• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later
2  *
3  * Copyright (C) 2005 David Brownell
4  */
5 
6 #ifndef __LINUX_SPI_H
7 #define __LINUX_SPI_H
8 
9 #include <linux/device.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/slab.h>
12 #include <linux/kthread.h>
13 #include <linux/completion.h>
14 #include <linux/scatterlist.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/ptp_clock_kernel.h>
17 
18 struct dma_chan;
19 struct property_entry;
20 struct spi_controller;
21 struct spi_transfer;
22 struct spi_controller_mem_ops;
23 
24 /*
25  * INTERFACES between SPI master-side drivers and SPI slave protocol handlers,
26  * and SPI infrastructure.
27  */
28 extern struct bus_type spi_bus_type;
29 
30 /**
31  * struct spi_statistics - statistics for spi transfers
32  * @lock:          lock protecting this structure
33  *
34  * @messages:      number of spi-messages handled
35  * @transfers:     number of spi_transfers handled
36  * @errors:        number of errors during spi_transfer
37  * @timedout:      number of timeouts during spi_transfer
38  *
39  * @spi_sync:      number of times spi_sync is used
40  * @spi_sync_immediate:
41  *                 number of times spi_sync is executed immediately
42  *                 in calling context without queuing and scheduling
43  * @spi_async:     number of times spi_async is used
44  *
45  * @bytes:         number of bytes transferred to/from device
46  * @bytes_tx:      number of bytes sent to device
47  * @bytes_rx:      number of bytes received from device
48  *
49  * @transfer_bytes_histo:
50  *                 transfer bytes histogramm
51  *
52  * @transfers_split_maxsize:
53  *                 number of transfers that have been split because of
54  *                 maxsize limit
55  */
56 struct spi_statistics {
57 	spinlock_t		lock; /* lock for the whole structure */
58 
59 	unsigned long		messages;
60 	unsigned long		transfers;
61 	unsigned long		errors;
62 	unsigned long		timedout;
63 
64 	unsigned long		spi_sync;
65 	unsigned long		spi_sync_immediate;
66 	unsigned long		spi_async;
67 
68 	unsigned long long	bytes;
69 	unsigned long long	bytes_rx;
70 	unsigned long long	bytes_tx;
71 
72 #define SPI_STATISTICS_HISTO_SIZE 17
73 	unsigned long transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE];
74 
75 	unsigned long transfers_split_maxsize;
76 };
77 
78 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
79 				       struct spi_transfer *xfer,
80 				       struct spi_controller *ctlr);
81 
82 #define SPI_STATISTICS_ADD_TO_FIELD(stats, field, count)	\
83 	do {							\
84 		unsigned long flags;				\
85 		spin_lock_irqsave(&(stats)->lock, flags);	\
86 		(stats)->field += count;			\
87 		spin_unlock_irqrestore(&(stats)->lock, flags);	\
88 	} while (0)
89 
90 #define SPI_STATISTICS_INCREMENT_FIELD(stats, field)	\
91 	SPI_STATISTICS_ADD_TO_FIELD(stats, field, 1)
92 
93 /**
94  * struct spi_delay - SPI delay information
95  * @value: Value for the delay
96  * @unit: Unit for the delay
97  */
98 struct spi_delay {
99 #define SPI_DELAY_UNIT_USECS	0
100 #define SPI_DELAY_UNIT_NSECS	1
101 #define SPI_DELAY_UNIT_SCK	2
102 	u16	value;
103 	u8	unit;
104 };
105 
106 extern int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer);
107 extern int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer);
108 
109 /**
110  * struct spi_device - Controller side proxy for an SPI slave device
111  * @dev: Driver model representation of the device.
112  * @controller: SPI controller used with the device.
113  * @master: Copy of controller, for backwards compatibility.
114  * @max_speed_hz: Maximum clock rate to be used with this chip
115  *	(on this board); may be changed by the device's driver.
116  *	The spi_transfer.speed_hz can override this for each transfer.
117  * @chip_select: Chipselect, distinguishing chips handled by @controller.
118  * @mode: The spi mode defines how data is clocked out and in.
119  *	This may be changed by the device's driver.
120  *	The "active low" default for chipselect mode can be overridden
121  *	(by specifying SPI_CS_HIGH) as can the "MSB first" default for
122  *	each word in a transfer (by specifying SPI_LSB_FIRST).
123  * @bits_per_word: Data transfers involve one or more words; word sizes
124  *	like eight or 12 bits are common.  In-memory wordsizes are
125  *	powers of two bytes (e.g. 20 bit samples use 32 bits).
126  *	This may be changed by the device's driver, or left at the
127  *	default (0) indicating protocol words are eight bit bytes.
128  *	The spi_transfer.bits_per_word can override this for each transfer.
129  * @rt: Make the pump thread real time priority.
130  * @irq: Negative, or the number passed to request_irq() to receive
131  *	interrupts from this device.
132  * @controller_state: Controller's runtime state
133  * @controller_data: Board-specific definitions for controller, such as
134  *	FIFO initialization parameters; from board_info.controller_data
135  * @modalias: Name of the driver to use with this device, or an alias
136  *	for that name.  This appears in the sysfs "modalias" attribute
137  *	for driver coldplugging, and in uevents used for hotplugging
138  * @driver_override: If the name of a driver is written to this attribute, then
139  *	the device will bind to the named driver and only the named driver.
140  * @cs_gpio: LEGACY: gpio number of the chipselect line (optional, -ENOENT when
141  *	not using a GPIO line) use cs_gpiod in new drivers by opting in on
142  *	the spi_master.
143  * @cs_gpiod: gpio descriptor of the chipselect line (optional, NULL when
144  *	not using a GPIO line)
145  * @word_delay: delay to be inserted between consecutive
146  *	words of a transfer
147  *
148  * @statistics: statistics for the spi_device
149  *
150  * A @spi_device is used to interchange data between an SPI slave
151  * (usually a discrete chip) and CPU memory.
152  *
153  * In @dev, the platform_data is used to hold information about this
154  * device that's meaningful to the device's protocol driver, but not
155  * to its controller.  One example might be an identifier for a chip
156  * variant with slightly different functionality; another might be
157  * information about how this particular board wires the chip's pins.
158  */
159 struct spi_device {
160 	struct device		dev;
161 	struct spi_controller	*controller;
162 	struct spi_controller	*master;	/* compatibility layer */
163 	u32			max_speed_hz;
164 	u8			chip_select;
165 	u8			bits_per_word;
166 	bool			rt;
167 	u32			mode;
168 #define	SPI_CPHA	0x01			/* clock phase */
169 #define	SPI_CPOL	0x02			/* clock polarity */
170 #define	SPI_MODE_0	(0|0)			/* (original MicroWire) */
171 #define	SPI_MODE_1	(0|SPI_CPHA)
172 #define	SPI_MODE_2	(SPI_CPOL|0)
173 #define	SPI_MODE_3	(SPI_CPOL|SPI_CPHA)
174 #define	SPI_CS_HIGH	0x04			/* chipselect active high? */
175 #define	SPI_LSB_FIRST	0x08			/* per-word bits-on-wire */
176 #define	SPI_3WIRE	0x10			/* SI/SO signals shared */
177 #define	SPI_LOOP	0x20			/* loopback mode */
178 #define	SPI_NO_CS	0x40			/* 1 dev/bus, no chipselect */
179 #define	SPI_READY	0x80			/* slave pulls low to pause */
180 #define	SPI_TX_DUAL	0x100			/* transmit with 2 wires */
181 #define	SPI_TX_QUAD	0x200			/* transmit with 4 wires */
182 #define	SPI_RX_DUAL	0x400			/* receive with 2 wires */
183 #define	SPI_RX_QUAD	0x800			/* receive with 4 wires */
184 #define	SPI_CS_WORD	0x1000			/* toggle cs after each word */
185 #define	SPI_TX_OCTAL	0x2000			/* transmit with 8 wires */
186 #define	SPI_RX_OCTAL	0x4000			/* receive with 8 wires */
187 #define	SPI_3WIRE_HIZ	0x8000			/* high impedance turnaround */
188 	int			irq;
189 	void			*controller_state;
190 	void			*controller_data;
191 	char			modalias[SPI_NAME_SIZE];
192 	const char		*driver_override;
193 	int			cs_gpio;	/* LEGACY: chip select gpio */
194 	struct gpio_desc	*cs_gpiod;	/* chip select gpio desc */
195 	struct spi_delay	word_delay; /* inter-word delay */
196 
197 	/* the statistics */
198 	struct spi_statistics	statistics;
199 
200 	/*
201 	 * likely need more hooks for more protocol options affecting how
202 	 * the controller talks to each chip, like:
203 	 *  - memory packing (12 bit samples into low bits, others zeroed)
204 	 *  - priority
205 	 *  - chipselect delays
206 	 *  - ...
207 	 */
208 };
209 
to_spi_device(struct device * dev)210 static inline struct spi_device *to_spi_device(struct device *dev)
211 {
212 	return dev ? container_of(dev, struct spi_device, dev) : NULL;
213 }
214 
215 /* most drivers won't need to care about device refcounting */
spi_dev_get(struct spi_device * spi)216 static inline struct spi_device *spi_dev_get(struct spi_device *spi)
217 {
218 	return (spi && get_device(&spi->dev)) ? spi : NULL;
219 }
220 
spi_dev_put(struct spi_device * spi)221 static inline void spi_dev_put(struct spi_device *spi)
222 {
223 	if (spi)
224 		put_device(&spi->dev);
225 }
226 
227 /* ctldata is for the bus_controller driver's runtime state */
spi_get_ctldata(struct spi_device * spi)228 static inline void *spi_get_ctldata(struct spi_device *spi)
229 {
230 	return spi->controller_state;
231 }
232 
spi_set_ctldata(struct spi_device * spi,void * state)233 static inline void spi_set_ctldata(struct spi_device *spi, void *state)
234 {
235 	spi->controller_state = state;
236 }
237 
238 /* device driver data */
239 
spi_set_drvdata(struct spi_device * spi,void * data)240 static inline void spi_set_drvdata(struct spi_device *spi, void *data)
241 {
242 	dev_set_drvdata(&spi->dev, data);
243 }
244 
spi_get_drvdata(struct spi_device * spi)245 static inline void *spi_get_drvdata(struct spi_device *spi)
246 {
247 	return dev_get_drvdata(&spi->dev);
248 }
249 
250 struct spi_message;
251 struct spi_transfer;
252 
253 /**
254  * struct spi_driver - Host side "protocol" driver
255  * @id_table: List of SPI devices supported by this driver
256  * @probe: Binds this driver to the spi device.  Drivers can verify
257  *	that the device is actually present, and may need to configure
258  *	characteristics (such as bits_per_word) which weren't needed for
259  *	the initial configuration done during system setup.
260  * @remove: Unbinds this driver from the spi device
261  * @shutdown: Standard shutdown callback used during system state
262  *	transitions such as powerdown/halt and kexec
263  * @driver: SPI device drivers should initialize the name and owner
264  *	field of this structure.
265  *
266  * This represents the kind of device driver that uses SPI messages to
267  * interact with the hardware at the other end of a SPI link.  It's called
268  * a "protocol" driver because it works through messages rather than talking
269  * directly to SPI hardware (which is what the underlying SPI controller
270  * driver does to pass those messages).  These protocols are defined in the
271  * specification for the device(s) supported by the driver.
272  *
273  * As a rule, those device protocols represent the lowest level interface
274  * supported by a driver, and it will support upper level interfaces too.
275  * Examples of such upper levels include frameworks like MTD, networking,
276  * MMC, RTC, filesystem character device nodes, and hardware monitoring.
277  */
278 struct spi_driver {
279 	const struct spi_device_id *id_table;
280 	int			(*probe)(struct spi_device *spi);
281 	int			(*remove)(struct spi_device *spi);
282 	void			(*shutdown)(struct spi_device *spi);
283 	struct device_driver	driver;
284 };
285 
to_spi_driver(struct device_driver * drv)286 static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
287 {
288 	return drv ? container_of(drv, struct spi_driver, driver) : NULL;
289 }
290 
291 extern int __spi_register_driver(struct module *owner, struct spi_driver *sdrv);
292 
293 /**
294  * spi_unregister_driver - reverse effect of spi_register_driver
295  * @sdrv: the driver to unregister
296  * Context: can sleep
297  */
spi_unregister_driver(struct spi_driver * sdrv)298 static inline void spi_unregister_driver(struct spi_driver *sdrv)
299 {
300 	if (sdrv)
301 		driver_unregister(&sdrv->driver);
302 }
303 
304 /* use a define to avoid include chaining to get THIS_MODULE */
305 #define spi_register_driver(driver) \
306 	__spi_register_driver(THIS_MODULE, driver)
307 
308 /**
309  * module_spi_driver() - Helper macro for registering a SPI driver
310  * @__spi_driver: spi_driver struct
311  *
312  * Helper macro for SPI drivers which do not do anything special in module
313  * init/exit. This eliminates a lot of boilerplate. Each module may only
314  * use this macro once, and calling it replaces module_init() and module_exit()
315  */
316 #define module_spi_driver(__spi_driver) \
317 	module_driver(__spi_driver, spi_register_driver, \
318 			spi_unregister_driver)
319 
320 /**
321  * struct spi_controller - interface to SPI master or slave controller
322  * @dev: device interface to this driver
323  * @list: link with the global spi_controller list
324  * @bus_num: board-specific (and often SOC-specific) identifier for a
325  *	given SPI controller.
326  * @num_chipselect: chipselects are used to distinguish individual
327  *	SPI slaves, and are numbered from zero to num_chipselects.
328  *	each slave has a chipselect signal, but it's common that not
329  *	every chipselect is connected to a slave.
330  * @dma_alignment: SPI controller constraint on DMA buffers alignment.
331  * @mode_bits: flags understood by this controller driver
332  * @buswidth_override_bits: flags to override for this controller driver
333  * @bits_per_word_mask: A mask indicating which values of bits_per_word are
334  *	supported by the driver. Bit n indicates that a bits_per_word n+1 is
335  *	supported. If set, the SPI core will reject any transfer with an
336  *	unsupported bits_per_word. If not set, this value is simply ignored,
337  *	and it's up to the individual driver to perform any validation.
338  * @min_speed_hz: Lowest supported transfer speed
339  * @max_speed_hz: Highest supported transfer speed
340  * @flags: other constraints relevant to this driver
341  * @slave: indicates that this is an SPI slave controller
342  * @max_transfer_size: function that returns the max transfer size for
343  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
344  * @max_message_size: function that returns the max message size for
345  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
346  * @io_mutex: mutex for physical bus access
347  * @bus_lock_spinlock: spinlock for SPI bus locking
348  * @bus_lock_mutex: mutex for exclusion of multiple callers
349  * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
350  * @setup: updates the device mode and clocking records used by a
351  *	device's SPI controller; protocol code may call this.  This
352  *	must fail if an unrecognized or unsupported mode is requested.
353  *	It's always safe to call this unless transfers are pending on
354  *	the device whose settings are being modified.
355  * @set_cs_timing: optional hook for SPI devices to request SPI master
356  * controller for configuring specific CS setup time, hold time and inactive
357  * delay interms of clock counts
358  * @transfer: adds a message to the controller's transfer queue.
359  * @cleanup: frees controller-specific state
360  * @can_dma: determine whether this controller supports DMA
361  * @queued: whether this controller is providing an internal message queue
362  * @kworker: pointer to thread struct for message pump
363  * @pump_messages: work struct for scheduling work to the message pump
364  * @queue_lock: spinlock to syncronise access to message queue
365  * @queue: message queue
366  * @idling: the device is entering idle state
367  * @cur_msg: the currently in-flight message
368  * @cur_msg_prepared: spi_prepare_message was called for the currently
369  *                    in-flight message
370  * @cur_msg_mapped: message has been mapped for DMA
371  * @last_cs_enable: was enable true on the last call to set_cs.
372  * @last_cs_mode_high: was (mode & SPI_CS_HIGH) true on the last call to set_cs.
373  * @xfer_completion: used by core transfer_one_message()
374  * @busy: message pump is busy
375  * @running: message pump is running
376  * @rt: whether this queue is set to run as a realtime task
377  * @auto_runtime_pm: the core should ensure a runtime PM reference is held
378  *                   while the hardware is prepared, using the parent
379  *                   device for the spidev
380  * @max_dma_len: Maximum length of a DMA transfer for the device.
381  * @prepare_transfer_hardware: a message will soon arrive from the queue
382  *	so the subsystem requests the driver to prepare the transfer hardware
383  *	by issuing this call
384  * @transfer_one_message: the subsystem calls the driver to transfer a single
385  *	message while queuing transfers that arrive in the meantime. When the
386  *	driver is finished with this message, it must call
387  *	spi_finalize_current_message() so the subsystem can issue the next
388  *	message
389  * @unprepare_transfer_hardware: there are currently no more messages on the
390  *	queue so the subsystem notifies the driver that it may relax the
391  *	hardware by issuing this call
392  *
393  * @set_cs: set the logic level of the chip select line.  May be called
394  *          from interrupt context.
395  * @prepare_message: set up the controller to transfer a single message,
396  *                   for example doing DMA mapping.  Called from threaded
397  *                   context.
398  * @transfer_one: transfer a single spi_transfer.
399  *
400  *                  - return 0 if the transfer is finished,
401  *                  - return 1 if the transfer is still in progress. When
402  *                    the driver is finished with this transfer it must
403  *                    call spi_finalize_current_transfer() so the subsystem
404  *                    can issue the next transfer. Note: transfer_one and
405  *                    transfer_one_message are mutually exclusive; when both
406  *                    are set, the generic subsystem does not call your
407  *                    transfer_one callback.
408  * @handle_err: the subsystem calls the driver to handle an error that occurs
409  *		in the generic implementation of transfer_one_message().
410  * @mem_ops: optimized/dedicated operations for interactions with SPI memory.
411  *	     This field is optional and should only be implemented if the
412  *	     controller has native support for memory like operations.
413  * @unprepare_message: undo any work done by prepare_message().
414  * @slave_abort: abort the ongoing transfer request on an SPI slave controller
415  * @cs_setup: delay to be introduced by the controller after CS is asserted
416  * @cs_hold: delay to be introduced by the controller before CS is deasserted
417  * @cs_inactive: delay to be introduced by the controller after CS is
418  *	deasserted. If @cs_change_delay is used from @spi_transfer, then the
419  *	two delays will be added up.
420  * @cs_gpios: LEGACY: array of GPIO descs to use as chip select lines; one per
421  *	CS number. Any individual value may be -ENOENT for CS lines that
422  *	are not GPIOs (driven by the SPI controller itself). Use the cs_gpiods
423  *	in new drivers.
424  * @cs_gpiods: Array of GPIO descs to use as chip select lines; one per CS
425  *	number. Any individual value may be NULL for CS lines that
426  *	are not GPIOs (driven by the SPI controller itself).
427  * @use_gpio_descriptors: Turns on the code in the SPI core to parse and grab
428  *	GPIO descriptors rather than using global GPIO numbers grabbed by the
429  *	driver. This will fill in @cs_gpiods and @cs_gpios should not be used,
430  *	and SPI devices will have the cs_gpiod assigned rather than cs_gpio.
431  * @unused_native_cs: When cs_gpiods is used, spi_register_controller() will
432  *	fill in this field with the first unused native CS, to be used by SPI
433  *	controller drivers that need to drive a native CS when using GPIO CS.
434  * @max_native_cs: When cs_gpiods is used, and this field is filled in,
435  *	spi_register_controller() will validate all native CS (including the
436  *	unused native CS) against this value.
437  * @statistics: statistics for the spi_controller
438  * @dma_tx: DMA transmit channel
439  * @dma_rx: DMA receive channel
440  * @dummy_rx: dummy receive buffer for full-duplex devices
441  * @dummy_tx: dummy transmit buffer for full-duplex devices
442  * @fw_translate_cs: If the boot firmware uses different numbering scheme
443  *	what Linux expects, this optional hook can be used to translate
444  *	between the two.
445  * @ptp_sts_supported: If the driver sets this to true, it must provide a
446  *	time snapshot in @spi_transfer->ptp_sts as close as possible to the
447  *	moment in time when @spi_transfer->ptp_sts_word_pre and
448  *	@spi_transfer->ptp_sts_word_post were transmitted.
449  *	If the driver does not set this, the SPI core takes the snapshot as
450  *	close to the driver hand-over as possible.
451  * @irq_flags: Interrupt enable state during PTP system timestamping
452  * @fallback: fallback to pio if dma transfer return failure with
453  *	SPI_TRANS_FAIL_NO_START.
454  *
455  * Each SPI controller can communicate with one or more @spi_device
456  * children.  These make a small bus, sharing MOSI, MISO and SCK signals
457  * but not chip select signals.  Each device may be configured to use a
458  * different clock rate, since those shared signals are ignored unless
459  * the chip is selected.
460  *
461  * The driver for an SPI controller manages access to those devices through
462  * a queue of spi_message transactions, copying data between CPU memory and
463  * an SPI slave device.  For each such message it queues, it calls the
464  * message's completion function when the transaction completes.
465  */
466 struct spi_controller {
467 	struct device	dev;
468 
469 	struct list_head list;
470 
471 	/* other than negative (== assign one dynamically), bus_num is fully
472 	 * board-specific.  usually that simplifies to being SOC-specific.
473 	 * example:  one SOC has three SPI controllers, numbered 0..2,
474 	 * and one board's schematics might show it using SPI-2.  software
475 	 * would normally use bus_num=2 for that controller.
476 	 */
477 	s16			bus_num;
478 
479 	/* chipselects will be integral to many controllers; some others
480 	 * might use board-specific GPIOs.
481 	 */
482 	u16			num_chipselect;
483 
484 	/* some SPI controllers pose alignment requirements on DMAable
485 	 * buffers; let protocol drivers know about these requirements.
486 	 */
487 	u16			dma_alignment;
488 
489 	/* spi_device.mode flags understood by this controller driver */
490 	u32			mode_bits;
491 
492 	/* spi_device.mode flags override flags for this controller */
493 	u32			buswidth_override_bits;
494 
495 	/* bitmask of supported bits_per_word for transfers */
496 	u32			bits_per_word_mask;
497 #define SPI_BPW_MASK(bits) BIT((bits) - 1)
498 #define SPI_BPW_RANGE_MASK(min, max) GENMASK((max) - 1, (min) - 1)
499 
500 	/* limits on transfer speed */
501 	u32			min_speed_hz;
502 	u32			max_speed_hz;
503 
504 	/* other constraints relevant to this driver */
505 	u16			flags;
506 #define SPI_CONTROLLER_HALF_DUPLEX	BIT(0)	/* can't do full duplex */
507 #define SPI_CONTROLLER_NO_RX		BIT(1)	/* can't do buffer read */
508 #define SPI_CONTROLLER_NO_TX		BIT(2)	/* can't do buffer write */
509 #define SPI_CONTROLLER_MUST_RX		BIT(3)	/* requires rx */
510 #define SPI_CONTROLLER_MUST_TX		BIT(4)	/* requires tx */
511 
512 #define SPI_MASTER_GPIO_SS		BIT(5)	/* GPIO CS must select slave */
513 
514 	/* flag indicating this is a non-devres managed controller */
515 	bool			devm_allocated;
516 
517 	/* flag indicating this is an SPI slave controller */
518 	bool			slave;
519 
520 	/*
521 	 * on some hardware transfer / message size may be constrained
522 	 * the limit may depend on device transfer settings
523 	 */
524 	size_t (*max_transfer_size)(struct spi_device *spi);
525 	size_t (*max_message_size)(struct spi_device *spi);
526 
527 	/* I/O mutex */
528 	struct mutex		io_mutex;
529 
530 	/* Used to avoid adding the same CS twice */
531 	struct mutex		add_lock;
532 
533 	/* lock and mutex for SPI bus locking */
534 	spinlock_t		bus_lock_spinlock;
535 	struct mutex		bus_lock_mutex;
536 
537 	/* flag indicating that the SPI bus is locked for exclusive use */
538 	bool			bus_lock_flag;
539 
540 	/* Setup mode and clock, etc (spi driver may call many times).
541 	 *
542 	 * IMPORTANT:  this may be called when transfers to another
543 	 * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
544 	 * which could break those transfers.
545 	 */
546 	int			(*setup)(struct spi_device *spi);
547 
548 	/*
549 	 * set_cs_timing() method is for SPI controllers that supports
550 	 * configuring CS timing.
551 	 *
552 	 * This hook allows SPI client drivers to request SPI controllers
553 	 * to configure specific CS timing through spi_set_cs_timing() after
554 	 * spi_setup().
555 	 */
556 	int (*set_cs_timing)(struct spi_device *spi, struct spi_delay *setup,
557 			     struct spi_delay *hold, struct spi_delay *inactive);
558 
559 	/* bidirectional bulk transfers
560 	 *
561 	 * + The transfer() method may not sleep; its main role is
562 	 *   just to add the message to the queue.
563 	 * + For now there's no remove-from-queue operation, or
564 	 *   any other request management
565 	 * + To a given spi_device, message queueing is pure fifo
566 	 *
567 	 * + The controller's main job is to process its message queue,
568 	 *   selecting a chip (for masters), then transferring data
569 	 * + If there are multiple spi_device children, the i/o queue
570 	 *   arbitration algorithm is unspecified (round robin, fifo,
571 	 *   priority, reservations, preemption, etc)
572 	 *
573 	 * + Chipselect stays active during the entire message
574 	 *   (unless modified by spi_transfer.cs_change != 0).
575 	 * + The message transfers use clock and SPI mode parameters
576 	 *   previously established by setup() for this device
577 	 */
578 	int			(*transfer)(struct spi_device *spi,
579 						struct spi_message *mesg);
580 
581 	/* called on release() to free memory provided by spi_controller */
582 	void			(*cleanup)(struct spi_device *spi);
583 
584 	/*
585 	 * Used to enable core support for DMA handling, if can_dma()
586 	 * exists and returns true then the transfer will be mapped
587 	 * prior to transfer_one() being called.  The driver should
588 	 * not modify or store xfer and dma_tx and dma_rx must be set
589 	 * while the device is prepared.
590 	 */
591 	bool			(*can_dma)(struct spi_controller *ctlr,
592 					   struct spi_device *spi,
593 					   struct spi_transfer *xfer);
594 
595 	/*
596 	 * These hooks are for drivers that want to use the generic
597 	 * controller transfer queueing mechanism. If these are used, the
598 	 * transfer() function above must NOT be specified by the driver.
599 	 * Over time we expect SPI drivers to be phased over to this API.
600 	 */
601 	bool				queued;
602 	struct kthread_worker		*kworker;
603 	struct kthread_work		pump_messages;
604 	spinlock_t			queue_lock;
605 	struct list_head		queue;
606 	struct spi_message		*cur_msg;
607 	bool				idling;
608 	bool				busy;
609 	bool				running;
610 	bool				rt;
611 	bool				auto_runtime_pm;
612 	bool                            cur_msg_prepared;
613 	bool				cur_msg_mapped;
614 	bool				last_cs_enable;
615 	bool				last_cs_mode_high;
616 	bool                            fallback;
617 	struct completion               xfer_completion;
618 	size_t				max_dma_len;
619 
620 	int (*prepare_transfer_hardware)(struct spi_controller *ctlr);
621 	int (*transfer_one_message)(struct spi_controller *ctlr,
622 				    struct spi_message *mesg);
623 	int (*unprepare_transfer_hardware)(struct spi_controller *ctlr);
624 	int (*prepare_message)(struct spi_controller *ctlr,
625 			       struct spi_message *message);
626 	int (*unprepare_message)(struct spi_controller *ctlr,
627 				 struct spi_message *message);
628 	int (*slave_abort)(struct spi_controller *ctlr);
629 
630 	/*
631 	 * These hooks are for drivers that use a generic implementation
632 	 * of transfer_one_message() provied by the core.
633 	 */
634 	void (*set_cs)(struct spi_device *spi, bool enable);
635 	int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi,
636 			    struct spi_transfer *transfer);
637 	void (*handle_err)(struct spi_controller *ctlr,
638 			   struct spi_message *message);
639 
640 	/* Optimized handlers for SPI memory-like operations. */
641 	const struct spi_controller_mem_ops *mem_ops;
642 
643 	/* CS delays */
644 	struct spi_delay	cs_setup;
645 	struct spi_delay	cs_hold;
646 	struct spi_delay	cs_inactive;
647 
648 	/* gpio chip select */
649 	int			*cs_gpios;
650 	struct gpio_desc	**cs_gpiods;
651 	bool			use_gpio_descriptors;
652 	s8			unused_native_cs;
653 	s8			max_native_cs;
654 
655 	/* statistics */
656 	struct spi_statistics	statistics;
657 
658 	/* DMA channels for use with core dmaengine helpers */
659 	struct dma_chan		*dma_tx;
660 	struct dma_chan		*dma_rx;
661 
662 	/* dummy data for full duplex devices */
663 	void			*dummy_rx;
664 	void			*dummy_tx;
665 
666 	int (*fw_translate_cs)(struct spi_controller *ctlr, unsigned cs);
667 
668 	/*
669 	 * Driver sets this field to indicate it is able to snapshot SPI
670 	 * transfers (needed e.g. for reading the time of POSIX clocks)
671 	 */
672 	bool			ptp_sts_supported;
673 
674 	/* Interrupt enable state during PTP system timestamping */
675 	unsigned long		irq_flags;
676 };
677 
spi_controller_get_devdata(struct spi_controller * ctlr)678 static inline void *spi_controller_get_devdata(struct spi_controller *ctlr)
679 {
680 	return dev_get_drvdata(&ctlr->dev);
681 }
682 
spi_controller_set_devdata(struct spi_controller * ctlr,void * data)683 static inline void spi_controller_set_devdata(struct spi_controller *ctlr,
684 					      void *data)
685 {
686 	dev_set_drvdata(&ctlr->dev, data);
687 }
688 
spi_controller_get(struct spi_controller * ctlr)689 static inline struct spi_controller *spi_controller_get(struct spi_controller *ctlr)
690 {
691 	if (!ctlr || !get_device(&ctlr->dev))
692 		return NULL;
693 	return ctlr;
694 }
695 
spi_controller_put(struct spi_controller * ctlr)696 static inline void spi_controller_put(struct spi_controller *ctlr)
697 {
698 	if (ctlr)
699 		put_device(&ctlr->dev);
700 }
701 
spi_controller_is_slave(struct spi_controller * ctlr)702 static inline bool spi_controller_is_slave(struct spi_controller *ctlr)
703 {
704 	return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->slave;
705 }
706 
707 /* PM calls that need to be issued by the driver */
708 extern int spi_controller_suspend(struct spi_controller *ctlr);
709 extern int spi_controller_resume(struct spi_controller *ctlr);
710 
711 /* Calls the driver make to interact with the message queue */
712 extern struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr);
713 extern void spi_finalize_current_message(struct spi_controller *ctlr);
714 extern void spi_finalize_current_transfer(struct spi_controller *ctlr);
715 
716 /* Helper calls for driver to timestamp transfer */
717 void spi_take_timestamp_pre(struct spi_controller *ctlr,
718 			    struct spi_transfer *xfer,
719 			    size_t progress, bool irqs_off);
720 void spi_take_timestamp_post(struct spi_controller *ctlr,
721 			     struct spi_transfer *xfer,
722 			     size_t progress, bool irqs_off);
723 
724 /* the spi driver core manages memory for the spi_controller classdev */
725 extern struct spi_controller *__spi_alloc_controller(struct device *host,
726 						unsigned int size, bool slave);
727 
spi_alloc_master(struct device * host,unsigned int size)728 static inline struct spi_controller *spi_alloc_master(struct device *host,
729 						      unsigned int size)
730 {
731 	return __spi_alloc_controller(host, size, false);
732 }
733 
spi_alloc_slave(struct device * host,unsigned int size)734 static inline struct spi_controller *spi_alloc_slave(struct device *host,
735 						     unsigned int size)
736 {
737 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
738 		return NULL;
739 
740 	return __spi_alloc_controller(host, size, true);
741 }
742 
743 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
744 						   unsigned int size,
745 						   bool slave);
746 
devm_spi_alloc_master(struct device * dev,unsigned int size)747 static inline struct spi_controller *devm_spi_alloc_master(struct device *dev,
748 							   unsigned int size)
749 {
750 	return __devm_spi_alloc_controller(dev, size, false);
751 }
752 
devm_spi_alloc_slave(struct device * dev,unsigned int size)753 static inline struct spi_controller *devm_spi_alloc_slave(struct device *dev,
754 							  unsigned int size)
755 {
756 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
757 		return NULL;
758 
759 	return __devm_spi_alloc_controller(dev, size, true);
760 }
761 
762 extern int spi_register_controller(struct spi_controller *ctlr);
763 extern int devm_spi_register_controller(struct device *dev,
764 					struct spi_controller *ctlr);
765 extern void spi_unregister_controller(struct spi_controller *ctlr);
766 
767 extern struct spi_controller *spi_busnum_to_master(u16 busnum);
768 
769 /*
770  * SPI resource management while processing a SPI message
771  */
772 
773 typedef void (*spi_res_release_t)(struct spi_controller *ctlr,
774 				  struct spi_message *msg,
775 				  void *res);
776 
777 /**
778  * struct spi_res - spi resource management structure
779  * @entry:   list entry
780  * @release: release code called prior to freeing this resource
781  * @data:    extra data allocated for the specific use-case
782  *
783  * this is based on ideas from devres, but focused on life-cycle
784  * management during spi_message processing
785  */
786 struct spi_res {
787 	struct list_head        entry;
788 	spi_res_release_t       release;
789 	unsigned long long      data[]; /* guarantee ull alignment */
790 };
791 
792 extern void *spi_res_alloc(struct spi_device *spi,
793 			   spi_res_release_t release,
794 			   size_t size, gfp_t gfp);
795 extern void spi_res_add(struct spi_message *message, void *res);
796 extern void spi_res_free(void *res);
797 
798 extern void spi_res_release(struct spi_controller *ctlr,
799 			    struct spi_message *message);
800 
801 /*---------------------------------------------------------------------------*/
802 
803 /*
804  * I/O INTERFACE between SPI controller and protocol drivers
805  *
806  * Protocol drivers use a queue of spi_messages, each transferring data
807  * between the controller and memory buffers.
808  *
809  * The spi_messages themselves consist of a series of read+write transfer
810  * segments.  Those segments always read the same number of bits as they
811  * write; but one or the other is easily ignored by passing a null buffer
812  * pointer.  (This is unlike most types of I/O API, because SPI hardware
813  * is full duplex.)
814  *
815  * NOTE:  Allocation of spi_transfer and spi_message memory is entirely
816  * up to the protocol driver, which guarantees the integrity of both (as
817  * well as the data buffers) for as long as the message is queued.
818  */
819 
820 /**
821  * struct spi_transfer - a read/write buffer pair
822  * @tx_buf: data to be written (dma-safe memory), or NULL
823  * @rx_buf: data to be read (dma-safe memory), or NULL
824  * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
825  * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
826  * @tx_nbits: number of bits used for writing. If 0 the default
827  *      (SPI_NBITS_SINGLE) is used.
828  * @rx_nbits: number of bits used for reading. If 0 the default
829  *      (SPI_NBITS_SINGLE) is used.
830  * @len: size of rx and tx buffers (in bytes)
831  * @speed_hz: Select a speed other than the device default for this
832  *      transfer. If 0 the default (from @spi_device) is used.
833  * @bits_per_word: select a bits_per_word other than the device default
834  *      for this transfer. If 0 the default (from @spi_device) is used.
835  * @cs_change: affects chipselect after this transfer completes
836  * @cs_change_delay: delay between cs deassert and assert when
837  *      @cs_change is set and @spi_transfer is not the last in @spi_message
838  * @delay: delay to be introduced after this transfer before
839  *	(optionally) changing the chipselect status, then starting
840  *	the next transfer or completing this @spi_message.
841  * @delay_usecs: microseconds to delay after this transfer before
842  *	(optionally) changing the chipselect status, then starting
843  *	the next transfer or completing this @spi_message.
844  * @word_delay: inter word delay to be introduced after each word size
845  *	(set by bits_per_word) transmission.
846  * @effective_speed_hz: the effective SCK-speed that was used to
847  *      transfer this transfer. Set to 0 if the spi bus driver does
848  *      not support it.
849  * @transfer_list: transfers are sequenced through @spi_message.transfers
850  * @tx_sg: Scatterlist for transmit, currently not for client use
851  * @rx_sg: Scatterlist for receive, currently not for client use
852  * @ptp_sts_word_pre: The word (subject to bits_per_word semantics) offset
853  *	within @tx_buf for which the SPI device is requesting that the time
854  *	snapshot for this transfer begins. Upon completing the SPI transfer,
855  *	this value may have changed compared to what was requested, depending
856  *	on the available snapshotting resolution (DMA transfer,
857  *	@ptp_sts_supported is false, etc).
858  * @ptp_sts_word_post: See @ptp_sts_word_post. The two can be equal (meaning
859  *	that a single byte should be snapshotted).
860  *	If the core takes care of the timestamp (if @ptp_sts_supported is false
861  *	for this controller), it will set @ptp_sts_word_pre to 0, and
862  *	@ptp_sts_word_post to the length of the transfer. This is done
863  *	purposefully (instead of setting to spi_transfer->len - 1) to denote
864  *	that a transfer-level snapshot taken from within the driver may still
865  *	be of higher quality.
866  * @ptp_sts: Pointer to a memory location held by the SPI slave device where a
867  *	PTP system timestamp structure may lie. If drivers use PIO or their
868  *	hardware has some sort of assist for retrieving exact transfer timing,
869  *	they can (and should) assert @ptp_sts_supported and populate this
870  *	structure using the ptp_read_system_*ts helper functions.
871  *	The timestamp must represent the time at which the SPI slave device has
872  *	processed the word, i.e. the "pre" timestamp should be taken before
873  *	transmitting the "pre" word, and the "post" timestamp after receiving
874  *	transmit confirmation from the controller for the "post" word.
875  * @timestamped: true if the transfer has been timestamped
876  * @error: Error status logged by spi controller driver.
877  *
878  * SPI transfers always write the same number of bytes as they read.
879  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
880  * In some cases, they may also want to provide DMA addresses for
881  * the data being transferred; that may reduce overhead, when the
882  * underlying driver uses dma.
883  *
884  * If the transmit buffer is null, zeroes will be shifted out
885  * while filling @rx_buf.  If the receive buffer is null, the data
886  * shifted in will be discarded.  Only "len" bytes shift out (or in).
887  * It's an error to try to shift out a partial word.  (For example, by
888  * shifting out three bytes with word size of sixteen or twenty bits;
889  * the former uses two bytes per word, the latter uses four bytes.)
890  *
891  * In-memory data values are always in native CPU byte order, translated
892  * from the wire byte order (big-endian except with SPI_LSB_FIRST).  So
893  * for example when bits_per_word is sixteen, buffers are 2N bytes long
894  * (@len = 2N) and hold N sixteen bit words in CPU byte order.
895  *
896  * When the word size of the SPI transfer is not a power-of-two multiple
897  * of eight bits, those in-memory words include extra bits.  In-memory
898  * words are always seen by protocol drivers as right-justified, so the
899  * undefined (rx) or unused (tx) bits are always the most significant bits.
900  *
901  * All SPI transfers start with the relevant chipselect active.  Normally
902  * it stays selected until after the last transfer in a message.  Drivers
903  * can affect the chipselect signal using cs_change.
904  *
905  * (i) If the transfer isn't the last one in the message, this flag is
906  * used to make the chipselect briefly go inactive in the middle of the
907  * message.  Toggling chipselect in this way may be needed to terminate
908  * a chip command, letting a single spi_message perform all of group of
909  * chip transactions together.
910  *
911  * (ii) When the transfer is the last one in the message, the chip may
912  * stay selected until the next transfer.  On multi-device SPI busses
913  * with nothing blocking messages going to other devices, this is just
914  * a performance hint; starting a message to another device deselects
915  * this one.  But in other cases, this can be used to ensure correctness.
916  * Some devices need protocol transactions to be built from a series of
917  * spi_message submissions, where the content of one message is determined
918  * by the results of previous messages and where the whole transaction
919  * ends when the chipselect goes intactive.
920  *
921  * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
922  * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
923  * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
924  * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
925  *
926  * The code that submits an spi_message (and its spi_transfers)
927  * to the lower layers is responsible for managing its memory.
928  * Zero-initialize every field you don't set up explicitly, to
929  * insulate against future API updates.  After you submit a message
930  * and its transfers, ignore them until its completion callback.
931  */
932 struct spi_transfer {
933 	/* it's ok if tx_buf == rx_buf (right?)
934 	 * for MicroWire, one buffer must be null
935 	 * buffers must work with dma_*map_single() calls, unless
936 	 *   spi_message.is_dma_mapped reports a pre-existing mapping
937 	 */
938 	const void	*tx_buf;
939 	void		*rx_buf;
940 	unsigned	len;
941 
942 	dma_addr_t	tx_dma;
943 	dma_addr_t	rx_dma;
944 	struct sg_table tx_sg;
945 	struct sg_table rx_sg;
946 
947 	unsigned	cs_change:1;
948 	unsigned	tx_nbits:3;
949 	unsigned	rx_nbits:3;
950 #define	SPI_NBITS_SINGLE	0x01 /* 1bit transfer */
951 #define	SPI_NBITS_DUAL		0x02 /* 2bits transfer */
952 #define	SPI_NBITS_QUAD		0x04 /* 4bits transfer */
953 	u8		bits_per_word;
954 	u16		delay_usecs;
955 	struct spi_delay	delay;
956 	struct spi_delay	cs_change_delay;
957 	struct spi_delay	word_delay;
958 	u32		speed_hz;
959 
960 	u32		effective_speed_hz;
961 
962 	unsigned int	ptp_sts_word_pre;
963 	unsigned int	ptp_sts_word_post;
964 
965 	struct ptp_system_timestamp *ptp_sts;
966 
967 	bool		timestamped;
968 
969 	struct list_head transfer_list;
970 
971 #define SPI_TRANS_FAIL_NO_START	BIT(0)
972 	u16		error;
973 };
974 
975 /**
976  * struct spi_message - one multi-segment SPI transaction
977  * @transfers: list of transfer segments in this transaction
978  * @spi: SPI device to which the transaction is queued
979  * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
980  *	addresses for each transfer buffer
981  * @complete: called to report transaction completions
982  * @context: the argument to complete() when it's called
983  * @frame_length: the total number of bytes in the message
984  * @actual_length: the total number of bytes that were transferred in all
985  *	successful segments
986  * @status: zero for success, else negative errno
987  * @queue: for use by whichever driver currently owns the message
988  * @state: for use by whichever driver currently owns the message
989  * @resources: for resource management when the spi message is processed
990  *
991  * A @spi_message is used to execute an atomic sequence of data transfers,
992  * each represented by a struct spi_transfer.  The sequence is "atomic"
993  * in the sense that no other spi_message may use that SPI bus until that
994  * sequence completes.  On some systems, many such sequences can execute as
995  * a single programmed DMA transfer.  On all systems, these messages are
996  * queued, and might complete after transactions to other devices.  Messages
997  * sent to a given spi_device are always executed in FIFO order.
998  *
999  * The code that submits an spi_message (and its spi_transfers)
1000  * to the lower layers is responsible for managing its memory.
1001  * Zero-initialize every field you don't set up explicitly, to
1002  * insulate against future API updates.  After you submit a message
1003  * and its transfers, ignore them until its completion callback.
1004  */
1005 struct spi_message {
1006 	struct list_head	transfers;
1007 
1008 	struct spi_device	*spi;
1009 
1010 	unsigned		is_dma_mapped:1;
1011 
1012 	/* REVISIT:  we might want a flag affecting the behavior of the
1013 	 * last transfer ... allowing things like "read 16 bit length L"
1014 	 * immediately followed by "read L bytes".  Basically imposing
1015 	 * a specific message scheduling algorithm.
1016 	 *
1017 	 * Some controller drivers (message-at-a-time queue processing)
1018 	 * could provide that as their default scheduling algorithm.  But
1019 	 * others (with multi-message pipelines) could need a flag to
1020 	 * tell them about such special cases.
1021 	 */
1022 
1023 	/* completion is reported through a callback */
1024 	void			(*complete)(void *context);
1025 	void			*context;
1026 	unsigned		frame_length;
1027 	unsigned		actual_length;
1028 	int			status;
1029 
1030 	/* for optional use by whatever driver currently owns the
1031 	 * spi_message ...  between calls to spi_async and then later
1032 	 * complete(), that's the spi_controller controller driver.
1033 	 */
1034 	struct list_head	queue;
1035 	void			*state;
1036 
1037 	/* list of spi_res reources when the spi message is processed */
1038 	struct list_head        resources;
1039 };
1040 
spi_message_init_no_memset(struct spi_message * m)1041 static inline void spi_message_init_no_memset(struct spi_message *m)
1042 {
1043 	INIT_LIST_HEAD(&m->transfers);
1044 	INIT_LIST_HEAD(&m->resources);
1045 }
1046 
spi_message_init(struct spi_message * m)1047 static inline void spi_message_init(struct spi_message *m)
1048 {
1049 	memset(m, 0, sizeof *m);
1050 	spi_message_init_no_memset(m);
1051 }
1052 
1053 static inline void
spi_message_add_tail(struct spi_transfer * t,struct spi_message * m)1054 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
1055 {
1056 	list_add_tail(&t->transfer_list, &m->transfers);
1057 }
1058 
1059 static inline void
spi_transfer_del(struct spi_transfer * t)1060 spi_transfer_del(struct spi_transfer *t)
1061 {
1062 	list_del(&t->transfer_list);
1063 }
1064 
1065 static inline int
spi_transfer_delay_exec(struct spi_transfer * t)1066 spi_transfer_delay_exec(struct spi_transfer *t)
1067 {
1068 	struct spi_delay d;
1069 
1070 	if (t->delay_usecs) {
1071 		d.value = t->delay_usecs;
1072 		d.unit = SPI_DELAY_UNIT_USECS;
1073 		return spi_delay_exec(&d, NULL);
1074 	}
1075 
1076 	return spi_delay_exec(&t->delay, t);
1077 }
1078 
1079 /**
1080  * spi_message_init_with_transfers - Initialize spi_message and append transfers
1081  * @m: spi_message to be initialized
1082  * @xfers: An array of spi transfers
1083  * @num_xfers: Number of items in the xfer array
1084  *
1085  * This function initializes the given spi_message and adds each spi_transfer in
1086  * the given array to the message.
1087  */
1088 static inline void
spi_message_init_with_transfers(struct spi_message * m,struct spi_transfer * xfers,unsigned int num_xfers)1089 spi_message_init_with_transfers(struct spi_message *m,
1090 struct spi_transfer *xfers, unsigned int num_xfers)
1091 {
1092 	unsigned int i;
1093 
1094 	spi_message_init(m);
1095 	for (i = 0; i < num_xfers; ++i)
1096 		spi_message_add_tail(&xfers[i], m);
1097 }
1098 
1099 /* It's fine to embed message and transaction structures in other data
1100  * structures so long as you don't free them while they're in use.
1101  */
1102 
spi_message_alloc(unsigned ntrans,gfp_t flags)1103 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
1104 {
1105 	struct spi_message *m;
1106 
1107 	m = kzalloc(sizeof(struct spi_message)
1108 			+ ntrans * sizeof(struct spi_transfer),
1109 			flags);
1110 	if (m) {
1111 		unsigned i;
1112 		struct spi_transfer *t = (struct spi_transfer *)(m + 1);
1113 
1114 		spi_message_init_no_memset(m);
1115 		for (i = 0; i < ntrans; i++, t++)
1116 			spi_message_add_tail(t, m);
1117 	}
1118 	return m;
1119 }
1120 
spi_message_free(struct spi_message * m)1121 static inline void spi_message_free(struct spi_message *m)
1122 {
1123 	kfree(m);
1124 }
1125 
1126 extern int spi_set_cs_timing(struct spi_device *spi,
1127 			     struct spi_delay *setup,
1128 			     struct spi_delay *hold,
1129 			     struct spi_delay *inactive);
1130 
1131 extern int spi_setup(struct spi_device *spi);
1132 extern int spi_async(struct spi_device *spi, struct spi_message *message);
1133 extern int spi_async_locked(struct spi_device *spi,
1134 			    struct spi_message *message);
1135 extern int spi_slave_abort(struct spi_device *spi);
1136 
1137 static inline size_t
spi_max_message_size(struct spi_device * spi)1138 spi_max_message_size(struct spi_device *spi)
1139 {
1140 	struct spi_controller *ctlr = spi->controller;
1141 
1142 	if (!ctlr->max_message_size)
1143 		return SIZE_MAX;
1144 	return ctlr->max_message_size(spi);
1145 }
1146 
1147 static inline size_t
spi_max_transfer_size(struct spi_device * spi)1148 spi_max_transfer_size(struct spi_device *spi)
1149 {
1150 	struct spi_controller *ctlr = spi->controller;
1151 	size_t tr_max = SIZE_MAX;
1152 	size_t msg_max = spi_max_message_size(spi);
1153 
1154 	if (ctlr->max_transfer_size)
1155 		tr_max = ctlr->max_transfer_size(spi);
1156 
1157 	/* transfer size limit must not be greater than messsage size limit */
1158 	return min(tr_max, msg_max);
1159 }
1160 
1161 /**
1162  * spi_is_bpw_supported - Check if bits per word is supported
1163  * @spi: SPI device
1164  * @bpw: Bits per word
1165  *
1166  * This function checks to see if the SPI controller supports @bpw.
1167  *
1168  * Returns:
1169  * True if @bpw is supported, false otherwise.
1170  */
spi_is_bpw_supported(struct spi_device * spi,u32 bpw)1171 static inline bool spi_is_bpw_supported(struct spi_device *spi, u32 bpw)
1172 {
1173 	u32 bpw_mask = spi->master->bits_per_word_mask;
1174 
1175 	if (bpw == 8 || (bpw <= 32 && bpw_mask & SPI_BPW_MASK(bpw)))
1176 		return true;
1177 
1178 	return false;
1179 }
1180 
1181 /*---------------------------------------------------------------------------*/
1182 
1183 /* SPI transfer replacement methods which make use of spi_res */
1184 
1185 struct spi_replaced_transfers;
1186 typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
1187 				       struct spi_message *msg,
1188 				       struct spi_replaced_transfers *res);
1189 /**
1190  * struct spi_replaced_transfers - structure describing the spi_transfer
1191  *                                 replacements that have occurred
1192  *                                 so that they can get reverted
1193  * @release:            some extra release code to get executed prior to
1194  *                      relasing this structure
1195  * @extradata:          pointer to some extra data if requested or NULL
1196  * @replaced_transfers: transfers that have been replaced and which need
1197  *                      to get restored
1198  * @replaced_after:     the transfer after which the @replaced_transfers
1199  *                      are to get re-inserted
1200  * @inserted:           number of transfers inserted
1201  * @inserted_transfers: array of spi_transfers of array-size @inserted,
1202  *                      that have been replacing replaced_transfers
1203  *
1204  * note: that @extradata will point to @inserted_transfers[@inserted]
1205  * if some extra allocation is requested, so alignment will be the same
1206  * as for spi_transfers
1207  */
1208 struct spi_replaced_transfers {
1209 	spi_replaced_release_t release;
1210 	void *extradata;
1211 	struct list_head replaced_transfers;
1212 	struct list_head *replaced_after;
1213 	size_t inserted;
1214 	struct spi_transfer inserted_transfers[];
1215 };
1216 
1217 extern struct spi_replaced_transfers *spi_replace_transfers(
1218 	struct spi_message *msg,
1219 	struct spi_transfer *xfer_first,
1220 	size_t remove,
1221 	size_t insert,
1222 	spi_replaced_release_t release,
1223 	size_t extradatasize,
1224 	gfp_t gfp);
1225 
1226 /*---------------------------------------------------------------------------*/
1227 
1228 /* SPI transfer transformation methods */
1229 
1230 extern int spi_split_transfers_maxsize(struct spi_controller *ctlr,
1231 				       struct spi_message *msg,
1232 				       size_t maxsize,
1233 				       gfp_t gfp);
1234 
1235 /*---------------------------------------------------------------------------*/
1236 
1237 /* All these synchronous SPI transfer routines are utilities layered
1238  * over the core async transfer primitive.  Here, "synchronous" means
1239  * they will sleep uninterruptibly until the async transfer completes.
1240  */
1241 
1242 extern int spi_sync(struct spi_device *spi, struct spi_message *message);
1243 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
1244 extern int spi_bus_lock(struct spi_controller *ctlr);
1245 extern int spi_bus_unlock(struct spi_controller *ctlr);
1246 
1247 /**
1248  * spi_sync_transfer - synchronous SPI data transfer
1249  * @spi: device with which data will be exchanged
1250  * @xfers: An array of spi_transfers
1251  * @num_xfers: Number of items in the xfer array
1252  * Context: can sleep
1253  *
1254  * Does a synchronous SPI data transfer of the given spi_transfer array.
1255  *
1256  * For more specific semantics see spi_sync().
1257  *
1258  * Return: zero on success, else a negative error code.
1259  */
1260 static inline int
spi_sync_transfer(struct spi_device * spi,struct spi_transfer * xfers,unsigned int num_xfers)1261 spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
1262 	unsigned int num_xfers)
1263 {
1264 	struct spi_message msg;
1265 
1266 	spi_message_init_with_transfers(&msg, xfers, num_xfers);
1267 
1268 	return spi_sync(spi, &msg);
1269 }
1270 
1271 /**
1272  * spi_write - SPI synchronous write
1273  * @spi: device to which data will be written
1274  * @buf: data buffer
1275  * @len: data buffer size
1276  * Context: can sleep
1277  *
1278  * This function writes the buffer @buf.
1279  * Callable only from contexts that can sleep.
1280  *
1281  * Return: zero on success, else a negative error code.
1282  */
1283 static inline int
spi_write(struct spi_device * spi,const void * buf,size_t len)1284 spi_write(struct spi_device *spi, const void *buf, size_t len)
1285 {
1286 	struct spi_transfer	t = {
1287 			.tx_buf		= buf,
1288 			.len		= len,
1289 		};
1290 
1291 	return spi_sync_transfer(spi, &t, 1);
1292 }
1293 
1294 /**
1295  * spi_read - SPI synchronous read
1296  * @spi: device from which data will be read
1297  * @buf: data buffer
1298  * @len: data buffer size
1299  * Context: can sleep
1300  *
1301  * This function reads the buffer @buf.
1302  * Callable only from contexts that can sleep.
1303  *
1304  * Return: zero on success, else a negative error code.
1305  */
1306 static inline int
spi_read(struct spi_device * spi,void * buf,size_t len)1307 spi_read(struct spi_device *spi, void *buf, size_t len)
1308 {
1309 	struct spi_transfer	t = {
1310 			.rx_buf		= buf,
1311 			.len		= len,
1312 		};
1313 
1314 	return spi_sync_transfer(spi, &t, 1);
1315 }
1316 
1317 /* this copies txbuf and rxbuf data; for small transfers only! */
1318 extern int spi_write_then_read(struct spi_device *spi,
1319 		const void *txbuf, unsigned n_tx,
1320 		void *rxbuf, unsigned n_rx);
1321 
1322 /**
1323  * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
1324  * @spi: device with which data will be exchanged
1325  * @cmd: command to be written before data is read back
1326  * Context: can sleep
1327  *
1328  * Callable only from contexts that can sleep.
1329  *
1330  * Return: the (unsigned) eight bit number returned by the
1331  * device, or else a negative error code.
1332  */
spi_w8r8(struct spi_device * spi,u8 cmd)1333 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
1334 {
1335 	ssize_t			status;
1336 	u8			result;
1337 
1338 	status = spi_write_then_read(spi, &cmd, 1, &result, 1);
1339 
1340 	/* return negative errno or unsigned value */
1341 	return (status < 0) ? status : result;
1342 }
1343 
1344 /**
1345  * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
1346  * @spi: device with which data will be exchanged
1347  * @cmd: command to be written before data is read back
1348  * Context: can sleep
1349  *
1350  * The number is returned in wire-order, which is at least sometimes
1351  * big-endian.
1352  *
1353  * Callable only from contexts that can sleep.
1354  *
1355  * Return: the (unsigned) sixteen bit number returned by the
1356  * device, or else a negative error code.
1357  */
spi_w8r16(struct spi_device * spi,u8 cmd)1358 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
1359 {
1360 	ssize_t			status;
1361 	u16			result;
1362 
1363 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1364 
1365 	/* return negative errno or unsigned value */
1366 	return (status < 0) ? status : result;
1367 }
1368 
1369 /**
1370  * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read
1371  * @spi: device with which data will be exchanged
1372  * @cmd: command to be written before data is read back
1373  * Context: can sleep
1374  *
1375  * This function is similar to spi_w8r16, with the exception that it will
1376  * convert the read 16 bit data word from big-endian to native endianness.
1377  *
1378  * Callable only from contexts that can sleep.
1379  *
1380  * Return: the (unsigned) sixteen bit number returned by the device in cpu
1381  * endianness, or else a negative error code.
1382  */
spi_w8r16be(struct spi_device * spi,u8 cmd)1383 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
1384 
1385 {
1386 	ssize_t status;
1387 	__be16 result;
1388 
1389 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1390 	if (status < 0)
1391 		return status;
1392 
1393 	return be16_to_cpu(result);
1394 }
1395 
1396 /*---------------------------------------------------------------------------*/
1397 
1398 /*
1399  * INTERFACE between board init code and SPI infrastructure.
1400  *
1401  * No SPI driver ever sees these SPI device table segments, but
1402  * it's how the SPI core (or adapters that get hotplugged) grows
1403  * the driver model tree.
1404  *
1405  * As a rule, SPI devices can't be probed.  Instead, board init code
1406  * provides a table listing the devices which are present, with enough
1407  * information to bind and set up the device's driver.  There's basic
1408  * support for nonstatic configurations too; enough to handle adding
1409  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
1410  */
1411 
1412 /**
1413  * struct spi_board_info - board-specific template for a SPI device
1414  * @modalias: Initializes spi_device.modalias; identifies the driver.
1415  * @platform_data: Initializes spi_device.platform_data; the particular
1416  *	data stored there is driver-specific.
1417  * @properties: Additional device properties for the device.
1418  * @controller_data: Initializes spi_device.controller_data; some
1419  *	controllers need hints about hardware setup, e.g. for DMA.
1420  * @irq: Initializes spi_device.irq; depends on how the board is wired.
1421  * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
1422  *	from the chip datasheet and board-specific signal quality issues.
1423  * @bus_num: Identifies which spi_controller parents the spi_device; unused
1424  *	by spi_new_device(), and otherwise depends on board wiring.
1425  * @chip_select: Initializes spi_device.chip_select; depends on how
1426  *	the board is wired.
1427  * @mode: Initializes spi_device.mode; based on the chip datasheet, board
1428  *	wiring (some devices support both 3WIRE and standard modes), and
1429  *	possibly presence of an inverter in the chipselect path.
1430  *
1431  * When adding new SPI devices to the device tree, these structures serve
1432  * as a partial device template.  They hold information which can't always
1433  * be determined by drivers.  Information that probe() can establish (such
1434  * as the default transfer wordsize) is not included here.
1435  *
1436  * These structures are used in two places.  Their primary role is to
1437  * be stored in tables of board-specific device descriptors, which are
1438  * declared early in board initialization and then used (much later) to
1439  * populate a controller's device tree after the that controller's driver
1440  * initializes.  A secondary (and atypical) role is as a parameter to
1441  * spi_new_device() call, which happens after those controller drivers
1442  * are active in some dynamic board configuration models.
1443  */
1444 struct spi_board_info {
1445 	/* the device name and module name are coupled, like platform_bus;
1446 	 * "modalias" is normally the driver name.
1447 	 *
1448 	 * platform_data goes to spi_device.dev.platform_data,
1449 	 * controller_data goes to spi_device.controller_data,
1450 	 * device properties are copied and attached to spi_device,
1451 	 * irq is copied too
1452 	 */
1453 	char		modalias[SPI_NAME_SIZE];
1454 	const void	*platform_data;
1455 	const struct property_entry *properties;
1456 	void		*controller_data;
1457 	int		irq;
1458 
1459 	/* slower signaling on noisy or low voltage boards */
1460 	u32		max_speed_hz;
1461 
1462 
1463 	/* bus_num is board specific and matches the bus_num of some
1464 	 * spi_controller that will probably be registered later.
1465 	 *
1466 	 * chip_select reflects how this chip is wired to that master;
1467 	 * it's less than num_chipselect.
1468 	 */
1469 	u16		bus_num;
1470 	u16		chip_select;
1471 
1472 	/* mode becomes spi_device.mode, and is essential for chips
1473 	 * where the default of SPI_CS_HIGH = 0 is wrong.
1474 	 */
1475 	u32		mode;
1476 
1477 	/* ... may need additional spi_device chip config data here.
1478 	 * avoid stuff protocol drivers can set; but include stuff
1479 	 * needed to behave without being bound to a driver:
1480 	 *  - quirks like clock rate mattering when not selected
1481 	 */
1482 };
1483 
1484 #ifdef	CONFIG_SPI
1485 extern int
1486 spi_register_board_info(struct spi_board_info const *info, unsigned n);
1487 #else
1488 /* board init code may ignore whether SPI is configured or not */
1489 static inline int
spi_register_board_info(struct spi_board_info const * info,unsigned n)1490 spi_register_board_info(struct spi_board_info const *info, unsigned n)
1491 	{ return 0; }
1492 #endif
1493 
1494 /* If you're hotplugging an adapter with devices (parport, usb, etc)
1495  * use spi_new_device() to describe each device.  You can also call
1496  * spi_unregister_device() to start making that device vanish, but
1497  * normally that would be handled by spi_unregister_controller().
1498  *
1499  * You can also use spi_alloc_device() and spi_add_device() to use a two
1500  * stage registration sequence for each spi_device.  This gives the caller
1501  * some more control over the spi_device structure before it is registered,
1502  * but requires that caller to initialize fields that would otherwise
1503  * be defined using the board info.
1504  */
1505 extern struct spi_device *
1506 spi_alloc_device(struct spi_controller *ctlr);
1507 
1508 extern int
1509 spi_add_device(struct spi_device *spi);
1510 
1511 extern struct spi_device *
1512 spi_new_device(struct spi_controller *, struct spi_board_info *);
1513 
1514 extern void spi_unregister_device(struct spi_device *spi);
1515 
1516 extern const struct spi_device_id *
1517 spi_get_device_id(const struct spi_device *sdev);
1518 
1519 static inline bool
spi_transfer_is_last(struct spi_controller * ctlr,struct spi_transfer * xfer)1520 spi_transfer_is_last(struct spi_controller *ctlr, struct spi_transfer *xfer)
1521 {
1522 	return list_is_last(&xfer->transfer_list, &ctlr->cur_msg->transfers);
1523 }
1524 
1525 /* OF support code */
1526 #if IS_ENABLED(CONFIG_OF)
1527 
1528 /* must call put_device() when done with returned spi_device device */
1529 extern struct spi_device *
1530 of_find_spi_device_by_node(struct device_node *node);
1531 
1532 #else
1533 
1534 static inline struct spi_device *
of_find_spi_device_by_node(struct device_node * node)1535 of_find_spi_device_by_node(struct device_node *node)
1536 {
1537 	return NULL;
1538 }
1539 
1540 #endif /* IS_ENABLED(CONFIG_OF) */
1541 
1542 /* Compatibility layer */
1543 #define spi_master			spi_controller
1544 
1545 #define SPI_MASTER_HALF_DUPLEX		SPI_CONTROLLER_HALF_DUPLEX
1546 #define SPI_MASTER_NO_RX		SPI_CONTROLLER_NO_RX
1547 #define SPI_MASTER_NO_TX		SPI_CONTROLLER_NO_TX
1548 #define SPI_MASTER_MUST_RX		SPI_CONTROLLER_MUST_RX
1549 #define SPI_MASTER_MUST_TX		SPI_CONTROLLER_MUST_TX
1550 
1551 #define spi_master_get_devdata(_ctlr)	spi_controller_get_devdata(_ctlr)
1552 #define spi_master_set_devdata(_ctlr, _data)	\
1553 	spi_controller_set_devdata(_ctlr, _data)
1554 #define spi_master_get(_ctlr)		spi_controller_get(_ctlr)
1555 #define spi_master_put(_ctlr)		spi_controller_put(_ctlr)
1556 #define spi_master_suspend(_ctlr)	spi_controller_suspend(_ctlr)
1557 #define spi_master_resume(_ctlr)	spi_controller_resume(_ctlr)
1558 
1559 #define spi_register_master(_ctlr)	spi_register_controller(_ctlr)
1560 #define devm_spi_register_master(_dev, _ctlr) \
1561 	devm_spi_register_controller(_dev, _ctlr)
1562 #define spi_unregister_master(_ctlr)	spi_unregister_controller(_ctlr)
1563 
1564 #endif /* __LINUX_SPI_H */
1565