_NET
5671 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5672 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5673 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5674 #endif
5675 [CONST_PTR_TO_MAP] = btf_bpf_map_id,
5676 };
5677
is_trusted_reg(const struct bpf_reg_state * reg)5678 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5679 {
5680 /* A referenced register is always trusted. */
5681 if (reg->ref_obj_id)
5682 return true;
5683
5684 /* Types listed in the reg2btf_ids are always trusted */
5685 if (reg2btf_ids[base_type(reg->type)])
5686 return true;
5687
5688 /* If a register is not referenced, it is trusted if it has the
5689 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5690 * other type modifiers may be safe, but we elect to take an opt-in
5691 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5692 * not.
5693 *
5694 * Eventually, we should make PTR_TRUSTED the single source of truth
5695 * for whether a register is trusted.
5696 */
5697 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5698 !bpf_type_has_unsafe_modifiers(reg->type);
5699 }
5700
is_rcu_reg(const struct bpf_reg_state * reg)5701 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5702 {
5703 return reg->type & MEM_RCU;
5704 }
5705
clear_trusted_flags(enum bpf_type_flag * flag)5706 static void clear_trusted_flags(enum bpf_type_flag *flag)
5707 {
5708 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5709 }
5710
check_pkt_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict)5711 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5712 const struct bpf_reg_state *reg,
5713 int off, int size, bool strict)
5714 {
5715 struct tnum reg_off;
5716 int ip_align;
5717
5718 /* Byte size accesses are always allowed. */
5719 if (!strict || size == 1)
5720 return 0;
5721
5722 /* For platforms that do not have a Kconfig enabling
5723 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5724 * NET_IP_ALIGN is universally set to '2'. And on platforms
5725 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5726 * to this code only in strict mode where we want to emulate
5727 * the NET_IP_ALIGN==2 checking. Therefore use an
5728 * unconditional IP align value of '2'.
5729 */
5730 ip_align = 2;
5731
5732 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5733 if (!tnum_is_aligned(reg_off, size)) {
5734 char tn_buf[48];
5735
5736 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5737 verbose(env,
5738 "misaligned packet access off %d+%s+%d+%d size %d\n",
5739 ip_align, tn_buf, reg->off, off, size);
5740 return -EACCES;
5741 }
5742
5743 return 0;
5744 }
5745
check_generic_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,const char * pointer_desc,int off,int size,bool strict)5746 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5747 const struct bpf_reg_state *reg,
5748 const char *pointer_desc,
5749 int off, int size, bool strict)
5750 {
5751 struct tnum reg_off;
5752
5753 /* Byte size accesses are always allowed. */
5754 if (!strict || size == 1)
5755 return 0;
5756
5757 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5758 if (!tnum_is_aligned(reg_off, size)) {
5759 char tn_buf[48];
5760
5761 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5762 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5763 pointer_desc, tn_buf, reg->off, off, size);
5764 return -EACCES;
5765 }
5766
5767 return 0;
5768 }
5769
check_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict_alignment_once)5770 static int check_ptr_alignment(struct bpf_verifier_env *env,
5771 const struct bpf_reg_state *reg, int off,
5772 int size, bool strict_alignment_once)
5773 {
5774 bool strict = env->strict_alignment || strict_alignment_once;
5775 const char *pointer_desc = "";
5776
5777 switch (reg->type) {
5778 case PTR_TO_PACKET:
5779 case PTR_TO_PACKET_META:
5780 /* Special case, because of NET_IP_ALIGN. Given metadata sits
5781 * right in front, treat it the very same way.
5782 */
5783 return check_pkt_ptr_alignment(env, reg, off, size, strict);
5784 case PTR_TO_FLOW_KEYS:
5785 pointer_desc = "flow keys ";
5786 break;
5787 case PTR_TO_MAP_KEY:
5788 pointer_desc = "key ";
5789 break;
5790 case PTR_TO_MAP_VALUE:
5791 pointer_desc = "value ";
5792 break;
5793 case PTR_TO_CTX:
5794 pointer_desc = "context ";
5795 break;
5796 case PTR_TO_STACK:
5797 pointer_desc = "stack ";
5798 /* The stack spill tracking logic in check_stack_write_fixed_off()
5799 * and check_stack_read_fixed_off() relies on stack accesses being
5800 * aligned.
5801 */
5802 strict = true;
5803 break;
5804 case PTR_TO_SOCKET:
5805 pointer_desc = "sock ";
5806 break;
5807 case PTR_TO_SOCK_COMMON:
5808 pointer_desc = "sock_common ";
5809 break;
5810 case PTR_TO_TCP_SOCK:
5811 pointer_desc = "tcp_sock ";
5812 break;
5813 case PTR_TO_XDP_SOCK:
5814 pointer_desc = "xdp_sock ";
5815 break;
5816 default:
5817 break;
5818 }
5819 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5820 strict);
5821 }
5822
5823 /* starting from main bpf function walk all instructions of the function
5824 * and recursively walk all callees that given function can call.
5825 * Ignore jump and exit insns.
5826 * Since recursion is prevented by check_cfg() this algorithm
5827 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5828 */
check_max_stack_depth_subprog(struct bpf_verifier_env * env,int idx)5829 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
5830 {
5831 struct bpf_subprog_info *subprog = env->subprog_info;
5832 struct bpf_insn *insn = env->prog->insnsi;
5833 int depth = 0, frame = 0, i, subprog_end;
5834 bool tail_call_reachable = false;
5835 int ret_insn[MAX_CALL_FRAMES];
5836 int ret_prog[MAX_CALL_FRAMES];
5837 int j;
5838
5839 i = subprog[idx].start;
5840 process_func:
5841 /* protect against potential stack overflow that might happen when
5842 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5843 * depth for such case down to 256 so that the worst case scenario
5844 * would result in 8k stack size (32 which is tailcall limit * 256 =
5845 * 8k).
5846 *
5847 * To get the idea what might happen, see an example:
5848 * func1 -> sub rsp, 128
5849 * subfunc1 -> sub rsp, 256
5850 * tailcall1 -> add rsp, 256
5851 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5852 * subfunc2 -> sub rsp, 64
5853 * subfunc22 -> sub rsp, 128
5854 * tailcall2 -> add rsp, 128
5855 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5856 *
5857 * tailcall will unwind the current stack frame but it will not get rid
5858 * of caller's stack as shown on the example above.
5859 */
5860 if (idx && subprog[idx].has_tail_call && depth >= 256) {
5861 verbose(env,
5862 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5863 depth);
5864 return -EACCES;
5865 }
5866 /* round up to 32-bytes, since this is granularity
5867 * of interpreter stack size
5868 */
5869 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5870 if (depth > MAX_BPF_STACK) {
5871 verbose(env, "combined stack size of %d calls is %d. Too large\n",
5872 frame + 1, depth);
5873 return -EACCES;
5874 }
5875 continue_func:
5876 subprog_end = subprog[idx + 1].start;
5877 for (; i < subprog_end; i++) {
5878 int next_insn, sidx;
5879
5880 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
5881 continue;
5882 /* remember insn and function to return to */
5883 ret_insn[frame] = i + 1;
5884 ret_prog[frame] = idx;
5885
5886 /* find the callee */
5887 next_insn = i + insn[i].imm + 1;
5888 sidx = find_subprog(env, next_insn);
5889 if (sidx < 0) {
5890 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5891 next_insn);
5892 return -EFAULT;
5893 }
5894 if (subprog[sidx].is_async_cb) {
5895 if (subprog[sidx].has_tail_call) {
5896 verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5897 return -EFAULT;
5898 }
5899 /* async callbacks don't increase bpf prog stack size unless called directly */
5900 if (!bpf_pseudo_call(insn + i))
5901 continue;
5902 }
5903 i = next_insn;
5904 idx = sidx;
5905
5906 if (subprog[idx].has_tail_call)
5907 tail_call_reachable = true;
5908
5909 frame++;
5910 if (frame >= MAX_CALL_FRAMES) {
5911 verbose(env, "the call stack of %d frames is too deep !\n",
5912 frame);
5913 return -E2BIG;
5914 }
5915 goto process_func;
5916 }
5917 /* if tail call got detected across bpf2bpf calls then mark each of the
5918 * currently present subprog frames as tail call reachable subprogs;
5919 * this info will be utilized by JIT so that we will be preserving the
5920 * tail call counter throughout bpf2bpf calls combined with tailcalls
5921 */
5922 if (tail_call_reachable)
5923 for (j = 0; j < frame; j++)
5924 subprog[ret_prog[j]].tail_call_reachable = true;
5925 if (subprog[0].tail_call_reachable)
5926 env->prog->aux->tail_call_reachable = true;
5927
5928 /* end of for() loop means the last insn of the 'subprog'
5929 * was reached. Doesn't matter whether it was JA or EXIT
5930 */
5931 if (frame == 0)
5932 return 0;
5933 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5934 frame--;
5935 i = ret_insn[frame];
5936 idx = ret_prog[frame];
5937 goto continue_func;
5938 }
5939
check_max_stack_depth(struct bpf_verifier_env * env)5940 static int check_max_stack_depth(struct bpf_verifier_env *env)
5941 {
5942 struct bpf_subprog_info *si = env->subprog_info;
5943 int ret;
5944
5945 for (int i = 0; i < env->subprog_cnt; i++) {
5946 if (!i || si[i].is_async_cb) {
5947 ret = check_max_stack_depth_subprog(env, i);
5948 if (ret < 0)
5949 return ret;
5950 }
5951 continue;
5952 }
5953 return 0;
5954 }
5955
5956 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
get_callee_stack_depth(struct bpf_verifier_env * env,const struct bpf_insn * insn,int idx)5957 static int get_callee_stack_depth(struct bpf_verifier_env *env,
5958 const struct bpf_insn *insn, int idx)
5959 {
5960 int start = idx + insn->imm + 1, subprog;
5961
5962 subprog = find_subprog(env, start);
5963 if (subprog < 0) {
5964 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5965 start);
5966 return -EFAULT;
5967 }
5968 return env->subprog_info[subprog].stack_depth;
5969 }
5970 #endif
5971
__check_buffer_access(struct bpf_verifier_env * env,const char * buf_info,const struct bpf_reg_state * reg,int regno,int off,int size)5972 static int __check_buffer_access(struct bpf_verifier_env *env,
5973 const char *buf_info,
5974 const struct bpf_reg_state *reg,
5975 int regno, int off, int size)
5976 {
5977 if (off < 0) {
5978 verbose(env,
5979 "R%d invalid %s buffer access: off=%d, size=%d\n",
5980 regno, buf_info, off, size);
5981 return -EACCES;
5982 }
5983 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5984 char tn_buf[48];
5985
5986 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5987 verbose(env,
5988 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
5989 regno, off, tn_buf);
5990 return -EACCES;
5991 }
5992
5993 return 0;
5994 }
5995
check_tp_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size)5996 static int check_tp_buffer_access(struct bpf_verifier_env *env,
5997 const struct bpf_reg_state *reg,
5998 int regno, int off, int size)
5999 {
6000 int err;
6001
6002 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
6003 if (err)
6004 return err;
6005
6006 if (off + size > env->prog->aux->max_tp_access)
6007 env->prog->aux->max_tp_access = off + size;
6008
6009 return 0;
6010 }
6011
check_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size,bool zero_size_allowed,u32 * max_access)6012 static int check_buffer_access(struct bpf_verifier_env *env,
6013 const struct bpf_reg_state *reg,
6014 int regno, int off, int size,
6015 bool zero_size_allowed,
6016 u32 *max_access)
6017 {
6018 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
6019 int err;
6020
6021 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6022 if (err)
6023 return err;
6024
6025 if (off + size > *max_access)
6026 *max_access = off + size;
6027
6028 return 0;
6029 }
6030
6031 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
zext_32_to_64(struct bpf_reg_state * reg)6032 static void zext_32_to_64(struct bpf_reg_state *reg)
6033 {
6034 reg->var_off = tnum_subreg(reg->var_off);
6035 __reg_assign_32_into_64(reg);
6036 }
6037
6038 /* truncate register to smaller size (in bytes)
6039 * must be called with size < BPF_REG_SIZE
6040 */
coerce_reg_to_size(struct bpf_reg_state * reg,int size)6041 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6042 {
6043 u64 mask;
6044
6045 /* clear high bits in bit representation */
6046 reg->var_off = tnum_cast(reg->var_off, size);
6047
6048 /* fix arithmetic bounds */
6049 mask = ((u64)1 << (size * 8)) - 1;
6050 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6051 reg->umin_value &= mask;
6052 reg->umax_value &= mask;
6053 } else {
6054 reg->umin_value = 0;
6055 reg->umax_value = mask;
6056 }
6057 reg->smin_value = reg->umin_value;
6058 reg->smax_value = reg->umax_value;
6059
6060 /* If size is smaller than 32bit register the 32bit register
6061 * values are also truncated so we push 64-bit bounds into
6062 * 32-bit bounds. Above were truncated < 32-bits already.
6063 */
6064 if (size >= 4)
6065 return;
6066 __reg_combine_64_into_32(reg);
6067 }
6068
set_sext64_default_val(struct bpf_reg_state * reg,int size)6069 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6070 {
6071 if (size == 1) {
6072 reg->smin_value = reg->s32_min_value = S8_MIN;
6073 reg->smax_value = reg->s32_max_value = S8_MAX;
6074 } else if (size == 2) {
6075 reg->smin_value = reg->s32_min_value = S16_MIN;
6076 reg->smax_value = reg->s32_max_value = S16_MAX;
6077 } else {
6078 /* size == 4 */
6079 reg->smin_value = reg->s32_min_value = S32_MIN;
6080 reg->smax_value = reg->s32_max_value = S32_MAX;
6081 }
6082 reg->umin_value = reg->u32_min_value = 0;
6083 reg->umax_value = U64_MAX;
6084 reg->u32_max_value = U32_MAX;
6085 reg->var_off = tnum_unknown;
6086 }
6087
coerce_reg_to_size_sx(struct bpf_reg_state * reg,int size)6088 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6089 {
6090 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6091 u64 top_smax_value, top_smin_value;
6092 u64 num_bits = size * 8;
6093
6094 if (tnum_is_const(reg->var_off)) {
6095 u64_cval = reg->var_off.value;
6096 if (size == 1)
6097 reg->var_off = tnum_const((s8)u64_cval);
6098 else if (size == 2)
6099 reg->var_off = tnum_const((s16)u64_cval);
6100 else
6101 /* size == 4 */
6102 reg->var_off = tnum_const((s32)u64_cval);
6103
6104 u64_cval = reg->var_off.value;
6105 reg->smax_value = reg->smin_value = u64_cval;
6106 reg->umax_value = reg->umin_value = u64_cval;
6107 reg->s32_max_value = reg->s32_min_value = u64_cval;
6108 reg->u32_max_value = reg->u32_min_value = u64_cval;
6109 return;
6110 }
6111
6112 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6113 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6114
6115 if (top_smax_value != top_smin_value)
6116 goto out;
6117
6118 /* find the s64_min and s64_min after sign extension */
6119 if (size == 1) {
6120 init_s64_max = (s8)reg->smax_value;
6121 init_s64_min = (s8)reg->smin_value;
6122 } else if (size == 2) {
6123 init_s64_max = (s16)reg->smax_value;
6124 init_s64_min = (s16)reg->smin_value;
6125 } else {
6126 init_s64_max = (s32)reg->smax_value;
6127 init_s64_min = (s32)reg->smin_value;
6128 }
6129
6130 s64_max = max(init_s64_max, init_s64_min);
6131 s64_min = min(init_s64_max, init_s64_min);
6132
6133 /* both of s64_max/s64_min positive or negative */
6134 if ((s64_max >= 0) == (s64_min >= 0)) {
6135 reg->smin_value = reg->s32_min_value = s64_min;
6136 reg->smax_value = reg->s32_max_value = s64_max;
6137 reg->umin_value = reg->u32_min_value = s64_min;
6138 reg->umax_value = reg->u32_max_value = s64_max;
6139 reg->var_off = tnum_range(s64_min, s64_max);
6140 return;
6141 }
6142
6143 out:
6144 set_sext64_default_val(reg, size);
6145 }
6146
set_sext32_default_val(struct bpf_reg_state * reg,int size)6147 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6148 {
6149 if (size == 1) {
6150 reg->s32_min_value = S8_MIN;
6151 reg->s32_max_value = S8_MAX;
6152 } else {
6153 /* size == 2 */
6154 reg->s32_min_value = S16_MIN;
6155 reg->s32_max_value = S16_MAX;
6156 }
6157 reg->u32_min_value = 0;
6158 reg->u32_max_value = U32_MAX;
6159 }
6160
coerce_subreg_to_size_sx(struct bpf_reg_state * reg,int size)6161 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6162 {
6163 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6164 u32 top_smax_value, top_smin_value;
6165 u32 num_bits = size * 8;
6166
6167 if (tnum_is_const(reg->var_off)) {
6168 u32_val = reg->var_off.value;
6169 if (size == 1)
6170 reg->var_off = tnum_const((s8)u32_val);
6171 else
6172 reg->var_off = tnum_const((s16)u32_val);
6173
6174 u32_val = reg->var_off.value;
6175 reg->s32_min_value = reg->s32_max_value = u32_val;
6176 reg->u32_min_value = reg->u32_max_value = u32_val;
6177 return;
6178 }
6179
6180 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6181 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6182
6183 if (top_smax_value != top_smin_value)
6184 goto out;
6185
6186 /* find the s32_min and s32_min after sign extension */
6187 if (size == 1) {
6188 init_s32_max = (s8)reg->s32_max_value;
6189 init_s32_min = (s8)reg->s32_min_value;
6190 } else {
6191 /* size == 2 */
6192 init_s32_max = (s16)reg->s32_max_value;
6193 init_s32_min = (s16)reg->s32_min_value;
6194 }
6195 s32_max = max(init_s32_max, init_s32_min);
6196 s32_min = min(init_s32_max, init_s32_min);
6197
6198 if ((s32_min >= 0) == (s32_max >= 0)) {
6199 reg->s32_min_value = s32_min;
6200 reg->s32_max_value = s32_max;
6201 reg->u32_min_value = (u32)s32_min;
6202 reg->u32_max_value = (u32)s32_max;
6203 return;
6204 }
6205
6206 out:
6207 set_sext32_default_val(reg, size);
6208 }
6209
bpf_map_is_rdonly(const struct bpf_map * map)6210 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6211 {
6212 /* A map is considered read-only if the following condition are true:
6213 *
6214 * 1) BPF program side cannot change any of the map content. The
6215 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6216 * and was set at map creation time.
6217 * 2) The map value(s) have been initialized from user space by a
6218 * loader and then "frozen", such that no new map update/delete
6219 * operations from syscall side are possible for the rest of
6220 * the map's lifetime from that point onwards.
6221 * 3) Any parallel/pending map update/delete operations from syscall
6222 * side have been completed. Only after that point, it's safe to
6223 * assume that map value(s) are immutable.
6224 */
6225 return (map->map_flags & BPF_F_RDONLY_PROG) &&
6226 READ_ONCE(map->frozen) &&
6227 !bpf_map_write_active(map);
6228 }
6229
bpf_map_direct_read(struct bpf_map * map,int off,int size,u64 * val,bool is_ldsx)6230 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6231 bool is_ldsx)
6232 {
6233 void *ptr;
6234 u64 addr;
6235 int err;
6236
6237 err = map->ops->map_direct_value_addr(map, &addr, off);
6238 if (err)
6239 return err;
6240 ptr = (void *)(long)addr + off;
6241
6242 switch (size) {
6243 case sizeof(u8):
6244 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6245 break;
6246 case sizeof(u16):
6247 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6248 break;
6249 case sizeof(u32):
6250 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6251 break;
6252 case sizeof(u64):
6253 *val = *(u64 *)ptr;
6254 break;
6255 default:
6256 return -EINVAL;
6257 }
6258 return 0;
6259 }
6260
6261 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu)
6262 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null)
6263 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted)
6264
6265 /*
6266 * Allow list few fields as RCU trusted or full trusted.
6267 * This logic doesn't allow mix tagging and will be removed once GCC supports
6268 * btf_type_tag.
6269 */
6270
6271 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
BTF_TYPE_SAFE_RCU(struct task_struct)6272 BTF_TYPE_SAFE_RCU(struct task_struct) {
6273 const cpumask_t *cpus_ptr;
6274 struct css_set __rcu *cgroups;
6275 struct task_struct __rcu *real_parent;
6276 struct task_struct *group_leader;
6277 };
6278
BTF_TYPE_SAFE_RCU(struct cgroup)6279 BTF_TYPE_SAFE_RCU(struct cgroup) {
6280 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6281 struct kernfs_node *kn;
6282 };
6283
BTF_TYPE_SAFE_RCU(struct css_set)6284 BTF_TYPE_SAFE_RCU(struct css_set) {
6285 struct cgroup *dfl_cgrp;
6286 };
6287
6288 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)6289 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6290 struct file __rcu *exe_file;
6291 };
6292
6293 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6294 * because bpf prog accessible sockets are SOCK_RCU_FREE.
6295 */
BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)6296 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6297 struct sock *sk;
6298 };
6299
BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)6300 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6301 struct sock *sk;
6302 };
6303
6304 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)6305 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6306 struct seq_file *seq;
6307 };
6308
BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)6309 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6310 struct bpf_iter_meta *meta;
6311 struct task_struct *task;
6312 };
6313
BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)6314 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6315 struct file *file;
6316 };
6317
BTF_TYPE_SAFE_TRUSTED(struct file)6318 BTF_TYPE_SAFE_TRUSTED(struct file) {
6319 struct inode *f_inode;
6320 };
6321
BTF_TYPE_SAFE_TRUSTED(struct dentry)6322 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6323 /* no negative dentry-s in places where bpf can see it */
6324 struct inode *d_inode;
6325 };
6326
BTF_TYPE_SAFE_TRUSTED(struct socket)6327 BTF_TYPE_SAFE_TRUSTED(struct socket) {
6328 struct sock *sk;
6329 };
6330
type_is_rcu(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)6331 static bool type_is_rcu(struct bpf_verifier_env *env,
6332 struct bpf_reg_state *reg,
6333 const char *field_name, u32 btf_id)
6334 {
6335 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6336 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6337 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6338
6339 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6340 }
6341
type_is_rcu_or_null(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)6342 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6343 struct bpf_reg_state *reg,
6344 const char *field_name, u32 btf_id)
6345 {
6346 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6347 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6348 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6349
6350 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6351 }
6352
type_is_trusted(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const char * field_name,u32 btf_id)6353 static bool type_is_trusted(struct bpf_verifier_env *env,
6354 struct bpf_reg_state *reg,
6355 const char *field_name, u32 btf_id)
6356 {
6357 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6358 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6359 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6360 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6361 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6362 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
6363
6364 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6365 }
6366
check_ptr_to_btf_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)6367 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6368 struct bpf_reg_state *regs,
6369 int regno, int off, int size,
6370 enum bpf_access_type atype,
6371 int value_regno)
6372 {
6373 struct bpf_reg_state *reg = regs + regno;
6374 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6375 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6376 const char *field_name = NULL;
6377 enum bpf_type_flag flag = 0;
6378 u32 btf_id = 0;
6379 int ret;
6380
6381 if (!env->allow_ptr_leaks) {
6382 verbose(env,
6383 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6384 tname);
6385 return -EPERM;
6386 }
6387 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6388 verbose(env,
6389 "Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6390 tname);
6391 return -EINVAL;
6392 }
6393 if (off < 0) {
6394 verbose(env,
6395 "R%d is ptr_%s invalid negative access: off=%d\n",
6396 regno, tname, off);
6397 return -EACCES;
6398 }
6399 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6400 char tn_buf[48];
6401
6402 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6403 verbose(env,
6404 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6405 regno, tname, off, tn_buf);
6406 return -EACCES;
6407 }
6408
6409 if (reg->type & MEM_USER) {
6410 verbose(env,
6411 "R%d is ptr_%s access user memory: off=%d\n",
6412 regno, tname, off);
6413 return -EACCES;
6414 }
6415
6416 if (reg->type & MEM_PERCPU) {
6417 verbose(env,
6418 "R%d is ptr_%s access percpu memory: off=%d\n",
6419 regno, tname, off);
6420 return -EACCES;
6421 }
6422
6423 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6424 if (!btf_is_kernel(reg->btf)) {
6425 verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6426 return -EFAULT;
6427 }
6428 ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6429 } else {
6430 /* Writes are permitted with default btf_struct_access for
6431 * program allocated objects (which always have ref_obj_id > 0),
6432 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6433 */
6434 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6435 verbose(env, "only read is supported\n");
6436 return -EACCES;
6437 }
6438
6439 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6440 !reg->ref_obj_id) {
6441 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6442 return -EFAULT;
6443 }
6444
6445 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6446 }
6447
6448 if (ret < 0)
6449 return ret;
6450
6451 if (ret != PTR_TO_BTF_ID) {
6452 /* just mark; */
6453
6454 } else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6455 /* If this is an untrusted pointer, all pointers formed by walking it
6456 * also inherit the untrusted flag.
6457 */
6458 flag = PTR_UNTRUSTED;
6459
6460 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6461 /* By default any pointer obtained from walking a trusted pointer is no
6462 * longer trusted, unless the field being accessed has explicitly been
6463 * marked as inheriting its parent's state of trust (either full or RCU).
6464 * For example:
6465 * 'cgroups' pointer is untrusted if task->cgroups dereference
6466 * happened in a sleepable program outside of bpf_rcu_read_lock()
6467 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6468 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6469 *
6470 * A regular RCU-protected pointer with __rcu tag can also be deemed
6471 * trusted if we are in an RCU CS. Such pointer can be NULL.
6472 */
6473 if (type_is_trusted(env, reg, field_name, btf_id)) {
6474 flag |= PTR_TRUSTED;
6475 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6476 if (type_is_rcu(env, reg, field_name, btf_id)) {
6477 /* ignore __rcu tag and mark it MEM_RCU */
6478 flag |= MEM_RCU;
6479 } else if (flag & MEM_RCU ||
6480 type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6481 /* __rcu tagged pointers can be NULL */
6482 flag |= MEM_RCU | PTR_MAYBE_NULL;
6483
6484 /* We always trust them */
6485 if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6486 flag & PTR_UNTRUSTED)
6487 flag &= ~PTR_UNTRUSTED;
6488 } else if (flag & (MEM_PERCPU | MEM_USER)) {
6489 /* keep as-is */
6490 } else {
6491 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6492 clear_trusted_flags(&flag);
6493 }
6494 } else {
6495 /*
6496 * If not in RCU CS or MEM_RCU pointer can be NULL then
6497 * aggressively mark as untrusted otherwise such
6498 * pointers will be plain PTR_TO_BTF_ID without flags
6499 * and will be allowed to be passed into helpers for
6500 * compat reasons.
6501 */
6502 flag = PTR_UNTRUSTED;
6503 }
6504 } else {
6505 /* Old compat. Deprecated */
6506 clear_trusted_flags(&flag);
6507 }
6508
6509 if (atype == BPF_READ && value_regno >= 0)
6510 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6511
6512 return 0;
6513 }
6514
check_ptr_to_map_access(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int regno,int off,int size,enum bpf_access_type atype,int value_regno)6515 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6516 struct bpf_reg_state *regs,
6517 int regno, int off, int size,
6518 enum bpf_access_type atype,
6519 int value_regno)
6520 {
6521 struct bpf_reg_state *reg = regs + regno;
6522 struct bpf_map *map = reg->map_ptr;
6523 struct bpf_reg_state map_reg;
6524 enum bpf_type_flag flag = 0;
6525 const struct btf_type *t;
6526 const char *tname;
6527 u32 btf_id;
6528 int ret;
6529
6530 if (!btf_vmlinux) {
6531 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6532 return -ENOTSUPP;
6533 }
6534
6535 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6536 verbose(env, "map_ptr access not supported for map type %d\n",
6537 map->map_type);
6538 return -ENOTSUPP;
6539 }
6540
6541 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6542 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6543
6544 if (!env->allow_ptr_leaks) {
6545 verbose(env,
6546 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6547 tname);
6548 return -EPERM;
6549 }
6550
6551 if (off < 0) {
6552 verbose(env, "R%d is %s invalid negative access: off=%d\n",
6553 regno, tname, off);
6554 return -EACCES;
6555 }
6556
6557 if (atype != BPF_READ) {
6558 verbose(env, "only read from %s is supported\n", tname);
6559 return -EACCES;
6560 }
6561
6562 /* Simulate access to a PTR_TO_BTF_ID */
6563 memset(&map_reg, 0, sizeof(map_reg));
6564 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6565 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6566 if (ret < 0)
6567 return ret;
6568
6569 if (value_regno >= 0)
6570 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6571
6572 return 0;
6573 }
6574
6575 /* Check that the stack access at the given offset is within bounds. The
6576 * maximum valid offset is -1.
6577 *
6578 * The minimum valid offset is -MAX_BPF_STACK for writes, and
6579 * -state->allocated_stack for reads.
6580 */
check_stack_slot_within_bounds(struct bpf_verifier_env * env,s64 off,struct bpf_func_state * state,enum bpf_access_type t)6581 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
6582 s64 off,
6583 struct bpf_func_state *state,
6584 enum bpf_access_type t)
6585 {
6586 int min_valid_off;
6587
6588 if (t == BPF_WRITE || env->allow_uninit_stack)
6589 min_valid_off = -MAX_BPF_STACK;
6590 else
6591 min_valid_off = -state->allocated_stack;
6592
6593 if (off < min_valid_off || off > -1)
6594 return -EACCES;
6595 return 0;
6596 }
6597
6598 /* Check that the stack access at 'regno + off' falls within the maximum stack
6599 * bounds.
6600 *
6601 * 'off' includes `regno->offset`, but not its dynamic part (if any).
6602 */
check_stack_access_within_bounds(struct bpf_verifier_env * env,int regno,int off,int access_size,enum bpf_access_src src,enum bpf_access_type type)6603 static int check_stack_access_within_bounds(
6604 struct bpf_verifier_env *env,
6605 int regno, int off, int access_size,
6606 enum bpf_access_src src, enum bpf_access_type type)
6607 {
6608 struct bpf_reg_state *regs = cur_regs(env);
6609 struct bpf_reg_state *reg = regs + regno;
6610 struct bpf_func_state *state = func(env, reg);
6611 s64 min_off, max_off;
6612 int err;
6613 char *err_extra;
6614
6615 if (src == ACCESS_HELPER)
6616 /* We don't know if helpers are reading or writing (or both). */
6617 err_extra = " indirect access to";
6618 else if (type == BPF_READ)
6619 err_extra = " read from";
6620 else
6621 err_extra = " write to";
6622
6623 if (tnum_is_const(reg->var_off)) {
6624 min_off = (s64)reg->var_off.value + off;
6625 max_off = min_off + access_size;
6626 } else {
6627 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6628 reg->smin_value <= -BPF_MAX_VAR_OFF) {
6629 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6630 err_extra, regno);
6631 return -EACCES;
6632 }
6633 min_off = reg->smin_value + off;
6634 max_off = reg->smax_value + off + access_size;
6635 }
6636
6637 err = check_stack_slot_within_bounds(env, min_off, state, type);
6638 if (!err && max_off > 0)
6639 err = -EINVAL; /* out of stack access into non-negative offsets */
6640
6641 if (err) {
6642 if (tnum_is_const(reg->var_off)) {
6643 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6644 err_extra, regno, off, access_size);
6645 } else {
6646 char tn_buf[48];
6647
6648 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6649 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
6650 err_extra, regno, tn_buf, access_size);
6651 }
6652 return err;
6653 }
6654
6655 return grow_stack_state(env, state, round_up(-min_off, BPF_REG_SIZE));
6656 }
6657
6658 /* check whether memory at (regno + off) is accessible for t = (read | write)
6659 * if t==write, value_regno is a register which value is stored into memory
6660 * if t==read, value_regno is a register which will receive the value from memory
6661 * if t==write && value_regno==-1, some unknown value is stored into memory
6662 * if t==read && value_regno==-1, don't care what we read from memory
6663 */
check_mem_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int bpf_size,enum bpf_access_type t,int value_regno,bool strict_alignment_once,bool is_ldsx)6664 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6665 int off, int bpf_size, enum bpf_access_type t,
6666 int value_regno, bool strict_alignment_once, bool is_ldsx)
6667 {
6668 struct bpf_reg_state *regs = cur_regs(env);
6669 struct bpf_reg_state *reg = regs + regno;
6670 int size, err = 0;
6671
6672 size = bpf_size_to_bytes(bpf_size);
6673 if (size < 0)
6674 return size;
6675
6676 /* alignment checks will add in reg->off themselves */
6677 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6678 if (err)
6679 return err;
6680
6681 /* for access checks, reg->off is just part of off */
6682 off += reg->off;
6683
6684 if (reg->type == PTR_TO_MAP_KEY) {
6685 if (t == BPF_WRITE) {
6686 verbose(env, "write to change key R%d not allowed\n", regno);
6687 return -EACCES;
6688 }
6689
6690 err = check_mem_region_access(env, regno, off, size,
6691 reg->map_ptr->key_size, false);
6692 if (err)
6693 return err;
6694 if (value_regno >= 0)
6695 mark_reg_unknown(env, regs, value_regno);
6696 } else if (reg->type == PTR_TO_MAP_VALUE) {
6697 struct btf_field *kptr_field = NULL;
6698
6699 if (t == BPF_WRITE && value_regno >= 0 &&
6700 is_pointer_value(env, value_regno)) {
6701 verbose(env, "R%d leaks addr into map\n", value_regno);
6702 return -EACCES;
6703 }
6704 err = check_map_access_type(env, regno, off, size, t);
6705 if (err)
6706 return err;
6707 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6708 if (err)
6709 return err;
6710 if (tnum_is_const(reg->var_off))
6711 kptr_field = btf_record_find(reg->map_ptr->record,
6712 off + reg->var_off.value, BPF_KPTR);
6713 if (kptr_field) {
6714 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6715 } else if (t == BPF_READ && value_regno >= 0) {
6716 struct bpf_map *map = reg->map_ptr;
6717
6718 /* if map is read-only, track its contents as scalars */
6719 if (tnum_is_const(reg->var_off) &&
6720 bpf_map_is_rdonly(map) &&
6721 map->ops->map_direct_value_addr) {
6722 int map_off = off + reg->var_off.value;
6723 u64 val = 0;
6724
6725 err = bpf_map_direct_read(map, map_off, size,
6726 &val, is_ldsx);
6727 if (err)
6728 return err;
6729
6730 regs[value_regno].type = SCALAR_VALUE;
6731 __mark_reg_known(®s[value_regno], val);
6732 } else {
6733 mark_reg_unknown(env, regs, value_regno);
6734 }
6735 }
6736 } else if (base_type(reg->type) == PTR_TO_MEM) {
6737 bool rdonly_mem = type_is_rdonly_mem(reg->type);
6738
6739 if (type_may_be_null(reg->type)) {
6740 verbose(env, "R%d invalid mem access '%s'\n", regno,
6741 reg_type_str(env, reg->type));
6742 return -EACCES;
6743 }
6744
6745 if (t == BPF_WRITE && rdonly_mem) {
6746 verbose(env, "R%d cannot write into %s\n",
6747 regno, reg_type_str(env, reg->type));
6748 return -EACCES;
6749 }
6750
6751 if (t == BPF_WRITE && value_regno >= 0 &&
6752 is_pointer_value(env, value_regno)) {
6753 verbose(env, "R%d leaks addr into mem\n", value_regno);
6754 return -EACCES;
6755 }
6756
6757 err = check_mem_region_access(env, regno, off, size,
6758 reg->mem_size, false);
6759 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6760 mark_reg_unknown(env, regs, value_regno);
6761 } else if (reg->type == PTR_TO_CTX) {
6762 enum bpf_reg_type reg_type = SCALAR_VALUE;
6763 struct btf *btf = NULL;
6764 u32 btf_id = 0;
6765
6766 if (t == BPF_WRITE && value_regno >= 0 &&
6767 is_pointer_value(env, value_regno)) {
6768 verbose(env, "R%d leaks addr into ctx\n", value_regno);
6769 return -EACCES;
6770 }
6771
6772 err = check_ptr_off_reg(env, reg, regno);
6773 if (err < 0)
6774 return err;
6775
6776 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf,
6777 &btf_id);
6778 if (err)
6779 verbose_linfo(env, insn_idx, "; ");
6780 if (!err && t == BPF_READ && value_regno >= 0) {
6781 /* ctx access returns either a scalar, or a
6782 * PTR_TO_PACKET[_META,_END]. In the latter
6783 * case, we know the offset is zero.
6784 */
6785 if (reg_type == SCALAR_VALUE) {
6786 mark_reg_unknown(env, regs, value_regno);
6787 } else {
6788 mark_reg_known_zero(env, regs,
6789 value_regno);
6790 if (type_may_be_null(reg_type))
6791 regs[value_regno].id = ++env->id_gen;
6792 /* A load of ctx field could have different
6793 * actual load size with the one encoded in the
6794 * insn. When the dst is PTR, it is for sure not
6795 * a sub-register.
6796 */
6797 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6798 if (base_type(reg_type) == PTR_TO_BTF_ID) {
6799 regs[value_regno].btf = btf;
6800 regs[value_regno].btf_id = btf_id;
6801 }
6802 }
6803 regs[value_regno].type = reg_type;
6804 }
6805
6806 } else if (reg->type == PTR_TO_STACK) {
6807 /* Basic bounds checks. */
6808 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6809 if (err)
6810 return err;
6811
6812 if (t == BPF_READ)
6813 err = check_stack_read(env, regno, off, size,
6814 value_regno);
6815 else
6816 err = check_stack_write(env, regno, off, size,
6817 value_regno, insn_idx);
6818 } else if (reg_is_pkt_pointer(reg)) {
6819 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
6820 verbose(env, "cannot write into packet\n");
6821 return -EACCES;
6822 }
6823 if (t == BPF_WRITE && value_regno >= 0 &&
6824 is_pointer_value(env, value_regno)) {
6825 verbose(env, "R%d leaks addr into packet\n",
6826 value_regno);
6827 return -EACCES;
6828 }
6829 err = check_packet_access(env, regno, off, size, false);
6830 if (!err && t == BPF_READ && value_regno >= 0)
6831 mark_reg_unknown(env, regs, value_regno);
6832 } else if (reg->type == PTR_TO_FLOW_KEYS) {
6833 if (t == BPF_WRITE && value_regno >= 0 &&
6834 is_pointer_value(env, value_regno)) {
6835 verbose(env, "R%d leaks addr into flow keys\n",
6836 value_regno);
6837 return -EACCES;
6838 }
6839
6840 err = check_flow_keys_access(env, off, size);
6841 if (!err && t == BPF_READ && value_regno >= 0)
6842 mark_reg_unknown(env, regs, value_regno);
6843 } else if (type_is_sk_pointer(reg->type)) {
6844 if (t == BPF_WRITE) {
6845 verbose(env, "R%d cannot write into %s\n",
6846 regno, reg_type_str(env, reg->type));
6847 return -EACCES;
6848 }
6849 err = check_sock_access(env, insn_idx, regno, off, size, t);
6850 if (!err && value_regno >= 0)
6851 mark_reg_unknown(env, regs, value_regno);
6852 } else if (reg->type == PTR_TO_TP_BUFFER) {
6853 err = check_tp_buffer_access(env, reg, regno, off, size);
6854 if (!err && t == BPF_READ && value_regno >= 0)
6855 mark_reg_unknown(env, regs, value_regno);
6856 } else if (base_type(reg->type) == PTR_TO_BTF_ID &&
6857 !type_may_be_null(reg->type)) {
6858 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
6859 value_regno);
6860 } else if (reg->type == CONST_PTR_TO_MAP) {
6861 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
6862 value_regno);
6863 } else if (base_type(reg->type) == PTR_TO_BUF) {
6864 bool rdonly_mem = type_is_rdonly_mem(reg->type);
6865 u32 *max_access;
6866
6867 if (rdonly_mem) {
6868 if (t == BPF_WRITE) {
6869 verbose(env, "R%d cannot write into %s\n",
6870 regno, reg_type_str(env, reg->type));
6871 return -EACCES;
6872 }
6873 max_access = &env->prog->aux->max_rdonly_access;
6874 } else {
6875 max_access = &env->prog->aux->max_rdwr_access;
6876 }
6877
6878 err = check_buffer_access(env, reg, regno, off, size, false,
6879 max_access);
6880
6881 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
6882 mark_reg_unknown(env, regs, value_regno);
6883 } else {
6884 verbose(env, "R%d invalid mem access '%s'\n", regno,
6885 reg_type_str(env, reg->type));
6886 return -EACCES;
6887 }
6888
6889 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
6890 regs[value_regno].type == SCALAR_VALUE) {
6891 if (!is_ldsx)
6892 /* b/h/w load zero-extends, mark upper bits as known 0 */
6893 coerce_reg_to_size(®s[value_regno], size);
6894 else
6895 coerce_reg_to_size_sx(®s[value_regno], size);
6896 }
6897 return err;
6898 }
6899
check_atomic(struct bpf_verifier_env * env,int insn_idx,struct bpf_insn * insn)6900 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
6901 {
6902 int load_reg;
6903 int err;
6904
6905 switch (insn->imm) {
6906 case BPF_ADD:
6907 case BPF_ADD | BPF_FETCH:
6908 case BPF_AND:
6909 case BPF_AND | BPF_FETCH:
6910 case BPF_OR:
6911 case BPF_OR | BPF_FETCH:
6912 case BPF_XOR:
6913 case BPF_XOR | BPF_FETCH:
6914 case BPF_XCHG:
6915 case BPF_CMPXCHG:
6916 break;
6917 default:
6918 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
6919 return -EINVAL;
6920 }
6921
6922 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
6923 verbose(env, "invalid atomic operand size\n");
6924 return -EINVAL;
6925 }
6926
6927 /* check src1 operand */
6928 err = check_reg_arg(env, insn->src_reg, SRC_OP);
6929 if (err)
6930 return err;
6931
6932 /* check src2 operand */
6933 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6934 if (err)
6935 return err;
6936
6937 if (insn->imm == BPF_CMPXCHG) {
6938 /* Check comparison of R0 with memory location */
6939 const u32 aux_reg = BPF_REG_0;
6940
6941 err = check_reg_arg(env, aux_reg, SRC_OP);
6942 if (err)
6943 return err;
6944
6945 if (is_pointer_value(env, aux_reg)) {
6946 verbose(env, "R%d leaks addr into mem\n", aux_reg);
6947 return -EACCES;
6948 }
6949 }
6950
6951 if (is_pointer_value(env, insn->src_reg)) {
6952 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6953 return -EACCES;
6954 }
6955
6956 if (is_ctx_reg(env, insn->dst_reg) ||
6957 is_pkt_reg(env, insn->dst_reg) ||
6958 is_flow_key_reg(env, insn->dst_reg) ||
6959 is_sk_reg(env, insn->dst_reg)) {
6960 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
6961 insn->dst_reg,
6962 reg_type_str(env, reg_state(env, insn->dst_reg)->type));
6963 return -EACCES;
6964 }
6965
6966 if (insn->imm & BPF_FETCH) {
6967 if (insn->imm == BPF_CMPXCHG)
6968 load_reg = BPF_REG_0;
6969 else
6970 load_reg = insn->src_reg;
6971
6972 /* check and record load of old value */
6973 err = check_reg_arg(env, load_reg, DST_OP);
6974 if (err)
6975 return err;
6976 } else {
6977 /* This instruction accesses a memory location but doesn't
6978 * actually load it into a register.
6979 */
6980 load_reg = -1;
6981 }
6982
6983 /* Check whether we can read the memory, with second call for fetch
6984 * case to simulate the register fill.
6985 */
6986 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6987 BPF_SIZE(insn->code), BPF_READ, -1, true, false);
6988 if (!err && load_reg >= 0)
6989 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6990 BPF_SIZE(insn->code), BPF_READ, load_reg,
6991 true, false);
6992 if (err)
6993 return err;
6994
6995 /* Check whether we can write into the same memory. */
6996 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6997 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
6998 if (err)
6999 return err;
7000
7001 return 0;
7002 }
7003
7004 /* When register 'regno' is used to read the stack (either directly or through
7005 * a helper function) make sure that it's within stack boundary and, depending
7006 * on the access type and privileges, that all elements of the stack are
7007 * initialized.
7008 *
7009 * 'off' includes 'regno->off', but not its dynamic part (if any).
7010 *
7011 * All registers that have been spilled on the stack in the slots within the
7012 * read offsets are marked as read.
7013 */
check_stack_range_initialized(struct bpf_verifier_env * env,int regno,int off,int access_size,bool zero_size_allowed,enum bpf_access_src type,struct bpf_call_arg_meta * meta)7014 static int check_stack_range_initialized(
7015 struct bpf_verifier_env *env, int regno, int off,
7016 int access_size, bool zero_size_allowed,
7017 enum bpf_access_src type, struct bpf_call_arg_meta *meta)
7018 {
7019 struct bpf_reg_state *reg = reg_state(env, regno);
7020 struct bpf_func_state *state = func(env, reg);
7021 int err, min_off, max_off, i, j, slot, spi;
7022 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
7023 enum bpf_access_type bounds_check_type;
7024 /* Some accesses can write anything into the stack, others are
7025 * read-only.
7026 */
7027 bool clobber = false;
7028
7029 if (access_size == 0 && !zero_size_allowed) {
7030 verbose(env, "invalid zero-sized read\n");
7031 return -EACCES;
7032 }
7033
7034 if (type == ACCESS_HELPER) {
7035 /* The bounds checks for writes are more permissive than for
7036 * reads. However, if raw_mode is not set, we'll do extra
7037 * checks below.
7038 */
7039 bounds_check_type = BPF_WRITE;
7040 clobber = true;
7041 } else {
7042 bounds_check_type = BPF_READ;
7043 }
7044 err = check_stack_access_within_bounds(env, regno, off, access_size,
7045 type, bounds_check_type);
7046 if (err)
7047 return err;
7048
7049
7050 if (tnum_is_const(reg->var_off)) {
7051 min_off = max_off = reg->var_off.value + off;
7052 } else {
7053 /* Variable offset is prohibited for unprivileged mode for
7054 * simplicity since it requires corresponding support in
7055 * Spectre masking for stack ALU.
7056 * See also retrieve_ptr_limit().
7057 */
7058 if (!env->bypass_spec_v1) {
7059 char tn_buf[48];
7060
7061 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7062 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
7063 regno, err_extra, tn_buf);
7064 return -EACCES;
7065 }
7066 /* Only initialized buffer on stack is allowed to be accessed
7067 * with variable offset. With uninitialized buffer it's hard to
7068 * guarantee that whole memory is marked as initialized on
7069 * helper return since specific bounds are unknown what may
7070 * cause uninitialized stack leaking.
7071 */
7072 if (meta && meta->raw_mode)
7073 meta = NULL;
7074
7075 min_off = reg->smin_value + off;
7076 max_off = reg->smax_value + off;
7077 }
7078
7079 if (meta && meta->raw_mode) {
7080 /* Ensure we won't be overwriting dynptrs when simulating byte
7081 * by byte access in check_helper_call using meta.access_size.
7082 * This would be a problem if we have a helper in the future
7083 * which takes:
7084 *
7085 * helper(uninit_mem, len, dynptr)
7086 *
7087 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
7088 * may end up writing to dynptr itself when touching memory from
7089 * arg 1. This can be relaxed on a case by case basis for known
7090 * safe cases, but reject due to the possibilitiy of aliasing by
7091 * default.
7092 */
7093 for (i = min_off; i < max_off + access_size; i++) {
7094 int stack_off = -i - 1;
7095
7096 spi = __get_spi(i);
7097 /* raw_mode may write past allocated_stack */
7098 if (state->allocated_stack <= stack_off)
7099 continue;
7100 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
7101 verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
7102 return -EACCES;
7103 }
7104 }
7105 meta->access_size = access_size;
7106 meta->regno = regno;
7107 return 0;
7108 }
7109
7110 for (i = min_off; i < max_off + access_size; i++) {
7111 u8 *stype;
7112
7113 slot = -i - 1;
7114 spi = slot / BPF_REG_SIZE;
7115 if (state->allocated_stack <= slot) {
7116 verbose(env, "verifier bug: allocated_stack too small");
7117 return -EFAULT;
7118 }
7119
7120 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
7121 if (*stype == STACK_MISC)
7122 goto mark;
7123 if ((*stype == STACK_ZERO) ||
7124 (*stype == STACK_INVALID && env->allow_uninit_stack)) {
7125 if (clobber) {
7126 /* helper can write anything into the stack */
7127 *stype = STACK_MISC;
7128 }
7129 goto mark;
7130 }
7131
7132 if (is_spilled_reg(&state->stack[spi]) &&
7133 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
7134 env->allow_ptr_leaks)) {
7135 if (clobber) {
7136 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
7137 for (j = 0; j < BPF_REG_SIZE; j++)
7138 scrub_spilled_slot(&state->stack[spi].slot_type[j]);
7139 }
7140 goto mark;
7141 }
7142
7143 if (tnum_is_const(reg->var_off)) {
7144 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
7145 err_extra, regno, min_off, i - min_off, access_size);
7146 } else {
7147 char tn_buf[48];
7148
7149 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7150 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
7151 err_extra, regno, tn_buf, i - min_off, access_size);
7152 }
7153 return -EACCES;
7154 mark:
7155 /* reading any byte out of 8-byte 'spill_slot' will cause
7156 * the whole slot to be marked as 'read'
7157 */
7158 mark_reg_read(env, &state->stack[spi].spilled_ptr,
7159 state->stack[spi].spilled_ptr.parent,
7160 REG_LIVE_READ64);
7161 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
7162 * be sure that whether stack slot is written to or not. Hence,
7163 * we must still conservatively propagate reads upwards even if
7164 * helper may write to the entire memory range.
7165 */
7166 }
7167 return 0;
7168 }
7169
check_helper_mem_access(struct bpf_verifier_env * env,int regno,int access_size,bool zero_size_allowed,struct bpf_call_arg_meta * meta)7170 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
7171 int access_size, bool zero_size_allowed,
7172 struct bpf_call_arg_meta *meta)
7173 {
7174 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7175 u32 *max_access;
7176
7177 switch (base_type(reg->type)) {
7178 case PTR_TO_PACKET:
7179 case PTR_TO_PACKET_META:
7180 return check_packet_access(env, regno, reg->off, access_size,
7181 zero_size_allowed);
7182 case PTR_TO_MAP_KEY:
7183 if (meta && meta->raw_mode) {
7184 verbose(env, "R%d cannot write into %s\n", regno,
7185 reg_type_str(env, reg->type));
7186 return -EACCES;
7187 }
7188 return check_mem_region_access(env, regno, reg->off, access_size,
7189 reg->map_ptr->key_size, false);
7190 case PTR_TO_MAP_VALUE:
7191 if (check_map_access_type(env, regno, reg->off, access_size,
7192 meta && meta->raw_mode ? BPF_WRITE :
7193 BPF_READ))
7194 return -EACCES;
7195 return check_map_access(env, regno, reg->off, access_size,
7196 zero_size_allowed, ACCESS_HELPER);
7197 case PTR_TO_MEM:
7198 if (type_is_rdonly_mem(reg->type)) {
7199 if (meta && meta->raw_mode) {
7200 verbose(env, "R%d cannot write into %s\n", regno,
7201 reg_type_str(env, reg->type));
7202 return -EACCES;
7203 }
7204 }
7205 return check_mem_region_access(env, regno, reg->off,
7206 access_size, reg->mem_size,
7207 zero_size_allowed);
7208 case PTR_TO_BUF:
7209 if (type_is_rdonly_mem(reg->type)) {
7210 if (meta && meta->raw_mode) {
7211 verbose(env, "R%d cannot write into %s\n", regno,
7212 reg_type_str(env, reg->type));
7213 return -EACCES;
7214 }
7215
7216 max_access = &env->prog->aux->max_rdonly_access;
7217 } else {
7218 max_access = &env->prog->aux->max_rdwr_access;
7219 }
7220 return check_buffer_access(env, reg, regno, reg->off,
7221 access_size, zero_size_allowed,
7222 max_access);
7223 case PTR_TO_STACK:
7224 return check_stack_range_initialized(
7225 env,
7226 regno, reg->off, access_size,
7227 zero_size_allowed, ACCESS_HELPER, meta);
7228 case PTR_TO_BTF_ID:
7229 return check_ptr_to_btf_access(env, regs, regno, reg->off,
7230 access_size, BPF_READ, -1);
7231 case PTR_TO_CTX:
7232 /* in case the function doesn't know how to access the context,
7233 * (because we are in a program of type SYSCALL for example), we
7234 * can not statically check its size.
7235 * Dynamically check it now.
7236 */
7237 if (!env->ops->convert_ctx_access) {
7238 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
7239 int offset = access_size - 1;
7240
7241 /* Allow zero-byte read from PTR_TO_CTX */
7242 if (access_size == 0)
7243 return zero_size_allowed ? 0 : -EACCES;
7244
7245 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7246 atype, -1, false, false);
7247 }
7248
7249 fallthrough;
7250 default: /* scalar_value or invalid ptr */
7251 /* Allow zero-byte read from NULL, regardless of pointer type */
7252 if (zero_size_allowed && access_size == 0 &&
7253 register_is_null(reg))
7254 return 0;
7255
7256 verbose(env, "R%d type=%s ", regno,
7257 reg_type_str(env, reg->type));
7258 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7259 return -EACCES;
7260 }
7261 }
7262
check_mem_size_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,bool zero_size_allowed,struct bpf_call_arg_meta * meta)7263 static int check_mem_size_reg(struct bpf_verifier_env *env,
7264 struct bpf_reg_state *reg, u32 regno,
7265 bool zero_size_allowed,
7266 struct bpf_call_arg_meta *meta)
7267 {
7268 int err;
7269
7270 /* This is used to refine r0 return value bounds for helpers
7271 * that enforce this value as an upper bound on return values.
7272 * See do_refine_retval_range() for helpers that can refine
7273 * the return value. C type of helper is u32 so we pull register
7274 * bound from umax_value however, if negative verifier errors
7275 * out. Only upper bounds can be learned because retval is an
7276 * int type and negative retvals are allowed.
7277 */
7278 meta->msize_max_value = reg->umax_value;
7279
7280 /* The register is SCALAR_VALUE; the access check
7281 * happens using its boundaries.
7282 */
7283 if (!tnum_is_const(reg->var_off))
7284 /* For unprivileged variable accesses, disable raw
7285 * mode so that the program is required to
7286 * initialize all the memory that the helper could
7287 * just partially fill up.
7288 */
7289 meta = NULL;
7290
7291 if (reg->smin_value < 0) {
7292 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7293 regno);
7294 return -EACCES;
7295 }
7296
7297 if (reg->umin_value == 0) {
7298 err = check_helper_mem_access(env, regno - 1, 0,
7299 zero_size_allowed,
7300 meta);
7301 if (err)
7302 return err;
7303 }
7304
7305 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7306 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7307 regno);
7308 return -EACCES;
7309 }
7310 err = check_helper_mem_access(env, regno - 1,
7311 reg->umax_value,
7312 zero_size_allowed, meta);
7313 if (!err)
7314 err = mark_chain_precision(env, regno);
7315 return err;
7316 }
7317
check_mem_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,u32 mem_size)7318 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7319 u32 regno, u32 mem_size)
7320 {
7321 bool may_be_null = type_may_be_null(reg->type);
7322 struct bpf_reg_state saved_reg;
7323 struct bpf_call_arg_meta meta;
7324 int err;
7325
7326 if (register_is_null(reg))
7327 return 0;
7328
7329 memset(&meta, 0, sizeof(meta));
7330 /* Assuming that the register contains a value check if the memory
7331 * access is safe. Temporarily save and restore the register's state as
7332 * the conversion shouldn't be visible to a caller.
7333 */
7334 if (may_be_null) {
7335 saved_reg = *reg;
7336 mark_ptr_not_null_reg(reg);
7337 }
7338
7339 err = check_helper_mem_access(env, regno, mem_size, true, &meta);
7340 /* Check access for BPF_WRITE */
7341 meta.raw_mode = true;
7342 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
7343
7344 if (may_be_null)
7345 *reg = saved_reg;
7346
7347 return err;
7348 }
7349
check_kfunc_mem_size_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno)7350 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7351 u32 regno)
7352 {
7353 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7354 bool may_be_null = type_may_be_null(mem_reg->type);
7355 struct bpf_reg_state saved_reg;
7356 struct bpf_call_arg_meta meta;
7357 int err;
7358
7359 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7360
7361 memset(&meta, 0, sizeof(meta));
7362
7363 if (may_be_null) {
7364 saved_reg = *mem_reg;
7365 mark_ptr_not_null_reg(mem_reg);
7366 }
7367
7368 err = check_mem_size_reg(env, reg, regno, true, &meta);
7369 /* Check access for BPF_WRITE */
7370 meta.raw_mode = true;
7371 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
7372
7373 if (may_be_null)
7374 *mem_reg = saved_reg;
7375 return err;
7376 }
7377
7378 /* Implementation details:
7379 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7380 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7381 * Two bpf_map_lookups (even with the same key) will have different reg->id.
7382 * Two separate bpf_obj_new will also have different reg->id.
7383 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7384 * clears reg->id after value_or_null->value transition, since the verifier only
7385 * cares about the range of access to valid map value pointer and doesn't care
7386 * about actual address of the map element.
7387 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7388 * reg->id > 0 after value_or_null->value transition. By doing so
7389 * two bpf_map_lookups will be considered two different pointers that
7390 * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7391 * returned from bpf_obj_new.
7392 * The verifier allows taking only one bpf_spin_lock at a time to avoid
7393 * dead-locks.
7394 * Since only one bpf_spin_lock is allowed the checks are simpler than
7395 * reg_is_refcounted() logic. The verifier needs to remember only
7396 * one spin_lock instead of array of acquired_refs.
7397 * cur_state->active_lock remembers which map value element or allocated
7398 * object got locked and clears it after bpf_spin_unlock.
7399 */
process_spin_lock(struct bpf_verifier_env * env,int regno,bool is_lock)7400 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7401 bool is_lock)
7402 {
7403 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7404 struct bpf_verifier_state *cur = env->cur_state;
7405 bool is_const = tnum_is_const(reg->var_off);
7406 u64 val = reg->var_off.value;
7407 struct bpf_map *map = NULL;
7408 struct btf *btf = NULL;
7409 struct btf_record *rec;
7410
7411 if (!is_const) {
7412 verbose(env,
7413 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7414 regno);
7415 return -EINVAL;
7416 }
7417 if (reg->type == PTR_TO_MAP_VALUE) {
7418 map = reg->map_ptr;
7419 if (!map->btf) {
7420 verbose(env,
7421 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
7422 map->name);
7423 return -EINVAL;
7424 }
7425 } else {
7426 btf = reg->btf;
7427 }
7428
7429 rec = reg_btf_record(reg);
7430 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7431 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7432 map ? map->name : "kptr");
7433 return -EINVAL;
7434 }
7435 if (rec->spin_lock_off != val + reg->off) {
7436 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7437 val + reg->off, rec->spin_lock_off);
7438 return -EINVAL;
7439 }
7440 if (is_lock) {
7441 if (cur->active_lock.ptr) {
7442 verbose(env,
7443 "Locking two bpf_spin_locks are not allowed\n");
7444 return -EINVAL;
7445 }
7446 if (map)
7447 cur->active_lock.ptr = map;
7448 else
7449 cur->active_lock.ptr = btf;
7450 cur->active_lock.id = reg->id;
7451 } else {
7452 void *ptr;
7453
7454 if (map)
7455 ptr = map;
7456 else
7457 ptr = btf;
7458
7459 if (!cur->active_lock.ptr) {
7460 verbose(env, "bpf_spin_unlock without taking a lock\n");
7461 return -EINVAL;
7462 }
7463 if (cur->active_lock.ptr != ptr ||
7464 cur->active_lock.id != reg->id) {
7465 verbose(env, "bpf_spin_unlock of different lock\n");
7466 return -EINVAL;
7467 }
7468
7469 invalidate_non_owning_refs(env);
7470
7471 cur->active_lock.ptr = NULL;
7472 cur->active_lock.id = 0;
7473 }
7474 return 0;
7475 }
7476
process_timer_func(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)7477 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7478 struct bpf_call_arg_meta *meta)
7479 {
7480 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7481 bool is_const = tnum_is_const(reg->var_off);
7482 struct bpf_map *map = reg->map_ptr;
7483 u64 val = reg->var_off.value;
7484
7485 if (!is_const) {
7486 verbose(env,
7487 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7488 regno);
7489 return -EINVAL;
7490 }
7491 if (!map->btf) {
7492 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7493 map->name);
7494 return -EINVAL;
7495 }
7496 if (!btf_record_has_field(map->record, BPF_TIMER)) {
7497 verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7498 return -EINVAL;
7499 }
7500 if (map->record->timer_off != val + reg->off) {
7501 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7502 val + reg->off, map->record->timer_off);
7503 return -EINVAL;
7504 }
7505 if (meta->map_ptr) {
7506 verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7507 return -EFAULT;
7508 }
7509 meta->map_uid = reg->map_uid;
7510 meta->map_ptr = map;
7511 return 0;
7512 }
7513
process_kptr_func(struct bpf_verifier_env * env,int regno,struct bpf_call_arg_meta * meta)7514 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7515 struct bpf_call_arg_meta *meta)
7516 {
7517 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7518 struct bpf_map *map_ptr = reg->map_ptr;
7519 struct btf_field *kptr_field;
7520 u32 kptr_off;
7521
7522 if (!tnum_is_const(reg->var_off)) {
7523 verbose(env,
7524 "R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7525 regno);
7526 return -EINVAL;
7527 }
7528 if (!map_ptr->btf) {
7529 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7530 map_ptr->name);
7531 return -EINVAL;
7532 }
7533 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7534 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
7535 return -EINVAL;
7536 }
7537
7538 meta->map_ptr = map_ptr;
7539 kptr_off = reg->off + reg->var_off.value;
7540 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7541 if (!kptr_field) {
7542 verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7543 return -EACCES;
7544 }
7545 if (kptr_field->type != BPF_KPTR_REF) {
7546 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7547 return -EACCES;
7548 }
7549 meta->kptr_field = kptr_field;
7550 return 0;
7551 }
7552
7553 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7554 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7555 *
7556 * In both cases we deal with the first 8 bytes, but need to mark the next 8
7557 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7558 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7559 *
7560 * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7561 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7562 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7563 * mutate the view of the dynptr and also possibly destroy it. In the latter
7564 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7565 * memory that dynptr points to.
7566 *
7567 * The verifier will keep track both levels of mutation (bpf_dynptr's in
7568 * reg->type and the memory's in reg->dynptr.type), but there is no support for
7569 * readonly dynptr view yet, hence only the first case is tracked and checked.
7570 *
7571 * This is consistent with how C applies the const modifier to a struct object,
7572 * where the pointer itself inside bpf_dynptr becomes const but not what it
7573 * points to.
7574 *
7575 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7576 * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7577 */
process_dynptr_func(struct bpf_verifier_env * env,int regno,int insn_idx,enum bpf_arg_type arg_type,int clone_ref_obj_id)7578 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7579 enum bpf_arg_type arg_type, int clone_ref_obj_id)
7580 {
7581 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7582 int err;
7583
7584 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7585 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7586 */
7587 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7588 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7589 return -EFAULT;
7590 }
7591
7592 /* MEM_UNINIT - Points to memory that is an appropriate candidate for
7593 * constructing a mutable bpf_dynptr object.
7594 *
7595 * Currently, this is only possible with PTR_TO_STACK
7596 * pointing to a region of at least 16 bytes which doesn't
7597 * contain an existing bpf_dynptr.
7598 *
7599 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7600 * mutated or destroyed. However, the memory it points to
7601 * may be mutated.
7602 *
7603 * None - Points to a initialized dynptr that can be mutated and
7604 * destroyed, including mutation of the memory it points
7605 * to.
7606 */
7607 if (arg_type & MEM_UNINIT) {
7608 int i;
7609
7610 if (!is_dynptr_reg_valid_uninit(env, reg)) {
7611 verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7612 return -EINVAL;
7613 }
7614
7615 /* we write BPF_DW bits (8 bytes) at a time */
7616 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7617 err = check_mem_access(env, insn_idx, regno,
7618 i, BPF_DW, BPF_WRITE, -1, false, false);
7619 if (err)
7620 return err;
7621 }
7622
7623 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7624 } else /* MEM_RDONLY and None case from above */ {
7625 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7626 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7627 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7628 return -EINVAL;
7629 }
7630
7631 if (!is_dynptr_reg_valid_init(env, reg)) {
7632 verbose(env,
7633 "Expected an initialized dynptr as arg #%d\n",
7634 regno);
7635 return -EINVAL;
7636 }
7637
7638 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7639 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7640 verbose(env,
7641 "Expected a dynptr of type %s as arg #%d\n",
7642 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7643 return -EINVAL;
7644 }
7645
7646 err = mark_dynptr_read(env, reg);
7647 }
7648 return err;
7649 }
7650
iter_ref_obj_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int spi)7651 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7652 {
7653 struct bpf_func_state *state = func(env, reg);
7654
7655 return state->stack[spi].spilled_ptr.ref_obj_id;
7656 }
7657
is_iter_kfunc(struct bpf_kfunc_call_arg_meta * meta)7658 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7659 {
7660 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7661 }
7662
is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta * meta)7663 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7664 {
7665 return meta->kfunc_flags & KF_ITER_NEW;
7666 }
7667
is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta * meta)7668 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7669 {
7670 return meta->kfunc_flags & KF_ITER_NEXT;
7671 }
7672
is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta * meta)7673 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7674 {
7675 return meta->kfunc_flags & KF_ITER_DESTROY;
7676 }
7677
is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta * meta,int arg)7678 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7679 {
7680 /* btf_check_iter_kfuncs() guarantees that first argument of any iter
7681 * kfunc is iter state pointer
7682 */
7683 return arg == 0 && is_iter_kfunc(meta);
7684 }
7685
process_iter_arg(struct bpf_verifier_env * env,int regno,int insn_idx,struct bpf_kfunc_call_arg_meta * meta)7686 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7687 struct bpf_kfunc_call_arg_meta *meta)
7688 {
7689 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
7690 const struct btf_type *t;
7691 const struct btf_param *arg;
7692 int spi, err, i, nr_slots;
7693 u32 btf_id;
7694
7695 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7696 arg = &btf_params(meta->func_proto)[0];
7697 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */
7698 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */
7699 nr_slots = t->size / BPF_REG_SIZE;
7700
7701 if (is_iter_new_kfunc(meta)) {
7702 /* bpf_iter_<type>_new() expects pointer to uninit iter state */
7703 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7704 verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7705 iter_type_str(meta->btf, btf_id), regno);
7706 return -EINVAL;
7707 }
7708
7709 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7710 err = check_mem_access(env, insn_idx, regno,
7711 i, BPF_DW, BPF_WRITE, -1, false, false);
7712 if (err)
7713 return err;
7714 }
7715
7716 err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots);
7717 if (err)
7718 return err;
7719 } else {
7720 /* iter_next() or iter_destroy() expect initialized iter state*/
7721 if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) {
7722 verbose(env, "expected an initialized iter_%s as arg #%d\n",
7723 iter_type_str(meta->btf, btf_id), regno);
7724 return -EINVAL;
7725 }
7726
7727 spi = iter_get_spi(env, reg, nr_slots);
7728 if (spi < 0)
7729 return spi;
7730
7731 err = mark_iter_read(env, reg, spi, nr_slots);
7732 if (err)
7733 return err;
7734
7735 /* remember meta->iter info for process_iter_next_call() */
7736 meta->iter.spi = spi;
7737 meta->iter.frameno = reg->frameno;
7738 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7739
7740 if (is_iter_destroy_kfunc(meta)) {
7741 err = unmark_stack_slots_iter(env, reg, nr_slots);
7742 if (err)
7743 return err;
7744 }
7745 }
7746
7747 return 0;
7748 }
7749
7750 /* Look for a previous loop entry at insn_idx: nearest parent state
7751 * stopped at insn_idx with callsites matching those in cur->frame.
7752 */
find_prev_entry(struct bpf_verifier_env * env,struct bpf_verifier_state * cur,int insn_idx)7753 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
7754 struct bpf_verifier_state *cur,
7755 int insn_idx)
7756 {
7757 struct bpf_verifier_state_list *sl;
7758 struct bpf_verifier_state *st;
7759
7760 /* Explored states are pushed in stack order, most recent states come first */
7761 sl = *explored_state(env, insn_idx);
7762 for (; sl; sl = sl->next) {
7763 /* If st->branches != 0 state is a part of current DFS verification path,
7764 * hence cur & st for a loop.
7765 */
7766 st = &sl->state;
7767 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
7768 st->dfs_depth < cur->dfs_depth)
7769 return st;
7770 }
7771
7772 return NULL;
7773 }
7774
7775 static void reset_idmap_scratch(struct bpf_verifier_env *env);
7776 static bool regs_exact(const struct bpf_reg_state *rold,
7777 const struct bpf_reg_state *rcur,
7778 struct bpf_idmap *idmap);
7779
maybe_widen_reg(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_idmap * idmap)7780 static void maybe_widen_reg(struct bpf_verifier_env *env,
7781 struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7782 struct bpf_idmap *idmap)
7783 {
7784 if (rold->type != SCALAR_VALUE)
7785 return;
7786 if (rold->type != rcur->type)
7787 return;
7788 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
7789 return;
7790 __mark_reg_unknown(env, rcur);
7791 }
7792
widen_imprecise_scalars(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur)7793 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
7794 struct bpf_verifier_state *old,
7795 struct bpf_verifier_state *cur)
7796 {
7797 struct bpf_func_state *fold, *fcur;
7798 int i, fr;
7799
7800 reset_idmap_scratch(env);
7801 for (fr = old->curframe; fr >= 0; fr--) {
7802 fold = old->frame[fr];
7803 fcur = cur->frame[fr];
7804
7805 for (i = 0; i < MAX_BPF_REG; i++)
7806 maybe_widen_reg(env,
7807 &fold->regs[i],
7808 &fcur->regs[i],
7809 &env->idmap_scratch);
7810
7811 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
7812 if (!is_spilled_reg(&fold->stack[i]) ||
7813 !is_spilled_reg(&fcur->stack[i]))
7814 continue;
7815
7816 maybe_widen_reg(env,
7817 &fold->stack[i].spilled_ptr,
7818 &fcur->stack[i].spilled_ptr,
7819 &env->idmap_scratch);
7820 }
7821 }
7822 return 0;
7823 }
7824
7825 /* process_iter_next_call() is called when verifier gets to iterator's next
7826 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7827 * to it as just "iter_next()" in comments below.
7828 *
7829 * BPF verifier relies on a crucial contract for any iter_next()
7830 * implementation: it should *eventually* return NULL, and once that happens
7831 * it should keep returning NULL. That is, once iterator exhausts elements to
7832 * iterate, it should never reset or spuriously return new elements.
7833 *
7834 * With the assumption of such contract, process_iter_next_call() simulates
7835 * a fork in the verifier state to validate loop logic correctness and safety
7836 * without having to simulate infinite amount of iterations.
7837 *
7838 * In current state, we first assume that iter_next() returned NULL and
7839 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
7840 * conditions we should not form an infinite loop and should eventually reach
7841 * exit.
7842 *
7843 * Besides that, we also fork current state and enqueue it for later
7844 * verification. In a forked state we keep iterator state as ACTIVE
7845 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
7846 * also bump iteration depth to prevent erroneous infinite loop detection
7847 * later on (see iter_active_depths_differ() comment for details). In this
7848 * state we assume that we'll eventually loop back to another iter_next()
7849 * calls (it could be in exactly same location or in some other instruction,
7850 * it doesn't matter, we don't make any unnecessary assumptions about this,
7851 * everything revolves around iterator state in a stack slot, not which
7852 * instruction is calling iter_next()). When that happens, we either will come
7853 * to iter_next() with equivalent state and can conclude that next iteration
7854 * will proceed in exactly the same way as we just verified, so it's safe to
7855 * assume that loop converges. If not, we'll go on another iteration
7856 * simulation with a different input state, until all possible starting states
7857 * are validated or we reach maximum number of instructions limit.
7858 *
7859 * This way, we will either exhaustively discover all possible input states
7860 * that iterator loop can start with and eventually will converge, or we'll
7861 * effectively regress into bounded loop simulation logic and either reach
7862 * maximum number of instructions if loop is not provably convergent, or there
7863 * is some statically known limit on number of iterations (e.g., if there is
7864 * an explicit `if n > 100 then break;` statement somewhere in the loop).
7865 *
7866 * Iteration convergence logic in is_state_visited() relies on exact
7867 * states comparison, which ignores read and precision marks.
7868 * This is necessary because read and precision marks are not finalized
7869 * while in the loop. Exact comparison might preclude convergence for
7870 * simple programs like below:
7871 *
7872 * i = 0;
7873 * while(iter_next(&it))
7874 * i++;
7875 *
7876 * At each iteration step i++ would produce a new distinct state and
7877 * eventually instruction processing limit would be reached.
7878 *
7879 * To avoid such behavior speculatively forget (widen) range for
7880 * imprecise scalar registers, if those registers were not precise at the
7881 * end of the previous iteration and do not match exactly.
7882 *
7883 * This is a conservative heuristic that allows to verify wide range of programs,
7884 * however it precludes verification of programs that conjure an
7885 * imprecise value on the first loop iteration and use it as precise on a second.
7886 * For example, the following safe program would fail to verify:
7887 *
7888 * struct bpf_num_iter it;
7889 * int arr[10];
7890 * int i = 0, a = 0;
7891 * bpf_iter_num_new(&it, 0, 10);
7892 * while (bpf_iter_num_next(&it)) {
7893 * if (a == 0) {
7894 * a = 1;
7895 * i = 7; // Because i changed verifier would forget
7896 * // it's range on second loop entry.
7897 * } else {
7898 * arr[i] = 42; // This would fail to verify.
7899 * }
7900 * }
7901 * bpf_iter_num_destroy(&it);
7902 */
process_iter_next_call(struct bpf_verifier_env * env,int insn_idx,struct bpf_kfunc_call_arg_meta * meta)7903 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
7904 struct bpf_kfunc_call_arg_meta *meta)
7905 {
7906 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
7907 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
7908 struct bpf_reg_state *cur_iter, *queued_iter;
7909 int iter_frameno = meta->iter.frameno;
7910 int iter_spi = meta->iter.spi;
7911
7912 BTF_TYPE_EMIT(struct bpf_iter);
7913
7914 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7915
7916 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
7917 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
7918 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
7919 cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
7920 return -EFAULT;
7921 }
7922
7923 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
7924 /* Because iter_next() call is a checkpoint is_state_visitied()
7925 * should guarantee parent state with same call sites and insn_idx.
7926 */
7927 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
7928 !same_callsites(cur_st->parent, cur_st)) {
7929 verbose(env, "bug: bad parent state for iter next call");
7930 return -EFAULT;
7931 }
7932 /* Note cur_st->parent in the call below, it is necessary to skip
7933 * checkpoint created for cur_st by is_state_visited()
7934 * right at this instruction.
7935 */
7936 prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
7937 /* branch out active iter state */
7938 queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
7939 if (!queued_st)
7940 return -ENOMEM;
7941
7942 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7943 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
7944 queued_iter->iter.depth++;
7945 if (prev_st)
7946 widen_imprecise_scalars(env, prev_st, queued_st);
7947
7948 queued_fr = queued_st->frame[queued_st->curframe];
7949 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
7950 }
7951
7952 /* switch to DRAINED state, but keep the depth unchanged */
7953 /* mark current iter state as drained and assume returned NULL */
7954 cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
7955 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
7956
7957 return 0;
7958 }
7959
arg_type_is_mem_size(enum bpf_arg_type type)7960 static bool arg_type_is_mem_size(enum bpf_arg_type type)
7961 {
7962 return type == ARG_CONST_SIZE ||
7963 type == ARG_CONST_SIZE_OR_ZERO;
7964 }
7965
arg_type_is_release(enum bpf_arg_type type)7966 static bool arg_type_is_release(enum bpf_arg_type type)
7967 {
7968 return type & OBJ_RELEASE;
7969 }
7970
arg_type_is_dynptr(enum bpf_arg_type type)7971 static bool arg_type_is_dynptr(enum bpf_arg_type type)
7972 {
7973 return base_type(type) == ARG_PTR_TO_DYNPTR;
7974 }
7975
int_ptr_type_to_size(enum bpf_arg_type type)7976 static int int_ptr_type_to_size(enum bpf_arg_type type)
7977 {
7978 if (type == ARG_PTR_TO_INT)
7979 return sizeof(u32);
7980 else if (type == ARG_PTR_TO_LONG)
7981 return sizeof(u64);
7982
7983 return -EINVAL;
7984 }
7985
resolve_map_arg_type(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_arg_type * arg_type)7986 static int resolve_map_arg_type(struct bpf_verifier_env *env,
7987 const struct bpf_call_arg_meta *meta,
7988 enum bpf_arg_type *arg_type)
7989 {
7990 if (!meta->map_ptr) {
7991 /* kernel subsystem misconfigured verifier */
7992 verbose(env, "invalid map_ptr to access map->type\n");
7993 return -EACCES;
7994 }
7995
7996 switch (meta->map_ptr->map_type) {
7997 case BPF_MAP_TYPE_SOCKMAP:
7998 case BPF_MAP_TYPE_SOCKHASH:
7999 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
8000 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
8001 } else {
8002 verbose(env, "invalid arg_type for sockmap/sockhash\n");
8003 return -EINVAL;
8004 }
8005 break;
8006 case BPF_MAP_TYPE_BLOOM_FILTER:
8007 if (meta->func_id == BPF_FUNC_map_peek_elem)
8008 *arg_type = ARG_PTR_TO_MAP_VALUE;
8009 break;
8010 default:
8011 break;
8012 }
8013 return 0;
8014 }
8015
8016 struct bpf_reg_types {
8017 const enum bpf_reg_type types[10];
8018 u32 *btf_id;
8019 };
8020
8021 static const struct bpf_reg_types sock_types = {
8022 .types = {
8023 PTR_TO_SOCK_COMMON,
8024 PTR_TO_SOCKET,
8025 PTR_TO_TCP_SOCK,
8026 PTR_TO_XDP_SOCK,
8027 },
8028 };
8029
8030 #ifdef CONFIG_NET
8031 static const struct bpf_reg_types btf_id_sock_common_types = {
8032 .types = {
8033 PTR_TO_SOCK_COMMON,
8034 PTR_TO_SOCKET,
8035 PTR_TO_TCP_SOCK,
8036 PTR_TO_XDP_SOCK,
8037 PTR_TO_BTF_ID,
8038 PTR_TO_BTF_ID | PTR_TRUSTED,
8039 },
8040 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8041 };
8042 #endif
8043
8044 static const struct bpf_reg_types mem_types = {
8045 .types = {
8046 PTR_TO_STACK,
8047 PTR_TO_PACKET,
8048 PTR_TO_PACKET_META,
8049 PTR_TO_MAP_KEY,
8050 PTR_TO_MAP_VALUE,
8051 PTR_TO_MEM,
8052 PTR_TO_MEM | MEM_RINGBUF,
8053 PTR_TO_BUF,
8054 PTR_TO_BTF_ID | PTR_TRUSTED,
8055 },
8056 };
8057
8058 static const struct bpf_reg_types int_ptr_types = {
8059 .types = {
8060 PTR_TO_STACK,
8061 PTR_TO_PACKET,
8062 PTR_TO_PACKET_META,
8063 PTR_TO_MAP_KEY,
8064 PTR_TO_MAP_VALUE,
8065 },
8066 };
8067
8068 static const struct bpf_reg_types spin_lock_types = {
8069 .types = {
8070 PTR_TO_MAP_VALUE,
8071 PTR_TO_BTF_ID | MEM_ALLOC,
8072 }
8073 };
8074
8075 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
8076 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
8077 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
8078 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
8079 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
8080 static const struct bpf_reg_types btf_ptr_types = {
8081 .types = {
8082 PTR_TO_BTF_ID,
8083 PTR_TO_BTF_ID | PTR_TRUSTED,
8084 PTR_TO_BTF_ID | MEM_RCU,
8085 },
8086 };
8087 static const struct bpf_reg_types percpu_btf_ptr_types = {
8088 .types = {
8089 PTR_TO_BTF_ID | MEM_PERCPU,
8090 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
8091 }
8092 };
8093 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
8094 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
8095 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
8096 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
8097 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
8098 static const struct bpf_reg_types dynptr_types = {
8099 .types = {
8100 PTR_TO_STACK,
8101 CONST_PTR_TO_DYNPTR,
8102 }
8103 };
8104
8105 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
8106 [ARG_PTR_TO_MAP_KEY] = &mem_types,
8107 [ARG_PTR_TO_MAP_VALUE] = &mem_types,
8108 [ARG_CONST_SIZE] = &scalar_types,
8109 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
8110 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
8111 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
8112 [ARG_PTR_TO_CTX] = &context_types,
8113 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
8114 #ifdef CONFIG_NET
8115 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
8116 #endif
8117 [ARG_PTR_TO_SOCKET] = &fullsock_types,
8118 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
8119 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
8120 [ARG_PTR_TO_MEM] = &mem_types,
8121 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types,
8122 [ARG_PTR_TO_INT] = &int_ptr_types,
8123 [ARG_PTR_TO_LONG] = &int_ptr_types,
8124 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
8125 [ARG_PTR_TO_FUNC] = &func_ptr_types,
8126 [ARG_PTR_TO_STACK] = &stack_ptr_types,
8127 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
8128 [ARG_PTR_TO_TIMER] = &timer_types,
8129 [ARG_PTR_TO_KPTR] = &kptr_types,
8130 [ARG_PTR_TO_DYNPTR] = &dynptr_types,
8131 };
8132
check_reg_type(struct bpf_verifier_env * env,u32 regno,enum bpf_arg_type arg_type,const u32 * arg_btf_id,struct bpf_call_arg_meta * meta)8133 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
8134 enum bpf_arg_type arg_type,
8135 const u32 *arg_btf_id,
8136 struct bpf_call_arg_meta *meta)
8137 {
8138 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
8139 enum bpf_reg_type expected, type = reg->type;
8140 const struct bpf_reg_types *compatible;
8141 int i, j;
8142
8143 compatible = compatible_reg_types[base_type(arg_type)];
8144 if (!compatible) {
8145 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
8146 return -EFAULT;
8147 }
8148
8149 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
8150 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
8151 *
8152 * Same for MAYBE_NULL:
8153 *
8154 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
8155 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
8156 *
8157 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
8158 *
8159 * Therefore we fold these flags depending on the arg_type before comparison.
8160 */
8161 if (arg_type & MEM_RDONLY)
8162 type &= ~MEM_RDONLY;
8163 if (arg_type & PTR_MAYBE_NULL)
8164 type &= ~PTR_MAYBE_NULL;
8165 if (base_type(arg_type) == ARG_PTR_TO_MEM)
8166 type &= ~DYNPTR_TYPE_FLAG_MASK;
8167
8168 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type))
8169 type &= ~MEM_ALLOC;
8170
8171 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
8172 expected = compatible->types[i];
8173 if (expected == NOT_INIT)
8174 break;
8175
8176 if (type == expected)
8177 goto found;
8178 }
8179
8180 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
8181 for (j = 0; j + 1 < i; j++)
8182 verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
8183 verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
8184 return -EACCES;
8185
8186 found:
8187 if (base_type(reg->type) != PTR_TO_BTF_ID)
8188 return 0;
8189
8190 if (compatible == &mem_types) {
8191 if (!(arg_type & MEM_RDONLY)) {
8192 verbose(env,
8193 "%s() may write into memory pointed by R%d type=%s\n",
8194 func_id_name(meta->func_id),
8195 regno, reg_type_str(env, reg->type));
8196 return -EACCES;
8197 }
8198 return 0;
8199 }
8200
8201 switch ((int)reg->type) {
8202 case PTR_TO_BTF_ID:
8203 case PTR_TO_BTF_ID | PTR_TRUSTED:
8204 case PTR_TO_BTF_ID | MEM_RCU:
8205 case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
8206 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
8207 {
8208 /* For bpf_sk_release, it needs to match against first member
8209 * 'struct sock_common', hence make an exception for it. This
8210 * allows bpf_sk_release to work for multiple socket types.
8211 */
8212 bool strict_type_match = arg_type_is_release(arg_type) &&
8213 meta->func_id != BPF_FUNC_sk_release;
8214
8215 if (type_may_be_null(reg->type) &&
8216 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
8217 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
8218 return -EACCES;
8219 }
8220
8221 if (!arg_btf_id) {
8222 if (!compatible->btf_id) {
8223 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
8224 return -EFAULT;
8225 }
8226 arg_btf_id = compatible->btf_id;
8227 }
8228
8229 if (meta->func_id == BPF_FUNC_kptr_xchg) {
8230 if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8231 return -EACCES;
8232 } else {
8233 if (arg_btf_id == BPF_PTR_POISON) {
8234 verbose(env, "verifier internal error:");
8235 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
8236 regno);
8237 return -EACCES;
8238 }
8239
8240 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
8241 btf_vmlinux, *arg_btf_id,
8242 strict_type_match)) {
8243 verbose(env, "R%d is of type %s but %s is expected\n",
8244 regno, btf_type_name(reg->btf, reg->btf_id),
8245 btf_type_name(btf_vmlinux, *arg_btf_id));
8246 return -EACCES;
8247 }
8248 }
8249 break;
8250 }
8251 case PTR_TO_BTF_ID | MEM_ALLOC:
8252 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
8253 meta->func_id != BPF_FUNC_kptr_xchg) {
8254 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
8255 return -EFAULT;
8256 }
8257 if (meta->func_id == BPF_FUNC_kptr_xchg) {
8258 if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8259 return -EACCES;
8260 }
8261 break;
8262 case PTR_TO_BTF_ID | MEM_PERCPU:
8263 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
8264 /* Handled by helper specific checks */
8265 break;
8266 default:
8267 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
8268 return -EFAULT;
8269 }
8270 return 0;
8271 }
8272
8273 static struct btf_field *
reg_find_field_offset(const struct bpf_reg_state * reg,s32 off,u32 fields)8274 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
8275 {
8276 struct btf_field *field;
8277 struct btf_record *rec;
8278
8279 rec = reg_btf_record(reg);
8280 if (!rec)
8281 return NULL;
8282
8283 field = btf_record_find(rec, off, fields);
8284 if (!field)
8285 return NULL;
8286
8287 return field;
8288 }
8289
check_func_arg_reg_off(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,enum bpf_arg_type arg_type)8290 int check_func_arg_reg_off(struct bpf_verifier_env *env,
8291 const struct bpf_reg_state *reg, int regno,
8292 enum bpf_arg_type arg_type)
8293 {
8294 u32 type = reg->type;
8295
8296 /* When referenced register is passed to release function, its fixed
8297 * offset must be 0.
8298 *
8299 * We will check arg_type_is_release reg has ref_obj_id when storing
8300 * meta->release_regno.
8301 */
8302 if (arg_type_is_release(arg_type)) {
8303 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
8304 * may not directly point to the object being released, but to
8305 * dynptr pointing to such object, which might be at some offset
8306 * on the stack. In that case, we simply to fallback to the
8307 * default handling.
8308 */
8309 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
8310 return 0;
8311
8312 /* Doing check_ptr_off_reg check for the offset will catch this
8313 * because fixed_off_ok is false, but checking here allows us
8314 * to give the user a better error message.
8315 */
8316 if (reg->off) {
8317 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
8318 regno);
8319 return -EINVAL;
8320 }
8321 return __check_ptr_off_reg(env, reg, regno, false);
8322 }
8323
8324 switch (type) {
8325 /* Pointer types where both fixed and variable offset is explicitly allowed: */
8326 case PTR_TO_STACK:
8327 case PTR_TO_PACKET:
8328 case PTR_TO_PACKET_META:
8329 case PTR_TO_MAP_KEY:
8330 case PTR_TO_MAP_VALUE:
8331 case PTR_TO_MEM:
8332 case PTR_TO_MEM | MEM_RDONLY:
8333 case PTR_TO_MEM | MEM_RINGBUF:
8334 case PTR_TO_BUF:
8335 case PTR_TO_BUF | MEM_RDONLY:
8336 case SCALAR_VALUE:
8337 return 0;
8338 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8339 * fixed offset.
8340 */
8341 case PTR_TO_BTF_ID:
8342 case PTR_TO_BTF_ID | MEM_ALLOC:
8343 case PTR_TO_BTF_ID | PTR_TRUSTED:
8344 case PTR_TO_BTF_ID | MEM_RCU:
8345 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8346 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8347 /* When referenced PTR_TO_BTF_ID is passed to release function,
8348 * its fixed offset must be 0. In the other cases, fixed offset
8349 * can be non-zero. This was already checked above. So pass
8350 * fixed_off_ok as true to allow fixed offset for all other
8351 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8352 * still need to do checks instead of returning.
8353 */
8354 return __check_ptr_off_reg(env, reg, regno, true);
8355 default:
8356 return __check_ptr_off_reg(env, reg, regno, false);
8357 }
8358 }
8359
get_dynptr_arg_reg(struct bpf_verifier_env * env,const struct bpf_func_proto * fn,struct bpf_reg_state * regs)8360 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8361 const struct bpf_func_proto *fn,
8362 struct bpf_reg_state *regs)
8363 {
8364 struct bpf_reg_state *state = NULL;
8365 int i;
8366
8367 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8368 if (arg_type_is_dynptr(fn->arg_type[i])) {
8369 if (state) {
8370 verbose(env, "verifier internal error: multiple dynptr args\n");
8371 return NULL;
8372 }
8373 state = ®s[BPF_REG_1 + i];
8374 }
8375
8376 if (!state)
8377 verbose(env, "verifier internal error: no dynptr arg found\n");
8378
8379 return state;
8380 }
8381
dynptr_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg)8382 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8383 {
8384 struct bpf_func_state *state = func(env, reg);
8385 int spi;
8386
8387 if (reg->type == CONST_PTR_TO_DYNPTR)
8388 return reg->id;
8389 spi = dynptr_get_spi(env, reg);
8390 if (spi < 0)
8391 return spi;
8392 return state->stack[spi].spilled_ptr.id;
8393 }
8394
dynptr_ref_obj_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg)8395 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8396 {
8397 struct bpf_func_state *state = func(env, reg);
8398 int spi;
8399
8400 if (reg->type == CONST_PTR_TO_DYNPTR)
8401 return reg->ref_obj_id;
8402 spi = dynptr_get_spi(env, reg);
8403 if (spi < 0)
8404 return spi;
8405 return state->stack[spi].spilled_ptr.ref_obj_id;
8406 }
8407
dynptr_get_type(struct bpf_verifier_env * env,struct bpf_reg_state * reg)8408 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8409 struct bpf_reg_state *reg)
8410 {
8411 struct bpf_func_state *state = func(env, reg);
8412 int spi;
8413
8414 if (reg->type == CONST_PTR_TO_DYNPTR)
8415 return reg->dynptr.type;
8416
8417 spi = __get_spi(reg->off);
8418 if (spi < 0) {
8419 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8420 return BPF_DYNPTR_TYPE_INVALID;
8421 }
8422
8423 return state->stack[spi].spilled_ptr.dynptr.type;
8424 }
8425
check_func_arg(struct bpf_verifier_env * env,u32 arg,struct bpf_call_arg_meta * meta,const struct bpf_func_proto * fn,int insn_idx)8426 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8427 struct bpf_call_arg_meta *meta,
8428 const struct bpf_func_proto *fn,
8429 int insn_idx)
8430 {
8431 u32 regno = BPF_REG_1 + arg;
8432 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
8433 enum bpf_arg_type arg_type = fn->arg_type[arg];
8434 enum bpf_reg_type type = reg->type;
8435 u32 *arg_btf_id = NULL;
8436 int err = 0;
8437
8438 if (arg_type == ARG_DONTCARE)
8439 return 0;
8440
8441 err = check_reg_arg(env, regno, SRC_OP);
8442 if (err)
8443 return err;
8444
8445 if (arg_type == ARG_ANYTHING) {
8446 if (is_pointer_value(env, regno)) {
8447 verbose(env, "R%d leaks addr into helper function\n",
8448 regno);
8449 return -EACCES;
8450 }
8451 return 0;
8452 }
8453
8454 if (type_is_pkt_pointer(type) &&
8455 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8456 verbose(env, "helper access to the packet is not allowed\n");
8457 return -EACCES;
8458 }
8459
8460 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8461 err = resolve_map_arg_type(env, meta, &arg_type);
8462 if (err)
8463 return err;
8464 }
8465
8466 if (register_is_null(reg) && type_may_be_null(arg_type))
8467 /* A NULL register has a SCALAR_VALUE type, so skip
8468 * type checking.
8469 */
8470 goto skip_type_check;
8471
8472 /* arg_btf_id and arg_size are in a union. */
8473 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8474 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8475 arg_btf_id = fn->arg_btf_id[arg];
8476
8477 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8478 if (err)
8479 return err;
8480
8481 err = check_func_arg_reg_off(env, reg, regno, arg_type);
8482 if (err)
8483 return err;
8484
8485 skip_type_check:
8486 if (arg_type_is_release(arg_type)) {
8487 if (arg_type_is_dynptr(arg_type)) {
8488 struct bpf_func_state *state = func(env, reg);
8489 int spi;
8490
8491 /* Only dynptr created on stack can be released, thus
8492 * the get_spi and stack state checks for spilled_ptr
8493 * should only be done before process_dynptr_func for
8494 * PTR_TO_STACK.
8495 */
8496 if (reg->type == PTR_TO_STACK) {
8497 spi = dynptr_get_spi(env, reg);
8498 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8499 verbose(env, "arg %d is an unacquired reference\n", regno);
8500 return -EINVAL;
8501 }
8502 } else {
8503 verbose(env, "cannot release unowned const bpf_dynptr\n");
8504 return -EINVAL;
8505 }
8506 } else if (!reg->ref_obj_id && !register_is_null(reg)) {
8507 verbose(env, "R%d must be referenced when passed to release function\n",
8508 regno);
8509 return -EINVAL;
8510 }
8511 if (meta->release_regno) {
8512 verbose(env, "verifier internal error: more than one release argument\n");
8513 return -EFAULT;
8514 }
8515 meta->release_regno = regno;
8516 }
8517
8518 if (reg->ref_obj_id) {
8519 if (meta->ref_obj_id) {
8520 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8521 regno, reg->ref_obj_id,
8522 meta->ref_obj_id);
8523 return -EFAULT;
8524 }
8525 meta->ref_obj_id = reg->ref_obj_id;
8526 }
8527
8528 switch (base_type(arg_type)) {
8529 case ARG_CONST_MAP_PTR:
8530 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8531 if (meta->map_ptr) {
8532 /* Use map_uid (which is unique id of inner map) to reject:
8533 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8534 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8535 * if (inner_map1 && inner_map2) {
8536 * timer = bpf_map_lookup_elem(inner_map1);
8537 * if (timer)
8538 * // mismatch would have been allowed
8539 * bpf_timer_init(timer, inner_map2);
8540 * }
8541 *
8542 * Comparing map_ptr is enough to distinguish normal and outer maps.
8543 */
8544 if (meta->map_ptr != reg->map_ptr ||
8545 meta->map_uid != reg->map_uid) {
8546 verbose(env,
8547 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8548 meta->map_uid, reg->map_uid);
8549 return -EINVAL;
8550 }
8551 }
8552 meta->map_ptr = reg->map_ptr;
8553 meta->map_uid = reg->map_uid;
8554 break;
8555 case ARG_PTR_TO_MAP_KEY:
8556 /* bpf_map_xxx(..., map_ptr, ..., key) call:
8557 * check that [key, key + map->key_size) are within
8558 * stack limits and initialized
8559 */
8560 if (!meta->map_ptr) {
8561 /* in function declaration map_ptr must come before
8562 * map_key, so that it's verified and known before
8563 * we have to check map_key here. Otherwise it means
8564 * that kernel subsystem misconfigured verifier
8565 */
8566 verbose(env, "invalid map_ptr to access map->key\n");
8567 return -EACCES;
8568 }
8569 err = check_helper_mem_access(env, regno,
8570 meta->map_ptr->key_size, false,
8571 NULL);
8572 break;
8573 case ARG_PTR_TO_MAP_VALUE:
8574 if (type_may_be_null(arg_type) && register_is_null(reg))
8575 return 0;
8576
8577 /* bpf_map_xxx(..., map_ptr, ..., value) call:
8578 * check [value, value + map->value_size) validity
8579 */
8580 if (!meta->map_ptr) {
8581 /* kernel subsystem misconfigured verifier */
8582 verbose(env, "invalid map_ptr to access map->value\n");
8583 return -EACCES;
8584 }
8585 meta->raw_mode = arg_type & MEM_UNINIT;
8586 err = check_helper_mem_access(env, regno,
8587 meta->map_ptr->value_size, false,
8588 meta);
8589 break;
8590 case ARG_PTR_TO_PERCPU_BTF_ID:
8591 if (!reg->btf_id) {
8592 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8593 return -EACCES;
8594 }
8595 meta->ret_btf = reg->btf;
8596 meta->ret_btf_id = reg->btf_id;
8597 break;
8598 case ARG_PTR_TO_SPIN_LOCK:
8599 if (in_rbtree_lock_required_cb(env)) {
8600 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8601 return -EACCES;
8602 }
8603 if (meta->func_id == BPF_FUNC_spin_lock) {
8604 err = process_spin_lock(env, regno, true);
8605 if (err)
8606 return err;
8607 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
8608 err = process_spin_lock(env, regno, false);
8609 if (err)
8610 return err;
8611 } else {
8612 verbose(env, "verifier internal error\n");
8613 return -EFAULT;
8614 }
8615 break;
8616 case ARG_PTR_TO_TIMER:
8617 err = process_timer_func(env, regno, meta);
8618 if (err)
8619 return err;
8620 break;
8621 case ARG_PTR_TO_FUNC:
8622 meta->subprogno = reg->subprogno;
8623 break;
8624 case ARG_PTR_TO_MEM:
8625 /* The access to this pointer is only checked when we hit the
8626 * next is_mem_size argument below.
8627 */
8628 meta->raw_mode = arg_type & MEM_UNINIT;
8629 if (arg_type & MEM_FIXED_SIZE) {
8630 err = check_helper_mem_access(env, regno,
8631 fn->arg_size[arg], false,
8632 meta);
8633 }
8634 break;
8635 case ARG_CONST_SIZE:
8636 err = check_mem_size_reg(env, reg, regno, false, meta);
8637 break;
8638 case ARG_CONST_SIZE_OR_ZERO:
8639 err = check_mem_size_reg(env, reg, regno, true, meta);
8640 break;
8641 case ARG_PTR_TO_DYNPTR:
8642 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
8643 if (err)
8644 return err;
8645 break;
8646 case ARG_CONST_ALLOC_SIZE_OR_ZERO:
8647 if (!tnum_is_const(reg->var_off)) {
8648 verbose(env, "R%d is not a known constant'\n",
8649 regno);
8650 return -EACCES;
8651 }
8652 meta->mem_size = reg->var_off.value;
8653 err = mark_chain_precision(env, regno);
8654 if (err)
8655 return err;
8656 break;
8657 case ARG_PTR_TO_INT:
8658 case ARG_PTR_TO_LONG:
8659 {
8660 int size = int_ptr_type_to_size(arg_type);
8661
8662 err = check_helper_mem_access(env, regno, size, false, meta);
8663 if (err)
8664 return err;
8665 err = check_ptr_alignment(env, reg, 0, size, true);
8666 break;
8667 }
8668 case ARG_PTR_TO_CONST_STR:
8669 {
8670 struct bpf_map *map = reg->map_ptr;
8671 int map_off;
8672 u64 map_addr;
8673 char *str_ptr;
8674
8675 if (!bpf_map_is_rdonly(map)) {
8676 verbose(env, "R%d does not point to a readonly map'\n", regno);
8677 return -EACCES;
8678 }
8679
8680 if (!tnum_is_const(reg->var_off)) {
8681 verbose(env, "R%d is not a constant address'\n", regno);
8682 return -EACCES;
8683 }
8684
8685 if (!map->ops->map_direct_value_addr) {
8686 verbose(env, "no direct value access support for this map type\n");
8687 return -EACCES;
8688 }
8689
8690 err = check_map_access(env, regno, reg->off,
8691 map->value_size - reg->off, false,
8692 ACCESS_HELPER);
8693 if (err)
8694 return err;
8695
8696 map_off = reg->off + reg->var_off.value;
8697 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8698 if (err) {
8699 verbose(env, "direct value access on string failed\n");
8700 return err;
8701 }
8702
8703 str_ptr = (char *)(long)(map_addr);
8704 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8705 verbose(env, "string is not zero-terminated\n");
8706 return -EINVAL;
8707 }
8708 break;
8709 }
8710 case ARG_PTR_TO_KPTR:
8711 err = process_kptr_func(env, regno, meta);
8712 if (err)
8713 return err;
8714 break;
8715 }
8716
8717 return err;
8718 }
8719
may_update_sockmap(struct bpf_verifier_env * env,int func_id)8720 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8721 {
8722 enum bpf_attach_type eatype = env->prog->expected_attach_type;
8723 enum bpf_prog_type type = resolve_prog_type(env->prog);
8724
8725 if (func_id != BPF_FUNC_map_update_elem)
8726 return false;
8727
8728 /* It's not possible to get access to a locked struct sock in these
8729 * contexts, so updating is safe.
8730 */
8731 switch (type) {
8732 case BPF_PROG_TYPE_TRACING:
8733 if (eatype == BPF_TRACE_ITER)
8734 return true;
8735 break;
8736 case BPF_PROG_TYPE_SOCKET_FILTER:
8737 case BPF_PROG_TYPE_SCHED_CLS:
8738 case BPF_PROG_TYPE_SCHED_ACT:
8739 case BPF_PROG_TYPE_XDP:
8740 case BPF_PROG_TYPE_SK_REUSEPORT:
8741 case BPF_PROG_TYPE_FLOW_DISSECTOR:
8742 case BPF_PROG_TYPE_SK_LOOKUP:
8743 return true;
8744 default:
8745 break;
8746 }
8747
8748 verbose(env, "cannot update sockmap in this context\n");
8749 return false;
8750 }
8751
allow_tail_call_in_subprogs(struct bpf_verifier_env * env)8752 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8753 {
8754 return env->prog->jit_requested &&
8755 bpf_jit_supports_subprog_tailcalls();
8756 }
8757
check_map_func_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,int func_id)8758 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8759 struct bpf_map *map, int func_id)
8760 {
8761 if (!map)
8762 return 0;
8763
8764 /* We need a two way check, first is from map perspective ... */
8765 switch (map->map_type) {
8766 case BPF_MAP_TYPE_PROG_ARRAY:
8767 if (func_id != BPF_FUNC_tail_call)
8768 goto error;
8769 break;
8770 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8771 if (func_id != BPF_FUNC_perf_event_read &&
8772 func_id != BPF_FUNC_perf_event_output &&
8773 func_id != BPF_FUNC_skb_output &&
8774 func_id != BPF_FUNC_perf_event_read_value &&
8775 func_id != BPF_FUNC_xdp_output)
8776 goto error;
8777 break;
8778 case BPF_MAP_TYPE_RINGBUF:
8779 if (func_id != BPF_FUNC_ringbuf_output &&
8780 func_id != BPF_FUNC_ringbuf_reserve &&
8781 func_id != BPF_FUNC_ringbuf_query &&
8782 func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8783 func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8784 func_id != BPF_FUNC_ringbuf_discard_dynptr)
8785 goto error;
8786 break;
8787 case BPF_MAP_TYPE_USER_RINGBUF:
8788 if (func_id != BPF_FUNC_user_ringbuf_drain)
8789 goto error;
8790 break;
8791 case BPF_MAP_TYPE_STACK_TRACE:
8792 if (func_id != BPF_FUNC_get_stackid)
8793 goto error;
8794 break;
8795 case BPF_MAP_TYPE_CGROUP_ARRAY:
8796 if (func_id != BPF_FUNC_skb_under_cgroup &&
8797 func_id != BPF_FUNC_current_task_under_cgroup)
8798 goto error;
8799 break;
8800 case BPF_MAP_TYPE_CGROUP_STORAGE:
8801 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
8802 if (func_id != BPF_FUNC_get_local_storage)
8803 goto error;
8804 break;
8805 case BPF_MAP_TYPE_DEVMAP:
8806 case BPF_MAP_TYPE_DEVMAP_HASH:
8807 if (func_id != BPF_FUNC_redirect_map &&
8808 func_id != BPF_FUNC_map_lookup_elem)
8809 goto error;
8810 break;
8811 /* Restrict bpf side of cpumap and xskmap, open when use-cases
8812 * appear.
8813 */
8814 case BPF_MAP_TYPE_CPUMAP:
8815 if (func_id != BPF_FUNC_redirect_map)
8816 goto error;
8817 break;
8818 case BPF_MAP_TYPE_XSKMAP:
8819 if (func_id != BPF_FUNC_redirect_map &&
8820 func_id != BPF_FUNC_map_lookup_elem)
8821 goto error;
8822 break;
8823 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
8824 case BPF_MAP_TYPE_HASH_OF_MAPS:
8825 if (func_id != BPF_FUNC_map_lookup_elem)
8826 goto error;
8827 break;
8828 case BPF_MAP_TYPE_SOCKMAP:
8829 if (func_id != BPF_FUNC_sk_redirect_map &&
8830 func_id != BPF_FUNC_sock_map_update &&
8831 func_id != BPF_FUNC_map_delete_elem &&
8832 func_id != BPF_FUNC_msg_redirect_map &&
8833 func_id != BPF_FUNC_sk_select_reuseport &&
8834 func_id != BPF_FUNC_map_lookup_elem &&
8835 !may_update_sockmap(env, func_id))
8836 goto error;
8837 break;
8838 case BPF_MAP_TYPE_SOCKHASH:
8839 if (func_id != BPF_FUNC_sk_redirect_hash &&
8840 func_id != BPF_FUNC_sock_hash_update &&
8841 func_id != BPF_FUNC_map_delete_elem &&
8842 func_id != BPF_FUNC_msg_redirect_hash &&
8843 func_id != BPF_FUNC_sk_select_reuseport &&
8844 func_id != BPF_FUNC_map_lookup_elem &&
8845 !may_update_sockmap(env, func_id))
8846 goto error;
8847 break;
8848 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
8849 if (func_id != BPF_FUNC_sk_select_reuseport)
8850 goto error;
8851 break;
8852 case BPF_MAP_TYPE_QUEUE:
8853 case BPF_MAP_TYPE_STACK:
8854 if (func_id != BPF_FUNC_map_peek_elem &&
8855 func_id != BPF_FUNC_map_pop_elem &&
8856 func_id != BPF_FUNC_map_push_elem)
8857 goto error;
8858 break;
8859 case BPF_MAP_TYPE_SK_STORAGE:
8860 if (func_id != BPF_FUNC_sk_storage_get &&
8861 func_id != BPF_FUNC_sk_storage_delete &&
8862 func_id != BPF_FUNC_kptr_xchg)
8863 goto error;
8864 break;
8865 case BPF_MAP_TYPE_INODE_STORAGE:
8866 if (func_id != BPF_FUNC_inode_storage_get &&
8867 func_id != BPF_FUNC_inode_storage_delete &&
8868 func_id != BPF_FUNC_kptr_xchg)
8869 goto error;
8870 break;
8871 case BPF_MAP_TYPE_TASK_STORAGE:
8872 if (func_id != BPF_FUNC_task_storage_get &&
8873 func_id != BPF_FUNC_task_storage_delete &&
8874 func_id != BPF_FUNC_kptr_xchg)
8875 goto error;
8876 break;
8877 case BPF_MAP_TYPE_CGRP_STORAGE:
8878 if (func_id != BPF_FUNC_cgrp_storage_get &&
8879 func_id != BPF_FUNC_cgrp_storage_delete &&
8880 func_id != BPF_FUNC_kptr_xchg)
8881 goto error;
8882 break;
8883 case BPF_MAP_TYPE_BLOOM_FILTER:
8884 if (func_id != BPF_FUNC_map_peek_elem &&
8885 func_id != BPF_FUNC_map_push_elem)
8886 goto error;
8887 break;
8888 default:
8889 break;
8890 }
8891
8892 /* ... and second from the function itself. */
8893 switch (func_id) {
8894 case BPF_FUNC_tail_call:
8895 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
8896 goto error;
8897 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
8898 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
8899 return -EINVAL;
8900 }
8901 break;
8902 case BPF_FUNC_perf_event_read:
8903 case BPF_FUNC_perf_event_output:
8904 case BPF_FUNC_perf_event_read_value:
8905 case BPF_FUNC_skb_output:
8906 case BPF_FUNC_xdp_output:
8907 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
8908 goto error;
8909 break;
8910 case BPF_FUNC_ringbuf_output:
8911 case BPF_FUNC_ringbuf_reserve:
8912 case BPF_FUNC_ringbuf_query:
8913 case BPF_FUNC_ringbuf_reserve_dynptr:
8914 case BPF_FUNC_ringbuf_submit_dynptr:
8915 case BPF_FUNC_ringbuf_discard_dynptr:
8916 if (map->map_type != BPF_MAP_TYPE_RINGBUF)
8917 goto error;
8918 break;
8919 case BPF_FUNC_user_ringbuf_drain:
8920 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
8921 goto error;
8922 break;
8923 case BPF_FUNC_get_stackid:
8924 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
8925 goto error;
8926 break;
8927 case BPF_FUNC_current_task_under_cgroup:
8928 case BPF_FUNC_skb_under_cgroup:
8929 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
8930 goto error;
8931 break;
8932 case BPF_FUNC_redirect_map:
8933 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
8934 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
8935 map->map_type != BPF_MAP_TYPE_CPUMAP &&
8936 map->map_type != BPF_MAP_TYPE_XSKMAP)
8937 goto error;
8938 break;
8939 case BPF_FUNC_sk_redirect_map:
8940 case BPF_FUNC_msg_redirect_map:
8941 case BPF_FUNC_sock_map_update:
8942 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
8943 goto error;
8944 break;
8945 case BPF_FUNC_sk_redirect_hash:
8946 case BPF_FUNC_msg_redirect_hash:
8947 case BPF_FUNC_sock_hash_update:
8948 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
8949 goto error;
8950 break;
8951 case BPF_FUNC_get_local_storage:
8952 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
8953 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
8954 goto error;
8955 break;
8956 case BPF_FUNC_sk_select_reuseport:
8957 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
8958 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
8959 map->map_type != BPF_MAP_TYPE_SOCKHASH)
8960 goto error;
8961 break;
8962 case BPF_FUNC_map_pop_elem:
8963 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8964 map->map_type != BPF_MAP_TYPE_STACK)
8965 goto error;
8966 break;
8967 case BPF_FUNC_map_peek_elem:
8968 case BPF_FUNC_map_push_elem:
8969 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8970 map->map_type != BPF_MAP_TYPE_STACK &&
8971 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
8972 goto error;
8973 break;
8974 case BPF_FUNC_map_lookup_percpu_elem:
8975 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
8976 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8977 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
8978 goto error;
8979 break;
8980 case BPF_FUNC_sk_storage_get:
8981 case BPF_FUNC_sk_storage_delete:
8982 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
8983 goto error;
8984 break;
8985 case BPF_FUNC_inode_storage_get:
8986 case BPF_FUNC_inode_storage_delete:
8987 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
8988 goto error;
8989 break;
8990 case BPF_FUNC_task_storage_get:
8991 case BPF_FUNC_task_storage_delete:
8992 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
8993 goto error;
8994 break;
8995 case BPF_FUNC_cgrp_storage_get:
8996 case BPF_FUNC_cgrp_storage_delete:
8997 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
8998 goto error;
8999 break;
9000 default:
9001 break;
9002 }
9003
9004 return 0;
9005 error:
9006 verbose(env, "cannot pass map_type %d into func %s#%d\n",
9007 map->map_type, func_id_name(func_id), func_id);
9008 return -EINVAL;
9009 }
9010
check_raw_mode_ok(const struct bpf_func_proto * fn)9011 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
9012 {
9013 int count = 0;
9014
9015 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
9016 count++;
9017 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
9018 count++;
9019 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
9020 count++;
9021 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
9022 count++;
9023 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
9024 count++;
9025
9026 /* We only support one arg being in raw mode at the moment,
9027 * which is sufficient for the helper functions we have
9028 * right now.
9029 */
9030 return count <= 1;
9031 }
9032
check_args_pair_invalid(const struct bpf_func_proto * fn,int arg)9033 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
9034 {
9035 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
9036 bool has_size = fn->arg_size[arg] != 0;
9037 bool is_next_size = false;
9038
9039 if (arg + 1 < ARRAY_SIZE(fn->arg_type))
9040 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
9041
9042 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
9043 return is_next_size;
9044
9045 return has_size == is_next_size || is_next_size == is_fixed;
9046 }
9047
check_arg_pair_ok(const struct bpf_func_proto * fn)9048 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
9049 {
9050 /* bpf_xxx(..., buf, len) call will access 'len'
9051 * bytes from memory 'buf'. Both arg types need
9052 * to be paired, so make sure there's no buggy
9053 * helper function specification.
9054 */
9055 if (arg_type_is_mem_size(fn->arg1_type) ||
9056 check_args_pair_invalid(fn, 0) ||
9057 check_args_pair_invalid(fn, 1) ||
9058 check_args_pair_invalid(fn, 2) ||
9059 check_args_pair_invalid(fn, 3) ||
9060 check_args_pair_invalid(fn, 4))
9061 return false;
9062
9063 return true;
9064 }
9065
check_btf_id_ok(const struct bpf_func_proto * fn)9066 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
9067 {
9068 int i;
9069
9070 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9071 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
9072 return !!fn->arg_btf_id[i];
9073 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
9074 return fn->arg_btf_id[i] == BPF_PTR_POISON;
9075 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
9076 /* arg_btf_id and arg_size are in a union. */
9077 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
9078 !(fn->arg_type[i] & MEM_FIXED_SIZE)))
9079 return false;
9080 }
9081
9082 return true;
9083 }
9084
check_func_proto(const struct bpf_func_proto * fn,int func_id)9085 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
9086 {
9087 return check_raw_mode_ok(fn) &&
9088 check_arg_pair_ok(fn) &&
9089 check_btf_id_ok(fn) ? 0 : -EINVAL;
9090 }
9091
9092 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
9093 * are now invalid, so turn them into unknown SCALAR_VALUE.
9094 *
9095 * This also applies to dynptr slices belonging to skb and xdp dynptrs,
9096 * since these slices point to packet data.
9097 */
clear_all_pkt_pointers(struct bpf_verifier_env * env)9098 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
9099 {
9100 struct bpf_func_state *state;
9101 struct bpf_reg_state *reg;
9102
9103 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9104 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
9105 mark_reg_invalid(env, reg);
9106 }));
9107 }
9108
9109 enum {
9110 AT_PKT_END = -1,
9111 BEYOND_PKT_END = -2,
9112 };
9113
mark_pkt_end(struct bpf_verifier_state * vstate,int regn,bool range_open)9114 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
9115 {
9116 struct bpf_func_state *state = vstate->frame[vstate->curframe];
9117 struct bpf_reg_state *reg = &state->regs[regn];
9118
9119 if (reg->type != PTR_TO_PACKET)
9120 /* PTR_TO_PACKET_META is not supported yet */
9121 return;
9122
9123 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
9124 * How far beyond pkt_end it goes is unknown.
9125 * if (!range_open) it's the case of pkt >= pkt_end
9126 * if (range_open) it's the case of pkt > pkt_end
9127 * hence this pointer is at least 1 byte bigger than pkt_end
9128 */
9129 if (range_open)
9130 reg->range = BEYOND_PKT_END;
9131 else
9132 reg->range = AT_PKT_END;
9133 }
9134
9135 /* The pointer with the specified id has released its reference to kernel
9136 * resources. Identify all copies of the same pointer and clear the reference.
9137 */
release_reference(struct bpf_verifier_env * env,int ref_obj_id)9138 static int release_reference(struct bpf_verifier_env *env,
9139 int ref_obj_id)
9140 {
9141 struct bpf_func_state *state;
9142 struct bpf_reg_state *reg;
9143 int err;
9144
9145 err = release_reference_state(cur_func(env), ref_obj_id);
9146 if (err)
9147 return err;
9148
9149 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9150 if (reg->ref_obj_id == ref_obj_id)
9151 mark_reg_invalid(env, reg);
9152 }));
9153
9154 return 0;
9155 }
9156
invalidate_non_owning_refs(struct bpf_verifier_env * env)9157 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
9158 {
9159 struct bpf_func_state *unused;
9160 struct bpf_reg_state *reg;
9161
9162 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9163 if (type_is_non_owning_ref(reg->type))
9164 mark_reg_invalid(env, reg);
9165 }));
9166 }
9167
clear_caller_saved_regs(struct bpf_verifier_env * env,struct bpf_reg_state * regs)9168 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
9169 struct bpf_reg_state *regs)
9170 {
9171 int i;
9172
9173 /* after the call registers r0 - r5 were scratched */
9174 for (i = 0; i < CALLER_SAVED_REGS; i++) {
9175 mark_reg_not_init(env, regs, caller_saved[i]);
9176 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK);
9177 }
9178 }
9179
9180 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
9181 struct bpf_func_state *caller,
9182 struct bpf_func_state *callee,
9183 int insn_idx);
9184
9185 static int set_callee_state(struct bpf_verifier_env *env,
9186 struct bpf_func_state *caller,
9187 struct bpf_func_state *callee, int insn_idx);
9188
setup_func_entry(struct bpf_verifier_env * env,int subprog,int callsite,set_callee_state_fn set_callee_state_cb,struct bpf_verifier_state * state)9189 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite,
9190 set_callee_state_fn set_callee_state_cb,
9191 struct bpf_verifier_state *state)
9192 {
9193 struct bpf_func_state *caller, *callee;
9194 int err;
9195
9196 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
9197 verbose(env, "the call stack of %d frames is too deep\n",
9198 state->curframe + 2);
9199 return -E2BIG;
9200 }
9201
9202 if (state->frame[state->curframe + 1]) {
9203 verbose(env, "verifier bug. Frame %d already allocated\n",
9204 state->curframe + 1);
9205 return -EFAULT;
9206 }
9207
9208 caller = state->frame[state->curframe];
9209 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
9210 if (!callee)
9211 return -ENOMEM;
9212 state->frame[state->curframe + 1] = callee;
9213
9214 /* callee cannot access r0, r6 - r9 for reading and has to write
9215 * into its own stack before reading from it.
9216 * callee can read/write into caller's stack
9217 */
9218 init_func_state(env, callee,
9219 /* remember the callsite, it will be used by bpf_exit */
9220 callsite,
9221 state->curframe + 1 /* frameno within this callchain */,
9222 subprog /* subprog number within this prog */);
9223 /* Transfer references to the callee */
9224 err = copy_reference_state(callee, caller);
9225 err = err ?: set_callee_state_cb(env, caller, callee, callsite);
9226 if (err)
9227 goto err_out;
9228
9229 /* only increment it after check_reg_arg() finished */
9230 state->curframe++;
9231
9232 return 0;
9233
9234 err_out:
9235 free_func_state(callee);
9236 state->frame[state->curframe + 1] = NULL;
9237 return err;
9238 }
9239
push_callback_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int insn_idx,int subprog,set_callee_state_fn set_callee_state_cb)9240 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9241 int insn_idx, int subprog,
9242 set_callee_state_fn set_callee_state_cb)
9243 {
9244 struct bpf_verifier_state *state = env->cur_state, *callback_state;
9245 struct bpf_func_state *caller, *callee;
9246 int err;
9247
9248 caller = state->frame[state->curframe];
9249 err = btf_check_subprog_call(env, subprog, caller->regs);
9250 if (err == -EFAULT)
9251 return err;
9252
9253 /* set_callee_state is used for direct subprog calls, but we are
9254 * interested in validating only BPF helpers that can call subprogs as
9255 * callbacks
9256 */
9257 if (bpf_pseudo_kfunc_call(insn) &&
9258 !is_sync_callback_calling_kfunc(insn->imm)) {
9259 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
9260 func_id_name(insn->imm), insn->imm);
9261 return -EFAULT;
9262 } else if (!bpf_pseudo_kfunc_call(insn) &&
9263 !is_callback_calling_function(insn->imm)) { /* helper */
9264 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
9265 func_id_name(insn->imm), insn->imm);
9266 return -EFAULT;
9267 }
9268
9269 if (insn->code == (BPF_JMP | BPF_CALL) &&
9270 insn->src_reg == 0 &&
9271 insn->imm == BPF_FUNC_timer_set_callback) {
9272 struct bpf_verifier_state *async_cb;
9273
9274 /* there is no real recursion here. timer callbacks are async */
9275 env->subprog_info[subprog].is_async_cb = true;
9276 async_cb = push_async_cb(env, env->subprog_info[subprog].start,
9277 insn_idx, subprog);
9278 if (!async_cb)
9279 return -EFAULT;
9280 callee = async_cb->frame[0];
9281 callee->async_entry_cnt = caller->async_entry_cnt + 1;
9282
9283 /* Convert bpf_timer_set_callback() args into timer callback args */
9284 err = set_callee_state_cb(env, caller, callee, insn_idx);
9285 if (err)
9286 return err;
9287
9288 return 0;
9289 }
9290
9291 /* for callback functions enqueue entry to callback and
9292 * proceed with next instruction within current frame.
9293 */
9294 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false);
9295 if (!callback_state)
9296 return -ENOMEM;
9297
9298 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb,
9299 callback_state);
9300 if (err)
9301 return err;
9302
9303 callback_state->callback_unroll_depth++;
9304 callback_state->frame[callback_state->curframe - 1]->callback_depth++;
9305 caller->callback_depth = 0;
9306 return 0;
9307 }
9308
check_func_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)9309 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9310 int *insn_idx)
9311 {
9312 struct bpf_verifier_state *state = env->cur_state;
9313 struct bpf_func_state *caller;
9314 int err, subprog, target_insn;
9315
9316 target_insn = *insn_idx + insn->imm + 1;
9317 subprog = find_subprog(env, target_insn);
9318 if (subprog < 0) {
9319 verbose(env, "verifier bug. No program starts at insn %d\n", target_insn);
9320 return -EFAULT;
9321 }
9322
9323 caller = state->frame[state->curframe];
9324 err = btf_check_subprog_call(env, subprog, caller->regs);
9325 if (err == -EFAULT)
9326 return err;
9327 if (subprog_is_global(env, subprog)) {
9328 if (err) {
9329 verbose(env, "Caller passes invalid args into func#%d\n", subprog);
9330 return err;
9331 }
9332
9333 if (env->log.level & BPF_LOG_LEVEL)
9334 verbose(env, "Func#%d is global and valid. Skipping.\n", subprog);
9335 clear_caller_saved_regs(env, caller->regs);
9336
9337 /* All global functions return a 64-bit SCALAR_VALUE */
9338 mark_reg_unknown(env, caller->regs, BPF_REG_0);
9339 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9340
9341 /* continue with next insn after call */
9342 return 0;
9343 }
9344
9345 /* for regular function entry setup new frame and continue
9346 * from that frame.
9347 */
9348 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state);
9349 if (err)
9350 return err;
9351
9352 clear_caller_saved_regs(env, caller->regs);
9353
9354 /* and go analyze first insn of the callee */
9355 *insn_idx = env->subprog_info[subprog].start - 1;
9356
9357 if (env->log.level & BPF_LOG_LEVEL) {
9358 verbose(env, "caller:\n");
9359 print_verifier_state(env, caller, true);
9360 verbose(env, "callee:\n");
9361 print_verifier_state(env, state->frame[state->curframe], true);
9362 }
9363
9364 return 0;
9365 }
9366
map_set_for_each_callback_args(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee)9367 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
9368 struct bpf_func_state *caller,
9369 struct bpf_func_state *callee)
9370 {
9371 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
9372 * void *callback_ctx, u64 flags);
9373 * callback_fn(struct bpf_map *map, void *key, void *value,
9374 * void *callback_ctx);
9375 */
9376 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9377
9378 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9379 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9380 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9381
9382 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9383 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9384 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9385
9386 /* pointer to stack or null */
9387 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9388
9389 /* unused */
9390 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9391 return 0;
9392 }
9393
set_callee_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9394 static int set_callee_state(struct bpf_verifier_env *env,
9395 struct bpf_func_state *caller,
9396 struct bpf_func_state *callee, int insn_idx)
9397 {
9398 int i;
9399
9400 /* copy r1 - r5 args that callee can access. The copy includes parent
9401 * pointers, which connects us up to the liveness chain
9402 */
9403 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9404 callee->regs[i] = caller->regs[i];
9405 return 0;
9406 }
9407
set_map_elem_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9408 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9409 struct bpf_func_state *caller,
9410 struct bpf_func_state *callee,
9411 int insn_idx)
9412 {
9413 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9414 struct bpf_map *map;
9415 int err;
9416
9417 if (bpf_map_ptr_poisoned(insn_aux)) {
9418 verbose(env, "tail_call abusing map_ptr\n");
9419 return -EINVAL;
9420 }
9421
9422 map = BPF_MAP_PTR(insn_aux->map_ptr_state);
9423 if (!map->ops->map_set_for_each_callback_args ||
9424 !map->ops->map_for_each_callback) {
9425 verbose(env, "callback function not allowed for map\n");
9426 return -ENOTSUPP;
9427 }
9428
9429 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9430 if (err)
9431 return err;
9432
9433 callee->in_callback_fn = true;
9434 callee->callback_ret_range = tnum_range(0, 1);
9435 return 0;
9436 }
9437
set_loop_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9438 static int set_loop_callback_state(struct bpf_verifier_env *env,
9439 struct bpf_func_state *caller,
9440 struct bpf_func_state *callee,
9441 int insn_idx)
9442 {
9443 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9444 * u64 flags);
9445 * callback_fn(u32 index, void *callback_ctx);
9446 */
9447 callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9448 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9449
9450 /* unused */
9451 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9452 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9453 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9454
9455 callee->in_callback_fn = true;
9456 callee->callback_ret_range = tnum_range(0, 1);
9457 return 0;
9458 }
9459
set_timer_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9460 static int set_timer_callback_state(struct bpf_verifier_env *env,
9461 struct bpf_func_state *caller,
9462 struct bpf_func_state *callee,
9463 int insn_idx)
9464 {
9465 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9466
9467 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9468 * callback_fn(struct bpf_map *map, void *key, void *value);
9469 */
9470 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9471 __mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9472 callee->regs[BPF_REG_1].map_ptr = map_ptr;
9473
9474 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9475 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9476 callee->regs[BPF_REG_2].map_ptr = map_ptr;
9477
9478 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9479 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9480 callee->regs[BPF_REG_3].map_ptr = map_ptr;
9481
9482 /* unused */
9483 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9484 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9485 callee->in_async_callback_fn = true;
9486 callee->callback_ret_range = tnum_range(0, 1);
9487 return 0;
9488 }
9489
set_find_vma_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9490 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9491 struct bpf_func_state *caller,
9492 struct bpf_func_state *callee,
9493 int insn_idx)
9494 {
9495 /* bpf_find_vma(struct task_struct *task, u64 addr,
9496 * void *callback_fn, void *callback_ctx, u64 flags)
9497 * (callback_fn)(struct task_struct *task,
9498 * struct vm_area_struct *vma, void *callback_ctx);
9499 */
9500 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9501
9502 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9503 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9504 callee->regs[BPF_REG_2].btf = btf_vmlinux;
9505 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
9506
9507 /* pointer to stack or null */
9508 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9509
9510 /* unused */
9511 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9512 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9513 callee->in_callback_fn = true;
9514 callee->callback_ret_range = tnum_range(0, 1);
9515 return 0;
9516 }
9517
set_user_ringbuf_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9518 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9519 struct bpf_func_state *caller,
9520 struct bpf_func_state *callee,
9521 int insn_idx)
9522 {
9523 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9524 * callback_ctx, u64 flags);
9525 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
9526 */
9527 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
9528 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9529 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9530
9531 /* unused */
9532 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9533 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9534 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9535
9536 callee->in_callback_fn = true;
9537 callee->callback_ret_range = tnum_range(0, 1);
9538 return 0;
9539 }
9540
set_rbtree_add_callback_state(struct bpf_verifier_env * env,struct bpf_func_state * caller,struct bpf_func_state * callee,int insn_idx)9541 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9542 struct bpf_func_state *caller,
9543 struct bpf_func_state *callee,
9544 int insn_idx)
9545 {
9546 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
9547 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9548 *
9549 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
9550 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9551 * by this point, so look at 'root'
9552 */
9553 struct btf_field *field;
9554
9555 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9556 BPF_RB_ROOT);
9557 if (!field || !field->graph_root.value_btf_id)
9558 return -EFAULT;
9559
9560 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9561 ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9562 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9563 ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9564
9565 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9566 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9567 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9568 callee->in_callback_fn = true;
9569 callee->callback_ret_range = tnum_range(0, 1);
9570 return 0;
9571 }
9572
9573 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9574
9575 /* Are we currently verifying the callback for a rbtree helper that must
9576 * be called with lock held? If so, no need to complain about unreleased
9577 * lock
9578 */
in_rbtree_lock_required_cb(struct bpf_verifier_env * env)9579 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9580 {
9581 struct bpf_verifier_state *state = env->cur_state;
9582 struct bpf_insn *insn = env->prog->insnsi;
9583 struct bpf_func_state *callee;
9584 int kfunc_btf_id;
9585
9586 if (!state->curframe)
9587 return false;
9588
9589 callee = state->frame[state->curframe];
9590
9591 if (!callee->in_callback_fn)
9592 return false;
9593
9594 kfunc_btf_id = insn[callee->callsite].imm;
9595 return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9596 }
9597
prepare_func_exit(struct bpf_verifier_env * env,int * insn_idx)9598 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9599 {
9600 struct bpf_verifier_state *state = env->cur_state, *prev_st;
9601 struct bpf_func_state *caller, *callee;
9602 struct bpf_reg_state *r0;
9603 bool in_callback_fn;
9604 int err;
9605
9606 callee = state->frame[state->curframe];
9607 r0 = &callee->regs[BPF_REG_0];
9608 if (r0->type == PTR_TO_STACK) {
9609 /* technically it's ok to return caller's stack pointer
9610 * (or caller's caller's pointer) back to the caller,
9611 * since these pointers are valid. Only current stack
9612 * pointer will be invalid as soon as function exits,
9613 * but let's be conservative
9614 */
9615 verbose(env, "cannot return stack pointer to the caller\n");
9616 return -EINVAL;
9617 }
9618
9619 caller = state->frame[state->curframe - 1];
9620 if (callee->in_callback_fn) {
9621 /* enforce R0 return value range [0, 1]. */
9622 struct tnum range = callee->callback_ret_range;
9623
9624 if (r0->type != SCALAR_VALUE) {
9625 verbose(env, "R0 not a scalar value\n");
9626 return -EACCES;
9627 }
9628
9629 /* we are going to rely on register's precise value */
9630 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
9631 err = err ?: mark_chain_precision(env, BPF_REG_0);
9632 if (err)
9633 return err;
9634
9635 if (!tnum_in(range, r0->var_off)) {
9636 verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
9637 return -EINVAL;
9638 }
9639 if (!calls_callback(env, callee->callsite)) {
9640 verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n",
9641 *insn_idx, callee->callsite);
9642 return -EFAULT;
9643 }
9644 } else {
9645 /* return to the caller whatever r0 had in the callee */
9646 caller->regs[BPF_REG_0] = *r0;
9647 }
9648
9649 /* callback_fn frame should have released its own additions to parent's
9650 * reference state at this point, or check_reference_leak would
9651 * complain, hence it must be the same as the caller. There is no need
9652 * to copy it back.
9653 */
9654 if (!callee->in_callback_fn) {
9655 /* Transfer references to the caller */
9656 err = copy_reference_state(caller, callee);
9657 if (err)
9658 return err;
9659 }
9660
9661 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
9662 * there function call logic would reschedule callback visit. If iteration
9663 * converges is_state_visited() would prune that visit eventually.
9664 */
9665 in_callback_fn = callee->in_callback_fn;
9666 if (in_callback_fn)
9667 *insn_idx = callee->callsite;
9668 else
9669 *insn_idx = callee->callsite + 1;
9670
9671 if (env->log.level & BPF_LOG_LEVEL) {
9672 verbose(env, "returning from callee:\n");
9673 print_verifier_state(env, callee, true);
9674 verbose(env, "to caller at %d:\n", *insn_idx);
9675 print_verifier_state(env, caller, true);
9676 }
9677 /* clear everything in the callee */
9678 free_func_state(callee);
9679 state->frame[state->curframe--] = NULL;
9680
9681 /* for callbacks widen imprecise scalars to make programs like below verify:
9682 *
9683 * struct ctx { int i; }
9684 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... }
9685 * ...
9686 * struct ctx = { .i = 0; }
9687 * bpf_loop(100, cb, &ctx, 0);
9688 *
9689 * This is similar to what is done in process_iter_next_call() for open
9690 * coded iterators.
9691 */
9692 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL;
9693 if (prev_st) {
9694 err = widen_imprecise_scalars(env, prev_st, state);
9695 if (err)
9696 return err;
9697 }
9698 return 0;
9699 }
9700
do_refine_retval_range(struct bpf_reg_state * regs,int ret_type,int func_id,struct bpf_call_arg_meta * meta)9701 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
9702 int func_id,
9703 struct bpf_call_arg_meta *meta)
9704 {
9705 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0];
9706
9707 if (ret_type != RET_INTEGER)
9708 return;
9709
9710 switch (func_id) {
9711 case BPF_FUNC_get_stack:
9712 case BPF_FUNC_get_task_stack:
9713 case BPF_FUNC_probe_read_str:
9714 case BPF_FUNC_probe_read_kernel_str:
9715 case BPF_FUNC_probe_read_user_str:
9716 ret_reg->smax_value = meta->msize_max_value;
9717 ret_reg->s32_max_value = meta->msize_max_value;
9718 ret_reg->smin_value = -MAX_ERRNO;
9719 ret_reg->s32_min_value = -MAX_ERRNO;
9720 reg_bounds_sync(ret_reg);
9721 break;
9722 case BPF_FUNC_get_smp_processor_id:
9723 ret_reg->umax_value = nr_cpu_ids - 1;
9724 ret_reg->u32_max_value = nr_cpu_ids - 1;
9725 ret_reg->smax_value = nr_cpu_ids - 1;
9726 ret_reg->s32_max_value = nr_cpu_ids - 1;
9727 ret_reg->umin_value = 0;
9728 ret_reg->u32_min_value = 0;
9729 ret_reg->smin_value = 0;
9730 ret_reg->s32_min_value = 0;
9731 reg_bounds_sync(ret_reg);
9732 break;
9733 }
9734 }
9735
9736 static int
record_func_map(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)9737 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9738 int func_id, int insn_idx)
9739 {
9740 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9741 struct bpf_map *map = meta->map_ptr;
9742
9743 if (func_id != BPF_FUNC_tail_call &&
9744 func_id != BPF_FUNC_map_lookup_elem &&
9745 func_id != BPF_FUNC_map_update_elem &&
9746 func_id != BPF_FUNC_map_delete_elem &&
9747 func_id != BPF_FUNC_map_push_elem &&
9748 func_id != BPF_FUNC_map_pop_elem &&
9749 func_id != BPF_FUNC_map_peek_elem &&
9750 func_id != BPF_FUNC_for_each_map_elem &&
9751 func_id != BPF_FUNC_redirect_map &&
9752 func_id != BPF_FUNC_map_lookup_percpu_elem)
9753 return 0;
9754
9755 if (map == NULL) {
9756 verbose(env, "kernel subsystem misconfigured verifier\n");
9757 return -EINVAL;
9758 }
9759
9760 /* In case of read-only, some additional restrictions
9761 * need to be applied in order to prevent altering the
9762 * state of the map from program side.
9763 */
9764 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
9765 (func_id == BPF_FUNC_map_delete_elem ||
9766 func_id == BPF_FUNC_map_update_elem ||
9767 func_id == BPF_FUNC_map_push_elem ||
9768 func_id == BPF_FUNC_map_pop_elem)) {
9769 verbose(env, "write into map forbidden\n");
9770 return -EACCES;
9771 }
9772
9773 if (!BPF_MAP_PTR(aux->map_ptr_state))
9774 bpf_map_ptr_store(aux, meta->map_ptr,
9775 !meta->map_ptr->bypass_spec_v1);
9776 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
9777 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
9778 !meta->map_ptr->bypass_spec_v1);
9779 return 0;
9780 }
9781
9782 static int
record_func_key(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)9783 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9784 int func_id, int insn_idx)
9785 {
9786 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9787 struct bpf_reg_state *regs = cur_regs(env), *reg;
9788 struct bpf_map *map = meta->map_ptr;
9789 u64 val, max;
9790 int err;
9791
9792 if (func_id != BPF_FUNC_tail_call)
9793 return 0;
9794 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
9795 verbose(env, "kernel subsystem misconfigured verifier\n");
9796 return -EINVAL;
9797 }
9798
9799 reg = ®s[BPF_REG_3];
9800 val = reg->var_off.value;
9801 max = map->max_entries;
9802
9803 if (!(register_is_const(reg) && val < max)) {
9804 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9805 return 0;
9806 }
9807
9808 err = mark_chain_precision(env, BPF_REG_3);
9809 if (err)
9810 return err;
9811 if (bpf_map_key_unseen(aux))
9812 bpf_map_key_store(aux, val);
9813 else if (!bpf_map_key_poisoned(aux) &&
9814 bpf_map_key_immediate(aux) != val)
9815 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9816 return 0;
9817 }
9818
check_reference_leak(struct bpf_verifier_env * env)9819 static int check_reference_leak(struct bpf_verifier_env *env)
9820 {
9821 struct bpf_func_state *state = cur_func(env);
9822 bool refs_lingering = false;
9823 int i;
9824
9825 if (state->frameno && !state->in_callback_fn)
9826 return 0;
9827
9828 for (i = 0; i < state->acquired_refs; i++) {
9829 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
9830 continue;
9831 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
9832 state->refs[i].id, state->refs[i].insn_idx);
9833 refs_lingering = true;
9834 }
9835 return refs_lingering ? -EINVAL : 0;
9836 }
9837
check_bpf_snprintf_call(struct bpf_verifier_env * env,struct bpf_reg_state * regs)9838 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
9839 struct bpf_reg_state *regs)
9840 {
9841 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3];
9842 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5];
9843 struct bpf_map *fmt_map = fmt_reg->map_ptr;
9844 struct bpf_bprintf_data data = {};
9845 int err, fmt_map_off, num_args;
9846 u64 fmt_addr;
9847 char *fmt;
9848
9849 /* data must be an array of u64 */
9850 if (data_len_reg->var_off.value % 8)
9851 return -EINVAL;
9852 num_args = data_len_reg->var_off.value / 8;
9853
9854 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
9855 * and map_direct_value_addr is set.
9856 */
9857 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
9858 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
9859 fmt_map_off);
9860 if (err) {
9861 verbose(env, "verifier bug\n");
9862 return -EFAULT;
9863 }
9864 fmt = (char *)(long)fmt_addr + fmt_map_off;
9865
9866 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
9867 * can focus on validating the format specifiers.
9868 */
9869 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
9870 if (err < 0)
9871 verbose(env, "Invalid format string\n");
9872
9873 return err;
9874 }
9875
check_get_func_ip(struct bpf_verifier_env * env)9876 static int check_get_func_ip(struct bpf_verifier_env *env)
9877 {
9878 enum bpf_prog_type type = resolve_prog_type(env->prog);
9879 int func_id = BPF_FUNC_get_func_ip;
9880
9881 if (type == BPF_PROG_TYPE_TRACING) {
9882 if (!bpf_prog_has_trampoline(env->prog)) {
9883 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
9884 func_id_name(func_id), func_id);
9885 return -ENOTSUPP;
9886 }
9887 return 0;
9888 } else if (type == BPF_PROG_TYPE_KPROBE) {
9889 return 0;
9890 }
9891
9892 verbose(env, "func %s#%d not supported for program type %d\n",
9893 func_id_name(func_id), func_id, type);
9894 return -ENOTSUPP;
9895 }
9896
cur_aux(struct bpf_verifier_env * env)9897 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
9898 {
9899 return &env->insn_aux_data[env->insn_idx];
9900 }
9901
loop_flag_is_zero(struct bpf_verifier_env * env)9902 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
9903 {
9904 struct bpf_reg_state *regs = cur_regs(env);
9905 struct bpf_reg_state *reg = ®s[BPF_REG_4];
9906 bool reg_is_null = register_is_null(reg);
9907
9908 if (reg_is_null)
9909 mark_chain_precision(env, BPF_REG_4);
9910
9911 return reg_is_null;
9912 }
9913
update_loop_inline_state(struct bpf_verifier_env * env,u32 subprogno)9914 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
9915 {
9916 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
9917
9918 if (!state->initialized) {
9919 state->initialized = 1;
9920 state->fit_for_inline = loop_flag_is_zero(env);
9921 state->callback_subprogno = subprogno;
9922 return;
9923 }
9924
9925 if (!state->fit_for_inline)
9926 return;
9927
9928 state->fit_for_inline = (loop_flag_is_zero(env) &&
9929 state->callback_subprogno == subprogno);
9930 }
9931
check_helper_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)9932 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9933 int *insn_idx_p)
9934 {
9935 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9936 const struct bpf_func_proto *fn = NULL;
9937 enum bpf_return_type ret_type;
9938 enum bpf_type_flag ret_flag;
9939 struct bpf_reg_state *regs;
9940 struct bpf_call_arg_meta meta;
9941 int insn_idx = *insn_idx_p;
9942 bool changes_data;
9943 int i, err, func_id;
9944
9945 /* find function prototype */
9946 func_id = insn->imm;
9947 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
9948 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
9949 func_id);
9950 return -EINVAL;
9951 }
9952
9953 if (env->ops->get_func_proto)
9954 fn = env->ops->get_func_proto(func_id, env->prog);
9955 if (!fn) {
9956 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
9957 func_id);
9958 return -EINVAL;
9959 }
9960
9961 /* eBPF programs must be GPL compatible to use GPL-ed functions */
9962 if (!env->prog->gpl_compatible && fn->gpl_only) {
9963 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
9964 return -EINVAL;
9965 }
9966
9967 if (fn->allowed && !fn->allowed(env->prog)) {
9968 verbose(env, "helper call is not allowed in probe\n");
9969 return -EINVAL;
9970 }
9971
9972 if (!env->prog->aux->sleepable && fn->might_sleep) {
9973 verbose(env, "helper call might sleep in a non-sleepable prog\n");
9974 return -EINVAL;
9975 }
9976
9977 /* With LD_ABS/IND some JITs save/restore skb from r1. */
9978 changes_data = bpf_helper_changes_pkt_data(fn->func);
9979 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
9980 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
9981 func_id_name(func_id), func_id);
9982 return -EINVAL;
9983 }
9984
9985 memset(&meta, 0, sizeof(meta));
9986 meta.pkt_access = fn->pkt_access;
9987
9988 err = check_func_proto(fn, func_id);
9989 if (err) {
9990 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
9991 func_id_name(func_id), func_id);
9992 return err;
9993 }
9994
9995 if (env->cur_state->active_rcu_lock) {
9996 if (fn->might_sleep) {
9997 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
9998 func_id_name(func_id), func_id);
9999 return -EINVAL;
10000 }
10001
10002 if (env->prog->aux->sleepable && is_storage_get_function(func_id))
10003 env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10004 }
10005
10006 meta.func_id = func_id;
10007 /* check args */
10008 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
10009 err = check_func_arg(env, i, &meta, fn, insn_idx);
10010 if (err)
10011 return err;
10012 }
10013
10014 err = record_func_map(env, &meta, func_id, insn_idx);
10015 if (err)
10016 return err;
10017
10018 err = record_func_key(env, &meta, func_id, insn_idx);
10019 if (err)
10020 return err;
10021
10022 /* Mark slots with STACK_MISC in case of raw mode, stack offset
10023 * is inferred from register state.
10024 */
10025 for (i = 0; i < meta.access_size; i++) {
10026 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
10027 BPF_WRITE, -1, false, false);
10028 if (err)
10029 return err;
10030 }
10031
10032 regs = cur_regs(env);
10033
10034 if (meta.release_regno) {
10035 err = -EINVAL;
10036 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
10037 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
10038 * is safe to do directly.
10039 */
10040 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
10041 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
10042 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
10043 return -EFAULT;
10044 }
10045 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]);
10046 } else if (meta.ref_obj_id) {
10047 err = release_reference(env, meta.ref_obj_id);
10048 } else if (register_is_null(®s[meta.release_regno])) {
10049 /* meta.ref_obj_id can only be 0 if register that is meant to be
10050 * released is NULL, which must be > R0.
10051 */
10052 err = 0;
10053 }
10054 if (err) {
10055 verbose(env, "func %s#%d reference has not been acquired before\n",
10056 func_id_name(func_id), func_id);
10057 return err;
10058 }
10059 }
10060
10061 switch (func_id) {
10062 case BPF_FUNC_tail_call:
10063 err = check_reference_leak(env);
10064 if (err) {
10065 verbose(env, "tail_call would lead to reference leak\n");
10066 return err;
10067 }
10068 break;
10069 case BPF_FUNC_get_local_storage:
10070 /* check that flags argument in get_local_storage(map, flags) is 0,
10071 * this is required because get_local_storage() can't return an error.
10072 */
10073 if (!register_is_null(®s[BPF_REG_2])) {
10074 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
10075 return -EINVAL;
10076 }
10077 break;
10078 case BPF_FUNC_for_each_map_elem:
10079 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10080 set_map_elem_callback_state);
10081 break;
10082 case BPF_FUNC_timer_set_callback:
10083 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10084 set_timer_callback_state);
10085 break;
10086 case BPF_FUNC_find_vma:
10087 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10088 set_find_vma_callback_state);
10089 break;
10090 case BPF_FUNC_snprintf:
10091 err = check_bpf_snprintf_call(env, regs);
10092 break;
10093 case BPF_FUNC_loop:
10094 update_loop_inline_state(env, meta.subprogno);
10095 /* Verifier relies on R1 value to determine if bpf_loop() iteration
10096 * is finished, thus mark it precise.
10097 */
10098 err = mark_chain_precision(env, BPF_REG_1);
10099 if (err)
10100 return err;
10101 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) {
10102 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10103 set_loop_callback_state);
10104 } else {
10105 cur_func(env)->callback_depth = 0;
10106 if (env->log.level & BPF_LOG_LEVEL2)
10107 verbose(env, "frame%d bpf_loop iteration limit reached\n",
10108 env->cur_state->curframe);
10109 }
10110 break;
10111 case BPF_FUNC_dynptr_from_mem:
10112 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
10113 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
10114 reg_type_str(env, regs[BPF_REG_1].type));
10115 return -EACCES;
10116 }
10117 break;
10118 case BPF_FUNC_set_retval:
10119 if (prog_type == BPF_PROG_TYPE_LSM &&
10120 env->prog->expected_attach_type == BPF_LSM_CGROUP) {
10121 if (!env->prog->aux->attach_func_proto->type) {
10122 /* Make sure programs that attach to void
10123 * hooks don't try to modify return value.
10124 */
10125 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10126 return -EINVAL;
10127 }
10128 }
10129 break;
10130 case BPF_FUNC_dynptr_data:
10131 {
10132 struct bpf_reg_state *reg;
10133 int id, ref_obj_id;
10134
10135 reg = get_dynptr_arg_reg(env, fn, regs);
10136 if (!reg)
10137 return -EFAULT;
10138
10139
10140 if (meta.dynptr_id) {
10141 verbose(env, "verifier internal error: meta.dynptr_id already set\n");
10142 return -EFAULT;
10143 }
10144 if (meta.ref_obj_id) {
10145 verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
10146 return -EFAULT;
10147 }
10148
10149 id = dynptr_id(env, reg);
10150 if (id < 0) {
10151 verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10152 return id;
10153 }
10154
10155 ref_obj_id = dynptr_ref_obj_id(env, reg);
10156 if (ref_obj_id < 0) {
10157 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
10158 return ref_obj_id;
10159 }
10160
10161 meta.dynptr_id = id;
10162 meta.ref_obj_id = ref_obj_id;
10163
10164 break;
10165 }
10166 case BPF_FUNC_dynptr_write:
10167 {
10168 enum bpf_dynptr_type dynptr_type;
10169 struct bpf_reg_state *reg;
10170
10171 reg = get_dynptr_arg_reg(env, fn, regs);
10172 if (!reg)
10173 return -EFAULT;
10174
10175 dynptr_type = dynptr_get_type(env, reg);
10176 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
10177 return -EFAULT;
10178
10179 if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
10180 /* this will trigger clear_all_pkt_pointers(), which will
10181 * invalidate all dynptr slices associated with the skb
10182 */
10183 changes_data = true;
10184
10185 break;
10186 }
10187 case BPF_FUNC_user_ringbuf_drain:
10188 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10189 set_user_ringbuf_callback_state);
10190 break;
10191 }
10192
10193 if (err)
10194 return err;
10195
10196 /* reset caller saved regs */
10197 for (i = 0; i < CALLER_SAVED_REGS; i++) {
10198 mark_reg_not_init(env, regs, caller_saved[i]);
10199 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10200 }
10201
10202 /* helper call returns 64-bit value. */
10203 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10204
10205 /* update return register (already marked as written above) */
10206 ret_type = fn->ret_type;
10207 ret_flag = type_flag(ret_type);
10208
10209 switch (base_type(ret_type)) {
10210 case RET_INTEGER:
10211 /* sets type to SCALAR_VALUE */
10212 mark_reg_unknown(env, regs, BPF_REG_0);
10213 break;
10214 case RET_VOID:
10215 regs[BPF_REG_0].type = NOT_INIT;
10216 break;
10217 case RET_PTR_TO_MAP_VALUE:
10218 /* There is no offset yet applied, variable or fixed */
10219 mark_reg_known_zero(env, regs, BPF_REG_0);
10220 /* remember map_ptr, so that check_map_access()
10221 * can check 'value_size' boundary of memory access
10222 * to map element returned from bpf_map_lookup_elem()
10223 */
10224 if (meta.map_ptr == NULL) {
10225 verbose(env,
10226 "kernel subsystem misconfigured verifier\n");
10227 return -EINVAL;
10228 }
10229 regs[BPF_REG_0].map_ptr = meta.map_ptr;
10230 regs[BPF_REG_0].map_uid = meta.map_uid;
10231 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
10232 if (!type_may_be_null(ret_type) &&
10233 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
10234 regs[BPF_REG_0].id = ++env->id_gen;
10235 }
10236 break;
10237 case RET_PTR_TO_SOCKET:
10238 mark_reg_known_zero(env, regs, BPF_REG_0);
10239 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
10240 break;
10241 case RET_PTR_TO_SOCK_COMMON:
10242 mark_reg_known_zero(env, regs, BPF_REG_0);
10243 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
10244 break;
10245 case RET_PTR_TO_TCP_SOCK:
10246 mark_reg_known_zero(env, regs, BPF_REG_0);
10247 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
10248 break;
10249 case RET_PTR_TO_MEM:
10250 mark_reg_known_zero(env, regs, BPF_REG_0);
10251 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10252 regs[BPF_REG_0].mem_size = meta.mem_size;
10253 break;
10254 case RET_PTR_TO_MEM_OR_BTF_ID:
10255 {
10256 const struct btf_type *t;
10257
10258 mark_reg_known_zero(env, regs, BPF_REG_0);
10259 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
10260 if (!btf_type_is_struct(t)) {
10261 u32 tsize;
10262 const struct btf_type *ret;
10263 const char *tname;
10264
10265 /* resolve the type size of ksym. */
10266 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
10267 if (IS_ERR(ret)) {
10268 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
10269 verbose(env, "unable to resolve the size of type '%s': %ld\n",
10270 tname, PTR_ERR(ret));
10271 return -EINVAL;
10272 }
10273 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10274 regs[BPF_REG_0].mem_size = tsize;
10275 } else {
10276 /* MEM_RDONLY may be carried from ret_flag, but it
10277 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
10278 * it will confuse the check of PTR_TO_BTF_ID in
10279 * check_mem_access().
10280 */
10281 ret_flag &= ~MEM_RDONLY;
10282
10283 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10284 regs[BPF_REG_0].btf = meta.ret_btf;
10285 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
10286 }
10287 break;
10288 }
10289 case RET_PTR_TO_BTF_ID:
10290 {
10291 struct btf *ret_btf;
10292 int ret_btf_id;
10293
10294 mark_reg_known_zero(env, regs, BPF_REG_0);
10295 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10296 if (func_id == BPF_FUNC_kptr_xchg) {
10297 ret_btf = meta.kptr_field->kptr.btf;
10298 ret_btf_id = meta.kptr_field->kptr.btf_id;
10299 if (!btf_is_kernel(ret_btf))
10300 regs[BPF_REG_0].type |= MEM_ALLOC;
10301 } else {
10302 if (fn->ret_btf_id == BPF_PTR_POISON) {
10303 verbose(env, "verifier internal error:");
10304 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
10305 func_id_name(func_id));
10306 return -EINVAL;
10307 }
10308 ret_btf = btf_vmlinux;
10309 ret_btf_id = *fn->ret_btf_id;
10310 }
10311 if (ret_btf_id == 0) {
10312 verbose(env, "invalid return type %u of func %s#%d\n",
10313 base_type(ret_type), func_id_name(func_id),
10314 func_id);
10315 return -EINVAL;
10316 }
10317 regs[BPF_REG_0].btf = ret_btf;
10318 regs[BPF_REG_0].btf_id = ret_btf_id;
10319 break;
10320 }
10321 default:
10322 verbose(env, "unknown return type %u of func %s#%d\n",
10323 base_type(ret_type), func_id_name(func_id), func_id);
10324 return -EINVAL;
10325 }
10326
10327 if (type_may_be_null(regs[BPF_REG_0].type))
10328 regs[BPF_REG_0].id = ++env->id_gen;
10329
10330 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
10331 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
10332 func_id_name(func_id), func_id);
10333 return -EFAULT;
10334 }
10335
10336 if (is_dynptr_ref_function(func_id))
10337 regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
10338
10339 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
10340 /* For release_reference() */
10341 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
10342 } else if (is_acquire_function(func_id, meta.map_ptr)) {
10343 int id = acquire_reference_state(env, insn_idx);
10344
10345 if (id < 0)
10346 return id;
10347 /* For mark_ptr_or_null_reg() */
10348 regs[BPF_REG_0].id = id;
10349 /* For release_reference() */
10350 regs[BPF_REG_0].ref_obj_id = id;
10351 }
10352
10353 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
10354
10355 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
10356 if (err)
10357 return err;
10358
10359 if ((func_id == BPF_FUNC_get_stack ||
10360 func_id == BPF_FUNC_get_task_stack) &&
10361 !env->prog->has_callchain_buf) {
10362 const char *err_str;
10363
10364 #ifdef CONFIG_PERF_EVENTS
10365 err = get_callchain_buffers(sysctl_perf_event_max_stack);
10366 err_str = "cannot get callchain buffer for func %s#%d\n";
10367 #else
10368 err = -ENOTSUPP;
10369 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
10370 #endif
10371 if (err) {
10372 verbose(env, err_str, func_id_name(func_id), func_id);
10373 return err;
10374 }
10375
10376 env->prog->has_callchain_buf = true;
10377 }
10378
10379 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
10380 env->prog->call_get_stack = true;
10381
10382 if (func_id == BPF_FUNC_get_func_ip) {
10383 if (check_get_func_ip(env))
10384 return -ENOTSUPP;
10385 env->prog->call_get_func_ip = true;
10386 }
10387
10388 if (changes_data)
10389 clear_all_pkt_pointers(env);
10390 return 0;
10391 }
10392
10393 /* mark_btf_func_reg_size() is used when the reg size is determined by
10394 * the BTF func_proto's return value size and argument.
10395 */
mark_btf_func_reg_size(struct bpf_verifier_env * env,u32 regno,size_t reg_size)10396 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
10397 size_t reg_size)
10398 {
10399 struct bpf_reg_state *reg = &cur_regs(env)[regno];
10400
10401 if (regno == BPF_REG_0) {
10402 /* Function return value */
10403 reg->live |= REG_LIVE_WRITTEN;
10404 reg->subreg_def = reg_size == sizeof(u64) ?
10405 DEF_NOT_SUBREG : env->insn_idx + 1;
10406 } else {
10407 /* Function argument */
10408 if (reg_size == sizeof(u64)) {
10409 mark_insn_zext(env, reg);
10410 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
10411 } else {
10412 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10413 }
10414 }
10415 }
10416
is_kfunc_acquire(struct bpf_kfunc_call_arg_meta * meta)10417 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10418 {
10419 return meta->kfunc_flags & KF_ACQUIRE;
10420 }
10421
is_kfunc_release(struct bpf_kfunc_call_arg_meta * meta)10422 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10423 {
10424 return meta->kfunc_flags & KF_RELEASE;
10425 }
10426
is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta * meta)10427 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10428 {
10429 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10430 }
10431
is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta * meta)10432 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10433 {
10434 return meta->kfunc_flags & KF_SLEEPABLE;
10435 }
10436
is_kfunc_destructive(struct bpf_kfunc_call_arg_meta * meta)10437 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10438 {
10439 return meta->kfunc_flags & KF_DESTRUCTIVE;
10440 }
10441
is_kfunc_rcu(struct bpf_kfunc_call_arg_meta * meta)10442 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10443 {
10444 return meta->kfunc_flags & KF_RCU;
10445 }
10446
__kfunc_param_match_suffix(const struct btf * btf,const struct btf_param * arg,const char * suffix)10447 static bool __kfunc_param_match_suffix(const struct btf *btf,
10448 const struct btf_param *arg,
10449 const char *suffix)
10450 {
10451 int suffix_len = strlen(suffix), len;
10452 const char *param_name;
10453
10454 /* In the future, this can be ported to use BTF tagging */
10455 param_name = btf_name_by_offset(btf, arg->name_off);
10456 if (str_is_empty(param_name))
10457 return false;
10458 len = strlen(param_name);
10459 if (len < suffix_len)
10460 return false;
10461 param_name += len - suffix_len;
10462 return !strncmp(param_name, suffix, suffix_len);
10463 }
10464
is_kfunc_arg_mem_size(const struct btf * btf,const struct btf_param * arg,const struct bpf_reg_state * reg)10465 static bool is_kfunc_arg_mem_size(const struct btf *btf,
10466 const struct btf_param *arg,
10467 const struct bpf_reg_state *reg)
10468 {
10469 const struct btf_type *t;
10470
10471 t = btf_type_skip_modifiers(btf, arg->type, NULL);
10472 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10473 return false;
10474
10475 return __kfunc_param_match_suffix(btf, arg, "__sz");
10476 }
10477
is_kfunc_arg_const_mem_size(const struct btf * btf,const struct btf_param * arg,const struct bpf_reg_state * reg)10478 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
10479 const struct btf_param *arg,
10480 const struct bpf_reg_state *reg)
10481 {
10482 const struct btf_type *t;
10483
10484 t = btf_type_skip_modifiers(btf, arg->type, NULL);
10485 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10486 return false;
10487
10488 return __kfunc_param_match_suffix(btf, arg, "__szk");
10489 }
10490
is_kfunc_arg_optional(const struct btf * btf,const struct btf_param * arg)10491 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
10492 {
10493 return __kfunc_param_match_suffix(btf, arg, "__opt");
10494 }
10495
is_kfunc_arg_constant(const struct btf * btf,const struct btf_param * arg)10496 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
10497 {
10498 return __kfunc_param_match_suffix(btf, arg, "__k");
10499 }
10500
is_kfunc_arg_ignore(const struct btf * btf,const struct btf_param * arg)10501 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
10502 {
10503 return __kfunc_param_match_suffix(btf, arg, "__ign");
10504 }
10505
is_kfunc_arg_alloc_obj(const struct btf * btf,const struct btf_param * arg)10506 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
10507 {
10508 return __kfunc_param_match_suffix(btf, arg, "__alloc");
10509 }
10510
is_kfunc_arg_uninit(const struct btf * btf,const struct btf_param * arg)10511 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
10512 {
10513 return __kfunc_param_match_suffix(btf, arg, "__uninit");
10514 }
10515
is_kfunc_arg_refcounted_kptr(const struct btf * btf,const struct btf_param * arg)10516 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
10517 {
10518 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
10519 }
10520
is_kfunc_arg_scalar_with_name(const struct btf * btf,const struct btf_param * arg,const char * name)10521 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
10522 const struct btf_param *arg,
10523 const char *name)
10524 {
10525 int len, target_len = strlen(name);
10526 const char *param_name;
10527
10528 param_name = btf_name_by_offset(btf, arg->name_off);
10529 if (str_is_empty(param_name))
10530 return false;
10531 len = strlen(param_name);
10532 if (len != target_len)
10533 return false;
10534 if (strcmp(param_name, name))
10535 return false;
10536
10537 return true;
10538 }
10539
10540 enum {
10541 KF_ARG_DYNPTR_ID,
10542 KF_ARG_LIST_HEAD_ID,
10543 KF_ARG_LIST_NODE_ID,
10544 KF_ARG_RB_ROOT_ID,
10545 KF_ARG_RB_NODE_ID,
10546 };
10547
10548 BTF_ID_LIST(kf_arg_btf_ids)
BTF_ID(struct,bpf_dynptr_kern)10549 BTF_ID(struct, bpf_dynptr_kern)
10550 BTF_ID(struct, bpf_list_head)
10551 BTF_ID(struct, bpf_list_node)
10552 BTF_ID(struct, bpf_rb_root)
10553 BTF_ID(struct, bpf_rb_node)
10554
10555 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
10556 const struct btf_param *arg, int type)
10557 {
10558 const struct btf_type *t;
10559 u32 res_id;
10560
10561 t = btf_type_skip_modifiers(btf, arg->type, NULL);
10562 if (!t)
10563 return false;
10564 if (!btf_type_is_ptr(t))
10565 return false;
10566 t = btf_type_skip_modifiers(btf, t->type, &res_id);
10567 if (!t)
10568 return false;
10569 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
10570 }
10571
is_kfunc_arg_dynptr(const struct btf * btf,const struct btf_param * arg)10572 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
10573 {
10574 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
10575 }
10576
is_kfunc_arg_list_head(const struct btf * btf,const struct btf_param * arg)10577 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
10578 {
10579 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
10580 }
10581
is_kfunc_arg_list_node(const struct btf * btf,const struct btf_param * arg)10582 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
10583 {
10584 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
10585 }
10586
is_kfunc_arg_rbtree_root(const struct btf * btf,const struct btf_param * arg)10587 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
10588 {
10589 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
10590 }
10591
is_kfunc_arg_rbtree_node(const struct btf * btf,const struct btf_param * arg)10592 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
10593 {
10594 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
10595 }
10596
is_kfunc_arg_callback(struct bpf_verifier_env * env,const struct btf * btf,const struct btf_param * arg)10597 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10598 const struct btf_param *arg)
10599 {
10600 const struct btf_type *t;
10601
10602 t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10603 if (!t)
10604 return false;
10605
10606 return true;
10607 }
10608
10609 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
__btf_type_is_scalar_struct(struct bpf_verifier_env * env,const struct btf * btf,const struct btf_type * t,int rec)10610 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10611 const struct btf *btf,
10612 const struct btf_type *t, int rec)
10613 {
10614 const struct btf_type *member_type;
10615 const struct btf_member *member;
10616 u32 i;
10617
10618 if (!btf_type_is_struct(t))
10619 return false;
10620
10621 for_each_member(i, t, member) {
10622 const struct btf_array *array;
10623
10624 member_type = btf_type_skip_modifiers(btf, member->type, NULL);
10625 if (btf_type_is_struct(member_type)) {
10626 if (rec >= 3) {
10627 verbose(env, "max struct nesting depth exceeded\n");
10628 return false;
10629 }
10630 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
10631 return false;
10632 continue;
10633 }
10634 if (btf_type_is_array(member_type)) {
10635 array = btf_array(member_type);
10636 if (!array->nelems)
10637 return false;
10638 member_type = btf_type_skip_modifiers(btf, array->type, NULL);
10639 if (!btf_type_is_scalar(member_type))
10640 return false;
10641 continue;
10642 }
10643 if (!btf_type_is_scalar(member_type))
10644 return false;
10645 }
10646 return true;
10647 }
10648
10649 enum kfunc_ptr_arg_type {
10650 KF_ARG_PTR_TO_CTX,
10651 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */
10652 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
10653 KF_ARG_PTR_TO_DYNPTR,
10654 KF_ARG_PTR_TO_ITER,
10655 KF_ARG_PTR_TO_LIST_HEAD,
10656 KF_ARG_PTR_TO_LIST_NODE,
10657 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */
10658 KF_ARG_PTR_TO_MEM,
10659 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */
10660 KF_ARG_PTR_TO_CALLBACK,
10661 KF_ARG_PTR_TO_RB_ROOT,
10662 KF_ARG_PTR_TO_RB_NODE,
10663 };
10664
10665 enum special_kfunc_type {
10666 KF_bpf_obj_new_impl,
10667 KF_bpf_obj_drop_impl,
10668 KF_bpf_refcount_acquire_impl,
10669 KF_bpf_list_push_front_impl,
10670 KF_bpf_list_push_back_impl,
10671 KF_bpf_list_pop_front,
10672 KF_bpf_list_pop_back,
10673 KF_bpf_cast_to_kern_ctx,
10674 KF_bpf_rdonly_cast,
10675 KF_bpf_rcu_read_lock,
10676 KF_bpf_rcu_read_unlock,
10677 KF_bpf_rbtree_remove,
10678 KF_bpf_rbtree_add_impl,
10679 KF_bpf_rbtree_first,
10680 KF_bpf_dynptr_from_skb,
10681 KF_bpf_dynptr_from_xdp,
10682 KF_bpf_dynptr_slice,
10683 KF_bpf_dynptr_slice_rdwr,
10684 KF_bpf_dynptr_clone,
10685 };
10686
10687 BTF_SET_START(special_kfunc_set)
BTF_ID(func,bpf_obj_new_impl)10688 BTF_ID(func, bpf_obj_new_impl)
10689 BTF_ID(func, bpf_obj_drop_impl)
10690 BTF_ID(func, bpf_refcount_acquire_impl)
10691 BTF_ID(func, bpf_list_push_front_impl)
10692 BTF_ID(func, bpf_list_push_back_impl)
10693 BTF_ID(func, bpf_list_pop_front)
10694 BTF_ID(func, bpf_list_pop_back)
10695 BTF_ID(func, bpf_cast_to_kern_ctx)
10696 BTF_ID(func, bpf_rdonly_cast)
10697 BTF_ID(func, bpf_rbtree_remove)
10698 BTF_ID(func, bpf_rbtree_add_impl)
10699 BTF_ID(func, bpf_rbtree_first)
10700 BTF_ID(func, bpf_dynptr_from_skb)
10701 BTF_ID(func, bpf_dynptr_from_xdp)
10702 BTF_ID(func, bpf_dynptr_slice)
10703 BTF_ID(func, bpf_dynptr_slice_rdwr)
10704 BTF_ID(func, bpf_dynptr_clone)
10705 BTF_SET_END(special_kfunc_set)
10706
10707 BTF_ID_LIST(special_kfunc_list)
10708 BTF_ID(func, bpf_obj_new_impl)
10709 BTF_ID(func, bpf_obj_drop_impl)
10710 BTF_ID(func, bpf_refcount_acquire_impl)
10711 BTF_ID(func, bpf_list_push_front_impl)
10712 BTF_ID(func, bpf_list_push_back_impl)
10713 BTF_ID(func, bpf_list_pop_front)
10714 BTF_ID(func, bpf_list_pop_back)
10715 BTF_ID(func, bpf_cast_to_kern_ctx)
10716 BTF_ID(func, bpf_rdonly_cast)
10717 BTF_ID(func, bpf_rcu_read_lock)
10718 BTF_ID(func, bpf_rcu_read_unlock)
10719 BTF_ID(func, bpf_rbtree_remove)
10720 BTF_ID(func, bpf_rbtree_add_impl)
10721 BTF_ID(func, bpf_rbtree_first)
10722 BTF_ID(func, bpf_dynptr_from_skb)
10723 BTF_ID(func, bpf_dynptr_from_xdp)
10724 BTF_ID(func, bpf_dynptr_slice)
10725 BTF_ID(func, bpf_dynptr_slice_rdwr)
10726 BTF_ID(func, bpf_dynptr_clone)
10727
10728 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
10729 {
10730 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
10731 meta->arg_owning_ref) {
10732 return false;
10733 }
10734
10735 return meta->kfunc_flags & KF_RET_NULL;
10736 }
10737
is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta * meta)10738 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
10739 {
10740 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
10741 }
10742
is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta * meta)10743 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
10744 {
10745 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
10746 }
10747
10748 static enum kfunc_ptr_arg_type
get_kfunc_ptr_arg_type(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,const struct btf_type * t,const struct btf_type * ref_t,const char * ref_tname,const struct btf_param * args,int argno,int nargs)10749 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
10750 struct bpf_kfunc_call_arg_meta *meta,
10751 const struct btf_type *t, const struct btf_type *ref_t,
10752 const char *ref_tname, const struct btf_param *args,
10753 int argno, int nargs)
10754 {
10755 u32 regno = argno + 1;
10756 struct bpf_reg_state *regs = cur_regs(env);
10757 struct bpf_reg_state *reg = ®s[regno];
10758 bool arg_mem_size = false;
10759
10760 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
10761 return KF_ARG_PTR_TO_CTX;
10762
10763 /* In this function, we verify the kfunc's BTF as per the argument type,
10764 * leaving the rest of the verification with respect to the register
10765 * type to our caller. When a set of conditions hold in the BTF type of
10766 * arguments, we resolve it to a known kfunc_ptr_arg_type.
10767 */
10768 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
10769 return KF_ARG_PTR_TO_CTX;
10770
10771 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
10772 return KF_ARG_PTR_TO_ALLOC_BTF_ID;
10773
10774 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
10775 return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
10776
10777 if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
10778 return KF_ARG_PTR_TO_DYNPTR;
10779
10780 if (is_kfunc_arg_iter(meta, argno))
10781 return KF_ARG_PTR_TO_ITER;
10782
10783 if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
10784 return KF_ARG_PTR_TO_LIST_HEAD;
10785
10786 if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
10787 return KF_ARG_PTR_TO_LIST_NODE;
10788
10789 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
10790 return KF_ARG_PTR_TO_RB_ROOT;
10791
10792 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
10793 return KF_ARG_PTR_TO_RB_NODE;
10794
10795 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
10796 if (!btf_type_is_struct(ref_t)) {
10797 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
10798 meta->func_name, argno, btf_type_str(ref_t), ref_tname);
10799 return -EINVAL;
10800 }
10801 return KF_ARG_PTR_TO_BTF_ID;
10802 }
10803
10804 if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
10805 return KF_ARG_PTR_TO_CALLBACK;
10806
10807
10808 if (argno + 1 < nargs &&
10809 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) ||
10810 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1])))
10811 arg_mem_size = true;
10812
10813 /* This is the catch all argument type of register types supported by
10814 * check_helper_mem_access. However, we only allow when argument type is
10815 * pointer to scalar, or struct composed (recursively) of scalars. When
10816 * arg_mem_size is true, the pointer can be void *.
10817 */
10818 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
10819 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
10820 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
10821 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
10822 return -EINVAL;
10823 }
10824 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
10825 }
10826
process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env * env,struct bpf_reg_state * reg,const struct btf_type * ref_t,const char * ref_tname,u32 ref_id,struct bpf_kfunc_call_arg_meta * meta,int argno)10827 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
10828 struct bpf_reg_state *reg,
10829 const struct btf_type *ref_t,
10830 const char *ref_tname, u32 ref_id,
10831 struct bpf_kfunc_call_arg_meta *meta,
10832 int argno)
10833 {
10834 const struct btf_type *reg_ref_t;
10835 bool strict_type_match = false;
10836 const struct btf *reg_btf;
10837 const char *reg_ref_tname;
10838 u32 reg_ref_id;
10839
10840 if (base_type(reg->type) == PTR_TO_BTF_ID) {
10841 reg_btf = reg->btf;
10842 reg_ref_id = reg->btf_id;
10843 } else {
10844 reg_btf = btf_vmlinux;
10845 reg_ref_id = *reg2btf_ids[base_type(reg->type)];
10846 }
10847
10848 /* Enforce strict type matching for calls to kfuncs that are acquiring
10849 * or releasing a reference, or are no-cast aliases. We do _not_
10850 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
10851 * as we want to enable BPF programs to pass types that are bitwise
10852 * equivalent without forcing them to explicitly cast with something
10853 * like bpf_cast_to_kern_ctx().
10854 *
10855 * For example, say we had a type like the following:
10856 *
10857 * struct bpf_cpumask {
10858 * cpumask_t cpumask;
10859 * refcount_t usage;
10860 * };
10861 *
10862 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
10863 * to a struct cpumask, so it would be safe to pass a struct
10864 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
10865 *
10866 * The philosophy here is similar to how we allow scalars of different
10867 * types to be passed to kfuncs as long as the size is the same. The
10868 * only difference here is that we're simply allowing
10869 * btf_struct_ids_match() to walk the struct at the 0th offset, and
10870 * resolve types.
10871 */
10872 if (is_kfunc_acquire(meta) ||
10873 (is_kfunc_release(meta) && reg->ref_obj_id) ||
10874 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
10875 strict_type_match = true;
10876
10877 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
10878
10879 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id);
10880 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
10881 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
10882 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
10883 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
10884 btf_type_str(reg_ref_t), reg_ref_tname);
10885 return -EINVAL;
10886 }
10887 return 0;
10888 }
10889
ref_set_non_owning(struct bpf_verifier_env * env,struct bpf_reg_state * reg)10890 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10891 {
10892 struct bpf_verifier_state *state = env->cur_state;
10893 struct btf_record *rec = reg_btf_record(reg);
10894
10895 if (!state->active_lock.ptr) {
10896 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
10897 return -EFAULT;
10898 }
10899
10900 if (type_flag(reg->type) & NON_OWN_REF) {
10901 verbose(env, "verifier internal error: NON_OWN_REF already set\n");
10902 return -EFAULT;
10903 }
10904
10905 reg->type |= NON_OWN_REF;
10906 if (rec->refcount_off >= 0)
10907 reg->type |= MEM_RCU;
10908
10909 return 0;
10910 }
10911
ref_convert_owning_non_owning(struct bpf_verifier_env * env,u32 ref_obj_id)10912 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
10913 {
10914 struct bpf_func_state *state, *unused;
10915 struct bpf_reg_state *reg;
10916 int i;
10917
10918 state = cur_func(env);
10919
10920 if (!ref_obj_id) {
10921 verbose(env, "verifier internal error: ref_obj_id is zero for "
10922 "owning -> non-owning conversion\n");
10923 return -EFAULT;
10924 }
10925
10926 for (i = 0; i < state->acquired_refs; i++) {
10927 if (state->refs[i].id != ref_obj_id)
10928 continue;
10929
10930 /* Clear ref_obj_id here so release_reference doesn't clobber
10931 * the whole reg
10932 */
10933 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
10934 if (reg->ref_obj_id == ref_obj_id) {
10935 reg->ref_obj_id = 0;
10936 ref_set_non_owning(env, reg);
10937 }
10938 }));
10939 return 0;
10940 }
10941
10942 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
10943 return -EFAULT;
10944 }
10945
10946 /* Implementation details:
10947 *
10948 * Each register points to some region of memory, which we define as an
10949 * allocation. Each allocation may embed a bpf_spin_lock which protects any
10950 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
10951 * allocation. The lock and the data it protects are colocated in the same
10952 * memory region.
10953 *
10954 * Hence, everytime a register holds a pointer value pointing to such
10955 * allocation, the verifier preserves a unique reg->id for it.
10956 *
10957 * The verifier remembers the lock 'ptr' and the lock 'id' whenever
10958 * bpf_spin_lock is called.
10959 *
10960 * To enable this, lock state in the verifier captures two values:
10961 * active_lock.ptr = Register's type specific pointer
10962 * active_lock.id = A unique ID for each register pointer value
10963 *
10964 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
10965 * supported register types.
10966 *
10967 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
10968 * allocated objects is the reg->btf pointer.
10969 *
10970 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
10971 * can establish the provenance of the map value statically for each distinct
10972 * lookup into such maps. They always contain a single map value hence unique
10973 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
10974 *
10975 * So, in case of global variables, they use array maps with max_entries = 1,
10976 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
10977 * into the same map value as max_entries is 1, as described above).
10978 *
10979 * In case of inner map lookups, the inner map pointer has same map_ptr as the
10980 * outer map pointer (in verifier context), but each lookup into an inner map
10981 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
10982 * maps from the same outer map share the same map_ptr as active_lock.ptr, they
10983 * will get different reg->id assigned to each lookup, hence different
10984 * active_lock.id.
10985 *
10986 * In case of allocated objects, active_lock.ptr is the reg->btf, and the
10987 * reg->id is a unique ID preserved after the NULL pointer check on the pointer
10988 * returned from bpf_obj_new. Each allocation receives a new reg->id.
10989 */
check_reg_allocation_locked(struct bpf_verifier_env * env,struct bpf_reg_state * reg)10990 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10991 {
10992 void *ptr;
10993 u32 id;
10994
10995 switch ((int)reg->type) {
10996 case PTR_TO_MAP_VALUE:
10997 ptr = reg->map_ptr;
10998 break;
10999 case PTR_TO_BTF_ID | MEM_ALLOC:
11000 ptr = reg->btf;
11001 break;
11002 default:
11003 verbose(env, "verifier internal error: unknown reg type for lock check\n");
11004 return -EFAULT;
11005 }
11006 id = reg->id;
11007
11008 if (!env->cur_state->active_lock.ptr)
11009 return -EINVAL;
11010 if (env->cur_state->active_lock.ptr != ptr ||
11011 env->cur_state->active_lock.id != id) {
11012 verbose(env, "held lock and object are not in the same allocation\n");
11013 return -EINVAL;
11014 }
11015 return 0;
11016 }
11017
is_bpf_list_api_kfunc(u32 btf_id)11018 static bool is_bpf_list_api_kfunc(u32 btf_id)
11019 {
11020 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11021 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11022 btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11023 btf_id == special_kfunc_list[KF_bpf_list_pop_back];
11024 }
11025
is_bpf_rbtree_api_kfunc(u32 btf_id)11026 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
11027 {
11028 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
11029 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11030 btf_id == special_kfunc_list[KF_bpf_rbtree_first];
11031 }
11032
is_bpf_graph_api_kfunc(u32 btf_id)11033 static bool is_bpf_graph_api_kfunc(u32 btf_id)
11034 {
11035 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
11036 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
11037 }
11038
is_sync_callback_calling_kfunc(u32 btf_id)11039 static bool is_sync_callback_calling_kfunc(u32 btf_id)
11040 {
11041 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
11042 }
11043
is_rbtree_lock_required_kfunc(u32 btf_id)11044 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
11045 {
11046 return is_bpf_rbtree_api_kfunc(btf_id);
11047 }
11048
check_kfunc_is_graph_root_api(struct bpf_verifier_env * env,enum btf_field_type head_field_type,u32 kfunc_btf_id)11049 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
11050 enum btf_field_type head_field_type,
11051 u32 kfunc_btf_id)
11052 {
11053 bool ret;
11054
11055 switch (head_field_type) {
11056 case BPF_LIST_HEAD:
11057 ret = is_bpf_list_api_kfunc(kfunc_btf_id);
11058 break;
11059 case BPF_RB_ROOT:
11060 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
11061 break;
11062 default:
11063 verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
11064 btf_field_type_name(head_field_type));
11065 return false;
11066 }
11067
11068 if (!ret)
11069 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
11070 btf_field_type_name(head_field_type));
11071 return ret;
11072 }
11073
check_kfunc_is_graph_node_api(struct bpf_verifier_env * env,enum btf_field_type node_field_type,u32 kfunc_btf_id)11074 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
11075 enum btf_field_type node_field_type,
11076 u32 kfunc_btf_id)
11077 {
11078 bool ret;
11079
11080 switch (node_field_type) {
11081 case BPF_LIST_NODE:
11082 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11083 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
11084 break;
11085 case BPF_RB_NODE:
11086 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11087 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
11088 break;
11089 default:
11090 verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
11091 btf_field_type_name(node_field_type));
11092 return false;
11093 }
11094
11095 if (!ret)
11096 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
11097 btf_field_type_name(node_field_type));
11098 return ret;
11099 }
11100
11101 static int
__process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta,enum btf_field_type head_field_type,struct btf_field ** head_field)11102 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
11103 struct bpf_reg_state *reg, u32 regno,
11104 struct bpf_kfunc_call_arg_meta *meta,
11105 enum btf_field_type head_field_type,
11106 struct btf_field **head_field)
11107 {
11108 const char *head_type_name;
11109 struct btf_field *field;
11110 struct btf_record *rec;
11111 u32 head_off;
11112
11113 if (meta->btf != btf_vmlinux) {
11114 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11115 return -EFAULT;
11116 }
11117
11118 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
11119 return -EFAULT;
11120
11121 head_type_name = btf_field_type_name(head_field_type);
11122 if (!tnum_is_const(reg->var_off)) {
11123 verbose(env,
11124 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
11125 regno, head_type_name);
11126 return -EINVAL;
11127 }
11128
11129 rec = reg_btf_record(reg);
11130 head_off = reg->off + reg->var_off.value;
11131 field = btf_record_find(rec, head_off, head_field_type);
11132 if (!field) {
11133 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
11134 return -EINVAL;
11135 }
11136
11137 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */
11138 if (check_reg_allocation_locked(env, reg)) {
11139 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
11140 rec->spin_lock_off, head_type_name);
11141 return -EINVAL;
11142 }
11143
11144 if (*head_field) {
11145 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
11146 return -EFAULT;
11147 }
11148 *head_field = field;
11149 return 0;
11150 }
11151
process_kf_arg_ptr_to_list_head(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)11152 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
11153 struct bpf_reg_state *reg, u32 regno,
11154 struct bpf_kfunc_call_arg_meta *meta)
11155 {
11156 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
11157 &meta->arg_list_head.field);
11158 }
11159
process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)11160 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
11161 struct bpf_reg_state *reg, u32 regno,
11162 struct bpf_kfunc_call_arg_meta *meta)
11163 {
11164 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
11165 &meta->arg_rbtree_root.field);
11166 }
11167
11168 static int
__process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta,enum btf_field_type head_field_type,enum btf_field_type node_field_type,struct btf_field ** node_field)11169 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
11170 struct bpf_reg_state *reg, u32 regno,
11171 struct bpf_kfunc_call_arg_meta *meta,
11172 enum btf_field_type head_field_type,
11173 enum btf_field_type node_field_type,
11174 struct btf_field **node_field)
11175 {
11176 const char *node_type_name;
11177 const struct btf_type *et, *t;
11178 struct btf_field *field;
11179 u32 node_off;
11180
11181 if (meta->btf != btf_vmlinux) {
11182 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11183 return -EFAULT;
11184 }
11185
11186 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
11187 return -EFAULT;
11188
11189 node_type_name = btf_field_type_name(node_field_type);
11190 if (!tnum_is_const(reg->var_off)) {
11191 verbose(env,
11192 "R%d doesn't have constant offset. %s has to be at the constant offset\n",
11193 regno, node_type_name);
11194 return -EINVAL;
11195 }
11196
11197 node_off = reg->off + reg->var_off.value;
11198 field = reg_find_field_offset(reg, node_off, node_field_type);
11199 if (!field || field->offset != node_off) {
11200 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
11201 return -EINVAL;
11202 }
11203
11204 field = *node_field;
11205
11206 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
11207 t = btf_type_by_id(reg->btf, reg->btf_id);
11208 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
11209 field->graph_root.value_btf_id, true)) {
11210 verbose(env, "operation on %s expects arg#1 %s at offset=%d "
11211 "in struct %s, but arg is at offset=%d in struct %s\n",
11212 btf_field_type_name(head_field_type),
11213 btf_field_type_name(node_field_type),
11214 field->graph_root.node_offset,
11215 btf_name_by_offset(field->graph_root.btf, et->name_off),
11216 node_off, btf_name_by_offset(reg->btf, t->name_off));
11217 return -EINVAL;
11218 }
11219 meta->arg_btf = reg->btf;
11220 meta->arg_btf_id = reg->btf_id;
11221
11222 if (node_off != field->graph_root.node_offset) {
11223 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
11224 node_off, btf_field_type_name(node_field_type),
11225 field->graph_root.node_offset,
11226 btf_name_by_offset(field->graph_root.btf, et->name_off));
11227 return -EINVAL;
11228 }
11229
11230 return 0;
11231 }
11232
process_kf_arg_ptr_to_list_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)11233 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
11234 struct bpf_reg_state *reg, u32 regno,
11235 struct bpf_kfunc_call_arg_meta *meta)
11236 {
11237 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11238 BPF_LIST_HEAD, BPF_LIST_NODE,
11239 &meta->arg_list_head.field);
11240 }
11241
process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env * env,struct bpf_reg_state * reg,u32 regno,struct bpf_kfunc_call_arg_meta * meta)11242 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
11243 struct bpf_reg_state *reg, u32 regno,
11244 struct bpf_kfunc_call_arg_meta *meta)
11245 {
11246 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11247 BPF_RB_ROOT, BPF_RB_NODE,
11248 &meta->arg_rbtree_root.field);
11249 }
11250
check_kfunc_args(struct bpf_verifier_env * env,struct bpf_kfunc_call_arg_meta * meta,int insn_idx)11251 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
11252 int insn_idx)
11253 {
11254 const char *func_name = meta->func_name, *ref_tname;
11255 const struct btf *btf = meta->btf;
11256 const struct btf_param *args;
11257 struct btf_record *rec;
11258 u32 i, nargs;
11259 int ret;
11260
11261 args = (const struct btf_param *)(meta->func_proto + 1);
11262 nargs = btf_type_vlen(meta->func_proto);
11263 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
11264 verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
11265 MAX_BPF_FUNC_REG_ARGS);
11266 return -EINVAL;
11267 }
11268
11269 /* Check that BTF function arguments match actual types that the
11270 * verifier sees.
11271 */
11272 for (i = 0; i < nargs; i++) {
11273 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1];
11274 const struct btf_type *t, *ref_t, *resolve_ret;
11275 enum bpf_arg_type arg_type = ARG_DONTCARE;
11276 u32 regno = i + 1, ref_id, type_size;
11277 bool is_ret_buf_sz = false;
11278 int kf_arg_type;
11279
11280 t = btf_type_skip_modifiers(btf, args[i].type, NULL);
11281
11282 if (is_kfunc_arg_ignore(btf, &args[i]))
11283 continue;
11284
11285 if (btf_type_is_scalar(t)) {
11286 if (reg->type != SCALAR_VALUE) {
11287 verbose(env, "R%d is not a scalar\n", regno);
11288 return -EINVAL;
11289 }
11290
11291 if (is_kfunc_arg_constant(meta->btf, &args[i])) {
11292 if (meta->arg_constant.found) {
11293 verbose(env, "verifier internal error: only one constant argument permitted\n");
11294 return -EFAULT;
11295 }
11296 if (!tnum_is_const(reg->var_off)) {
11297 verbose(env, "R%d must be a known constant\n", regno);
11298 return -EINVAL;
11299 }
11300 ret = mark_chain_precision(env, regno);
11301 if (ret < 0)
11302 return ret;
11303 meta->arg_constant.found = true;
11304 meta->arg_constant.value = reg->var_off.value;
11305 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
11306 meta->r0_rdonly = true;
11307 is_ret_buf_sz = true;
11308 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
11309 is_ret_buf_sz = true;
11310 }
11311
11312 if (is_ret_buf_sz) {
11313 if (meta->r0_size) {
11314 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
11315 return -EINVAL;
11316 }
11317
11318 if (!tnum_is_const(reg->var_off)) {
11319 verbose(env, "R%d is not a const\n", regno);
11320 return -EINVAL;
11321 }
11322
11323 meta->r0_size = reg->var_off.value;
11324 ret = mark_chain_precision(env, regno);
11325 if (ret)
11326 return ret;
11327 }
11328 continue;
11329 }
11330
11331 if (!btf_type_is_ptr(t)) {
11332 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
11333 return -EINVAL;
11334 }
11335
11336 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
11337 (register_is_null(reg) || type_may_be_null(reg->type))) {
11338 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
11339 return -EACCES;
11340 }
11341
11342 if (reg->ref_obj_id) {
11343 if (is_kfunc_release(meta) && meta->ref_obj_id) {
11344 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
11345 regno, reg->ref_obj_id,
11346 meta->ref_obj_id);
11347 return -EFAULT;
11348 }
11349 meta->ref_obj_id = reg->ref_obj_id;
11350 if (is_kfunc_release(meta))
11351 meta->release_regno = regno;
11352 }
11353
11354 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
11355 ref_tname = btf_name_by_offset(btf, ref_t->name_off);
11356
11357 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
11358 if (kf_arg_type < 0)
11359 return kf_arg_type;
11360
11361 switch (kf_arg_type) {
11362 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11363 case KF_ARG_PTR_TO_BTF_ID:
11364 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
11365 break;
11366
11367 if (!is_trusted_reg(reg)) {
11368 if (!is_kfunc_rcu(meta)) {
11369 verbose(env, "R%d must be referenced or trusted\n", regno);
11370 return -EINVAL;
11371 }
11372 if (!is_rcu_reg(reg)) {
11373 verbose(env, "R%d must be a rcu pointer\n", regno);
11374 return -EINVAL;
11375 }
11376 }
11377
11378 fallthrough;
11379 case KF_ARG_PTR_TO_CTX:
11380 /* Trusted arguments have the same offset checks as release arguments */
11381 arg_type |= OBJ_RELEASE;
11382 break;
11383 case KF_ARG_PTR_TO_DYNPTR:
11384 case KF_ARG_PTR_TO_ITER:
11385 case KF_ARG_PTR_TO_LIST_HEAD:
11386 case KF_ARG_PTR_TO_LIST_NODE:
11387 case KF_ARG_PTR_TO_RB_ROOT:
11388 case KF_ARG_PTR_TO_RB_NODE:
11389 case KF_ARG_PTR_TO_MEM:
11390 case KF_ARG_PTR_TO_MEM_SIZE:
11391 case KF_ARG_PTR_TO_CALLBACK:
11392 case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11393 /* Trusted by default */
11394 break;
11395 default:
11396 WARN_ON_ONCE(1);
11397 return -EFAULT;
11398 }
11399
11400 if (is_kfunc_release(meta) && reg->ref_obj_id)
11401 arg_type |= OBJ_RELEASE;
11402 ret = check_func_arg_reg_off(env, reg, regno, arg_type);
11403 if (ret < 0)
11404 return ret;
11405
11406 switch (kf_arg_type) {
11407 case KF_ARG_PTR_TO_CTX:
11408 if (reg->type != PTR_TO_CTX) {
11409 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
11410 return -EINVAL;
11411 }
11412
11413 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11414 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
11415 if (ret < 0)
11416 return -EINVAL;
11417 meta->ret_btf_id = ret;
11418 }
11419 break;
11420 case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11421 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11422 verbose(env, "arg#%d expected pointer to allocated object\n", i);
11423 return -EINVAL;
11424 }
11425 if (!reg->ref_obj_id) {
11426 verbose(env, "allocated object must be referenced\n");
11427 return -EINVAL;
11428 }
11429 if (meta->btf == btf_vmlinux &&
11430 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
11431 meta->arg_btf = reg->btf;
11432 meta->arg_btf_id = reg->btf_id;
11433 }
11434 break;
11435 case KF_ARG_PTR_TO_DYNPTR:
11436 {
11437 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
11438 int clone_ref_obj_id = 0;
11439
11440 if (reg->type != PTR_TO_STACK &&
11441 reg->type != CONST_PTR_TO_DYNPTR) {
11442 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
11443 return -EINVAL;
11444 }
11445
11446 if (reg->type == CONST_PTR_TO_DYNPTR)
11447 dynptr_arg_type |= MEM_RDONLY;
11448
11449 if (is_kfunc_arg_uninit(btf, &args[i]))
11450 dynptr_arg_type |= MEM_UNINIT;
11451
11452 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
11453 dynptr_arg_type |= DYNPTR_TYPE_SKB;
11454 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
11455 dynptr_arg_type |= DYNPTR_TYPE_XDP;
11456 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
11457 (dynptr_arg_type & MEM_UNINIT)) {
11458 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
11459
11460 if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
11461 verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
11462 return -EFAULT;
11463 }
11464
11465 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
11466 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
11467 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
11468 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
11469 return -EFAULT;
11470 }
11471 }
11472
11473 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
11474 if (ret < 0)
11475 return ret;
11476
11477 if (!(dynptr_arg_type & MEM_UNINIT)) {
11478 int id = dynptr_id(env, reg);
11479
11480 if (id < 0) {
11481 verbose(env, "verifier internal error: failed to obtain dynptr id\n");
11482 return id;
11483 }
11484 meta->initialized_dynptr.id = id;
11485 meta->initialized_dynptr.type = dynptr_get_type(env, reg);
11486 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
11487 }
11488
11489 break;
11490 }
11491 case KF_ARG_PTR_TO_ITER:
11492 ret = process_iter_arg(env, regno, insn_idx, meta);
11493 if (ret < 0)
11494 return ret;
11495 break;
11496 case KF_ARG_PTR_TO_LIST_HEAD:
11497 if (reg->type != PTR_TO_MAP_VALUE &&
11498 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11499 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11500 return -EINVAL;
11501 }
11502 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11503 verbose(env, "allocated object must be referenced\n");
11504 return -EINVAL;
11505 }
11506 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
11507 if (ret < 0)
11508 return ret;
11509 break;
11510 case KF_ARG_PTR_TO_RB_ROOT:
11511 if (reg->type != PTR_TO_MAP_VALUE &&
11512 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11513 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11514 return -EINVAL;
11515 }
11516 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11517 verbose(env, "allocated object must be referenced\n");
11518 return -EINVAL;
11519 }
11520 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
11521 if (ret < 0)
11522 return ret;
11523 break;
11524 case KF_ARG_PTR_TO_LIST_NODE:
11525 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11526 verbose(env, "arg#%d expected pointer to allocated object\n", i);
11527 return -EINVAL;
11528 }
11529 if (!reg->ref_obj_id) {
11530 verbose(env, "allocated object must be referenced\n");
11531 return -EINVAL;
11532 }
11533 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
11534 if (ret < 0)
11535 return ret;
11536 break;
11537 case KF_ARG_PTR_TO_RB_NODE:
11538 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
11539 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
11540 verbose(env, "rbtree_remove node input must be non-owning ref\n");
11541 return -EINVAL;
11542 }
11543 if (in_rbtree_lock_required_cb(env)) {
11544 verbose(env, "rbtree_remove not allowed in rbtree cb\n");
11545 return -EINVAL;
11546 }
11547 } else {
11548 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11549 verbose(env, "arg#%d expected pointer to allocated object\n", i);
11550 return -EINVAL;
11551 }
11552 if (!reg->ref_obj_id) {
11553 verbose(env, "allocated object must be referenced\n");
11554 return -EINVAL;
11555 }
11556 }
11557
11558 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
11559 if (ret < 0)
11560 return ret;
11561 break;
11562 case KF_ARG_PTR_TO_BTF_ID:
11563 /* Only base_type is checked, further checks are done here */
11564 if ((base_type(reg->type) != PTR_TO_BTF_ID ||
11565 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
11566 !reg2btf_ids[base_type(reg->type)]) {
11567 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
11568 verbose(env, "expected %s or socket\n",
11569 reg_type_str(env, base_type(reg->type) |
11570 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
11571 return -EINVAL;
11572 }
11573 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
11574 if (ret < 0)
11575 return ret;
11576 break;
11577 case KF_ARG_PTR_TO_MEM:
11578 resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
11579 if (IS_ERR(resolve_ret)) {
11580 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
11581 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
11582 return -EINVAL;
11583 }
11584 ret = check_mem_reg(env, reg, regno, type_size);
11585 if (ret < 0)
11586 return ret;
11587 break;
11588 case KF_ARG_PTR_TO_MEM_SIZE:
11589 {
11590 struct bpf_reg_state *buff_reg = ®s[regno];
11591 const struct btf_param *buff_arg = &args[i];
11592 struct bpf_reg_state *size_reg = ®s[regno + 1];
11593 const struct btf_param *size_arg = &args[i + 1];
11594
11595 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
11596 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
11597 if (ret < 0) {
11598 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
11599 return ret;
11600 }
11601 }
11602
11603 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
11604 if (meta->arg_constant.found) {
11605 verbose(env, "verifier internal error: only one constant argument permitted\n");
11606 return -EFAULT;
11607 }
11608 if (!tnum_is_const(size_reg->var_off)) {
11609 verbose(env, "R%d must be a known constant\n", regno + 1);
11610 return -EINVAL;
11611 }
11612 meta->arg_constant.found = true;
11613 meta->arg_constant.value = size_reg->var_off.value;
11614 }
11615
11616 /* Skip next '__sz' or '__szk' argument */
11617 i++;
11618 break;
11619 }
11620 case KF_ARG_PTR_TO_CALLBACK:
11621 if (reg->type != PTR_TO_FUNC) {
11622 verbose(env, "arg%d expected pointer to func\n", i);
11623 return -EINVAL;
11624 }
11625 meta->subprogno = reg->subprogno;
11626 break;
11627 case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11628 if (!type_is_ptr_alloc_obj(reg->type)) {
11629 verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
11630 return -EINVAL;
11631 }
11632 if (!type_is_non_owning_ref(reg->type))
11633 meta->arg_owning_ref = true;
11634
11635 rec = reg_btf_record(reg);
11636 if (!rec) {
11637 verbose(env, "verifier internal error: Couldn't find btf_record\n");
11638 return -EFAULT;
11639 }
11640
11641 if (rec->refcount_off < 0) {
11642 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
11643 return -EINVAL;
11644 }
11645
11646 meta->arg_btf = reg->btf;
11647 meta->arg_btf_id = reg->btf_id;
11648 break;
11649 }
11650 }
11651
11652 if (is_kfunc_release(meta) && !meta->release_regno) {
11653 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
11654 func_name);
11655 return -EINVAL;
11656 }
11657
11658 return 0;
11659 }
11660
fetch_kfunc_meta(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_kfunc_call_arg_meta * meta,const char ** kfunc_name)11661 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
11662 struct bpf_insn *insn,
11663 struct bpf_kfunc_call_arg_meta *meta,
11664 const char **kfunc_name)
11665 {
11666 const struct btf_type *func, *func_proto;
11667 u32 func_id, *kfunc_flags;
11668 const char *func_name;
11669 struct btf *desc_btf;
11670
11671 if (kfunc_name)
11672 *kfunc_name = NULL;
11673
11674 if (!insn->imm)
11675 return -EINVAL;
11676
11677 desc_btf = find_kfunc_desc_btf(env, insn->off);
11678 if (IS_ERR(desc_btf))
11679 return PTR_ERR(desc_btf);
11680
11681 func_id = insn->imm;
11682 func = btf_type_by_id(desc_btf, func_id);
11683 func_name = btf_name_by_offset(desc_btf, func->name_off);
11684 if (kfunc_name)
11685 *kfunc_name = func_name;
11686 func_proto = btf_type_by_id(desc_btf, func->type);
11687
11688 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
11689 if (!kfunc_flags) {
11690 return -EACCES;
11691 }
11692
11693 memset(meta, 0, sizeof(*meta));
11694 meta->btf = desc_btf;
11695 meta->func_id = func_id;
11696 meta->kfunc_flags = *kfunc_flags;
11697 meta->func_proto = func_proto;
11698 meta->func_name = func_name;
11699
11700 return 0;
11701 }
11702
check_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx_p)11703 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11704 int *insn_idx_p)
11705 {
11706 const struct btf_type *t, *ptr_type;
11707 u32 i, nargs, ptr_type_id, release_ref_obj_id;
11708 struct bpf_reg_state *regs = cur_regs(env);
11709 const char *func_name, *ptr_type_name;
11710 bool sleepable, rcu_lock, rcu_unlock;
11711 struct bpf_kfunc_call_arg_meta meta;
11712 struct bpf_insn_aux_data *insn_aux;
11713 int err, insn_idx = *insn_idx_p;
11714 const struct btf_param *args;
11715 const struct btf_type *ret_t;
11716 struct btf *desc_btf;
11717
11718 /* skip for now, but return error when we find this in fixup_kfunc_call */
11719 if (!insn->imm)
11720 return 0;
11721
11722 err = fetch_kfunc_meta(env, insn, &meta, &func_name);
11723 if (err == -EACCES && func_name)
11724 verbose(env, "calling kernel function %s is not allowed\n", func_name);
11725 if (err)
11726 return err;
11727 desc_btf = meta.btf;
11728 insn_aux = &env->insn_aux_data[insn_idx];
11729
11730 insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
11731
11732 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
11733 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
11734 return -EACCES;
11735 }
11736
11737 sleepable = is_kfunc_sleepable(&meta);
11738 if (sleepable && !env->prog->aux->sleepable) {
11739 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
11740 return -EACCES;
11741 }
11742
11743 /* Check the arguments */
11744 err = check_kfunc_args(env, &meta, insn_idx);
11745 if (err < 0)
11746 return err;
11747
11748 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11749 err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11750 set_rbtree_add_callback_state);
11751 if (err) {
11752 verbose(env, "kfunc %s#%d failed callback verification\n",
11753 func_name, meta.func_id);
11754 return err;
11755 }
11756 }
11757
11758 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
11759 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
11760
11761 if (env->cur_state->active_rcu_lock) {
11762 struct bpf_func_state *state;
11763 struct bpf_reg_state *reg;
11764
11765 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
11766 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
11767 return -EACCES;
11768 }
11769
11770 if (rcu_lock) {
11771 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
11772 return -EINVAL;
11773 } else if (rcu_unlock) {
11774 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
11775 if (reg->type & MEM_RCU) {
11776 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
11777 reg->type |= PTR_UNTRUSTED;
11778 }
11779 }));
11780 env->cur_state->active_rcu_lock = false;
11781 } else if (sleepable) {
11782 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
11783 return -EACCES;
11784 }
11785 } else if (rcu_lock) {
11786 env->cur_state->active_rcu_lock = true;
11787 } else if (rcu_unlock) {
11788 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
11789 return -EINVAL;
11790 }
11791
11792 /* In case of release function, we get register number of refcounted
11793 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
11794 */
11795 if (meta.release_regno) {
11796 err = release_reference(env, regs[meta.release_regno].ref_obj_id);
11797 if (err) {
11798 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11799 func_name, meta.func_id);
11800 return err;
11801 }
11802 }
11803
11804 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11805 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11806 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11807 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
11808 insn_aux->insert_off = regs[BPF_REG_2].off;
11809 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
11810 err = ref_convert_owning_non_owning(env, release_ref_obj_id);
11811 if (err) {
11812 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
11813 func_name, meta.func_id);
11814 return err;
11815 }
11816
11817 err = release_reference(env, release_ref_obj_id);
11818 if (err) {
11819 verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11820 func_name, meta.func_id);
11821 return err;
11822 }
11823 }
11824
11825 for (i = 0; i < CALLER_SAVED_REGS; i++)
11826 mark_reg_not_init(env, regs, caller_saved[i]);
11827
11828 /* Check return type */
11829 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
11830
11831 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
11832 /* Only exception is bpf_obj_new_impl */
11833 if (meta.btf != btf_vmlinux ||
11834 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
11835 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
11836 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
11837 return -EINVAL;
11838 }
11839 }
11840
11841 if (btf_type_is_scalar(t)) {
11842 mark_reg_unknown(env, regs, BPF_REG_0);
11843 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
11844 } else if (btf_type_is_ptr(t)) {
11845 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
11846
11847 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11848 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
11849 struct btf *ret_btf;
11850 u32 ret_btf_id;
11851
11852 if (unlikely(!bpf_global_ma_set))
11853 return -ENOMEM;
11854
11855 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
11856 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
11857 return -EINVAL;
11858 }
11859
11860 ret_btf = env->prog->aux->btf;
11861 ret_btf_id = meta.arg_constant.value;
11862
11863 /* This may be NULL due to user not supplying a BTF */
11864 if (!ret_btf) {
11865 verbose(env, "bpf_obj_new requires prog BTF\n");
11866 return -EINVAL;
11867 }
11868
11869 ret_t = btf_type_by_id(ret_btf, ret_btf_id);
11870 if (!ret_t || !__btf_type_is_struct(ret_t)) {
11871 verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
11872 return -EINVAL;
11873 }
11874
11875 mark_reg_known_zero(env, regs, BPF_REG_0);
11876 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11877 regs[BPF_REG_0].btf = ret_btf;
11878 regs[BPF_REG_0].btf_id = ret_btf_id;
11879
11880 insn_aux->obj_new_size = ret_t->size;
11881 insn_aux->kptr_struct_meta =
11882 btf_find_struct_meta(ret_btf, ret_btf_id);
11883 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
11884 mark_reg_known_zero(env, regs, BPF_REG_0);
11885 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11886 regs[BPF_REG_0].btf = meta.arg_btf;
11887 regs[BPF_REG_0].btf_id = meta.arg_btf_id;
11888
11889 insn_aux->kptr_struct_meta =
11890 btf_find_struct_meta(meta.arg_btf,
11891 meta.arg_btf_id);
11892 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11893 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
11894 struct btf_field *field = meta.arg_list_head.field;
11895
11896 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11897 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11898 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11899 struct btf_field *field = meta.arg_rbtree_root.field;
11900
11901 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11902 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11903 mark_reg_known_zero(env, regs, BPF_REG_0);
11904 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
11905 regs[BPF_REG_0].btf = desc_btf;
11906 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
11907 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
11908 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
11909 if (!ret_t || !btf_type_is_struct(ret_t)) {
11910 verbose(env,
11911 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
11912 return -EINVAL;
11913 }
11914
11915 mark_reg_known_zero(env, regs, BPF_REG_0);
11916 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
11917 regs[BPF_REG_0].btf = desc_btf;
11918 regs[BPF_REG_0].btf_id = meta.arg_constant.value;
11919 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
11920 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
11921 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
11922
11923 mark_reg_known_zero(env, regs, BPF_REG_0);
11924
11925 if (!meta.arg_constant.found) {
11926 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
11927 return -EFAULT;
11928 }
11929
11930 regs[BPF_REG_0].mem_size = meta.arg_constant.value;
11931
11932 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
11933 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
11934
11935 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
11936 regs[BPF_REG_0].type |= MEM_RDONLY;
11937 } else {
11938 /* this will set env->seen_direct_write to true */
11939 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
11940 verbose(env, "the prog does not allow writes to packet data\n");
11941 return -EINVAL;
11942 }
11943 }
11944
11945 if (!meta.initialized_dynptr.id) {
11946 verbose(env, "verifier internal error: no dynptr id\n");
11947 return -EFAULT;
11948 }
11949 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
11950
11951 /* we don't need to set BPF_REG_0's ref obj id
11952 * because packet slices are not refcounted (see
11953 * dynptr_type_refcounted)
11954 */
11955 } else {
11956 verbose(env, "kernel function %s unhandled dynamic return type\n",
11957 meta.func_name);
11958 return -EFAULT;
11959 }
11960 } else if (!__btf_type_is_struct(ptr_type)) {
11961 if (!meta.r0_size) {
11962 __u32 sz;
11963
11964 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
11965 meta.r0_size = sz;
11966 meta.r0_rdonly = true;
11967 }
11968 }
11969 if (!meta.r0_size) {
11970 ptr_type_name = btf_name_by_offset(desc_btf,
11971 ptr_type->name_off);
11972 verbose(env,
11973 "kernel function %s returns pointer type %s %s is not supported\n",
11974 func_name,
11975 btf_type_str(ptr_type),
11976 ptr_type_name);
11977 return -EINVAL;
11978 }
11979
11980 mark_reg_known_zero(env, regs, BPF_REG_0);
11981 regs[BPF_REG_0].type = PTR_TO_MEM;
11982 regs[BPF_REG_0].mem_size = meta.r0_size;
11983
11984 if (meta.r0_rdonly)
11985 regs[BPF_REG_0].type |= MEM_RDONLY;
11986
11987 /* Ensures we don't access the memory after a release_reference() */
11988 if (meta.ref_obj_id)
11989 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
11990 } else {
11991 mark_reg_known_zero(env, regs, BPF_REG_0);
11992 regs[BPF_REG_0].btf = desc_btf;
11993 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
11994 regs[BPF_REG_0].btf_id = ptr_type_id;
11995 }
11996
11997 if (is_kfunc_ret_null(&meta)) {
11998 regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
11999 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
12000 regs[BPF_REG_0].id = ++env->id_gen;
12001 }
12002 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
12003 if (is_kfunc_acquire(&meta)) {
12004 int id = acquire_reference_state(env, insn_idx);
12005
12006 if (id < 0)
12007 return id;
12008 if (is_kfunc_ret_null(&meta))
12009 regs[BPF_REG_0].id = id;
12010 regs[BPF_REG_0].ref_obj_id = id;
12011 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12012 ref_set_non_owning(env, ®s[BPF_REG_0]);
12013 }
12014
12015 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id)
12016 regs[BPF_REG_0].id = ++env->id_gen;
12017 } else if (btf_type_is_void(t)) {
12018 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12019 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
12020 insn_aux->kptr_struct_meta =
12021 btf_find_struct_meta(meta.arg_btf,
12022 meta.arg_btf_id);
12023 }
12024 }
12025 }
12026
12027 nargs = btf_type_vlen(meta.func_proto);
12028 args = (const struct btf_param *)(meta.func_proto + 1);
12029 for (i = 0; i < nargs; i++) {
12030 u32 regno = i + 1;
12031
12032 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
12033 if (btf_type_is_ptr(t))
12034 mark_btf_func_reg_size(env, regno, sizeof(void *));
12035 else
12036 /* scalar. ensured by btf_check_kfunc_arg_match() */
12037 mark_btf_func_reg_size(env, regno, t->size);
12038 }
12039
12040 if (is_iter_next_kfunc(&meta)) {
12041 err = process_iter_next_call(env, insn_idx, &meta);
12042 if (err)
12043 return err;
12044 }
12045
12046 return 0;
12047 }
12048
signed_add_overflows(s64 a,s64 b)12049 static bool signed_add_overflows(s64 a, s64 b)
12050 {
12051 /* Do the add in u64, where overflow is well-defined */
12052 s64 res = (s64)((u64)a + (u64)b);
12053
12054 if (b < 0)
12055 return res > a;
12056 return res < a;
12057 }
12058
signed_add32_overflows(s32 a,s32 b)12059 static bool signed_add32_overflows(s32 a, s32 b)
12060 {
12061 /* Do the add in u32, where overflow is well-defined */
12062 s32 res = (s32)((u32)a + (u32)b);
12063
12064 if (b < 0)
12065 return res > a;
12066 return res < a;
12067 }
12068
signed_sub_overflows(s64 a,s64 b)12069 static bool signed_sub_overflows(s64 a, s64 b)
12070 {
12071 /* Do the sub in u64, where overflow is well-defined */
12072 s64 res = (s64)((u64)a - (u64)b);
12073
12074 if (b < 0)
12075 return res < a;
12076 return res > a;
12077 }
12078
signed_sub32_overflows(s32 a,s32 b)12079 static bool signed_sub32_overflows(s32 a, s32 b)
12080 {
12081 /* Do the sub in u32, where overflow is well-defined */
12082 s32 res = (s32)((u32)a - (u32)b);
12083
12084 if (b < 0)
12085 return res < a;
12086 return res > a;
12087 }
12088
check_reg_sane_offset(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,enum bpf_reg_type type)12089 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
12090 const struct bpf_reg_state *reg,
12091 enum bpf_reg_type type)
12092 {
12093 bool known = tnum_is_const(reg->var_off);
12094 s64 val = reg->var_off.value;
12095 s64 smin = reg->smin_value;
12096
12097 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
12098 verbose(env, "math between %s pointer and %lld is not allowed\n",
12099 reg_type_str(env, type), val);
12100 return false;
12101 }
12102
12103 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
12104 verbose(env, "%s pointer offset %d is not allowed\n",
12105 reg_type_str(env, type), reg->off);
12106 return false;
12107 }
12108
12109 if (smin == S64_MIN) {
12110 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
12111 reg_type_str(env, type));
12112 return false;
12113 }
12114
12115 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
12116 verbose(env, "value %lld makes %s pointer be out of bounds\n",
12117 smin, reg_type_str(env, type));
12118 return false;
12119 }
12120
12121 return true;
12122 }
12123
12124 enum {
12125 REASON_BOUNDS = -1,
12126 REASON_TYPE = -2,
12127 REASON_PATHS = -3,
12128 REASON_LIMIT = -4,
12129 REASON_STACK = -5,
12130 };
12131
retrieve_ptr_limit(const struct bpf_reg_state * ptr_reg,u32 * alu_limit,bool mask_to_left)12132 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
12133 u32 *alu_limit, bool mask_to_left)
12134 {
12135 u32 max = 0, ptr_limit = 0;
12136
12137 switch (ptr_reg->type) {
12138 case PTR_TO_STACK:
12139 /* Offset 0 is out-of-bounds, but acceptable start for the
12140 * left direction, see BPF_REG_FP. Also, unknown scalar
12141 * offset where we would need to deal with min/max bounds is
12142 * currently prohibited for unprivileged.
12143 */
12144 max = MAX_BPF_STACK + mask_to_left;
12145 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
12146 break;
12147 case PTR_TO_MAP_VALUE:
12148 max = ptr_reg->map_ptr->value_size;
12149 ptr_limit = (mask_to_left ?
12150 ptr_reg->smin_value :
12151 ptr_reg->umax_value) + ptr_reg->off;
12152 break;
12153 default:
12154 return REASON_TYPE;
12155 }
12156
12157 if (ptr_limit >= max)
12158 return REASON_LIMIT;
12159 *alu_limit = ptr_limit;
12160 return 0;
12161 }
12162
can_skip_alu_sanitation(const struct bpf_verifier_env * env,const struct bpf_insn * insn)12163 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
12164 const struct bpf_insn *insn)
12165 {
12166 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
12167 }
12168
update_alu_sanitation_state(struct bpf_insn_aux_data * aux,u32 alu_state,u32 alu_limit)12169 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
12170 u32 alu_state, u32 alu_limit)
12171 {
12172 /* If we arrived here from different branches with different
12173 * state or limits to sanitize, then this won't work.
12174 */
12175 if (aux->alu_state &&
12176 (aux->alu_state != alu_state ||
12177 aux->alu_limit != alu_limit))
12178 return REASON_PATHS;
12179
12180 /* Corresponding fixup done in do_misc_fixups(). */
12181 aux->alu_state = alu_state;
12182 aux->alu_limit = alu_limit;
12183 return 0;
12184 }
12185
sanitize_val_alu(struct bpf_verifier_env * env,struct bpf_insn * insn)12186 static int sanitize_val_alu(struct bpf_verifier_env *env,
12187 struct bpf_insn *insn)
12188 {
12189 struct bpf_insn_aux_data *aux = cur_aux(env);
12190
12191 if (can_skip_alu_sanitation(env, insn))
12192 return 0;
12193
12194 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
12195 }
12196
sanitize_needed(u8 opcode)12197 static bool sanitize_needed(u8 opcode)
12198 {
12199 return opcode == BPF_ADD || opcode == BPF_SUB;
12200 }
12201
12202 struct bpf_sanitize_info {
12203 struct bpf_insn_aux_data aux;
12204 bool mask_to_left;
12205 };
12206
12207 static struct bpf_verifier_state *
sanitize_speculative_path(struct bpf_verifier_env * env,const struct bpf_insn * insn,u32 next_idx,u32 curr_idx)12208 sanitize_speculative_path(struct bpf_verifier_env *env,
12209 const struct bpf_insn *insn,
12210 u32 next_idx, u32 curr_idx)
12211 {
12212 struct bpf_verifier_state *branch;
12213 struct bpf_reg_state *regs;
12214
12215 branch = push_stack(env, next_idx, curr_idx, true);
12216 if (branch && insn) {
12217 regs = branch->frame[branch->curframe]->regs;
12218 if (BPF_SRC(insn->code) == BPF_K) {
12219 mark_reg_unknown(env, regs, insn->dst_reg);
12220 } else if (BPF_SRC(insn->code) == BPF_X) {
12221 mark_reg_unknown(env, regs, insn->dst_reg);
12222 mark_reg_unknown(env, regs, insn->src_reg);
12223 }
12224 }
12225 return branch;
12226 }
12227
sanitize_ptr_alu(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg,struct bpf_reg_state * dst_reg,struct bpf_sanitize_info * info,const bool commit_window)12228 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
12229 struct bpf_insn *insn,
12230 const struct bpf_reg_state *ptr_reg,
12231 const struct bpf_reg_state *off_reg,
12232 struct bpf_reg_state *dst_reg,
12233 struct bpf_sanitize_info *info,
12234 const bool commit_window)
12235 {
12236 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
12237 struct bpf_verifier_state *vstate = env->cur_state;
12238 bool off_is_imm = tnum_is_const(off_reg->var_off);
12239 bool off_is_neg = off_reg->smin_value < 0;
12240 bool ptr_is_dst_reg = ptr_reg == dst_reg;
12241 u8 opcode = BPF_OP(insn->code);
12242 u32 alu_state, alu_limit;
12243 struct bpf_reg_state tmp;
12244 bool ret;
12245 int err;
12246
12247 if (can_skip_alu_sanitation(env, insn))
12248 return 0;
12249
12250 /* We already marked aux for masking from non-speculative
12251 * paths, thus we got here in the first place. We only care
12252 * to explore bad access from here.
12253 */
12254 if (vstate->speculative)
12255 goto do_sim;
12256
12257 if (!commit_window) {
12258 if (!tnum_is_const(off_reg->var_off) &&
12259 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
12260 return REASON_BOUNDS;
12261
12262 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
12263 (opcode == BPF_SUB && !off_is_neg);
12264 }
12265
12266 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
12267 if (err < 0)
12268 return err;
12269
12270 if (commit_window) {
12271 /* In commit phase we narrow the masking window based on
12272 * the observed pointer move after the simulated operation.
12273 */
12274 alu_state = info->aux.alu_state;
12275 alu_limit = abs(info->aux.alu_limit - alu_limit);
12276 } else {
12277 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
12278 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
12279 alu_state |= ptr_is_dst_reg ?
12280 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
12281
12282 /* Limit pruning on unknown scalars to enable deep search for
12283 * potential masking differences from other program paths.
12284 */
12285 if (!off_is_imm)
12286 env->explore_alu_limits = true;
12287 }
12288
12289 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
12290 if (err < 0)
12291 return err;
12292 do_sim:
12293 /* If we're in commit phase, we're done here given we already
12294 * pushed the truncated dst_reg into the speculative verification
12295 * stack.
12296 *
12297 * Also, when register is a known constant, we rewrite register-based
12298 * operation to immediate-based, and thus do not need masking (and as
12299 * a consequence, do not need to simulate the zero-truncation either).
12300 */
12301 if (commit_window || off_is_imm)
12302 return 0;
12303
12304 /* Simulate and find potential out-of-bounds access under
12305 * speculative execution from truncation as a result of
12306 * masking when off was not within expected range. If off
12307 * sits in dst, then we temporarily need to move ptr there
12308 * to simulate dst (== 0) +/-= ptr. Needed, for example,
12309 * for cases where we use K-based arithmetic in one direction
12310 * and truncated reg-based in the other in order to explore
12311 * bad access.
12312 */
12313 if (!ptr_is_dst_reg) {
12314 tmp = *dst_reg;
12315 copy_register_state(dst_reg, ptr_reg);
12316 }
12317 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
12318 env->insn_idx);
12319 if (!ptr_is_dst_reg && ret)
12320 *dst_reg = tmp;
12321 return !ret ? REASON_STACK : 0;
12322 }
12323
sanitize_mark_insn_seen(struct bpf_verifier_env * env)12324 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
12325 {
12326 struct bpf_verifier_state *vstate = env->cur_state;
12327
12328 /* If we simulate paths under speculation, we don't update the
12329 * insn as 'seen' such that when we verify unreachable paths in
12330 * the non-speculative domain, sanitize_dead_code() can still
12331 * rewrite/sanitize them.
12332 */
12333 if (!vstate->speculative)
12334 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
12335 }
12336
sanitize_err(struct bpf_verifier_env * env,const struct bpf_insn * insn,int reason,const struct bpf_reg_state * off_reg,const struct bpf_reg_state * dst_reg)12337 static int sanitize_err(struct bpf_verifier_env *env,
12338 const struct bpf_insn *insn, int reason,
12339 const struct bpf_reg_state *off_reg,
12340 const struct bpf_reg_state *dst_reg)
12341 {
12342 static const char *err = "pointer arithmetic with it prohibited for !root";
12343 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
12344 u32 dst = insn->dst_reg, src = insn->src_reg;
12345
12346 switch (reason) {
12347 case REASON_BOUNDS:
12348 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
12349 off_reg == dst_reg ? dst : src, err);
12350 break;
12351 case REASON_TYPE:
12352 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
12353 off_reg == dst_reg ? src : dst, err);
12354 break;
12355 case REASON_PATHS:
12356 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
12357 dst, op, err);
12358 break;
12359 case REASON_LIMIT:
12360 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
12361 dst, op, err);
12362 break;
12363 case REASON_STACK:
12364 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
12365 dst, err);
12366 break;
12367 default:
12368 verbose(env, "verifier internal error: unknown reason (%d)\n",
12369 reason);
12370 break;
12371 }
12372
12373 return -EACCES;
12374 }
12375
12376 /* check that stack access falls within stack limits and that 'reg' doesn't
12377 * have a variable offset.
12378 *
12379 * Variable offset is prohibited for unprivileged mode for simplicity since it
12380 * requires corresponding support in Spectre masking for stack ALU. See also
12381 * retrieve_ptr_limit().
12382 *
12383 *
12384 * 'off' includes 'reg->off'.
12385 */
check_stack_access_for_ptr_arithmetic(struct bpf_verifier_env * env,int regno,const struct bpf_reg_state * reg,int off)12386 static int check_stack_access_for_ptr_arithmetic(
12387 struct bpf_verifier_env *env,
12388 int regno,
12389 const struct bpf_reg_state *reg,
12390 int off)
12391 {
12392 if (!tnum_is_const(reg->var_off)) {
12393 char tn_buf[48];
12394
12395 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
12396 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
12397 regno, tn_buf, off);
12398 return -EACCES;
12399 }
12400
12401 if (off >= 0 || off < -MAX_BPF_STACK) {
12402 verbose(env, "R%d stack pointer arithmetic goes out of range, "
12403 "prohibited for !root; off=%d\n", regno, off);
12404 return -EACCES;
12405 }
12406
12407 return 0;
12408 }
12409
sanitize_check_bounds(struct bpf_verifier_env * env,const struct bpf_insn * insn,const struct bpf_reg_state * dst_reg)12410 static int sanitize_check_bounds(struct bpf_verifier_env *env,
12411 const struct bpf_insn *insn,
12412 const struct bpf_reg_state *dst_reg)
12413 {
12414 u32 dst = insn->dst_reg;
12415
12416 /* For unprivileged we require that resulting offset must be in bounds
12417 * in order to be able to sanitize access later on.
12418 */
12419 if (env->bypass_spec_v1)
12420 return 0;
12421
12422 switch (dst_reg->type) {
12423 case PTR_TO_STACK:
12424 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
12425 dst_reg->off + dst_reg->var_off.value))
12426 return -EACCES;
12427 break;
12428 case PTR_TO_MAP_VALUE:
12429 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
12430 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
12431 "prohibited for !root\n", dst);
12432 return -EACCES;
12433 }
12434 break;
12435 default:
12436 break;
12437 }
12438
12439 return 0;
12440 }
12441
12442 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
12443 * Caller should also handle BPF_MOV case separately.
12444 * If we return -EACCES, caller may want to try again treating pointer as a
12445 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
12446 */
adjust_ptr_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg)12447 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
12448 struct bpf_insn *insn,
12449 const struct bpf_reg_state *ptr_reg,
12450 const struct bpf_reg_state *off_reg)
12451 {
12452 struct bpf_verifier_state *vstate = env->cur_state;
12453 struct bpf_func_state *state = vstate->frame[vstate->curframe];
12454 struct bpf_reg_state *regs = state->regs, *dst_reg;
12455 bool known = tnum_is_const(off_reg->var_off);
12456 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
12457 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
12458 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
12459 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
12460 struct bpf_sanitize_info info = {};
12461 u8 opcode = BPF_OP(insn->code);
12462 u32 dst = insn->dst_reg;
12463 int ret;
12464
12465 dst_reg = ®s[dst];
12466
12467 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
12468 smin_val > smax_val || umin_val > umax_val) {
12469 /* Taint dst register if offset had invalid bounds derived from
12470 * e.g. dead branches.
12471 */
12472 __mark_reg_unknown(env, dst_reg);
12473 return 0;
12474 }
12475
12476 if (BPF_CLASS(insn->code) != BPF_ALU64) {
12477 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
12478 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12479 __mark_reg_unknown(env, dst_reg);
12480 return 0;
12481 }
12482
12483 verbose(env,
12484 "R%d 32-bit pointer arithmetic prohibited\n",
12485 dst);
12486 return -EACCES;
12487 }
12488
12489 if (ptr_reg->type & PTR_MAYBE_NULL) {
12490 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
12491 dst, reg_type_str(env, ptr_reg->type));
12492 return -EACCES;
12493 }
12494
12495 switch (base_type(ptr_reg->type)) {
12496 case PTR_TO_FLOW_KEYS:
12497 if (known)
12498 break;
12499 fallthrough;
12500 case CONST_PTR_TO_MAP:
12501 /* smin_val represents the known value */
12502 if (known && smin_val == 0 && opcode == BPF_ADD)
12503 break;
12504 fallthrough;
12505 case PTR_TO_PACKET_END:
12506 case PTR_TO_SOCKET:
12507 case PTR_TO_SOCK_COMMON:
12508 case PTR_TO_TCP_SOCK:
12509 case PTR_TO_XDP_SOCK:
12510 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
12511 dst, reg_type_str(env, ptr_reg->type));
12512 return -EACCES;
12513 default:
12514 break;
12515 }
12516
12517 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
12518 * The id may be overwritten later if we create a new variable offset.
12519 */
12520 dst_reg->type = ptr_reg->type;
12521 dst_reg->id = ptr_reg->id;
12522
12523 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
12524 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
12525 return -EINVAL;
12526
12527 /* pointer types do not carry 32-bit bounds at the moment. */
12528 __mark_reg32_unbounded(dst_reg);
12529
12530 if (sanitize_needed(opcode)) {
12531 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
12532 &info, false);
12533 if (ret < 0)
12534 return sanitize_err(env, insn, ret, off_reg, dst_reg);
12535 }
12536
12537 switch (opcode) {
12538 case BPF_ADD:
12539 /* We can take a fixed offset as long as it doesn't overflow
12540 * the s32 'off' field
12541 */
12542 if (known && (ptr_reg->off + smin_val ==
12543 (s64)(s32)(ptr_reg->off + smin_val))) {
12544 /* pointer += K. Accumulate it into fixed offset */
12545 dst_reg->smin_value = smin_ptr;
12546 dst_reg->smax_value = smax_ptr;
12547 dst_reg->umin_value = umin_ptr;
12548 dst_reg->umax_value = umax_ptr;
12549 dst_reg->var_off = ptr_reg->var_off;
12550 dst_reg->off = ptr_reg->off + smin_val;
12551 dst_reg->raw = ptr_reg->raw;
12552 break;
12553 }
12554 /* A new variable offset is created. Note that off_reg->off
12555 * == 0, since it's a scalar.
12556 * dst_reg gets the pointer type and since some positive
12557 * integer value was added to the pointer, give it a new 'id'
12558 * if it's a PTR_TO_PACKET.
12559 * this creates a new 'base' pointer, off_reg (variable) gets
12560 * added into the variable offset, and we copy the fixed offset
12561 * from ptr_reg.
12562 */
12563 if (signed_add_overflows(smin_ptr, smin_val) ||
12564 signed_add_overflows(smax_ptr, smax_val)) {
12565 dst_reg->smin_value = S64_MIN;
12566 dst_reg->smax_value = S64_MAX;
12567 } else {
12568 dst_reg->smin_value = smin_ptr + smin_val;
12569 dst_reg->smax_value = smax_ptr + smax_val;
12570 }
12571 if (umin_ptr + umin_val < umin_ptr ||
12572 umax_ptr + umax_val < umax_ptr) {
12573 dst_reg->umin_value = 0;
12574 dst_reg->umax_value = U64_MAX;
12575 } else {
12576 dst_reg->umin_value = umin_ptr + umin_val;
12577 dst_reg->umax_value = umax_ptr + umax_val;
12578 }
12579 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
12580 dst_reg->off = ptr_reg->off;
12581 dst_reg->raw = ptr_reg->raw;
12582 if (reg_is_pkt_pointer(ptr_reg)) {
12583 dst_reg->id = ++env->id_gen;
12584 /* something was added to pkt_ptr, set range to zero */
12585 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12586 }
12587 break;
12588 case BPF_SUB:
12589 if (dst_reg == off_reg) {
12590 /* scalar -= pointer. Creates an unknown scalar */
12591 verbose(env, "R%d tried to subtract pointer from scalar\n",
12592 dst);
12593 return -EACCES;
12594 }
12595 /* We don't allow subtraction from FP, because (according to
12596 * test_verifier.c test "invalid fp arithmetic", JITs might not
12597 * be able to deal with it.
12598 */
12599 if (ptr_reg->type == PTR_TO_STACK) {
12600 verbose(env, "R%d subtraction from stack pointer prohibited\n",
12601 dst);
12602 return -EACCES;
12603 }
12604 if (known && (ptr_reg->off - smin_val ==
12605 (s64)(s32)(ptr_reg->off - smin_val))) {
12606 /* pointer -= K. Subtract it from fixed offset */
12607 dst_reg->smin_value = smin_ptr;
12608 dst_reg->smax_value = smax_ptr;
12609 dst_reg->umin_value = umin_ptr;
12610 dst_reg->umax_value = umax_ptr;
12611 dst_reg->var_off = ptr_reg->var_off;
12612 dst_reg->id = ptr_reg->id;
12613 dst_reg->off = ptr_reg->off - smin_val;
12614 dst_reg->raw = ptr_reg->raw;
12615 break;
12616 }
12617 /* A new variable offset is created. If the subtrahend is known
12618 * nonnegative, then any reg->range we had before is still good.
12619 */
12620 if (signed_sub_overflows(smin_ptr, smax_val) ||
12621 signed_sub_overflows(smax_ptr, smin_val)) {
12622 /* Overflow possible, we know nothing */
12623 dst_reg->smin_value = S64_MIN;
12624 dst_reg->smax_value = S64_MAX;
12625 } else {
12626 dst_reg->smin_value = smin_ptr - smax_val;
12627 dst_reg->smax_value = smax_ptr - smin_val;
12628 }
12629 if (umin_ptr < umax_val) {
12630 /* Overflow possible, we know nothing */
12631 dst_reg->umin_value = 0;
12632 dst_reg->umax_value = U64_MAX;
12633 } else {
12634 /* Cannot overflow (as long as bounds are consistent) */
12635 dst_reg->umin_value = umin_ptr - umax_val;
12636 dst_reg->umax_value = umax_ptr - umin_val;
12637 }
12638 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
12639 dst_reg->off = ptr_reg->off;
12640 dst_reg->raw = ptr_reg->raw;
12641 if (reg_is_pkt_pointer(ptr_reg)) {
12642 dst_reg->id = ++env->id_gen;
12643 /* something was added to pkt_ptr, set range to zero */
12644 if (smin_val < 0)
12645 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12646 }
12647 break;
12648 case BPF_AND:
12649 case BPF_OR:
12650 case BPF_XOR:
12651 /* bitwise ops on pointers are troublesome, prohibit. */
12652 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
12653 dst, bpf_alu_string[opcode >> 4]);
12654 return -EACCES;
12655 default:
12656 /* other operators (e.g. MUL,LSH) produce non-pointer results */
12657 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
12658 dst, bpf_alu_string[opcode >> 4]);
12659 return -EACCES;
12660 }
12661
12662 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
12663 return -EINVAL;
12664 reg_bounds_sync(dst_reg);
12665 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
12666 return -EACCES;
12667 if (sanitize_needed(opcode)) {
12668 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
12669 &info, true);
12670 if (ret < 0)
12671 return sanitize_err(env, insn, ret, off_reg, dst_reg);
12672 }
12673
12674 return 0;
12675 }
12676
scalar32_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12677 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
12678 struct bpf_reg_state *src_reg)
12679 {
12680 s32 smin_val = src_reg->s32_min_value;
12681 s32 smax_val = src_reg->s32_max_value;
12682 u32 umin_val = src_reg->u32_min_value;
12683 u32 umax_val = src_reg->u32_max_value;
12684
12685 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
12686 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
12687 dst_reg->s32_min_value = S32_MIN;
12688 dst_reg->s32_max_value = S32_MAX;
12689 } else {
12690 dst_reg->s32_min_value += smin_val;
12691 dst_reg->s32_max_value += smax_val;
12692 }
12693 if (dst_reg->u32_min_value + umin_val < umin_val ||
12694 dst_reg->u32_max_value + umax_val < umax_val) {
12695 dst_reg->u32_min_value = 0;
12696 dst_reg->u32_max_value = U32_MAX;
12697 } else {
12698 dst_reg->u32_min_value += umin_val;
12699 dst_reg->u32_max_value += umax_val;
12700 }
12701 }
12702
scalar_min_max_add(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12703 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
12704 struct bpf_reg_state *src_reg)
12705 {
12706 s64 smin_val = src_reg->smin_value;
12707 s64 smax_val = src_reg->smax_value;
12708 u64 umin_val = src_reg->umin_value;
12709 u64 umax_val = src_reg->umax_value;
12710
12711 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
12712 signed_add_overflows(dst_reg->smax_value, smax_val)) {
12713 dst_reg->smin_value = S64_MIN;
12714 dst_reg->smax_value = S64_MAX;
12715 } else {
12716 dst_reg->smin_value += smin_val;
12717 dst_reg->smax_value += smax_val;
12718 }
12719 if (dst_reg->umin_value + umin_val < umin_val ||
12720 dst_reg->umax_value + umax_val < umax_val) {
12721 dst_reg->umin_value = 0;
12722 dst_reg->umax_value = U64_MAX;
12723 } else {
12724 dst_reg->umin_value += umin_val;
12725 dst_reg->umax_value += umax_val;
12726 }
12727 }
12728
scalar32_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12729 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
12730 struct bpf_reg_state *src_reg)
12731 {
12732 s32 smin_val = src_reg->s32_min_value;
12733 s32 smax_val = src_reg->s32_max_value;
12734 u32 umin_val = src_reg->u32_min_value;
12735 u32 umax_val = src_reg->u32_max_value;
12736
12737 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
12738 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
12739 /* Overflow possible, we know nothing */
12740 dst_reg->s32_min_value = S32_MIN;
12741 dst_reg->s32_max_value = S32_MAX;
12742 } else {
12743 dst_reg->s32_min_value -= smax_val;
12744 dst_reg->s32_max_value -= smin_val;
12745 }
12746 if (dst_reg->u32_min_value < umax_val) {
12747 /* Overflow possible, we know nothing */
12748 dst_reg->u32_min_value = 0;
12749 dst_reg->u32_max_value = U32_MAX;
12750 } else {
12751 /* Cannot overflow (as long as bounds are consistent) */
12752 dst_reg->u32_min_value -= umax_val;
12753 dst_reg->u32_max_value -= umin_val;
12754 }
12755 }
12756
scalar_min_max_sub(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12757 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
12758 struct bpf_reg_state *src_reg)
12759 {
12760 s64 smin_val = src_reg->smin_value;
12761 s64 smax_val = src_reg->smax_value;
12762 u64 umin_val = src_reg->umin_value;
12763 u64 umax_val = src_reg->umax_value;
12764
12765 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
12766 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
12767 /* Overflow possible, we know nothing */
12768 dst_reg->smin_value = S64_MIN;
12769 dst_reg->smax_value = S64_MAX;
12770 } else {
12771 dst_reg->smin_value -= smax_val;
12772 dst_reg->smax_value -= smin_val;
12773 }
12774 if (dst_reg->umin_value < umax_val) {
12775 /* Overflow possible, we know nothing */
12776 dst_reg->umin_value = 0;
12777 dst_reg->umax_value = U64_MAX;
12778 } else {
12779 /* Cannot overflow (as long as bounds are consistent) */
12780 dst_reg->umin_value -= umax_val;
12781 dst_reg->umax_value -= umin_val;
12782 }
12783 }
12784
scalar32_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12785 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
12786 struct bpf_reg_state *src_reg)
12787 {
12788 s32 smin_val = src_reg->s32_min_value;
12789 u32 umin_val = src_reg->u32_min_value;
12790 u32 umax_val = src_reg->u32_max_value;
12791
12792 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
12793 /* Ain't nobody got time to multiply that sign */
12794 __mark_reg32_unbounded(dst_reg);
12795 return;
12796 }
12797 /* Both values are positive, so we can work with unsigned and
12798 * copy the result to signed (unless it exceeds S32_MAX).
12799 */
12800 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
12801 /* Potential overflow, we know nothing */
12802 __mark_reg32_unbounded(dst_reg);
12803 return;
12804 }
12805 dst_reg->u32_min_value *= umin_val;
12806 dst_reg->u32_max_value *= umax_val;
12807 if (dst_reg->u32_max_value > S32_MAX) {
12808 /* Overflow possible, we know nothing */
12809 dst_reg->s32_min_value = S32_MIN;
12810 dst_reg->s32_max_value = S32_MAX;
12811 } else {
12812 dst_reg->s32_min_value = dst_reg->u32_min_value;
12813 dst_reg->s32_max_value = dst_reg->u32_max_value;
12814 }
12815 }
12816
scalar_min_max_mul(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12817 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
12818 struct bpf_reg_state *src_reg)
12819 {
12820 s64 smin_val = src_reg->smin_value;
12821 u64 umin_val = src_reg->umin_value;
12822 u64 umax_val = src_reg->umax_value;
12823
12824 if (smin_val < 0 || dst_reg->smin_value < 0) {
12825 /* Ain't nobody got time to multiply that sign */
12826 __mark_reg64_unbounded(dst_reg);
12827 return;
12828 }
12829 /* Both values are positive, so we can work with unsigned and
12830 * copy the result to signed (unless it exceeds S64_MAX).
12831 */
12832 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
12833 /* Potential overflow, we know nothing */
12834 __mark_reg64_unbounded(dst_reg);
12835 return;
12836 }
12837 dst_reg->umin_value *= umin_val;
12838 dst_reg->umax_value *= umax_val;
12839 if (dst_reg->umax_value > S64_MAX) {
12840 /* Overflow possible, we know nothing */
12841 dst_reg->smin_value = S64_MIN;
12842 dst_reg->smax_value = S64_MAX;
12843 } else {
12844 dst_reg->smin_value = dst_reg->umin_value;
12845 dst_reg->smax_value = dst_reg->umax_value;
12846 }
12847 }
12848
scalar32_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12849 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
12850 struct bpf_reg_state *src_reg)
12851 {
12852 bool src_known = tnum_subreg_is_const(src_reg->var_off);
12853 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12854 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12855 s32 smin_val = src_reg->s32_min_value;
12856 u32 umax_val = src_reg->u32_max_value;
12857
12858 if (src_known && dst_known) {
12859 __mark_reg32_known(dst_reg, var32_off.value);
12860 return;
12861 }
12862
12863 /* We get our minimum from the var_off, since that's inherently
12864 * bitwise. Our maximum is the minimum of the operands' maxima.
12865 */
12866 dst_reg->u32_min_value = var32_off.value;
12867 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
12868 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12869 /* Lose signed bounds when ANDing negative numbers,
12870 * ain't nobody got time for that.
12871 */
12872 dst_reg->s32_min_value = S32_MIN;
12873 dst_reg->s32_max_value = S32_MAX;
12874 } else {
12875 /* ANDing two positives gives a positive, so safe to
12876 * cast result into s64.
12877 */
12878 dst_reg->s32_min_value = dst_reg->u32_min_value;
12879 dst_reg->s32_max_value = dst_reg->u32_max_value;
12880 }
12881 }
12882
scalar_min_max_and(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12883 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
12884 struct bpf_reg_state *src_reg)
12885 {
12886 bool src_known = tnum_is_const(src_reg->var_off);
12887 bool dst_known = tnum_is_const(dst_reg->var_off);
12888 s64 smin_val = src_reg->smin_value;
12889 u64 umax_val = src_reg->umax_value;
12890
12891 if (src_known && dst_known) {
12892 __mark_reg_known(dst_reg, dst_reg->var_off.value);
12893 return;
12894 }
12895
12896 /* We get our minimum from the var_off, since that's inherently
12897 * bitwise. Our maximum is the minimum of the operands' maxima.
12898 */
12899 dst_reg->umin_value = dst_reg->var_off.value;
12900 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
12901 if (dst_reg->smin_value < 0 || smin_val < 0) {
12902 /* Lose signed bounds when ANDing negative numbers,
12903 * ain't nobody got time for that.
12904 */
12905 dst_reg->smin_value = S64_MIN;
12906 dst_reg->smax_value = S64_MAX;
12907 } else {
12908 /* ANDing two positives gives a positive, so safe to
12909 * cast result into s64.
12910 */
12911 dst_reg->smin_value = dst_reg->umin_value;
12912 dst_reg->smax_value = dst_reg->umax_value;
12913 }
12914 /* We may learn something more from the var_off */
12915 __update_reg_bounds(dst_reg);
12916 }
12917
scalar32_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12918 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
12919 struct bpf_reg_state *src_reg)
12920 {
12921 bool src_known = tnum_subreg_is_const(src_reg->var_off);
12922 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12923 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12924 s32 smin_val = src_reg->s32_min_value;
12925 u32 umin_val = src_reg->u32_min_value;
12926
12927 if (src_known && dst_known) {
12928 __mark_reg32_known(dst_reg, var32_off.value);
12929 return;
12930 }
12931
12932 /* We get our maximum from the var_off, and our minimum is the
12933 * maximum of the operands' minima
12934 */
12935 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
12936 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12937 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12938 /* Lose signed bounds when ORing negative numbers,
12939 * ain't nobody got time for that.
12940 */
12941 dst_reg->s32_min_value = S32_MIN;
12942 dst_reg->s32_max_value = S32_MAX;
12943 } else {
12944 /* ORing two positives gives a positive, so safe to
12945 * cast result into s64.
12946 */
12947 dst_reg->s32_min_value = dst_reg->u32_min_value;
12948 dst_reg->s32_max_value = dst_reg->u32_max_value;
12949 }
12950 }
12951
scalar_min_max_or(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12952 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
12953 struct bpf_reg_state *src_reg)
12954 {
12955 bool src_known = tnum_is_const(src_reg->var_off);
12956 bool dst_known = tnum_is_const(dst_reg->var_off);
12957 s64 smin_val = src_reg->smin_value;
12958 u64 umin_val = src_reg->umin_value;
12959
12960 if (src_known && dst_known) {
12961 __mark_reg_known(dst_reg, dst_reg->var_off.value);
12962 return;
12963 }
12964
12965 /* We get our maximum from the var_off, and our minimum is the
12966 * maximum of the operands' minima
12967 */
12968 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
12969 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
12970 if (dst_reg->smin_value < 0 || smin_val < 0) {
12971 /* Lose signed bounds when ORing negative numbers,
12972 * ain't nobody got time for that.
12973 */
12974 dst_reg->smin_value = S64_MIN;
12975 dst_reg->smax_value = S64_MAX;
12976 } else {
12977 /* ORing two positives gives a positive, so safe to
12978 * cast result into s64.
12979 */
12980 dst_reg->smin_value = dst_reg->umin_value;
12981 dst_reg->smax_value = dst_reg->umax_value;
12982 }
12983 /* We may learn something more from the var_off */
12984 __update_reg_bounds(dst_reg);
12985 }
12986
scalar32_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)12987 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
12988 struct bpf_reg_state *src_reg)
12989 {
12990 bool src_known = tnum_subreg_is_const(src_reg->var_off);
12991 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12992 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12993 s32 smin_val = src_reg->s32_min_value;
12994
12995 if (src_known && dst_known) {
12996 __mark_reg32_known(dst_reg, var32_off.value);
12997 return;
12998 }
12999
13000 /* We get both minimum and maximum from the var32_off. */
13001 dst_reg->u32_min_value = var32_off.value;
13002 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13003
13004 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
13005 /* XORing two positive sign numbers gives a positive,
13006 * so safe to cast u32 result into s32.
13007 */
13008 dst_reg->s32_min_value = dst_reg->u32_min_value;
13009 dst_reg->s32_max_value = dst_reg->u32_max_value;
13010 } else {
13011 dst_reg->s32_min_value = S32_MIN;
13012 dst_reg->s32_max_value = S32_MAX;
13013 }
13014 }
13015
scalar_min_max_xor(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13016 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
13017 struct bpf_reg_state *src_reg)
13018 {
13019 bool src_known = tnum_is_const(src_reg->var_off);
13020 bool dst_known = tnum_is_const(dst_reg->var_off);
13021 s64 smin_val = src_reg->smin_value;
13022
13023 if (src_known && dst_known) {
13024 /* dst_reg->var_off.value has been updated earlier */
13025 __mark_reg_known(dst_reg, dst_reg->var_off.value);
13026 return;
13027 }
13028
13029 /* We get both minimum and maximum from the var_off. */
13030 dst_reg->umin_value = dst_reg->var_off.value;
13031 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13032
13033 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
13034 /* XORing two positive sign numbers gives a positive,
13035 * so safe to cast u64 result into s64.
13036 */
13037 dst_reg->smin_value = dst_reg->umin_value;
13038 dst_reg->smax_value = dst_reg->umax_value;
13039 } else {
13040 dst_reg->smin_value = S64_MIN;
13041 dst_reg->smax_value = S64_MAX;
13042 }
13043
13044 __update_reg_bounds(dst_reg);
13045 }
13046
__scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)13047 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13048 u64 umin_val, u64 umax_val)
13049 {
13050 /* We lose all sign bit information (except what we can pick
13051 * up from var_off)
13052 */
13053 dst_reg->s32_min_value = S32_MIN;
13054 dst_reg->s32_max_value = S32_MAX;
13055 /* If we might shift our top bit out, then we know nothing */
13056 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
13057 dst_reg->u32_min_value = 0;
13058 dst_reg->u32_max_value = U32_MAX;
13059 } else {
13060 dst_reg->u32_min_value <<= umin_val;
13061 dst_reg->u32_max_value <<= umax_val;
13062 }
13063 }
13064
scalar32_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13065 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13066 struct bpf_reg_state *src_reg)
13067 {
13068 u32 umax_val = src_reg->u32_max_value;
13069 u32 umin_val = src_reg->u32_min_value;
13070 /* u32 alu operation will zext upper bits */
13071 struct tnum subreg = tnum_subreg(dst_reg->var_off);
13072
13073 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13074 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
13075 /* Not required but being careful mark reg64 bounds as unknown so
13076 * that we are forced to pick them up from tnum and zext later and
13077 * if some path skips this step we are still safe.
13078 */
13079 __mark_reg64_unbounded(dst_reg);
13080 __update_reg32_bounds(dst_reg);
13081 }
13082
__scalar64_min_max_lsh(struct bpf_reg_state * dst_reg,u64 umin_val,u64 umax_val)13083 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
13084 u64 umin_val, u64 umax_val)
13085 {
13086 /* Special case <<32 because it is a common compiler pattern to sign
13087 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
13088 * positive we know this shift will also be positive so we can track
13089 * bounds correctly. Otherwise we lose all sign bit information except
13090 * what we can pick up from var_off. Perhaps we can generalize this
13091 * later to shifts of any length.
13092 */
13093 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
13094 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
13095 else
13096 dst_reg->smax_value = S64_MAX;
13097
13098 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
13099 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
13100 else
13101 dst_reg->smin_value = S64_MIN;
13102
13103 /* If we might shift our top bit out, then we know nothing */
13104 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
13105 dst_reg->umin_value = 0;
13106 dst_reg->umax_value = U64_MAX;
13107 } else {
13108 dst_reg->umin_value <<= umin_val;
13109 dst_reg->umax_value <<= umax_val;
13110 }
13111 }
13112
scalar_min_max_lsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13113 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
13114 struct bpf_reg_state *src_reg)
13115 {
13116 u64 umax_val = src_reg->umax_value;
13117 u64 umin_val = src_reg->umin_value;
13118
13119 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
13120 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
13121 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13122
13123 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
13124 /* We may learn something more from the var_off */
13125 __update_reg_bounds(dst_reg);
13126 }
13127
scalar32_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13128 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
13129 struct bpf_reg_state *src_reg)
13130 {
13131 struct tnum subreg = tnum_subreg(dst_reg->var_off);
13132 u32 umax_val = src_reg->u32_max_value;
13133 u32 umin_val = src_reg->u32_min_value;
13134
13135 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
13136 * be negative, then either:
13137 * 1) src_reg might be zero, so the sign bit of the result is
13138 * unknown, so we lose our signed bounds
13139 * 2) it's known negative, thus the unsigned bounds capture the
13140 * signed bounds
13141 * 3) the signed bounds cross zero, so they tell us nothing
13142 * about the result
13143 * If the value in dst_reg is known nonnegative, then again the
13144 * unsigned bounds capture the signed bounds.
13145 * Thus, in all cases it suffices to blow away our signed bounds
13146 * and rely on inferring new ones from the unsigned bounds and
13147 * var_off of the result.
13148 */
13149 dst_reg->s32_min_value = S32_MIN;
13150 dst_reg->s32_max_value = S32_MAX;
13151
13152 dst_reg->var_off = tnum_rshift(subreg, umin_val);
13153 dst_reg->u32_min_value >>= umax_val;
13154 dst_reg->u32_max_value >>= umin_val;
13155
13156 __mark_reg64_unbounded(dst_reg);
13157 __update_reg32_bounds(dst_reg);
13158 }
13159
scalar_min_max_rsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13160 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
13161 struct bpf_reg_state *src_reg)
13162 {
13163 u64 umax_val = src_reg->umax_value;
13164 u64 umin_val = src_reg->umin_value;
13165
13166 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
13167 * be negative, then either:
13168 * 1) src_reg might be zero, so the sign bit of the result is
13169 * unknown, so we lose our signed bounds
13170 * 2) it's known negative, thus the unsigned bounds capture the
13171 * signed bounds
13172 * 3) the signed bounds cross zero, so they tell us nothing
13173 * about the result
13174 * If the value in dst_reg is known nonnegative, then again the
13175 * unsigned bounds capture the signed bounds.
13176 * Thus, in all cases it suffices to blow away our signed bounds
13177 * and rely on inferring new ones from the unsigned bounds and
13178 * var_off of the result.
13179 */
13180 dst_reg->smin_value = S64_MIN;
13181 dst_reg->smax_value = S64_MAX;
13182 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
13183 dst_reg->umin_value >>= umax_val;
13184 dst_reg->umax_value >>= umin_val;
13185
13186 /* Its not easy to operate on alu32 bounds here because it depends
13187 * on bits being shifted in. Take easy way out and mark unbounded
13188 * so we can recalculate later from tnum.
13189 */
13190 __mark_reg32_unbounded(dst_reg);
13191 __update_reg_bounds(dst_reg);
13192 }
13193
scalar32_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13194 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
13195 struct bpf_reg_state *src_reg)
13196 {
13197 u64 umin_val = src_reg->u32_min_value;
13198
13199 /* Upon reaching here, src_known is true and
13200 * umax_val is equal to umin_val.
13201 */
13202 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
13203 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
13204
13205 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
13206
13207 /* blow away the dst_reg umin_value/umax_value and rely on
13208 * dst_reg var_off to refine the result.
13209 */
13210 dst_reg->u32_min_value = 0;
13211 dst_reg->u32_max_value = U32_MAX;
13212
13213 __mark_reg64_unbounded(dst_reg);
13214 __update_reg32_bounds(dst_reg);
13215 }
13216
scalar_min_max_arsh(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg)13217 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
13218 struct bpf_reg_state *src_reg)
13219 {
13220 u64 umin_val = src_reg->umin_value;
13221
13222 /* Upon reaching here, src_known is true and umax_val is equal
13223 * to umin_val.
13224 */
13225 dst_reg->smin_value >>= umin_val;
13226 dst_reg->smax_value >>= umin_val;
13227
13228 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
13229
13230 /* blow away the dst_reg umin_value/umax_value and rely on
13231 * dst_reg var_off to refine the result.
13232 */
13233 dst_reg->umin_value = 0;
13234 dst_reg->umax_value = U64_MAX;
13235
13236 /* Its not easy to operate on alu32 bounds here because it depends
13237 * on bits being shifted in from upper 32-bits. Take easy way out
13238 * and mark unbounded so we can recalculate later from tnum.
13239 */
13240 __mark_reg32_unbounded(dst_reg);
13241 __update_reg_bounds(dst_reg);
13242 }
13243
13244 /* WARNING: This function does calculations on 64-bit values, but the actual
13245 * execution may occur on 32-bit values. Therefore, things like bitshifts
13246 * need extra checks in the 32-bit case.
13247 */
adjust_scalar_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state src_reg)13248 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
13249 struct bpf_insn *insn,
13250 struct bpf_reg_state *dst_reg,
13251 struct bpf_reg_state src_reg)
13252 {
13253 struct bpf_reg_state *regs = cur_regs(env);
13254 u8 opcode = BPF_OP(insn->code);
13255 bool src_known;
13256 s64 smin_val, smax_val;
13257 u64 umin_val, umax_val;
13258 s32 s32_min_val, s32_max_val;
13259 u32 u32_min_val, u32_max_val;
13260 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
13261 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
13262 int ret;
13263
13264 smin_val = src_reg.smin_value;
13265 smax_val = src_reg.smax_value;
13266 umin_val = src_reg.umin_value;
13267 umax_val = src_reg.umax_value;
13268
13269 s32_min_val = src_reg.s32_min_value;
13270 s32_max_val = src_reg.s32_max_value;
13271 u32_min_val = src_reg.u32_min_value;
13272 u32_max_val = src_reg.u32_max_value;
13273
13274 if (alu32) {
13275 src_known = tnum_subreg_is_const(src_reg.var_off);
13276 if ((src_known &&
13277 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
13278 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
13279 /* Taint dst register if offset had invalid bounds
13280 * derived from e.g. dead branches.
13281 */
13282 __mark_reg_unknown(env, dst_reg);
13283 return 0;
13284 }
13285 } else {
13286 src_known = tnum_is_const(src_reg.var_off);
13287 if ((src_known &&
13288 (smin_val != smax_val || umin_val != umax_val)) ||
13289 smin_val > smax_val || umin_val > umax_val) {
13290 /* Taint dst register if offset had invalid bounds
13291 * derived from e.g. dead branches.
13292 */
13293 __mark_reg_unknown(env, dst_reg);
13294 return 0;
13295 }
13296 }
13297
13298 if (!src_known &&
13299 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
13300 __mark_reg_unknown(env, dst_reg);
13301 return 0;
13302 }
13303
13304 if (sanitize_needed(opcode)) {
13305 ret = sanitize_val_alu(env, insn);
13306 if (ret < 0)
13307 return sanitize_err(env, insn, ret, NULL, NULL);
13308 }
13309
13310 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
13311 * There are two classes of instructions: The first class we track both
13312 * alu32 and alu64 sign/unsigned bounds independently this provides the
13313 * greatest amount of precision when alu operations are mixed with jmp32
13314 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
13315 * and BPF_OR. This is possible because these ops have fairly easy to
13316 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
13317 * See alu32 verifier tests for examples. The second class of
13318 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
13319 * with regards to tracking sign/unsigned bounds because the bits may
13320 * cross subreg boundaries in the alu64 case. When this happens we mark
13321 * the reg unbounded in the subreg bound space and use the resulting
13322 * tnum to calculate an approximation of the sign/unsigned bounds.
13323 */
13324 switch (opcode) {
13325 case BPF_ADD:
13326 scalar32_min_max_add(dst_reg, &src_reg);
13327 scalar_min_max_add(dst_reg, &src_reg);
13328 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
13329 break;
13330 case BPF_SUB:
13331 scalar32_min_max_sub(dst_reg, &src_reg);
13332 scalar_min_max_sub(dst_reg, &src_reg);
13333 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
13334 break;
13335 case BPF_MUL:
13336 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
13337 scalar32_min_max_mul(dst_reg, &src_reg);
13338 scalar_min_max_mul(dst_reg, &src_reg);
13339 break;
13340 case BPF_AND:
13341 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
13342 scalar32_min_max_and(dst_reg, &src_reg);
13343 scalar_min_max_and(dst_reg, &src_reg);
13344 break;
13345 case BPF_OR:
13346 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
13347 scalar32_min_max_or(dst_reg, &src_reg);
13348 scalar_min_max_or(dst_reg, &src_reg);
13349 break;
13350 case BPF_XOR:
13351 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
13352 scalar32_min_max_xor(dst_reg, &src_reg);
13353 scalar_min_max_xor(dst_reg, &src_reg);
13354 break;
13355 case BPF_LSH:
13356 if (umax_val >= insn_bitness) {
13357 /* Shifts greater than 31 or 63 are undefined.
13358 * This includes shifts by a negative number.
13359 */
13360 mark_reg_unknown(env, regs, insn->dst_reg);
13361 break;
13362 }
13363 if (alu32)
13364 scalar32_min_max_lsh(dst_reg, &src_reg);
13365 else
13366 scalar_min_max_lsh(dst_reg, &src_reg);
13367 break;
13368 case BPF_RSH:
13369 if (umax_val >= insn_bitness) {
13370 /* Shifts greater than 31 or 63 are undefined.
13371 * This includes shifts by a negative number.
13372 */
13373 mark_reg_unknown(env, regs, insn->dst_reg);
13374 break;
13375 }
13376 if (alu32)
13377 scalar32_min_max_rsh(dst_reg, &src_reg);
13378 else
13379 scalar_min_max_rsh(dst_reg, &src_reg);
13380 break;
13381 case BPF_ARSH:
13382 if (umax_val >= insn_bitness) {
13383 /* Shifts greater than 31 or 63 are undefined.
13384 * This includes shifts by a negative number.
13385 */
13386 mark_reg_unknown(env, regs, insn->dst_reg);
13387 break;
13388 }
13389 if (alu32)
13390 scalar32_min_max_arsh(dst_reg, &src_reg);
13391 else
13392 scalar_min_max_arsh(dst_reg, &src_reg);
13393 break;
13394 default:
13395 mark_reg_unknown(env, regs, insn->dst_reg);
13396 break;
13397 }
13398
13399 /* ALU32 ops are zero extended into 64bit register */
13400 if (alu32)
13401 zext_32_to_64(dst_reg);
13402 reg_bounds_sync(dst_reg);
13403 return 0;
13404 }
13405
13406 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
13407 * and var_off.
13408 */
adjust_reg_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn)13409 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
13410 struct bpf_insn *insn)
13411 {
13412 struct bpf_verifier_state *vstate = env->cur_state;
13413 struct bpf_func_state *state = vstate->frame[vstate->curframe];
13414 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
13415 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
13416 u8 opcode = BPF_OP(insn->code);
13417 int err;
13418
13419 dst_reg = ®s[insn->dst_reg];
13420 src_reg = NULL;
13421 if (dst_reg->type != SCALAR_VALUE)
13422 ptr_reg = dst_reg;
13423 else
13424 /* Make sure ID is cleared otherwise dst_reg min/max could be
13425 * incorrectly propagated into other registers by find_equal_scalars()
13426 */
13427 dst_reg->id = 0;
13428 if (BPF_SRC(insn->code) == BPF_X) {
13429 src_reg = ®s[insn->src_reg];
13430 if (src_reg->type != SCALAR_VALUE) {
13431 if (dst_reg->type != SCALAR_VALUE) {
13432 /* Combining two pointers by any ALU op yields
13433 * an arbitrary scalar. Disallow all math except
13434 * pointer subtraction
13435 */
13436 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13437 mark_reg_unknown(env, regs, insn->dst_reg);
13438 return 0;
13439 }
13440 verbose(env, "R%d pointer %s pointer prohibited\n",
13441 insn->dst_reg,
13442 bpf_alu_string[opcode >> 4]);
13443 return -EACCES;
13444 } else {
13445 /* scalar += pointer
13446 * This is legal, but we have to reverse our
13447 * src/dest handling in computing the range
13448 */
13449 err = mark_chain_precision(env, insn->dst_reg);
13450 if (err)
13451 return err;
13452 return adjust_ptr_min_max_vals(env, insn,
13453 src_reg, dst_reg);
13454 }
13455 } else if (ptr_reg) {
13456 /* pointer += scalar */
13457 err = mark_chain_precision(env, insn->src_reg);
13458 if (err)
13459 return err;
13460 return adjust_ptr_min_max_vals(env, insn,
13461 dst_reg, src_reg);
13462 } else if (dst_reg->precise) {
13463 /* if dst_reg is precise, src_reg should be precise as well */
13464 err = mark_chain_precision(env, insn->src_reg);
13465 if (err)
13466 return err;
13467 }
13468 } else {
13469 /* Pretend the src is a reg with a known value, since we only
13470 * need to be able to read from this state.
13471 */
13472 off_reg.type = SCALAR_VALUE;
13473 __mark_reg_known(&off_reg, insn->imm);
13474 src_reg = &off_reg;
13475 if (ptr_reg) /* pointer += K */
13476 return adjust_ptr_min_max_vals(env, insn,
13477 ptr_reg, src_reg);
13478 }
13479
13480 /* Got here implies adding two SCALAR_VALUEs */
13481 if (WARN_ON_ONCE(ptr_reg)) {
13482 print_verifier_state(env, state, true);
13483 verbose(env, "verifier internal error: unexpected ptr_reg\n");
13484 return -EINVAL;
13485 }
13486 if (WARN_ON(!src_reg)) {
13487 print_verifier_state(env, state, true);
13488 verbose(env, "verifier internal error: no src_reg\n");
13489 return -EINVAL;
13490 }
13491 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
13492 }
13493
13494 /* check validity of 32-bit and 64-bit arithmetic operations */
check_alu_op(struct bpf_verifier_env * env,struct bpf_insn * insn)13495 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
13496 {
13497 struct bpf_reg_state *regs = cur_regs(env);
13498 u8 opcode = BPF_OP(insn->code);
13499 int err;
13500
13501 if (opcode == BPF_END || opcode == BPF_NEG) {
13502 if (opcode == BPF_NEG) {
13503 if (BPF_SRC(insn->code) != BPF_K ||
13504 insn->src_reg != BPF_REG_0 ||
13505 insn->off != 0 || insn->imm != 0) {
13506 verbose(env, "BPF_NEG uses reserved fields\n");
13507 return -EINVAL;
13508 }
13509 } else {
13510 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
13511 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
13512 (BPF_CLASS(insn->code) == BPF_ALU64 &&
13513 BPF_SRC(insn->code) != BPF_TO_LE)) {
13514 verbose(env, "BPF_END uses reserved fields\n");
13515 return -EINVAL;
13516 }
13517 }
13518
13519 /* check src operand */
13520 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13521 if (err)
13522 return err;
13523
13524 if (is_pointer_value(env, insn->dst_reg)) {
13525 verbose(env, "R%d pointer arithmetic prohibited\n",
13526 insn->dst_reg);
13527 return -EACCES;
13528 }
13529
13530 /* check dest operand */
13531 err = check_reg_arg(env, insn->dst_reg, DST_OP);
13532 if (err)
13533 return err;
13534
13535 } else if (opcode == BPF_MOV) {
13536
13537 if (BPF_SRC(insn->code) == BPF_X) {
13538 if (insn->imm != 0) {
13539 verbose(env, "BPF_MOV uses reserved fields\n");
13540 return -EINVAL;
13541 }
13542
13543 if (BPF_CLASS(insn->code) == BPF_ALU) {
13544 if (insn->off != 0 && insn->off != 8 && insn->off != 16) {
13545 verbose(env, "BPF_MOV uses reserved fields\n");
13546 return -EINVAL;
13547 }
13548 } else {
13549 if (insn->off != 0 && insn->off != 8 && insn->off != 16 &&
13550 insn->off != 32) {
13551 verbose(env, "BPF_MOV uses reserved fields\n");
13552 return -EINVAL;
13553 }
13554 }
13555
13556 /* check src operand */
13557 err = check_reg_arg(env, insn->src_reg, SRC_OP);
13558 if (err)
13559 return err;
13560 } else {
13561 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
13562 verbose(env, "BPF_MOV uses reserved fields\n");
13563 return -EINVAL;
13564 }
13565 }
13566
13567 /* check dest operand, mark as required later */
13568 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13569 if (err)
13570 return err;
13571
13572 if (BPF_SRC(insn->code) == BPF_X) {
13573 struct bpf_reg_state *src_reg = regs + insn->src_reg;
13574 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
13575 bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id &&
13576 !tnum_is_const(src_reg->var_off);
13577
13578 if (BPF_CLASS(insn->code) == BPF_ALU64) {
13579 if (insn->off == 0) {
13580 /* case: R1 = R2
13581 * copy register state to dest reg
13582 */
13583 if (need_id)
13584 /* Assign src and dst registers the same ID
13585 * that will be used by find_equal_scalars()
13586 * to propagate min/max range.
13587 */
13588 src_reg->id = ++env->id_gen;
13589 copy_register_state(dst_reg, src_reg);
13590 dst_reg->live |= REG_LIVE_WRITTEN;
13591 dst_reg->subreg_def = DEF_NOT_SUBREG;
13592 } else {
13593 /* case: R1 = (s8, s16 s32)R2 */
13594 if (is_pointer_value(env, insn->src_reg)) {
13595 verbose(env,
13596 "R%d sign-extension part of pointer\n",
13597 insn->src_reg);
13598 return -EACCES;
13599 } else if (src_reg->type == SCALAR_VALUE) {
13600 bool no_sext;
13601
13602 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13603 if (no_sext && need_id)
13604 src_reg->id = ++env->id_gen;
13605 copy_register_state(dst_reg, src_reg);
13606 if (!no_sext)
13607 dst_reg->id = 0;
13608 coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
13609 dst_reg->live |= REG_LIVE_WRITTEN;
13610 dst_reg->subreg_def = DEF_NOT_SUBREG;
13611 } else {
13612 mark_reg_unknown(env, regs, insn->dst_reg);
13613 }
13614 }
13615 } else {
13616 /* R1 = (u32) R2 */
13617 if (is_pointer_value(env, insn->src_reg)) {
13618 verbose(env,
13619 "R%d partial copy of pointer\n",
13620 insn->src_reg);
13621 return -EACCES;
13622 } else if (src_reg->type == SCALAR_VALUE) {
13623 if (insn->off == 0) {
13624 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
13625
13626 if (is_src_reg_u32 && need_id)
13627 src_reg->id = ++env->id_gen;
13628 copy_register_state(dst_reg, src_reg);
13629 /* Make sure ID is cleared if src_reg is not in u32
13630 * range otherwise dst_reg min/max could be incorrectly
13631 * propagated into src_reg by find_equal_scalars()
13632 */
13633 if (!is_src_reg_u32)
13634 dst_reg->id = 0;
13635 dst_reg->live |= REG_LIVE_WRITTEN;
13636 dst_reg->subreg_def = env->insn_idx + 1;
13637 } else {
13638 /* case: W1 = (s8, s16)W2 */
13639 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13640
13641 if (no_sext && need_id)
13642 src_reg->id = ++env->id_gen;
13643 copy_register_state(dst_reg, src_reg);
13644 if (!no_sext)
13645 dst_reg->id = 0;
13646 dst_reg->live |= REG_LIVE_WRITTEN;
13647 dst_reg->subreg_def = env->insn_idx + 1;
13648 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
13649 }
13650 } else {
13651 mark_reg_unknown(env, regs,
13652 insn->dst_reg);
13653 }
13654 zext_32_to_64(dst_reg);
13655 reg_bounds_sync(dst_reg);
13656 }
13657 } else {
13658 /* case: R = imm
13659 * remember the value we stored into this reg
13660 */
13661 /* clear any state __mark_reg_known doesn't set */
13662 mark_reg_unknown(env, regs, insn->dst_reg);
13663 regs[insn->dst_reg].type = SCALAR_VALUE;
13664 if (BPF_CLASS(insn->code) == BPF_ALU64) {
13665 __mark_reg_known(regs + insn->dst_reg,
13666 insn->imm);
13667 } else {
13668 __mark_reg_known(regs + insn->dst_reg,
13669 (u32)insn->imm);
13670 }
13671 }
13672
13673 } else if (opcode > BPF_END) {
13674 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
13675 return -EINVAL;
13676
13677 } else { /* all other ALU ops: and, sub, xor, add, ... */
13678
13679 if (BPF_SRC(insn->code) == BPF_X) {
13680 if (insn->imm != 0 || insn->off > 1 ||
13681 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13682 verbose(env, "BPF_ALU uses reserved fields\n");
13683 return -EINVAL;
13684 }
13685 /* check src1 operand */
13686 err = check_reg_arg(env, insn->src_reg, SRC_OP);
13687 if (err)
13688 return err;
13689 } else {
13690 if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
13691 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13692 verbose(env, "BPF_ALU uses reserved fields\n");
13693 return -EINVAL;
13694 }
13695 }
13696
13697 /* check src2 operand */
13698 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13699 if (err)
13700 return err;
13701
13702 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
13703 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
13704 verbose(env, "div by zero\n");
13705 return -EINVAL;
13706 }
13707
13708 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
13709 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
13710 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
13711
13712 if (insn->imm < 0 || insn->imm >= size) {
13713 verbose(env, "invalid shift %d\n", insn->imm);
13714 return -EINVAL;
13715 }
13716 }
13717
13718 /* check dest operand */
13719 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13720 if (err)
13721 return err;
13722
13723 return adjust_reg_min_max_vals(env, insn);
13724 }
13725
13726 return 0;
13727 }
13728
find_good_pkt_pointers(struct bpf_verifier_state * vstate,struct bpf_reg_state * dst_reg,enum bpf_reg_type type,bool range_right_open)13729 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
13730 struct bpf_reg_state *dst_reg,
13731 enum bpf_reg_type type,
13732 bool range_right_open)
13733 {
13734 struct bpf_func_state *state;
13735 struct bpf_reg_state *reg;
13736 int new_range;
13737
13738 if (dst_reg->off < 0 ||
13739 (dst_reg->off == 0 && range_right_open))
13740 /* This doesn't give us any range */
13741 return;
13742
13743 if (dst_reg->umax_value > MAX_PACKET_OFF ||
13744 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
13745 /* Risk of overflow. For instance, ptr + (1<<63) may be less
13746 * than pkt_end, but that's because it's also less than pkt.
13747 */
13748 return;
13749
13750 new_range = dst_reg->off;
13751 if (range_right_open)
13752 new_range++;
13753
13754 /* Examples for register markings:
13755 *
13756 * pkt_data in dst register:
13757 *
13758 * r2 = r3;
13759 * r2 += 8;
13760 * if (r2 > pkt_end) goto <handle exception>
13761 * <access okay>
13762 *
13763 * r2 = r3;
13764 * r2 += 8;
13765 * if (r2 < pkt_end) goto <access okay>
13766 * <handle exception>
13767 *
13768 * Where:
13769 * r2 == dst_reg, pkt_end == src_reg
13770 * r2=pkt(id=n,off=8,r=0)
13771 * r3=pkt(id=n,off=0,r=0)
13772 *
13773 * pkt_data in src register:
13774 *
13775 * r2 = r3;
13776 * r2 += 8;
13777 * if (pkt_end >= r2) goto <access okay>
13778 * <handle exception>
13779 *
13780 * r2 = r3;
13781 * r2 += 8;
13782 * if (pkt_end <= r2) goto <handle exception>
13783 * <access okay>
13784 *
13785 * Where:
13786 * pkt_end == dst_reg, r2 == src_reg
13787 * r2=pkt(id=n,off=8,r=0)
13788 * r3=pkt(id=n,off=0,r=0)
13789 *
13790 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
13791 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
13792 * and [r3, r3 + 8-1) respectively is safe to access depending on
13793 * the check.
13794 */
13795
13796 /* If our ids match, then we must have the same max_value. And we
13797 * don't care about the other reg's fixed offset, since if it's too big
13798 * the range won't allow anything.
13799 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
13800 */
13801 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13802 if (reg->type == type && reg->id == dst_reg->id)
13803 /* keep the maximum range already checked */
13804 reg->range = max(reg->range, new_range);
13805 }));
13806 }
13807
is_branch32_taken(struct bpf_reg_state * reg,u32 val,u8 opcode)13808 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
13809 {
13810 struct tnum subreg = tnum_subreg(reg->var_off);
13811 s32 sval = (s32)val;
13812
13813 switch (opcode) {
13814 case BPF_JEQ:
13815 if (tnum_is_const(subreg))
13816 return !!tnum_equals_const(subreg, val);
13817 else if (val < reg->u32_min_value || val > reg->u32_max_value)
13818 return 0;
13819 break;
13820 case BPF_JNE:
13821 if (tnum_is_const(subreg))
13822 return !tnum_equals_const(subreg, val);
13823 else if (val < reg->u32_min_value || val > reg->u32_max_value)
13824 return 1;
13825 break;
13826 case BPF_JSET:
13827 if ((~subreg.mask & subreg.value) & val)
13828 return 1;
13829 if (!((subreg.mask | subreg.value) & val))
13830 return 0;
13831 break;
13832 case BPF_JGT:
13833 if (reg->u32_min_value > val)
13834 return 1;
13835 else if (reg->u32_max_value <= val)
13836 return 0;
13837 break;
13838 case BPF_JSGT:
13839 if (reg->s32_min_value > sval)
13840 return 1;
13841 else if (reg->s32_max_value <= sval)
13842 return 0;
13843 break;
13844 case BPF_JLT:
13845 if (reg->u32_max_value < val)
13846 return 1;
13847 else if (reg->u32_min_value >= val)
13848 return 0;
13849 break;
13850 case BPF_JSLT:
13851 if (reg->s32_max_value < sval)
13852 return 1;
13853 else if (reg->s32_min_value >= sval)
13854 return 0;
13855 break;
13856 case BPF_JGE:
13857 if (reg->u32_min_value >= val)
13858 return 1;
13859 else if (reg->u32_max_value < val)
13860 return 0;
13861 break;
13862 case BPF_JSGE:
13863 if (reg->s32_min_value >= sval)
13864 return 1;
13865 else if (reg->s32_max_value < sval)
13866 return 0;
13867 break;
13868 case BPF_JLE:
13869 if (reg->u32_max_value <= val)
13870 return 1;
13871 else if (reg->u32_min_value > val)
13872 return 0;
13873 break;
13874 case BPF_JSLE:
13875 if (reg->s32_max_value <= sval)
13876 return 1;
13877 else if (reg->s32_min_value > sval)
13878 return 0;
13879 break;
13880 }
13881
13882 return -1;
13883 }
13884
13885
is_branch64_taken(struct bpf_reg_state * reg,u64 val,u8 opcode)13886 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
13887 {
13888 s64 sval = (s64)val;
13889
13890 switch (opcode) {
13891 case BPF_JEQ:
13892 if (tnum_is_const(reg->var_off))
13893 return !!tnum_equals_const(reg->var_off, val);
13894 else if (val < reg->umin_value || val > reg->umax_value)
13895 return 0;
13896 break;
13897 case BPF_JNE:
13898 if (tnum_is_const(reg->var_off))
13899 return !tnum_equals_const(reg->var_off, val);
13900 else if (val < reg->umin_value || val > reg->umax_value)
13901 return 1;
13902 break;
13903 case BPF_JSET:
13904 if ((~reg->var_off.mask & reg->var_off.value) & val)
13905 return 1;
13906 if (!((reg->var_off.mask | reg->var_off.value) & val))
13907 return 0;
13908 break;
13909 case BPF_JGT:
13910 if (reg->umin_value > val)
13911 return 1;
13912 else if (reg->umax_value <= val)
13913 return 0;
13914 break;
13915 case BPF_JSGT:
13916 if (reg->smin_value > sval)
13917 return 1;
13918 else if (reg->smax_value <= sval)
13919 return 0;
13920 break;
13921 case BPF_JLT:
13922 if (reg->umax_value < val)
13923 return 1;
13924 else if (reg->umin_value >= val)
13925 return 0;
13926 break;
13927 case BPF_JSLT:
13928 if (reg->smax_value < sval)
13929 return 1;
13930 else if (reg->smin_value >= sval)
13931 return 0;
13932 break;
13933 case BPF_JGE:
13934 if (reg->umin_value >= val)
13935 return 1;
13936 else if (reg->umax_value < val)
13937 return 0;
13938 break;
13939 case BPF_JSGE:
13940 if (reg->smin_value >= sval)
13941 return 1;
13942 else if (reg->smax_value < sval)
13943 return 0;
13944 break;
13945 case BPF_JLE:
13946 if (reg->umax_value <= val)
13947 return 1;
13948 else if (reg->umin_value > val)
13949 return 0;
13950 break;
13951 case BPF_JSLE:
13952 if (reg->smax_value <= sval)
13953 return 1;
13954 else if (reg->smin_value > sval)
13955 return 0;
13956 break;
13957 }
13958
13959 return -1;
13960 }
13961
13962 /* compute branch direction of the expression "if (reg opcode val) goto target;"
13963 * and return:
13964 * 1 - branch will be taken and "goto target" will be executed
13965 * 0 - branch will not be taken and fall-through to next insn
13966 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
13967 * range [0,10]
13968 */
is_branch_taken(struct bpf_reg_state * reg,u64 val,u8 opcode,bool is_jmp32)13969 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
13970 bool is_jmp32)
13971 {
13972 if (__is_pointer_value(false, reg)) {
13973 if (!reg_not_null(reg))
13974 return -1;
13975
13976 /* If pointer is valid tests against zero will fail so we can
13977 * use this to direct branch taken.
13978 */
13979 if (val != 0)
13980 return -1;
13981
13982 switch (opcode) {
13983 case BPF_JEQ:
13984 return 0;
13985 case BPF_JNE:
13986 return 1;
13987 default:
13988 return -1;
13989 }
13990 }
13991
13992 if (is_jmp32)
13993 return is_branch32_taken(reg, val, opcode);
13994 return is_branch64_taken(reg, val, opcode);
13995 }
13996
flip_opcode(u32 opcode)13997 static int flip_opcode(u32 opcode)
13998 {
13999 /* How can we transform "a <op> b" into "b <op> a"? */
14000 static const u8 opcode_flip[16] = {
14001 /* these stay the same */
14002 [BPF_JEQ >> 4] = BPF_JEQ,
14003 [BPF_JNE >> 4] = BPF_JNE,
14004 [BPF_JSET >> 4] = BPF_JSET,
14005 /* these swap "lesser" and "greater" (L and G in the opcodes) */
14006 [BPF_JGE >> 4] = BPF_JLE,
14007 [BPF_JGT >> 4] = BPF_JLT,
14008 [BPF_JLE >> 4] = BPF_JGE,
14009 [BPF_JLT >> 4] = BPF_JGT,
14010 [BPF_JSGE >> 4] = BPF_JSLE,
14011 [BPF_JSGT >> 4] = BPF_JSLT,
14012 [BPF_JSLE >> 4] = BPF_JSGE,
14013 [BPF_JSLT >> 4] = BPF_JSGT
14014 };
14015 return opcode_flip[opcode >> 4];
14016 }
14017
is_pkt_ptr_branch_taken(struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,u8 opcode)14018 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
14019 struct bpf_reg_state *src_reg,
14020 u8 opcode)
14021 {
14022 struct bpf_reg_state *pkt;
14023
14024 if (src_reg->type == PTR_TO_PACKET_END) {
14025 pkt = dst_reg;
14026 } else if (dst_reg->type == PTR_TO_PACKET_END) {
14027 pkt = src_reg;
14028 opcode = flip_opcode(opcode);
14029 } else {
14030 return -1;
14031 }
14032
14033 if (pkt->range >= 0)
14034 return -1;
14035
14036 switch (opcode) {
14037 case BPF_JLE:
14038 /* pkt <= pkt_end */
14039 fallthrough;
14040 case BPF_JGT:
14041 /* pkt > pkt_end */
14042 if (pkt->range == BEYOND_PKT_END)
14043 /* pkt has at last one extra byte beyond pkt_end */
14044 return opcode == BPF_JGT;
14045 break;
14046 case BPF_JLT:
14047 /* pkt < pkt_end */
14048 fallthrough;
14049 case BPF_JGE:
14050 /* pkt >= pkt_end */
14051 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
14052 return opcode == BPF_JGE;
14053 break;
14054 }
14055 return -1;
14056 }
14057
14058 /* Adjusts the register min/max values in the case that the dst_reg is the
14059 * variable register that we are working on, and src_reg is a constant or we're
14060 * simply doing a BPF_K check.
14061 * In JEQ/JNE cases we also adjust the var_off values.
14062 */
reg_set_min_max(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)14063 static void reg_set_min_max(struct bpf_reg_state *true_reg,
14064 struct bpf_reg_state *false_reg,
14065 u64 val, u32 val32,
14066 u8 opcode, bool is_jmp32)
14067 {
14068 struct tnum false_32off = tnum_subreg(false_reg->var_off);
14069 struct tnum false_64off = false_reg->var_off;
14070 struct tnum true_32off = tnum_subreg(true_reg->var_off);
14071 struct tnum true_64off = true_reg->var_off;
14072 s64 sval = (s64)val;
14073 s32 sval32 = (s32)val32;
14074
14075 /* If the dst_reg is a pointer, we can't learn anything about its
14076 * variable offset from the compare (unless src_reg were a pointer into
14077 * the same object, but we don't bother with that.
14078 * Since false_reg and true_reg have the same type by construction, we
14079 * only need to check one of them for pointerness.
14080 */
14081 if (__is_pointer_value(false, false_reg))
14082 return;
14083
14084 switch (opcode) {
14085 /* JEQ/JNE comparison doesn't change the register equivalence.
14086 *
14087 * r1 = r2;
14088 * if (r1 == 42) goto label;
14089 * ...
14090 * label: // here both r1 and r2 are known to be 42.
14091 *
14092 * Hence when marking register as known preserve it's ID.
14093 */
14094 case BPF_JEQ:
14095 if (is_jmp32) {
14096 __mark_reg32_known(true_reg, val32);
14097 true_32off = tnum_subreg(true_reg->var_off);
14098 } else {
14099 ___mark_reg_known(true_reg, val);
14100 true_64off = true_reg->var_off;
14101 }
14102 break;
14103 case BPF_JNE:
14104 if (is_jmp32) {
14105 __mark_reg32_known(false_reg, val32);
14106 false_32off = tnum_subreg(false_reg->var_off);
14107 } else {
14108 ___mark_reg_known(false_reg, val);
14109 false_64off = false_reg->var_off;
14110 }
14111 break;
14112 case BPF_JSET:
14113 if (is_jmp32) {
14114 false_32off = tnum_and(false_32off, tnum_const(~val32));
14115 if (is_power_of_2(val32))
14116 true_32off = tnum_or(true_32off,
14117 tnum_const(val32));
14118 } else {
14119 false_64off = tnum_and(false_64off, tnum_const(~val));
14120 if (is_power_of_2(val))
14121 true_64off = tnum_or(true_64off,
14122 tnum_const(val));
14123 }
14124 break;
14125 case BPF_JGE:
14126 case BPF_JGT:
14127 {
14128 if (is_jmp32) {
14129 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
14130 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
14131
14132 false_reg->u32_max_value = min(false_reg->u32_max_value,
14133 false_umax);
14134 true_reg->u32_min_value = max(true_reg->u32_min_value,
14135 true_umin);
14136 } else {
14137 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
14138 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
14139
14140 false_reg->umax_value = min(false_reg->umax_value, false_umax);
14141 true_reg->umin_value = max(true_reg->umin_value, true_umin);
14142 }
14143 break;
14144 }
14145 case BPF_JSGE:
14146 case BPF_JSGT:
14147 {
14148 if (is_jmp32) {
14149 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
14150 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
14151
14152 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
14153 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
14154 } else {
14155 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
14156 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
14157
14158 false_reg->smax_value = min(false_reg->smax_value, false_smax);
14159 true_reg->smin_value = max(true_reg->smin_value, true_smin);
14160 }
14161 break;
14162 }
14163 case BPF_JLE:
14164 case BPF_JLT:
14165 {
14166 if (is_jmp32) {
14167 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
14168 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
14169
14170 false_reg->u32_min_value = max(false_reg->u32_min_value,
14171 false_umin);
14172 true_reg->u32_max_value = min(true_reg->u32_max_value,
14173 true_umax);
14174 } else {
14175 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
14176 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
14177
14178 false_reg->umin_value = max(false_reg->umin_value, false_umin);
14179 true_reg->umax_value = min(true_reg->umax_value, true_umax);
14180 }
14181 break;
14182 }
14183 case BPF_JSLE:
14184 case BPF_JSLT:
14185 {
14186 if (is_jmp32) {
14187 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
14188 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
14189
14190 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
14191 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
14192 } else {
14193 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
14194 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
14195
14196 false_reg->smin_value = max(false_reg->smin_value, false_smin);
14197 true_reg->smax_value = min(true_reg->smax_value, true_smax);
14198 }
14199 break;
14200 }
14201 default:
14202 return;
14203 }
14204
14205 if (is_jmp32) {
14206 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
14207 tnum_subreg(false_32off));
14208 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
14209 tnum_subreg(true_32off));
14210 __reg_combine_32_into_64(false_reg);
14211 __reg_combine_32_into_64(true_reg);
14212 } else {
14213 false_reg->var_off = false_64off;
14214 true_reg->var_off = true_64off;
14215 __reg_combine_64_into_32(false_reg);
14216 __reg_combine_64_into_32(true_reg);
14217 }
14218 }
14219
14220 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
14221 * the variable reg.
14222 */
reg_set_min_max_inv(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u32 val32,u8 opcode,bool is_jmp32)14223 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
14224 struct bpf_reg_state *false_reg,
14225 u64 val, u32 val32,
14226 u8 opcode, bool is_jmp32)
14227 {
14228 opcode = flip_opcode(opcode);
14229 /* This uses zero as "not present in table"; luckily the zero opcode,
14230 * BPF_JA, can't get here.
14231 */
14232 if (opcode)
14233 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
14234 }
14235
14236 /* Regs are known to be equal, so intersect their min/max/var_off */
__reg_combine_min_max(struct bpf_reg_state * src_reg,struct bpf_reg_state * dst_reg)14237 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
14238 struct bpf_reg_state *dst_reg)
14239 {
14240 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
14241 dst_reg->umin_value);
14242 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
14243 dst_reg->umax_value);
14244 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
14245 dst_reg->smin_value);
14246 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
14247 dst_reg->smax_value);
14248 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
14249 dst_reg->var_off);
14250 reg_bounds_sync(src_reg);
14251 reg_bounds_sync(dst_reg);
14252 }
14253
reg_combine_min_max(struct bpf_reg_state * true_src,struct bpf_reg_state * true_dst,struct bpf_reg_state * false_src,struct bpf_reg_state * false_dst,u8 opcode)14254 static void reg_combine_min_max(struct bpf_reg_state *true_src,
14255 struct bpf_reg_state *true_dst,
14256 struct bpf_reg_state *false_src,
14257 struct bpf_reg_state *false_dst,
14258 u8 opcode)
14259 {
14260 switch (opcode) {
14261 case BPF_JEQ:
14262 __reg_combine_min_max(true_src, true_dst);
14263 break;
14264 case BPF_JNE:
14265 __reg_combine_min_max(false_src, false_dst);
14266 break;
14267 }
14268 }
14269
mark_ptr_or_null_reg(struct bpf_func_state * state,struct bpf_reg_state * reg,u32 id,bool is_null)14270 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
14271 struct bpf_reg_state *reg, u32 id,
14272 bool is_null)
14273 {
14274 if (type_may_be_null(reg->type) && reg->id == id &&
14275 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
14276 /* Old offset (both fixed and variable parts) should have been
14277 * known-zero, because we don't allow pointer arithmetic on
14278 * pointers that might be NULL. If we see this happening, don't
14279 * convert the register.
14280 *
14281 * But in some cases, some helpers that return local kptrs
14282 * advance offset for the returned pointer. In those cases, it
14283 * is fine to expect to see reg->off.
14284 */
14285 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
14286 return;
14287 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
14288 WARN_ON_ONCE(reg->off))
14289 return;
14290
14291 if (is_null) {
14292 reg->type = SCALAR_VALUE;
14293 /* We don't need id and ref_obj_id from this point
14294 * onwards anymore, thus we should better reset it,
14295 * so that state pruning has chances to take effect.
14296 */
14297 reg->id = 0;
14298 reg->ref_obj_id = 0;
14299
14300 return;
14301 }
14302
14303 mark_ptr_not_null_reg(reg);
14304
14305 if (!reg_may_point_to_spin_lock(reg)) {
14306 /* For not-NULL ptr, reg->ref_obj_id will be reset
14307 * in release_reference().
14308 *
14309 * reg->id is still used by spin_lock ptr. Other
14310 * than spin_lock ptr type, reg->id can be reset.
14311 */
14312 reg->id = 0;
14313 }
14314 }
14315 }
14316
14317 /* The logic is similar to find_good_pkt_pointers(), both could eventually
14318 * be folded together at some point.
14319 */
mark_ptr_or_null_regs(struct bpf_verifier_state * vstate,u32 regno,bool is_null)14320 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
14321 bool is_null)
14322 {
14323 struct bpf_func_state *state = vstate->frame[vstate->curframe];
14324 struct bpf_reg_state *regs = state->regs, *reg;
14325 u32 ref_obj_id = regs[regno].ref_obj_id;
14326 u32 id = regs[regno].id;
14327
14328 if (ref_obj_id && ref_obj_id == id && is_null)
14329 /* regs[regno] is in the " == NULL" branch.
14330 * No one could have freed the reference state before
14331 * doing the NULL check.
14332 */
14333 WARN_ON_ONCE(release_reference_state(state, id));
14334
14335 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14336 mark_ptr_or_null_reg(state, reg, id, is_null);
14337 }));
14338 }
14339
try_match_pkt_pointers(const struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,struct bpf_verifier_state * this_branch,struct bpf_verifier_state * other_branch)14340 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
14341 struct bpf_reg_state *dst_reg,
14342 struct bpf_reg_state *src_reg,
14343 struct bpf_verifier_state *this_branch,
14344 struct bpf_verifier_state *other_branch)
14345 {
14346 if (BPF_SRC(insn->code) != BPF_X)
14347 return false;
14348
14349 /* Pointers are always 64-bit. */
14350 if (BPF_CLASS(insn->code) == BPF_JMP32)
14351 return false;
14352
14353 switch (BPF_OP(insn->code)) {
14354 case BPF_JGT:
14355 if ((dst_reg->type == PTR_TO_PACKET &&
14356 src_reg->type == PTR_TO_PACKET_END) ||
14357 (dst_reg->type == PTR_TO_PACKET_META &&
14358 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14359 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
14360 find_good_pkt_pointers(this_branch, dst_reg,
14361 dst_reg->type, false);
14362 mark_pkt_end(other_branch, insn->dst_reg, true);
14363 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
14364 src_reg->type == PTR_TO_PACKET) ||
14365 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14366 src_reg->type == PTR_TO_PACKET_META)) {
14367 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
14368 find_good_pkt_pointers(other_branch, src_reg,
14369 src_reg->type, true);
14370 mark_pkt_end(this_branch, insn->src_reg, false);
14371 } else {
14372 return false;
14373 }
14374 break;
14375 case BPF_JLT:
14376 if ((dst_reg->type == PTR_TO_PACKET &&
14377 src_reg->type == PTR_TO_PACKET_END) ||
14378 (dst_reg->type == PTR_TO_PACKET_META &&
14379 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14380 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
14381 find_good_pkt_pointers(other_branch, dst_reg,
14382 dst_reg->type, true);
14383 mark_pkt_end(this_branch, insn->dst_reg, false);
14384 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
14385 src_reg->type == PTR_TO_PACKET) ||
14386 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14387 src_reg->type == PTR_TO_PACKET_META)) {
14388 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
14389 find_good_pkt_pointers(this_branch, src_reg,
14390 src_reg->type, false);
14391 mark_pkt_end(other_branch, insn->src_reg, true);
14392 } else {
14393 return false;
14394 }
14395 break;
14396 case BPF_JGE:
14397 if ((dst_reg->type == PTR_TO_PACKET &&
14398 src_reg->type == PTR_TO_PACKET_END) ||
14399 (dst_reg->type == PTR_TO_PACKET_META &&
14400 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14401 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
14402 find_good_pkt_pointers(this_branch, dst_reg,
14403 dst_reg->type, true);
14404 mark_pkt_end(other_branch, insn->dst_reg, false);
14405 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
14406 src_reg->type == PTR_TO_PACKET) ||
14407 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14408 src_reg->type == PTR_TO_PACKET_META)) {
14409 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
14410 find_good_pkt_pointers(other_branch, src_reg,
14411 src_reg->type, false);
14412 mark_pkt_end(this_branch, insn->src_reg, true);
14413 } else {
14414 return false;
14415 }
14416 break;
14417 case BPF_JLE:
14418 if ((dst_reg->type == PTR_TO_PACKET &&
14419 src_reg->type == PTR_TO_PACKET_END) ||
14420 (dst_reg->type == PTR_TO_PACKET_META &&
14421 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14422 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
14423 find_good_pkt_pointers(other_branch, dst_reg,
14424 dst_reg->type, false);
14425 mark_pkt_end(this_branch, insn->dst_reg, true);
14426 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
14427 src_reg->type == PTR_TO_PACKET) ||
14428 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14429 src_reg->type == PTR_TO_PACKET_META)) {
14430 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
14431 find_good_pkt_pointers(this_branch, src_reg,
14432 src_reg->type, true);
14433 mark_pkt_end(other_branch, insn->src_reg, false);
14434 } else {
14435 return false;
14436 }
14437 break;
14438 default:
14439 return false;
14440 }
14441
14442 return true;
14443 }
14444
find_equal_scalars(struct bpf_verifier_state * vstate,struct bpf_reg_state * known_reg)14445 static void find_equal_scalars(struct bpf_verifier_state *vstate,
14446 struct bpf_reg_state *known_reg)
14447 {
14448 struct bpf_func_state *state;
14449 struct bpf_reg_state *reg;
14450
14451 bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14452 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
14453 copy_register_state(reg, known_reg);
14454 }));
14455 }
14456
check_cond_jmp_op(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)14457 static int check_cond_jmp_op(struct bpf_verifier_env *env,
14458 struct bpf_insn *insn, int *insn_idx)
14459 {
14460 struct bpf_verifier_state *this_branch = env->cur_state;
14461 struct bpf_verifier_state *other_branch;
14462 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
14463 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
14464 struct bpf_reg_state *eq_branch_regs;
14465 u8 opcode = BPF_OP(insn->code);
14466 bool is_jmp32;
14467 int pred = -1;
14468 int err;
14469
14470 /* Only conditional jumps are expected to reach here. */
14471 if (opcode == BPF_JA || opcode > BPF_JSLE) {
14472 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
14473 return -EINVAL;
14474 }
14475
14476 /* check src2 operand */
14477 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14478 if (err)
14479 return err;
14480
14481 dst_reg = ®s[insn->dst_reg];
14482 if (BPF_SRC(insn->code) == BPF_X) {
14483 if (insn->imm != 0) {
14484 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14485 return -EINVAL;
14486 }
14487
14488 /* check src1 operand */
14489 err = check_reg_arg(env, insn->src_reg, SRC_OP);
14490 if (err)
14491 return err;
14492
14493 src_reg = ®s[insn->src_reg];
14494 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
14495 is_pointer_value(env, insn->src_reg)) {
14496 verbose(env, "R%d pointer comparison prohibited\n",
14497 insn->src_reg);
14498 return -EACCES;
14499 }
14500 } else {
14501 if (insn->src_reg != BPF_REG_0) {
14502 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14503 return -EINVAL;
14504 }
14505 }
14506
14507 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
14508
14509 if (BPF_SRC(insn->code) == BPF_K) {
14510 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
14511 } else if (src_reg->type == SCALAR_VALUE &&
14512 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
14513 pred = is_branch_taken(dst_reg,
14514 tnum_subreg(src_reg->var_off).value,
14515 opcode,
14516 is_jmp32);
14517 } else if (src_reg->type == SCALAR_VALUE &&
14518 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
14519 pred = is_branch_taken(dst_reg,
14520 src_reg->var_off.value,
14521 opcode,
14522 is_jmp32);
14523 } else if (dst_reg->type == SCALAR_VALUE &&
14524 is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) {
14525 pred = is_branch_taken(src_reg,
14526 tnum_subreg(dst_reg->var_off).value,
14527 flip_opcode(opcode),
14528 is_jmp32);
14529 } else if (dst_reg->type == SCALAR_VALUE &&
14530 !is_jmp32 && tnum_is_const(dst_reg->var_off)) {
14531 pred = is_branch_taken(src_reg,
14532 dst_reg->var_off.value,
14533 flip_opcode(opcode),
14534 is_jmp32);
14535 } else if (reg_is_pkt_pointer_any(dst_reg) &&
14536 reg_is_pkt_pointer_any(src_reg) &&
14537 !is_jmp32) {
14538 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
14539 }
14540
14541 if (pred >= 0) {
14542 /* If we get here with a dst_reg pointer type it is because
14543 * above is_branch_taken() special cased the 0 comparison.
14544 */
14545 if (!__is_pointer_value(false, dst_reg))
14546 err = mark_chain_precision(env, insn->dst_reg);
14547 if (BPF_SRC(insn->code) == BPF_X && !err &&
14548 !__is_pointer_value(false, src_reg))
14549 err = mark_chain_precision(env, insn->src_reg);
14550 if (err)
14551 return err;
14552 }
14553
14554 if (pred == 1) {
14555 /* Only follow the goto, ignore fall-through. If needed, push
14556 * the fall-through branch for simulation under speculative
14557 * execution.
14558 */
14559 if (!env->bypass_spec_v1 &&
14560 !sanitize_speculative_path(env, insn, *insn_idx + 1,
14561 *insn_idx))
14562 return -EFAULT;
14563 if (env->log.level & BPF_LOG_LEVEL)
14564 print_insn_state(env, this_branch->frame[this_branch->curframe]);
14565 *insn_idx += insn->off;
14566 return 0;
14567 } else if (pred == 0) {
14568 /* Only follow the fall-through branch, since that's where the
14569 * program will go. If needed, push the goto branch for
14570 * simulation under speculative execution.
14571 */
14572 if (!env->bypass_spec_v1 &&
14573 !sanitize_speculative_path(env, insn,
14574 *insn_idx + insn->off + 1,
14575 *insn_idx))
14576 return -EFAULT;
14577 if (env->log.level & BPF_LOG_LEVEL)
14578 print_insn_state(env, this_branch->frame[this_branch->curframe]);
14579 return 0;
14580 }
14581
14582 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
14583 false);
14584 if (!other_branch)
14585 return -EFAULT;
14586 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
14587
14588 /* detect if we are comparing against a constant value so we can adjust
14589 * our min/max values for our dst register.
14590 * this is only legit if both are scalars (or pointers to the same
14591 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
14592 * because otherwise the different base pointers mean the offsets aren't
14593 * comparable.
14594 */
14595 if (BPF_SRC(insn->code) == BPF_X) {
14596 struct bpf_reg_state *src_reg = ®s[insn->src_reg];
14597
14598 if (dst_reg->type == SCALAR_VALUE &&
14599 src_reg->type == SCALAR_VALUE) {
14600 if (tnum_is_const(src_reg->var_off) ||
14601 (is_jmp32 &&
14602 tnum_is_const(tnum_subreg(src_reg->var_off))))
14603 reg_set_min_max(&other_branch_regs[insn->dst_reg],
14604 dst_reg,
14605 src_reg->var_off.value,
14606 tnum_subreg(src_reg->var_off).value,
14607 opcode, is_jmp32);
14608 else if (tnum_is_const(dst_reg->var_off) ||
14609 (is_jmp32 &&
14610 tnum_is_const(tnum_subreg(dst_reg->var_off))))
14611 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
14612 src_reg,
14613 dst_reg->var_off.value,
14614 tnum_subreg(dst_reg->var_off).value,
14615 opcode, is_jmp32);
14616 else if (!is_jmp32 &&
14617 (opcode == BPF_JEQ || opcode == BPF_JNE))
14618 /* Comparing for equality, we can combine knowledge */
14619 reg_combine_min_max(&other_branch_regs[insn->src_reg],
14620 &other_branch_regs[insn->dst_reg],
14621 src_reg, dst_reg, opcode);
14622 if (src_reg->id &&
14623 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
14624 find_equal_scalars(this_branch, src_reg);
14625 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
14626 }
14627
14628 }
14629 } else if (dst_reg->type == SCALAR_VALUE) {
14630 reg_set_min_max(&other_branch_regs[insn->dst_reg],
14631 dst_reg, insn->imm, (u32)insn->imm,
14632 opcode, is_jmp32);
14633 }
14634
14635 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
14636 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
14637 find_equal_scalars(this_branch, dst_reg);
14638 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
14639 }
14640
14641 /* if one pointer register is compared to another pointer
14642 * register check if PTR_MAYBE_NULL could be lifted.
14643 * E.g. register A - maybe null
14644 * register B - not null
14645 * for JNE A, B, ... - A is not null in the false branch;
14646 * for JEQ A, B, ... - A is not null in the true branch.
14647 *
14648 * Since PTR_TO_BTF_ID points to a kernel struct that does
14649 * not need to be null checked by the BPF program, i.e.,
14650 * could be null even without PTR_MAYBE_NULL marking, so
14651 * only propagate nullness when neither reg is that type.
14652 */
14653 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
14654 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
14655 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
14656 base_type(src_reg->type) != PTR_TO_BTF_ID &&
14657 base_type(dst_reg->type) != PTR_TO_BTF_ID) {
14658 eq_branch_regs = NULL;
14659 switch (opcode) {
14660 case BPF_JEQ:
14661 eq_branch_regs = other_branch_regs;
14662 break;
14663 case BPF_JNE:
14664 eq_branch_regs = regs;
14665 break;
14666 default:
14667 /* do nothing */
14668 break;
14669 }
14670 if (eq_branch_regs) {
14671 if (type_may_be_null(src_reg->type))
14672 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
14673 else
14674 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
14675 }
14676 }
14677
14678 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
14679 * NOTE: these optimizations below are related with pointer comparison
14680 * which will never be JMP32.
14681 */
14682 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
14683 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
14684 type_may_be_null(dst_reg->type)) {
14685 /* Mark all identical registers in each branch as either
14686 * safe or unknown depending R == 0 or R != 0 conditional.
14687 */
14688 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
14689 opcode == BPF_JNE);
14690 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
14691 opcode == BPF_JEQ);
14692 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg],
14693 this_branch, other_branch) &&
14694 is_pointer_value(env, insn->dst_reg)) {
14695 verbose(env, "R%d pointer comparison prohibited\n",
14696 insn->dst_reg);
14697 return -EACCES;
14698 }
14699 if (env->log.level & BPF_LOG_LEVEL)
14700 print_insn_state(env, this_branch->frame[this_branch->curframe]);
14701 return 0;
14702 }
14703
14704 /* verify BPF_LD_IMM64 instruction */
check_ld_imm(struct bpf_verifier_env * env,struct bpf_insn * insn)14705 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
14706 {
14707 struct bpf_insn_aux_data *aux = cur_aux(env);
14708 struct bpf_reg_state *regs = cur_regs(env);
14709 struct bpf_reg_state *dst_reg;
14710 struct bpf_map *map;
14711 int err;
14712
14713 if (BPF_SIZE(insn->code) != BPF_DW) {
14714 verbose(env, "invalid BPF_LD_IMM insn\n");
14715 return -EINVAL;
14716 }
14717 if (insn->off != 0) {
14718 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
14719 return -EINVAL;
14720 }
14721
14722 err = check_reg_arg(env, insn->dst_reg, DST_OP);
14723 if (err)
14724 return err;
14725
14726 dst_reg = ®s[insn->dst_reg];
14727 if (insn->src_reg == 0) {
14728 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
14729
14730 dst_reg->type = SCALAR_VALUE;
14731 __mark_reg_known(®s[insn->dst_reg], imm);
14732 return 0;
14733 }
14734
14735 /* All special src_reg cases are listed below. From this point onwards
14736 * we either succeed and assign a corresponding dst_reg->type after
14737 * zeroing the offset, or fail and reject the program.
14738 */
14739 mark_reg_known_zero(env, regs, insn->dst_reg);
14740
14741 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
14742 dst_reg->type = aux->btf_var.reg_type;
14743 switch (base_type(dst_reg->type)) {
14744 case PTR_TO_MEM:
14745 dst_reg->mem_size = aux->btf_var.mem_size;
14746 break;
14747 case PTR_TO_BTF_ID:
14748 dst_reg->btf = aux->btf_var.btf;
14749 dst_reg->btf_id = aux->btf_var.btf_id;
14750 break;
14751 default:
14752 verbose(env, "bpf verifier is misconfigured\n");
14753 return -EFAULT;
14754 }
14755 return 0;
14756 }
14757
14758 if (insn->src_reg == BPF_PSEUDO_FUNC) {
14759 struct bpf_prog_aux *aux = env->prog->aux;
14760 u32 subprogno = find_subprog(env,
14761 env->insn_idx + insn->imm + 1);
14762
14763 if (!aux->func_info) {
14764 verbose(env, "missing btf func_info\n");
14765 return -EINVAL;
14766 }
14767 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
14768 verbose(env, "callback function not static\n");
14769 return -EINVAL;
14770 }
14771
14772 dst_reg->type = PTR_TO_FUNC;
14773 dst_reg->subprogno = subprogno;
14774 return 0;
14775 }
14776
14777 map = env->used_maps[aux->map_index];
14778 dst_reg->map_ptr = map;
14779
14780 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
14781 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
14782 dst_reg->type = PTR_TO_MAP_VALUE;
14783 dst_reg->off = aux->map_off;
14784 WARN_ON_ONCE(map->max_entries != 1);
14785 /* We want reg->id to be same (0) as map_value is not distinct */
14786 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
14787 insn->src_reg == BPF_PSEUDO_MAP_IDX) {
14788 dst_reg->type = CONST_PTR_TO_MAP;
14789 } else {
14790 verbose(env, "bpf verifier is misconfigured\n");
14791 return -EINVAL;
14792 }
14793
14794 return 0;
14795 }
14796
may_access_skb(enum bpf_prog_type type)14797 static bool may_access_skb(enum bpf_prog_type type)
14798 {
14799 switch (type) {
14800 case BPF_PROG_TYPE_SOCKET_FILTER:
14801 case BPF_PROG_TYPE_SCHED_CLS:
14802 case BPF_PROG_TYPE_SCHED_ACT:
14803 return true;
14804 default:
14805 return false;
14806 }
14807 }
14808
14809 /* verify safety of LD_ABS|LD_IND instructions:
14810 * - they can only appear in the programs where ctx == skb
14811 * - since they are wrappers of function calls, they scratch R1-R5 registers,
14812 * preserve R6-R9, and store return value into R0
14813 *
14814 * Implicit input:
14815 * ctx == skb == R6 == CTX
14816 *
14817 * Explicit input:
14818 * SRC == any register
14819 * IMM == 32-bit immediate
14820 *
14821 * Output:
14822 * R0 - 8/16/32-bit skb data converted to cpu endianness
14823 */
check_ld_abs(struct bpf_verifier_env * env,struct bpf_insn * insn)14824 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
14825 {
14826 struct bpf_reg_state *regs = cur_regs(env);
14827 static const int ctx_reg = BPF_REG_6;
14828 u8 mode = BPF_MODE(insn->code);
14829 int i, err;
14830
14831 if (!may_access_skb(resolve_prog_type(env->prog))) {
14832 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
14833 return -EINVAL;
14834 }
14835
14836 if (!env->ops->gen_ld_abs) {
14837 verbose(env, "bpf verifier is misconfigured\n");
14838 return -EINVAL;
14839 }
14840
14841 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
14842 BPF_SIZE(insn->code) == BPF_DW ||
14843 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
14844 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
14845 return -EINVAL;
14846 }
14847
14848 /* check whether implicit source operand (register R6) is readable */
14849 err = check_reg_arg(env, ctx_reg, SRC_OP);
14850 if (err)
14851 return err;
14852
14853 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
14854 * gen_ld_abs() may terminate the program at runtime, leading to
14855 * reference leak.
14856 */
14857 err = check_reference_leak(env);
14858 if (err) {
14859 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
14860 return err;
14861 }
14862
14863 if (env->cur_state->active_lock.ptr) {
14864 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
14865 return -EINVAL;
14866 }
14867
14868 if (env->cur_state->active_rcu_lock) {
14869 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
14870 return -EINVAL;
14871 }
14872
14873 if (regs[ctx_reg].type != PTR_TO_CTX) {
14874 verbose(env,
14875 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
14876 return -EINVAL;
14877 }
14878
14879 if (mode == BPF_IND) {
14880 /* check explicit source operand */
14881 err = check_reg_arg(env, insn->src_reg, SRC_OP);
14882 if (err)
14883 return err;
14884 }
14885
14886 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg);
14887 if (err < 0)
14888 return err;
14889
14890 /* reset caller saved regs to unreadable */
14891 for (i = 0; i < CALLER_SAVED_REGS; i++) {
14892 mark_reg_not_init(env, regs, caller_saved[i]);
14893 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
14894 }
14895
14896 /* mark destination R0 register as readable, since it contains
14897 * the value fetched from the packet.
14898 * Already marked as written above.
14899 */
14900 mark_reg_unknown(env, regs, BPF_REG_0);
14901 /* ld_abs load up to 32-bit skb data. */
14902 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
14903 return 0;
14904 }
14905
check_return_code(struct bpf_verifier_env * env)14906 static int check_return_code(struct bpf_verifier_env *env)
14907 {
14908 struct tnum enforce_attach_type_range = tnum_unknown;
14909 const struct bpf_prog *prog = env->prog;
14910 struct bpf_reg_state *reg;
14911 struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0);
14912 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
14913 int err;
14914 struct bpf_func_state *frame = env->cur_state->frame[0];
14915 const bool is_subprog = frame->subprogno;
14916
14917 /* LSM and struct_ops func-ptr's return type could be "void" */
14918 if (!is_subprog) {
14919 switch (prog_type) {
14920 case BPF_PROG_TYPE_LSM:
14921 if (prog->expected_attach_type == BPF_LSM_CGROUP)
14922 /* See below, can be 0 or 0-1 depending on hook. */
14923 break;
14924 fallthrough;
14925 case BPF_PROG_TYPE_STRUCT_OPS:
14926 if (!prog->aux->attach_func_proto->type)
14927 return 0;
14928 break;
14929 default:
14930 break;
14931 }
14932 }
14933
14934 /* eBPF calling convention is such that R0 is used
14935 * to return the value from eBPF program.
14936 * Make sure that it's readable at this time
14937 * of bpf_exit, which means that program wrote
14938 * something into it earlier
14939 */
14940 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
14941 if (err)
14942 return err;
14943
14944 if (is_pointer_value(env, BPF_REG_0)) {
14945 verbose(env, "R0 leaks addr as return value\n");
14946 return -EACCES;
14947 }
14948
14949 reg = cur_regs(env) + BPF_REG_0;
14950
14951 if (frame->in_async_callback_fn) {
14952 /* enforce return zero from async callbacks like timer */
14953 if (reg->type != SCALAR_VALUE) {
14954 verbose(env, "In async callback the register R0 is not a known value (%s)\n",
14955 reg_type_str(env, reg->type));
14956 return -EINVAL;
14957 }
14958
14959 if (!tnum_in(const_0, reg->var_off)) {
14960 verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0");
14961 return -EINVAL;
14962 }
14963 return 0;
14964 }
14965
14966 if (is_subprog) {
14967 if (reg->type != SCALAR_VALUE) {
14968 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
14969 reg_type_str(env, reg->type));
14970 return -EINVAL;
14971 }
14972 return 0;
14973 }
14974
14975 switch (prog_type) {
14976 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
14977 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
14978 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
14979 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
14980 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
14981 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
14982 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
14983 range = tnum_range(1, 1);
14984 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
14985 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
14986 range = tnum_range(0, 3);
14987 break;
14988 case BPF_PROG_TYPE_CGROUP_SKB:
14989 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
14990 range = tnum_range(0, 3);
14991 enforce_attach_type_range = tnum_range(2, 3);
14992 }
14993 break;
14994 case BPF_PROG_TYPE_CGROUP_SOCK:
14995 case BPF_PROG_TYPE_SOCK_OPS:
14996 case BPF_PROG_TYPE_CGROUP_DEVICE:
14997 case BPF_PROG_TYPE_CGROUP_SYSCTL:
14998 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
14999 break;
15000 case BPF_PROG_TYPE_RAW_TRACEPOINT:
15001 if (!env->prog->aux->attach_btf_id)
15002 return 0;
15003 range = tnum_const(0);
15004 break;
15005 case BPF_PROG_TYPE_TRACING:
15006 switch (env->prog->expected_attach_type) {
15007 case BPF_TRACE_FENTRY:
15008 case BPF_TRACE_FEXIT:
15009 range = tnum_const(0);
15010 break;
15011 case BPF_TRACE_RAW_TP:
15012 case BPF_MODIFY_RETURN:
15013 return 0;
15014 case BPF_TRACE_ITER:
15015 break;
15016 default:
15017 return -ENOTSUPP;
15018 }
15019 break;
15020 case BPF_PROG_TYPE_SK_LOOKUP:
15021 range = tnum_range(SK_DROP, SK_PASS);
15022 break;
15023
15024 case BPF_PROG_TYPE_LSM:
15025 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
15026 /* Regular BPF_PROG_TYPE_LSM programs can return
15027 * any value.
15028 */
15029 return 0;
15030 }
15031 if (!env->prog->aux->attach_func_proto->type) {
15032 /* Make sure programs that attach to void
15033 * hooks don't try to modify return value.
15034 */
15035 range = tnum_range(1, 1);
15036 }
15037 break;
15038
15039 case BPF_PROG_TYPE_NETFILTER:
15040 range = tnum_range(NF_DROP, NF_ACCEPT);
15041 break;
15042 case BPF_PROG_TYPE_EXT:
15043 /* freplace program can return anything as its return value
15044 * depends on the to-be-replaced kernel func or bpf program.
15045 */
15046 default:
15047 return 0;
15048 }
15049
15050 if (reg->type != SCALAR_VALUE) {
15051 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
15052 reg_type_str(env, reg->type));
15053 return -EINVAL;
15054 }
15055
15056 if (!tnum_in(range, reg->var_off)) {
15057 verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
15058 if (prog->expected_attach_type == BPF_LSM_CGROUP &&
15059 prog_type == BPF_PROG_TYPE_LSM &&
15060 !prog->aux->attach_func_proto->type)
15061 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
15062 return -EINVAL;
15063 }
15064
15065 if (!tnum_is_unknown(enforce_attach_type_range) &&
15066 tnum_in(enforce_attach_type_range, reg->var_off))
15067 env->prog->enforce_expected_attach_type = 1;
15068 return 0;
15069 }
15070
15071 /* non-recursive DFS pseudo code
15072 * 1 procedure DFS-iterative(G,v):
15073 * 2 label v as discovered
15074 * 3 let S be a stack
15075 * 4 S.push(v)
15076 * 5 while S is not empty
15077 * 6 t <- S.peek()
15078 * 7 if t is what we're looking for:
15079 * 8 return t
15080 * 9 for all edges e in G.adjacentEdges(t) do
15081 * 10 if edge e is already labelled
15082 * 11 continue with the next edge
15083 * 12 w <- G.adjacentVertex(t,e)
15084 * 13 if vertex w is not discovered and not explored
15085 * 14 label e as tree-edge
15086 * 15 label w as discovered
15087 * 16 S.push(w)
15088 * 17 continue at 5
15089 * 18 else if vertex w is discovered
15090 * 19 label e as back-edge
15091 * 20 else
15092 * 21 // vertex w is explored
15093 * 22 label e as forward- or cross-edge
15094 * 23 label t as explored
15095 * 24 S.pop()
15096 *
15097 * convention:
15098 * 0x10 - discovered
15099 * 0x11 - discovered and fall-through edge labelled
15100 * 0x12 - discovered and fall-through and branch edges labelled
15101 * 0x20 - explored
15102 */
15103
15104 enum {
15105 DISCOVERED = 0x10,
15106 EXPLORED = 0x20,
15107 FALLTHROUGH = 1,
15108 BRANCH = 2,
15109 };
15110
mark_prune_point(struct bpf_verifier_env * env,int idx)15111 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
15112 {
15113 env->insn_aux_data[idx].prune_point = true;
15114 }
15115
is_prune_point(struct bpf_verifier_env * env,int insn_idx)15116 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
15117 {
15118 return env->insn_aux_data[insn_idx].prune_point;
15119 }
15120
mark_force_checkpoint(struct bpf_verifier_env * env,int idx)15121 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
15122 {
15123 env->insn_aux_data[idx].force_checkpoint = true;
15124 }
15125
is_force_checkpoint(struct bpf_verifier_env * env,int insn_idx)15126 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
15127 {
15128 return env->insn_aux_data[insn_idx].force_checkpoint;
15129 }
15130
mark_calls_callback(struct bpf_verifier_env * env,int idx)15131 static void mark_calls_callback(struct bpf_verifier_env *env, int idx)
15132 {
15133 env->insn_aux_data[idx].calls_callback = true;
15134 }
15135
calls_callback(struct bpf_verifier_env * env,int insn_idx)15136 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx)
15137 {
15138 return env->insn_aux_data[insn_idx].calls_callback;
15139 }
15140
15141 enum {
15142 DONE_EXPLORING = 0,
15143 KEEP_EXPLORING = 1,
15144 };
15145
15146 /* t, w, e - match pseudo-code above:
15147 * t - index of current instruction
15148 * w - next instruction
15149 * e - edge
15150 */
push_insn(int t,int w,int e,struct bpf_verifier_env * env)15151 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
15152 {
15153 int *insn_stack = env->cfg.insn_stack;
15154 int *insn_state = env->cfg.insn_state;
15155
15156 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
15157 return DONE_EXPLORING;
15158
15159 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
15160 return DONE_EXPLORING;
15161
15162 if (w < 0 || w >= env->prog->len) {
15163 verbose_linfo(env, t, "%d: ", t);
15164 verbose(env, "jump out of range from insn %d to %d\n", t, w);
15165 return -EINVAL;
15166 }
15167
15168 if (e == BRANCH) {
15169 /* mark branch target for state pruning */
15170 mark_prune_point(env, w);
15171 mark_jmp_point(env, w);
15172 }
15173
15174 if (insn_state[w] == 0) {
15175 /* tree-edge */
15176 insn_state[t] = DISCOVERED | e;
15177 insn_state[w] = DISCOVERED;
15178 if (env->cfg.cur_stack >= env->prog->len)
15179 return -E2BIG;
15180 insn_stack[env->cfg.cur_stack++] = w;
15181 return KEEP_EXPLORING;
15182 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
15183 if (env->bpf_capable)
15184 return DONE_EXPLORING;
15185 verbose_linfo(env, t, "%d: ", t);
15186 verbose_linfo(env, w, "%d: ", w);
15187 verbose(env, "back-edge from insn %d to %d\n", t, w);
15188 return -EINVAL;
15189 } else if (insn_state[w] == EXPLORED) {
15190 /* forward- or cross-edge */
15191 insn_state[t] = DISCOVERED | e;
15192 } else {
15193 verbose(env, "insn state internal bug\n");
15194 return -EFAULT;
15195 }
15196 return DONE_EXPLORING;
15197 }
15198
visit_func_call_insn(int t,struct bpf_insn * insns,struct bpf_verifier_env * env,bool visit_callee)15199 static int visit_func_call_insn(int t, struct bpf_insn *insns,
15200 struct bpf_verifier_env *env,
15201 bool visit_callee)
15202 {
15203 int ret, insn_sz;
15204
15205 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
15206 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
15207 if (ret)
15208 return ret;
15209
15210 mark_prune_point(env, t + insn_sz);
15211 /* when we exit from subprog, we need to record non-linear history */
15212 mark_jmp_point(env, t + insn_sz);
15213
15214 if (visit_callee) {
15215 mark_prune_point(env, t);
15216 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
15217 }
15218 return ret;
15219 }
15220
15221 /* Visits the instruction at index t and returns one of the following:
15222 * < 0 - an error occurred
15223 * DONE_EXPLORING - the instruction was fully explored
15224 * KEEP_EXPLORING - there is still work to be done before it is fully explored
15225 */
visit_insn(int t,struct bpf_verifier_env * env)15226 static int visit_insn(int t, struct bpf_verifier_env *env)
15227 {
15228 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
15229 int ret, off, insn_sz;
15230
15231 if (bpf_pseudo_func(insn))
15232 return visit_func_call_insn(t, insns, env, true);
15233
15234 /* All non-branch instructions have a single fall-through edge. */
15235 if (BPF_CLASS(insn->code) != BPF_JMP &&
15236 BPF_CLASS(insn->code) != BPF_JMP32) {
15237 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
15238 return push_insn(t, t + insn_sz, FALLTHROUGH, env);
15239 }
15240
15241 switch (BPF_OP(insn->code)) {
15242 case BPF_EXIT:
15243 return DONE_EXPLORING;
15244
15245 case BPF_CALL:
15246 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
15247 /* Mark this call insn as a prune point to trigger
15248 * is_state_visited() check before call itself is
15249 * processed by __check_func_call(). Otherwise new
15250 * async state will be pushed for further exploration.
15251 */
15252 mark_prune_point(env, t);
15253 /* For functions that invoke callbacks it is not known how many times
15254 * callback would be called. Verifier models callback calling functions
15255 * by repeatedly visiting callback bodies and returning to origin call
15256 * instruction.
15257 * In order to stop such iteration verifier needs to identify when a
15258 * state identical some state from a previous iteration is reached.
15259 * Check below forces creation of checkpoint before callback calling
15260 * instruction to allow search for such identical states.
15261 */
15262 if (is_sync_callback_calling_insn(insn)) {
15263 mark_calls_callback(env, t);
15264 mark_force_checkpoint(env, t);
15265 mark_prune_point(env, t);
15266 mark_jmp_point(env, t);
15267 }
15268 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
15269 struct bpf_kfunc_call_arg_meta meta;
15270
15271 ret = fetch_kfunc_meta(env, insn, &meta, NULL);
15272 if (ret == 0 && is_iter_next_kfunc(&meta)) {
15273 mark_prune_point(env, t);
15274 /* Checking and saving state checkpoints at iter_next() call
15275 * is crucial for fast convergence of open-coded iterator loop
15276 * logic, so we need to force it. If we don't do that,
15277 * is_state_visited() might skip saving a checkpoint, causing
15278 * unnecessarily long sequence of not checkpointed
15279 * instructions and jumps, leading to exhaustion of jump
15280 * history buffer, and potentially other undesired outcomes.
15281 * It is expected that with correct open-coded iterators
15282 * convergence will happen quickly, so we don't run a risk of
15283 * exhausting memory.
15284 */
15285 mark_force_checkpoint(env, t);
15286 }
15287 }
15288 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
15289
15290 case BPF_JA:
15291 if (BPF_SRC(insn->code) != BPF_K)
15292 return -EINVAL;
15293
15294 if (BPF_CLASS(insn->code) == BPF_JMP)
15295 off = insn->off;
15296 else
15297 off = insn->imm;
15298
15299 /* unconditional jump with single edge */
15300 ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
15301 if (ret)
15302 return ret;
15303
15304 mark_prune_point(env, t + off + 1);
15305 mark_jmp_point(env, t + off + 1);
15306
15307 return ret;
15308
15309 default:
15310 /* conditional jump with two edges */
15311 mark_prune_point(env, t);
15312
15313 ret = push_insn(t, t + 1, FALLTHROUGH, env);
15314 if (ret)
15315 return ret;
15316
15317 return push_insn(t, t + insn->off + 1, BRANCH, env);
15318 }
15319 }
15320
15321 /* non-recursive depth-first-search to detect loops in BPF program
15322 * loop == back-edge in directed graph
15323 */
check_cfg(struct bpf_verifier_env * env)15324 static int check_cfg(struct bpf_verifier_env *env)
15325 {
15326 int insn_cnt = env->prog->len;
15327 int *insn_stack, *insn_state;
15328 int ret = 0;
15329 int i;
15330
15331 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15332 if (!insn_state)
15333 return -ENOMEM;
15334
15335 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15336 if (!insn_stack) {
15337 kvfree(insn_state);
15338 return -ENOMEM;
15339 }
15340
15341 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
15342 insn_stack[0] = 0; /* 0 is the first instruction */
15343 env->cfg.cur_stack = 1;
15344
15345 while (env->cfg.cur_stack > 0) {
15346 int t = insn_stack[env->cfg.cur_stack - 1];
15347
15348 ret = visit_insn(t, env);
15349 switch (ret) {
15350 case DONE_EXPLORING:
15351 insn_state[t] = EXPLORED;
15352 env->cfg.cur_stack--;
15353 break;
15354 case KEEP_EXPLORING:
15355 break;
15356 default:
15357 if (ret > 0) {
15358 verbose(env, "visit_insn internal bug\n");
15359 ret = -EFAULT;
15360 }
15361 goto err_free;
15362 }
15363 }
15364
15365 if (env->cfg.cur_stack < 0) {
15366 verbose(env, "pop stack internal bug\n");
15367 ret = -EFAULT;
15368 goto err_free;
15369 }
15370
15371 for (i = 0; i < insn_cnt; i++) {
15372 struct bpf_insn *insn = &env->prog->insnsi[i];
15373
15374 if (insn_state[i] != EXPLORED) {
15375 verbose(env, "unreachable insn %d\n", i);
15376 ret = -EINVAL;
15377 goto err_free;
15378 }
15379 if (bpf_is_ldimm64(insn)) {
15380 if (insn_state[i + 1] != 0) {
15381 verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
15382 ret = -EINVAL;
15383 goto err_free;
15384 }
15385 i++; /* skip second half of ldimm64 */
15386 }
15387 }
15388 ret = 0; /* cfg looks good */
15389
15390 err_free:
15391 kvfree(insn_state);
15392 kvfree(insn_stack);
15393 env->cfg.insn_state = env->cfg.insn_stack = NULL;
15394 return ret;
15395 }
15396
check_abnormal_return(struct bpf_verifier_env * env)15397 static int check_abnormal_return(struct bpf_verifier_env *env)
15398 {
15399 int i;
15400
15401 for (i = 1; i < env->subprog_cnt; i++) {
15402 if (env->subprog_info[i].has_ld_abs) {
15403 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
15404 return -EINVAL;
15405 }
15406 if (env->subprog_info[i].has_tail_call) {
15407 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
15408 return -EINVAL;
15409 }
15410 }
15411 return 0;
15412 }
15413
15414 /* The minimum supported BTF func info size */
15415 #define MIN_BPF_FUNCINFO_SIZE 8
15416 #define MAX_FUNCINFO_REC_SIZE 252
15417
check_btf_func(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)15418 static int check_btf_func(struct bpf_verifier_env *env,
15419 const union bpf_attr *attr,
15420 bpfptr_t uattr)
15421 {
15422 const struct btf_type *type, *func_proto, *ret_type;
15423 u32 i, nfuncs, urec_size, min_size;
15424 u32 krec_size = sizeof(struct bpf_func_info);
15425 struct bpf_func_info *krecord;
15426 struct bpf_func_info_aux *info_aux = NULL;
15427 struct bpf_prog *prog;
15428 const struct btf *btf;
15429 bpfptr_t urecord;
15430 u32 prev_offset = 0;
15431 bool scalar_return;
15432 int ret = -ENOMEM;
15433
15434 nfuncs = attr->func_info_cnt;
15435 if (!nfuncs) {
15436 if (check_abnormal_return(env))
15437 return -EINVAL;
15438 return 0;
15439 }
15440
15441 if (nfuncs != env->subprog_cnt) {
15442 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
15443 return -EINVAL;
15444 }
15445
15446 urec_size = attr->func_info_rec_size;
15447 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
15448 urec_size > MAX_FUNCINFO_REC_SIZE ||
15449 urec_size % sizeof(u32)) {
15450 verbose(env, "invalid func info rec size %u\n", urec_size);
15451 return -EINVAL;
15452 }
15453
15454 prog = env->prog;
15455 btf = prog->aux->btf;
15456
15457 urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15458 min_size = min_t(u32, krec_size, urec_size);
15459
15460 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
15461 if (!krecord)
15462 return -ENOMEM;
15463 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
15464 if (!info_aux)
15465 goto err_free;
15466
15467 for (i = 0; i < nfuncs; i++) {
15468 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
15469 if (ret) {
15470 if (ret == -E2BIG) {
15471 verbose(env, "nonzero tailing record in func info");
15472 /* set the size kernel expects so loader can zero
15473 * out the rest of the record.
15474 */
15475 if (copy_to_bpfptr_offset(uattr,
15476 offsetof(union bpf_attr, func_info_rec_size),
15477 &min_size, sizeof(min_size)))
15478 ret = -EFAULT;
15479 }
15480 goto err_free;
15481 }
15482
15483 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
15484 ret = -EFAULT;
15485 goto err_free;
15486 }
15487
15488 /* check insn_off */
15489 ret = -EINVAL;
15490 if (i == 0) {
15491 if (krecord[i].insn_off) {
15492 verbose(env,
15493 "nonzero insn_off %u for the first func info record",
15494 krecord[i].insn_off);
15495 goto err_free;
15496 }
15497 } else if (krecord[i].insn_off <= prev_offset) {
15498 verbose(env,
15499 "same or smaller insn offset (%u) than previous func info record (%u)",
15500 krecord[i].insn_off, prev_offset);
15501 goto err_free;
15502 }
15503
15504 if (env->subprog_info[i].start != krecord[i].insn_off) {
15505 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
15506 goto err_free;
15507 }
15508
15509 /* check type_id */
15510 type = btf_type_by_id(btf, krecord[i].type_id);
15511 if (!type || !btf_type_is_func(type)) {
15512 verbose(env, "invalid type id %d in func info",
15513 krecord[i].type_id);
15514 goto err_free;
15515 }
15516 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
15517
15518 func_proto = btf_type_by_id(btf, type->type);
15519 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
15520 /* btf_func_check() already verified it during BTF load */
15521 goto err_free;
15522 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
15523 scalar_return =
15524 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
15525 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
15526 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
15527 goto err_free;
15528 }
15529 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
15530 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
15531 goto err_free;
15532 }
15533
15534 prev_offset = krecord[i].insn_off;
15535 bpfptr_add(&urecord, urec_size);
15536 }
15537
15538 prog->aux->func_info = krecord;
15539 prog->aux->func_info_cnt = nfuncs;
15540 prog->aux->func_info_aux = info_aux;
15541 return 0;
15542
15543 err_free:
15544 kvfree(krecord);
15545 kfree(info_aux);
15546 return ret;
15547 }
15548
adjust_btf_func(struct bpf_verifier_env * env)15549 static void adjust_btf_func(struct bpf_verifier_env *env)
15550 {
15551 struct bpf_prog_aux *aux = env->prog->aux;
15552 int i;
15553
15554 if (!aux->func_info)
15555 return;
15556
15557 for (i = 0; i < env->subprog_cnt; i++)
15558 aux->func_info[i].insn_off = env->subprog_info[i].start;
15559 }
15560
15561 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col)
15562 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
15563
check_btf_line(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)15564 static int check_btf_line(struct bpf_verifier_env *env,
15565 const union bpf_attr *attr,
15566 bpfptr_t uattr)
15567 {
15568 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
15569 struct bpf_subprog_info *sub;
15570 struct bpf_line_info *linfo;
15571 struct bpf_prog *prog;
15572 const struct btf *btf;
15573 bpfptr_t ulinfo;
15574 int err;
15575
15576 nr_linfo = attr->line_info_cnt;
15577 if (!nr_linfo)
15578 return 0;
15579 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
15580 return -EINVAL;
15581
15582 rec_size = attr->line_info_rec_size;
15583 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
15584 rec_size > MAX_LINEINFO_REC_SIZE ||
15585 rec_size & (sizeof(u32) - 1))
15586 return -EINVAL;
15587
15588 /* Need to zero it in case the userspace may
15589 * pass in a smaller bpf_line_info object.
15590 */
15591 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
15592 GFP_KERNEL | __GFP_NOWARN);
15593 if (!linfo)
15594 return -ENOMEM;
15595
15596 prog = env->prog;
15597 btf = prog->aux->btf;
15598
15599 s = 0;
15600 sub = env->subprog_info;
15601 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
15602 expected_size = sizeof(struct bpf_line_info);
15603 ncopy = min_t(u32, expected_size, rec_size);
15604 for (i = 0; i < nr_linfo; i++) {
15605 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
15606 if (err) {
15607 if (err == -E2BIG) {
15608 verbose(env, "nonzero tailing record in line_info");
15609 if (copy_to_bpfptr_offset(uattr,
15610 offsetof(union bpf_attr, line_info_rec_size),
15611 &expected_size, sizeof(expected_size)))
15612 err = -EFAULT;
15613 }
15614 goto err_free;
15615 }
15616
15617 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
15618 err = -EFAULT;
15619 goto err_free;
15620 }
15621
15622 /*
15623 * Check insn_off to ensure
15624 * 1) strictly increasing AND
15625 * 2) bounded by prog->len
15626 *
15627 * The linfo[0].insn_off == 0 check logically falls into
15628 * the later "missing bpf_line_info for func..." case
15629 * because the first linfo[0].insn_off must be the
15630 * first sub also and the first sub must have
15631 * subprog_info[0].start == 0.
15632 */
15633 if ((i && linfo[i].insn_off <= prev_offset) ||
15634 linfo[i].insn_off >= prog->len) {
15635 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
15636 i, linfo[i].insn_off, prev_offset,
15637 prog->len);
15638 err = -EINVAL;
15639 goto err_free;
15640 }
15641
15642 if (!prog->insnsi[linfo[i].insn_off].code) {
15643 verbose(env,
15644 "Invalid insn code at line_info[%u].insn_off\n",
15645 i);
15646 err = -EINVAL;
15647 goto err_free;
15648 }
15649
15650 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
15651 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
15652 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
15653 err = -EINVAL;
15654 goto err_free;
15655 }
15656
15657 if (s != env->subprog_cnt) {
15658 if (linfo[i].insn_off == sub[s].start) {
15659 sub[s].linfo_idx = i;
15660 s++;
15661 } else if (sub[s].start < linfo[i].insn_off) {
15662 verbose(env, "missing bpf_line_info for func#%u\n", s);
15663 err = -EINVAL;
15664 goto err_free;
15665 }
15666 }
15667
15668 prev_offset = linfo[i].insn_off;
15669 bpfptr_add(&ulinfo, rec_size);
15670 }
15671
15672 if (s != env->subprog_cnt) {
15673 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
15674 env->subprog_cnt - s, s);
15675 err = -EINVAL;
15676 goto err_free;
15677 }
15678
15679 prog->aux->linfo = linfo;
15680 prog->aux->nr_linfo = nr_linfo;
15681
15682 return 0;
15683
15684 err_free:
15685 kvfree(linfo);
15686 return err;
15687 }
15688
15689 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo)
15690 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE
15691
check_core_relo(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)15692 static int check_core_relo(struct bpf_verifier_env *env,
15693 const union bpf_attr *attr,
15694 bpfptr_t uattr)
15695 {
15696 u32 i, nr_core_relo, ncopy, expected_size, rec_size;
15697 struct bpf_core_relo core_relo = {};
15698 struct bpf_prog *prog = env->prog;
15699 const struct btf *btf = prog->aux->btf;
15700 struct bpf_core_ctx ctx = {
15701 .log = &env->log,
15702 .btf = btf,
15703 };
15704 bpfptr_t u_core_relo;
15705 int err;
15706
15707 nr_core_relo = attr->core_relo_cnt;
15708 if (!nr_core_relo)
15709 return 0;
15710 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
15711 return -EINVAL;
15712
15713 rec_size = attr->core_relo_rec_size;
15714 if (rec_size < MIN_CORE_RELO_SIZE ||
15715 rec_size > MAX_CORE_RELO_SIZE ||
15716 rec_size % sizeof(u32))
15717 return -EINVAL;
15718
15719 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
15720 expected_size = sizeof(struct bpf_core_relo);
15721 ncopy = min_t(u32, expected_size, rec_size);
15722
15723 /* Unlike func_info and line_info, copy and apply each CO-RE
15724 * relocation record one at a time.
15725 */
15726 for (i = 0; i < nr_core_relo; i++) {
15727 /* future proofing when sizeof(bpf_core_relo) changes */
15728 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
15729 if (err) {
15730 if (err == -E2BIG) {
15731 verbose(env, "nonzero tailing record in core_relo");
15732 if (copy_to_bpfptr_offset(uattr,
15733 offsetof(union bpf_attr, core_relo_rec_size),
15734 &expected_size, sizeof(expected_size)))
15735 err = -EFAULT;
15736 }
15737 break;
15738 }
15739
15740 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
15741 err = -EFAULT;
15742 break;
15743 }
15744
15745 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
15746 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
15747 i, core_relo.insn_off, prog->len);
15748 err = -EINVAL;
15749 break;
15750 }
15751
15752 err = bpf_core_apply(&ctx, &core_relo, i,
15753 &prog->insnsi[core_relo.insn_off / 8]);
15754 if (err)
15755 break;
15756 bpfptr_add(&u_core_relo, rec_size);
15757 }
15758 return err;
15759 }
15760
check_btf_info(struct bpf_verifier_env * env,const union bpf_attr * attr,bpfptr_t uattr)15761 static int check_btf_info(struct bpf_verifier_env *env,
15762 const union bpf_attr *attr,
15763 bpfptr_t uattr)
15764 {
15765 struct btf *btf;
15766 int err;
15767
15768 if (!attr->func_info_cnt && !attr->line_info_cnt) {
15769 if (check_abnormal_return(env))
15770 return -EINVAL;
15771 return 0;
15772 }
15773
15774 btf = btf_get_by_fd(attr->prog_btf_fd);
15775 if (IS_ERR(btf))
15776 return PTR_ERR(btf);
15777 if (btf_is_kernel(btf)) {
15778 btf_put(btf);
15779 return -EACCES;
15780 }
15781 env->prog->aux->btf = btf;
15782
15783 err = check_btf_func(env, attr, uattr);
15784 if (err)
15785 return err;
15786
15787 err = check_btf_line(env, attr, uattr);
15788 if (err)
15789 return err;
15790
15791 err = check_core_relo(env, attr, uattr);
15792 if (err)
15793 return err;
15794
15795 return 0;
15796 }
15797
15798 /* check %cur's range satisfies %old's */
range_within(struct bpf_reg_state * old,struct bpf_reg_state * cur)15799 static bool range_within(struct bpf_reg_state *old,
15800 struct bpf_reg_state *cur)
15801 {
15802 return old->umin_value <= cur->umin_value &&
15803 old->umax_value >= cur->umax_value &&
15804 old->smin_value <= cur->smin_value &&
15805 old->smax_value >= cur->smax_value &&
15806 old->u32_min_value <= cur->u32_min_value &&
15807 old->u32_max_value >= cur->u32_max_value &&
15808 old->s32_min_value <= cur->s32_min_value &&
15809 old->s32_max_value >= cur->s32_max_value;
15810 }
15811
15812 /* If in the old state two registers had the same id, then they need to have
15813 * the same id in the new state as well. But that id could be different from
15814 * the old state, so we need to track the mapping from old to new ids.
15815 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
15816 * regs with old id 5 must also have new id 9 for the new state to be safe. But
15817 * regs with a different old id could still have new id 9, we don't care about
15818 * that.
15819 * So we look through our idmap to see if this old id has been seen before. If
15820 * so, we require the new id to match; otherwise, we add the id pair to the map.
15821 */
check_ids(u32 old_id,u32 cur_id,struct bpf_idmap * idmap)15822 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15823 {
15824 struct bpf_id_pair *map = idmap->map;
15825 unsigned int i;
15826
15827 /* either both IDs should be set or both should be zero */
15828 if (!!old_id != !!cur_id)
15829 return false;
15830
15831 if (old_id == 0) /* cur_id == 0 as well */
15832 return true;
15833
15834 for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
15835 if (!map[i].old) {
15836 /* Reached an empty slot; haven't seen this id before */
15837 map[i].old = old_id;
15838 map[i].cur = cur_id;
15839 return true;
15840 }
15841 if (map[i].old == old_id)
15842 return map[i].cur == cur_id;
15843 if (map[i].cur == cur_id)
15844 return false;
15845 }
15846 /* We ran out of idmap slots, which should be impossible */
15847 WARN_ON_ONCE(1);
15848 return false;
15849 }
15850
15851 /* Similar to check_ids(), but allocate a unique temporary ID
15852 * for 'old_id' or 'cur_id' of zero.
15853 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
15854 */
check_scalar_ids(u32 old_id,u32 cur_id,struct bpf_idmap * idmap)15855 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15856 {
15857 old_id = old_id ? old_id : ++idmap->tmp_id_gen;
15858 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
15859
15860 return check_ids(old_id, cur_id, idmap);
15861 }
15862
clean_func_state(struct bpf_verifier_env * env,struct bpf_func_state * st)15863 static void clean_func_state(struct bpf_verifier_env *env,
15864 struct bpf_func_state *st)
15865 {
15866 enum bpf_reg_liveness live;
15867 int i, j;
15868
15869 for (i = 0; i < BPF_REG_FP; i++) {
15870 live = st->regs[i].live;
15871 /* liveness must not touch this register anymore */
15872 st->regs[i].live |= REG_LIVE_DONE;
15873 if (!(live & REG_LIVE_READ))
15874 /* since the register is unused, clear its state
15875 * to make further comparison simpler
15876 */
15877 __mark_reg_not_init(env, &st->regs[i]);
15878 }
15879
15880 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
15881 live = st->stack[i].spilled_ptr.live;
15882 /* liveness must not touch this stack slot anymore */
15883 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
15884 if (!(live & REG_LIVE_READ)) {
15885 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
15886 for (j = 0; j < BPF_REG_SIZE; j++)
15887 st->stack[i].slot_type[j] = STACK_INVALID;
15888 }
15889 }
15890 }
15891
clean_verifier_state(struct bpf_verifier_env * env,struct bpf_verifier_state * st)15892 static void clean_verifier_state(struct bpf_verifier_env *env,
15893 struct bpf_verifier_state *st)
15894 {
15895 int i;
15896
15897 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
15898 /* all regs in this state in all frames were already marked */
15899 return;
15900
15901 for (i = 0; i <= st->curframe; i++)
15902 clean_func_state(env, st->frame[i]);
15903 }
15904
15905 /* the parentage chains form a tree.
15906 * the verifier states are added to state lists at given insn and
15907 * pushed into state stack for future exploration.
15908 * when the verifier reaches bpf_exit insn some of the verifer states
15909 * stored in the state lists have their final liveness state already,
15910 * but a lot of states will get revised from liveness point of view when
15911 * the verifier explores other branches.
15912 * Example:
15913 * 1: r0 = 1
15914 * 2: if r1 == 100 goto pc+1
15915 * 3: r0 = 2
15916 * 4: exit
15917 * when the verifier reaches exit insn the register r0 in the state list of
15918 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
15919 * of insn 2 and goes exploring further. At the insn 4 it will walk the
15920 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
15921 *
15922 * Since the verifier pushes the branch states as it sees them while exploring
15923 * the program the condition of walking the branch instruction for the second
15924 * time means that all states below this branch were already explored and
15925 * their final liveness marks are already propagated.
15926 * Hence when the verifier completes the search of state list in is_state_visited()
15927 * we can call this clean_live_states() function to mark all liveness states
15928 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
15929 * will not be used.
15930 * This function also clears the registers and stack for states that !READ
15931 * to simplify state merging.
15932 *
15933 * Important note here that walking the same branch instruction in the callee
15934 * doesn't meant that the states are DONE. The verifier has to compare
15935 * the callsites
15936 */
clean_live_states(struct bpf_verifier_env * env,int insn,struct bpf_verifier_state * cur)15937 static void clean_live_states(struct bpf_verifier_env *env, int insn,
15938 struct bpf_verifier_state *cur)
15939 {
15940 struct bpf_verifier_state_list *sl;
15941
15942 sl = *explored_state(env, insn);
15943 while (sl) {
15944 if (sl->state.branches)
15945 goto next;
15946 if (sl->state.insn_idx != insn ||
15947 !same_callsites(&sl->state, cur))
15948 goto next;
15949 clean_verifier_state(env, &sl->state);
15950 next:
15951 sl = sl->next;
15952 }
15953 }
15954
regs_exact(const struct bpf_reg_state * rold,const struct bpf_reg_state * rcur,struct bpf_idmap * idmap)15955 static bool regs_exact(const struct bpf_reg_state *rold,
15956 const struct bpf_reg_state *rcur,
15957 struct bpf_idmap *idmap)
15958 {
15959 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
15960 check_ids(rold->id, rcur->id, idmap) &&
15961 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
15962 }
15963
15964 /* Returns true if (rold safe implies rcur safe) */
regsafe(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_idmap * idmap,bool exact)15965 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
15966 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact)
15967 {
15968 if (exact)
15969 return regs_exact(rold, rcur, idmap);
15970
15971 if (!(rold->live & REG_LIVE_READ))
15972 /* explored state didn't use this */
15973 return true;
15974 if (rold->type == NOT_INIT)
15975 /* explored state can't have used this */
15976 return true;
15977 if (rcur->type == NOT_INIT)
15978 return false;
15979
15980 /* Enforce that register types have to match exactly, including their
15981 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
15982 * rule.
15983 *
15984 * One can make a point that using a pointer register as unbounded
15985 * SCALAR would be technically acceptable, but this could lead to
15986 * pointer leaks because scalars are allowed to leak while pointers
15987 * are not. We could make this safe in special cases if root is
15988 * calling us, but it's probably not worth the hassle.
15989 *
15990 * Also, register types that are *not* MAYBE_NULL could technically be
15991 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
15992 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
15993 * to the same map).
15994 * However, if the old MAYBE_NULL register then got NULL checked,
15995 * doing so could have affected others with the same id, and we can't
15996 * check for that because we lost the id when we converted to
15997 * a non-MAYBE_NULL variant.
15998 * So, as a general rule we don't allow mixing MAYBE_NULL and
15999 * non-MAYBE_NULL registers as well.
16000 */
16001 if (rold->type != rcur->type)
16002 return false;
16003
16004 switch (base_type(rold->type)) {
16005 case SCALAR_VALUE:
16006 if (env->explore_alu_limits) {
16007 /* explore_alu_limits disables tnum_in() and range_within()
16008 * logic and requires everything to be strict
16009 */
16010 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16011 check_scalar_ids(rold->id, rcur->id, idmap);
16012 }
16013 if (!rold->precise)
16014 return true;
16015 /* Why check_ids() for scalar registers?
16016 *
16017 * Consider the following BPF code:
16018 * 1: r6 = ... unbound scalar, ID=a ...
16019 * 2: r7 = ... unbound scalar, ID=b ...
16020 * 3: if (r6 > r7) goto +1
16021 * 4: r6 = r7
16022 * 5: if (r6 > X) goto ...
16023 * 6: ... memory operation using r7 ...
16024 *
16025 * First verification path is [1-6]:
16026 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
16027 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
16028 * r7 <= X, because r6 and r7 share same id.
16029 * Next verification path is [1-4, 6].
16030 *
16031 * Instruction (6) would be reached in two states:
16032 * I. r6{.id=b}, r7{.id=b} via path 1-6;
16033 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
16034 *
16035 * Use check_ids() to distinguish these states.
16036 * ---
16037 * Also verify that new value satisfies old value range knowledge.
16038 */
16039 return range_within(rold, rcur) &&
16040 tnum_in(rold->var_off, rcur->var_off) &&
16041 check_scalar_ids(rold->id, rcur->id, idmap);
16042 case PTR_TO_MAP_KEY:
16043 case PTR_TO_MAP_VALUE:
16044 case PTR_TO_MEM:
16045 case PTR_TO_BUF:
16046 case PTR_TO_TP_BUFFER:
16047 /* If the new min/max/var_off satisfy the old ones and
16048 * everything else matches, we are OK.
16049 */
16050 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
16051 range_within(rold, rcur) &&
16052 tnum_in(rold->var_off, rcur->var_off) &&
16053 check_ids(rold->id, rcur->id, idmap) &&
16054 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16055 case PTR_TO_PACKET_META:
16056 case PTR_TO_PACKET:
16057 /* We must have at least as much range as the old ptr
16058 * did, so that any accesses which were safe before are
16059 * still safe. This is true even if old range < old off,
16060 * since someone could have accessed through (ptr - k), or
16061 * even done ptr -= k in a register, to get a safe access.
16062 */
16063 if (rold->range > rcur->range)
16064 return false;
16065 /* If the offsets don't match, we can't trust our alignment;
16066 * nor can we be sure that we won't fall out of range.
16067 */
16068 if (rold->off != rcur->off)
16069 return false;
16070 /* id relations must be preserved */
16071 if (!check_ids(rold->id, rcur->id, idmap))
16072 return false;
16073 /* new val must satisfy old val knowledge */
16074 return range_within(rold, rcur) &&
16075 tnum_in(rold->var_off, rcur->var_off);
16076 case PTR_TO_STACK:
16077 /* two stack pointers are equal only if they're pointing to
16078 * the same stack frame, since fp-8 in foo != fp-8 in bar
16079 */
16080 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
16081 default:
16082 return regs_exact(rold, rcur, idmap);
16083 }
16084 }
16085
stacksafe(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_idmap * idmap,bool exact)16086 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
16087 struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact)
16088 {
16089 int i, spi;
16090
16091 /* walk slots of the explored stack and ignore any additional
16092 * slots in the current stack, since explored(safe) state
16093 * didn't use them
16094 */
16095 for (i = 0; i < old->allocated_stack; i++) {
16096 struct bpf_reg_state *old_reg, *cur_reg;
16097
16098 spi = i / BPF_REG_SIZE;
16099
16100 if (exact &&
16101 old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16102 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16103 return false;
16104
16105 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) {
16106 i += BPF_REG_SIZE - 1;
16107 /* explored state didn't use this */
16108 continue;
16109 }
16110
16111 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
16112 continue;
16113
16114 if (env->allow_uninit_stack &&
16115 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
16116 continue;
16117
16118 /* explored stack has more populated slots than current stack
16119 * and these slots were used
16120 */
16121 if (i >= cur->allocated_stack)
16122 return false;
16123
16124 /* if old state was safe with misc data in the stack
16125 * it will be safe with zero-initialized stack.
16126 * The opposite is not true
16127 */
16128 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
16129 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
16130 continue;
16131 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16132 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16133 /* Ex: old explored (safe) state has STACK_SPILL in
16134 * this stack slot, but current has STACK_MISC ->
16135 * this verifier states are not equivalent,
16136 * return false to continue verification of this path
16137 */
16138 return false;
16139 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
16140 continue;
16141 /* Both old and cur are having same slot_type */
16142 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
16143 case STACK_SPILL:
16144 /* when explored and current stack slot are both storing
16145 * spilled registers, check that stored pointers types
16146 * are the same as well.
16147 * Ex: explored safe path could have stored
16148 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
16149 * but current path has stored:
16150 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
16151 * such verifier states are not equivalent.
16152 * return false to continue verification of this path
16153 */
16154 if (!regsafe(env, &old->stack[spi].spilled_ptr,
16155 &cur->stack[spi].spilled_ptr, idmap, exact))
16156 return false;
16157 break;
16158 case STACK_DYNPTR:
16159 old_reg = &old->stack[spi].spilled_ptr;
16160 cur_reg = &cur->stack[spi].spilled_ptr;
16161 if (old_reg->dynptr.type != cur_reg->dynptr.type ||
16162 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
16163 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16164 return false;
16165 break;
16166 case STACK_ITER:
16167 old_reg = &old->stack[spi].spilled_ptr;
16168 cur_reg = &cur->stack[spi].spilled_ptr;
16169 /* iter.depth is not compared between states as it
16170 * doesn't matter for correctness and would otherwise
16171 * prevent convergence; we maintain it only to prevent
16172 * infinite loop check triggering, see
16173 * iter_active_depths_differ()
16174 */
16175 if (old_reg->iter.btf != cur_reg->iter.btf ||
16176 old_reg->iter.btf_id != cur_reg->iter.btf_id ||
16177 old_reg->iter.state != cur_reg->iter.state ||
16178 /* ignore {old_reg,cur_reg}->iter.depth, see above */
16179 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16180 return false;
16181 break;
16182 case STACK_MISC:
16183 case STACK_ZERO:
16184 case STACK_INVALID:
16185 continue;
16186 /* Ensure that new unhandled slot types return false by default */
16187 default:
16188 return false;
16189 }
16190 }
16191 return true;
16192 }
16193
refsafe(struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_idmap * idmap)16194 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
16195 struct bpf_idmap *idmap)
16196 {
16197 int i;
16198
16199 if (old->acquired_refs != cur->acquired_refs)
16200 return false;
16201
16202 for (i = 0; i < old->acquired_refs; i++) {
16203 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
16204 return false;
16205 }
16206
16207 return true;
16208 }
16209
16210 /* compare two verifier states
16211 *
16212 * all states stored in state_list are known to be valid, since
16213 * verifier reached 'bpf_exit' instruction through them
16214 *
16215 * this function is called when verifier exploring different branches of
16216 * execution popped from the state stack. If it sees an old state that has
16217 * more strict register state and more strict stack state then this execution
16218 * branch doesn't need to be explored further, since verifier already
16219 * concluded that more strict state leads to valid finish.
16220 *
16221 * Therefore two states are equivalent if register state is more conservative
16222 * and explored stack state is more conservative than the current one.
16223 * Example:
16224 * explored current
16225 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
16226 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
16227 *
16228 * In other words if current stack state (one being explored) has more
16229 * valid slots than old one that already passed validation, it means
16230 * the verifier can stop exploring and conclude that current state is valid too
16231 *
16232 * Similarly with registers. If explored state has register type as invalid
16233 * whereas register type in current state is meaningful, it means that
16234 * the current state will reach 'bpf_exit' instruction safely
16235 */
func_states_equal(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,bool exact)16236 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
16237 struct bpf_func_state *cur, bool exact)
16238 {
16239 int i;
16240
16241 if (old->callback_depth > cur->callback_depth)
16242 return false;
16243
16244 for (i = 0; i < MAX_BPF_REG; i++)
16245 if (!regsafe(env, &old->regs[i], &cur->regs[i],
16246 &env->idmap_scratch, exact))
16247 return false;
16248
16249 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
16250 return false;
16251
16252 if (!refsafe(old, cur, &env->idmap_scratch))
16253 return false;
16254
16255 return true;
16256 }
16257
reset_idmap_scratch(struct bpf_verifier_env * env)16258 static void reset_idmap_scratch(struct bpf_verifier_env *env)
16259 {
16260 env->idmap_scratch.tmp_id_gen = env->id_gen;
16261 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
16262 }
16263
states_equal(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur,bool exact)16264 static bool states_equal(struct bpf_verifier_env *env,
16265 struct bpf_verifier_state *old,
16266 struct bpf_verifier_state *cur,
16267 bool exact)
16268 {
16269 int i;
16270
16271 if (old->curframe != cur->curframe)
16272 return false;
16273
16274 reset_idmap_scratch(env);
16275
16276 /* Verification state from speculative execution simulation
16277 * must never prune a non-speculative execution one.
16278 */
16279 if (old->speculative && !cur->speculative)
16280 return false;
16281
16282 if (old->active_lock.ptr != cur->active_lock.ptr)
16283 return false;
16284
16285 /* Old and cur active_lock's have to be either both present
16286 * or both absent.
16287 */
16288 if (!!old->active_lock.id != !!cur->active_lock.id)
16289 return false;
16290
16291 if (old->active_lock.id &&
16292 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
16293 return false;
16294
16295 if (old->active_rcu_lock != cur->active_rcu_lock)
16296 return false;
16297
16298 /* for states to be equal callsites have to be the same
16299 * and all frame states need to be equivalent
16300 */
16301 for (i = 0; i <= old->curframe; i++) {
16302 if (old->frame[i]->callsite != cur->frame[i]->callsite)
16303 return false;
16304 if (!func_states_equal(env, old->frame[i], cur->frame[i], exact))
16305 return false;
16306 }
16307 return true;
16308 }
16309
16310 /* Return 0 if no propagation happened. Return negative error code if error
16311 * happened. Otherwise, return the propagated bit.
16312 */
propagate_liveness_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct bpf_reg_state * parent_reg)16313 static int propagate_liveness_reg(struct bpf_verifier_env *env,
16314 struct bpf_reg_state *reg,
16315 struct bpf_reg_state *parent_reg)
16316 {
16317 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
16318 u8 flag = reg->live & REG_LIVE_READ;
16319 int err;
16320
16321 /* When comes here, read flags of PARENT_REG or REG could be any of
16322 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
16323 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
16324 */
16325 if (parent_flag == REG_LIVE_READ64 ||
16326 /* Or if there is no read flag from REG. */
16327 !flag ||
16328 /* Or if the read flag from REG is the same as PARENT_REG. */
16329 parent_flag == flag)
16330 return 0;
16331
16332 err = mark_reg_read(env, reg, parent_reg, flag);
16333 if (err)
16334 return err;
16335
16336 return flag;
16337 }
16338
16339 /* A write screens off any subsequent reads; but write marks come from the
16340 * straight-line code between a state and its parent. When we arrive at an
16341 * equivalent state (jump target or such) we didn't arrive by the straight-line
16342 * code, so read marks in the state must propagate to the parent regardless
16343 * of the state's write marks. That's what 'parent == state->parent' comparison
16344 * in mark_reg_read() is for.
16345 */
propagate_liveness(struct bpf_verifier_env * env,const struct bpf_verifier_state * vstate,struct bpf_verifier_state * vparent)16346 static int propagate_liveness(struct bpf_verifier_env *env,
16347 const struct bpf_verifier_state *vstate,
16348 struct bpf_verifier_state *vparent)
16349 {
16350 struct bpf_reg_state *state_reg, *parent_reg;
16351 struct bpf_func_state *state, *parent;
16352 int i, frame, err = 0;
16353
16354 if (vparent->curframe != vstate->curframe) {
16355 WARN(1, "propagate_live: parent frame %d current frame %d\n",
16356 vparent->curframe, vstate->curframe);
16357 return -EFAULT;
16358 }
16359 /* Propagate read liveness of registers... */
16360 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
16361 for (frame = 0; frame <= vstate->curframe; frame++) {
16362 parent = vparent->frame[frame];
16363 state = vstate->frame[frame];
16364 parent_reg = parent->regs;
16365 state_reg = state->regs;
16366 /* We don't need to worry about FP liveness, it's read-only */
16367 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
16368 err = propagate_liveness_reg(env, &state_reg[i],
16369 &parent_reg[i]);
16370 if (err < 0)
16371 return err;
16372 if (err == REG_LIVE_READ64)
16373 mark_insn_zext(env, &parent_reg[i]);
16374 }
16375
16376 /* Propagate stack slots. */
16377 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
16378 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
16379 parent_reg = &parent->stack[i].spilled_ptr;
16380 state_reg = &state->stack[i].spilled_ptr;
16381 err = propagate_liveness_reg(env, state_reg,
16382 parent_reg);
16383 if (err < 0)
16384 return err;
16385 }
16386 }
16387 return 0;
16388 }
16389
16390 /* find precise scalars in the previous equivalent state and
16391 * propagate them into the current state
16392 */
propagate_precision(struct bpf_verifier_env * env,const struct bpf_verifier_state * old)16393 static int propagate_precision(struct bpf_verifier_env *env,
16394 const struct bpf_verifier_state *old)
16395 {
16396 struct bpf_reg_state *state_reg;
16397 struct bpf_func_state *state;
16398 int i, err = 0, fr;
16399 bool first;
16400
16401 for (fr = old->curframe; fr >= 0; fr--) {
16402 state = old->frame[fr];
16403 state_reg = state->regs;
16404 first = true;
16405 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
16406 if (state_reg->type != SCALAR_VALUE ||
16407 !state_reg->precise ||
16408 !(state_reg->live & REG_LIVE_READ))
16409 continue;
16410 if (env->log.level & BPF_LOG_LEVEL2) {
16411 if (first)
16412 verbose(env, "frame %d: propagating r%d", fr, i);
16413 else
16414 verbose(env, ",r%d", i);
16415 }
16416 bt_set_frame_reg(&env->bt, fr, i);
16417 first = false;
16418 }
16419
16420 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16421 if (!is_spilled_reg(&state->stack[i]))
16422 continue;
16423 state_reg = &state->stack[i].spilled_ptr;
16424 if (state_reg->type != SCALAR_VALUE ||
16425 !state_reg->precise ||
16426 !(state_reg->live & REG_LIVE_READ))
16427 continue;
16428 if (env->log.level & BPF_LOG_LEVEL2) {
16429 if (first)
16430 verbose(env, "frame %d: propagating fp%d",
16431 fr, (-i - 1) * BPF_REG_SIZE);
16432 else
16433 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
16434 }
16435 bt_set_frame_slot(&env->bt, fr, i);
16436 first = false;
16437 }
16438 if (!first)
16439 verbose(env, "\n");
16440 }
16441
16442 err = mark_chain_precision_batch(env);
16443 if (err < 0)
16444 return err;
16445
16446 return 0;
16447 }
16448
states_maybe_looping(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)16449 static bool states_maybe_looping(struct bpf_verifier_state *old,
16450 struct bpf_verifier_state *cur)
16451 {
16452 struct bpf_func_state *fold, *fcur;
16453 int i, fr = cur->curframe;
16454
16455 if (old->curframe != fr)
16456 return false;
16457
16458 fold = old->frame[fr];
16459 fcur = cur->frame[fr];
16460 for (i = 0; i < MAX_BPF_REG; i++)
16461 if (memcmp(&fold->regs[i], &fcur->regs[i],
16462 offsetof(struct bpf_reg_state, parent)))
16463 return false;
16464 return true;
16465 }
16466
is_iter_next_insn(struct bpf_verifier_env * env,int insn_idx)16467 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
16468 {
16469 return env->insn_aux_data[insn_idx].is_iter_next;
16470 }
16471
16472 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
16473 * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
16474 * states to match, which otherwise would look like an infinite loop. So while
16475 * iter_next() calls are taken care of, we still need to be careful and
16476 * prevent erroneous and too eager declaration of "ininite loop", when
16477 * iterators are involved.
16478 *
16479 * Here's a situation in pseudo-BPF assembly form:
16480 *
16481 * 0: again: ; set up iter_next() call args
16482 * 1: r1 = &it ; <CHECKPOINT HERE>
16483 * 2: call bpf_iter_num_next ; this is iter_next() call
16484 * 3: if r0 == 0 goto done
16485 * 4: ... something useful here ...
16486 * 5: goto again ; another iteration
16487 * 6: done:
16488 * 7: r1 = &it
16489 * 8: call bpf_iter_num_destroy ; clean up iter state
16490 * 9: exit
16491 *
16492 * This is a typical loop. Let's assume that we have a prune point at 1:,
16493 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
16494 * again`, assuming other heuristics don't get in a way).
16495 *
16496 * When we first time come to 1:, let's say we have some state X. We proceed
16497 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
16498 * Now we come back to validate that forked ACTIVE state. We proceed through
16499 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
16500 * are converging. But the problem is that we don't know that yet, as this
16501 * convergence has to happen at iter_next() call site only. So if nothing is
16502 * done, at 1: verifier will use bounded loop logic and declare infinite
16503 * looping (and would be *technically* correct, if not for iterator's
16504 * "eventual sticky NULL" contract, see process_iter_next_call()). But we
16505 * don't want that. So what we do in process_iter_next_call() when we go on
16506 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
16507 * a different iteration. So when we suspect an infinite loop, we additionally
16508 * check if any of the *ACTIVE* iterator states depths differ. If yes, we
16509 * pretend we are not looping and wait for next iter_next() call.
16510 *
16511 * This only applies to ACTIVE state. In DRAINED state we don't expect to
16512 * loop, because that would actually mean infinite loop, as DRAINED state is
16513 * "sticky", and so we'll keep returning into the same instruction with the
16514 * same state (at least in one of possible code paths).
16515 *
16516 * This approach allows to keep infinite loop heuristic even in the face of
16517 * active iterator. E.g., C snippet below is and will be detected as
16518 * inifintely looping:
16519 *
16520 * struct bpf_iter_num it;
16521 * int *p, x;
16522 *
16523 * bpf_iter_num_new(&it, 0, 10);
16524 * while ((p = bpf_iter_num_next(&t))) {
16525 * x = p;
16526 * while (x--) {} // <<-- infinite loop here
16527 * }
16528 *
16529 */
iter_active_depths_differ(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)16530 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
16531 {
16532 struct bpf_reg_state *slot, *cur_slot;
16533 struct bpf_func_state *state;
16534 int i, fr;
16535
16536 for (fr = old->curframe; fr >= 0; fr--) {
16537 state = old->frame[fr];
16538 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16539 if (state->stack[i].slot_type[0] != STACK_ITER)
16540 continue;
16541
16542 slot = &state->stack[i].spilled_ptr;
16543 if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
16544 continue;
16545
16546 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
16547 if (cur_slot->iter.depth != slot->iter.depth)
16548 return true;
16549 }
16550 }
16551 return false;
16552 }
16553
is_state_visited(struct bpf_verifier_env * env,int insn_idx)16554 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
16555 {
16556 struct bpf_verifier_state_list *new_sl;
16557 struct bpf_verifier_state_list *sl, **pprev;
16558 struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
16559 int i, j, n, err, states_cnt = 0;
16560 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
16561 bool add_new_state = force_new_state;
16562 bool force_exact;
16563
16564 /* bpf progs typically have pruning point every 4 instructions
16565 * http://vger.kernel.org/bpfconf2019.html#session-1
16566 * Do not add new state for future pruning if the verifier hasn't seen
16567 * at least 2 jumps and at least 8 instructions.
16568 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
16569 * In tests that amounts to up to 50% reduction into total verifier
16570 * memory consumption and 20% verifier time speedup.
16571 */
16572 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
16573 env->insn_processed - env->prev_insn_processed >= 8)
16574 add_new_state = true;
16575
16576 pprev = explored_state(env, insn_idx);
16577 sl = *pprev;
16578
16579 clean_live_states(env, insn_idx, cur);
16580
16581 while (sl) {
16582 states_cnt++;
16583 if (sl->state.insn_idx != insn_idx)
16584 goto next;
16585
16586 if (sl->state.branches) {
16587 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
16588
16589 if (frame->in_async_callback_fn &&
16590 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
16591 /* Different async_entry_cnt means that the verifier is
16592 * processing another entry into async callback.
16593 * Seeing the same state is not an indication of infinite
16594 * loop or infinite recursion.
16595 * But finding the same state doesn't mean that it's safe
16596 * to stop processing the current state. The previous state
16597 * hasn't yet reached bpf_exit, since state.branches > 0.
16598 * Checking in_async_callback_fn alone is not enough either.
16599 * Since the verifier still needs to catch infinite loops
16600 * inside async callbacks.
16601 */
16602 goto skip_inf_loop_check;
16603 }
16604 /* BPF open-coded iterators loop detection is special.
16605 * states_maybe_looping() logic is too simplistic in detecting
16606 * states that *might* be equivalent, because it doesn't know
16607 * about ID remapping, so don't even perform it.
16608 * See process_iter_next_call() and iter_active_depths_differ()
16609 * for overview of the logic. When current and one of parent
16610 * states are detected as equivalent, it's a good thing: we prove
16611 * convergence and can stop simulating further iterations.
16612 * It's safe to assume that iterator loop will finish, taking into
16613 * account iter_next() contract of eventually returning
16614 * sticky NULL result.
16615 *
16616 * Note, that states have to be compared exactly in this case because
16617 * read and precision marks might not be finalized inside the loop.
16618 * E.g. as in the program below:
16619 *
16620 * 1. r7 = -16
16621 * 2. r6 = bpf_get_prandom_u32()
16622 * 3. while (bpf_iter_num_next(&fp[-8])) {
16623 * 4. if (r6 != 42) {
16624 * 5. r7 = -32
16625 * 6. r6 = bpf_get_prandom_u32()
16626 * 7. continue
16627 * 8. }
16628 * 9. r0 = r10
16629 * 10. r0 += r7
16630 * 11. r8 = *(u64 *)(r0 + 0)
16631 * 12. r6 = bpf_get_prandom_u32()
16632 * 13. }
16633 *
16634 * Here verifier would first visit path 1-3, create a checkpoint at 3
16635 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
16636 * not have read or precision mark for r7 yet, thus inexact states
16637 * comparison would discard current state with r7=-32
16638 * => unsafe memory access at 11 would not be caught.
16639 */
16640 if (is_iter_next_insn(env, insn_idx)) {
16641 if (states_equal(env, &sl->state, cur, true)) {
16642 struct bpf_func_state *cur_frame;
16643 struct bpf_reg_state *iter_state, *iter_reg;
16644 int spi;
16645
16646 cur_frame = cur->frame[cur->curframe];
16647 /* btf_check_iter_kfuncs() enforces that
16648 * iter state pointer is always the first arg
16649 */
16650 iter_reg = &cur_frame->regs[BPF_REG_1];
16651 /* current state is valid due to states_equal(),
16652 * so we can assume valid iter and reg state,
16653 * no need for extra (re-)validations
16654 */
16655 spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
16656 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
16657 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
16658 update_loop_entry(cur, &sl->state);
16659 goto hit;
16660 }
16661 }
16662 goto skip_inf_loop_check;
16663 }
16664 if (calls_callback(env, insn_idx)) {
16665 if (states_equal(env, &sl->state, cur, true))
16666 goto hit;
16667 goto skip_inf_loop_check;
16668 }
16669 /* attempt to detect infinite loop to avoid unnecessary doomed work */
16670 if (states_maybe_looping(&sl->state, cur) &&
16671 states_equal(env, &sl->state, cur, false) &&
16672 !iter_active_depths_differ(&sl->state, cur) &&
16673 sl->state.callback_unroll_depth == cur->callback_unroll_depth) {
16674 verbose_linfo(env, insn_idx, "; ");
16675 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
16676 verbose(env, "cur state:");
16677 print_verifier_state(env, cur->frame[cur->curframe], true);
16678 verbose(env, "old state:");
16679 print_verifier_state(env, sl->state.frame[cur->curframe], true);
16680 return -EINVAL;
16681 }
16682 /* if the verifier is processing a loop, avoid adding new state
16683 * too often, since different loop iterations have distinct
16684 * states and may not help future pruning.
16685 * This threshold shouldn't be too low to make sure that
16686 * a loop with large bound will be rejected quickly.
16687 * The most abusive loop will be:
16688 * r1 += 1
16689 * if r1 < 1000000 goto pc-2
16690 * 1M insn_procssed limit / 100 == 10k peak states.
16691 * This threshold shouldn't be too high either, since states
16692 * at the end of the loop are likely to be useful in pruning.
16693 */
16694 skip_inf_loop_check:
16695 if (!force_new_state &&
16696 env->jmps_processed - env->prev_jmps_processed < 20 &&
16697 env->insn_processed - env->prev_insn_processed < 100)
16698 add_new_state = false;
16699 goto miss;
16700 }
16701 /* If sl->state is a part of a loop and this loop's entry is a part of
16702 * current verification path then states have to be compared exactly.
16703 * 'force_exact' is needed to catch the following case:
16704 *
16705 * initial Here state 'succ' was processed first,
16706 * | it was eventually tracked to produce a
16707 * V state identical to 'hdr'.
16708 * .---------> hdr All branches from 'succ' had been explored
16709 * | | and thus 'succ' has its .branches == 0.
16710 * | V
16711 * | .------... Suppose states 'cur' and 'succ' correspond
16712 * | | | to the same instruction + callsites.
16713 * | V V In such case it is necessary to check
16714 * | ... ... if 'succ' and 'cur' are states_equal().
16715 * | | | If 'succ' and 'cur' are a part of the
16716 * | V V same loop exact flag has to be set.
16717 * | succ <- cur To check if that is the case, verify
16718 * | | if loop entry of 'succ' is in current
16719 * | V DFS path.
16720 * | ...
16721 * | |
16722 * '----'
16723 *
16724 * Additional details are in the comment before get_loop_entry().
16725 */
16726 loop_entry = get_loop_entry(&sl->state);
16727 force_exact = loop_entry && loop_entry->branches > 0;
16728 if (states_equal(env, &sl->state, cur, force_exact)) {
16729 if (force_exact)
16730 update_loop_entry(cur, loop_entry);
16731 hit:
16732 sl->hit_cnt++;
16733 /* reached equivalent register/stack state,
16734 * prune the search.
16735 * Registers read by the continuation are read by us.
16736 * If we have any write marks in env->cur_state, they
16737 * will prevent corresponding reads in the continuation
16738 * from reaching our parent (an explored_state). Our
16739 * own state will get the read marks recorded, but
16740 * they'll be immediately forgotten as we're pruning
16741 * this state and will pop a new one.
16742 */
16743 err = propagate_liveness(env, &sl->state, cur);
16744
16745 /* if previous state reached the exit with precision and
16746 * current state is equivalent to it (except precsion marks)
16747 * the precision needs to be propagated back in
16748 * the current state.
16749 */
16750 err = err ? : push_jmp_history(env, cur);
16751 err = err ? : propagate_precision(env, &sl->state);
16752 if (err)
16753 return err;
16754 return 1;
16755 }
16756 miss:
16757 /* when new state is not going to be added do not increase miss count.
16758 * Otherwise several loop iterations will remove the state
16759 * recorded earlier. The goal of these heuristics is to have
16760 * states from some iterations of the loop (some in the beginning
16761 * and some at the end) to help pruning.
16762 */
16763 if (add_new_state)
16764 sl->miss_cnt++;
16765 /* heuristic to determine whether this state is beneficial
16766 * to keep checking from state equivalence point of view.
16767 * Higher numbers increase max_states_per_insn and verification time,
16768 * but do not meaningfully decrease insn_processed.
16769 * 'n' controls how many times state could miss before eviction.
16770 * Use bigger 'n' for checkpoints because evicting checkpoint states
16771 * too early would hinder iterator convergence.
16772 */
16773 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
16774 if (sl->miss_cnt > sl->hit_cnt * n + n) {
16775 /* the state is unlikely to be useful. Remove it to
16776 * speed up verification
16777 */
16778 *pprev = sl->next;
16779 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE &&
16780 !sl->state.used_as_loop_entry) {
16781 u32 br = sl->state.branches;
16782
16783 WARN_ONCE(br,
16784 "BUG live_done but branches_to_explore %d\n",
16785 br);
16786 free_verifier_state(&sl->state, false);
16787 kfree(sl);
16788 env->peak_states--;
16789 } else {
16790 /* cannot free this state, since parentage chain may
16791 * walk it later. Add it for free_list instead to
16792 * be freed at the end of verification
16793 */
16794 sl->next = env->free_list;
16795 env->free_list = sl;
16796 }
16797 sl = *pprev;
16798 continue;
16799 }
16800 next:
16801 pprev = &sl->next;
16802 sl = *pprev;
16803 }
16804
16805 if (env->max_states_per_insn < states_cnt)
16806 env->max_states_per_insn = states_cnt;
16807
16808 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
16809 return 0;
16810
16811 if (!add_new_state)
16812 return 0;
16813
16814 /* There were no equivalent states, remember the current one.
16815 * Technically the current state is not proven to be safe yet,
16816 * but it will either reach outer most bpf_exit (which means it's safe)
16817 * or it will be rejected. When there are no loops the verifier won't be
16818 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
16819 * again on the way to bpf_exit.
16820 * When looping the sl->state.branches will be > 0 and this state
16821 * will not be considered for equivalence until branches == 0.
16822 */
16823 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
16824 if (!new_sl)
16825 return -ENOMEM;
16826 env->total_states++;
16827 env->peak_states++;
16828 env->prev_jmps_processed = env->jmps_processed;
16829 env->prev_insn_processed = env->insn_processed;
16830
16831 /* forget precise markings we inherited, see __mark_chain_precision */
16832 if (env->bpf_capable)
16833 mark_all_scalars_imprecise(env, cur);
16834
16835 /* add new state to the head of linked list */
16836 new = &new_sl->state;
16837 err = copy_verifier_state(new, cur);
16838 if (err) {
16839 free_verifier_state(new, false);
16840 kfree(new_sl);
16841 return err;
16842 }
16843 new->insn_idx = insn_idx;
16844 WARN_ONCE(new->branches != 1,
16845 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
16846
16847 cur->parent = new;
16848 cur->first_insn_idx = insn_idx;
16849 cur->dfs_depth = new->dfs_depth + 1;
16850 clear_jmp_history(cur);
16851 new_sl->next = *explored_state(env, insn_idx);
16852 *explored_state(env, insn_idx) = new_sl;
16853 /* connect new state to parentage chain. Current frame needs all
16854 * registers connected. Only r6 - r9 of the callers are alive (pushed
16855 * to the stack implicitly by JITs) so in callers' frames connect just
16856 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
16857 * the state of the call instruction (with WRITTEN set), and r0 comes
16858 * from callee with its full parentage chain, anyway.
16859 */
16860 /* clear write marks in current state: the writes we did are not writes
16861 * our child did, so they don't screen off its reads from us.
16862 * (There are no read marks in current state, because reads always mark
16863 * their parent and current state never has children yet. Only
16864 * explored_states can get read marks.)
16865 */
16866 for (j = 0; j <= cur->curframe; j++) {
16867 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
16868 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
16869 for (i = 0; i < BPF_REG_FP; i++)
16870 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
16871 }
16872
16873 /* all stack frames are accessible from callee, clear them all */
16874 for (j = 0; j <= cur->curframe; j++) {
16875 struct bpf_func_state *frame = cur->frame[j];
16876 struct bpf_func_state *newframe = new->frame[j];
16877
16878 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
16879 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
16880 frame->stack[i].spilled_ptr.parent =
16881 &newframe->stack[i].spilled_ptr;
16882 }
16883 }
16884 return 0;
16885 }
16886
16887 /* Return true if it's OK to have the same insn return a different type. */
reg_type_mismatch_ok(enum bpf_reg_type type)16888 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
16889 {
16890 switch (base_type(type)) {
16891 case PTR_TO_CTX:
16892 case PTR_TO_SOCKET:
16893 case PTR_TO_SOCK_COMMON:
16894 case PTR_TO_TCP_SOCK:
16895 case PTR_TO_XDP_SOCK:
16896 case PTR_TO_BTF_ID:
16897 return false;
16898 default:
16899 return true;
16900 }
16901 }
16902
16903 /* If an instruction was previously used with particular pointer types, then we
16904 * need to be careful to avoid cases such as the below, where it may be ok
16905 * for one branch accessing the pointer, but not ok for the other branch:
16906 *
16907 * R1 = sock_ptr
16908 * goto X;
16909 * ...
16910 * R1 = some_other_valid_ptr;
16911 * goto X;
16912 * ...
16913 * R2 = *(u32 *)(R1 + 0);
16914 */
reg_type_mismatch(enum bpf_reg_type src,enum bpf_reg_type prev)16915 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
16916 {
16917 return src != prev && (!reg_type_mismatch_ok(src) ||
16918 !reg_type_mismatch_ok(prev));
16919 }
16920
save_aux_ptr_type(struct bpf_verifier_env * env,enum bpf_reg_type type,bool allow_trust_missmatch)16921 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
16922 bool allow_trust_missmatch)
16923 {
16924 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
16925
16926 if (*prev_type == NOT_INIT) {
16927 /* Saw a valid insn
16928 * dst_reg = *(u32 *)(src_reg + off)
16929 * save type to validate intersecting paths
16930 */
16931 *prev_type = type;
16932 } else if (reg_type_mismatch(type, *prev_type)) {
16933 /* Abuser program is trying to use the same insn
16934 * dst_reg = *(u32*) (src_reg + off)
16935 * with different pointer types:
16936 * src_reg == ctx in one branch and
16937 * src_reg == stack|map in some other branch.
16938 * Reject it.
16939 */
16940 if (allow_trust_missmatch &&
16941 base_type(type) == PTR_TO_BTF_ID &&
16942 base_type(*prev_type) == PTR_TO_BTF_ID) {
16943 /*
16944 * Have to support a use case when one path through
16945 * the program yields TRUSTED pointer while another
16946 * is UNTRUSTED. Fallback to UNTRUSTED to generate
16947 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
16948 */
16949 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
16950 } else {
16951 verbose(env, "same insn cannot be used with different pointers\n");
16952 return -EINVAL;
16953 }
16954 }
16955
16956 return 0;
16957 }
16958
do_check(struct bpf_verifier_env * env)16959 static int do_check(struct bpf_verifier_env *env)
16960 {
16961 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
16962 struct bpf_verifier_state *state = env->cur_state;
16963 struct bpf_insn *insns = env->prog->insnsi;
16964 struct bpf_reg_state *regs;
16965 int insn_cnt = env->prog->len;
16966 bool do_print_state = false;
16967 int prev_insn_idx = -1;
16968
16969 for (;;) {
16970 struct bpf_insn *insn;
16971 u8 class;
16972 int err;
16973
16974 env->prev_insn_idx = prev_insn_idx;
16975 if (env->insn_idx >= insn_cnt) {
16976 verbose(env, "invalid insn idx %d insn_cnt %d\n",
16977 env->insn_idx, insn_cnt);
16978 return -EFAULT;
16979 }
16980
16981 insn = &insns[env->insn_idx];
16982 class = BPF_CLASS(insn->code);
16983
16984 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
16985 verbose(env,
16986 "BPF program is too large. Processed %d insn\n",
16987 env->insn_processed);
16988 return -E2BIG;
16989 }
16990
16991 state->last_insn_idx = env->prev_insn_idx;
16992
16993 if (is_prune_point(env, env->insn_idx)) {
16994 err = is_state_visited(env, env->insn_idx);
16995 if (err < 0)
16996 return err;
16997 if (err == 1) {
16998 /* found equivalent state, can prune the search */
16999 if (env->log.level & BPF_LOG_LEVEL) {
17000 if (do_print_state)
17001 verbose(env, "\nfrom %d to %d%s: safe\n",
17002 env->prev_insn_idx, env->insn_idx,
17003 env->cur_state->speculative ?
17004 " (speculative execution)" : "");
17005 else
17006 verbose(env, "%d: safe\n", env->insn_idx);
17007 }
17008 goto process_bpf_exit;
17009 }
17010 }
17011
17012 if (is_jmp_point(env, env->insn_idx)) {
17013 err = push_jmp_history(env, state);
17014 if (err)
17015 return err;
17016 }
17017
17018 if (signal_pending(current))
17019 return -EAGAIN;
17020
17021 if (need_resched())
17022 cond_resched();
17023
17024 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
17025 verbose(env, "\nfrom %d to %d%s:",
17026 env->prev_insn_idx, env->insn_idx,
17027 env->cur_state->speculative ?
17028 " (speculative execution)" : "");
17029 print_verifier_state(env, state->frame[state->curframe], true);
17030 do_print_state = false;
17031 }
17032
17033 if (env->log.level & BPF_LOG_LEVEL) {
17034 const struct bpf_insn_cbs cbs = {
17035 .cb_call = disasm_kfunc_name,
17036 .cb_print = verbose,
17037 .private_data = env,
17038 };
17039
17040 if (verifier_state_scratched(env))
17041 print_insn_state(env, state->frame[state->curframe]);
17042
17043 verbose_linfo(env, env->insn_idx, "; ");
17044 env->prev_log_pos = env->log.end_pos;
17045 verbose(env, "%d: ", env->insn_idx);
17046 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17047 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
17048 env->prev_log_pos = env->log.end_pos;
17049 }
17050
17051 if (bpf_prog_is_offloaded(env->prog->aux)) {
17052 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
17053 env->prev_insn_idx);
17054 if (err)
17055 return err;
17056 }
17057
17058 regs = cur_regs(env);
17059 sanitize_mark_insn_seen(env);
17060 prev_insn_idx = env->insn_idx;
17061
17062 if (class == BPF_ALU || class == BPF_ALU64) {
17063 err = check_alu_op(env, insn);
17064 if (err)
17065 return err;
17066
17067 } else if (class == BPF_LDX) {
17068 enum bpf_reg_type src_reg_type;
17069
17070 /* check for reserved fields is already done */
17071
17072 /* check src operand */
17073 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17074 if (err)
17075 return err;
17076
17077 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17078 if (err)
17079 return err;
17080
17081 src_reg_type = regs[insn->src_reg].type;
17082
17083 /* check that memory (src_reg + off) is readable,
17084 * the state of dst_reg will be updated by this func
17085 */
17086 err = check_mem_access(env, env->insn_idx, insn->src_reg,
17087 insn->off, BPF_SIZE(insn->code),
17088 BPF_READ, insn->dst_reg, false,
17089 BPF_MODE(insn->code) == BPF_MEMSX);
17090 if (err)
17091 return err;
17092
17093 err = save_aux_ptr_type(env, src_reg_type, true);
17094 if (err)
17095 return err;
17096 } else if (class == BPF_STX) {
17097 enum bpf_reg_type dst_reg_type;
17098
17099 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
17100 err = check_atomic(env, env->insn_idx, insn);
17101 if (err)
17102 return err;
17103 env->insn_idx++;
17104 continue;
17105 }
17106
17107 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
17108 verbose(env, "BPF_STX uses reserved fields\n");
17109 return -EINVAL;
17110 }
17111
17112 /* check src1 operand */
17113 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17114 if (err)
17115 return err;
17116 /* check src2 operand */
17117 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17118 if (err)
17119 return err;
17120
17121 dst_reg_type = regs[insn->dst_reg].type;
17122
17123 /* check that memory (dst_reg + off) is writeable */
17124 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17125 insn->off, BPF_SIZE(insn->code),
17126 BPF_WRITE, insn->src_reg, false, false);
17127 if (err)
17128 return err;
17129
17130 err = save_aux_ptr_type(env, dst_reg_type, false);
17131 if (err)
17132 return err;
17133 } else if (class == BPF_ST) {
17134 enum bpf_reg_type dst_reg_type;
17135
17136 if (BPF_MODE(insn->code) != BPF_MEM ||
17137 insn->src_reg != BPF_REG_0) {
17138 verbose(env, "BPF_ST uses reserved fields\n");
17139 return -EINVAL;
17140 }
17141 /* check src operand */
17142 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17143 if (err)
17144 return err;
17145
17146 dst_reg_type = regs[insn->dst_reg].type;
17147
17148 /* check that memory (dst_reg + off) is writeable */
17149 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17150 insn->off, BPF_SIZE(insn->code),
17151 BPF_WRITE, -1, false, false);
17152 if (err)
17153 return err;
17154
17155 err = save_aux_ptr_type(env, dst_reg_type, false);
17156 if (err)
17157 return err;
17158 } else if (class == BPF_JMP || class == BPF_JMP32) {
17159 u8 opcode = BPF_OP(insn->code);
17160
17161 env->jmps_processed++;
17162 if (opcode == BPF_CALL) {
17163 if (BPF_SRC(insn->code) != BPF_K ||
17164 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
17165 && insn->off != 0) ||
17166 (insn->src_reg != BPF_REG_0 &&
17167 insn->src_reg != BPF_PSEUDO_CALL &&
17168 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
17169 insn->dst_reg != BPF_REG_0 ||
17170 class == BPF_JMP32) {
17171 verbose(env, "BPF_CALL uses reserved fields\n");
17172 return -EINVAL;
17173 }
17174
17175 if (env->cur_state->active_lock.ptr) {
17176 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
17177 (insn->src_reg == BPF_PSEUDO_CALL) ||
17178 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
17179 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
17180 verbose(env, "function calls are not allowed while holding a lock\n");
17181 return -EINVAL;
17182 }
17183 }
17184 if (insn->src_reg == BPF_PSEUDO_CALL)
17185 err = check_func_call(env, insn, &env->insn_idx);
17186 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
17187 err = check_kfunc_call(env, insn, &env->insn_idx);
17188 else
17189 err = check_helper_call(env, insn, &env->insn_idx);
17190 if (err)
17191 return err;
17192
17193 mark_reg_scratched(env, BPF_REG_0);
17194 } else if (opcode == BPF_JA) {
17195 if (BPF_SRC(insn->code) != BPF_K ||
17196 insn->src_reg != BPF_REG_0 ||
17197 insn->dst_reg != BPF_REG_0 ||
17198 (class == BPF_JMP && insn->imm != 0) ||
17199 (class == BPF_JMP32 && insn->off != 0)) {
17200 verbose(env, "BPF_JA uses reserved fields\n");
17201 return -EINVAL;
17202 }
17203
17204 if (class == BPF_JMP)
17205 env->insn_idx += insn->off + 1;
17206 else
17207 env->insn_idx += insn->imm + 1;
17208 continue;
17209
17210 } else if (opcode == BPF_EXIT) {
17211 if (BPF_SRC(insn->code) != BPF_K ||
17212 insn->imm != 0 ||
17213 insn->src_reg != BPF_REG_0 ||
17214 insn->dst_reg != BPF_REG_0 ||
17215 class == BPF_JMP32) {
17216 verbose(env, "BPF_EXIT uses reserved fields\n");
17217 return -EINVAL;
17218 }
17219
17220 if (env->cur_state->active_lock.ptr &&
17221 !in_rbtree_lock_required_cb(env)) {
17222 verbose(env, "bpf_spin_unlock is missing\n");
17223 return -EINVAL;
17224 }
17225
17226 if (env->cur_state->active_rcu_lock &&
17227 !in_rbtree_lock_required_cb(env)) {
17228 verbose(env, "bpf_rcu_read_unlock is missing\n");
17229 return -EINVAL;
17230 }
17231
17232 /* We must do check_reference_leak here before
17233 * prepare_func_exit to handle the case when
17234 * state->curframe > 0, it may be a callback
17235 * function, for which reference_state must
17236 * match caller reference state when it exits.
17237 */
17238 err = check_reference_leak(env);
17239 if (err)
17240 return err;
17241
17242 if (state->curframe) {
17243 /* exit from nested function */
17244 err = prepare_func_exit(env, &env->insn_idx);
17245 if (err)
17246 return err;
17247 do_print_state = true;
17248 continue;
17249 }
17250
17251 err = check_return_code(env);
17252 if (err)
17253 return err;
17254 process_bpf_exit:
17255 mark_verifier_state_scratched(env);
17256 update_branch_counts(env, env->cur_state);
17257 err = pop_stack(env, &prev_insn_idx,
17258 &env->insn_idx, pop_log);
17259 if (err < 0) {
17260 if (err != -ENOENT)
17261 return err;
17262 break;
17263 } else {
17264 do_print_state = true;
17265 continue;
17266 }
17267 } else {
17268 err = check_cond_jmp_op(env, insn, &env->insn_idx);
17269 if (err)
17270 return err;
17271 }
17272 } else if (class == BPF_LD) {
17273 u8 mode = BPF_MODE(insn->code);
17274
17275 if (mode == BPF_ABS || mode == BPF_IND) {
17276 err = check_ld_abs(env, insn);
17277 if (err)
17278 return err;
17279
17280 } else if (mode == BPF_IMM) {
17281 err = check_ld_imm(env, insn);
17282 if (err)
17283 return err;
17284
17285 env->insn_idx++;
17286 sanitize_mark_insn_seen(env);
17287 } else {
17288 verbose(env, "invalid BPF_LD mode\n");
17289 return -EINVAL;
17290 }
17291 } else {
17292 verbose(env, "unknown insn class %d\n", class);
17293 return -EINVAL;
17294 }
17295
17296 env->insn_idx++;
17297 }
17298
17299 return 0;
17300 }
17301
find_btf_percpu_datasec(struct btf * btf)17302 static int find_btf_percpu_datasec(struct btf *btf)
17303 {
17304 const struct btf_type *t;
17305 const char *tname;
17306 int i, n;
17307
17308 /*
17309 * Both vmlinux and module each have their own ".data..percpu"
17310 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
17311 * types to look at only module's own BTF types.
17312 */
17313 n = btf_nr_types(btf);
17314 if (btf_is_module(btf))
17315 i = btf_nr_types(btf_vmlinux);
17316 else
17317 i = 1;
17318
17319 for(; i < n; i++) {
17320 t = btf_type_by_id(btf, i);
17321 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
17322 continue;
17323
17324 tname = btf_name_by_offset(btf, t->name_off);
17325 if (!strcmp(tname, ".data..percpu"))
17326 return i;
17327 }
17328
17329 return -ENOENT;
17330 }
17331
17332 /* replace pseudo btf_id with kernel symbol address */
check_pseudo_btf_id(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn_aux_data * aux)17333 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
17334 struct bpf_insn *insn,
17335 struct bpf_insn_aux_data *aux)
17336 {
17337 const struct btf_var_secinfo *vsi;
17338 const struct btf_type *datasec;
17339 struct btf_mod_pair *btf_mod;
17340 const struct btf_type *t;
17341 const char *sym_name;
17342 bool percpu = false;
17343 u32 type, id = insn->imm;
17344 struct btf *btf;
17345 s32 datasec_id;
17346 u64 addr;
17347 int i, btf_fd, err;
17348
17349 btf_fd = insn[1].imm;
17350 if (btf_fd) {
17351 btf = btf_get_by_fd(btf_fd);
17352 if (IS_ERR(btf)) {
17353 verbose(env, "invalid module BTF object FD specified.\n");
17354 return -EINVAL;
17355 }
17356 } else {
17357 if (!btf_vmlinux) {
17358 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
17359 return -EINVAL;
17360 }
17361 btf = btf_vmlinux;
17362 btf_get(btf);
17363 }
17364
17365 t = btf_type_by_id(btf, id);
17366 if (!t) {
17367 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
17368 err = -ENOENT;
17369 goto err_put;
17370 }
17371
17372 if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
17373 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
17374 err = -EINVAL;
17375 goto err_put;
17376 }
17377
17378 sym_name = btf_name_by_offset(btf, t->name_off);
17379 addr = kallsyms_lookup_name(sym_name);
17380 if (!addr) {
17381 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
17382 sym_name);
17383 err = -ENOENT;
17384 goto err_put;
17385 }
17386 insn[0].imm = (u32)addr;
17387 insn[1].imm = addr >> 32;
17388
17389 if (btf_type_is_func(t)) {
17390 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17391 aux->btf_var.mem_size = 0;
17392 goto check_btf;
17393 }
17394
17395 datasec_id = find_btf_percpu_datasec(btf);
17396 if (datasec_id > 0) {
17397 datasec = btf_type_by_id(btf, datasec_id);
17398 for_each_vsi(i, datasec, vsi) {
17399 if (vsi->type == id) {
17400 percpu = true;
17401 break;
17402 }
17403 }
17404 }
17405
17406 type = t->type;
17407 t = btf_type_skip_modifiers(btf, type, NULL);
17408 if (percpu) {
17409 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
17410 aux->btf_var.btf = btf;
17411 aux->btf_var.btf_id = type;
17412 } else if (!btf_type_is_struct(t)) {
17413 const struct btf_type *ret;
17414 const char *tname;
17415 u32 tsize;
17416
17417 /* resolve the type size of ksym. */
17418 ret = btf_resolve_size(btf, t, &tsize);
17419 if (IS_ERR(ret)) {
17420 tname = btf_name_by_offset(btf, t->name_off);
17421 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
17422 tname, PTR_ERR(ret));
17423 err = -EINVAL;
17424 goto err_put;
17425 }
17426 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17427 aux->btf_var.mem_size = tsize;
17428 } else {
17429 aux->btf_var.reg_type = PTR_TO_BTF_ID;
17430 aux->btf_var.btf = btf;
17431 aux->btf_var.btf_id = type;
17432 }
17433 check_btf:
17434 /* check whether we recorded this BTF (and maybe module) already */
17435 for (i = 0; i < env->used_btf_cnt; i++) {
17436 if (env->used_btfs[i].btf == btf) {
17437 btf_put(btf);
17438 return 0;
17439 }
17440 }
17441
17442 if (env->used_btf_cnt >= MAX_USED_BTFS) {
17443 err = -E2BIG;
17444 goto err_put;
17445 }
17446
17447 btf_mod = &env->used_btfs[env->used_btf_cnt];
17448 btf_mod->btf = btf;
17449 btf_mod->module = NULL;
17450
17451 /* if we reference variables from kernel module, bump its refcount */
17452 if (btf_is_module(btf)) {
17453 btf_mod->module = btf_try_get_module(btf);
17454 if (!btf_mod->module) {
17455 err = -ENXIO;
17456 goto err_put;
17457 }
17458 }
17459
17460 env->used_btf_cnt++;
17461
17462 return 0;
17463 err_put:
17464 btf_put(btf);
17465 return err;
17466 }
17467
is_tracing_prog_type(enum bpf_prog_type type)17468 static bool is_tracing_prog_type(enum bpf_prog_type type)
17469 {
17470 switch (type) {
17471 case BPF_PROG_TYPE_KPROBE:
17472 case BPF_PROG_TYPE_TRACEPOINT:
17473 case BPF_PROG_TYPE_PERF_EVENT:
17474 case BPF_PROG_TYPE_RAW_TRACEPOINT:
17475 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
17476 return true;
17477 default:
17478 return false;
17479 }
17480 }
17481
check_map_prog_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,struct bpf_prog * prog)17482 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
17483 struct bpf_map *map,
17484 struct bpf_prog *prog)
17485
17486 {
17487 enum bpf_prog_type prog_type = resolve_prog_type(prog);
17488
17489 if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
17490 btf_record_has_field(map->record, BPF_RB_ROOT)) {
17491 if (is_tracing_prog_type(prog_type)) {
17492 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
17493 return -EINVAL;
17494 }
17495 }
17496
17497 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
17498 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
17499 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
17500 return -EINVAL;
17501 }
17502
17503 if (is_tracing_prog_type(prog_type)) {
17504 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
17505 return -EINVAL;
17506 }
17507 }
17508
17509 if (btf_record_has_field(map->record, BPF_TIMER)) {
17510 if (is_tracing_prog_type(prog_type)) {
17511 verbose(env, "tracing progs cannot use bpf_timer yet\n");
17512 return -EINVAL;
17513 }
17514 }
17515
17516 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
17517 !bpf_offload_prog_map_match(prog, map)) {
17518 verbose(env, "offload device mismatch between prog and map\n");
17519 return -EINVAL;
17520 }
17521
17522 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
17523 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
17524 return -EINVAL;
17525 }
17526
17527 if (prog->aux->sleepable)
17528 switch (map->map_type) {
17529 case BPF_MAP_TYPE_HASH:
17530 case BPF_MAP_TYPE_LRU_HASH:
17531 case BPF_MAP_TYPE_ARRAY:
17532 case BPF_MAP_TYPE_PERCPU_HASH:
17533 case BPF_MAP_TYPE_PERCPU_ARRAY:
17534 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
17535 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
17536 case BPF_MAP_TYPE_HASH_OF_MAPS:
17537 case BPF_MAP_TYPE_RINGBUF:
17538 case BPF_MAP_TYPE_USER_RINGBUF:
17539 case BPF_MAP_TYPE_INODE_STORAGE:
17540 case BPF_MAP_TYPE_SK_STORAGE:
17541 case BPF_MAP_TYPE_TASK_STORAGE:
17542 case BPF_MAP_TYPE_CGRP_STORAGE:
17543 break;
17544 default:
17545 verbose(env,
17546 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
17547 return -EINVAL;
17548 }
17549
17550 return 0;
17551 }
17552
bpf_map_is_cgroup_storage(struct bpf_map * map)17553 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
17554 {
17555 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
17556 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
17557 }
17558
17559 /* find and rewrite pseudo imm in ld_imm64 instructions:
17560 *
17561 * 1. if it accesses map FD, replace it with actual map pointer.
17562 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
17563 *
17564 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
17565 */
resolve_pseudo_ldimm64(struct bpf_verifier_env * env)17566 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
17567 {
17568 struct bpf_insn *insn = env->prog->insnsi;
17569 int insn_cnt = env->prog->len;
17570 int i, j, err;
17571
17572 err = bpf_prog_calc_tag(env->prog);
17573 if (err)
17574 return err;
17575
17576 for (i = 0; i < insn_cnt; i++, insn++) {
17577 if (BPF_CLASS(insn->code) == BPF_LDX &&
17578 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
17579 insn->imm != 0)) {
17580 verbose(env, "BPF_LDX uses reserved fields\n");
17581 return -EINVAL;
17582 }
17583
17584 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
17585 struct bpf_insn_aux_data *aux;
17586 struct bpf_map *map;
17587 struct fd f;
17588 u64 addr;
17589 u32 fd;
17590
17591 if (i == insn_cnt - 1 || insn[1].code != 0 ||
17592 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
17593 insn[1].off != 0) {
17594 verbose(env, "invalid bpf_ld_imm64 insn\n");
17595 return -EINVAL;
17596 }
17597
17598 if (insn[0].src_reg == 0)
17599 /* valid generic load 64-bit imm */
17600 goto next_insn;
17601
17602 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
17603 aux = &env->insn_aux_data[i];
17604 err = check_pseudo_btf_id(env, insn, aux);
17605 if (err)
17606 return err;
17607 goto next_insn;
17608 }
17609
17610 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
17611 aux = &env->insn_aux_data[i];
17612 aux->ptr_type = PTR_TO_FUNC;
17613 goto next_insn;
17614 }
17615
17616 /* In final convert_pseudo_ld_imm64() step, this is
17617 * converted into regular 64-bit imm load insn.
17618 */
17619 switch (insn[0].src_reg) {
17620 case BPF_PSEUDO_MAP_VALUE:
17621 case BPF_PSEUDO_MAP_IDX_VALUE:
17622 break;
17623 case BPF_PSEUDO_MAP_FD:
17624 case BPF_PSEUDO_MAP_IDX:
17625 if (insn[1].imm == 0)
17626 break;
17627 fallthrough;
17628 default:
17629 verbose(env, "unrecognized bpf_ld_imm64 insn\n");
17630 return -EINVAL;
17631 }
17632
17633 switch (insn[0].src_reg) {
17634 case BPF_PSEUDO_MAP_IDX_VALUE:
17635 case BPF_PSEUDO_MAP_IDX:
17636 if (bpfptr_is_null(env->fd_array)) {
17637 verbose(env, "fd_idx without fd_array is invalid\n");
17638 return -EPROTO;
17639 }
17640 if (copy_from_bpfptr_offset(&fd, env->fd_array,
17641 insn[0].imm * sizeof(fd),
17642 sizeof(fd)))
17643 return -EFAULT;
17644 break;
17645 default:
17646 fd = insn[0].imm;
17647 break;
17648 }
17649
17650 f = fdget(fd);
17651 map = __bpf_map_get(f);
17652 if (IS_ERR(map)) {
17653 verbose(env, "fd %d is not pointing to valid bpf_map\n",
17654 insn[0].imm);
17655 return PTR_ERR(map);
17656 }
17657
17658 err = check_map_prog_compatibility(env, map, env->prog);
17659 if (err) {
17660 fdput(f);
17661 return err;
17662 }
17663
17664 aux = &env->insn_aux_data[i];
17665 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
17666 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
17667 addr = (unsigned long)map;
17668 } else {
17669 u32 off = insn[1].imm;
17670
17671 if (off >= BPF_MAX_VAR_OFF) {
17672 verbose(env, "direct value offset of %u is not allowed\n", off);
17673 fdput(f);
17674 return -EINVAL;
17675 }
17676
17677 if (!map->ops->map_direct_value_addr) {
17678 verbose(env, "no direct value access support for this map type\n");
17679 fdput(f);
17680 return -EINVAL;
17681 }
17682
17683 err = map->ops->map_direct_value_addr(map, &addr, off);
17684 if (err) {
17685 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
17686 map->value_size, off);
17687 fdput(f);
17688 return err;
17689 }
17690
17691 aux->map_off = off;
17692 addr += off;
17693 }
17694
17695 insn[0].imm = (u32)addr;
17696 insn[1].imm = addr >> 32;
17697
17698 /* check whether we recorded this map already */
17699 for (j = 0; j < env->used_map_cnt; j++) {
17700 if (env->used_maps[j] == map) {
17701 aux->map_index = j;
17702 fdput(f);
17703 goto next_insn;
17704 }
17705 }
17706
17707 if (env->used_map_cnt >= MAX_USED_MAPS) {
17708 fdput(f);
17709 return -E2BIG;
17710 }
17711
17712 /* hold the map. If the program is rejected by verifier,
17713 * the map will be released by release_maps() or it
17714 * will be used by the valid program until it's unloaded
17715 * and all maps are released in free_used_maps()
17716 */
17717 bpf_map_inc(map);
17718
17719 aux->map_index = env->used_map_cnt;
17720 env->used_maps[env->used_map_cnt++] = map;
17721
17722 if (bpf_map_is_cgroup_storage(map) &&
17723 bpf_cgroup_storage_assign(env->prog->aux, map)) {
17724 verbose(env, "only one cgroup storage of each type is allowed\n");
17725 fdput(f);
17726 return -EBUSY;
17727 }
17728
17729 fdput(f);
17730 next_insn:
17731 insn++;
17732 i++;
17733 continue;
17734 }
17735
17736 /* Basic sanity check before we invest more work here. */
17737 if (!bpf_opcode_in_insntable(insn->code)) {
17738 verbose(env, "unknown opcode %02x\n", insn->code);
17739 return -EINVAL;
17740 }
17741 }
17742
17743 /* now all pseudo BPF_LD_IMM64 instructions load valid
17744 * 'struct bpf_map *' into a register instead of user map_fd.
17745 * These pointers will be used later by verifier to validate map access.
17746 */
17747 return 0;
17748 }
17749
17750 /* drop refcnt of maps used by the rejected program */
release_maps(struct bpf_verifier_env * env)17751 static void release_maps(struct bpf_verifier_env *env)
17752 {
17753 __bpf_free_used_maps(env->prog->aux, env->used_maps,
17754 env->used_map_cnt);
17755 }
17756
17757 /* drop refcnt of maps used by the rejected program */
release_btfs(struct bpf_verifier_env * env)17758 static void release_btfs(struct bpf_verifier_env *env)
17759 {
17760 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
17761 env->used_btf_cnt);
17762 }
17763
17764 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
convert_pseudo_ld_imm64(struct bpf_verifier_env * env)17765 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
17766 {
17767 struct bpf_insn *insn = env->prog->insnsi;
17768 int insn_cnt = env->prog->len;
17769 int i;
17770
17771 for (i = 0; i < insn_cnt; i++, insn++) {
17772 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
17773 continue;
17774 if (insn->src_reg == BPF_PSEUDO_FUNC)
17775 continue;
17776 insn->src_reg = 0;
17777 }
17778 }
17779
17780 /* single env->prog->insni[off] instruction was replaced with the range
17781 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
17782 * [0, off) and [off, end) to new locations, so the patched range stays zero
17783 */
adjust_insn_aux_data(struct bpf_verifier_env * env,struct bpf_insn_aux_data * new_data,struct bpf_prog * new_prog,u32 off,u32 cnt)17784 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
17785 struct bpf_insn_aux_data *new_data,
17786 struct bpf_prog *new_prog, u32 off, u32 cnt)
17787 {
17788 struct bpf_insn_aux_data *old_data = env->insn_aux_data;
17789 struct bpf_insn *insn = new_prog->insnsi;
17790 u32 old_seen = old_data[off].seen;
17791 u32 prog_len;
17792 int i;
17793
17794 /* aux info at OFF always needs adjustment, no matter fast path
17795 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
17796 * original insn at old prog.
17797 */
17798 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
17799
17800 if (cnt == 1)
17801 return;
17802 prog_len = new_prog->len;
17803
17804 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
17805 memcpy(new_data + off + cnt - 1, old_data + off,
17806 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
17807 for (i = off; i < off + cnt - 1; i++) {
17808 /* Expand insni[off]'s seen count to the patched range. */
17809 new_data[i].seen = old_seen;
17810 new_data[i].zext_dst = insn_has_def32(env, insn + i);
17811 }
17812 env->insn_aux_data = new_data;
17813 vfree(old_data);
17814 }
17815
adjust_subprog_starts(struct bpf_verifier_env * env,u32 off,u32 len)17816 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
17817 {
17818 int i;
17819
17820 if (len == 1)
17821 return;
17822 /* NOTE: fake 'exit' subprog should be updated as well. */
17823 for (i = 0; i <= env->subprog_cnt; i++) {
17824 if (env->subprog_info[i].start <= off)
17825 continue;
17826 env->subprog_info[i].start += len - 1;
17827 }
17828 }
17829
adjust_poke_descs(struct bpf_prog * prog,u32 off,u32 len)17830 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
17831 {
17832 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
17833 int i, sz = prog->aux->size_poke_tab;
17834 struct bpf_jit_poke_descriptor *desc;
17835
17836 for (i = 0; i < sz; i++) {
17837 desc = &tab[i];
17838 if (desc->insn_idx <= off)
17839 continue;
17840 desc->insn_idx += len - 1;
17841 }
17842 }
17843
bpf_patch_insn_data(struct bpf_verifier_env * env,u32 off,const struct bpf_insn * patch,u32 len)17844 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
17845 const struct bpf_insn *patch, u32 len)
17846 {
17847 struct bpf_prog *new_prog;
17848 struct bpf_insn_aux_data *new_data = NULL;
17849
17850 if (len > 1) {
17851 new_data = vzalloc(array_size(env->prog->len + len - 1,
17852 sizeof(struct bpf_insn_aux_data)));
17853 if (!new_data)
17854 return NULL;
17855 }
17856
17857 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
17858 if (IS_ERR(new_prog)) {
17859 if (PTR_ERR(new_prog) == -ERANGE)
17860 verbose(env,
17861 "insn %d cannot be patched due to 16-bit range\n",
17862 env->insn_aux_data[off].orig_idx);
17863 vfree(new_data);
17864 return NULL;
17865 }
17866 adjust_insn_aux_data(env, new_data, new_prog, off, len);
17867 adjust_subprog_starts(env, off, len);
17868 adjust_poke_descs(new_prog, off, len);
17869 return new_prog;
17870 }
17871
adjust_subprog_starts_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)17872 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
17873 u32 off, u32 cnt)
17874 {
17875 int i, j;
17876
17877 /* find first prog starting at or after off (first to remove) */
17878 for (i = 0; i < env->subprog_cnt; i++)
17879 if (env->subprog_info[i].start >= off)
17880 break;
17881 /* find first prog starting at or after off + cnt (first to stay) */
17882 for (j = i; j < env->subprog_cnt; j++)
17883 if (env->subprog_info[j].start >= off + cnt)
17884 break;
17885 /* if j doesn't start exactly at off + cnt, we are just removing
17886 * the front of previous prog
17887 */
17888 if (env->subprog_info[j].start != off + cnt)
17889 j--;
17890
17891 if (j > i) {
17892 struct bpf_prog_aux *aux = env->prog->aux;
17893 int move;
17894
17895 /* move fake 'exit' subprog as well */
17896 move = env->subprog_cnt + 1 - j;
17897
17898 memmove(env->subprog_info + i,
17899 env->subprog_info + j,
17900 sizeof(*env->subprog_info) * move);
17901 env->subprog_cnt -= j - i;
17902
17903 /* remove func_info */
17904 if (aux->func_info) {
17905 move = aux->func_info_cnt - j;
17906
17907 memmove(aux->func_info + i,
17908 aux->func_info + j,
17909 sizeof(*aux->func_info) * move);
17910 aux->func_info_cnt -= j - i;
17911 /* func_info->insn_off is set after all code rewrites,
17912 * in adjust_btf_func() - no need to adjust
17913 */
17914 }
17915 } else {
17916 /* convert i from "first prog to remove" to "first to adjust" */
17917 if (env->subprog_info[i].start == off)
17918 i++;
17919 }
17920
17921 /* update fake 'exit' subprog as well */
17922 for (; i <= env->subprog_cnt; i++)
17923 env->subprog_info[i].start -= cnt;
17924
17925 return 0;
17926 }
17927
bpf_adj_linfo_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)17928 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
17929 u32 cnt)
17930 {
17931 struct bpf_prog *prog = env->prog;
17932 u32 i, l_off, l_cnt, nr_linfo;
17933 struct bpf_line_info *linfo;
17934
17935 nr_linfo = prog->aux->nr_linfo;
17936 if (!nr_linfo)
17937 return 0;
17938
17939 linfo = prog->aux->linfo;
17940
17941 /* find first line info to remove, count lines to be removed */
17942 for (i = 0; i < nr_linfo; i++)
17943 if (linfo[i].insn_off >= off)
17944 break;
17945
17946 l_off = i;
17947 l_cnt = 0;
17948 for (; i < nr_linfo; i++)
17949 if (linfo[i].insn_off < off + cnt)
17950 l_cnt++;
17951 else
17952 break;
17953
17954 /* First live insn doesn't match first live linfo, it needs to "inherit"
17955 * last removed linfo. prog is already modified, so prog->len == off
17956 * means no live instructions after (tail of the program was removed).
17957 */
17958 if (prog->len != off && l_cnt &&
17959 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
17960 l_cnt--;
17961 linfo[--i].insn_off = off + cnt;
17962 }
17963
17964 /* remove the line info which refer to the removed instructions */
17965 if (l_cnt) {
17966 memmove(linfo + l_off, linfo + i,
17967 sizeof(*linfo) * (nr_linfo - i));
17968
17969 prog->aux->nr_linfo -= l_cnt;
17970 nr_linfo = prog->aux->nr_linfo;
17971 }
17972
17973 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
17974 for (i = l_off; i < nr_linfo; i++)
17975 linfo[i].insn_off -= cnt;
17976
17977 /* fix up all subprogs (incl. 'exit') which start >= off */
17978 for (i = 0; i <= env->subprog_cnt; i++)
17979 if (env->subprog_info[i].linfo_idx > l_off) {
17980 /* program may have started in the removed region but
17981 * may not be fully removed
17982 */
17983 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
17984 env->subprog_info[i].linfo_idx -= l_cnt;
17985 else
17986 env->subprog_info[i].linfo_idx = l_off;
17987 }
17988
17989 return 0;
17990 }
17991
verifier_remove_insns(struct bpf_verifier_env * env,u32 off,u32 cnt)17992 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
17993 {
17994 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17995 unsigned int orig_prog_len = env->prog->len;
17996 int err;
17997
17998 if (bpf_prog_is_offloaded(env->prog->aux))
17999 bpf_prog_offload_remove_insns(env, off, cnt);
18000
18001 err = bpf_remove_insns(env->prog, off, cnt);
18002 if (err)
18003 return err;
18004
18005 err = adjust_subprog_starts_after_remove(env, off, cnt);
18006 if (err)
18007 return err;
18008
18009 err = bpf_adj_linfo_after_remove(env, off, cnt);
18010 if (err)
18011 return err;
18012
18013 memmove(aux_data + off, aux_data + off + cnt,
18014 sizeof(*aux_data) * (orig_prog_len - off - cnt));
18015
18016 return 0;
18017 }
18018
18019 /* The verifier does more data flow analysis than llvm and will not
18020 * explore branches that are dead at run time. Malicious programs can
18021 * have dead code too. Therefore replace all dead at-run-time code
18022 * with 'ja -1'.
18023 *
18024 * Just nops are not optimal, e.g. if they would sit at the end of the
18025 * program and through another bug we would manage to jump there, then
18026 * we'd execute beyond program memory otherwise. Returning exception
18027 * code also wouldn't work since we can have subprogs where the dead
18028 * code could be located.
18029 */
sanitize_dead_code(struct bpf_verifier_env * env)18030 static void sanitize_dead_code(struct bpf_verifier_env *env)
18031 {
18032 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18033 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
18034 struct bpf_insn *insn = env->prog->insnsi;
18035 const int insn_cnt = env->prog->len;
18036 int i;
18037
18038 for (i = 0; i < insn_cnt; i++) {
18039 if (aux_data[i].seen)
18040 continue;
18041 memcpy(insn + i, &trap, sizeof(trap));
18042 aux_data[i].zext_dst = false;
18043 }
18044 }
18045
insn_is_cond_jump(u8 code)18046 static bool insn_is_cond_jump(u8 code)
18047 {
18048 u8 op;
18049
18050 op = BPF_OP(code);
18051 if (BPF_CLASS(code) == BPF_JMP32)
18052 return op != BPF_JA;
18053
18054 if (BPF_CLASS(code) != BPF_JMP)
18055 return false;
18056
18057 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
18058 }
18059
opt_hard_wire_dead_code_branches(struct bpf_verifier_env * env)18060 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
18061 {
18062 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18063 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18064 struct bpf_insn *insn = env->prog->insnsi;
18065 const int insn_cnt = env->prog->len;
18066 int i;
18067
18068 for (i = 0; i < insn_cnt; i++, insn++) {
18069 if (!insn_is_cond_jump(insn->code))
18070 continue;
18071
18072 if (!aux_data[i + 1].seen)
18073 ja.off = insn->off;
18074 else if (!aux_data[i + 1 + insn->off].seen)
18075 ja.off = 0;
18076 else
18077 continue;
18078
18079 if (bpf_prog_is_offloaded(env->prog->aux))
18080 bpf_prog_offload_replace_insn(env, i, &ja);
18081
18082 memcpy(insn, &ja, sizeof(ja));
18083 }
18084 }
18085
opt_remove_dead_code(struct bpf_verifier_env * env)18086 static int opt_remove_dead_code(struct bpf_verifier_env *env)
18087 {
18088 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18089 int insn_cnt = env->prog->len;
18090 int i, err;
18091
18092 for (i = 0; i < insn_cnt; i++) {
18093 int j;
18094
18095 j = 0;
18096 while (i + j < insn_cnt && !aux_data[i + j].seen)
18097 j++;
18098 if (!j)
18099 continue;
18100
18101 err = verifier_remove_insns(env, i, j);
18102 if (err)
18103 return err;
18104 insn_cnt = env->prog->len;
18105 }
18106
18107 return 0;
18108 }
18109
opt_remove_nops(struct bpf_verifier_env * env)18110 static int opt_remove_nops(struct bpf_verifier_env *env)
18111 {
18112 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18113 struct bpf_insn *insn = env->prog->insnsi;
18114 int insn_cnt = env->prog->len;
18115 int i, err;
18116
18117 for (i = 0; i < insn_cnt; i++) {
18118 if (memcmp(&insn[i], &ja, sizeof(ja)))
18119 continue;
18120
18121 err = verifier_remove_insns(env, i, 1);
18122 if (err)
18123 return err;
18124 insn_cnt--;
18125 i--;
18126 }
18127
18128 return 0;
18129 }
18130
opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env * env,const union bpf_attr * attr)18131 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
18132 const union bpf_attr *attr)
18133 {
18134 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
18135 struct bpf_insn_aux_data *aux = env->insn_aux_data;
18136 int i, patch_len, delta = 0, len = env->prog->len;
18137 struct bpf_insn *insns = env->prog->insnsi;
18138 struct bpf_prog *new_prog;
18139 bool rnd_hi32;
18140
18141 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
18142 zext_patch[1] = BPF_ZEXT_REG(0);
18143 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
18144 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
18145 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
18146 for (i = 0; i < len; i++) {
18147 int adj_idx = i + delta;
18148 struct bpf_insn insn;
18149 int load_reg;
18150
18151 insn = insns[adj_idx];
18152 load_reg = insn_def_regno(&insn);
18153 if (!aux[adj_idx].zext_dst) {
18154 u8 code, class;
18155 u32 imm_rnd;
18156
18157 if (!rnd_hi32)
18158 continue;
18159
18160 code = insn.code;
18161 class = BPF_CLASS(code);
18162 if (load_reg == -1)
18163 continue;
18164
18165 /* NOTE: arg "reg" (the fourth one) is only used for
18166 * BPF_STX + SRC_OP, so it is safe to pass NULL
18167 * here.
18168 */
18169 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
18170 if (class == BPF_LD &&
18171 BPF_MODE(code) == BPF_IMM)
18172 i++;
18173 continue;
18174 }
18175
18176 /* ctx load could be transformed into wider load. */
18177 if (class == BPF_LDX &&
18178 aux[adj_idx].ptr_type == PTR_TO_CTX)
18179 continue;
18180
18181 imm_rnd = get_random_u32();
18182 rnd_hi32_patch[0] = insn;
18183 rnd_hi32_patch[1].imm = imm_rnd;
18184 rnd_hi32_patch[3].dst_reg = load_reg;
18185 patch = rnd_hi32_patch;
18186 patch_len = 4;
18187 goto apply_patch_buffer;
18188 }
18189
18190 /* Add in an zero-extend instruction if a) the JIT has requested
18191 * it or b) it's a CMPXCHG.
18192 *
18193 * The latter is because: BPF_CMPXCHG always loads a value into
18194 * R0, therefore always zero-extends. However some archs'
18195 * equivalent instruction only does this load when the
18196 * comparison is successful. This detail of CMPXCHG is
18197 * orthogonal to the general zero-extension behaviour of the
18198 * CPU, so it's treated independently of bpf_jit_needs_zext.
18199 */
18200 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
18201 continue;
18202
18203 /* Zero-extension is done by the caller. */
18204 if (bpf_pseudo_kfunc_call(&insn))
18205 continue;
18206
18207 if (WARN_ON(load_reg == -1)) {
18208 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
18209 return -EFAULT;
18210 }
18211
18212 zext_patch[0] = insn;
18213 zext_patch[1].dst_reg = load_reg;
18214 zext_patch[1].src_reg = load_reg;
18215 patch = zext_patch;
18216 patch_len = 2;
18217 apply_patch_buffer:
18218 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
18219 if (!new_prog)
18220 return -ENOMEM;
18221 env->prog = new_prog;
18222 insns = new_prog->insnsi;
18223 aux = env->insn_aux_data;
18224 delta += patch_len - 1;
18225 }
18226
18227 return 0;
18228 }
18229
18230 /* convert load instructions that access fields of a context type into a
18231 * sequence of instructions that access fields of the underlying structure:
18232 * struct __sk_buff -> struct sk_buff
18233 * struct bpf_sock_ops -> struct sock
18234 */
convert_ctx_accesses(struct bpf_verifier_env * env)18235 static int convert_ctx_accesses(struct bpf_verifier_env *env)
18236 {
18237 const struct bpf_verifier_ops *ops = env->ops;
18238 int i, cnt, size, ctx_field_size, delta = 0;
18239 const int insn_cnt = env->prog->len;
18240 struct bpf_insn insn_buf[16], *insn;
18241 u32 target_size, size_default, off;
18242 struct bpf_prog *new_prog;
18243 enum bpf_access_type type;
18244 bool is_narrower_load;
18245
18246 if (ops->gen_prologue || env->seen_direct_write) {
18247 if (!ops->gen_prologue) {
18248 verbose(env, "bpf verifier is misconfigured\n");
18249 return -EINVAL;
18250 }
18251 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
18252 env->prog);
18253 if (cnt >= ARRAY_SIZE(insn_buf)) {
18254 verbose(env, "bpf verifier is misconfigured\n");
18255 return -EINVAL;
18256 } else if (cnt) {
18257 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
18258 if (!new_prog)
18259 return -ENOMEM;
18260
18261 env->prog = new_prog;
18262 delta += cnt - 1;
18263 }
18264 }
18265
18266 if (bpf_prog_is_offloaded(env->prog->aux))
18267 return 0;
18268
18269 insn = env->prog->insnsi + delta;
18270
18271 for (i = 0; i < insn_cnt; i++, insn++) {
18272 bpf_convert_ctx_access_t convert_ctx_access;
18273 u8 mode;
18274
18275 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
18276 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
18277 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
18278 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
18279 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
18280 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
18281 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
18282 type = BPF_READ;
18283 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
18284 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
18285 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
18286 insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
18287 insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
18288 insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
18289 insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
18290 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
18291 type = BPF_WRITE;
18292 } else {
18293 continue;
18294 }
18295
18296 if (type == BPF_WRITE &&
18297 env->insn_aux_data[i + delta].sanitize_stack_spill) {
18298 struct bpf_insn patch[] = {
18299 *insn,
18300 BPF_ST_NOSPEC(),
18301 };
18302
18303 cnt = ARRAY_SIZE(patch);
18304 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
18305 if (!new_prog)
18306 return -ENOMEM;
18307
18308 delta += cnt - 1;
18309 env->prog = new_prog;
18310 insn = new_prog->insnsi + i + delta;
18311 continue;
18312 }
18313
18314 switch ((int)env->insn_aux_data[i + delta].ptr_type) {
18315 case PTR_TO_CTX:
18316 if (!ops->convert_ctx_access)
18317 continue;
18318 convert_ctx_access = ops->convert_ctx_access;
18319 break;
18320 case PTR_TO_SOCKET:
18321 case PTR_TO_SOCK_COMMON:
18322 convert_ctx_access = bpf_sock_convert_ctx_access;
18323 break;
18324 case PTR_TO_TCP_SOCK:
18325 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
18326 break;
18327 case PTR_TO_XDP_SOCK:
18328 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
18329 break;
18330 case PTR_TO_BTF_ID:
18331 case PTR_TO_BTF_ID | PTR_UNTRUSTED:
18332 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
18333 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
18334 * be said once it is marked PTR_UNTRUSTED, hence we must handle
18335 * any faults for loads into such types. BPF_WRITE is disallowed
18336 * for this case.
18337 */
18338 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
18339 if (type == BPF_READ) {
18340 if (BPF_MODE(insn->code) == BPF_MEM)
18341 insn->code = BPF_LDX | BPF_PROBE_MEM |
18342 BPF_SIZE((insn)->code);
18343 else
18344 insn->code = BPF_LDX | BPF_PROBE_MEMSX |
18345 BPF_SIZE((insn)->code);
18346 env->prog->aux->num_exentries++;
18347 }
18348 continue;
18349 default:
18350 continue;
18351 }
18352
18353 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
18354 size = BPF_LDST_BYTES(insn);
18355 mode = BPF_MODE(insn->code);
18356
18357 /* If the read access is a narrower load of the field,
18358 * convert to a 4/8-byte load, to minimum program type specific
18359 * convert_ctx_access changes. If conversion is successful,
18360 * we will apply proper mask to the result.
18361 */
18362 is_narrower_load = size < ctx_field_size;
18363 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
18364 off = insn->off;
18365 if (is_narrower_load) {
18366 u8 size_code;
18367
18368 if (type == BPF_WRITE) {
18369 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
18370 return -EINVAL;
18371 }
18372
18373 size_code = BPF_H;
18374 if (ctx_field_size == 4)
18375 size_code = BPF_W;
18376 else if (ctx_field_size == 8)
18377 size_code = BPF_DW;
18378
18379 insn->off = off & ~(size_default - 1);
18380 insn->code = BPF_LDX | BPF_MEM | size_code;
18381 }
18382
18383 target_size = 0;
18384 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
18385 &target_size);
18386 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
18387 (ctx_field_size && !target_size)) {
18388 verbose(env, "bpf verifier is misconfigured\n");
18389 return -EINVAL;
18390 }
18391
18392 if (is_narrower_load && size < target_size) {
18393 u8 shift = bpf_ctx_narrow_access_offset(
18394 off, size, size_default) * 8;
18395 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
18396 verbose(env, "bpf verifier narrow ctx load misconfigured\n");
18397 return -EINVAL;
18398 }
18399 if (ctx_field_size <= 4) {
18400 if (shift)
18401 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
18402 insn->dst_reg,
18403 shift);
18404 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18405 (1 << size * 8) - 1);
18406 } else {
18407 if (shift)
18408 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
18409 insn->dst_reg,
18410 shift);
18411 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18412 (1ULL << size * 8) - 1);
18413 }
18414 }
18415 if (mode == BPF_MEMSX)
18416 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
18417 insn->dst_reg, insn->dst_reg,
18418 size * 8, 0);
18419
18420 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18421 if (!new_prog)
18422 return -ENOMEM;
18423
18424 delta += cnt - 1;
18425
18426 /* keep walking new program and skip insns we just inserted */
18427 env->prog = new_prog;
18428 insn = new_prog->insnsi + i + delta;
18429 }
18430
18431 return 0;
18432 }
18433
jit_subprogs(struct bpf_verifier_env * env)18434 static int jit_subprogs(struct bpf_verifier_env *env)
18435 {
18436 struct bpf_prog *prog = env->prog, **func, *tmp;
18437 int i, j, subprog_start, subprog_end = 0, len, subprog;
18438 struct bpf_map *map_ptr;
18439 struct bpf_insn *insn;
18440 void *old_bpf_func;
18441 int err, num_exentries;
18442
18443 if (env->subprog_cnt <= 1)
18444 return 0;
18445
18446 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18447 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
18448 continue;
18449
18450 /* Upon error here we cannot fall back to interpreter but
18451 * need a hard reject of the program. Thus -EFAULT is
18452 * propagated in any case.
18453 */
18454 subprog = find_subprog(env, i + insn->imm + 1);
18455 if (subprog < 0) {
18456 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
18457 i + insn->imm + 1);
18458 return -EFAULT;
18459 }
18460 /* temporarily remember subprog id inside insn instead of
18461 * aux_data, since next loop will split up all insns into funcs
18462 */
18463 insn->off = subprog;
18464 /* remember original imm in case JIT fails and fallback
18465 * to interpreter will be needed
18466 */
18467 env->insn_aux_data[i].call_imm = insn->imm;
18468 /* point imm to __bpf_call_base+1 from JITs point of view */
18469 insn->imm = 1;
18470 if (bpf_pseudo_func(insn))
18471 /* jit (e.g. x86_64) may emit fewer instructions
18472 * if it learns a u32 imm is the same as a u64 imm.
18473 * Force a non zero here.
18474 */
18475 insn[1].imm = 1;
18476 }
18477
18478 err = bpf_prog_alloc_jited_linfo(prog);
18479 if (err)
18480 goto out_undo_insn;
18481
18482 err = -ENOMEM;
18483 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
18484 if (!func)
18485 goto out_undo_insn;
18486
18487 for (i = 0; i < env->subprog_cnt; i++) {
18488 subprog_start = subprog_end;
18489 subprog_end = env->subprog_info[i + 1].start;
18490
18491 len = subprog_end - subprog_start;
18492 /* bpf_prog_run() doesn't call subprogs directly,
18493 * hence main prog stats include the runtime of subprogs.
18494 * subprogs don't have IDs and not reachable via prog_get_next_id
18495 * func[i]->stats will never be accessed and stays NULL
18496 */
18497 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
18498 if (!func[i])
18499 goto out_free;
18500 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
18501 len * sizeof(struct bpf_insn));
18502 func[i]->type = prog->type;
18503 func[i]->len = len;
18504 if (bpf_prog_calc_tag(func[i]))
18505 goto out_free;
18506 func[i]->is_func = 1;
18507 func[i]->aux->func_idx = i;
18508 /* Below members will be freed only at prog->aux */
18509 func[i]->aux->btf = prog->aux->btf;
18510 func[i]->aux->func_info = prog->aux->func_info;
18511 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
18512 func[i]->aux->poke_tab = prog->aux->poke_tab;
18513 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
18514
18515 for (j = 0; j < prog->aux->size_poke_tab; j++) {
18516 struct bpf_jit_poke_descriptor *poke;
18517
18518 poke = &prog->aux->poke_tab[j];
18519 if (poke->insn_idx < subprog_end &&
18520 poke->insn_idx >= subprog_start)
18521 poke->aux = func[i]->aux;
18522 }
18523
18524 func[i]->aux->name[0] = 'F';
18525 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
18526 func[i]->jit_requested = 1;
18527 func[i]->blinding_requested = prog->blinding_requested;
18528 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
18529 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
18530 func[i]->aux->linfo = prog->aux->linfo;
18531 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
18532 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
18533 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
18534 num_exentries = 0;
18535 insn = func[i]->insnsi;
18536 for (j = 0; j < func[i]->len; j++, insn++) {
18537 if (BPF_CLASS(insn->code) == BPF_LDX &&
18538 (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
18539 BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
18540 num_exentries++;
18541 }
18542 func[i]->aux->num_exentries = num_exentries;
18543 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
18544 func[i] = bpf_int_jit_compile(func[i]);
18545 if (!func[i]->jited) {
18546 err = -ENOTSUPP;
18547 goto out_free;
18548 }
18549 cond_resched();
18550 }
18551
18552 /* at this point all bpf functions were successfully JITed
18553 * now populate all bpf_calls with correct addresses and
18554 * run last pass of JIT
18555 */
18556 for (i = 0; i < env->subprog_cnt; i++) {
18557 insn = func[i]->insnsi;
18558 for (j = 0; j < func[i]->len; j++, insn++) {
18559 if (bpf_pseudo_func(insn)) {
18560 subprog = insn->off;
18561 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
18562 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
18563 continue;
18564 }
18565 if (!bpf_pseudo_call(insn))
18566 continue;
18567 subprog = insn->off;
18568 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
18569 }
18570
18571 /* we use the aux data to keep a list of the start addresses
18572 * of the JITed images for each function in the program
18573 *
18574 * for some architectures, such as powerpc64, the imm field
18575 * might not be large enough to hold the offset of the start
18576 * address of the callee's JITed image from __bpf_call_base
18577 *
18578 * in such cases, we can lookup the start address of a callee
18579 * by using its subprog id, available from the off field of
18580 * the call instruction, as an index for this list
18581 */
18582 func[i]->aux->func = func;
18583 func[i]->aux->func_cnt = env->subprog_cnt;
18584 }
18585 for (i = 0; i < env->subprog_cnt; i++) {
18586 old_bpf_func = func[i]->bpf_func;
18587 tmp = bpf_int_jit_compile(func[i]);
18588 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
18589 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
18590 err = -ENOTSUPP;
18591 goto out_free;
18592 }
18593 cond_resched();
18594 }
18595
18596 /* finally lock prog and jit images for all functions and
18597 * populate kallsysm. Begin at the first subprogram, since
18598 * bpf_prog_load will add the kallsyms for the main program.
18599 */
18600 for (i = 1; i < env->subprog_cnt; i++) {
18601 bpf_prog_lock_ro(func[i]);
18602 bpf_prog_kallsyms_add(func[i]);
18603 }
18604
18605 /* Last step: make now unused interpreter insns from main
18606 * prog consistent for later dump requests, so they can
18607 * later look the same as if they were interpreted only.
18608 */
18609 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18610 if (bpf_pseudo_func(insn)) {
18611 insn[0].imm = env->insn_aux_data[i].call_imm;
18612 insn[1].imm = insn->off;
18613 insn->off = 0;
18614 continue;
18615 }
18616 if (!bpf_pseudo_call(insn))
18617 continue;
18618 insn->off = env->insn_aux_data[i].call_imm;
18619 subprog = find_subprog(env, i + insn->off + 1);
18620 insn->imm = subprog;
18621 }
18622
18623 prog->jited = 1;
18624 prog->bpf_func = func[0]->bpf_func;
18625 prog->jited_len = func[0]->jited_len;
18626 prog->aux->extable = func[0]->aux->extable;
18627 prog->aux->num_exentries = func[0]->aux->num_exentries;
18628 prog->aux->func = func;
18629 prog->aux->func_cnt = env->subprog_cnt;
18630 bpf_prog_jit_attempt_done(prog);
18631 return 0;
18632 out_free:
18633 /* We failed JIT'ing, so at this point we need to unregister poke
18634 * descriptors from subprogs, so that kernel is not attempting to
18635 * patch it anymore as we're freeing the subprog JIT memory.
18636 */
18637 for (i = 0; i < prog->aux->size_poke_tab; i++) {
18638 map_ptr = prog->aux->poke_tab[i].tail_call.map;
18639 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
18640 }
18641 /* At this point we're guaranteed that poke descriptors are not
18642 * live anymore. We can just unlink its descriptor table as it's
18643 * released with the main prog.
18644 */
18645 for (i = 0; i < env->subprog_cnt; i++) {
18646 if (!func[i])
18647 continue;
18648 func[i]->aux->poke_tab = NULL;
18649 bpf_jit_free(func[i]);
18650 }
18651 kfree(func);
18652 out_undo_insn:
18653 /* cleanup main prog to be interpreted */
18654 prog->jit_requested = 0;
18655 prog->blinding_requested = 0;
18656 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18657 if (!bpf_pseudo_call(insn))
18658 continue;
18659 insn->off = 0;
18660 insn->imm = env->insn_aux_data[i].call_imm;
18661 }
18662 bpf_prog_jit_attempt_done(prog);
18663 return err;
18664 }
18665
fixup_call_args(struct bpf_verifier_env * env)18666 static int fixup_call_args(struct bpf_verifier_env *env)
18667 {
18668 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18669 struct bpf_prog *prog = env->prog;
18670 struct bpf_insn *insn = prog->insnsi;
18671 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
18672 int i, depth;
18673 #endif
18674 int err = 0;
18675
18676 if (env->prog->jit_requested &&
18677 !bpf_prog_is_offloaded(env->prog->aux)) {
18678 err = jit_subprogs(env);
18679 if (err == 0)
18680 return 0;
18681 if (err == -EFAULT)
18682 return err;
18683 }
18684 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18685 if (has_kfunc_call) {
18686 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
18687 return -EINVAL;
18688 }
18689 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
18690 /* When JIT fails the progs with bpf2bpf calls and tail_calls
18691 * have to be rejected, since interpreter doesn't support them yet.
18692 */
18693 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
18694 return -EINVAL;
18695 }
18696 for (i = 0; i < prog->len; i++, insn++) {
18697 if (bpf_pseudo_func(insn)) {
18698 /* When JIT fails the progs with callback calls
18699 * have to be rejected, since interpreter doesn't support them yet.
18700 */
18701 verbose(env, "callbacks are not allowed in non-JITed programs\n");
18702 return -EINVAL;
18703 }
18704
18705 if (!bpf_pseudo_call(insn))
18706 continue;
18707 depth = get_callee_stack_depth(env, insn, i);
18708 if (depth < 0)
18709 return depth;
18710 bpf_patch_call_args(insn, depth);
18711 }
18712 err = 0;
18713 #endif
18714 return err;
18715 }
18716
18717 /* replace a generic kfunc with a specialized version if necessary */
specialize_kfunc(struct bpf_verifier_env * env,u32 func_id,u16 offset,unsigned long * addr)18718 static void specialize_kfunc(struct bpf_verifier_env *env,
18719 u32 func_id, u16 offset, unsigned long *addr)
18720 {
18721 struct bpf_prog *prog = env->prog;
18722 bool seen_direct_write;
18723 void *xdp_kfunc;
18724 bool is_rdonly;
18725
18726 if (bpf_dev_bound_kfunc_id(func_id)) {
18727 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
18728 if (xdp_kfunc) {
18729 *addr = (unsigned long)xdp_kfunc;
18730 return;
18731 }
18732 /* fallback to default kfunc when not supported by netdev */
18733 }
18734
18735 if (offset)
18736 return;
18737
18738 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
18739 seen_direct_write = env->seen_direct_write;
18740 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
18741
18742 if (is_rdonly)
18743 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
18744
18745 /* restore env->seen_direct_write to its original value, since
18746 * may_access_direct_pkt_data mutates it
18747 */
18748 env->seen_direct_write = seen_direct_write;
18749 }
18750 }
18751
__fixup_collection_insert_kfunc(struct bpf_insn_aux_data * insn_aux,u16 struct_meta_reg,u16 node_offset_reg,struct bpf_insn * insn,struct bpf_insn * insn_buf,int * cnt)18752 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
18753 u16 struct_meta_reg,
18754 u16 node_offset_reg,
18755 struct bpf_insn *insn,
18756 struct bpf_insn *insn_buf,
18757 int *cnt)
18758 {
18759 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
18760 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
18761
18762 insn_buf[0] = addr[0];
18763 insn_buf[1] = addr[1];
18764 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
18765 insn_buf[3] = *insn;
18766 *cnt = 4;
18767 }
18768
fixup_kfunc_call(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_insn * insn_buf,int insn_idx,int * cnt)18769 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
18770 struct bpf_insn *insn_buf, int insn_idx, int *cnt)
18771 {
18772 const struct bpf_kfunc_desc *desc;
18773
18774 if (!insn->imm) {
18775 verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
18776 return -EINVAL;
18777 }
18778
18779 *cnt = 0;
18780
18781 /* insn->imm has the btf func_id. Replace it with an offset relative to
18782 * __bpf_call_base, unless the JIT needs to call functions that are
18783 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
18784 */
18785 desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
18786 if (!desc) {
18787 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
18788 insn->imm);
18789 return -EFAULT;
18790 }
18791
18792 if (!bpf_jit_supports_far_kfunc_call())
18793 insn->imm = BPF_CALL_IMM(desc->addr);
18794 if (insn->off)
18795 return 0;
18796 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
18797 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18798 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18799 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
18800
18801 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
18802 insn_buf[1] = addr[0];
18803 insn_buf[2] = addr[1];
18804 insn_buf[3] = *insn;
18805 *cnt = 4;
18806 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
18807 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
18808 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18809 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18810
18811 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
18812 !kptr_struct_meta) {
18813 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18814 insn_idx);
18815 return -EFAULT;
18816 }
18817
18818 insn_buf[0] = addr[0];
18819 insn_buf[1] = addr[1];
18820 insn_buf[2] = *insn;
18821 *cnt = 3;
18822 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
18823 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
18824 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18825 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18826 int struct_meta_reg = BPF_REG_3;
18827 int node_offset_reg = BPF_REG_4;
18828
18829 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
18830 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18831 struct_meta_reg = BPF_REG_4;
18832 node_offset_reg = BPF_REG_5;
18833 }
18834
18835 if (!kptr_struct_meta) {
18836 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18837 insn_idx);
18838 return -EFAULT;
18839 }
18840
18841 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
18842 node_offset_reg, insn, insn_buf, cnt);
18843 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
18844 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
18845 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
18846 *cnt = 1;
18847 }
18848 return 0;
18849 }
18850
18851 /* Do various post-verification rewrites in a single program pass.
18852 * These rewrites simplify JIT and interpreter implementations.
18853 */
do_misc_fixups(struct bpf_verifier_env * env)18854 static int do_misc_fixups(struct bpf_verifier_env *env)
18855 {
18856 struct bpf_prog *prog = env->prog;
18857 enum bpf_attach_type eatype = prog->expected_attach_type;
18858 enum bpf_prog_type prog_type = resolve_prog_type(prog);
18859 struct bpf_insn *insn = prog->insnsi;
18860 const struct bpf_func_proto *fn;
18861 const int insn_cnt = prog->len;
18862 const struct bpf_map_ops *ops;
18863 struct bpf_insn_aux_data *aux;
18864 struct bpf_insn insn_buf[16];
18865 struct bpf_prog *new_prog;
18866 struct bpf_map *map_ptr;
18867 int i, ret, cnt, delta = 0;
18868
18869 for (i = 0; i < insn_cnt; i++, insn++) {
18870 /* Make divide-by-zero exceptions impossible. */
18871 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
18872 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
18873 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
18874 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
18875 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
18876 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
18877 struct bpf_insn *patchlet;
18878 struct bpf_insn chk_and_div[] = {
18879 /* [R,W]x div 0 -> 0 */
18880 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18881 BPF_JNE | BPF_K, insn->src_reg,
18882 0, 2, 0),
18883 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
18884 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18885 *insn,
18886 };
18887 struct bpf_insn chk_and_mod[] = {
18888 /* [R,W]x mod 0 -> [R,W]x */
18889 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18890 BPF_JEQ | BPF_K, insn->src_reg,
18891 0, 1 + (is64 ? 0 : 1), 0),
18892 *insn,
18893 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18894 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
18895 };
18896
18897 patchlet = isdiv ? chk_and_div : chk_and_mod;
18898 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
18899 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
18900
18901 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
18902 if (!new_prog)
18903 return -ENOMEM;
18904
18905 delta += cnt - 1;
18906 env->prog = prog = new_prog;
18907 insn = new_prog->insnsi + i + delta;
18908 continue;
18909 }
18910
18911 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
18912 if (BPF_CLASS(insn->code) == BPF_LD &&
18913 (BPF_MODE(insn->code) == BPF_ABS ||
18914 BPF_MODE(insn->code) == BPF_IND)) {
18915 cnt = env->ops->gen_ld_abs(insn, insn_buf);
18916 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
18917 verbose(env, "bpf verifier is misconfigured\n");
18918 return -EINVAL;
18919 }
18920
18921 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18922 if (!new_prog)
18923 return -ENOMEM;
18924
18925 delta += cnt - 1;
18926 env->prog = prog = new_prog;
18927 insn = new_prog->insnsi + i + delta;
18928 continue;
18929 }
18930
18931 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
18932 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
18933 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
18934 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
18935 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
18936 struct bpf_insn *patch = &insn_buf[0];
18937 bool issrc, isneg, isimm;
18938 u32 off_reg;
18939
18940 aux = &env->insn_aux_data[i + delta];
18941 if (!aux->alu_state ||
18942 aux->alu_state == BPF_ALU_NON_POINTER)
18943 continue;
18944
18945 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
18946 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
18947 BPF_ALU_SANITIZE_SRC;
18948 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
18949
18950 off_reg = issrc ? insn->src_reg : insn->dst_reg;
18951 if (isimm) {
18952 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
18953 } else {
18954 if (isneg)
18955 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
18956 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
18957 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
18958 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
18959 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
18960 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
18961 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
18962 }
18963 if (!issrc)
18964 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
18965 insn->src_reg = BPF_REG_AX;
18966 if (isneg)
18967 insn->code = insn->code == code_add ?
18968 code_sub : code_add;
18969 *patch++ = *insn;
18970 if (issrc && isneg && !isimm)
18971 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
18972 cnt = patch - insn_buf;
18973
18974 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18975 if (!new_prog)
18976 return -ENOMEM;
18977
18978 delta += cnt - 1;
18979 env->prog = prog = new_prog;
18980 insn = new_prog->insnsi + i + delta;
18981 continue;
18982 }
18983
18984 if (insn->code != (BPF_JMP | BPF_CALL))
18985 continue;
18986 if (insn->src_reg == BPF_PSEUDO_CALL)
18987 continue;
18988 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
18989 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
18990 if (ret)
18991 return ret;
18992 if (cnt == 0)
18993 continue;
18994
18995 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18996 if (!new_prog)
18997 return -ENOMEM;
18998
18999 delta += cnt - 1;
19000 env->prog = prog = new_prog;
19001 insn = new_prog->insnsi + i + delta;
19002 continue;
19003 }
19004
19005 if (insn->imm == BPF_FUNC_get_route_realm)
19006 prog->dst_needed = 1;
19007 if (insn->imm == BPF_FUNC_get_prandom_u32)
19008 bpf_user_rnd_init_once();
19009 if (insn->imm == BPF_FUNC_override_return)
19010 prog->kprobe_override = 1;
19011 if (insn->imm == BPF_FUNC_tail_call) {
19012 /* If we tail call into other programs, we
19013 * cannot make any assumptions since they can
19014 * be replaced dynamically during runtime in
19015 * the program array.
19016 */
19017 prog->cb_access = 1;
19018 if (!allow_tail_call_in_subprogs(env))
19019 prog->aux->stack_depth = MAX_BPF_STACK;
19020 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
19021
19022 /* mark bpf_tail_call as different opcode to avoid
19023 * conditional branch in the interpreter for every normal
19024 * call and to prevent accidental JITing by JIT compiler
19025 * that doesn't support bpf_tail_call yet
19026 */
19027 insn->imm = 0;
19028 insn->code = BPF_JMP | BPF_TAIL_CALL;
19029
19030 aux = &env->insn_aux_data[i + delta];
19031 if (env->bpf_capable && !prog->blinding_requested &&
19032 prog->jit_requested &&
19033 !bpf_map_key_poisoned(aux) &&
19034 !bpf_map_ptr_poisoned(aux) &&
19035 !bpf_map_ptr_unpriv(aux)) {
19036 struct bpf_jit_poke_descriptor desc = {
19037 .reason = BPF_POKE_REASON_TAIL_CALL,
19038 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
19039 .tail_call.key = bpf_map_key_immediate(aux),
19040 .insn_idx = i + delta,
19041 };
19042
19043 ret = bpf_jit_add_poke_descriptor(prog, &desc);
19044 if (ret < 0) {
19045 verbose(env, "adding tail call poke descriptor failed\n");
19046 return ret;
19047 }
19048
19049 insn->imm = ret + 1;
19050 continue;
19051 }
19052
19053 if (!bpf_map_ptr_unpriv(aux))
19054 continue;
19055
19056 /* instead of changing every JIT dealing with tail_call
19057 * emit two extra insns:
19058 * if (index >= max_entries) goto out;
19059 * index &= array->index_mask;
19060 * to avoid out-of-bounds cpu speculation
19061 */
19062 if (bpf_map_ptr_poisoned(aux)) {
19063 verbose(env, "tail_call abusing map_ptr\n");
19064 return -EINVAL;
19065 }
19066
19067 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19068 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
19069 map_ptr->max_entries, 2);
19070 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
19071 container_of(map_ptr,
19072 struct bpf_array,
19073 map)->index_mask);
19074 insn_buf[2] = *insn;
19075 cnt = 3;
19076 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19077 if (!new_prog)
19078 return -ENOMEM;
19079
19080 delta += cnt - 1;
19081 env->prog = prog = new_prog;
19082 insn = new_prog->insnsi + i + delta;
19083 continue;
19084 }
19085
19086 if (insn->imm == BPF_FUNC_timer_set_callback) {
19087 /* The verifier will process callback_fn as many times as necessary
19088 * with different maps and the register states prepared by
19089 * set_timer_callback_state will be accurate.
19090 *
19091 * The following use case is valid:
19092 * map1 is shared by prog1, prog2, prog3.
19093 * prog1 calls bpf_timer_init for some map1 elements
19094 * prog2 calls bpf_timer_set_callback for some map1 elements.
19095 * Those that were not bpf_timer_init-ed will return -EINVAL.
19096 * prog3 calls bpf_timer_start for some map1 elements.
19097 * Those that were not both bpf_timer_init-ed and
19098 * bpf_timer_set_callback-ed will return -EINVAL.
19099 */
19100 struct bpf_insn ld_addrs[2] = {
19101 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
19102 };
19103
19104 insn_buf[0] = ld_addrs[0];
19105 insn_buf[1] = ld_addrs[1];
19106 insn_buf[2] = *insn;
19107 cnt = 3;
19108
19109 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19110 if (!new_prog)
19111 return -ENOMEM;
19112
19113 delta += cnt - 1;
19114 env->prog = prog = new_prog;
19115 insn = new_prog->insnsi + i + delta;
19116 goto patch_call_imm;
19117 }
19118
19119 if (is_storage_get_function(insn->imm)) {
19120 if (!env->prog->aux->sleepable ||
19121 env->insn_aux_data[i + delta].storage_get_func_atomic)
19122 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
19123 else
19124 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
19125 insn_buf[1] = *insn;
19126 cnt = 2;
19127
19128 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19129 if (!new_prog)
19130 return -ENOMEM;
19131
19132 delta += cnt - 1;
19133 env->prog = prog = new_prog;
19134 insn = new_prog->insnsi + i + delta;
19135 goto patch_call_imm;
19136 }
19137
19138 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
19139 * and other inlining handlers are currently limited to 64 bit
19140 * only.
19141 */
19142 if (prog->jit_requested && BITS_PER_LONG == 64 &&
19143 (insn->imm == BPF_FUNC_map_lookup_elem ||
19144 insn->imm == BPF_FUNC_map_update_elem ||
19145 insn->imm == BPF_FUNC_map_delete_elem ||
19146 insn->imm == BPF_FUNC_map_push_elem ||
19147 insn->imm == BPF_FUNC_map_pop_elem ||
19148 insn->imm == BPF_FUNC_map_peek_elem ||
19149 insn->imm == BPF_FUNC_redirect_map ||
19150 insn->imm == BPF_FUNC_for_each_map_elem ||
19151 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
19152 aux = &env->insn_aux_data[i + delta];
19153 if (bpf_map_ptr_poisoned(aux))
19154 goto patch_call_imm;
19155
19156 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19157 ops = map_ptr->ops;
19158 if (insn->imm == BPF_FUNC_map_lookup_elem &&
19159 ops->map_gen_lookup) {
19160 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
19161 if (cnt == -EOPNOTSUPP)
19162 goto patch_map_ops_generic;
19163 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19164 verbose(env, "bpf verifier is misconfigured\n");
19165 return -EINVAL;
19166 }
19167
19168 new_prog = bpf_patch_insn_data(env, i + delta,
19169 insn_buf, cnt);
19170 if (!new_prog)
19171 return -ENOMEM;
19172
19173 delta += cnt - 1;
19174 env->prog = prog = new_prog;
19175 insn = new_prog->insnsi + i + delta;
19176 continue;
19177 }
19178
19179 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
19180 (void *(*)(struct bpf_map *map, void *key))NULL));
19181 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
19182 (long (*)(struct bpf_map *map, void *key))NULL));
19183 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
19184 (long (*)(struct bpf_map *map, void *key, void *value,
19185 u64 flags))NULL));
19186 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
19187 (long (*)(struct bpf_map *map, void *value,
19188 u64 flags))NULL));
19189 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
19190 (long (*)(struct bpf_map *map, void *value))NULL));
19191 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
19192 (long (*)(struct bpf_map *map, void *value))NULL));
19193 BUILD_BUG_ON(!__same_type(ops->map_redirect,
19194 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
19195 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
19196 (long (*)(struct bpf_map *map,
19197 bpf_callback_t callback_fn,
19198 void *callback_ctx,
19199 u64 flags))NULL));
19200 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
19201 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
19202
19203 patch_map_ops_generic:
19204 switch (insn->imm) {
19205 case BPF_FUNC_map_lookup_elem:
19206 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
19207 continue;
19208 case BPF_FUNC_map_update_elem:
19209 insn->imm = BPF_CALL_IMM(ops->map_update_elem);
19210 continue;
19211 case BPF_FUNC_map_delete_elem:
19212 insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
19213 continue;
19214 case BPF_FUNC_map_push_elem:
19215 insn->imm = BPF_CALL_IMM(ops->map_push_elem);
19216 continue;
19217 case BPF_FUNC_map_pop_elem:
19218 insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
19219 continue;
19220 case BPF_FUNC_map_peek_elem:
19221 insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
19222 continue;
19223 case BPF_FUNC_redirect_map:
19224 insn->imm = BPF_CALL_IMM(ops->map_redirect);
19225 continue;
19226 case BPF_FUNC_for_each_map_elem:
19227 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
19228 continue;
19229 case BPF_FUNC_map_lookup_percpu_elem:
19230 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
19231 continue;
19232 }
19233
19234 goto patch_call_imm;
19235 }
19236
19237 /* Implement bpf_jiffies64 inline. */
19238 if (prog->jit_requested && BITS_PER_LONG == 64 &&
19239 insn->imm == BPF_FUNC_jiffies64) {
19240 struct bpf_insn ld_jiffies_addr[2] = {
19241 BPF_LD_IMM64(BPF_REG_0,
19242 (unsigned long)&jiffies),
19243 };
19244
19245 insn_buf[0] = ld_jiffies_addr[0];
19246 insn_buf[1] = ld_jiffies_addr[1];
19247 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
19248 BPF_REG_0, 0);
19249 cnt = 3;
19250
19251 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
19252 cnt);
19253 if (!new_prog)
19254 return -ENOMEM;
19255
19256 delta += cnt - 1;
19257 env->prog = prog = new_prog;
19258 insn = new_prog->insnsi + i + delta;
19259 continue;
19260 }
19261
19262 /* Implement bpf_get_func_arg inline. */
19263 if (prog_type == BPF_PROG_TYPE_TRACING &&
19264 insn->imm == BPF_FUNC_get_func_arg) {
19265 /* Load nr_args from ctx - 8 */
19266 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19267 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
19268 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
19269 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
19270 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
19271 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19272 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
19273 insn_buf[7] = BPF_JMP_A(1);
19274 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
19275 cnt = 9;
19276
19277 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19278 if (!new_prog)
19279 return -ENOMEM;
19280
19281 delta += cnt - 1;
19282 env->prog = prog = new_prog;
19283 insn = new_prog->insnsi + i + delta;
19284 continue;
19285 }
19286
19287 /* Implement bpf_get_func_ret inline. */
19288 if (prog_type == BPF_PROG_TYPE_TRACING &&
19289 insn->imm == BPF_FUNC_get_func_ret) {
19290 if (eatype == BPF_TRACE_FEXIT ||
19291 eatype == BPF_MODIFY_RETURN) {
19292 /* Load nr_args from ctx - 8 */
19293 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19294 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
19295 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
19296 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19297 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
19298 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
19299 cnt = 6;
19300 } else {
19301 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
19302 cnt = 1;
19303 }
19304
19305 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19306 if (!new_prog)
19307 return -ENOMEM;
19308
19309 delta += cnt - 1;
19310 env->prog = prog = new_prog;
19311 insn = new_prog->insnsi + i + delta;
19312 continue;
19313 }
19314
19315 /* Implement get_func_arg_cnt inline. */
19316 if (prog_type == BPF_PROG_TYPE_TRACING &&
19317 insn->imm == BPF_FUNC_get_func_arg_cnt) {
19318 /* Load nr_args from ctx - 8 */
19319 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19320
19321 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19322 if (!new_prog)
19323 return -ENOMEM;
19324
19325 env->prog = prog = new_prog;
19326 insn = new_prog->insnsi + i + delta;
19327 continue;
19328 }
19329
19330 /* Implement bpf_get_func_ip inline. */
19331 if (prog_type == BPF_PROG_TYPE_TRACING &&
19332 insn->imm == BPF_FUNC_get_func_ip) {
19333 /* Load IP address from ctx - 16 */
19334 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
19335
19336 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19337 if (!new_prog)
19338 return -ENOMEM;
19339
19340 env->prog = prog = new_prog;
19341 insn = new_prog->insnsi + i + delta;
19342 continue;
19343 }
19344
19345 patch_call_imm:
19346 fn = env->ops->get_func_proto(insn->imm, env->prog);
19347 /* all functions that have prototype and verifier allowed
19348 * programs to call them, must be real in-kernel functions
19349 */
19350 if (!fn->func) {
19351 verbose(env,
19352 "kernel subsystem misconfigured func %s#%d\n",
19353 func_id_name(insn->imm), insn->imm);
19354 return -EFAULT;
19355 }
19356 insn->imm = fn->func - __bpf_call_base;
19357 }
19358
19359 /* Since poke tab is now finalized, publish aux to tracker. */
19360 for (i = 0; i < prog->aux->size_poke_tab; i++) {
19361 map_ptr = prog->aux->poke_tab[i].tail_call.map;
19362 if (!map_ptr->ops->map_poke_track ||
19363 !map_ptr->ops->map_poke_untrack ||
19364 !map_ptr->ops->map_poke_run) {
19365 verbose(env, "bpf verifier is misconfigured\n");
19366 return -EINVAL;
19367 }
19368
19369 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
19370 if (ret < 0) {
19371 verbose(env, "tracking tail call prog failed\n");
19372 return ret;
19373 }
19374 }
19375
19376 sort_kfunc_descs_by_imm_off(env->prog);
19377
19378 return 0;
19379 }
19380
inline_bpf_loop(struct bpf_verifier_env * env,int position,s32 stack_base,u32 callback_subprogno,u32 * cnt)19381 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
19382 int position,
19383 s32 stack_base,
19384 u32 callback_subprogno,
19385 u32 *cnt)
19386 {
19387 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
19388 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
19389 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
19390 int reg_loop_max = BPF_REG_6;
19391 int reg_loop_cnt = BPF_REG_7;
19392 int reg_loop_ctx = BPF_REG_8;
19393
19394 struct bpf_prog *new_prog;
19395 u32 callback_start;
19396 u32 call_insn_offset;
19397 s32 callback_offset;
19398
19399 /* This represents an inlined version of bpf_iter.c:bpf_loop,
19400 * be careful to modify this code in sync.
19401 */
19402 struct bpf_insn insn_buf[] = {
19403 /* Return error and jump to the end of the patch if
19404 * expected number of iterations is too big.
19405 */
19406 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
19407 BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
19408 BPF_JMP_IMM(BPF_JA, 0, 0, 16),
19409 /* spill R6, R7, R8 to use these as loop vars */
19410 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
19411 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
19412 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
19413 /* initialize loop vars */
19414 BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
19415 BPF_MOV32_IMM(reg_loop_cnt, 0),
19416 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
19417 /* loop header,
19418 * if reg_loop_cnt >= reg_loop_max skip the loop body
19419 */
19420 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
19421 /* callback call,
19422 * correct callback offset would be set after patching
19423 */
19424 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
19425 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
19426 BPF_CALL_REL(0),
19427 /* increment loop counter */
19428 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
19429 /* jump to loop header if callback returned 0 */
19430 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
19431 /* return value of bpf_loop,
19432 * set R0 to the number of iterations
19433 */
19434 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
19435 /* restore original values of R6, R7, R8 */
19436 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
19437 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
19438 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
19439 };
19440
19441 *cnt = ARRAY_SIZE(insn_buf);
19442 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
19443 if (!new_prog)
19444 return new_prog;
19445
19446 /* callback start is known only after patching */
19447 callback_start = env->subprog_info[callback_subprogno].start;
19448 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
19449 call_insn_offset = position + 12;
19450 callback_offset = callback_start - call_insn_offset - 1;
19451 new_prog->insnsi[call_insn_offset].imm = callback_offset;
19452
19453 return new_prog;
19454 }
19455
is_bpf_loop_call(struct bpf_insn * insn)19456 static bool is_bpf_loop_call(struct bpf_insn *insn)
19457 {
19458 return insn->code == (BPF_JMP | BPF_CALL) &&
19459 insn->src_reg == 0 &&
19460 insn->imm == BPF_FUNC_loop;
19461 }
19462
19463 /* For all sub-programs in the program (including main) check
19464 * insn_aux_data to see if there are bpf_loop calls that require
19465 * inlining. If such calls are found the calls are replaced with a
19466 * sequence of instructions produced by `inline_bpf_loop` function and
19467 * subprog stack_depth is increased by the size of 3 registers.
19468 * This stack space is used to spill values of the R6, R7, R8. These
19469 * registers are used to store the loop bound, counter and context
19470 * variables.
19471 */
optimize_bpf_loop(struct bpf_verifier_env * env)19472 static int optimize_bpf_loop(struct bpf_verifier_env *env)
19473 {
19474 struct bpf_subprog_info *subprogs = env->subprog_info;
19475 int i, cur_subprog = 0, cnt, delta = 0;
19476 struct bpf_insn *insn = env->prog->insnsi;
19477 int insn_cnt = env->prog->len;
19478 u16 stack_depth = subprogs[cur_subprog].stack_depth;
19479 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19480 u16 stack_depth_extra = 0;
19481
19482 for (i = 0; i < insn_cnt; i++, insn++) {
19483 struct bpf_loop_inline_state *inline_state =
19484 &env->insn_aux_data[i + delta].loop_inline_state;
19485
19486 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
19487 struct bpf_prog *new_prog;
19488
19489 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
19490 new_prog = inline_bpf_loop(env,
19491 i + delta,
19492 -(stack_depth + stack_depth_extra),
19493 inline_state->callback_subprogno,
19494 &cnt);
19495 if (!new_prog)
19496 return -ENOMEM;
19497
19498 delta += cnt - 1;
19499 env->prog = new_prog;
19500 insn = new_prog->insnsi + i + delta;
19501 }
19502
19503 if (subprogs[cur_subprog + 1].start == i + delta + 1) {
19504 subprogs[cur_subprog].stack_depth += stack_depth_extra;
19505 cur_subprog++;
19506 stack_depth = subprogs[cur_subprog].stack_depth;
19507 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19508 stack_depth_extra = 0;
19509 }
19510 }
19511
19512 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19513
19514 return 0;
19515 }
19516
free_states(struct bpf_verifier_env * env)19517 static void free_states(struct bpf_verifier_env *env)
19518 {
19519 struct bpf_verifier_state_list *sl, *sln;
19520 int i;
19521
19522 sl = env->free_list;
19523 while (sl) {
19524 sln = sl->next;
19525 free_verifier_state(&sl->state, false);
19526 kfree(sl);
19527 sl = sln;
19528 }
19529 env->free_list = NULL;
19530
19531 if (!env->explored_states)
19532 return;
19533
19534 for (i = 0; i < state_htab_size(env); i++) {
19535 sl = env->explored_states[i];
19536
19537 while (sl) {
19538 sln = sl->next;
19539 free_verifier_state(&sl->state, false);
19540 kfree(sl);
19541 sl = sln;
19542 }
19543 env->explored_states[i] = NULL;
19544 }
19545 }
19546
do_check_common(struct bpf_verifier_env * env,int subprog)19547 static int do_check_common(struct bpf_verifier_env *env, int subprog)
19548 {
19549 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
19550 struct bpf_verifier_state *state;
19551 struct bpf_reg_state *regs;
19552 int ret, i;
19553
19554 env->prev_linfo = NULL;
19555 env->pass_cnt++;
19556
19557 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
19558 if (!state)
19559 return -ENOMEM;
19560 state->curframe = 0;
19561 state->speculative = false;
19562 state->branches = 1;
19563 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
19564 if (!state->frame[0]) {
19565 kfree(state);
19566 return -ENOMEM;
19567 }
19568 env->cur_state = state;
19569 init_func_state(env, state->frame[0],
19570 BPF_MAIN_FUNC /* callsite */,
19571 0 /* frameno */,
19572 subprog);
19573 state->first_insn_idx = env->subprog_info[subprog].start;
19574 state->last_insn_idx = -1;
19575
19576 regs = state->frame[state->curframe]->regs;
19577 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
19578 ret = btf_prepare_func_args(env, subprog, regs);
19579 if (ret)
19580 goto out;
19581 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
19582 if (regs[i].type == PTR_TO_CTX)
19583 mark_reg_known_zero(env, regs, i);
19584 else if (regs[i].type == SCALAR_VALUE)
19585 mark_reg_unknown(env, regs, i);
19586 else if (base_type(regs[i].type) == PTR_TO_MEM) {
19587 const u32 mem_size = regs[i].mem_size;
19588
19589 mark_reg_known_zero(env, regs, i);
19590 regs[i].mem_size = mem_size;
19591 regs[i].id = ++env->id_gen;
19592 }
19593 }
19594 } else {
19595 /* 1st arg to a function */
19596 regs[BPF_REG_1].type = PTR_TO_CTX;
19597 mark_reg_known_zero(env, regs, BPF_REG_1);
19598 ret = btf_check_subprog_arg_match(env, subprog, regs);
19599 if (ret == -EFAULT)
19600 /* unlikely verifier bug. abort.
19601 * ret == 0 and ret < 0 are sadly acceptable for
19602 * main() function due to backward compatibility.
19603 * Like socket filter program may be written as:
19604 * int bpf_prog(struct pt_regs *ctx)
19605 * and never dereference that ctx in the program.
19606 * 'struct pt_regs' is a type mismatch for socket
19607 * filter that should be using 'struct __sk_buff'.
19608 */
19609 goto out;
19610 }
19611
19612 ret = do_check(env);
19613 out:
19614 /* check for NULL is necessary, since cur_state can be freed inside
19615 * do_check() under memory pressure.
19616 */
19617 if (env->cur_state) {
19618 free_verifier_state(env->cur_state, true);
19619 env->cur_state = NULL;
19620 }
19621 while (!pop_stack(env, NULL, NULL, false));
19622 if (!ret && pop_log)
19623 bpf_vlog_reset(&env->log, 0);
19624 free_states(env);
19625 return ret;
19626 }
19627
19628 /* Verify all global functions in a BPF program one by one based on their BTF.
19629 * All global functions must pass verification. Otherwise the whole program is rejected.
19630 * Consider:
19631 * int bar(int);
19632 * int foo(int f)
19633 * {
19634 * return bar(f);
19635 * }
19636 * int bar(int b)
19637 * {
19638 * ...
19639 * }
19640 * foo() will be verified first for R1=any_scalar_value. During verification it
19641 * will be assumed that bar() already verified successfully and call to bar()
19642 * from foo() will be checked for type match only. Later bar() will be verified
19643 * independently to check that it's safe for R1=any_scalar_value.
19644 */
do_check_subprogs(struct bpf_verifier_env * env)19645 static int do_check_subprogs(struct bpf_verifier_env *env)
19646 {
19647 struct bpf_prog_aux *aux = env->prog->aux;
19648 int i, ret;
19649
19650 if (!aux->func_info)
19651 return 0;
19652
19653 for (i = 1; i < env->subprog_cnt; i++) {
19654 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
19655 continue;
19656 env->insn_idx = env->subprog_info[i].start;
19657 WARN_ON_ONCE(env->insn_idx == 0);
19658 ret = do_check_common(env, i);
19659 if (ret) {
19660 return ret;
19661 } else if (env->log.level & BPF_LOG_LEVEL) {
19662 verbose(env,
19663 "Func#%d is safe for any args that match its prototype\n",
19664 i);
19665 }
19666 }
19667 return 0;
19668 }
19669
do_check_main(struct bpf_verifier_env * env)19670 static int do_check_main(struct bpf_verifier_env *env)
19671 {
19672 int ret;
19673
19674 env->insn_idx = 0;
19675 ret = do_check_common(env, 0);
19676 if (!ret)
19677 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19678 return ret;
19679 }
19680
19681
print_verification_stats(struct bpf_verifier_env * env)19682 static void print_verification_stats(struct bpf_verifier_env *env)
19683 {
19684 int i;
19685
19686 if (env->log.level & BPF_LOG_STATS) {
19687 verbose(env, "verification time %lld usec\n",
19688 div_u64(env->verification_time, 1000));
19689 verbose(env, "stack depth ");
19690 for (i = 0; i < env->subprog_cnt; i++) {
19691 u32 depth = env->subprog_info[i].stack_depth;
19692
19693 verbose(env, "%d", depth);
19694 if (i + 1 < env->subprog_cnt)
19695 verbose(env, "+");
19696 }
19697 verbose(env, "\n");
19698 }
19699 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
19700 "total_states %d peak_states %d mark_read %d\n",
19701 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
19702 env->max_states_per_insn, env->total_states,
19703 env->peak_states, env->longest_mark_read_walk);
19704 }
19705
check_struct_ops_btf_id(struct bpf_verifier_env * env)19706 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
19707 {
19708 const struct btf_type *t, *func_proto;
19709 const struct bpf_struct_ops *st_ops;
19710 const struct btf_member *member;
19711 struct bpf_prog *prog = env->prog;
19712 u32 btf_id, member_idx;
19713 const char *mname;
19714
19715 if (!prog->gpl_compatible) {
19716 verbose(env, "struct ops programs must have a GPL compatible license\n");
19717 return -EINVAL;
19718 }
19719
19720 btf_id = prog->aux->attach_btf_id;
19721 st_ops = bpf_struct_ops_find(btf_id);
19722 if (!st_ops) {
19723 verbose(env, "attach_btf_id %u is not a supported struct\n",
19724 btf_id);
19725 return -ENOTSUPP;
19726 }
19727
19728 t = st_ops->type;
19729 member_idx = prog->expected_attach_type;
19730 if (member_idx >= btf_type_vlen(t)) {
19731 verbose(env, "attach to invalid member idx %u of struct %s\n",
19732 member_idx, st_ops->name);
19733 return -EINVAL;
19734 }
19735
19736 member = &btf_type_member(t)[member_idx];
19737 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
19738 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
19739 NULL);
19740 if (!func_proto) {
19741 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
19742 mname, member_idx, st_ops->name);
19743 return -EINVAL;
19744 }
19745
19746 if (st_ops->check_member) {
19747 int err = st_ops->check_member(t, member, prog);
19748
19749 if (err) {
19750 verbose(env, "attach to unsupported member %s of struct %s\n",
19751 mname, st_ops->name);
19752 return err;
19753 }
19754 }
19755
19756 prog->aux->attach_func_proto = func_proto;
19757 prog->aux->attach_func_name = mname;
19758 env->ops = st_ops->verifier_ops;
19759
19760 return 0;
19761 }
19762 #define SECURITY_PREFIX "security_"
19763
check_attach_modify_return(unsigned long addr,const char * func_name)19764 static int check_attach_modify_return(unsigned long addr, const char *func_name)
19765 {
19766 if (within_error_injection_list(addr) ||
19767 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
19768 return 0;
19769
19770 return -EINVAL;
19771 }
19772
19773 /* list of non-sleepable functions that are otherwise on
19774 * ALLOW_ERROR_INJECTION list
19775 */
19776 BTF_SET_START(btf_non_sleepable_error_inject)
19777 /* Three functions below can be called from sleepable and non-sleepable context.
19778 * Assume non-sleepable from bpf safety point of view.
19779 */
BTF_ID(func,__filemap_add_folio)19780 BTF_ID(func, __filemap_add_folio)
19781 BTF_ID(func, should_fail_alloc_page)
19782 BTF_ID(func, should_failslab)
19783 BTF_SET_END(btf_non_sleepable_error_inject)
19784
19785 static int check_non_sleepable_error_inject(u32 btf_id)
19786 {
19787 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
19788 }
19789
bpf_check_attach_target(struct bpf_verifier_log * log,const struct bpf_prog * prog,const struct bpf_prog * tgt_prog,u32 btf_id,struct bpf_attach_target_info * tgt_info)19790 int bpf_check_attach_target(struct bpf_verifier_log *log,
19791 const struct bpf_prog *prog,
19792 const struct bpf_prog *tgt_prog,
19793 u32 btf_id,
19794 struct bpf_attach_target_info *tgt_info)
19795 {
19796 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
19797 const char prefix[] = "btf_trace_";
19798 int ret = 0, subprog = -1, i;
19799 const struct btf_type *t;
19800 bool conservative = true;
19801 const char *tname;
19802 struct btf *btf;
19803 long addr = 0;
19804 struct module *mod = NULL;
19805
19806 if (!btf_id) {
19807 bpf_log(log, "Tracing programs must provide btf_id\n");
19808 return -EINVAL;
19809 }
19810 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
19811 if (!btf) {
19812 bpf_log(log,
19813 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
19814 return -EINVAL;
19815 }
19816 t = btf_type_by_id(btf, btf_id);
19817 if (!t) {
19818 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
19819 return -EINVAL;
19820 }
19821 tname = btf_name_by_offset(btf, t->name_off);
19822 if (!tname) {
19823 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
19824 return -EINVAL;
19825 }
19826 if (tgt_prog) {
19827 struct bpf_prog_aux *aux = tgt_prog->aux;
19828
19829 if (bpf_prog_is_dev_bound(prog->aux) &&
19830 !bpf_prog_dev_bound_match(prog, tgt_prog)) {
19831 bpf_log(log, "Target program bound device mismatch");
19832 return -EINVAL;
19833 }
19834
19835 for (i = 0; i < aux->func_info_cnt; i++)
19836 if (aux->func_info[i].type_id == btf_id) {
19837 subprog = i;
19838 break;
19839 }
19840 if (subprog == -1) {
19841 bpf_log(log, "Subprog %s doesn't exist\n", tname);
19842 return -EINVAL;
19843 }
19844 conservative = aux->func_info_aux[subprog].unreliable;
19845 if (prog_extension) {
19846 if (conservative) {
19847 bpf_log(log,
19848 "Cannot replace static functions\n");
19849 return -EINVAL;
19850 }
19851 if (!prog->jit_requested) {
19852 bpf_log(log,
19853 "Extension programs should be JITed\n");
19854 return -EINVAL;
19855 }
19856 }
19857 if (!tgt_prog->jited) {
19858 bpf_log(log, "Can attach to only JITed progs\n");
19859 return -EINVAL;
19860 }
19861 if (tgt_prog->type == prog->type) {
19862 /* Cannot fentry/fexit another fentry/fexit program.
19863 * Cannot attach program extension to another extension.
19864 * It's ok to attach fentry/fexit to extension program.
19865 */
19866 bpf_log(log, "Cannot recursively attach\n");
19867 return -EINVAL;
19868 }
19869 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
19870 prog_extension &&
19871 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
19872 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
19873 /* Program extensions can extend all program types
19874 * except fentry/fexit. The reason is the following.
19875 * The fentry/fexit programs are used for performance
19876 * analysis, stats and can be attached to any program
19877 * type except themselves. When extension program is
19878 * replacing XDP function it is necessary to allow
19879 * performance analysis of all functions. Both original
19880 * XDP program and its program extension. Hence
19881 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
19882 * allowed. If extending of fentry/fexit was allowed it
19883 * would be possible to create long call chain
19884 * fentry->extension->fentry->extension beyond
19885 * reasonable stack size. Hence extending fentry is not
19886 * allowed.
19887 */
19888 bpf_log(log, "Cannot extend fentry/fexit\n");
19889 return -EINVAL;
19890 }
19891 } else {
19892 if (prog_extension) {
19893 bpf_log(log, "Cannot replace kernel functions\n");
19894 return -EINVAL;
19895 }
19896 }
19897
19898 switch (prog->expected_attach_type) {
19899 case BPF_TRACE_RAW_TP:
19900 if (tgt_prog) {
19901 bpf_log(log,
19902 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
19903 return -EINVAL;
19904 }
19905 if (!btf_type_is_typedef(t)) {
19906 bpf_log(log, "attach_btf_id %u is not a typedef\n",
19907 btf_id);
19908 return -EINVAL;
19909 }
19910 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
19911 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
19912 btf_id, tname);
19913 return -EINVAL;
19914 }
19915 tname += sizeof(prefix) - 1;
19916 t = btf_type_by_id(btf, t->type);
19917 if (!btf_type_is_ptr(t))
19918 /* should never happen in valid vmlinux build */
19919 return -EINVAL;
19920 t = btf_type_by_id(btf, t->type);
19921 if (!btf_type_is_func_proto(t))
19922 /* should never happen in valid vmlinux build */
19923 return -EINVAL;
19924
19925 break;
19926 case BPF_TRACE_ITER:
19927 if (!btf_type_is_func(t)) {
19928 bpf_log(log, "attach_btf_id %u is not a function\n",
19929 btf_id);
19930 return -EINVAL;
19931 }
19932 t = btf_type_by_id(btf, t->type);
19933 if (!btf_type_is_func_proto(t))
19934 return -EINVAL;
19935 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
19936 if (ret)
19937 return ret;
19938 break;
19939 default:
19940 if (!prog_extension)
19941 return -EINVAL;
19942 fallthrough;
19943 case BPF_MODIFY_RETURN:
19944 case BPF_LSM_MAC:
19945 case BPF_LSM_CGROUP:
19946 case BPF_TRACE_FENTRY:
19947 case BPF_TRACE_FEXIT:
19948 if (!btf_type_is_func(t)) {
19949 bpf_log(log, "attach_btf_id %u is not a function\n",
19950 btf_id);
19951 return -EINVAL;
19952 }
19953 if (prog_extension &&
19954 btf_check_type_match(log, prog, btf, t))
19955 return -EINVAL;
19956 t = btf_type_by_id(btf, t->type);
19957 if (!btf_type_is_func_proto(t))
19958 return -EINVAL;
19959
19960 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
19961 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
19962 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
19963 return -EINVAL;
19964
19965 if (tgt_prog && conservative)
19966 t = NULL;
19967
19968 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
19969 if (ret < 0)
19970 return ret;
19971
19972 if (tgt_prog) {
19973 if (subprog == 0)
19974 addr = (long) tgt_prog->bpf_func;
19975 else
19976 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
19977 } else {
19978 if (btf_is_module(btf)) {
19979 mod = btf_try_get_module(btf);
19980 if (mod)
19981 addr = find_kallsyms_symbol_value(mod, tname);
19982 else
19983 addr = 0;
19984 } else {
19985 addr = kallsyms_lookup_name(tname);
19986 }
19987 if (!addr) {
19988 module_put(mod);
19989 bpf_log(log,
19990 "The address of function %s cannot be found\n",
19991 tname);
19992 return -ENOENT;
19993 }
19994 }
19995
19996 if (prog->aux->sleepable) {
19997 ret = -EINVAL;
19998 switch (prog->type) {
19999 case BPF_PROG_TYPE_TRACING:
20000
20001 /* fentry/fexit/fmod_ret progs can be sleepable if they are
20002 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
20003 */
20004 if (!check_non_sleepable_error_inject(btf_id) &&
20005 within_error_injection_list(addr))
20006 ret = 0;
20007 /* fentry/fexit/fmod_ret progs can also be sleepable if they are
20008 * in the fmodret id set with the KF_SLEEPABLE flag.
20009 */
20010 else {
20011 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
20012 prog);
20013
20014 if (flags && (*flags & KF_SLEEPABLE))
20015 ret = 0;
20016 }
20017 break;
20018 case BPF_PROG_TYPE_LSM:
20019 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
20020 * Only some of them are sleepable.
20021 */
20022 if (bpf_lsm_is_sleepable_hook(btf_id))
20023 ret = 0;
20024 break;
20025 default:
20026 break;
20027 }
20028 if (ret) {
20029 module_put(mod);
20030 bpf_log(log, "%s is not sleepable\n", tname);
20031 return ret;
20032 }
20033 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
20034 if (tgt_prog) {
20035 module_put(mod);
20036 bpf_log(log, "can't modify return codes of BPF programs\n");
20037 return -EINVAL;
20038 }
20039 ret = -EINVAL;
20040 if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
20041 !check_attach_modify_return(addr, tname))
20042 ret = 0;
20043 if (ret) {
20044 module_put(mod);
20045 bpf_log(log, "%s() is not modifiable\n", tname);
20046 return ret;
20047 }
20048 }
20049
20050 break;
20051 }
20052 tgt_info->tgt_addr = addr;
20053 tgt_info->tgt_name = tname;
20054 tgt_info->tgt_type = t;
20055 tgt_info->tgt_mod = mod;
20056 return 0;
20057 }
20058
BTF_SET_START(btf_id_deny)20059 BTF_SET_START(btf_id_deny)
20060 BTF_ID_UNUSED
20061 #ifdef CONFIG_SMP
20062 BTF_ID(func, migrate_disable)
20063 BTF_ID(func, migrate_enable)
20064 #endif
20065 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
20066 BTF_ID(func, rcu_read_unlock_strict)
20067 #endif
20068 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
20069 BTF_ID(func, preempt_count_add)
20070 BTF_ID(func, preempt_count_sub)
20071 #endif
20072 #ifdef CONFIG_PREEMPT_RCU
20073 BTF_ID(func, __rcu_read_lock)
20074 BTF_ID(func, __rcu_read_unlock)
20075 #endif
20076 BTF_SET_END(btf_id_deny)
20077
20078 static bool can_be_sleepable(struct bpf_prog *prog)
20079 {
20080 if (prog->type == BPF_PROG_TYPE_TRACING) {
20081 switch (prog->expected_attach_type) {
20082 case BPF_TRACE_FENTRY:
20083 case BPF_TRACE_FEXIT:
20084 case BPF_MODIFY_RETURN:
20085 case BPF_TRACE_ITER:
20086 return true;
20087 default:
20088 return false;
20089 }
20090 }
20091 return prog->type == BPF_PROG_TYPE_LSM ||
20092 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
20093 prog->type == BPF_PROG_TYPE_STRUCT_OPS;
20094 }
20095
check_attach_btf_id(struct bpf_verifier_env * env)20096 static int check_attach_btf_id(struct bpf_verifier_env *env)
20097 {
20098 struct bpf_prog *prog = env->prog;
20099 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
20100 struct bpf_attach_target_info tgt_info = {};
20101 u32 btf_id = prog->aux->attach_btf_id;
20102 struct bpf_trampoline *tr;
20103 int ret;
20104 u64 key;
20105
20106 if (prog->type == BPF_PROG_TYPE_SYSCALL) {
20107 if (prog->aux->sleepable)
20108 /* attach_btf_id checked to be zero already */
20109 return 0;
20110 verbose(env, "Syscall programs can only be sleepable\n");
20111 return -EINVAL;
20112 }
20113
20114 if (prog->aux->sleepable && !can_be_sleepable(prog)) {
20115 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
20116 return -EINVAL;
20117 }
20118
20119 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
20120 return check_struct_ops_btf_id(env);
20121
20122 if (prog->type != BPF_PROG_TYPE_TRACING &&
20123 prog->type != BPF_PROG_TYPE_LSM &&
20124 prog->type != BPF_PROG_TYPE_EXT)
20125 return 0;
20126
20127 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
20128 if (ret)
20129 return ret;
20130
20131 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
20132 /* to make freplace equivalent to their targets, they need to
20133 * inherit env->ops and expected_attach_type for the rest of the
20134 * verification
20135 */
20136 env->ops = bpf_verifier_ops[tgt_prog->type];
20137 prog->expected_attach_type = tgt_prog->expected_attach_type;
20138 }
20139
20140 /* store info about the attachment target that will be used later */
20141 prog->aux->attach_func_proto = tgt_info.tgt_type;
20142 prog->aux->attach_func_name = tgt_info.tgt_name;
20143 prog->aux->mod = tgt_info.tgt_mod;
20144
20145 if (tgt_prog) {
20146 prog->aux->saved_dst_prog_type = tgt_prog->type;
20147 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
20148 }
20149
20150 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
20151 prog->aux->attach_btf_trace = true;
20152 return 0;
20153 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
20154 if (!bpf_iter_prog_supported(prog))
20155 return -EINVAL;
20156 return 0;
20157 }
20158
20159 if (prog->type == BPF_PROG_TYPE_LSM) {
20160 ret = bpf_lsm_verify_prog(&env->log, prog);
20161 if (ret < 0)
20162 return ret;
20163 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
20164 btf_id_set_contains(&btf_id_deny, btf_id)) {
20165 return -EINVAL;
20166 }
20167
20168 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
20169 tr = bpf_trampoline_get(key, &tgt_info);
20170 if (!tr)
20171 return -ENOMEM;
20172
20173 if (tgt_prog && tgt_prog->aux->tail_call_reachable)
20174 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
20175
20176 prog->aux->dst_trampoline = tr;
20177 return 0;
20178 }
20179
bpf_get_btf_vmlinux(void)20180 struct btf *bpf_get_btf_vmlinux(void)
20181 {
20182 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
20183 mutex_lock(&bpf_verifier_lock);
20184 if (!btf_vmlinux)
20185 btf_vmlinux = btf_parse_vmlinux();
20186 mutex_unlock(&bpf_verifier_lock);
20187 }
20188 return btf_vmlinux;
20189 }
20190
bpf_check(struct bpf_prog ** prog,union bpf_attr * attr,bpfptr_t uattr,__u32 uattr_size)20191 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
20192 {
20193 u64 start_time = ktime_get_ns();
20194 struct bpf_verifier_env *env;
20195 int i, len, ret = -EINVAL, err;
20196 u32 log_true_size;
20197 bool is_priv;
20198
20199 /* no program is valid */
20200 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
20201 return -EINVAL;
20202
20203 /* 'struct bpf_verifier_env' can be global, but since it's not small,
20204 * allocate/free it every time bpf_check() is called
20205 */
20206 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
20207 if (!env)
20208 return -ENOMEM;
20209
20210 env->bt.env = env;
20211
20212 len = (*prog)->len;
20213 env->insn_aux_data =
20214 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
20215 ret = -ENOMEM;
20216 if (!env->insn_aux_data)
20217 goto err_free_env;
20218 for (i = 0; i < len; i++)
20219 env->insn_aux_data[i].orig_idx = i;
20220 env->prog = *prog;
20221 env->ops = bpf_verifier_ops[env->prog->type];
20222 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
20223 is_priv = bpf_capable();
20224
20225 bpf_get_btf_vmlinux();
20226
20227 /* grab the mutex to protect few globals used by verifier */
20228 if (!is_priv)
20229 mutex_lock(&bpf_verifier_lock);
20230
20231 /* user could have requested verbose verifier output
20232 * and supplied buffer to store the verification trace
20233 */
20234 ret = bpf_vlog_init(&env->log, attr->log_level,
20235 (char __user *) (unsigned long) attr->log_buf,
20236 attr->log_size);
20237 if (ret)
20238 goto err_unlock;
20239
20240 mark_verifier_state_clean(env);
20241
20242 if (IS_ERR(btf_vmlinux)) {
20243 /* Either gcc or pahole or kernel are broken. */
20244 verbose(env, "in-kernel BTF is malformed\n");
20245 ret = PTR_ERR(btf_vmlinux);
20246 goto skip_full_check;
20247 }
20248
20249 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
20250 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
20251 env->strict_alignment = true;
20252 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
20253 env->strict_alignment = false;
20254
20255 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
20256 env->allow_uninit_stack = bpf_allow_uninit_stack();
20257 env->bypass_spec_v1 = bpf_bypass_spec_v1();
20258 env->bypass_spec_v4 = bpf_bypass_spec_v4();
20259 env->bpf_capable = bpf_capable();
20260
20261 if (is_priv)
20262 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
20263
20264 env->explored_states = kvcalloc(state_htab_size(env),
20265 sizeof(struct bpf_verifier_state_list *),
20266 GFP_USER);
20267 ret = -ENOMEM;
20268 if (!env->explored_states)
20269 goto skip_full_check;
20270
20271 ret = add_subprog_and_kfunc(env);
20272 if (ret < 0)
20273 goto skip_full_check;
20274
20275 ret = check_subprogs(env);
20276 if (ret < 0)
20277 goto skip_full_check;
20278
20279 ret = check_btf_info(env, attr, uattr);
20280 if (ret < 0)
20281 goto skip_full_check;
20282
20283 ret = check_attach_btf_id(env);
20284 if (ret)
20285 goto skip_full_check;
20286
20287 ret = resolve_pseudo_ldimm64(env);
20288 if (ret < 0)
20289 goto skip_full_check;
20290
20291 if (bpf_prog_is_offloaded(env->prog->aux)) {
20292 ret = bpf_prog_offload_verifier_prep(env->prog);
20293 if (ret)
20294 goto skip_full_check;
20295 }
20296
20297 ret = check_cfg(env);
20298 if (ret < 0)
20299 goto skip_full_check;
20300
20301 ret = do_check_subprogs(env);
20302 ret = ret ?: do_check_main(env);
20303
20304 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
20305 ret = bpf_prog_offload_finalize(env);
20306
20307 skip_full_check:
20308 kvfree(env->explored_states);
20309
20310 if (ret == 0)
20311 ret = check_max_stack_depth(env);
20312
20313 /* instruction rewrites happen after this point */
20314 if (ret == 0)
20315 ret = optimize_bpf_loop(env);
20316
20317 if (is_priv) {
20318 if (ret == 0)
20319 opt_hard_wire_dead_code_branches(env);
20320 if (ret == 0)
20321 ret = opt_remove_dead_code(env);
20322 if (ret == 0)
20323 ret = opt_remove_nops(env);
20324 } else {
20325 if (ret == 0)
20326 sanitize_dead_code(env);
20327 }
20328
20329 if (ret == 0)
20330 /* program is valid, convert *(u32*)(ctx + off) accesses */
20331 ret = convert_ctx_accesses(env);
20332
20333 if (ret == 0)
20334 ret = do_misc_fixups(env);
20335
20336 /* do 32-bit optimization after insn patching has done so those patched
20337 * insns could be handled correctly.
20338 */
20339 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
20340 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
20341 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
20342 : false;
20343 }
20344
20345 if (ret == 0)
20346 ret = fixup_call_args(env);
20347
20348 env->verification_time = ktime_get_ns() - start_time;
20349 print_verification_stats(env);
20350 env->prog->aux->verified_insns = env->insn_processed;
20351
20352 /* preserve original error even if log finalization is successful */
20353 err = bpf_vlog_finalize(&env->log, &log_true_size);
20354 if (err)
20355 ret = err;
20356
20357 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
20358 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
20359 &log_true_size, sizeof(log_true_size))) {
20360 ret = -EFAULT;
20361 goto err_release_maps;
20362 }
20363
20364 if (ret)
20365 goto err_release_maps;
20366
20367 if (env->used_map_cnt) {
20368 /* if program passed verifier, update used_maps in bpf_prog_info */
20369 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
20370 sizeof(env->used_maps[0]),
20371 GFP_KERNEL);
20372
20373 if (!env->prog->aux->used_maps) {
20374 ret = -ENOMEM;
20375 goto err_release_maps;
20376 }
20377
20378 memcpy(env->prog->aux->used_maps, env->used_maps,
20379 sizeof(env->used_maps[0]) * env->used_map_cnt);
20380 env->prog->aux->used_map_cnt = env->used_map_cnt;
20381 }
20382 if (env->used_btf_cnt) {
20383 /* if program passed verifier, update used_btfs in bpf_prog_aux */
20384 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
20385 sizeof(env->used_btfs[0]),
20386 GFP_KERNEL);
20387 if (!env->prog->aux->used_btfs) {
20388 ret = -ENOMEM;
20389 goto err_release_maps;
20390 }
20391
20392 memcpy(env->prog->aux->used_btfs, env->used_btfs,
20393 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
20394 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
20395 }
20396 if (env->used_map_cnt || env->used_btf_cnt) {
20397 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
20398 * bpf_ld_imm64 instructions
20399 */
20400 convert_pseudo_ld_imm64(env);
20401 }
20402
20403 adjust_btf_func(env);
20404
20405 err_release_maps:
20406 if (!env->prog->aux->used_maps)
20407 /* if we didn't copy map pointers into bpf_prog_info, release
20408 * them now. Otherwise free_used_maps() will release them.
20409 */
20410 release_maps(env);
20411 if (!env->prog->aux->used_btfs)
20412 release_btfs(env);
20413
20414 /* extension progs temporarily inherit the attach_type of their targets
20415 for verification purposes, so set it back to zero before returning
20416 */
20417 if (env->prog->type == BPF_PROG_TYPE_EXT)
20418 env->prog->expected_attach_type = 0;
20419
20420 *prog = env->prog;
20421 err_unlock:
20422 if (!is_priv)
20423 mutex_unlock(&bpf_verifier_lock);
20424 vfree(env->insn_aux_data);
20425 err_free_env:
20426 kfree(env);
20427 return ret;
20428 }
20429