1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/sched/debug.h>
53 #include <linux/nmi.h>
54 #include <linux/kvm_para.h>
55 #include <linux/delay.h>
56
57 #include "workqueue_internal.h"
58
59 enum {
60 /*
61 * worker_pool flags
62 *
63 * A bound pool is either associated or disassociated with its CPU.
64 * While associated (!DISASSOCIATED), all workers are bound to the
65 * CPU and none has %WORKER_UNBOUND set and concurrency management
66 * is in effect.
67 *
68 * While DISASSOCIATED, the cpu may be offline and all workers have
69 * %WORKER_UNBOUND set and concurrency management disabled, and may
70 * be executing on any CPU. The pool behaves as an unbound one.
71 *
72 * Note that DISASSOCIATED should be flipped only while holding
73 * wq_pool_attach_mutex to avoid changing binding state while
74 * worker_attach_to_pool() is in progress.
75 */
76 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
77 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
78
79 /* worker flags */
80 WORKER_DIE = 1 << 1, /* die die die */
81 WORKER_IDLE = 1 << 2, /* is idle */
82 WORKER_PREP = 1 << 3, /* preparing to run works */
83 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
84 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
85 WORKER_REBOUND = 1 << 8, /* worker was rebound */
86
87 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
88 WORKER_UNBOUND | WORKER_REBOUND,
89
90 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
91
92 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
93 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
94
95 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
96 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
97
98 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
99 /* call for help after 10ms
100 (min two ticks) */
101 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
102 CREATE_COOLDOWN = HZ, /* time to breath after fail */
103
104 /*
105 * Rescue workers are used only on emergencies and shared by
106 * all cpus. Give MIN_NICE.
107 */
108 RESCUER_NICE_LEVEL = MIN_NICE,
109 HIGHPRI_NICE_LEVEL = MIN_NICE,
110
111 WQ_NAME_LEN = 32,
112 };
113
114 /*
115 * Structure fields follow one of the following exclusion rules.
116 *
117 * I: Modifiable by initialization/destruction paths and read-only for
118 * everyone else.
119 *
120 * P: Preemption protected. Disabling preemption is enough and should
121 * only be modified and accessed from the local cpu.
122 *
123 * L: pool->lock protected. Access with pool->lock held.
124 *
125 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
126 * reads.
127 *
128 * K: Only modified by worker while holding pool->lock. Can be safely read by
129 * self, while holding pool->lock or from IRQ context if %current is the
130 * kworker.
131 *
132 * S: Only modified by worker self.
133 *
134 * A: wq_pool_attach_mutex protected.
135 *
136 * PL: wq_pool_mutex protected.
137 *
138 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
139 *
140 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
141 *
142 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
143 * RCU for reads.
144 *
145 * WQ: wq->mutex protected.
146 *
147 * WR: wq->mutex protected for writes. RCU protected for reads.
148 *
149 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
150 * with READ_ONCE() without locking.
151 *
152 * MD: wq_mayday_lock protected.
153 *
154 * WD: Used internally by the watchdog.
155 */
156
157 /* struct worker is defined in workqueue_internal.h */
158
159 struct worker_pool {
160 raw_spinlock_t lock; /* the pool lock */
161 int cpu; /* I: the associated cpu */
162 int node; /* I: the associated node ID */
163 int id; /* I: pool ID */
164 unsigned int flags; /* L: flags */
165
166 unsigned long watchdog_ts; /* L: watchdog timestamp */
167 bool cpu_stall; /* WD: stalled cpu bound pool */
168
169 /*
170 * The counter is incremented in a process context on the associated CPU
171 * w/ preemption disabled, and decremented or reset in the same context
172 * but w/ pool->lock held. The readers grab pool->lock and are
173 * guaranteed to see if the counter reached zero.
174 */
175 int nr_running;
176
177 struct list_head worklist; /* L: list of pending works */
178
179 int nr_workers; /* L: total number of workers */
180 int nr_idle; /* L: currently idle workers */
181
182 struct list_head idle_list; /* L: list of idle workers */
183 struct timer_list idle_timer; /* L: worker idle timeout */
184 struct work_struct idle_cull_work; /* L: worker idle cleanup */
185
186 struct timer_list mayday_timer; /* L: SOS timer for workers */
187
188 /* a workers is either on busy_hash or idle_list, or the manager */
189 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
190 /* L: hash of busy workers */
191
192 struct worker *manager; /* L: purely informational */
193 struct list_head workers; /* A: attached workers */
194 struct list_head dying_workers; /* A: workers about to die */
195 struct completion *detach_completion; /* all workers detached */
196
197 struct ida worker_ida; /* worker IDs for task name */
198
199 struct workqueue_attrs *attrs; /* I: worker attributes */
200 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
201 int refcnt; /* PL: refcnt for unbound pools */
202
203 /*
204 * Destruction of pool is RCU protected to allow dereferences
205 * from get_work_pool().
206 */
207 struct rcu_head rcu;
208 };
209
210 /*
211 * Per-pool_workqueue statistics. These can be monitored using
212 * tools/workqueue/wq_monitor.py.
213 */
214 enum pool_workqueue_stats {
215 PWQ_STAT_STARTED, /* work items started execution */
216 PWQ_STAT_COMPLETED, /* work items completed execution */
217 PWQ_STAT_CPU_TIME, /* total CPU time consumed */
218 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */
219 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */
220 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */
221 PWQ_STAT_MAYDAY, /* maydays to rescuer */
222 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */
223
224 PWQ_NR_STATS,
225 };
226
227 /*
228 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
229 * of work_struct->data are used for flags and the remaining high bits
230 * point to the pwq; thus, pwqs need to be aligned at two's power of the
231 * number of flag bits.
232 */
233 struct pool_workqueue {
234 struct worker_pool *pool; /* I: the associated pool */
235 struct workqueue_struct *wq; /* I: the owning workqueue */
236 int work_color; /* L: current color */
237 int flush_color; /* L: flushing color */
238 int refcnt; /* L: reference count */
239 int nr_in_flight[WORK_NR_COLORS];
240 /* L: nr of in_flight works */
241
242 /*
243 * nr_active management and WORK_STRUCT_INACTIVE:
244 *
245 * When pwq->nr_active >= max_active, new work item is queued to
246 * pwq->inactive_works instead of pool->worklist and marked with
247 * WORK_STRUCT_INACTIVE.
248 *
249 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
250 * nr_active and all work items in pwq->inactive_works are marked with
251 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
252 * in pwq->inactive_works. Some of them are ready to run in
253 * pool->worklist or worker->scheduled. Those work itmes are only struct
254 * wq_barrier which is used for flush_work() and should not participate
255 * in nr_active. For non-barrier work item, it is marked with
256 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
257 */
258 int nr_active; /* L: nr of active works */
259 struct list_head inactive_works; /* L: inactive works */
260 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */
261 struct list_head pwqs_node; /* WR: node on wq->pwqs */
262 struct list_head mayday_node; /* MD: node on wq->maydays */
263
264 u64 stats[PWQ_NR_STATS];
265
266 /*
267 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
268 * and pwq_release_workfn() for details. pool_workqueue itself is also
269 * RCU protected so that the first pwq can be determined without
270 * grabbing wq->mutex.
271 */
272 struct kthread_work release_work;
273 struct rcu_head rcu;
274 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
275
276 /*
277 * Structure used to wait for workqueue flush.
278 */
279 struct wq_flusher {
280 struct list_head list; /* WQ: list of flushers */
281 int flush_color; /* WQ: flush color waiting for */
282 struct completion done; /* flush completion */
283 };
284
285 struct wq_device;
286
287 /*
288 * Unlike in a per-cpu workqueue where max_active limits its concurrency level
289 * on each CPU, in an unbound workqueue, max_active applies to the whole system.
290 * As sharing a single nr_active across multiple sockets can be very expensive,
291 * the counting and enforcement is per NUMA node.
292 *
293 * The following struct is used to enforce per-node max_active. When a pwq wants
294 * to start executing a work item, it should increment ->nr using
295 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
296 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
297 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
298 * round-robin order.
299 */
300 struct wq_node_nr_active {
301 int max; /* per-node max_active */
302 atomic_t nr; /* per-node nr_active */
303 raw_spinlock_t lock; /* nests inside pool locks */
304 struct list_head pending_pwqs; /* LN: pwqs with inactive works */
305 };
306
307 /*
308 * The externally visible workqueue. It relays the issued work items to
309 * the appropriate worker_pool through its pool_workqueues.
310 */
311 struct workqueue_struct {
312 struct list_head pwqs; /* WR: all pwqs of this wq */
313 struct list_head list; /* PR: list of all workqueues */
314
315 struct mutex mutex; /* protects this wq */
316 int work_color; /* WQ: current work color */
317 int flush_color; /* WQ: current flush color */
318 atomic_t nr_pwqs_to_flush; /* flush in progress */
319 struct wq_flusher *first_flusher; /* WQ: first flusher */
320 struct list_head flusher_queue; /* WQ: flush waiters */
321 struct list_head flusher_overflow; /* WQ: flush overflow list */
322
323 struct list_head maydays; /* MD: pwqs requesting rescue */
324 struct worker *rescuer; /* MD: rescue worker */
325
326 int nr_drainers; /* WQ: drain in progress */
327
328 /* See alloc_workqueue() function comment for info on min/max_active */
329 int max_active; /* WO: max active works */
330 int min_active; /* WO: min active works */
331 int saved_max_active; /* WQ: saved max_active */
332 int saved_min_active; /* WQ: saved min_active */
333
334 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
335 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */
336
337 #ifdef CONFIG_SYSFS
338 struct wq_device *wq_dev; /* I: for sysfs interface */
339 #endif
340 #ifdef CONFIG_LOCKDEP
341 char *lock_name;
342 struct lock_class_key key;
343 struct lockdep_map lockdep_map;
344 #endif
345 char name[WQ_NAME_LEN]; /* I: workqueue name */
346
347 /*
348 * Destruction of workqueue_struct is RCU protected to allow walking
349 * the workqueues list without grabbing wq_pool_mutex.
350 * This is used to dump all workqueues from sysrq.
351 */
352 struct rcu_head rcu;
353
354 /* hot fields used during command issue, aligned to cacheline */
355 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
356 struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
357 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
358 };
359
360 static struct kmem_cache *pwq_cache;
361
362 /*
363 * Each pod type describes how CPUs should be grouped for unbound workqueues.
364 * See the comment above workqueue_attrs->affn_scope.
365 */
366 struct wq_pod_type {
367 int nr_pods; /* number of pods */
368 cpumask_var_t *pod_cpus; /* pod -> cpus */
369 int *pod_node; /* pod -> node */
370 int *cpu_pod; /* cpu -> pod */
371 };
372
373 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
374 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
375
376 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
377 [WQ_AFFN_DFL] = "default",
378 [WQ_AFFN_CPU] = "cpu",
379 [WQ_AFFN_SMT] = "smt",
380 [WQ_AFFN_CACHE] = "cache",
381 [WQ_AFFN_NUMA] = "numa",
382 [WQ_AFFN_SYSTEM] = "system",
383 };
384
385 /*
386 * Per-cpu work items which run for longer than the following threshold are
387 * automatically considered CPU intensive and excluded from concurrency
388 * management to prevent them from noticeably delaying other per-cpu work items.
389 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
390 * The actual value is initialized in wq_cpu_intensive_thresh_init().
391 */
392 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
393 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
394
395 /* see the comment above the definition of WQ_POWER_EFFICIENT */
396 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
397 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
398
399 static bool wq_online; /* can kworkers be created yet? */
400
401 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
402 static struct workqueue_attrs *wq_update_pod_attrs_buf;
403
404 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
405 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
406 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
407 /* wait for manager to go away */
408 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
409
410 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
411 static bool workqueue_freezing; /* PL: have wqs started freezing? */
412
413 /* PL&A: allowable cpus for unbound wqs and work items */
414 static cpumask_var_t wq_unbound_cpumask;
415
416 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
417 static struct cpumask wq_cmdline_cpumask __initdata;
418
419 /* CPU where unbound work was last round robin scheduled from this CPU */
420 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
421
422 /*
423 * Local execution of unbound work items is no longer guaranteed. The
424 * following always forces round-robin CPU selection on unbound work items
425 * to uncover usages which depend on it.
426 */
427 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
428 static bool wq_debug_force_rr_cpu = true;
429 #else
430 static bool wq_debug_force_rr_cpu = false;
431 #endif
432 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
433
434 /* the per-cpu worker pools */
435 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
436
437 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
438
439 /* PL: hash of all unbound pools keyed by pool->attrs */
440 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
441
442 /* I: attributes used when instantiating standard unbound pools on demand */
443 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
444
445 /* I: attributes used when instantiating ordered pools on demand */
446 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
447
448 /*
449 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
450 * process context while holding a pool lock. Bounce to a dedicated kthread
451 * worker to avoid A-A deadlocks.
452 */
453 static struct kthread_worker *pwq_release_worker;
454
455 struct workqueue_struct *system_wq __read_mostly;
456 EXPORT_SYMBOL(system_wq);
457 struct workqueue_struct *system_highpri_wq __read_mostly;
458 EXPORT_SYMBOL_GPL(system_highpri_wq);
459 struct workqueue_struct *system_long_wq __read_mostly;
460 EXPORT_SYMBOL_GPL(system_long_wq);
461 struct workqueue_struct *system_unbound_wq __read_mostly;
462 EXPORT_SYMBOL_GPL(system_unbound_wq);
463 struct workqueue_struct *system_freezable_wq __read_mostly;
464 EXPORT_SYMBOL_GPL(system_freezable_wq);
465 struct workqueue_struct *system_power_efficient_wq __read_mostly;
466 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
467 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
468 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
469
470 static int worker_thread(void *__worker);
471 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
472 static void show_pwq(struct pool_workqueue *pwq);
473 static void show_one_worker_pool(struct worker_pool *pool);
474
475 #define CREATE_TRACE_POINTS
476 #include <trace/events/workqueue.h>
477
478 #define assert_rcu_or_pool_mutex() \
479 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
480 !lockdep_is_held(&wq_pool_mutex), \
481 "RCU or wq_pool_mutex should be held")
482
483 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
484 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
485 !lockdep_is_held(&wq->mutex) && \
486 !lockdep_is_held(&wq_pool_mutex), \
487 "RCU, wq->mutex or wq_pool_mutex should be held")
488
489 #define for_each_cpu_worker_pool(pool, cpu) \
490 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
491 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
492 (pool)++)
493
494 /**
495 * for_each_pool - iterate through all worker_pools in the system
496 * @pool: iteration cursor
497 * @pi: integer used for iteration
498 *
499 * This must be called either with wq_pool_mutex held or RCU read
500 * locked. If the pool needs to be used beyond the locking in effect, the
501 * caller is responsible for guaranteeing that the pool stays online.
502 *
503 * The if/else clause exists only for the lockdep assertion and can be
504 * ignored.
505 */
506 #define for_each_pool(pool, pi) \
507 idr_for_each_entry(&worker_pool_idr, pool, pi) \
508 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
509 else
510
511 /**
512 * for_each_pool_worker - iterate through all workers of a worker_pool
513 * @worker: iteration cursor
514 * @pool: worker_pool to iterate workers of
515 *
516 * This must be called with wq_pool_attach_mutex.
517 *
518 * The if/else clause exists only for the lockdep assertion and can be
519 * ignored.
520 */
521 #define for_each_pool_worker(worker, pool) \
522 list_for_each_entry((worker), &(pool)->workers, node) \
523 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
524 else
525
526 /**
527 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
528 * @pwq: iteration cursor
529 * @wq: the target workqueue
530 *
531 * This must be called either with wq->mutex held or RCU read locked.
532 * If the pwq needs to be used beyond the locking in effect, the caller is
533 * responsible for guaranteeing that the pwq stays online.
534 *
535 * The if/else clause exists only for the lockdep assertion and can be
536 * ignored.
537 */
538 #define for_each_pwq(pwq, wq) \
539 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
540 lockdep_is_held(&(wq->mutex)))
541
542 #ifdef CONFIG_DEBUG_OBJECTS_WORK
543
544 static const struct debug_obj_descr work_debug_descr;
545
work_debug_hint(void * addr)546 static void *work_debug_hint(void *addr)
547 {
548 return ((struct work_struct *) addr)->func;
549 }
550
work_is_static_object(void * addr)551 static bool work_is_static_object(void *addr)
552 {
553 struct work_struct *work = addr;
554
555 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
556 }
557
558 /*
559 * fixup_init is called when:
560 * - an active object is initialized
561 */
work_fixup_init(void * addr,enum debug_obj_state state)562 static bool work_fixup_init(void *addr, enum debug_obj_state state)
563 {
564 struct work_struct *work = addr;
565
566 switch (state) {
567 case ODEBUG_STATE_ACTIVE:
568 cancel_work_sync(work);
569 debug_object_init(work, &work_debug_descr);
570 return true;
571 default:
572 return false;
573 }
574 }
575
576 /*
577 * fixup_free is called when:
578 * - an active object is freed
579 */
work_fixup_free(void * addr,enum debug_obj_state state)580 static bool work_fixup_free(void *addr, enum debug_obj_state state)
581 {
582 struct work_struct *work = addr;
583
584 switch (state) {
585 case ODEBUG_STATE_ACTIVE:
586 cancel_work_sync(work);
587 debug_object_free(work, &work_debug_descr);
588 return true;
589 default:
590 return false;
591 }
592 }
593
594 static const struct debug_obj_descr work_debug_descr = {
595 .name = "work_struct",
596 .debug_hint = work_debug_hint,
597 .is_static_object = work_is_static_object,
598 .fixup_init = work_fixup_init,
599 .fixup_free = work_fixup_free,
600 };
601
debug_work_activate(struct work_struct * work)602 static inline void debug_work_activate(struct work_struct *work)
603 {
604 debug_object_activate(work, &work_debug_descr);
605 }
606
debug_work_deactivate(struct work_struct * work)607 static inline void debug_work_deactivate(struct work_struct *work)
608 {
609 debug_object_deactivate(work, &work_debug_descr);
610 }
611
__init_work(struct work_struct * work,int onstack)612 void __init_work(struct work_struct *work, int onstack)
613 {
614 if (onstack)
615 debug_object_init_on_stack(work, &work_debug_descr);
616 else
617 debug_object_init(work, &work_debug_descr);
618 }
619 EXPORT_SYMBOL_GPL(__init_work);
620
destroy_work_on_stack(struct work_struct * work)621 void destroy_work_on_stack(struct work_struct *work)
622 {
623 debug_object_free(work, &work_debug_descr);
624 }
625 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
626
destroy_delayed_work_on_stack(struct delayed_work * work)627 void destroy_delayed_work_on_stack(struct delayed_work *work)
628 {
629 destroy_timer_on_stack(&work->timer);
630 debug_object_free(&work->work, &work_debug_descr);
631 }
632 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
633
634 #else
debug_work_activate(struct work_struct * work)635 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)636 static inline void debug_work_deactivate(struct work_struct *work) { }
637 #endif
638
639 /**
640 * worker_pool_assign_id - allocate ID and assign it to @pool
641 * @pool: the pool pointer of interest
642 *
643 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
644 * successfully, -errno on failure.
645 */
worker_pool_assign_id(struct worker_pool * pool)646 static int worker_pool_assign_id(struct worker_pool *pool)
647 {
648 int ret;
649
650 lockdep_assert_held(&wq_pool_mutex);
651
652 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
653 GFP_KERNEL);
654 if (ret >= 0) {
655 pool->id = ret;
656 return 0;
657 }
658 return ret;
659 }
660
661 static struct pool_workqueue __rcu **
unbound_pwq_slot(struct workqueue_struct * wq,int cpu)662 unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
663 {
664 if (cpu >= 0)
665 return per_cpu_ptr(wq->cpu_pwq, cpu);
666 else
667 return &wq->dfl_pwq;
668 }
669
670 /* @cpu < 0 for dfl_pwq */
unbound_pwq(struct workqueue_struct * wq,int cpu)671 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
672 {
673 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
674 lockdep_is_held(&wq_pool_mutex) ||
675 lockdep_is_held(&wq->mutex));
676 }
677
678 /**
679 * unbound_effective_cpumask - effective cpumask of an unbound workqueue
680 * @wq: workqueue of interest
681 *
682 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
683 * is masked with wq_unbound_cpumask to determine the effective cpumask. The
684 * default pwq is always mapped to the pool with the current effective cpumask.
685 */
unbound_effective_cpumask(struct workqueue_struct * wq)686 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
687 {
688 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
689 }
690
work_color_to_flags(int color)691 static unsigned int work_color_to_flags(int color)
692 {
693 return color << WORK_STRUCT_COLOR_SHIFT;
694 }
695
get_work_color(unsigned long work_data)696 static int get_work_color(unsigned long work_data)
697 {
698 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
699 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
700 }
701
work_next_color(int color)702 static int work_next_color(int color)
703 {
704 return (color + 1) % WORK_NR_COLORS;
705 }
706
707 /*
708 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
709 * contain the pointer to the queued pwq. Once execution starts, the flag
710 * is cleared and the high bits contain OFFQ flags and pool ID.
711 *
712 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
713 * and clear_work_data() can be used to set the pwq, pool or clear
714 * work->data. These functions should only be called while the work is
715 * owned - ie. while the PENDING bit is set.
716 *
717 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
718 * corresponding to a work. Pool is available once the work has been
719 * queued anywhere after initialization until it is sync canceled. pwq is
720 * available only while the work item is queued.
721 *
722 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
723 * canceled. While being canceled, a work item may have its PENDING set
724 * but stay off timer and worklist for arbitrarily long and nobody should
725 * try to steal the PENDING bit.
726 */
set_work_data(struct work_struct * work,unsigned long data,unsigned long flags)727 static inline void set_work_data(struct work_struct *work, unsigned long data,
728 unsigned long flags)
729 {
730 WARN_ON_ONCE(!work_pending(work));
731 atomic_long_set(&work->data, data | flags | work_static(work));
732 }
733
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long extra_flags)734 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
735 unsigned long extra_flags)
736 {
737 set_work_data(work, (unsigned long)pwq,
738 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
739 }
740
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id)741 static void set_work_pool_and_keep_pending(struct work_struct *work,
742 int pool_id)
743 {
744 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
745 WORK_STRUCT_PENDING);
746 }
747
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id)748 static void set_work_pool_and_clear_pending(struct work_struct *work,
749 int pool_id)
750 {
751 /*
752 * The following wmb is paired with the implied mb in
753 * test_and_set_bit(PENDING) and ensures all updates to @work made
754 * here are visible to and precede any updates by the next PENDING
755 * owner.
756 */
757 smp_wmb();
758 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
759 /*
760 * The following mb guarantees that previous clear of a PENDING bit
761 * will not be reordered with any speculative LOADS or STORES from
762 * work->current_func, which is executed afterwards. This possible
763 * reordering can lead to a missed execution on attempt to queue
764 * the same @work. E.g. consider this case:
765 *
766 * CPU#0 CPU#1
767 * ---------------------------- --------------------------------
768 *
769 * 1 STORE event_indicated
770 * 2 queue_work_on() {
771 * 3 test_and_set_bit(PENDING)
772 * 4 } set_..._and_clear_pending() {
773 * 5 set_work_data() # clear bit
774 * 6 smp_mb()
775 * 7 work->current_func() {
776 * 8 LOAD event_indicated
777 * }
778 *
779 * Without an explicit full barrier speculative LOAD on line 8 can
780 * be executed before CPU#0 does STORE on line 1. If that happens,
781 * CPU#0 observes the PENDING bit is still set and new execution of
782 * a @work is not queued in a hope, that CPU#1 will eventually
783 * finish the queued @work. Meanwhile CPU#1 does not see
784 * event_indicated is set, because speculative LOAD was executed
785 * before actual STORE.
786 */
787 smp_mb();
788 }
789
clear_work_data(struct work_struct * work)790 static void clear_work_data(struct work_struct *work)
791 {
792 smp_wmb(); /* see set_work_pool_and_clear_pending() */
793 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
794 }
795
work_struct_pwq(unsigned long data)796 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
797 {
798 return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
799 }
800
get_work_pwq(struct work_struct * work)801 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
802 {
803 unsigned long data = atomic_long_read(&work->data);
804
805 if (data & WORK_STRUCT_PWQ)
806 return work_struct_pwq(data);
807 else
808 return NULL;
809 }
810
811 /**
812 * get_work_pool - return the worker_pool a given work was associated with
813 * @work: the work item of interest
814 *
815 * Pools are created and destroyed under wq_pool_mutex, and allows read
816 * access under RCU read lock. As such, this function should be
817 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
818 *
819 * All fields of the returned pool are accessible as long as the above
820 * mentioned locking is in effect. If the returned pool needs to be used
821 * beyond the critical section, the caller is responsible for ensuring the
822 * returned pool is and stays online.
823 *
824 * Return: The worker_pool @work was last associated with. %NULL if none.
825 */
get_work_pool(struct work_struct * work)826 static struct worker_pool *get_work_pool(struct work_struct *work)
827 {
828 unsigned long data = atomic_long_read(&work->data);
829 int pool_id;
830
831 assert_rcu_or_pool_mutex();
832
833 if (data & WORK_STRUCT_PWQ)
834 return work_struct_pwq(data)->pool;
835
836 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
837 if (pool_id == WORK_OFFQ_POOL_NONE)
838 return NULL;
839
840 return idr_find(&worker_pool_idr, pool_id);
841 }
842
843 /**
844 * get_work_pool_id - return the worker pool ID a given work is associated with
845 * @work: the work item of interest
846 *
847 * Return: The worker_pool ID @work was last associated with.
848 * %WORK_OFFQ_POOL_NONE if none.
849 */
get_work_pool_id(struct work_struct * work)850 static int get_work_pool_id(struct work_struct *work)
851 {
852 unsigned long data = atomic_long_read(&work->data);
853
854 if (data & WORK_STRUCT_PWQ)
855 return work_struct_pwq(data)->pool->id;
856
857 return data >> WORK_OFFQ_POOL_SHIFT;
858 }
859
mark_work_canceling(struct work_struct * work)860 static void mark_work_canceling(struct work_struct *work)
861 {
862 unsigned long pool_id = get_work_pool_id(work);
863
864 pool_id <<= WORK_OFFQ_POOL_SHIFT;
865 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
866 }
867
work_is_canceling(struct work_struct * work)868 static bool work_is_canceling(struct work_struct *work)
869 {
870 unsigned long data = atomic_long_read(&work->data);
871
872 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
873 }
874
875 /*
876 * Policy functions. These define the policies on how the global worker
877 * pools are managed. Unless noted otherwise, these functions assume that
878 * they're being called with pool->lock held.
879 */
880
881 /*
882 * Need to wake up a worker? Called from anything but currently
883 * running workers.
884 *
885 * Note that, because unbound workers never contribute to nr_running, this
886 * function will always return %true for unbound pools as long as the
887 * worklist isn't empty.
888 */
need_more_worker(struct worker_pool * pool)889 static bool need_more_worker(struct worker_pool *pool)
890 {
891 return !list_empty(&pool->worklist) && !pool->nr_running;
892 }
893
894 /* Can I start working? Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)895 static bool may_start_working(struct worker_pool *pool)
896 {
897 return pool->nr_idle;
898 }
899
900 /* Do I need to keep working? Called from currently running workers. */
keep_working(struct worker_pool * pool)901 static bool keep_working(struct worker_pool *pool)
902 {
903 return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
904 }
905
906 /* Do we need a new worker? Called from manager. */
need_to_create_worker(struct worker_pool * pool)907 static bool need_to_create_worker(struct worker_pool *pool)
908 {
909 return need_more_worker(pool) && !may_start_working(pool);
910 }
911
912 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)913 static bool too_many_workers(struct worker_pool *pool)
914 {
915 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
916 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
917 int nr_busy = pool->nr_workers - nr_idle;
918
919 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
920 }
921
922 /**
923 * worker_set_flags - set worker flags and adjust nr_running accordingly
924 * @worker: self
925 * @flags: flags to set
926 *
927 * Set @flags in @worker->flags and adjust nr_running accordingly.
928 */
worker_set_flags(struct worker * worker,unsigned int flags)929 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
930 {
931 struct worker_pool *pool = worker->pool;
932
933 lockdep_assert_held(&pool->lock);
934
935 /* If transitioning into NOT_RUNNING, adjust nr_running. */
936 if ((flags & WORKER_NOT_RUNNING) &&
937 !(worker->flags & WORKER_NOT_RUNNING)) {
938 pool->nr_running--;
939 }
940
941 worker->flags |= flags;
942 }
943
944 /**
945 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
946 * @worker: self
947 * @flags: flags to clear
948 *
949 * Clear @flags in @worker->flags and adjust nr_running accordingly.
950 */
worker_clr_flags(struct worker * worker,unsigned int flags)951 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
952 {
953 struct worker_pool *pool = worker->pool;
954 unsigned int oflags = worker->flags;
955
956 lockdep_assert_held(&pool->lock);
957
958 worker->flags &= ~flags;
959
960 /*
961 * If transitioning out of NOT_RUNNING, increment nr_running. Note
962 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
963 * of multiple flags, not a single flag.
964 */
965 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
966 if (!(worker->flags & WORKER_NOT_RUNNING))
967 pool->nr_running++;
968 }
969
970 /* Return the first idle worker. Called with pool->lock held. */
first_idle_worker(struct worker_pool * pool)971 static struct worker *first_idle_worker(struct worker_pool *pool)
972 {
973 if (unlikely(list_empty(&pool->idle_list)))
974 return NULL;
975
976 return list_first_entry(&pool->idle_list, struct worker, entry);
977 }
978
979 /**
980 * worker_enter_idle - enter idle state
981 * @worker: worker which is entering idle state
982 *
983 * @worker is entering idle state. Update stats and idle timer if
984 * necessary.
985 *
986 * LOCKING:
987 * raw_spin_lock_irq(pool->lock).
988 */
worker_enter_idle(struct worker * worker)989 static void worker_enter_idle(struct worker *worker)
990 {
991 struct worker_pool *pool = worker->pool;
992
993 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
994 WARN_ON_ONCE(!list_empty(&worker->entry) &&
995 (worker->hentry.next || worker->hentry.pprev)))
996 return;
997
998 /* can't use worker_set_flags(), also called from create_worker() */
999 worker->flags |= WORKER_IDLE;
1000 pool->nr_idle++;
1001 worker->last_active = jiffies;
1002
1003 /* idle_list is LIFO */
1004 list_add(&worker->entry, &pool->idle_list);
1005
1006 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1007 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1008
1009 /* Sanity check nr_running. */
1010 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1011 }
1012
1013 /**
1014 * worker_leave_idle - leave idle state
1015 * @worker: worker which is leaving idle state
1016 *
1017 * @worker is leaving idle state. Update stats.
1018 *
1019 * LOCKING:
1020 * raw_spin_lock_irq(pool->lock).
1021 */
worker_leave_idle(struct worker * worker)1022 static void worker_leave_idle(struct worker *worker)
1023 {
1024 struct worker_pool *pool = worker->pool;
1025
1026 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1027 return;
1028 worker_clr_flags(worker, WORKER_IDLE);
1029 pool->nr_idle--;
1030 list_del_init(&worker->entry);
1031 }
1032
1033 /**
1034 * find_worker_executing_work - find worker which is executing a work
1035 * @pool: pool of interest
1036 * @work: work to find worker for
1037 *
1038 * Find a worker which is executing @work on @pool by searching
1039 * @pool->busy_hash which is keyed by the address of @work. For a worker
1040 * to match, its current execution should match the address of @work and
1041 * its work function. This is to avoid unwanted dependency between
1042 * unrelated work executions through a work item being recycled while still
1043 * being executed.
1044 *
1045 * This is a bit tricky. A work item may be freed once its execution
1046 * starts and nothing prevents the freed area from being recycled for
1047 * another work item. If the same work item address ends up being reused
1048 * before the original execution finishes, workqueue will identify the
1049 * recycled work item as currently executing and make it wait until the
1050 * current execution finishes, introducing an unwanted dependency.
1051 *
1052 * This function checks the work item address and work function to avoid
1053 * false positives. Note that this isn't complete as one may construct a
1054 * work function which can introduce dependency onto itself through a
1055 * recycled work item. Well, if somebody wants to shoot oneself in the
1056 * foot that badly, there's only so much we can do, and if such deadlock
1057 * actually occurs, it should be easy to locate the culprit work function.
1058 *
1059 * CONTEXT:
1060 * raw_spin_lock_irq(pool->lock).
1061 *
1062 * Return:
1063 * Pointer to worker which is executing @work if found, %NULL
1064 * otherwise.
1065 */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1066 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1067 struct work_struct *work)
1068 {
1069 struct worker *worker;
1070
1071 hash_for_each_possible(pool->busy_hash, worker, hentry,
1072 (unsigned long)work)
1073 if (worker->current_work == work &&
1074 worker->current_func == work->func)
1075 return worker;
1076
1077 return NULL;
1078 }
1079
1080 /**
1081 * move_linked_works - move linked works to a list
1082 * @work: start of series of works to be scheduled
1083 * @head: target list to append @work to
1084 * @nextp: out parameter for nested worklist walking
1085 *
1086 * Schedule linked works starting from @work to @head. Work series to be
1087 * scheduled starts at @work and includes any consecutive work with
1088 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1089 * @nextp.
1090 *
1091 * CONTEXT:
1092 * raw_spin_lock_irq(pool->lock).
1093 */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1094 static void move_linked_works(struct work_struct *work, struct list_head *head,
1095 struct work_struct **nextp)
1096 {
1097 struct work_struct *n;
1098
1099 /*
1100 * Linked worklist will always end before the end of the list,
1101 * use NULL for list head.
1102 */
1103 list_for_each_entry_safe_from(work, n, NULL, entry) {
1104 list_move_tail(&work->entry, head);
1105 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1106 break;
1107 }
1108
1109 /*
1110 * If we're already inside safe list traversal and have moved
1111 * multiple works to the scheduled queue, the next position
1112 * needs to be updated.
1113 */
1114 if (nextp)
1115 *nextp = n;
1116 }
1117
1118 /**
1119 * assign_work - assign a work item and its linked work items to a worker
1120 * @work: work to assign
1121 * @worker: worker to assign to
1122 * @nextp: out parameter for nested worklist walking
1123 *
1124 * Assign @work and its linked work items to @worker. If @work is already being
1125 * executed by another worker in the same pool, it'll be punted there.
1126 *
1127 * If @nextp is not NULL, it's updated to point to the next work of the last
1128 * scheduled work. This allows assign_work() to be nested inside
1129 * list_for_each_entry_safe().
1130 *
1131 * Returns %true if @work was successfully assigned to @worker. %false if @work
1132 * was punted to another worker already executing it.
1133 */
assign_work(struct work_struct * work,struct worker * worker,struct work_struct ** nextp)1134 static bool assign_work(struct work_struct *work, struct worker *worker,
1135 struct work_struct **nextp)
1136 {
1137 struct worker_pool *pool = worker->pool;
1138 struct worker *collision;
1139
1140 lockdep_assert_held(&pool->lock);
1141
1142 /*
1143 * A single work shouldn't be executed concurrently by multiple workers.
1144 * __queue_work() ensures that @work doesn't jump to a different pool
1145 * while still running in the previous pool. Here, we should ensure that
1146 * @work is not executed concurrently by multiple workers from the same
1147 * pool. Check whether anyone is already processing the work. If so,
1148 * defer the work to the currently executing one.
1149 */
1150 collision = find_worker_executing_work(pool, work);
1151 if (unlikely(collision)) {
1152 move_linked_works(work, &collision->scheduled, nextp);
1153 return false;
1154 }
1155
1156 move_linked_works(work, &worker->scheduled, nextp);
1157 return true;
1158 }
1159
1160 /**
1161 * kick_pool - wake up an idle worker if necessary
1162 * @pool: pool to kick
1163 *
1164 * @pool may have pending work items. Wake up worker if necessary. Returns
1165 * whether a worker was woken up.
1166 */
kick_pool(struct worker_pool * pool)1167 static bool kick_pool(struct worker_pool *pool)
1168 {
1169 struct worker *worker = first_idle_worker(pool);
1170 struct task_struct *p;
1171
1172 lockdep_assert_held(&pool->lock);
1173
1174 if (!need_more_worker(pool) || !worker)
1175 return false;
1176
1177 p = worker->task;
1178
1179 #ifdef CONFIG_SMP
1180 /*
1181 * Idle @worker is about to execute @work and waking up provides an
1182 * opportunity to migrate @worker at a lower cost by setting the task's
1183 * wake_cpu field. Let's see if we want to move @worker to improve
1184 * execution locality.
1185 *
1186 * We're waking the worker that went idle the latest and there's some
1187 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1188 * so, setting the wake_cpu won't do anything. As this is a best-effort
1189 * optimization and the race window is narrow, let's leave as-is for
1190 * now. If this becomes pronounced, we can skip over workers which are
1191 * still on cpu when picking an idle worker.
1192 *
1193 * If @pool has non-strict affinity, @worker might have ended up outside
1194 * its affinity scope. Repatriate.
1195 */
1196 if (!pool->attrs->affn_strict &&
1197 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1198 struct work_struct *work = list_first_entry(&pool->worklist,
1199 struct work_struct, entry);
1200 p->wake_cpu = cpumask_any_distribute(pool->attrs->__pod_cpumask);
1201 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1202 }
1203 #endif
1204 wake_up_process(p);
1205 return true;
1206 }
1207
1208 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1209
1210 /*
1211 * Concurrency-managed per-cpu work items that hog CPU for longer than
1212 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1213 * which prevents them from stalling other concurrency-managed work items. If a
1214 * work function keeps triggering this mechanism, it's likely that the work item
1215 * should be using an unbound workqueue instead.
1216 *
1217 * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1218 * and report them so that they can be examined and converted to use unbound
1219 * workqueues as appropriate. To avoid flooding the console, each violating work
1220 * function is tracked and reported with exponential backoff.
1221 */
1222 #define WCI_MAX_ENTS 128
1223
1224 struct wci_ent {
1225 work_func_t func;
1226 atomic64_t cnt;
1227 struct hlist_node hash_node;
1228 };
1229
1230 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1231 static int wci_nr_ents;
1232 static DEFINE_RAW_SPINLOCK(wci_lock);
1233 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1234
wci_find_ent(work_func_t func)1235 static struct wci_ent *wci_find_ent(work_func_t func)
1236 {
1237 struct wci_ent *ent;
1238
1239 hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1240 (unsigned long)func) {
1241 if (ent->func == func)
1242 return ent;
1243 }
1244 return NULL;
1245 }
1246
wq_cpu_intensive_report(work_func_t func)1247 static void wq_cpu_intensive_report(work_func_t func)
1248 {
1249 struct wci_ent *ent;
1250
1251 restart:
1252 ent = wci_find_ent(func);
1253 if (ent) {
1254 u64 cnt;
1255
1256 /*
1257 * Start reporting from the fourth time and back off
1258 * exponentially.
1259 */
1260 cnt = atomic64_inc_return_relaxed(&ent->cnt);
1261 if (cnt >= 4 && is_power_of_2(cnt))
1262 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1263 ent->func, wq_cpu_intensive_thresh_us,
1264 atomic64_read(&ent->cnt));
1265 return;
1266 }
1267
1268 /*
1269 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1270 * is exhausted, something went really wrong and we probably made enough
1271 * noise already.
1272 */
1273 if (wci_nr_ents >= WCI_MAX_ENTS)
1274 return;
1275
1276 raw_spin_lock(&wci_lock);
1277
1278 if (wci_nr_ents >= WCI_MAX_ENTS) {
1279 raw_spin_unlock(&wci_lock);
1280 return;
1281 }
1282
1283 if (wci_find_ent(func)) {
1284 raw_spin_unlock(&wci_lock);
1285 goto restart;
1286 }
1287
1288 ent = &wci_ents[wci_nr_ents++];
1289 ent->func = func;
1290 atomic64_set(&ent->cnt, 1);
1291 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1292
1293 raw_spin_unlock(&wci_lock);
1294 }
1295
1296 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
wq_cpu_intensive_report(work_func_t func)1297 static void wq_cpu_intensive_report(work_func_t func) {}
1298 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1299
1300 /**
1301 * wq_worker_running - a worker is running again
1302 * @task: task waking up
1303 *
1304 * This function is called when a worker returns from schedule()
1305 */
wq_worker_running(struct task_struct * task)1306 void wq_worker_running(struct task_struct *task)
1307 {
1308 struct worker *worker = kthread_data(task);
1309
1310 if (!READ_ONCE(worker->sleeping))
1311 return;
1312
1313 /*
1314 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1315 * and the nr_running increment below, we may ruin the nr_running reset
1316 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1317 * pool. Protect against such race.
1318 */
1319 preempt_disable();
1320 if (!(worker->flags & WORKER_NOT_RUNNING))
1321 worker->pool->nr_running++;
1322 preempt_enable();
1323
1324 /*
1325 * CPU intensive auto-detection cares about how long a work item hogged
1326 * CPU without sleeping. Reset the starting timestamp on wakeup.
1327 */
1328 worker->current_at = worker->task->se.sum_exec_runtime;
1329
1330 WRITE_ONCE(worker->sleeping, 0);
1331 }
1332
1333 /**
1334 * wq_worker_sleeping - a worker is going to sleep
1335 * @task: task going to sleep
1336 *
1337 * This function is called from schedule() when a busy worker is
1338 * going to sleep.
1339 */
wq_worker_sleeping(struct task_struct * task)1340 void wq_worker_sleeping(struct task_struct *task)
1341 {
1342 struct worker *worker = kthread_data(task);
1343 struct worker_pool *pool;
1344
1345 /*
1346 * Rescuers, which may not have all the fields set up like normal
1347 * workers, also reach here, let's not access anything before
1348 * checking NOT_RUNNING.
1349 */
1350 if (worker->flags & WORKER_NOT_RUNNING)
1351 return;
1352
1353 pool = worker->pool;
1354
1355 /* Return if preempted before wq_worker_running() was reached */
1356 if (READ_ONCE(worker->sleeping))
1357 return;
1358
1359 WRITE_ONCE(worker->sleeping, 1);
1360 raw_spin_lock_irq(&pool->lock);
1361
1362 /*
1363 * Recheck in case unbind_workers() preempted us. We don't
1364 * want to decrement nr_running after the worker is unbound
1365 * and nr_running has been reset.
1366 */
1367 if (worker->flags & WORKER_NOT_RUNNING) {
1368 raw_spin_unlock_irq(&pool->lock);
1369 return;
1370 }
1371
1372 pool->nr_running--;
1373 if (kick_pool(pool))
1374 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1375
1376 raw_spin_unlock_irq(&pool->lock);
1377 }
1378
1379 /**
1380 * wq_worker_tick - a scheduler tick occurred while a kworker is running
1381 * @task: task currently running
1382 *
1383 * Called from scheduler_tick(). We're in the IRQ context and the current
1384 * worker's fields which follow the 'K' locking rule can be accessed safely.
1385 */
wq_worker_tick(struct task_struct * task)1386 void wq_worker_tick(struct task_struct *task)
1387 {
1388 struct worker *worker = kthread_data(task);
1389 struct pool_workqueue *pwq = worker->current_pwq;
1390 struct worker_pool *pool = worker->pool;
1391
1392 if (!pwq)
1393 return;
1394
1395 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1396
1397 if (!wq_cpu_intensive_thresh_us)
1398 return;
1399
1400 /*
1401 * If the current worker is concurrency managed and hogged the CPU for
1402 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1403 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1404 *
1405 * Set @worker->sleeping means that @worker is in the process of
1406 * switching out voluntarily and won't be contributing to
1407 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1408 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1409 * double decrements. The task is releasing the CPU anyway. Let's skip.
1410 * We probably want to make this prettier in the future.
1411 */
1412 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1413 worker->task->se.sum_exec_runtime - worker->current_at <
1414 wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1415 return;
1416
1417 raw_spin_lock(&pool->lock);
1418
1419 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1420 wq_cpu_intensive_report(worker->current_func);
1421 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1422
1423 if (kick_pool(pool))
1424 pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1425
1426 raw_spin_unlock(&pool->lock);
1427 }
1428
1429 /**
1430 * wq_worker_last_func - retrieve worker's last work function
1431 * @task: Task to retrieve last work function of.
1432 *
1433 * Determine the last function a worker executed. This is called from
1434 * the scheduler to get a worker's last known identity.
1435 *
1436 * CONTEXT:
1437 * raw_spin_lock_irq(rq->lock)
1438 *
1439 * This function is called during schedule() when a kworker is going
1440 * to sleep. It's used by psi to identify aggregation workers during
1441 * dequeuing, to allow periodic aggregation to shut-off when that
1442 * worker is the last task in the system or cgroup to go to sleep.
1443 *
1444 * As this function doesn't involve any workqueue-related locking, it
1445 * only returns stable values when called from inside the scheduler's
1446 * queuing and dequeuing paths, when @task, which must be a kworker,
1447 * is guaranteed to not be processing any works.
1448 *
1449 * Return:
1450 * The last work function %current executed as a worker, NULL if it
1451 * hasn't executed any work yet.
1452 */
wq_worker_last_func(struct task_struct * task)1453 work_func_t wq_worker_last_func(struct task_struct *task)
1454 {
1455 struct worker *worker = kthread_data(task);
1456
1457 return worker->last_func;
1458 }
1459
1460 /**
1461 * wq_node_nr_active - Determine wq_node_nr_active to use
1462 * @wq: workqueue of interest
1463 * @node: NUMA node, can be %NUMA_NO_NODE
1464 *
1465 * Determine wq_node_nr_active to use for @wq on @node. Returns:
1466 *
1467 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1468 *
1469 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1470 *
1471 * - Otherwise, node_nr_active[@node].
1472 */
wq_node_nr_active(struct workqueue_struct * wq,int node)1473 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1474 int node)
1475 {
1476 if (!(wq->flags & WQ_UNBOUND))
1477 return NULL;
1478
1479 if (node == NUMA_NO_NODE)
1480 node = nr_node_ids;
1481
1482 return wq->node_nr_active[node];
1483 }
1484
1485 /**
1486 * wq_update_node_max_active - Update per-node max_actives to use
1487 * @wq: workqueue to update
1488 * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1489 *
1490 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1491 * distributed among nodes according to the proportions of numbers of online
1492 * cpus. The result is always between @wq->min_active and max_active.
1493 */
wq_update_node_max_active(struct workqueue_struct * wq,int off_cpu)1494 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1495 {
1496 struct cpumask *effective = unbound_effective_cpumask(wq);
1497 int min_active = READ_ONCE(wq->min_active);
1498 int max_active = READ_ONCE(wq->max_active);
1499 int total_cpus, node;
1500
1501 lockdep_assert_held(&wq->mutex);
1502
1503 if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1504 off_cpu = -1;
1505
1506 total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1507 if (off_cpu >= 0)
1508 total_cpus--;
1509
1510 for_each_node(node) {
1511 int node_cpus;
1512
1513 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1514 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1515 node_cpus--;
1516
1517 wq_node_nr_active(wq, node)->max =
1518 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1519 min_active, max_active);
1520 }
1521
1522 wq_node_nr_active(wq, NUMA_NO_NODE)->max = min_active;
1523 }
1524
1525 /**
1526 * get_pwq - get an extra reference on the specified pool_workqueue
1527 * @pwq: pool_workqueue to get
1528 *
1529 * Obtain an extra reference on @pwq. The caller should guarantee that
1530 * @pwq has positive refcnt and be holding the matching pool->lock.
1531 */
get_pwq(struct pool_workqueue * pwq)1532 static void get_pwq(struct pool_workqueue *pwq)
1533 {
1534 lockdep_assert_held(&pwq->pool->lock);
1535 WARN_ON_ONCE(pwq->refcnt <= 0);
1536 pwq->refcnt++;
1537 }
1538
1539 /**
1540 * put_pwq - put a pool_workqueue reference
1541 * @pwq: pool_workqueue to put
1542 *
1543 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1544 * destruction. The caller should be holding the matching pool->lock.
1545 */
put_pwq(struct pool_workqueue * pwq)1546 static void put_pwq(struct pool_workqueue *pwq)
1547 {
1548 lockdep_assert_held(&pwq->pool->lock);
1549 if (likely(--pwq->refcnt))
1550 return;
1551 /*
1552 * @pwq can't be released under pool->lock, bounce to a dedicated
1553 * kthread_worker to avoid A-A deadlocks.
1554 */
1555 kthread_queue_work(pwq_release_worker, &pwq->release_work);
1556 }
1557
1558 /**
1559 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1560 * @pwq: pool_workqueue to put (can be %NULL)
1561 *
1562 * put_pwq() with locking. This function also allows %NULL @pwq.
1563 */
put_pwq_unlocked(struct pool_workqueue * pwq)1564 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1565 {
1566 if (pwq) {
1567 /*
1568 * As both pwqs and pools are RCU protected, the
1569 * following lock operations are safe.
1570 */
1571 raw_spin_lock_irq(&pwq->pool->lock);
1572 put_pwq(pwq);
1573 raw_spin_unlock_irq(&pwq->pool->lock);
1574 }
1575 }
1576
pwq_is_empty(struct pool_workqueue * pwq)1577 static bool pwq_is_empty(struct pool_workqueue *pwq)
1578 {
1579 return !pwq->nr_active && list_empty(&pwq->inactive_works);
1580 }
1581
__pwq_activate_work(struct pool_workqueue * pwq,struct work_struct * work)1582 static void __pwq_activate_work(struct pool_workqueue *pwq,
1583 struct work_struct *work)
1584 {
1585 unsigned long *wdb = work_data_bits(work);
1586
1587 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1588 trace_workqueue_activate_work(work);
1589 if (list_empty(&pwq->pool->worklist))
1590 pwq->pool->watchdog_ts = jiffies;
1591 move_linked_works(work, &pwq->pool->worklist, NULL);
1592 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1593 }
1594
1595 /**
1596 * pwq_activate_work - Activate a work item if inactive
1597 * @pwq: pool_workqueue @work belongs to
1598 * @work: work item to activate
1599 *
1600 * Returns %true if activated. %false if already active.
1601 */
pwq_activate_work(struct pool_workqueue * pwq,struct work_struct * work)1602 static bool pwq_activate_work(struct pool_workqueue *pwq,
1603 struct work_struct *work)
1604 {
1605 struct worker_pool *pool = pwq->pool;
1606 struct wq_node_nr_active *nna;
1607
1608 lockdep_assert_held(&pool->lock);
1609
1610 if (!(*work_data_bits(work) & WORK_STRUCT_INACTIVE))
1611 return false;
1612
1613 nna = wq_node_nr_active(pwq->wq, pool->node);
1614 if (nna)
1615 atomic_inc(&nna->nr);
1616
1617 pwq->nr_active++;
1618 __pwq_activate_work(pwq, work);
1619 return true;
1620 }
1621
tryinc_node_nr_active(struct wq_node_nr_active * nna)1622 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1623 {
1624 int max = READ_ONCE(nna->max);
1625
1626 while (true) {
1627 int old, tmp;
1628
1629 old = atomic_read(&nna->nr);
1630 if (old >= max)
1631 return false;
1632 tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1633 if (tmp == old)
1634 return true;
1635 }
1636 }
1637
1638 /**
1639 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1640 * @pwq: pool_workqueue of interest
1641 * @fill: max_active may have increased, try to increase concurrency level
1642 *
1643 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1644 * successfully obtained. %false otherwise.
1645 */
pwq_tryinc_nr_active(struct pool_workqueue * pwq,bool fill)1646 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1647 {
1648 struct workqueue_struct *wq = pwq->wq;
1649 struct worker_pool *pool = pwq->pool;
1650 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1651 bool obtained = false;
1652
1653 lockdep_assert_held(&pool->lock);
1654
1655 if (!nna) {
1656 /* per-cpu workqueue, pwq->nr_active is sufficient */
1657 obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1658 goto out;
1659 }
1660
1661 /*
1662 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1663 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1664 * concurrency level. Don't jump the line.
1665 *
1666 * We need to ignore the pending test after max_active has increased as
1667 * pwq_dec_nr_active() can only maintain the concurrency level but not
1668 * increase it. This is indicated by @fill.
1669 */
1670 if (!list_empty(&pwq->pending_node) && likely(!fill))
1671 goto out;
1672
1673 obtained = tryinc_node_nr_active(nna);
1674 if (obtained)
1675 goto out;
1676
1677 /*
1678 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1679 * and try again. The smp_mb() is paired with the implied memory barrier
1680 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1681 * we see the decremented $nna->nr or they see non-empty
1682 * $nna->pending_pwqs.
1683 */
1684 raw_spin_lock(&nna->lock);
1685
1686 if (list_empty(&pwq->pending_node))
1687 list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1688 else if (likely(!fill))
1689 goto out_unlock;
1690
1691 smp_mb();
1692
1693 obtained = tryinc_node_nr_active(nna);
1694
1695 /*
1696 * If @fill, @pwq might have already been pending. Being spuriously
1697 * pending in cold paths doesn't affect anything. Let's leave it be.
1698 */
1699 if (obtained && likely(!fill))
1700 list_del_init(&pwq->pending_node);
1701
1702 out_unlock:
1703 raw_spin_unlock(&nna->lock);
1704 out:
1705 if (obtained)
1706 pwq->nr_active++;
1707 return obtained;
1708 }
1709
1710 /**
1711 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1712 * @pwq: pool_workqueue of interest
1713 * @fill: max_active may have increased, try to increase concurrency level
1714 *
1715 * Activate the first inactive work item of @pwq if available and allowed by
1716 * max_active limit.
1717 *
1718 * Returns %true if an inactive work item has been activated. %false if no
1719 * inactive work item is found or max_active limit is reached.
1720 */
pwq_activate_first_inactive(struct pool_workqueue * pwq,bool fill)1721 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1722 {
1723 struct work_struct *work =
1724 list_first_entry_or_null(&pwq->inactive_works,
1725 struct work_struct, entry);
1726
1727 if (work && pwq_tryinc_nr_active(pwq, fill)) {
1728 __pwq_activate_work(pwq, work);
1729 return true;
1730 } else {
1731 return false;
1732 }
1733 }
1734
1735 /**
1736 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1737 * @nna: wq_node_nr_active to activate a pending pwq for
1738 * @caller_pool: worker_pool the caller is locking
1739 *
1740 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1741 * @caller_pool may be unlocked and relocked to lock other worker_pools.
1742 */
node_activate_pending_pwq(struct wq_node_nr_active * nna,struct worker_pool * caller_pool)1743 static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1744 struct worker_pool *caller_pool)
1745 {
1746 struct worker_pool *locked_pool = caller_pool;
1747 struct pool_workqueue *pwq;
1748 struct work_struct *work;
1749
1750 lockdep_assert_held(&caller_pool->lock);
1751
1752 raw_spin_lock(&nna->lock);
1753 retry:
1754 pwq = list_first_entry_or_null(&nna->pending_pwqs,
1755 struct pool_workqueue, pending_node);
1756 if (!pwq)
1757 goto out_unlock;
1758
1759 /*
1760 * If @pwq is for a different pool than @locked_pool, we need to lock
1761 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1762 * / lock dance. For that, we also need to release @nna->lock as it's
1763 * nested inside pool locks.
1764 */
1765 if (pwq->pool != locked_pool) {
1766 raw_spin_unlock(&locked_pool->lock);
1767 locked_pool = pwq->pool;
1768 if (!raw_spin_trylock(&locked_pool->lock)) {
1769 raw_spin_unlock(&nna->lock);
1770 raw_spin_lock(&locked_pool->lock);
1771 raw_spin_lock(&nna->lock);
1772 goto retry;
1773 }
1774 }
1775
1776 /*
1777 * $pwq may not have any inactive work items due to e.g. cancellations.
1778 * Drop it from pending_pwqs and see if there's another one.
1779 */
1780 work = list_first_entry_or_null(&pwq->inactive_works,
1781 struct work_struct, entry);
1782 if (!work) {
1783 list_del_init(&pwq->pending_node);
1784 goto retry;
1785 }
1786
1787 /*
1788 * Acquire an nr_active count and activate the inactive work item. If
1789 * $pwq still has inactive work items, rotate it to the end of the
1790 * pending_pwqs so that we round-robin through them. This means that
1791 * inactive work items are not activated in queueing order which is fine
1792 * given that there has never been any ordering across different pwqs.
1793 */
1794 if (likely(tryinc_node_nr_active(nna))) {
1795 pwq->nr_active++;
1796 __pwq_activate_work(pwq, work);
1797
1798 if (list_empty(&pwq->inactive_works))
1799 list_del_init(&pwq->pending_node);
1800 else
1801 list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1802
1803 /* if activating a foreign pool, make sure it's running */
1804 if (pwq->pool != caller_pool)
1805 kick_pool(pwq->pool);
1806 }
1807
1808 out_unlock:
1809 raw_spin_unlock(&nna->lock);
1810 if (locked_pool != caller_pool) {
1811 raw_spin_unlock(&locked_pool->lock);
1812 raw_spin_lock(&caller_pool->lock);
1813 }
1814 }
1815
1816 /**
1817 * pwq_dec_nr_active - Retire an active count
1818 * @pwq: pool_workqueue of interest
1819 *
1820 * Decrement @pwq's nr_active and try to activate the first inactive work item.
1821 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1822 */
pwq_dec_nr_active(struct pool_workqueue * pwq)1823 static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1824 {
1825 struct worker_pool *pool = pwq->pool;
1826 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1827
1828 lockdep_assert_held(&pool->lock);
1829
1830 /*
1831 * @pwq->nr_active should be decremented for both percpu and unbound
1832 * workqueues.
1833 */
1834 pwq->nr_active--;
1835
1836 /*
1837 * For a percpu workqueue, it's simple. Just need to kick the first
1838 * inactive work item on @pwq itself.
1839 */
1840 if (!nna) {
1841 pwq_activate_first_inactive(pwq, false);
1842 return;
1843 }
1844
1845 /*
1846 * If @pwq is for an unbound workqueue, it's more complicated because
1847 * multiple pwqs and pools may be sharing the nr_active count. When a
1848 * pwq needs to wait for an nr_active count, it puts itself on
1849 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1850 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1851 * guarantee that either we see non-empty pending_pwqs or they see
1852 * decremented $nna->nr.
1853 *
1854 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1855 * max_active gets updated. However, it is guaranteed to be equal to or
1856 * larger than @pwq->wq->min_active which is above zero unless freezing.
1857 * This maintains the forward progress guarantee.
1858 */
1859 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1860 return;
1861
1862 if (!list_empty(&nna->pending_pwqs))
1863 node_activate_pending_pwq(nna, pool);
1864 }
1865
1866 /**
1867 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1868 * @pwq: pwq of interest
1869 * @work_data: work_data of work which left the queue
1870 *
1871 * A work either has completed or is removed from pending queue,
1872 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1873 *
1874 * CONTEXT:
1875 * raw_spin_lock_irq(pool->lock).
1876 */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,unsigned long work_data)1877 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1878 {
1879 int color = get_work_color(work_data);
1880
1881 if (!(work_data & WORK_STRUCT_INACTIVE))
1882 pwq_dec_nr_active(pwq);
1883
1884 pwq->nr_in_flight[color]--;
1885
1886 /* is flush in progress and are we at the flushing tip? */
1887 if (likely(pwq->flush_color != color))
1888 goto out_put;
1889
1890 /* are there still in-flight works? */
1891 if (pwq->nr_in_flight[color])
1892 goto out_put;
1893
1894 /* this pwq is done, clear flush_color */
1895 pwq->flush_color = -1;
1896
1897 /*
1898 * If this was the last pwq, wake up the first flusher. It
1899 * will handle the rest.
1900 */
1901 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1902 complete(&pwq->wq->first_flusher->done);
1903 out_put:
1904 put_pwq(pwq);
1905 }
1906
1907 /**
1908 * try_to_grab_pending - steal work item from worklist and disable irq
1909 * @work: work item to steal
1910 * @is_dwork: @work is a delayed_work
1911 * @flags: place to store irq state
1912 *
1913 * Try to grab PENDING bit of @work. This function can handle @work in any
1914 * stable state - idle, on timer or on worklist.
1915 *
1916 * Return:
1917 *
1918 * ======== ================================================================
1919 * 1 if @work was pending and we successfully stole PENDING
1920 * 0 if @work was idle and we claimed PENDING
1921 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1922 * -ENOENT if someone else is canceling @work, this state may persist
1923 * for arbitrarily long
1924 * ======== ================================================================
1925 *
1926 * Note:
1927 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1928 * interrupted while holding PENDING and @work off queue, irq must be
1929 * disabled on entry. This, combined with delayed_work->timer being
1930 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1931 *
1932 * On successful return, >= 0, irq is disabled and the caller is
1933 * responsible for releasing it using local_irq_restore(*@flags).
1934 *
1935 * This function is safe to call from any context including IRQ handler.
1936 */
try_to_grab_pending(struct work_struct * work,bool is_dwork,unsigned long * flags)1937 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1938 unsigned long *flags)
1939 {
1940 struct worker_pool *pool;
1941 struct pool_workqueue *pwq;
1942
1943 local_irq_save(*flags);
1944
1945 /* try to steal the timer if it exists */
1946 if (is_dwork) {
1947 struct delayed_work *dwork = to_delayed_work(work);
1948
1949 /*
1950 * dwork->timer is irqsafe. If del_timer() fails, it's
1951 * guaranteed that the timer is not queued anywhere and not
1952 * running on the local CPU.
1953 */
1954 if (likely(del_timer(&dwork->timer)))
1955 return 1;
1956 }
1957
1958 /* try to claim PENDING the normal way */
1959 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1960 return 0;
1961
1962 rcu_read_lock();
1963 /*
1964 * The queueing is in progress, or it is already queued. Try to
1965 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1966 */
1967 pool = get_work_pool(work);
1968 if (!pool)
1969 goto fail;
1970
1971 raw_spin_lock(&pool->lock);
1972 /*
1973 * work->data is guaranteed to point to pwq only while the work
1974 * item is queued on pwq->wq, and both updating work->data to point
1975 * to pwq on queueing and to pool on dequeueing are done under
1976 * pwq->pool->lock. This in turn guarantees that, if work->data
1977 * points to pwq which is associated with a locked pool, the work
1978 * item is currently queued on that pool.
1979 */
1980 pwq = get_work_pwq(work);
1981 if (pwq && pwq->pool == pool) {
1982 debug_work_deactivate(work);
1983
1984 /*
1985 * A cancelable inactive work item must be in the
1986 * pwq->inactive_works since a queued barrier can't be
1987 * canceled (see the comments in insert_wq_barrier()).
1988 *
1989 * An inactive work item cannot be grabbed directly because
1990 * it might have linked barrier work items which, if left
1991 * on the inactive_works list, will confuse pwq->nr_active
1992 * management later on and cause stall. Make sure the work
1993 * item is activated before grabbing.
1994 */
1995 pwq_activate_work(pwq, work);
1996
1997 list_del_init(&work->entry);
1998 pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1999
2000 /* work->data points to pwq iff queued, point to pool */
2001 set_work_pool_and_keep_pending(work, pool->id);
2002
2003 raw_spin_unlock(&pool->lock);
2004 rcu_read_unlock();
2005 return 1;
2006 }
2007 raw_spin_unlock(&pool->lock);
2008 fail:
2009 rcu_read_unlock();
2010 local_irq_restore(*flags);
2011 if (work_is_canceling(work))
2012 return -ENOENT;
2013 cpu_relax();
2014 return -EAGAIN;
2015 }
2016
2017 /**
2018 * insert_work - insert a work into a pool
2019 * @pwq: pwq @work belongs to
2020 * @work: work to insert
2021 * @head: insertion point
2022 * @extra_flags: extra WORK_STRUCT_* flags to set
2023 *
2024 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
2025 * work_struct flags.
2026 *
2027 * CONTEXT:
2028 * raw_spin_lock_irq(pool->lock).
2029 */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)2030 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2031 struct list_head *head, unsigned int extra_flags)
2032 {
2033 debug_work_activate(work);
2034
2035 /* record the work call stack in order to print it in KASAN reports */
2036 kasan_record_aux_stack_noalloc(work);
2037
2038 /* we own @work, set data and link */
2039 set_work_pwq(work, pwq, extra_flags);
2040 list_add_tail(&work->entry, head);
2041 get_pwq(pwq);
2042 }
2043
2044 /*
2045 * Test whether @work is being queued from another work executing on the
2046 * same workqueue.
2047 */
is_chained_work(struct workqueue_struct * wq)2048 static bool is_chained_work(struct workqueue_struct *wq)
2049 {
2050 struct worker *worker;
2051
2052 worker = current_wq_worker();
2053 /*
2054 * Return %true iff I'm a worker executing a work item on @wq. If
2055 * I'm @worker, it's safe to dereference it without locking.
2056 */
2057 return worker && worker->current_pwq->wq == wq;
2058 }
2059
2060 /*
2061 * When queueing an unbound work item to a wq, prefer local CPU if allowed
2062 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
2063 * avoid perturbing sensitive tasks.
2064 */
wq_select_unbound_cpu(int cpu)2065 static int wq_select_unbound_cpu(int cpu)
2066 {
2067 int new_cpu;
2068
2069 if (likely(!wq_debug_force_rr_cpu)) {
2070 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2071 return cpu;
2072 } else {
2073 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2074 }
2075
2076 new_cpu = __this_cpu_read(wq_rr_cpu_last);
2077 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2078 if (unlikely(new_cpu >= nr_cpu_ids)) {
2079 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2080 if (unlikely(new_cpu >= nr_cpu_ids))
2081 return cpu;
2082 }
2083 __this_cpu_write(wq_rr_cpu_last, new_cpu);
2084
2085 return new_cpu;
2086 }
2087
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)2088 static void __queue_work(int cpu, struct workqueue_struct *wq,
2089 struct work_struct *work)
2090 {
2091 struct pool_workqueue *pwq;
2092 struct worker_pool *last_pool, *pool;
2093 unsigned int work_flags;
2094 unsigned int req_cpu = cpu;
2095
2096 /*
2097 * While a work item is PENDING && off queue, a task trying to
2098 * steal the PENDING will busy-loop waiting for it to either get
2099 * queued or lose PENDING. Grabbing PENDING and queueing should
2100 * happen with IRQ disabled.
2101 */
2102 lockdep_assert_irqs_disabled();
2103
2104
2105 /*
2106 * For a draining wq, only works from the same workqueue are
2107 * allowed. The __WQ_DESTROYING helps to spot the issue that
2108 * queues a new work item to a wq after destroy_workqueue(wq).
2109 */
2110 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2111 WARN_ON_ONCE(!is_chained_work(wq))))
2112 return;
2113 rcu_read_lock();
2114 retry:
2115 /* pwq which will be used unless @work is executing elsewhere */
2116 if (req_cpu == WORK_CPU_UNBOUND) {
2117 if (wq->flags & WQ_UNBOUND)
2118 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2119 else
2120 cpu = raw_smp_processor_id();
2121 }
2122
2123 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2124 pool = pwq->pool;
2125
2126 /*
2127 * If @work was previously on a different pool, it might still be
2128 * running there, in which case the work needs to be queued on that
2129 * pool to guarantee non-reentrancy.
2130 */
2131 last_pool = get_work_pool(work);
2132 if (last_pool && last_pool != pool) {
2133 struct worker *worker;
2134
2135 raw_spin_lock(&last_pool->lock);
2136
2137 worker = find_worker_executing_work(last_pool, work);
2138
2139 if (worker && worker->current_pwq->wq == wq) {
2140 pwq = worker->current_pwq;
2141 pool = pwq->pool;
2142 WARN_ON_ONCE(pool != last_pool);
2143 } else {
2144 /* meh... not running there, queue here */
2145 raw_spin_unlock(&last_pool->lock);
2146 raw_spin_lock(&pool->lock);
2147 }
2148 } else {
2149 raw_spin_lock(&pool->lock);
2150 }
2151
2152 /*
2153 * pwq is determined and locked. For unbound pools, we could have raced
2154 * with pwq release and it could already be dead. If its refcnt is zero,
2155 * repeat pwq selection. Note that unbound pwqs never die without
2156 * another pwq replacing it in cpu_pwq or while work items are executing
2157 * on it, so the retrying is guaranteed to make forward-progress.
2158 */
2159 if (unlikely(!pwq->refcnt)) {
2160 if (wq->flags & WQ_UNBOUND) {
2161 raw_spin_unlock(&pool->lock);
2162 cpu_relax();
2163 goto retry;
2164 }
2165 /* oops */
2166 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2167 wq->name, cpu);
2168 }
2169
2170 /* pwq determined, queue */
2171 trace_workqueue_queue_work(req_cpu, pwq, work);
2172
2173 if (WARN_ON(!list_empty(&work->entry)))
2174 goto out;
2175
2176 pwq->nr_in_flight[pwq->work_color]++;
2177 work_flags = work_color_to_flags(pwq->work_color);
2178
2179 /*
2180 * Limit the number of concurrently active work items to max_active.
2181 * @work must also queue behind existing inactive work items to maintain
2182 * ordering when max_active changes. See wq_adjust_max_active().
2183 */
2184 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2185 if (list_empty(&pool->worklist))
2186 pool->watchdog_ts = jiffies;
2187
2188 trace_workqueue_activate_work(work);
2189 insert_work(pwq, work, &pool->worklist, work_flags);
2190 kick_pool(pool);
2191 } else {
2192 work_flags |= WORK_STRUCT_INACTIVE;
2193 insert_work(pwq, work, &pwq->inactive_works, work_flags);
2194 }
2195
2196 out:
2197 raw_spin_unlock(&pool->lock);
2198 rcu_read_unlock();
2199 }
2200
2201 /**
2202 * queue_work_on - queue work on specific cpu
2203 * @cpu: CPU number to execute work on
2204 * @wq: workqueue to use
2205 * @work: work to queue
2206 *
2207 * We queue the work to a specific CPU, the caller must ensure it
2208 * can't go away. Callers that fail to ensure that the specified
2209 * CPU cannot go away will execute on a randomly chosen CPU.
2210 * But note well that callers specifying a CPU that never has been
2211 * online will get a splat.
2212 *
2213 * Return: %false if @work was already on a queue, %true otherwise.
2214 */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)2215 bool queue_work_on(int cpu, struct workqueue_struct *wq,
2216 struct work_struct *work)
2217 {
2218 bool ret = false;
2219 unsigned long flags;
2220
2221 local_irq_save(flags);
2222
2223 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2224 __queue_work(cpu, wq, work);
2225 ret = true;
2226 }
2227
2228 local_irq_restore(flags);
2229 return ret;
2230 }
2231 EXPORT_SYMBOL(queue_work_on);
2232
2233 /**
2234 * select_numa_node_cpu - Select a CPU based on NUMA node
2235 * @node: NUMA node ID that we want to select a CPU from
2236 *
2237 * This function will attempt to find a "random" cpu available on a given
2238 * node. If there are no CPUs available on the given node it will return
2239 * WORK_CPU_UNBOUND indicating that we should just schedule to any
2240 * available CPU if we need to schedule this work.
2241 */
select_numa_node_cpu(int node)2242 static int select_numa_node_cpu(int node)
2243 {
2244 int cpu;
2245
2246 /* Delay binding to CPU if node is not valid or online */
2247 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2248 return WORK_CPU_UNBOUND;
2249
2250 /* Use local node/cpu if we are already there */
2251 cpu = raw_smp_processor_id();
2252 if (node == cpu_to_node(cpu))
2253 return cpu;
2254
2255 /* Use "random" otherwise know as "first" online CPU of node */
2256 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2257
2258 /* If CPU is valid return that, otherwise just defer */
2259 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2260 }
2261
2262 /**
2263 * queue_work_node - queue work on a "random" cpu for a given NUMA node
2264 * @node: NUMA node that we are targeting the work for
2265 * @wq: workqueue to use
2266 * @work: work to queue
2267 *
2268 * We queue the work to a "random" CPU within a given NUMA node. The basic
2269 * idea here is to provide a way to somehow associate work with a given
2270 * NUMA node.
2271 *
2272 * This function will only make a best effort attempt at getting this onto
2273 * the right NUMA node. If no node is requested or the requested node is
2274 * offline then we just fall back to standard queue_work behavior.
2275 *
2276 * Currently the "random" CPU ends up being the first available CPU in the
2277 * intersection of cpu_online_mask and the cpumask of the node, unless we
2278 * are running on the node. In that case we just use the current CPU.
2279 *
2280 * Return: %false if @work was already on a queue, %true otherwise.
2281 */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)2282 bool queue_work_node(int node, struct workqueue_struct *wq,
2283 struct work_struct *work)
2284 {
2285 unsigned long flags;
2286 bool ret = false;
2287
2288 /*
2289 * This current implementation is specific to unbound workqueues.
2290 * Specifically we only return the first available CPU for a given
2291 * node instead of cycling through individual CPUs within the node.
2292 *
2293 * If this is used with a per-cpu workqueue then the logic in
2294 * workqueue_select_cpu_near would need to be updated to allow for
2295 * some round robin type logic.
2296 */
2297 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2298
2299 local_irq_save(flags);
2300
2301 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2302 int cpu = select_numa_node_cpu(node);
2303
2304 __queue_work(cpu, wq, work);
2305 ret = true;
2306 }
2307
2308 local_irq_restore(flags);
2309 return ret;
2310 }
2311 EXPORT_SYMBOL_GPL(queue_work_node);
2312
delayed_work_timer_fn(struct timer_list * t)2313 void delayed_work_timer_fn(struct timer_list *t)
2314 {
2315 struct delayed_work *dwork = from_timer(dwork, t, timer);
2316
2317 /* should have been called from irqsafe timer with irq already off */
2318 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2319 }
2320 EXPORT_SYMBOL(delayed_work_timer_fn);
2321
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2322 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2323 struct delayed_work *dwork, unsigned long delay)
2324 {
2325 struct timer_list *timer = &dwork->timer;
2326 struct work_struct *work = &dwork->work;
2327
2328 WARN_ON_ONCE(!wq);
2329 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2330 WARN_ON_ONCE(timer_pending(timer));
2331 WARN_ON_ONCE(!list_empty(&work->entry));
2332
2333 /*
2334 * If @delay is 0, queue @dwork->work immediately. This is for
2335 * both optimization and correctness. The earliest @timer can
2336 * expire is on the closest next tick and delayed_work users depend
2337 * on that there's no such delay when @delay is 0.
2338 */
2339 if (!delay) {
2340 __queue_work(cpu, wq, &dwork->work);
2341 return;
2342 }
2343
2344 dwork->wq = wq;
2345 dwork->cpu = cpu;
2346 timer->expires = jiffies + delay;
2347
2348 if (unlikely(cpu != WORK_CPU_UNBOUND))
2349 add_timer_on(timer, cpu);
2350 else
2351 add_timer(timer);
2352 }
2353
2354 /**
2355 * queue_delayed_work_on - queue work on specific CPU after delay
2356 * @cpu: CPU number to execute work on
2357 * @wq: workqueue to use
2358 * @dwork: work to queue
2359 * @delay: number of jiffies to wait before queueing
2360 *
2361 * Return: %false if @work was already on a queue, %true otherwise. If
2362 * @delay is zero and @dwork is idle, it will be scheduled for immediate
2363 * execution.
2364 */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2365 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2366 struct delayed_work *dwork, unsigned long delay)
2367 {
2368 struct work_struct *work = &dwork->work;
2369 bool ret = false;
2370 unsigned long flags;
2371
2372 /* read the comment in __queue_work() */
2373 local_irq_save(flags);
2374
2375 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2376 __queue_delayed_work(cpu, wq, dwork, delay);
2377 ret = true;
2378 }
2379
2380 local_irq_restore(flags);
2381 return ret;
2382 }
2383 EXPORT_SYMBOL(queue_delayed_work_on);
2384
2385 /**
2386 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2387 * @cpu: CPU number to execute work on
2388 * @wq: workqueue to use
2389 * @dwork: work to queue
2390 * @delay: number of jiffies to wait before queueing
2391 *
2392 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2393 * modify @dwork's timer so that it expires after @delay. If @delay is
2394 * zero, @work is guaranteed to be scheduled immediately regardless of its
2395 * current state.
2396 *
2397 * Return: %false if @dwork was idle and queued, %true if @dwork was
2398 * pending and its timer was modified.
2399 *
2400 * This function is safe to call from any context including IRQ handler.
2401 * See try_to_grab_pending() for details.
2402 */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2403 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2404 struct delayed_work *dwork, unsigned long delay)
2405 {
2406 unsigned long flags;
2407 int ret;
2408
2409 do {
2410 ret = try_to_grab_pending(&dwork->work, true, &flags);
2411 } while (unlikely(ret == -EAGAIN));
2412
2413 if (likely(ret >= 0)) {
2414 __queue_delayed_work(cpu, wq, dwork, delay);
2415 local_irq_restore(flags);
2416 }
2417
2418 /* -ENOENT from try_to_grab_pending() becomes %true */
2419 return ret;
2420 }
2421 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2422
rcu_work_rcufn(struct rcu_head * rcu)2423 static void rcu_work_rcufn(struct rcu_head *rcu)
2424 {
2425 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2426
2427 /* read the comment in __queue_work() */
2428 local_irq_disable();
2429 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2430 local_irq_enable();
2431 }
2432
2433 /**
2434 * queue_rcu_work - queue work after a RCU grace period
2435 * @wq: workqueue to use
2436 * @rwork: work to queue
2437 *
2438 * Return: %false if @rwork was already pending, %true otherwise. Note
2439 * that a full RCU grace period is guaranteed only after a %true return.
2440 * While @rwork is guaranteed to be executed after a %false return, the
2441 * execution may happen before a full RCU grace period has passed.
2442 */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)2443 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2444 {
2445 struct work_struct *work = &rwork->work;
2446
2447 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2448 rwork->wq = wq;
2449 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2450 return true;
2451 }
2452
2453 return false;
2454 }
2455 EXPORT_SYMBOL(queue_rcu_work);
2456
alloc_worker(int node)2457 static struct worker *alloc_worker(int node)
2458 {
2459 struct worker *worker;
2460
2461 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2462 if (worker) {
2463 INIT_LIST_HEAD(&worker->entry);
2464 INIT_LIST_HEAD(&worker->scheduled);
2465 INIT_LIST_HEAD(&worker->node);
2466 /* on creation a worker is in !idle && prep state */
2467 worker->flags = WORKER_PREP;
2468 }
2469 return worker;
2470 }
2471
pool_allowed_cpus(struct worker_pool * pool)2472 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2473 {
2474 if (pool->cpu < 0 && pool->attrs->affn_strict)
2475 return pool->attrs->__pod_cpumask;
2476 else
2477 return pool->attrs->cpumask;
2478 }
2479
2480 /**
2481 * worker_attach_to_pool() - attach a worker to a pool
2482 * @worker: worker to be attached
2483 * @pool: the target pool
2484 *
2485 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
2486 * cpu-binding of @worker are kept coordinated with the pool across
2487 * cpu-[un]hotplugs.
2488 */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)2489 static void worker_attach_to_pool(struct worker *worker,
2490 struct worker_pool *pool)
2491 {
2492 mutex_lock(&wq_pool_attach_mutex);
2493
2494 /*
2495 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
2496 * stable across this function. See the comments above the flag
2497 * definition for details.
2498 */
2499 if (pool->flags & POOL_DISASSOCIATED)
2500 worker->flags |= WORKER_UNBOUND;
2501 else
2502 kthread_set_per_cpu(worker->task, pool->cpu);
2503
2504 if (worker->rescue_wq)
2505 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2506
2507 list_add_tail(&worker->node, &pool->workers);
2508 worker->pool = pool;
2509
2510 mutex_unlock(&wq_pool_attach_mutex);
2511 }
2512
2513 /**
2514 * worker_detach_from_pool() - detach a worker from its pool
2515 * @worker: worker which is attached to its pool
2516 *
2517 * Undo the attaching which had been done in worker_attach_to_pool(). The
2518 * caller worker shouldn't access to the pool after detached except it has
2519 * other reference to the pool.
2520 */
worker_detach_from_pool(struct worker * worker)2521 static void worker_detach_from_pool(struct worker *worker)
2522 {
2523 struct worker_pool *pool = worker->pool;
2524 struct completion *detach_completion = NULL;
2525
2526 mutex_lock(&wq_pool_attach_mutex);
2527
2528 kthread_set_per_cpu(worker->task, -1);
2529 list_del(&worker->node);
2530 worker->pool = NULL;
2531
2532 if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
2533 detach_completion = pool->detach_completion;
2534 mutex_unlock(&wq_pool_attach_mutex);
2535
2536 /* clear leftover flags without pool->lock after it is detached */
2537 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2538
2539 if (detach_completion)
2540 complete(detach_completion);
2541 }
2542
2543 /**
2544 * create_worker - create a new workqueue worker
2545 * @pool: pool the new worker will belong to
2546 *
2547 * Create and start a new worker which is attached to @pool.
2548 *
2549 * CONTEXT:
2550 * Might sleep. Does GFP_KERNEL allocations.
2551 *
2552 * Return:
2553 * Pointer to the newly created worker.
2554 */
create_worker(struct worker_pool * pool)2555 static struct worker *create_worker(struct worker_pool *pool)
2556 {
2557 struct worker *worker;
2558 int id;
2559 char id_buf[23];
2560
2561 /* ID is needed to determine kthread name */
2562 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2563 if (id < 0) {
2564 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2565 ERR_PTR(id));
2566 return NULL;
2567 }
2568
2569 worker = alloc_worker(pool->node);
2570 if (!worker) {
2571 pr_err_once("workqueue: Failed to allocate a worker\n");
2572 goto fail;
2573 }
2574
2575 worker->id = id;
2576
2577 if (pool->cpu >= 0)
2578 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2579 pool->attrs->nice < 0 ? "H" : "");
2580 else
2581 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2582
2583 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
2584 "kworker/%s", id_buf);
2585 if (IS_ERR(worker->task)) {
2586 if (PTR_ERR(worker->task) == -EINTR) {
2587 pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2588 id_buf);
2589 } else {
2590 pr_err_once("workqueue: Failed to create a worker thread: %pe",
2591 worker->task);
2592 }
2593 goto fail;
2594 }
2595
2596 set_user_nice(worker->task, pool->attrs->nice);
2597 kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2598
2599 /* successful, attach the worker to the pool */
2600 worker_attach_to_pool(worker, pool);
2601
2602 /* start the newly created worker */
2603 raw_spin_lock_irq(&pool->lock);
2604
2605 worker->pool->nr_workers++;
2606 worker_enter_idle(worker);
2607 kick_pool(pool);
2608
2609 /*
2610 * @worker is waiting on a completion in kthread() and will trigger hung
2611 * check if not woken up soon. As kick_pool() might not have waken it
2612 * up, wake it up explicitly once more.
2613 */
2614 wake_up_process(worker->task);
2615
2616 raw_spin_unlock_irq(&pool->lock);
2617
2618 return worker;
2619
2620 fail:
2621 ida_free(&pool->worker_ida, id);
2622 kfree(worker);
2623 return NULL;
2624 }
2625
unbind_worker(struct worker * worker)2626 static void unbind_worker(struct worker *worker)
2627 {
2628 lockdep_assert_held(&wq_pool_attach_mutex);
2629
2630 kthread_set_per_cpu(worker->task, -1);
2631 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2632 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2633 else
2634 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2635 }
2636
wake_dying_workers(struct list_head * cull_list)2637 static void wake_dying_workers(struct list_head *cull_list)
2638 {
2639 struct worker *worker, *tmp;
2640
2641 list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2642 list_del_init(&worker->entry);
2643 unbind_worker(worker);
2644 /*
2645 * If the worker was somehow already running, then it had to be
2646 * in pool->idle_list when set_worker_dying() happened or we
2647 * wouldn't have gotten here.
2648 *
2649 * Thus, the worker must either have observed the WORKER_DIE
2650 * flag, or have set its state to TASK_IDLE. Either way, the
2651 * below will be observed by the worker and is safe to do
2652 * outside of pool->lock.
2653 */
2654 wake_up_process(worker->task);
2655 }
2656 }
2657
2658 /**
2659 * set_worker_dying - Tag a worker for destruction
2660 * @worker: worker to be destroyed
2661 * @list: transfer worker away from its pool->idle_list and into list
2662 *
2663 * Tag @worker for destruction and adjust @pool stats accordingly. The worker
2664 * should be idle.
2665 *
2666 * CONTEXT:
2667 * raw_spin_lock_irq(pool->lock).
2668 */
set_worker_dying(struct worker * worker,struct list_head * list)2669 static void set_worker_dying(struct worker *worker, struct list_head *list)
2670 {
2671 struct worker_pool *pool = worker->pool;
2672
2673 lockdep_assert_held(&pool->lock);
2674 lockdep_assert_held(&wq_pool_attach_mutex);
2675
2676 /* sanity check frenzy */
2677 if (WARN_ON(worker->current_work) ||
2678 WARN_ON(!list_empty(&worker->scheduled)) ||
2679 WARN_ON(!(worker->flags & WORKER_IDLE)))
2680 return;
2681
2682 pool->nr_workers--;
2683 pool->nr_idle--;
2684
2685 worker->flags |= WORKER_DIE;
2686
2687 list_move(&worker->entry, list);
2688 list_move(&worker->node, &pool->dying_workers);
2689 }
2690
2691 /**
2692 * idle_worker_timeout - check if some idle workers can now be deleted.
2693 * @t: The pool's idle_timer that just expired
2694 *
2695 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2696 * worker_leave_idle(), as a worker flicking between idle and active while its
2697 * pool is at the too_many_workers() tipping point would cause too much timer
2698 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2699 * it expire and re-evaluate things from there.
2700 */
idle_worker_timeout(struct timer_list * t)2701 static void idle_worker_timeout(struct timer_list *t)
2702 {
2703 struct worker_pool *pool = from_timer(pool, t, idle_timer);
2704 bool do_cull = false;
2705
2706 if (work_pending(&pool->idle_cull_work))
2707 return;
2708
2709 raw_spin_lock_irq(&pool->lock);
2710
2711 if (too_many_workers(pool)) {
2712 struct worker *worker;
2713 unsigned long expires;
2714
2715 /* idle_list is kept in LIFO order, check the last one */
2716 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2717 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2718 do_cull = !time_before(jiffies, expires);
2719
2720 if (!do_cull)
2721 mod_timer(&pool->idle_timer, expires);
2722 }
2723 raw_spin_unlock_irq(&pool->lock);
2724
2725 if (do_cull)
2726 queue_work(system_unbound_wq, &pool->idle_cull_work);
2727 }
2728
2729 /**
2730 * idle_cull_fn - cull workers that have been idle for too long.
2731 * @work: the pool's work for handling these idle workers
2732 *
2733 * This goes through a pool's idle workers and gets rid of those that have been
2734 * idle for at least IDLE_WORKER_TIMEOUT seconds.
2735 *
2736 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2737 * culled, so this also resets worker affinity. This requires a sleepable
2738 * context, hence the split between timer callback and work item.
2739 */
idle_cull_fn(struct work_struct * work)2740 static void idle_cull_fn(struct work_struct *work)
2741 {
2742 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2743 LIST_HEAD(cull_list);
2744
2745 /*
2746 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2747 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2748 * path. This is required as a previously-preempted worker could run after
2749 * set_worker_dying() has happened but before wake_dying_workers() did.
2750 */
2751 mutex_lock(&wq_pool_attach_mutex);
2752 raw_spin_lock_irq(&pool->lock);
2753
2754 while (too_many_workers(pool)) {
2755 struct worker *worker;
2756 unsigned long expires;
2757
2758 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2759 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2760
2761 if (time_before(jiffies, expires)) {
2762 mod_timer(&pool->idle_timer, expires);
2763 break;
2764 }
2765
2766 set_worker_dying(worker, &cull_list);
2767 }
2768
2769 raw_spin_unlock_irq(&pool->lock);
2770 wake_dying_workers(&cull_list);
2771 mutex_unlock(&wq_pool_attach_mutex);
2772 }
2773
send_mayday(struct work_struct * work)2774 static void send_mayday(struct work_struct *work)
2775 {
2776 struct pool_workqueue *pwq = get_work_pwq(work);
2777 struct workqueue_struct *wq = pwq->wq;
2778
2779 lockdep_assert_held(&wq_mayday_lock);
2780
2781 if (!wq->rescuer)
2782 return;
2783
2784 /* mayday mayday mayday */
2785 if (list_empty(&pwq->mayday_node)) {
2786 /*
2787 * If @pwq is for an unbound wq, its base ref may be put at
2788 * any time due to an attribute change. Pin @pwq until the
2789 * rescuer is done with it.
2790 */
2791 get_pwq(pwq);
2792 list_add_tail(&pwq->mayday_node, &wq->maydays);
2793 wake_up_process(wq->rescuer->task);
2794 pwq->stats[PWQ_STAT_MAYDAY]++;
2795 }
2796 }
2797
pool_mayday_timeout(struct timer_list * t)2798 static void pool_mayday_timeout(struct timer_list *t)
2799 {
2800 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2801 struct work_struct *work;
2802
2803 raw_spin_lock_irq(&pool->lock);
2804 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
2805
2806 if (need_to_create_worker(pool)) {
2807 /*
2808 * We've been trying to create a new worker but
2809 * haven't been successful. We might be hitting an
2810 * allocation deadlock. Send distress signals to
2811 * rescuers.
2812 */
2813 list_for_each_entry(work, &pool->worklist, entry)
2814 send_mayday(work);
2815 }
2816
2817 raw_spin_unlock(&wq_mayday_lock);
2818 raw_spin_unlock_irq(&pool->lock);
2819
2820 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2821 }
2822
2823 /**
2824 * maybe_create_worker - create a new worker if necessary
2825 * @pool: pool to create a new worker for
2826 *
2827 * Create a new worker for @pool if necessary. @pool is guaranteed to
2828 * have at least one idle worker on return from this function. If
2829 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2830 * sent to all rescuers with works scheduled on @pool to resolve
2831 * possible allocation deadlock.
2832 *
2833 * On return, need_to_create_worker() is guaranteed to be %false and
2834 * may_start_working() %true.
2835 *
2836 * LOCKING:
2837 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2838 * multiple times. Does GFP_KERNEL allocations. Called only from
2839 * manager.
2840 */
maybe_create_worker(struct worker_pool * pool)2841 static void maybe_create_worker(struct worker_pool *pool)
2842 __releases(&pool->lock)
2843 __acquires(&pool->lock)
2844 {
2845 restart:
2846 raw_spin_unlock_irq(&pool->lock);
2847
2848 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2849 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2850
2851 while (true) {
2852 if (create_worker(pool) || !need_to_create_worker(pool))
2853 break;
2854
2855 schedule_timeout_interruptible(CREATE_COOLDOWN);
2856
2857 if (!need_to_create_worker(pool))
2858 break;
2859 }
2860
2861 del_timer_sync(&pool->mayday_timer);
2862 raw_spin_lock_irq(&pool->lock);
2863 /*
2864 * This is necessary even after a new worker was just successfully
2865 * created as @pool->lock was dropped and the new worker might have
2866 * already become busy.
2867 */
2868 if (need_to_create_worker(pool))
2869 goto restart;
2870 }
2871
2872 /**
2873 * manage_workers - manage worker pool
2874 * @worker: self
2875 *
2876 * Assume the manager role and manage the worker pool @worker belongs
2877 * to. At any given time, there can be only zero or one manager per
2878 * pool. The exclusion is handled automatically by this function.
2879 *
2880 * The caller can safely start processing works on false return. On
2881 * true return, it's guaranteed that need_to_create_worker() is false
2882 * and may_start_working() is true.
2883 *
2884 * CONTEXT:
2885 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2886 * multiple times. Does GFP_KERNEL allocations.
2887 *
2888 * Return:
2889 * %false if the pool doesn't need management and the caller can safely
2890 * start processing works, %true if management function was performed and
2891 * the conditions that the caller verified before calling the function may
2892 * no longer be true.
2893 */
manage_workers(struct worker * worker)2894 static bool manage_workers(struct worker *worker)
2895 {
2896 struct worker_pool *pool = worker->pool;
2897
2898 if (pool->flags & POOL_MANAGER_ACTIVE)
2899 return false;
2900
2901 pool->flags |= POOL_MANAGER_ACTIVE;
2902 pool->manager = worker;
2903
2904 maybe_create_worker(pool);
2905
2906 pool->manager = NULL;
2907 pool->flags &= ~POOL_MANAGER_ACTIVE;
2908 rcuwait_wake_up(&manager_wait);
2909 return true;
2910 }
2911
2912 /**
2913 * process_one_work - process single work
2914 * @worker: self
2915 * @work: work to process
2916 *
2917 * Process @work. This function contains all the logics necessary to
2918 * process a single work including synchronization against and
2919 * interaction with other workers on the same cpu, queueing and
2920 * flushing. As long as context requirement is met, any worker can
2921 * call this function to process a work.
2922 *
2923 * CONTEXT:
2924 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2925 */
process_one_work(struct worker * worker,struct work_struct * work)2926 static void process_one_work(struct worker *worker, struct work_struct *work)
2927 __releases(&pool->lock)
2928 __acquires(&pool->lock)
2929 {
2930 struct pool_workqueue *pwq = get_work_pwq(work);
2931 struct worker_pool *pool = worker->pool;
2932 unsigned long work_data;
2933 #ifdef CONFIG_LOCKDEP
2934 /*
2935 * It is permissible to free the struct work_struct from
2936 * inside the function that is called from it, this we need to
2937 * take into account for lockdep too. To avoid bogus "held
2938 * lock freed" warnings as well as problems when looking into
2939 * work->lockdep_map, make a copy and use that here.
2940 */
2941 struct lockdep_map lockdep_map;
2942
2943 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2944 #endif
2945 /* ensure we're on the correct CPU */
2946 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2947 raw_smp_processor_id() != pool->cpu);
2948
2949 /* claim and dequeue */
2950 debug_work_deactivate(work);
2951 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2952 worker->current_work = work;
2953 worker->current_func = work->func;
2954 worker->current_pwq = pwq;
2955 worker->current_at = worker->task->se.sum_exec_runtime;
2956 work_data = *work_data_bits(work);
2957 worker->current_color = get_work_color(work_data);
2958
2959 /*
2960 * Record wq name for cmdline and debug reporting, may get
2961 * overridden through set_worker_desc().
2962 */
2963 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2964
2965 list_del_init(&work->entry);
2966
2967 /*
2968 * CPU intensive works don't participate in concurrency management.
2969 * They're the scheduler's responsibility. This takes @worker out
2970 * of concurrency management and the next code block will chain
2971 * execution of the pending work items.
2972 */
2973 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
2974 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2975
2976 /*
2977 * Kick @pool if necessary. It's always noop for per-cpu worker pools
2978 * since nr_running would always be >= 1 at this point. This is used to
2979 * chain execution of the pending work items for WORKER_NOT_RUNNING
2980 * workers such as the UNBOUND and CPU_INTENSIVE ones.
2981 */
2982 kick_pool(pool);
2983
2984 /*
2985 * Record the last pool and clear PENDING which should be the last
2986 * update to @work. Also, do this inside @pool->lock so that
2987 * PENDING and queued state changes happen together while IRQ is
2988 * disabled.
2989 */
2990 set_work_pool_and_clear_pending(work, pool->id);
2991
2992 pwq->stats[PWQ_STAT_STARTED]++;
2993 raw_spin_unlock_irq(&pool->lock);
2994
2995 lock_map_acquire(&pwq->wq->lockdep_map);
2996 lock_map_acquire(&lockdep_map);
2997 /*
2998 * Strictly speaking we should mark the invariant state without holding
2999 * any locks, that is, before these two lock_map_acquire()'s.
3000 *
3001 * However, that would result in:
3002 *
3003 * A(W1)
3004 * WFC(C)
3005 * A(W1)
3006 * C(C)
3007 *
3008 * Which would create W1->C->W1 dependencies, even though there is no
3009 * actual deadlock possible. There are two solutions, using a
3010 * read-recursive acquire on the work(queue) 'locks', but this will then
3011 * hit the lockdep limitation on recursive locks, or simply discard
3012 * these locks.
3013 *
3014 * AFAICT there is no possible deadlock scenario between the
3015 * flush_work() and complete() primitives (except for single-threaded
3016 * workqueues), so hiding them isn't a problem.
3017 */
3018 lockdep_invariant_state(true);
3019 trace_workqueue_execute_start(work);
3020 worker->current_func(work);
3021 /*
3022 * While we must be careful to not use "work" after this, the trace
3023 * point will only record its address.
3024 */
3025 trace_workqueue_execute_end(work, worker->current_func);
3026 pwq->stats[PWQ_STAT_COMPLETED]++;
3027 lock_map_release(&lockdep_map);
3028 lock_map_release(&pwq->wq->lockdep_map);
3029
3030 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
3031 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
3032 " last function: %ps\n",
3033 current->comm, preempt_count(), task_pid_nr(current),
3034 worker->current_func);
3035 debug_show_held_locks(current);
3036 dump_stack();
3037 }
3038
3039 /*
3040 * The following prevents a kworker from hogging CPU on !PREEMPTION
3041 * kernels, where a requeueing work item waiting for something to
3042 * happen could deadlock with stop_machine as such work item could
3043 * indefinitely requeue itself while all other CPUs are trapped in
3044 * stop_machine. At the same time, report a quiescent RCU state so
3045 * the same condition doesn't freeze RCU.
3046 */
3047 cond_resched();
3048
3049 raw_spin_lock_irq(&pool->lock);
3050
3051 /*
3052 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3053 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3054 * wq_cpu_intensive_thresh_us. Clear it.
3055 */
3056 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3057
3058 /* tag the worker for identification in schedule() */
3059 worker->last_func = worker->current_func;
3060
3061 /* we're done with it, release */
3062 hash_del(&worker->hentry);
3063 worker->current_work = NULL;
3064 worker->current_func = NULL;
3065 worker->current_pwq = NULL;
3066 worker->current_color = INT_MAX;
3067 pwq_dec_nr_in_flight(pwq, work_data);
3068 }
3069
3070 /**
3071 * process_scheduled_works - process scheduled works
3072 * @worker: self
3073 *
3074 * Process all scheduled works. Please note that the scheduled list
3075 * may change while processing a work, so this function repeatedly
3076 * fetches a work from the top and executes it.
3077 *
3078 * CONTEXT:
3079 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3080 * multiple times.
3081 */
process_scheduled_works(struct worker * worker)3082 static void process_scheduled_works(struct worker *worker)
3083 {
3084 struct work_struct *work;
3085 bool first = true;
3086
3087 while ((work = list_first_entry_or_null(&worker->scheduled,
3088 struct work_struct, entry))) {
3089 if (first) {
3090 worker->pool->watchdog_ts = jiffies;
3091 first = false;
3092 }
3093 process_one_work(worker, work);
3094 }
3095 }
3096
set_pf_worker(bool val)3097 static void set_pf_worker(bool val)
3098 {
3099 mutex_lock(&wq_pool_attach_mutex);
3100 if (val)
3101 current->flags |= PF_WQ_WORKER;
3102 else
3103 current->flags &= ~PF_WQ_WORKER;
3104 mutex_unlock(&wq_pool_attach_mutex);
3105 }
3106
3107 /**
3108 * worker_thread - the worker thread function
3109 * @__worker: self
3110 *
3111 * The worker thread function. All workers belong to a worker_pool -
3112 * either a per-cpu one or dynamic unbound one. These workers process all
3113 * work items regardless of their specific target workqueue. The only
3114 * exception is work items which belong to workqueues with a rescuer which
3115 * will be explained in rescuer_thread().
3116 *
3117 * Return: 0
3118 */
worker_thread(void * __worker)3119 static int worker_thread(void *__worker)
3120 {
3121 struct worker *worker = __worker;
3122 struct worker_pool *pool = worker->pool;
3123
3124 /* tell the scheduler that this is a workqueue worker */
3125 set_pf_worker(true);
3126 woke_up:
3127 raw_spin_lock_irq(&pool->lock);
3128
3129 /* am I supposed to die? */
3130 if (unlikely(worker->flags & WORKER_DIE)) {
3131 raw_spin_unlock_irq(&pool->lock);
3132 set_pf_worker(false);
3133
3134 set_task_comm(worker->task, "kworker/dying");
3135 ida_free(&pool->worker_ida, worker->id);
3136 worker_detach_from_pool(worker);
3137 WARN_ON_ONCE(!list_empty(&worker->entry));
3138 kfree(worker);
3139 return 0;
3140 }
3141
3142 worker_leave_idle(worker);
3143 recheck:
3144 /* no more worker necessary? */
3145 if (!need_more_worker(pool))
3146 goto sleep;
3147
3148 /* do we need to manage? */
3149 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3150 goto recheck;
3151
3152 /*
3153 * ->scheduled list can only be filled while a worker is
3154 * preparing to process a work or actually processing it.
3155 * Make sure nobody diddled with it while I was sleeping.
3156 */
3157 WARN_ON_ONCE(!list_empty(&worker->scheduled));
3158
3159 /*
3160 * Finish PREP stage. We're guaranteed to have at least one idle
3161 * worker or that someone else has already assumed the manager
3162 * role. This is where @worker starts participating in concurrency
3163 * management if applicable and concurrency management is restored
3164 * after being rebound. See rebind_workers() for details.
3165 */
3166 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3167
3168 do {
3169 struct work_struct *work =
3170 list_first_entry(&pool->worklist,
3171 struct work_struct, entry);
3172
3173 if (assign_work(work, worker, NULL))
3174 process_scheduled_works(worker);
3175 } while (keep_working(pool));
3176
3177 worker_set_flags(worker, WORKER_PREP);
3178 sleep:
3179 /*
3180 * pool->lock is held and there's no work to process and no need to
3181 * manage, sleep. Workers are woken up only while holding
3182 * pool->lock or from local cpu, so setting the current state
3183 * before releasing pool->lock is enough to prevent losing any
3184 * event.
3185 */
3186 worker_enter_idle(worker);
3187 __set_current_state(TASK_IDLE);
3188 raw_spin_unlock_irq(&pool->lock);
3189 schedule();
3190 goto woke_up;
3191 }
3192
3193 /**
3194 * rescuer_thread - the rescuer thread function
3195 * @__rescuer: self
3196 *
3197 * Workqueue rescuer thread function. There's one rescuer for each
3198 * workqueue which has WQ_MEM_RECLAIM set.
3199 *
3200 * Regular work processing on a pool may block trying to create a new
3201 * worker which uses GFP_KERNEL allocation which has slight chance of
3202 * developing into deadlock if some works currently on the same queue
3203 * need to be processed to satisfy the GFP_KERNEL allocation. This is
3204 * the problem rescuer solves.
3205 *
3206 * When such condition is possible, the pool summons rescuers of all
3207 * workqueues which have works queued on the pool and let them process
3208 * those works so that forward progress can be guaranteed.
3209 *
3210 * This should happen rarely.
3211 *
3212 * Return: 0
3213 */
rescuer_thread(void * __rescuer)3214 static int rescuer_thread(void *__rescuer)
3215 {
3216 struct worker *rescuer = __rescuer;
3217 struct workqueue_struct *wq = rescuer->rescue_wq;
3218 bool should_stop;
3219
3220 set_user_nice(current, RESCUER_NICE_LEVEL);
3221
3222 /*
3223 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
3224 * doesn't participate in concurrency management.
3225 */
3226 set_pf_worker(true);
3227 repeat:
3228 set_current_state(TASK_IDLE);
3229
3230 /*
3231 * By the time the rescuer is requested to stop, the workqueue
3232 * shouldn't have any work pending, but @wq->maydays may still have
3233 * pwq(s) queued. This can happen by non-rescuer workers consuming
3234 * all the work items before the rescuer got to them. Go through
3235 * @wq->maydays processing before acting on should_stop so that the
3236 * list is always empty on exit.
3237 */
3238 should_stop = kthread_should_stop();
3239
3240 /* see whether any pwq is asking for help */
3241 raw_spin_lock_irq(&wq_mayday_lock);
3242
3243 while (!list_empty(&wq->maydays)) {
3244 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3245 struct pool_workqueue, mayday_node);
3246 struct worker_pool *pool = pwq->pool;
3247 struct work_struct *work, *n;
3248
3249 __set_current_state(TASK_RUNNING);
3250 list_del_init(&pwq->mayday_node);
3251
3252 raw_spin_unlock_irq(&wq_mayday_lock);
3253
3254 worker_attach_to_pool(rescuer, pool);
3255
3256 raw_spin_lock_irq(&pool->lock);
3257
3258 /*
3259 * Slurp in all works issued via this workqueue and
3260 * process'em.
3261 */
3262 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3263 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3264 if (get_work_pwq(work) == pwq &&
3265 assign_work(work, rescuer, &n))
3266 pwq->stats[PWQ_STAT_RESCUED]++;
3267 }
3268
3269 if (!list_empty(&rescuer->scheduled)) {
3270 process_scheduled_works(rescuer);
3271
3272 /*
3273 * The above execution of rescued work items could
3274 * have created more to rescue through
3275 * pwq_activate_first_inactive() or chained
3276 * queueing. Let's put @pwq back on mayday list so
3277 * that such back-to-back work items, which may be
3278 * being used to relieve memory pressure, don't
3279 * incur MAYDAY_INTERVAL delay inbetween.
3280 */
3281 if (pwq->nr_active && need_to_create_worker(pool)) {
3282 raw_spin_lock(&wq_mayday_lock);
3283 /*
3284 * Queue iff we aren't racing destruction
3285 * and somebody else hasn't queued it already.
3286 */
3287 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3288 get_pwq(pwq);
3289 list_add_tail(&pwq->mayday_node, &wq->maydays);
3290 }
3291 raw_spin_unlock(&wq_mayday_lock);
3292 }
3293 }
3294
3295 /*
3296 * Put the reference grabbed by send_mayday(). @pool won't
3297 * go away while we're still attached to it.
3298 */
3299 put_pwq(pwq);
3300
3301 /*
3302 * Leave this pool. Notify regular workers; otherwise, we end up
3303 * with 0 concurrency and stalling the execution.
3304 */
3305 kick_pool(pool);
3306
3307 raw_spin_unlock_irq(&pool->lock);
3308
3309 worker_detach_from_pool(rescuer);
3310
3311 raw_spin_lock_irq(&wq_mayday_lock);
3312 }
3313
3314 raw_spin_unlock_irq(&wq_mayday_lock);
3315
3316 if (should_stop) {
3317 __set_current_state(TASK_RUNNING);
3318 set_pf_worker(false);
3319 return 0;
3320 }
3321
3322 /* rescuers should never participate in concurrency management */
3323 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3324 schedule();
3325 goto repeat;
3326 }
3327
3328 /**
3329 * check_flush_dependency - check for flush dependency sanity
3330 * @target_wq: workqueue being flushed
3331 * @target_work: work item being flushed (NULL for workqueue flushes)
3332 *
3333 * %current is trying to flush the whole @target_wq or @target_work on it.
3334 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
3335 * reclaiming memory or running on a workqueue which doesn't have
3336 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
3337 * a deadlock.
3338 */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work)3339 static void check_flush_dependency(struct workqueue_struct *target_wq,
3340 struct work_struct *target_work)
3341 {
3342 work_func_t target_func = target_work ? target_work->func : NULL;
3343 struct worker *worker;
3344
3345 if (target_wq->flags & WQ_MEM_RECLAIM)
3346 return;
3347
3348 worker = current_wq_worker();
3349
3350 WARN_ONCE(current->flags & PF_MEMALLOC,
3351 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3352 current->pid, current->comm, target_wq->name, target_func);
3353 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3354 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3355 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3356 worker->current_pwq->wq->name, worker->current_func,
3357 target_wq->name, target_func);
3358 }
3359
3360 struct wq_barrier {
3361 struct work_struct work;
3362 struct completion done;
3363 struct task_struct *task; /* purely informational */
3364 };
3365
wq_barrier_func(struct work_struct * work)3366 static void wq_barrier_func(struct work_struct *work)
3367 {
3368 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3369 complete(&barr->done);
3370 }
3371
3372 /**
3373 * insert_wq_barrier - insert a barrier work
3374 * @pwq: pwq to insert barrier into
3375 * @barr: wq_barrier to insert
3376 * @target: target work to attach @barr to
3377 * @worker: worker currently executing @target, NULL if @target is not executing
3378 *
3379 * @barr is linked to @target such that @barr is completed only after
3380 * @target finishes execution. Please note that the ordering
3381 * guarantee is observed only with respect to @target and on the local
3382 * cpu.
3383 *
3384 * Currently, a queued barrier can't be canceled. This is because
3385 * try_to_grab_pending() can't determine whether the work to be
3386 * grabbed is at the head of the queue and thus can't clear LINKED
3387 * flag of the previous work while there must be a valid next work
3388 * after a work with LINKED flag set.
3389 *
3390 * Note that when @worker is non-NULL, @target may be modified
3391 * underneath us, so we can't reliably determine pwq from @target.
3392 *
3393 * CONTEXT:
3394 * raw_spin_lock_irq(pool->lock).
3395 */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)3396 static void insert_wq_barrier(struct pool_workqueue *pwq,
3397 struct wq_barrier *barr,
3398 struct work_struct *target, struct worker *worker)
3399 {
3400 unsigned int work_flags = 0;
3401 unsigned int work_color;
3402 struct list_head *head;
3403
3404 /*
3405 * debugobject calls are safe here even with pool->lock locked
3406 * as we know for sure that this will not trigger any of the
3407 * checks and call back into the fixup functions where we
3408 * might deadlock.
3409 */
3410 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
3411 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3412
3413 init_completion_map(&barr->done, &target->lockdep_map);
3414
3415 barr->task = current;
3416
3417 /* The barrier work item does not participate in nr_active. */
3418 work_flags |= WORK_STRUCT_INACTIVE;
3419
3420 /*
3421 * If @target is currently being executed, schedule the
3422 * barrier to the worker; otherwise, put it after @target.
3423 */
3424 if (worker) {
3425 head = worker->scheduled.next;
3426 work_color = worker->current_color;
3427 } else {
3428 unsigned long *bits = work_data_bits(target);
3429
3430 head = target->entry.next;
3431 /* there can already be other linked works, inherit and set */
3432 work_flags |= *bits & WORK_STRUCT_LINKED;
3433 work_color = get_work_color(*bits);
3434 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
3435 }
3436
3437 pwq->nr_in_flight[work_color]++;
3438 work_flags |= work_color_to_flags(work_color);
3439
3440 insert_work(pwq, &barr->work, head, work_flags);
3441 }
3442
3443 /**
3444 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3445 * @wq: workqueue being flushed
3446 * @flush_color: new flush color, < 0 for no-op
3447 * @work_color: new work color, < 0 for no-op
3448 *
3449 * Prepare pwqs for workqueue flushing.
3450 *
3451 * If @flush_color is non-negative, flush_color on all pwqs should be
3452 * -1. If no pwq has in-flight commands at the specified color, all
3453 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
3454 * has in flight commands, its pwq->flush_color is set to
3455 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3456 * wakeup logic is armed and %true is returned.
3457 *
3458 * The caller should have initialized @wq->first_flusher prior to
3459 * calling this function with non-negative @flush_color. If
3460 * @flush_color is negative, no flush color update is done and %false
3461 * is returned.
3462 *
3463 * If @work_color is non-negative, all pwqs should have the same
3464 * work_color which is previous to @work_color and all will be
3465 * advanced to @work_color.
3466 *
3467 * CONTEXT:
3468 * mutex_lock(wq->mutex).
3469 *
3470 * Return:
3471 * %true if @flush_color >= 0 and there's something to flush. %false
3472 * otherwise.
3473 */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)3474 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3475 int flush_color, int work_color)
3476 {
3477 bool wait = false;
3478 struct pool_workqueue *pwq;
3479
3480 if (flush_color >= 0) {
3481 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3482 atomic_set(&wq->nr_pwqs_to_flush, 1);
3483 }
3484
3485 for_each_pwq(pwq, wq) {
3486 struct worker_pool *pool = pwq->pool;
3487
3488 raw_spin_lock_irq(&pool->lock);
3489
3490 if (flush_color >= 0) {
3491 WARN_ON_ONCE(pwq->flush_color != -1);
3492
3493 if (pwq->nr_in_flight[flush_color]) {
3494 pwq->flush_color = flush_color;
3495 atomic_inc(&wq->nr_pwqs_to_flush);
3496 wait = true;
3497 }
3498 }
3499
3500 if (work_color >= 0) {
3501 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3502 pwq->work_color = work_color;
3503 }
3504
3505 raw_spin_unlock_irq(&pool->lock);
3506 }
3507
3508 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3509 complete(&wq->first_flusher->done);
3510
3511 return wait;
3512 }
3513
3514 /**
3515 * __flush_workqueue - ensure that any scheduled work has run to completion.
3516 * @wq: workqueue to flush
3517 *
3518 * This function sleeps until all work items which were queued on entry
3519 * have finished execution, but it is not livelocked by new incoming ones.
3520 */
__flush_workqueue(struct workqueue_struct * wq)3521 void __flush_workqueue(struct workqueue_struct *wq)
3522 {
3523 struct wq_flusher this_flusher = {
3524 .list = LIST_HEAD_INIT(this_flusher.list),
3525 .flush_color = -1,
3526 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
3527 };
3528 int next_color;
3529
3530 if (WARN_ON(!wq_online))
3531 return;
3532
3533 lock_map_acquire(&wq->lockdep_map);
3534 lock_map_release(&wq->lockdep_map);
3535
3536 mutex_lock(&wq->mutex);
3537
3538 /*
3539 * Start-to-wait phase
3540 */
3541 next_color = work_next_color(wq->work_color);
3542
3543 if (next_color != wq->flush_color) {
3544 /*
3545 * Color space is not full. The current work_color
3546 * becomes our flush_color and work_color is advanced
3547 * by one.
3548 */
3549 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3550 this_flusher.flush_color = wq->work_color;
3551 wq->work_color = next_color;
3552
3553 if (!wq->first_flusher) {
3554 /* no flush in progress, become the first flusher */
3555 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3556
3557 wq->first_flusher = &this_flusher;
3558
3559 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3560 wq->work_color)) {
3561 /* nothing to flush, done */
3562 wq->flush_color = next_color;
3563 wq->first_flusher = NULL;
3564 goto out_unlock;
3565 }
3566 } else {
3567 /* wait in queue */
3568 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3569 list_add_tail(&this_flusher.list, &wq->flusher_queue);
3570 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3571 }
3572 } else {
3573 /*
3574 * Oops, color space is full, wait on overflow queue.
3575 * The next flush completion will assign us
3576 * flush_color and transfer to flusher_queue.
3577 */
3578 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3579 }
3580
3581 check_flush_dependency(wq, NULL);
3582
3583 mutex_unlock(&wq->mutex);
3584
3585 wait_for_completion(&this_flusher.done);
3586
3587 /*
3588 * Wake-up-and-cascade phase
3589 *
3590 * First flushers are responsible for cascading flushes and
3591 * handling overflow. Non-first flushers can simply return.
3592 */
3593 if (READ_ONCE(wq->first_flusher) != &this_flusher)
3594 return;
3595
3596 mutex_lock(&wq->mutex);
3597
3598 /* we might have raced, check again with mutex held */
3599 if (wq->first_flusher != &this_flusher)
3600 goto out_unlock;
3601
3602 WRITE_ONCE(wq->first_flusher, NULL);
3603
3604 WARN_ON_ONCE(!list_empty(&this_flusher.list));
3605 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3606
3607 while (true) {
3608 struct wq_flusher *next, *tmp;
3609
3610 /* complete all the flushers sharing the current flush color */
3611 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3612 if (next->flush_color != wq->flush_color)
3613 break;
3614 list_del_init(&next->list);
3615 complete(&next->done);
3616 }
3617
3618 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
3619 wq->flush_color != work_next_color(wq->work_color));
3620
3621 /* this flush_color is finished, advance by one */
3622 wq->flush_color = work_next_color(wq->flush_color);
3623
3624 /* one color has been freed, handle overflow queue */
3625 if (!list_empty(&wq->flusher_overflow)) {
3626 /*
3627 * Assign the same color to all overflowed
3628 * flushers, advance work_color and append to
3629 * flusher_queue. This is the start-to-wait
3630 * phase for these overflowed flushers.
3631 */
3632 list_for_each_entry(tmp, &wq->flusher_overflow, list)
3633 tmp->flush_color = wq->work_color;
3634
3635 wq->work_color = work_next_color(wq->work_color);
3636
3637 list_splice_tail_init(&wq->flusher_overflow,
3638 &wq->flusher_queue);
3639 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3640 }
3641
3642 if (list_empty(&wq->flusher_queue)) {
3643 WARN_ON_ONCE(wq->flush_color != wq->work_color);
3644 break;
3645 }
3646
3647 /*
3648 * Need to flush more colors. Make the next flusher
3649 * the new first flusher and arm pwqs.
3650 */
3651 WARN_ON_ONCE(wq->flush_color == wq->work_color);
3652 WARN_ON_ONCE(wq->flush_color != next->flush_color);
3653
3654 list_del_init(&next->list);
3655 wq->first_flusher = next;
3656
3657 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
3658 break;
3659
3660 /*
3661 * Meh... this color is already done, clear first
3662 * flusher and repeat cascading.
3663 */
3664 wq->first_flusher = NULL;
3665 }
3666
3667 out_unlock:
3668 mutex_unlock(&wq->mutex);
3669 }
3670 EXPORT_SYMBOL(__flush_workqueue);
3671
3672 /**
3673 * drain_workqueue - drain a workqueue
3674 * @wq: workqueue to drain
3675 *
3676 * Wait until the workqueue becomes empty. While draining is in progress,
3677 * only chain queueing is allowed. IOW, only currently pending or running
3678 * work items on @wq can queue further work items on it. @wq is flushed
3679 * repeatedly until it becomes empty. The number of flushing is determined
3680 * by the depth of chaining and should be relatively short. Whine if it
3681 * takes too long.
3682 */
drain_workqueue(struct workqueue_struct * wq)3683 void drain_workqueue(struct workqueue_struct *wq)
3684 {
3685 unsigned int flush_cnt = 0;
3686 struct pool_workqueue *pwq;
3687
3688 /*
3689 * __queue_work() needs to test whether there are drainers, is much
3690 * hotter than drain_workqueue() and already looks at @wq->flags.
3691 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
3692 */
3693 mutex_lock(&wq->mutex);
3694 if (!wq->nr_drainers++)
3695 wq->flags |= __WQ_DRAINING;
3696 mutex_unlock(&wq->mutex);
3697 reflush:
3698 __flush_workqueue(wq);
3699
3700 mutex_lock(&wq->mutex);
3701
3702 for_each_pwq(pwq, wq) {
3703 bool drained;
3704
3705 raw_spin_lock_irq(&pwq->pool->lock);
3706 drained = pwq_is_empty(pwq);
3707 raw_spin_unlock_irq(&pwq->pool->lock);
3708
3709 if (drained)
3710 continue;
3711
3712 if (++flush_cnt == 10 ||
3713 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3714 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3715 wq->name, __func__, flush_cnt);
3716
3717 mutex_unlock(&wq->mutex);
3718 goto reflush;
3719 }
3720
3721 if (!--wq->nr_drainers)
3722 wq->flags &= ~__WQ_DRAINING;
3723 mutex_unlock(&wq->mutex);
3724 }
3725 EXPORT_SYMBOL_GPL(drain_workqueue);
3726
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)3727 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3728 bool from_cancel)
3729 {
3730 struct worker *worker = NULL;
3731 struct worker_pool *pool;
3732 struct pool_workqueue *pwq;
3733
3734 might_sleep();
3735
3736 rcu_read_lock();
3737 pool = get_work_pool(work);
3738 if (!pool) {
3739 rcu_read_unlock();
3740 return false;
3741 }
3742
3743 raw_spin_lock_irq(&pool->lock);
3744 /* see the comment in try_to_grab_pending() with the same code */
3745 pwq = get_work_pwq(work);
3746 if (pwq) {
3747 if (unlikely(pwq->pool != pool))
3748 goto already_gone;
3749 } else {
3750 worker = find_worker_executing_work(pool, work);
3751 if (!worker)
3752 goto already_gone;
3753 pwq = worker->current_pwq;
3754 }
3755
3756 check_flush_dependency(pwq->wq, work);
3757
3758 insert_wq_barrier(pwq, barr, work, worker);
3759 raw_spin_unlock_irq(&pool->lock);
3760
3761 /*
3762 * Force a lock recursion deadlock when using flush_work() inside a
3763 * single-threaded or rescuer equipped workqueue.
3764 *
3765 * For single threaded workqueues the deadlock happens when the work
3766 * is after the work issuing the flush_work(). For rescuer equipped
3767 * workqueues the deadlock happens when the rescuer stalls, blocking
3768 * forward progress.
3769 */
3770 if (!from_cancel &&
3771 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3772 lock_map_acquire(&pwq->wq->lockdep_map);
3773 lock_map_release(&pwq->wq->lockdep_map);
3774 }
3775 rcu_read_unlock();
3776 return true;
3777 already_gone:
3778 raw_spin_unlock_irq(&pool->lock);
3779 rcu_read_unlock();
3780 return false;
3781 }
3782
__flush_work(struct work_struct * work,bool from_cancel)3783 static bool __flush_work(struct work_struct *work, bool from_cancel)
3784 {
3785 struct wq_barrier barr;
3786
3787 if (WARN_ON(!wq_online))
3788 return false;
3789
3790 if (WARN_ON(!work->func))
3791 return false;
3792
3793 lock_map_acquire(&work->lockdep_map);
3794 lock_map_release(&work->lockdep_map);
3795
3796 if (start_flush_work(work, &barr, from_cancel)) {
3797 wait_for_completion(&barr.done);
3798 destroy_work_on_stack(&barr.work);
3799 return true;
3800 } else {
3801 return false;
3802 }
3803 }
3804
3805 /**
3806 * flush_work - wait for a work to finish executing the last queueing instance
3807 * @work: the work to flush
3808 *
3809 * Wait until @work has finished execution. @work is guaranteed to be idle
3810 * on return if it hasn't been requeued since flush started.
3811 *
3812 * Return:
3813 * %true if flush_work() waited for the work to finish execution,
3814 * %false if it was already idle.
3815 */
flush_work(struct work_struct * work)3816 bool flush_work(struct work_struct *work)
3817 {
3818 return __flush_work(work, false);
3819 }
3820 EXPORT_SYMBOL_GPL(flush_work);
3821
3822 struct cwt_wait {
3823 wait_queue_entry_t wait;
3824 struct work_struct *work;
3825 };
3826
cwt_wakefn(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)3827 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3828 {
3829 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3830
3831 if (cwait->work != key)
3832 return 0;
3833 return autoremove_wake_function(wait, mode, sync, key);
3834 }
3835
__cancel_work_timer(struct work_struct * work,bool is_dwork)3836 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3837 {
3838 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3839 unsigned long flags;
3840 int ret;
3841
3842 do {
3843 ret = try_to_grab_pending(work, is_dwork, &flags);
3844 /*
3845 * If someone else is already canceling, wait for it to
3846 * finish. flush_work() doesn't work for PREEMPT_NONE
3847 * because we may get scheduled between @work's completion
3848 * and the other canceling task resuming and clearing
3849 * CANCELING - flush_work() will return false immediately
3850 * as @work is no longer busy, try_to_grab_pending() will
3851 * return -ENOENT as @work is still being canceled and the
3852 * other canceling task won't be able to clear CANCELING as
3853 * we're hogging the CPU.
3854 *
3855 * Let's wait for completion using a waitqueue. As this
3856 * may lead to the thundering herd problem, use a custom
3857 * wake function which matches @work along with exclusive
3858 * wait and wakeup.
3859 */
3860 if (unlikely(ret == -ENOENT)) {
3861 struct cwt_wait cwait;
3862
3863 init_wait(&cwait.wait);
3864 cwait.wait.func = cwt_wakefn;
3865 cwait.work = work;
3866
3867 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3868 TASK_UNINTERRUPTIBLE);
3869 if (work_is_canceling(work))
3870 schedule();
3871 finish_wait(&cancel_waitq, &cwait.wait);
3872 }
3873 } while (unlikely(ret < 0));
3874
3875 /* tell other tasks trying to grab @work to back off */
3876 mark_work_canceling(work);
3877 local_irq_restore(flags);
3878
3879 /*
3880 * This allows canceling during early boot. We know that @work
3881 * isn't executing.
3882 */
3883 if (wq_online)
3884 __flush_work(work, true);
3885
3886 clear_work_data(work);
3887
3888 /*
3889 * Paired with prepare_to_wait() above so that either
3890 * waitqueue_active() is visible here or !work_is_canceling() is
3891 * visible there.
3892 */
3893 smp_mb();
3894 if (waitqueue_active(&cancel_waitq))
3895 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3896
3897 return ret;
3898 }
3899
3900 /**
3901 * cancel_work_sync - cancel a work and wait for it to finish
3902 * @work: the work to cancel
3903 *
3904 * Cancel @work and wait for its execution to finish. This function
3905 * can be used even if the work re-queues itself or migrates to
3906 * another workqueue. On return from this function, @work is
3907 * guaranteed to be not pending or executing on any CPU.
3908 *
3909 * cancel_work_sync(&delayed_work->work) must not be used for
3910 * delayed_work's. Use cancel_delayed_work_sync() instead.
3911 *
3912 * The caller must ensure that the workqueue on which @work was last
3913 * queued can't be destroyed before this function returns.
3914 *
3915 * Return:
3916 * %true if @work was pending, %false otherwise.
3917 */
cancel_work_sync(struct work_struct * work)3918 bool cancel_work_sync(struct work_struct *work)
3919 {
3920 return __cancel_work_timer(work, false);
3921 }
3922 EXPORT_SYMBOL_GPL(cancel_work_sync);
3923
3924 /**
3925 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3926 * @dwork: the delayed work to flush
3927 *
3928 * Delayed timer is cancelled and the pending work is queued for
3929 * immediate execution. Like flush_work(), this function only
3930 * considers the last queueing instance of @dwork.
3931 *
3932 * Return:
3933 * %true if flush_work() waited for the work to finish execution,
3934 * %false if it was already idle.
3935 */
flush_delayed_work(struct delayed_work * dwork)3936 bool flush_delayed_work(struct delayed_work *dwork)
3937 {
3938 local_irq_disable();
3939 if (del_timer_sync(&dwork->timer))
3940 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3941 local_irq_enable();
3942 return flush_work(&dwork->work);
3943 }
3944 EXPORT_SYMBOL(flush_delayed_work);
3945
3946 /**
3947 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3948 * @rwork: the rcu work to flush
3949 *
3950 * Return:
3951 * %true if flush_rcu_work() waited for the work to finish execution,
3952 * %false if it was already idle.
3953 */
flush_rcu_work(struct rcu_work * rwork)3954 bool flush_rcu_work(struct rcu_work *rwork)
3955 {
3956 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3957 rcu_barrier();
3958 flush_work(&rwork->work);
3959 return true;
3960 } else {
3961 return flush_work(&rwork->work);
3962 }
3963 }
3964 EXPORT_SYMBOL(flush_rcu_work);
3965
__cancel_work(struct work_struct * work,bool is_dwork)3966 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3967 {
3968 unsigned long flags;
3969 int ret;
3970
3971 do {
3972 ret = try_to_grab_pending(work, is_dwork, &flags);
3973 } while (unlikely(ret == -EAGAIN));
3974
3975 if (unlikely(ret < 0))
3976 return false;
3977
3978 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3979 local_irq_restore(flags);
3980 return ret;
3981 }
3982
3983 /*
3984 * See cancel_delayed_work()
3985 */
cancel_work(struct work_struct * work)3986 bool cancel_work(struct work_struct *work)
3987 {
3988 return __cancel_work(work, false);
3989 }
3990 EXPORT_SYMBOL(cancel_work);
3991
3992 /**
3993 * cancel_delayed_work - cancel a delayed work
3994 * @dwork: delayed_work to cancel
3995 *
3996 * Kill off a pending delayed_work.
3997 *
3998 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3999 * pending.
4000 *
4001 * Note:
4002 * The work callback function may still be running on return, unless
4003 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
4004 * use cancel_delayed_work_sync() to wait on it.
4005 *
4006 * This function is safe to call from any context including IRQ handler.
4007 */
cancel_delayed_work(struct delayed_work * dwork)4008 bool cancel_delayed_work(struct delayed_work *dwork)
4009 {
4010 return __cancel_work(&dwork->work, true);
4011 }
4012 EXPORT_SYMBOL(cancel_delayed_work);
4013
4014 /**
4015 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4016 * @dwork: the delayed work cancel
4017 *
4018 * This is cancel_work_sync() for delayed works.
4019 *
4020 * Return:
4021 * %true if @dwork was pending, %false otherwise.
4022 */
cancel_delayed_work_sync(struct delayed_work * dwork)4023 bool cancel_delayed_work_sync(struct delayed_work *dwork)
4024 {
4025 return __cancel_work_timer(&dwork->work, true);
4026 }
4027 EXPORT_SYMBOL(cancel_delayed_work_sync);
4028
4029 /**
4030 * schedule_on_each_cpu - execute a function synchronously on each online CPU
4031 * @func: the function to call
4032 *
4033 * schedule_on_each_cpu() executes @func on each online CPU using the
4034 * system workqueue and blocks until all CPUs have completed.
4035 * schedule_on_each_cpu() is very slow.
4036 *
4037 * Return:
4038 * 0 on success, -errno on failure.
4039 */
schedule_on_each_cpu(work_func_t func)4040 int schedule_on_each_cpu(work_func_t func)
4041 {
4042 int cpu;
4043 struct work_struct __percpu *works;
4044
4045 works = alloc_percpu(struct work_struct);
4046 if (!works)
4047 return -ENOMEM;
4048
4049 cpus_read_lock();
4050
4051 for_each_online_cpu(cpu) {
4052 struct work_struct *work = per_cpu_ptr(works, cpu);
4053
4054 INIT_WORK(work, func);
4055 schedule_work_on(cpu, work);
4056 }
4057
4058 for_each_online_cpu(cpu)
4059 flush_work(per_cpu_ptr(works, cpu));
4060
4061 cpus_read_unlock();
4062 free_percpu(works);
4063 return 0;
4064 }
4065
4066 /**
4067 * execute_in_process_context - reliably execute the routine with user context
4068 * @fn: the function to execute
4069 * @ew: guaranteed storage for the execute work structure (must
4070 * be available when the work executes)
4071 *
4072 * Executes the function immediately if process context is available,
4073 * otherwise schedules the function for delayed execution.
4074 *
4075 * Return: 0 - function was executed
4076 * 1 - function was scheduled for execution
4077 */
execute_in_process_context(work_func_t fn,struct execute_work * ew)4078 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4079 {
4080 if (!in_interrupt()) {
4081 fn(&ew->work);
4082 return 0;
4083 }
4084
4085 INIT_WORK(&ew->work, fn);
4086 schedule_work(&ew->work);
4087
4088 return 1;
4089 }
4090 EXPORT_SYMBOL_GPL(execute_in_process_context);
4091
4092 /**
4093 * free_workqueue_attrs - free a workqueue_attrs
4094 * @attrs: workqueue_attrs to free
4095 *
4096 * Undo alloc_workqueue_attrs().
4097 */
free_workqueue_attrs(struct workqueue_attrs * attrs)4098 void free_workqueue_attrs(struct workqueue_attrs *attrs)
4099 {
4100 if (attrs) {
4101 free_cpumask_var(attrs->cpumask);
4102 free_cpumask_var(attrs->__pod_cpumask);
4103 kfree(attrs);
4104 }
4105 }
4106
4107 /**
4108 * alloc_workqueue_attrs - allocate a workqueue_attrs
4109 *
4110 * Allocate a new workqueue_attrs, initialize with default settings and
4111 * return it.
4112 *
4113 * Return: The allocated new workqueue_attr on success. %NULL on failure.
4114 */
alloc_workqueue_attrs(void)4115 struct workqueue_attrs *alloc_workqueue_attrs(void)
4116 {
4117 struct workqueue_attrs *attrs;
4118
4119 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4120 if (!attrs)
4121 goto fail;
4122 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4123 goto fail;
4124 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4125 goto fail;
4126
4127 cpumask_copy(attrs->cpumask, cpu_possible_mask);
4128 attrs->affn_scope = WQ_AFFN_DFL;
4129 return attrs;
4130 fail:
4131 free_workqueue_attrs(attrs);
4132 return NULL;
4133 }
4134
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)4135 static void copy_workqueue_attrs(struct workqueue_attrs *to,
4136 const struct workqueue_attrs *from)
4137 {
4138 to->nice = from->nice;
4139 cpumask_copy(to->cpumask, from->cpumask);
4140 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4141 to->affn_strict = from->affn_strict;
4142
4143 /*
4144 * Unlike hash and equality test, copying shouldn't ignore wq-only
4145 * fields as copying is used for both pool and wq attrs. Instead,
4146 * get_unbound_pool() explicitly clears the fields.
4147 */
4148 to->affn_scope = from->affn_scope;
4149 to->ordered = from->ordered;
4150 }
4151
4152 /*
4153 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4154 * comments in 'struct workqueue_attrs' definition.
4155 */
wqattrs_clear_for_pool(struct workqueue_attrs * attrs)4156 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4157 {
4158 attrs->affn_scope = WQ_AFFN_NR_TYPES;
4159 attrs->ordered = false;
4160 }
4161
4162 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)4163 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4164 {
4165 u32 hash = 0;
4166
4167 hash = jhash_1word(attrs->nice, hash);
4168 hash = jhash(cpumask_bits(attrs->cpumask),
4169 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4170 hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4171 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4172 hash = jhash_1word(attrs->affn_strict, hash);
4173 return hash;
4174 }
4175
4176 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)4177 static bool wqattrs_equal(const struct workqueue_attrs *a,
4178 const struct workqueue_attrs *b)
4179 {
4180 if (a->nice != b->nice)
4181 return false;
4182 if (!cpumask_equal(a->cpumask, b->cpumask))
4183 return false;
4184 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4185 return false;
4186 if (a->affn_strict != b->affn_strict)
4187 return false;
4188 return true;
4189 }
4190
4191 /* Update @attrs with actually available CPUs */
wqattrs_actualize_cpumask(struct workqueue_attrs * attrs,const cpumask_t * unbound_cpumask)4192 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4193 const cpumask_t *unbound_cpumask)
4194 {
4195 /*
4196 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4197 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4198 * @unbound_cpumask.
4199 */
4200 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4201 if (unlikely(cpumask_empty(attrs->cpumask)))
4202 cpumask_copy(attrs->cpumask, unbound_cpumask);
4203 }
4204
4205 /* find wq_pod_type to use for @attrs */
4206 static const struct wq_pod_type *
wqattrs_pod_type(const struct workqueue_attrs * attrs)4207 wqattrs_pod_type(const struct workqueue_attrs *attrs)
4208 {
4209 enum wq_affn_scope scope;
4210 struct wq_pod_type *pt;
4211
4212 /* to synchronize access to wq_affn_dfl */
4213 lockdep_assert_held(&wq_pool_mutex);
4214
4215 if (attrs->affn_scope == WQ_AFFN_DFL)
4216 scope = wq_affn_dfl;
4217 else
4218 scope = attrs->affn_scope;
4219
4220 pt = &wq_pod_types[scope];
4221
4222 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4223 likely(pt->nr_pods))
4224 return pt;
4225
4226 /*
4227 * Before workqueue_init_topology(), only SYSTEM is available which is
4228 * initialized in workqueue_init_early().
4229 */
4230 pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4231 BUG_ON(!pt->nr_pods);
4232 return pt;
4233 }
4234
4235 /**
4236 * init_worker_pool - initialize a newly zalloc'd worker_pool
4237 * @pool: worker_pool to initialize
4238 *
4239 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
4240 *
4241 * Return: 0 on success, -errno on failure. Even on failure, all fields
4242 * inside @pool proper are initialized and put_unbound_pool() can be called
4243 * on @pool safely to release it.
4244 */
init_worker_pool(struct worker_pool * pool)4245 static int init_worker_pool(struct worker_pool *pool)
4246 {
4247 raw_spin_lock_init(&pool->lock);
4248 pool->id = -1;
4249 pool->cpu = -1;
4250 pool->node = NUMA_NO_NODE;
4251 pool->flags |= POOL_DISASSOCIATED;
4252 pool->watchdog_ts = jiffies;
4253 INIT_LIST_HEAD(&pool->worklist);
4254 INIT_LIST_HEAD(&pool->idle_list);
4255 hash_init(pool->busy_hash);
4256
4257 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4258 INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4259
4260 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4261
4262 INIT_LIST_HEAD(&pool->workers);
4263 INIT_LIST_HEAD(&pool->dying_workers);
4264
4265 ida_init(&pool->worker_ida);
4266 INIT_HLIST_NODE(&pool->hash_node);
4267 pool->refcnt = 1;
4268
4269 /* shouldn't fail above this point */
4270 pool->attrs = alloc_workqueue_attrs();
4271 if (!pool->attrs)
4272 return -ENOMEM;
4273
4274 wqattrs_clear_for_pool(pool->attrs);
4275
4276 return 0;
4277 }
4278
4279 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)4280 static void wq_init_lockdep(struct workqueue_struct *wq)
4281 {
4282 char *lock_name;
4283
4284 lockdep_register_key(&wq->key);
4285 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4286 if (!lock_name)
4287 lock_name = wq->name;
4288
4289 wq->lock_name = lock_name;
4290 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
4291 }
4292
wq_unregister_lockdep(struct workqueue_struct * wq)4293 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4294 {
4295 lockdep_unregister_key(&wq->key);
4296 }
4297
wq_free_lockdep(struct workqueue_struct * wq)4298 static void wq_free_lockdep(struct workqueue_struct *wq)
4299 {
4300 if (wq->lock_name != wq->name)
4301 kfree(wq->lock_name);
4302 }
4303 #else
wq_init_lockdep(struct workqueue_struct * wq)4304 static void wq_init_lockdep(struct workqueue_struct *wq)
4305 {
4306 }
4307
wq_unregister_lockdep(struct workqueue_struct * wq)4308 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4309 {
4310 }
4311
wq_free_lockdep(struct workqueue_struct * wq)4312 static void wq_free_lockdep(struct workqueue_struct *wq)
4313 {
4314 }
4315 #endif
4316
free_node_nr_active(struct wq_node_nr_active ** nna_ar)4317 static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4318 {
4319 int node;
4320
4321 for_each_node(node) {
4322 kfree(nna_ar[node]);
4323 nna_ar[node] = NULL;
4324 }
4325
4326 kfree(nna_ar[nr_node_ids]);
4327 nna_ar[nr_node_ids] = NULL;
4328 }
4329
init_node_nr_active(struct wq_node_nr_active * nna)4330 static void init_node_nr_active(struct wq_node_nr_active *nna)
4331 {
4332 atomic_set(&nna->nr, 0);
4333 raw_spin_lock_init(&nna->lock);
4334 INIT_LIST_HEAD(&nna->pending_pwqs);
4335 }
4336
4337 /*
4338 * Each node's nr_active counter will be accessed mostly from its own node and
4339 * should be allocated in the node.
4340 */
alloc_node_nr_active(struct wq_node_nr_active ** nna_ar)4341 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4342 {
4343 struct wq_node_nr_active *nna;
4344 int node;
4345
4346 for_each_node(node) {
4347 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4348 if (!nna)
4349 goto err_free;
4350 init_node_nr_active(nna);
4351 nna_ar[node] = nna;
4352 }
4353
4354 /* [nr_node_ids] is used as the fallback */
4355 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4356 if (!nna)
4357 goto err_free;
4358 init_node_nr_active(nna);
4359 nna_ar[nr_node_ids] = nna;
4360
4361 return 0;
4362
4363 err_free:
4364 free_node_nr_active(nna_ar);
4365 return -ENOMEM;
4366 }
4367
rcu_free_wq(struct rcu_head * rcu)4368 static void rcu_free_wq(struct rcu_head *rcu)
4369 {
4370 struct workqueue_struct *wq =
4371 container_of(rcu, struct workqueue_struct, rcu);
4372
4373 if (wq->flags & WQ_UNBOUND)
4374 free_node_nr_active(wq->node_nr_active);
4375
4376 wq_free_lockdep(wq);
4377 free_percpu(wq->cpu_pwq);
4378 free_workqueue_attrs(wq->unbound_attrs);
4379 kfree(wq);
4380 }
4381
rcu_free_pool(struct rcu_head * rcu)4382 static void rcu_free_pool(struct rcu_head *rcu)
4383 {
4384 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4385
4386 ida_destroy(&pool->worker_ida);
4387 free_workqueue_attrs(pool->attrs);
4388 kfree(pool);
4389 }
4390
4391 /**
4392 * put_unbound_pool - put a worker_pool
4393 * @pool: worker_pool to put
4394 *
4395 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
4396 * safe manner. get_unbound_pool() calls this function on its failure path
4397 * and this function should be able to release pools which went through,
4398 * successfully or not, init_worker_pool().
4399 *
4400 * Should be called with wq_pool_mutex held.
4401 */
put_unbound_pool(struct worker_pool * pool)4402 static void put_unbound_pool(struct worker_pool *pool)
4403 {
4404 DECLARE_COMPLETION_ONSTACK(detach_completion);
4405 struct worker *worker;
4406 LIST_HEAD(cull_list);
4407
4408 lockdep_assert_held(&wq_pool_mutex);
4409
4410 if (--pool->refcnt)
4411 return;
4412
4413 /* sanity checks */
4414 if (WARN_ON(!(pool->cpu < 0)) ||
4415 WARN_ON(!list_empty(&pool->worklist)))
4416 return;
4417
4418 /* release id and unhash */
4419 if (pool->id >= 0)
4420 idr_remove(&worker_pool_idr, pool->id);
4421 hash_del(&pool->hash_node);
4422
4423 /*
4424 * Become the manager and destroy all workers. This prevents
4425 * @pool's workers from blocking on attach_mutex. We're the last
4426 * manager and @pool gets freed with the flag set.
4427 *
4428 * Having a concurrent manager is quite unlikely to happen as we can
4429 * only get here with
4430 * pwq->refcnt == pool->refcnt == 0
4431 * which implies no work queued to the pool, which implies no worker can
4432 * become the manager. However a worker could have taken the role of
4433 * manager before the refcnts dropped to 0, since maybe_create_worker()
4434 * drops pool->lock
4435 */
4436 while (true) {
4437 rcuwait_wait_event(&manager_wait,
4438 !(pool->flags & POOL_MANAGER_ACTIVE),
4439 TASK_UNINTERRUPTIBLE);
4440
4441 mutex_lock(&wq_pool_attach_mutex);
4442 raw_spin_lock_irq(&pool->lock);
4443 if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4444 pool->flags |= POOL_MANAGER_ACTIVE;
4445 break;
4446 }
4447 raw_spin_unlock_irq(&pool->lock);
4448 mutex_unlock(&wq_pool_attach_mutex);
4449 }
4450
4451 while ((worker = first_idle_worker(pool)))
4452 set_worker_dying(worker, &cull_list);
4453 WARN_ON(pool->nr_workers || pool->nr_idle);
4454 raw_spin_unlock_irq(&pool->lock);
4455
4456 wake_dying_workers(&cull_list);
4457
4458 if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
4459 pool->detach_completion = &detach_completion;
4460 mutex_unlock(&wq_pool_attach_mutex);
4461
4462 if (pool->detach_completion)
4463 wait_for_completion(pool->detach_completion);
4464
4465 /* shut down the timers */
4466 del_timer_sync(&pool->idle_timer);
4467 cancel_work_sync(&pool->idle_cull_work);
4468 del_timer_sync(&pool->mayday_timer);
4469
4470 /* RCU protected to allow dereferences from get_work_pool() */
4471 call_rcu(&pool->rcu, rcu_free_pool);
4472 }
4473
4474 /**
4475 * get_unbound_pool - get a worker_pool with the specified attributes
4476 * @attrs: the attributes of the worker_pool to get
4477 *
4478 * Obtain a worker_pool which has the same attributes as @attrs, bump the
4479 * reference count and return it. If there already is a matching
4480 * worker_pool, it will be used; otherwise, this function attempts to
4481 * create a new one.
4482 *
4483 * Should be called with wq_pool_mutex held.
4484 *
4485 * Return: On success, a worker_pool with the same attributes as @attrs.
4486 * On failure, %NULL.
4487 */
get_unbound_pool(const struct workqueue_attrs * attrs)4488 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
4489 {
4490 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
4491 u32 hash = wqattrs_hash(attrs);
4492 struct worker_pool *pool;
4493 int pod, node = NUMA_NO_NODE;
4494
4495 lockdep_assert_held(&wq_pool_mutex);
4496
4497 /* do we already have a matching pool? */
4498 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4499 if (wqattrs_equal(pool->attrs, attrs)) {
4500 pool->refcnt++;
4501 return pool;
4502 }
4503 }
4504
4505 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */
4506 for (pod = 0; pod < pt->nr_pods; pod++) {
4507 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
4508 node = pt->pod_node[pod];
4509 break;
4510 }
4511 }
4512
4513 /* nope, create a new one */
4514 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
4515 if (!pool || init_worker_pool(pool) < 0)
4516 goto fail;
4517
4518 pool->node = node;
4519 copy_workqueue_attrs(pool->attrs, attrs);
4520 wqattrs_clear_for_pool(pool->attrs);
4521
4522 if (worker_pool_assign_id(pool) < 0)
4523 goto fail;
4524
4525 /* create and start the initial worker */
4526 if (wq_online && !create_worker(pool))
4527 goto fail;
4528
4529 /* install */
4530 hash_add(unbound_pool_hash, &pool->hash_node, hash);
4531
4532 return pool;
4533 fail:
4534 if (pool)
4535 put_unbound_pool(pool);
4536 return NULL;
4537 }
4538
rcu_free_pwq(struct rcu_head * rcu)4539 static void rcu_free_pwq(struct rcu_head *rcu)
4540 {
4541 kmem_cache_free(pwq_cache,
4542 container_of(rcu, struct pool_workqueue, rcu));
4543 }
4544
4545 /*
4546 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
4547 * refcnt and needs to be destroyed.
4548 */
pwq_release_workfn(struct kthread_work * work)4549 static void pwq_release_workfn(struct kthread_work *work)
4550 {
4551 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
4552 release_work);
4553 struct workqueue_struct *wq = pwq->wq;
4554 struct worker_pool *pool = pwq->pool;
4555 bool is_last = false;
4556
4557 /*
4558 * When @pwq is not linked, it doesn't hold any reference to the
4559 * @wq, and @wq is invalid to access.
4560 */
4561 if (!list_empty(&pwq->pwqs_node)) {
4562 mutex_lock(&wq->mutex);
4563 list_del_rcu(&pwq->pwqs_node);
4564 is_last = list_empty(&wq->pwqs);
4565 mutex_unlock(&wq->mutex);
4566 }
4567
4568 if (wq->flags & WQ_UNBOUND) {
4569 mutex_lock(&wq_pool_mutex);
4570 put_unbound_pool(pool);
4571 mutex_unlock(&wq_pool_mutex);
4572 }
4573
4574 if (!list_empty(&pwq->pending_node)) {
4575 struct wq_node_nr_active *nna =
4576 wq_node_nr_active(pwq->wq, pwq->pool->node);
4577
4578 raw_spin_lock_irq(&nna->lock);
4579 list_del_init(&pwq->pending_node);
4580 raw_spin_unlock_irq(&nna->lock);
4581 }
4582
4583 call_rcu(&pwq->rcu, rcu_free_pwq);
4584
4585 /*
4586 * If we're the last pwq going away, @wq is already dead and no one
4587 * is gonna access it anymore. Schedule RCU free.
4588 */
4589 if (is_last) {
4590 wq_unregister_lockdep(wq);
4591 call_rcu(&wq->rcu, rcu_free_wq);
4592 }
4593 }
4594
4595 /* initialize newly allocated @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)4596 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
4597 struct worker_pool *pool)
4598 {
4599 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
4600
4601 memset(pwq, 0, sizeof(*pwq));
4602
4603 pwq->pool = pool;
4604 pwq->wq = wq;
4605 pwq->flush_color = -1;
4606 pwq->refcnt = 1;
4607 INIT_LIST_HEAD(&pwq->inactive_works);
4608 INIT_LIST_HEAD(&pwq->pending_node);
4609 INIT_LIST_HEAD(&pwq->pwqs_node);
4610 INIT_LIST_HEAD(&pwq->mayday_node);
4611 kthread_init_work(&pwq->release_work, pwq_release_workfn);
4612 }
4613
4614 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)4615 static void link_pwq(struct pool_workqueue *pwq)
4616 {
4617 struct workqueue_struct *wq = pwq->wq;
4618
4619 lockdep_assert_held(&wq->mutex);
4620
4621 /* may be called multiple times, ignore if already linked */
4622 if (!list_empty(&pwq->pwqs_node))
4623 return;
4624
4625 /* set the matching work_color */
4626 pwq->work_color = wq->work_color;
4627
4628 /* link in @pwq */
4629 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
4630 }
4631
4632 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4633 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
4634 const struct workqueue_attrs *attrs)
4635 {
4636 struct worker_pool *pool;
4637 struct pool_workqueue *pwq;
4638
4639 lockdep_assert_held(&wq_pool_mutex);
4640
4641 pool = get_unbound_pool(attrs);
4642 if (!pool)
4643 return NULL;
4644
4645 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
4646 if (!pwq) {
4647 put_unbound_pool(pool);
4648 return NULL;
4649 }
4650
4651 init_pwq(pwq, wq, pool);
4652 return pwq;
4653 }
4654
4655 /**
4656 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
4657 * @attrs: the wq_attrs of the default pwq of the target workqueue
4658 * @cpu: the target CPU
4659 * @cpu_going_down: if >= 0, the CPU to consider as offline
4660 *
4661 * Calculate the cpumask a workqueue with @attrs should use on @pod. If
4662 * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
4663 * The result is stored in @attrs->__pod_cpumask.
4664 *
4665 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
4666 * and @pod has online CPUs requested by @attrs, the returned cpumask is the
4667 * intersection of the possible CPUs of @pod and @attrs->cpumask.
4668 *
4669 * The caller is responsible for ensuring that the cpumask of @pod stays stable.
4670 */
wq_calc_pod_cpumask(struct workqueue_attrs * attrs,int cpu,int cpu_going_down)4671 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu,
4672 int cpu_going_down)
4673 {
4674 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
4675 int pod = pt->cpu_pod[cpu];
4676
4677 /* does @pod have any online CPUs @attrs wants? */
4678 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
4679 cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask);
4680 if (cpu_going_down >= 0)
4681 cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask);
4682
4683 if (cpumask_empty(attrs->__pod_cpumask)) {
4684 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
4685 return;
4686 }
4687
4688 /* yeap, return possible CPUs in @pod that @attrs wants */
4689 cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]);
4690
4691 if (cpumask_empty(attrs->__pod_cpumask))
4692 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
4693 "possible intersect\n");
4694 }
4695
4696 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
install_unbound_pwq(struct workqueue_struct * wq,int cpu,struct pool_workqueue * pwq)4697 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
4698 int cpu, struct pool_workqueue *pwq)
4699 {
4700 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
4701 struct pool_workqueue *old_pwq;
4702
4703 lockdep_assert_held(&wq_pool_mutex);
4704 lockdep_assert_held(&wq->mutex);
4705
4706 /* link_pwq() can handle duplicate calls */
4707 link_pwq(pwq);
4708
4709 old_pwq = rcu_access_pointer(*slot);
4710 rcu_assign_pointer(*slot, pwq);
4711 return old_pwq;
4712 }
4713
4714 /* context to store the prepared attrs & pwqs before applying */
4715 struct apply_wqattrs_ctx {
4716 struct workqueue_struct *wq; /* target workqueue */
4717 struct workqueue_attrs *attrs; /* attrs to apply */
4718 struct list_head list; /* queued for batching commit */
4719 struct pool_workqueue *dfl_pwq;
4720 struct pool_workqueue *pwq_tbl[];
4721 };
4722
4723 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)4724 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
4725 {
4726 if (ctx) {
4727 int cpu;
4728
4729 for_each_possible_cpu(cpu)
4730 put_pwq_unlocked(ctx->pwq_tbl[cpu]);
4731 put_pwq_unlocked(ctx->dfl_pwq);
4732
4733 free_workqueue_attrs(ctx->attrs);
4734
4735 kfree(ctx);
4736 }
4737 }
4738
4739 /* allocate the attrs and pwqs for later installation */
4740 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs,const cpumask_var_t unbound_cpumask)4741 apply_wqattrs_prepare(struct workqueue_struct *wq,
4742 const struct workqueue_attrs *attrs,
4743 const cpumask_var_t unbound_cpumask)
4744 {
4745 struct apply_wqattrs_ctx *ctx;
4746 struct workqueue_attrs *new_attrs;
4747 int cpu;
4748
4749 lockdep_assert_held(&wq_pool_mutex);
4750
4751 if (WARN_ON(attrs->affn_scope < 0 ||
4752 attrs->affn_scope >= WQ_AFFN_NR_TYPES))
4753 return ERR_PTR(-EINVAL);
4754
4755 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
4756
4757 new_attrs = alloc_workqueue_attrs();
4758 if (!ctx || !new_attrs)
4759 goto out_free;
4760
4761 /*
4762 * If something goes wrong during CPU up/down, we'll fall back to
4763 * the default pwq covering whole @attrs->cpumask. Always create
4764 * it even if we don't use it immediately.
4765 */
4766 copy_workqueue_attrs(new_attrs, attrs);
4767 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
4768 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
4769 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4770 if (!ctx->dfl_pwq)
4771 goto out_free;
4772
4773 for_each_possible_cpu(cpu) {
4774 if (new_attrs->ordered) {
4775 ctx->dfl_pwq->refcnt++;
4776 ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
4777 } else {
4778 wq_calc_pod_cpumask(new_attrs, cpu, -1);
4779 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
4780 if (!ctx->pwq_tbl[cpu])
4781 goto out_free;
4782 }
4783 }
4784
4785 /* save the user configured attrs and sanitize it. */
4786 copy_workqueue_attrs(new_attrs, attrs);
4787 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4788 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
4789 ctx->attrs = new_attrs;
4790
4791 ctx->wq = wq;
4792 return ctx;
4793
4794 out_free:
4795 free_workqueue_attrs(new_attrs);
4796 apply_wqattrs_cleanup(ctx);
4797 return ERR_PTR(-ENOMEM);
4798 }
4799
4800 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)4801 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4802 {
4803 int cpu;
4804
4805 /* all pwqs have been created successfully, let's install'em */
4806 mutex_lock(&ctx->wq->mutex);
4807
4808 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4809
4810 /* save the previous pwqs and install the new ones */
4811 for_each_possible_cpu(cpu)
4812 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
4813 ctx->pwq_tbl[cpu]);
4814 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
4815
4816 /* update node_nr_active->max */
4817 wq_update_node_max_active(ctx->wq, -1);
4818
4819 mutex_unlock(&ctx->wq->mutex);
4820 }
4821
apply_wqattrs_lock(void)4822 static void apply_wqattrs_lock(void)
4823 {
4824 /* CPUs should stay stable across pwq creations and installations */
4825 cpus_read_lock();
4826 mutex_lock(&wq_pool_mutex);
4827 }
4828
apply_wqattrs_unlock(void)4829 static void apply_wqattrs_unlock(void)
4830 {
4831 mutex_unlock(&wq_pool_mutex);
4832 cpus_read_unlock();
4833 }
4834
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4835 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4836 const struct workqueue_attrs *attrs)
4837 {
4838 struct apply_wqattrs_ctx *ctx;
4839
4840 /* only unbound workqueues can change attributes */
4841 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4842 return -EINVAL;
4843
4844 /* creating multiple pwqs breaks ordering guarantee */
4845 if (!list_empty(&wq->pwqs)) {
4846 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4847 return -EINVAL;
4848
4849 wq->flags &= ~__WQ_ORDERED;
4850 }
4851
4852 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
4853 if (IS_ERR(ctx))
4854 return PTR_ERR(ctx);
4855
4856 /* the ctx has been prepared successfully, let's commit it */
4857 apply_wqattrs_commit(ctx);
4858 apply_wqattrs_cleanup(ctx);
4859
4860 return 0;
4861 }
4862
4863 /**
4864 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4865 * @wq: the target workqueue
4866 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4867 *
4868 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
4869 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
4870 * work items are affine to the pod it was issued on. Older pwqs are released as
4871 * in-flight work items finish. Note that a work item which repeatedly requeues
4872 * itself back-to-back will stay on its current pwq.
4873 *
4874 * Performs GFP_KERNEL allocations.
4875 *
4876 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4877 *
4878 * Return: 0 on success and -errno on failure.
4879 */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4880 int apply_workqueue_attrs(struct workqueue_struct *wq,
4881 const struct workqueue_attrs *attrs)
4882 {
4883 int ret;
4884
4885 lockdep_assert_cpus_held();
4886
4887 mutex_lock(&wq_pool_mutex);
4888 ret = apply_workqueue_attrs_locked(wq, attrs);
4889 mutex_unlock(&wq_pool_mutex);
4890
4891 return ret;
4892 }
4893
4894 /**
4895 * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
4896 * @wq: the target workqueue
4897 * @cpu: the CPU to update pool association for
4898 * @hotplug_cpu: the CPU coming up or going down
4899 * @online: whether @cpu is coming up or going down
4900 *
4901 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4902 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update pod affinity of
4903 * @wq accordingly.
4904 *
4905 *
4906 * If pod affinity can't be adjusted due to memory allocation failure, it falls
4907 * back to @wq->dfl_pwq which may not be optimal but is always correct.
4908 *
4909 * Note that when the last allowed CPU of a pod goes offline for a workqueue
4910 * with a cpumask spanning multiple pods, the workers which were already
4911 * executing the work items for the workqueue will lose their CPU affinity and
4912 * may execute on any CPU. This is similar to how per-cpu workqueues behave on
4913 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
4914 * responsibility to flush the work item from CPU_DOWN_PREPARE.
4915 */
wq_update_pod(struct workqueue_struct * wq,int cpu,int hotplug_cpu,bool online)4916 static void wq_update_pod(struct workqueue_struct *wq, int cpu,
4917 int hotplug_cpu, bool online)
4918 {
4919 int off_cpu = online ? -1 : hotplug_cpu;
4920 struct pool_workqueue *old_pwq = NULL, *pwq;
4921 struct workqueue_attrs *target_attrs;
4922
4923 lockdep_assert_held(&wq_pool_mutex);
4924
4925 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
4926 return;
4927
4928 /*
4929 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4930 * Let's use a preallocated one. The following buf is protected by
4931 * CPU hotplug exclusion.
4932 */
4933 target_attrs = wq_update_pod_attrs_buf;
4934
4935 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4936 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
4937
4938 /* nothing to do if the target cpumask matches the current pwq */
4939 wq_calc_pod_cpumask(target_attrs, cpu, off_cpu);
4940 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
4941 return;
4942
4943 /* create a new pwq */
4944 pwq = alloc_unbound_pwq(wq, target_attrs);
4945 if (!pwq) {
4946 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
4947 wq->name);
4948 goto use_dfl_pwq;
4949 }
4950
4951 /* Install the new pwq. */
4952 mutex_lock(&wq->mutex);
4953 old_pwq = install_unbound_pwq(wq, cpu, pwq);
4954 goto out_unlock;
4955
4956 use_dfl_pwq:
4957 mutex_lock(&wq->mutex);
4958 pwq = unbound_pwq(wq, -1);
4959 raw_spin_lock_irq(&pwq->pool->lock);
4960 get_pwq(pwq);
4961 raw_spin_unlock_irq(&pwq->pool->lock);
4962 old_pwq = install_unbound_pwq(wq, cpu, pwq);
4963 out_unlock:
4964 mutex_unlock(&wq->mutex);
4965 put_pwq_unlocked(old_pwq);
4966 }
4967
alloc_and_link_pwqs(struct workqueue_struct * wq)4968 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4969 {
4970 bool highpri = wq->flags & WQ_HIGHPRI;
4971 int cpu, ret;
4972
4973 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
4974 if (!wq->cpu_pwq)
4975 goto enomem;
4976
4977 if (!(wq->flags & WQ_UNBOUND)) {
4978 for_each_possible_cpu(cpu) {
4979 struct pool_workqueue **pwq_p =
4980 per_cpu_ptr(wq->cpu_pwq, cpu);
4981 struct worker_pool *pool =
4982 &(per_cpu_ptr(cpu_worker_pools, cpu)[highpri]);
4983
4984 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
4985 pool->node);
4986 if (!*pwq_p)
4987 goto enomem;
4988
4989 init_pwq(*pwq_p, wq, pool);
4990
4991 mutex_lock(&wq->mutex);
4992 link_pwq(*pwq_p);
4993 mutex_unlock(&wq->mutex);
4994 }
4995 return 0;
4996 }
4997
4998 cpus_read_lock();
4999 if (wq->flags & __WQ_ORDERED) {
5000 struct pool_workqueue *dfl_pwq;
5001
5002 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
5003 /* there should only be single pwq for ordering guarantee */
5004 dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5005 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5006 wq->pwqs.prev != &dfl_pwq->pwqs_node),
5007 "ordering guarantee broken for workqueue %s\n", wq->name);
5008 } else {
5009 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
5010 }
5011 cpus_read_unlock();
5012
5013 /* for unbound pwq, flush the pwq_release_worker ensures that the
5014 * pwq_release_workfn() completes before calling kfree(wq).
5015 */
5016 if (ret)
5017 kthread_flush_worker(pwq_release_worker);
5018
5019 return ret;
5020
5021 enomem:
5022 if (wq->cpu_pwq) {
5023 for_each_possible_cpu(cpu) {
5024 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5025
5026 if (pwq)
5027 kmem_cache_free(pwq_cache, pwq);
5028 }
5029 free_percpu(wq->cpu_pwq);
5030 wq->cpu_pwq = NULL;
5031 }
5032 return -ENOMEM;
5033 }
5034
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)5035 static int wq_clamp_max_active(int max_active, unsigned int flags,
5036 const char *name)
5037 {
5038 if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5039 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5040 max_active, name, 1, WQ_MAX_ACTIVE);
5041
5042 return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5043 }
5044
5045 /*
5046 * Workqueues which may be used during memory reclaim should have a rescuer
5047 * to guarantee forward progress.
5048 */
init_rescuer(struct workqueue_struct * wq)5049 static int init_rescuer(struct workqueue_struct *wq)
5050 {
5051 struct worker *rescuer;
5052 int ret;
5053
5054 if (!(wq->flags & WQ_MEM_RECLAIM))
5055 return 0;
5056
5057 rescuer = alloc_worker(NUMA_NO_NODE);
5058 if (!rescuer) {
5059 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5060 wq->name);
5061 return -ENOMEM;
5062 }
5063
5064 rescuer->rescue_wq = wq;
5065 rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
5066 if (IS_ERR(rescuer->task)) {
5067 ret = PTR_ERR(rescuer->task);
5068 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5069 wq->name, ERR_PTR(ret));
5070 kfree(rescuer);
5071 return ret;
5072 }
5073
5074 wq->rescuer = rescuer;
5075 kthread_bind_mask(rescuer->task, cpu_possible_mask);
5076 wake_up_process(rescuer->task);
5077
5078 return 0;
5079 }
5080
5081 /**
5082 * wq_adjust_max_active - update a wq's max_active to the current setting
5083 * @wq: target workqueue
5084 *
5085 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5086 * activate inactive work items accordingly. If @wq is freezing, clear
5087 * @wq->max_active to zero.
5088 */
wq_adjust_max_active(struct workqueue_struct * wq)5089 static void wq_adjust_max_active(struct workqueue_struct *wq)
5090 {
5091 bool activated;
5092 int new_max, new_min;
5093
5094 lockdep_assert_held(&wq->mutex);
5095
5096 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5097 new_max = 0;
5098 new_min = 0;
5099 } else {
5100 new_max = wq->saved_max_active;
5101 new_min = wq->saved_min_active;
5102 }
5103
5104 if (wq->max_active == new_max && wq->min_active == new_min)
5105 return;
5106
5107 /*
5108 * Update @wq->max/min_active and then kick inactive work items if more
5109 * active work items are allowed. This doesn't break work item ordering
5110 * because new work items are always queued behind existing inactive
5111 * work items if there are any.
5112 */
5113 WRITE_ONCE(wq->max_active, new_max);
5114 WRITE_ONCE(wq->min_active, new_min);
5115
5116 if (wq->flags & WQ_UNBOUND)
5117 wq_update_node_max_active(wq, -1);
5118
5119 if (new_max == 0)
5120 return;
5121
5122 /*
5123 * Round-robin through pwq's activating the first inactive work item
5124 * until max_active is filled.
5125 */
5126 do {
5127 struct pool_workqueue *pwq;
5128
5129 activated = false;
5130 for_each_pwq(pwq, wq) {
5131 unsigned long flags;
5132
5133 /* can be called during early boot w/ irq disabled */
5134 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
5135 if (pwq_activate_first_inactive(pwq, true)) {
5136 activated = true;
5137 kick_pool(pwq->pool);
5138 }
5139 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
5140 }
5141 } while (activated);
5142 }
5143
5144 __printf(1, 4)
alloc_workqueue(const char * fmt,unsigned int flags,int max_active,...)5145 struct workqueue_struct *alloc_workqueue(const char *fmt,
5146 unsigned int flags,
5147 int max_active, ...)
5148 {
5149 va_list args;
5150 struct workqueue_struct *wq;
5151 size_t wq_size;
5152 int name_len;
5153
5154 /*
5155 * Unbound && max_active == 1 used to imply ordered, which is no longer
5156 * the case on many machines due to per-pod pools. While
5157 * alloc_ordered_workqueue() is the right way to create an ordered
5158 * workqueue, keep the previous behavior to avoid subtle breakages.
5159 */
5160 if ((flags & WQ_UNBOUND) && max_active == 1)
5161 flags |= __WQ_ORDERED;
5162
5163 /* see the comment above the definition of WQ_POWER_EFFICIENT */
5164 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5165 flags |= WQ_UNBOUND;
5166
5167 /* allocate wq and format name */
5168 if (flags & WQ_UNBOUND)
5169 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5170 else
5171 wq_size = sizeof(*wq);
5172
5173 wq = kzalloc(wq_size, GFP_KERNEL);
5174 if (!wq)
5175 return NULL;
5176
5177 if (flags & WQ_UNBOUND) {
5178 wq->unbound_attrs = alloc_workqueue_attrs();
5179 if (!wq->unbound_attrs)
5180 goto err_free_wq;
5181 }
5182
5183 va_start(args, max_active);
5184 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5185 va_end(args);
5186
5187 if (name_len >= WQ_NAME_LEN)
5188 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5189 wq->name);
5190
5191 max_active = max_active ?: WQ_DFL_ACTIVE;
5192 max_active = wq_clamp_max_active(max_active, flags, wq->name);
5193
5194 /* init wq */
5195 wq->flags = flags;
5196 wq->max_active = max_active;
5197 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5198 wq->saved_max_active = wq->max_active;
5199 wq->saved_min_active = wq->min_active;
5200 mutex_init(&wq->mutex);
5201 atomic_set(&wq->nr_pwqs_to_flush, 0);
5202 INIT_LIST_HEAD(&wq->pwqs);
5203 INIT_LIST_HEAD(&wq->flusher_queue);
5204 INIT_LIST_HEAD(&wq->flusher_overflow);
5205 INIT_LIST_HEAD(&wq->maydays);
5206
5207 wq_init_lockdep(wq);
5208 INIT_LIST_HEAD(&wq->list);
5209
5210 if (flags & WQ_UNBOUND) {
5211 if (alloc_node_nr_active(wq->node_nr_active) < 0)
5212 goto err_unreg_lockdep;
5213 }
5214
5215 if (alloc_and_link_pwqs(wq) < 0)
5216 goto err_free_node_nr_active;
5217
5218 if (wq_online && init_rescuer(wq) < 0)
5219 goto err_destroy;
5220
5221 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5222 goto err_destroy;
5223
5224 /*
5225 * wq_pool_mutex protects global freeze state and workqueues list.
5226 * Grab it, adjust max_active and add the new @wq to workqueues
5227 * list.
5228 */
5229 mutex_lock(&wq_pool_mutex);
5230
5231 mutex_lock(&wq->mutex);
5232 wq_adjust_max_active(wq);
5233 mutex_unlock(&wq->mutex);
5234
5235 list_add_tail_rcu(&wq->list, &workqueues);
5236
5237 mutex_unlock(&wq_pool_mutex);
5238
5239 return wq;
5240
5241 err_free_node_nr_active:
5242 if (wq->flags & WQ_UNBOUND)
5243 free_node_nr_active(wq->node_nr_active);
5244 err_unreg_lockdep:
5245 wq_unregister_lockdep(wq);
5246 wq_free_lockdep(wq);
5247 err_free_wq:
5248 free_workqueue_attrs(wq->unbound_attrs);
5249 kfree(wq);
5250 return NULL;
5251 err_destroy:
5252 destroy_workqueue(wq);
5253 return NULL;
5254 }
5255 EXPORT_SYMBOL_GPL(alloc_workqueue);
5256
pwq_busy(struct pool_workqueue * pwq)5257 static bool pwq_busy(struct pool_workqueue *pwq)
5258 {
5259 int i;
5260
5261 for (i = 0; i < WORK_NR_COLORS; i++)
5262 if (pwq->nr_in_flight[i])
5263 return true;
5264
5265 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5266 return true;
5267 if (!pwq_is_empty(pwq))
5268 return true;
5269
5270 return false;
5271 }
5272
5273 /**
5274 * destroy_workqueue - safely terminate a workqueue
5275 * @wq: target workqueue
5276 *
5277 * Safely destroy a workqueue. All work currently pending will be done first.
5278 */
destroy_workqueue(struct workqueue_struct * wq)5279 void destroy_workqueue(struct workqueue_struct *wq)
5280 {
5281 struct pool_workqueue *pwq;
5282 int cpu;
5283
5284 /*
5285 * Remove it from sysfs first so that sanity check failure doesn't
5286 * lead to sysfs name conflicts.
5287 */
5288 workqueue_sysfs_unregister(wq);
5289
5290 /* mark the workqueue destruction is in progress */
5291 mutex_lock(&wq->mutex);
5292 wq->flags |= __WQ_DESTROYING;
5293 mutex_unlock(&wq->mutex);
5294
5295 /* drain it before proceeding with destruction */
5296 drain_workqueue(wq);
5297
5298 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5299 if (wq->rescuer) {
5300 struct worker *rescuer = wq->rescuer;
5301
5302 /* this prevents new queueing */
5303 raw_spin_lock_irq(&wq_mayday_lock);
5304 wq->rescuer = NULL;
5305 raw_spin_unlock_irq(&wq_mayday_lock);
5306
5307 /* rescuer will empty maydays list before exiting */
5308 kthread_stop(rescuer->task);
5309 kfree(rescuer);
5310 }
5311
5312 /*
5313 * Sanity checks - grab all the locks so that we wait for all
5314 * in-flight operations which may do put_pwq().
5315 */
5316 mutex_lock(&wq_pool_mutex);
5317 mutex_lock(&wq->mutex);
5318 for_each_pwq(pwq, wq) {
5319 raw_spin_lock_irq(&pwq->pool->lock);
5320 if (WARN_ON(pwq_busy(pwq))) {
5321 pr_warn("%s: %s has the following busy pwq\n",
5322 __func__, wq->name);
5323 show_pwq(pwq);
5324 raw_spin_unlock_irq(&pwq->pool->lock);
5325 mutex_unlock(&wq->mutex);
5326 mutex_unlock(&wq_pool_mutex);
5327 show_one_workqueue(wq);
5328 return;
5329 }
5330 raw_spin_unlock_irq(&pwq->pool->lock);
5331 }
5332 mutex_unlock(&wq->mutex);
5333
5334 /*
5335 * wq list is used to freeze wq, remove from list after
5336 * flushing is complete in case freeze races us.
5337 */
5338 list_del_rcu(&wq->list);
5339 mutex_unlock(&wq_pool_mutex);
5340
5341 /*
5342 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5343 * to put the base refs. @wq will be auto-destroyed from the last
5344 * pwq_put. RCU read lock prevents @wq from going away from under us.
5345 */
5346 rcu_read_lock();
5347
5348 for_each_possible_cpu(cpu) {
5349 put_pwq_unlocked(unbound_pwq(wq, cpu));
5350 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5351 }
5352
5353 put_pwq_unlocked(unbound_pwq(wq, -1));
5354 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
5355
5356 rcu_read_unlock();
5357 }
5358 EXPORT_SYMBOL_GPL(destroy_workqueue);
5359
5360 /**
5361 * workqueue_set_max_active - adjust max_active of a workqueue
5362 * @wq: target workqueue
5363 * @max_active: new max_active value.
5364 *
5365 * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5366 * comment.
5367 *
5368 * CONTEXT:
5369 * Don't call from IRQ context.
5370 */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)5371 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5372 {
5373 /* disallow meddling with max_active for ordered workqueues */
5374 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5375 return;
5376
5377 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5378
5379 mutex_lock(&wq->mutex);
5380
5381 wq->flags &= ~__WQ_ORDERED;
5382 wq->saved_max_active = max_active;
5383 if (wq->flags & WQ_UNBOUND)
5384 wq->saved_min_active = min(wq->saved_min_active, max_active);
5385
5386 wq_adjust_max_active(wq);
5387
5388 mutex_unlock(&wq->mutex);
5389 }
5390 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5391
5392 /**
5393 * current_work - retrieve %current task's work struct
5394 *
5395 * Determine if %current task is a workqueue worker and what it's working on.
5396 * Useful to find out the context that the %current task is running in.
5397 *
5398 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5399 */
current_work(void)5400 struct work_struct *current_work(void)
5401 {
5402 struct worker *worker = current_wq_worker();
5403
5404 return worker ? worker->current_work : NULL;
5405 }
5406 EXPORT_SYMBOL(current_work);
5407
5408 /**
5409 * current_is_workqueue_rescuer - is %current workqueue rescuer?
5410 *
5411 * Determine whether %current is a workqueue rescuer. Can be used from
5412 * work functions to determine whether it's being run off the rescuer task.
5413 *
5414 * Return: %true if %current is a workqueue rescuer. %false otherwise.
5415 */
current_is_workqueue_rescuer(void)5416 bool current_is_workqueue_rescuer(void)
5417 {
5418 struct worker *worker = current_wq_worker();
5419
5420 return worker && worker->rescue_wq;
5421 }
5422
5423 /**
5424 * workqueue_congested - test whether a workqueue is congested
5425 * @cpu: CPU in question
5426 * @wq: target workqueue
5427 *
5428 * Test whether @wq's cpu workqueue for @cpu is congested. There is
5429 * no synchronization around this function and the test result is
5430 * unreliable and only useful as advisory hints or for debugging.
5431 *
5432 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
5433 *
5434 * With the exception of ordered workqueues, all workqueues have per-cpu
5435 * pool_workqueues, each with its own congested state. A workqueue being
5436 * congested on one CPU doesn't mean that the workqueue is contested on any
5437 * other CPUs.
5438 *
5439 * Return:
5440 * %true if congested, %false otherwise.
5441 */
workqueue_congested(int cpu,struct workqueue_struct * wq)5442 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
5443 {
5444 struct pool_workqueue *pwq;
5445 bool ret;
5446
5447 rcu_read_lock();
5448 preempt_disable();
5449
5450 if (cpu == WORK_CPU_UNBOUND)
5451 cpu = smp_processor_id();
5452
5453 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5454 ret = !list_empty(&pwq->inactive_works);
5455
5456 preempt_enable();
5457 rcu_read_unlock();
5458
5459 return ret;
5460 }
5461 EXPORT_SYMBOL_GPL(workqueue_congested);
5462
5463 /**
5464 * work_busy - test whether a work is currently pending or running
5465 * @work: the work to be tested
5466 *
5467 * Test whether @work is currently pending or running. There is no
5468 * synchronization around this function and the test result is
5469 * unreliable and only useful as advisory hints or for debugging.
5470 *
5471 * Return:
5472 * OR'd bitmask of WORK_BUSY_* bits.
5473 */
work_busy(struct work_struct * work)5474 unsigned int work_busy(struct work_struct *work)
5475 {
5476 struct worker_pool *pool;
5477 unsigned long flags;
5478 unsigned int ret = 0;
5479
5480 if (work_pending(work))
5481 ret |= WORK_BUSY_PENDING;
5482
5483 rcu_read_lock();
5484 pool = get_work_pool(work);
5485 if (pool) {
5486 raw_spin_lock_irqsave(&pool->lock, flags);
5487 if (find_worker_executing_work(pool, work))
5488 ret |= WORK_BUSY_RUNNING;
5489 raw_spin_unlock_irqrestore(&pool->lock, flags);
5490 }
5491 rcu_read_unlock();
5492
5493 return ret;
5494 }
5495 EXPORT_SYMBOL_GPL(work_busy);
5496
5497 /**
5498 * set_worker_desc - set description for the current work item
5499 * @fmt: printf-style format string
5500 * @...: arguments for the format string
5501 *
5502 * This function can be called by a running work function to describe what
5503 * the work item is about. If the worker task gets dumped, this
5504 * information will be printed out together to help debugging. The
5505 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
5506 */
set_worker_desc(const char * fmt,...)5507 void set_worker_desc(const char *fmt, ...)
5508 {
5509 struct worker *worker = current_wq_worker();
5510 va_list args;
5511
5512 if (worker) {
5513 va_start(args, fmt);
5514 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
5515 va_end(args);
5516 }
5517 }
5518 EXPORT_SYMBOL_GPL(set_worker_desc);
5519
5520 /**
5521 * print_worker_info - print out worker information and description
5522 * @log_lvl: the log level to use when printing
5523 * @task: target task
5524 *
5525 * If @task is a worker and currently executing a work item, print out the
5526 * name of the workqueue being serviced and worker description set with
5527 * set_worker_desc() by the currently executing work item.
5528 *
5529 * This function can be safely called on any task as long as the
5530 * task_struct itself is accessible. While safe, this function isn't
5531 * synchronized and may print out mixups or garbages of limited length.
5532 */
print_worker_info(const char * log_lvl,struct task_struct * task)5533 void print_worker_info(const char *log_lvl, struct task_struct *task)
5534 {
5535 work_func_t *fn = NULL;
5536 char name[WQ_NAME_LEN] = { };
5537 char desc[WORKER_DESC_LEN] = { };
5538 struct pool_workqueue *pwq = NULL;
5539 struct workqueue_struct *wq = NULL;
5540 struct worker *worker;
5541
5542 if (!(task->flags & PF_WQ_WORKER))
5543 return;
5544
5545 /*
5546 * This function is called without any synchronization and @task
5547 * could be in any state. Be careful with dereferences.
5548 */
5549 worker = kthread_probe_data(task);
5550
5551 /*
5552 * Carefully copy the associated workqueue's workfn, name and desc.
5553 * Keep the original last '\0' in case the original is garbage.
5554 */
5555 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
5556 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
5557 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
5558 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
5559 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
5560
5561 if (fn || name[0] || desc[0]) {
5562 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
5563 if (strcmp(name, desc))
5564 pr_cont(" (%s)", desc);
5565 pr_cont("\n");
5566 }
5567 }
5568
pr_cont_pool_info(struct worker_pool * pool)5569 static void pr_cont_pool_info(struct worker_pool *pool)
5570 {
5571 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
5572 if (pool->node != NUMA_NO_NODE)
5573 pr_cont(" node=%d", pool->node);
5574 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
5575 }
5576
5577 struct pr_cont_work_struct {
5578 bool comma;
5579 work_func_t func;
5580 long ctr;
5581 };
5582
pr_cont_work_flush(bool comma,work_func_t func,struct pr_cont_work_struct * pcwsp)5583 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
5584 {
5585 if (!pcwsp->ctr)
5586 goto out_record;
5587 if (func == pcwsp->func) {
5588 pcwsp->ctr++;
5589 return;
5590 }
5591 if (pcwsp->ctr == 1)
5592 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
5593 else
5594 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
5595 pcwsp->ctr = 0;
5596 out_record:
5597 if ((long)func == -1L)
5598 return;
5599 pcwsp->comma = comma;
5600 pcwsp->func = func;
5601 pcwsp->ctr = 1;
5602 }
5603
pr_cont_work(bool comma,struct work_struct * work,struct pr_cont_work_struct * pcwsp)5604 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
5605 {
5606 if (work->func == wq_barrier_func) {
5607 struct wq_barrier *barr;
5608
5609 barr = container_of(work, struct wq_barrier, work);
5610
5611 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5612 pr_cont("%s BAR(%d)", comma ? "," : "",
5613 task_pid_nr(barr->task));
5614 } else {
5615 if (!comma)
5616 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5617 pr_cont_work_flush(comma, work->func, pcwsp);
5618 }
5619 }
5620
show_pwq(struct pool_workqueue * pwq)5621 static void show_pwq(struct pool_workqueue *pwq)
5622 {
5623 struct pr_cont_work_struct pcws = { .ctr = 0, };
5624 struct worker_pool *pool = pwq->pool;
5625 struct work_struct *work;
5626 struct worker *worker;
5627 bool has_in_flight = false, has_pending = false;
5628 int bkt;
5629
5630 pr_info(" pwq %d:", pool->id);
5631 pr_cont_pool_info(pool);
5632
5633 pr_cont(" active=%d refcnt=%d%s\n",
5634 pwq->nr_active, pwq->refcnt,
5635 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
5636
5637 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5638 if (worker->current_pwq == pwq) {
5639 has_in_flight = true;
5640 break;
5641 }
5642 }
5643 if (has_in_flight) {
5644 bool comma = false;
5645
5646 pr_info(" in-flight:");
5647 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5648 if (worker->current_pwq != pwq)
5649 continue;
5650
5651 pr_cont("%s %d%s:%ps", comma ? "," : "",
5652 task_pid_nr(worker->task),
5653 worker->rescue_wq ? "(RESCUER)" : "",
5654 worker->current_func);
5655 list_for_each_entry(work, &worker->scheduled, entry)
5656 pr_cont_work(false, work, &pcws);
5657 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5658 comma = true;
5659 }
5660 pr_cont("\n");
5661 }
5662
5663 list_for_each_entry(work, &pool->worklist, entry) {
5664 if (get_work_pwq(work) == pwq) {
5665 has_pending = true;
5666 break;
5667 }
5668 }
5669 if (has_pending) {
5670 bool comma = false;
5671
5672 pr_info(" pending:");
5673 list_for_each_entry(work, &pool->worklist, entry) {
5674 if (get_work_pwq(work) != pwq)
5675 continue;
5676
5677 pr_cont_work(comma, work, &pcws);
5678 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5679 }
5680 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5681 pr_cont("\n");
5682 }
5683
5684 if (!list_empty(&pwq->inactive_works)) {
5685 bool comma = false;
5686
5687 pr_info(" inactive:");
5688 list_for_each_entry(work, &pwq->inactive_works, entry) {
5689 pr_cont_work(comma, work, &pcws);
5690 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5691 }
5692 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5693 pr_cont("\n");
5694 }
5695 }
5696
5697 /**
5698 * show_one_workqueue - dump state of specified workqueue
5699 * @wq: workqueue whose state will be printed
5700 */
show_one_workqueue(struct workqueue_struct * wq)5701 void show_one_workqueue(struct workqueue_struct *wq)
5702 {
5703 struct pool_workqueue *pwq;
5704 bool idle = true;
5705 unsigned long flags;
5706
5707 for_each_pwq(pwq, wq) {
5708 if (!pwq_is_empty(pwq)) {
5709 idle = false;
5710 break;
5711 }
5712 }
5713 if (idle) /* Nothing to print for idle workqueue */
5714 return;
5715
5716 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
5717
5718 for_each_pwq(pwq, wq) {
5719 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
5720 if (!pwq_is_empty(pwq)) {
5721 /*
5722 * Defer printing to avoid deadlocks in console
5723 * drivers that queue work while holding locks
5724 * also taken in their write paths.
5725 */
5726 printk_deferred_enter();
5727 show_pwq(pwq);
5728 printk_deferred_exit();
5729 }
5730 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
5731 /*
5732 * We could be printing a lot from atomic context, e.g.
5733 * sysrq-t -> show_all_workqueues(). Avoid triggering
5734 * hard lockup.
5735 */
5736 touch_nmi_watchdog();
5737 }
5738
5739 }
5740
5741 /**
5742 * show_one_worker_pool - dump state of specified worker pool
5743 * @pool: worker pool whose state will be printed
5744 */
show_one_worker_pool(struct worker_pool * pool)5745 static void show_one_worker_pool(struct worker_pool *pool)
5746 {
5747 struct worker *worker;
5748 bool first = true;
5749 unsigned long flags;
5750 unsigned long hung = 0;
5751
5752 raw_spin_lock_irqsave(&pool->lock, flags);
5753 if (pool->nr_workers == pool->nr_idle)
5754 goto next_pool;
5755
5756 /* How long the first pending work is waiting for a worker. */
5757 if (!list_empty(&pool->worklist))
5758 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
5759
5760 /*
5761 * Defer printing to avoid deadlocks in console drivers that
5762 * queue work while holding locks also taken in their write
5763 * paths.
5764 */
5765 printk_deferred_enter();
5766 pr_info("pool %d:", pool->id);
5767 pr_cont_pool_info(pool);
5768 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
5769 if (pool->manager)
5770 pr_cont(" manager: %d",
5771 task_pid_nr(pool->manager->task));
5772 list_for_each_entry(worker, &pool->idle_list, entry) {
5773 pr_cont(" %s%d", first ? "idle: " : "",
5774 task_pid_nr(worker->task));
5775 first = false;
5776 }
5777 pr_cont("\n");
5778 printk_deferred_exit();
5779 next_pool:
5780 raw_spin_unlock_irqrestore(&pool->lock, flags);
5781 /*
5782 * We could be printing a lot from atomic context, e.g.
5783 * sysrq-t -> show_all_workqueues(). Avoid triggering
5784 * hard lockup.
5785 */
5786 touch_nmi_watchdog();
5787
5788 }
5789
5790 /**
5791 * show_all_workqueues - dump workqueue state
5792 *
5793 * Called from a sysrq handler and prints out all busy workqueues and pools.
5794 */
show_all_workqueues(void)5795 void show_all_workqueues(void)
5796 {
5797 struct workqueue_struct *wq;
5798 struct worker_pool *pool;
5799 int pi;
5800
5801 rcu_read_lock();
5802
5803 pr_info("Showing busy workqueues and worker pools:\n");
5804
5805 list_for_each_entry_rcu(wq, &workqueues, list)
5806 show_one_workqueue(wq);
5807
5808 for_each_pool(pool, pi)
5809 show_one_worker_pool(pool);
5810
5811 rcu_read_unlock();
5812 }
5813
5814 /**
5815 * show_freezable_workqueues - dump freezable workqueue state
5816 *
5817 * Called from try_to_freeze_tasks() and prints out all freezable workqueues
5818 * still busy.
5819 */
show_freezable_workqueues(void)5820 void show_freezable_workqueues(void)
5821 {
5822 struct workqueue_struct *wq;
5823
5824 rcu_read_lock();
5825
5826 pr_info("Showing freezable workqueues that are still busy:\n");
5827
5828 list_for_each_entry_rcu(wq, &workqueues, list) {
5829 if (!(wq->flags & WQ_FREEZABLE))
5830 continue;
5831 show_one_workqueue(wq);
5832 }
5833
5834 rcu_read_unlock();
5835 }
5836
5837 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)5838 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
5839 {
5840 int off;
5841
5842 /* always show the actual comm */
5843 off = strscpy(buf, task->comm, size);
5844 if (off < 0)
5845 return;
5846
5847 /* stabilize PF_WQ_WORKER and worker pool association */
5848 mutex_lock(&wq_pool_attach_mutex);
5849
5850 if (task->flags & PF_WQ_WORKER) {
5851 struct worker *worker = kthread_data(task);
5852 struct worker_pool *pool = worker->pool;
5853
5854 if (pool) {
5855 raw_spin_lock_irq(&pool->lock);
5856 /*
5857 * ->desc tracks information (wq name or
5858 * set_worker_desc()) for the latest execution. If
5859 * current, prepend '+', otherwise '-'.
5860 */
5861 if (worker->desc[0] != '\0') {
5862 if (worker->current_work)
5863 scnprintf(buf + off, size - off, "+%s",
5864 worker->desc);
5865 else
5866 scnprintf(buf + off, size - off, "-%s",
5867 worker->desc);
5868 }
5869 raw_spin_unlock_irq(&pool->lock);
5870 }
5871 }
5872
5873 mutex_unlock(&wq_pool_attach_mutex);
5874 }
5875
5876 #ifdef CONFIG_SMP
5877
5878 /*
5879 * CPU hotplug.
5880 *
5881 * There are two challenges in supporting CPU hotplug. Firstly, there
5882 * are a lot of assumptions on strong associations among work, pwq and
5883 * pool which make migrating pending and scheduled works very
5884 * difficult to implement without impacting hot paths. Secondly,
5885 * worker pools serve mix of short, long and very long running works making
5886 * blocked draining impractical.
5887 *
5888 * This is solved by allowing the pools to be disassociated from the CPU
5889 * running as an unbound one and allowing it to be reattached later if the
5890 * cpu comes back online.
5891 */
5892
unbind_workers(int cpu)5893 static void unbind_workers(int cpu)
5894 {
5895 struct worker_pool *pool;
5896 struct worker *worker;
5897
5898 for_each_cpu_worker_pool(pool, cpu) {
5899 mutex_lock(&wq_pool_attach_mutex);
5900 raw_spin_lock_irq(&pool->lock);
5901
5902 /*
5903 * We've blocked all attach/detach operations. Make all workers
5904 * unbound and set DISASSOCIATED. Before this, all workers
5905 * must be on the cpu. After this, they may become diasporas.
5906 * And the preemption disabled section in their sched callbacks
5907 * are guaranteed to see WORKER_UNBOUND since the code here
5908 * is on the same cpu.
5909 */
5910 for_each_pool_worker(worker, pool)
5911 worker->flags |= WORKER_UNBOUND;
5912
5913 pool->flags |= POOL_DISASSOCIATED;
5914
5915 /*
5916 * The handling of nr_running in sched callbacks are disabled
5917 * now. Zap nr_running. After this, nr_running stays zero and
5918 * need_more_worker() and keep_working() are always true as
5919 * long as the worklist is not empty. This pool now behaves as
5920 * an unbound (in terms of concurrency management) pool which
5921 * are served by workers tied to the pool.
5922 */
5923 pool->nr_running = 0;
5924
5925 /*
5926 * With concurrency management just turned off, a busy
5927 * worker blocking could lead to lengthy stalls. Kick off
5928 * unbound chain execution of currently pending work items.
5929 */
5930 kick_pool(pool);
5931
5932 raw_spin_unlock_irq(&pool->lock);
5933
5934 for_each_pool_worker(worker, pool)
5935 unbind_worker(worker);
5936
5937 mutex_unlock(&wq_pool_attach_mutex);
5938 }
5939 }
5940
5941 /**
5942 * rebind_workers - rebind all workers of a pool to the associated CPU
5943 * @pool: pool of interest
5944 *
5945 * @pool->cpu is coming online. Rebind all workers to the CPU.
5946 */
rebind_workers(struct worker_pool * pool)5947 static void rebind_workers(struct worker_pool *pool)
5948 {
5949 struct worker *worker;
5950
5951 lockdep_assert_held(&wq_pool_attach_mutex);
5952
5953 /*
5954 * Restore CPU affinity of all workers. As all idle workers should
5955 * be on the run-queue of the associated CPU before any local
5956 * wake-ups for concurrency management happen, restore CPU affinity
5957 * of all workers first and then clear UNBOUND. As we're called
5958 * from CPU_ONLINE, the following shouldn't fail.
5959 */
5960 for_each_pool_worker(worker, pool) {
5961 kthread_set_per_cpu(worker->task, pool->cpu);
5962 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5963 pool_allowed_cpus(pool)) < 0);
5964 }
5965
5966 raw_spin_lock_irq(&pool->lock);
5967
5968 pool->flags &= ~POOL_DISASSOCIATED;
5969
5970 for_each_pool_worker(worker, pool) {
5971 unsigned int worker_flags = worker->flags;
5972
5973 /*
5974 * We want to clear UNBOUND but can't directly call
5975 * worker_clr_flags() or adjust nr_running. Atomically
5976 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5977 * @worker will clear REBOUND using worker_clr_flags() when
5978 * it initiates the next execution cycle thus restoring
5979 * concurrency management. Note that when or whether
5980 * @worker clears REBOUND doesn't affect correctness.
5981 *
5982 * WRITE_ONCE() is necessary because @worker->flags may be
5983 * tested without holding any lock in
5984 * wq_worker_running(). Without it, NOT_RUNNING test may
5985 * fail incorrectly leading to premature concurrency
5986 * management operations.
5987 */
5988 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5989 worker_flags |= WORKER_REBOUND;
5990 worker_flags &= ~WORKER_UNBOUND;
5991 WRITE_ONCE(worker->flags, worker_flags);
5992 }
5993
5994 raw_spin_unlock_irq(&pool->lock);
5995 }
5996
5997 /**
5998 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5999 * @pool: unbound pool of interest
6000 * @cpu: the CPU which is coming up
6001 *
6002 * An unbound pool may end up with a cpumask which doesn't have any online
6003 * CPUs. When a worker of such pool get scheduled, the scheduler resets
6004 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
6005 * online CPU before, cpus_allowed of all its workers should be restored.
6006 */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)6007 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6008 {
6009 static cpumask_t cpumask;
6010 struct worker *worker;
6011
6012 lockdep_assert_held(&wq_pool_attach_mutex);
6013
6014 /* is @cpu allowed for @pool? */
6015 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6016 return;
6017
6018 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6019
6020 /* as we're called from CPU_ONLINE, the following shouldn't fail */
6021 for_each_pool_worker(worker, pool)
6022 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6023 }
6024
workqueue_prepare_cpu(unsigned int cpu)6025 int workqueue_prepare_cpu(unsigned int cpu)
6026 {
6027 struct worker_pool *pool;
6028
6029 for_each_cpu_worker_pool(pool, cpu) {
6030 if (pool->nr_workers)
6031 continue;
6032 if (!create_worker(pool))
6033 return -ENOMEM;
6034 }
6035 return 0;
6036 }
6037
workqueue_online_cpu(unsigned int cpu)6038 int workqueue_online_cpu(unsigned int cpu)
6039 {
6040 struct worker_pool *pool;
6041 struct workqueue_struct *wq;
6042 int pi;
6043
6044 mutex_lock(&wq_pool_mutex);
6045
6046 for_each_pool(pool, pi) {
6047 mutex_lock(&wq_pool_attach_mutex);
6048
6049 if (pool->cpu == cpu)
6050 rebind_workers(pool);
6051 else if (pool->cpu < 0)
6052 restore_unbound_workers_cpumask(pool, cpu);
6053
6054 mutex_unlock(&wq_pool_attach_mutex);
6055 }
6056
6057 /* update pod affinity of unbound workqueues */
6058 list_for_each_entry(wq, &workqueues, list) {
6059 struct workqueue_attrs *attrs = wq->unbound_attrs;
6060
6061 if (attrs) {
6062 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6063 int tcpu;
6064
6065 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6066 wq_update_pod(wq, tcpu, cpu, true);
6067
6068 mutex_lock(&wq->mutex);
6069 wq_update_node_max_active(wq, -1);
6070 mutex_unlock(&wq->mutex);
6071 }
6072 }
6073
6074 mutex_unlock(&wq_pool_mutex);
6075 return 0;
6076 }
6077
workqueue_offline_cpu(unsigned int cpu)6078 int workqueue_offline_cpu(unsigned int cpu)
6079 {
6080 struct workqueue_struct *wq;
6081
6082 /* unbinding per-cpu workers should happen on the local CPU */
6083 if (WARN_ON(cpu != smp_processor_id()))
6084 return -1;
6085
6086 unbind_workers(cpu);
6087
6088 /* update pod affinity of unbound workqueues */
6089 mutex_lock(&wq_pool_mutex);
6090 list_for_each_entry(wq, &workqueues, list) {
6091 struct workqueue_attrs *attrs = wq->unbound_attrs;
6092
6093 if (attrs) {
6094 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6095 int tcpu;
6096
6097 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6098 wq_update_pod(wq, tcpu, cpu, false);
6099
6100 mutex_lock(&wq->mutex);
6101 wq_update_node_max_active(wq, cpu);
6102 mutex_unlock(&wq->mutex);
6103 }
6104 }
6105 mutex_unlock(&wq_pool_mutex);
6106
6107 return 0;
6108 }
6109
6110 struct work_for_cpu {
6111 struct work_struct work;
6112 long (*fn)(void *);
6113 void *arg;
6114 long ret;
6115 };
6116
work_for_cpu_fn(struct work_struct * work)6117 static void work_for_cpu_fn(struct work_struct *work)
6118 {
6119 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6120
6121 wfc->ret = wfc->fn(wfc->arg);
6122 }
6123
6124 /**
6125 * work_on_cpu_key - run a function in thread context on a particular cpu
6126 * @cpu: the cpu to run on
6127 * @fn: the function to run
6128 * @arg: the function arg
6129 * @key: The lock class key for lock debugging purposes
6130 *
6131 * It is up to the caller to ensure that the cpu doesn't go offline.
6132 * The caller must not hold any locks which would prevent @fn from completing.
6133 *
6134 * Return: The value @fn returns.
6135 */
work_on_cpu_key(int cpu,long (* fn)(void *),void * arg,struct lock_class_key * key)6136 long work_on_cpu_key(int cpu, long (*fn)(void *),
6137 void *arg, struct lock_class_key *key)
6138 {
6139 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6140
6141 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6142 schedule_work_on(cpu, &wfc.work);
6143 flush_work(&wfc.work);
6144 destroy_work_on_stack(&wfc.work);
6145 return wfc.ret;
6146 }
6147 EXPORT_SYMBOL_GPL(work_on_cpu_key);
6148
6149 /**
6150 * work_on_cpu_safe_key - run a function in thread context on a particular cpu
6151 * @cpu: the cpu to run on
6152 * @fn: the function to run
6153 * @arg: the function argument
6154 * @key: The lock class key for lock debugging purposes
6155 *
6156 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6157 * any locks which would prevent @fn from completing.
6158 *
6159 * Return: The value @fn returns.
6160 */
work_on_cpu_safe_key(int cpu,long (* fn)(void *),void * arg,struct lock_class_key * key)6161 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6162 void *arg, struct lock_class_key *key)
6163 {
6164 long ret = -ENODEV;
6165
6166 cpus_read_lock();
6167 if (cpu_online(cpu))
6168 ret = work_on_cpu_key(cpu, fn, arg, key);
6169 cpus_read_unlock();
6170 return ret;
6171 }
6172 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6173 #endif /* CONFIG_SMP */
6174
6175 #ifdef CONFIG_FREEZER
6176
6177 /**
6178 * freeze_workqueues_begin - begin freezing workqueues
6179 *
6180 * Start freezing workqueues. After this function returns, all freezable
6181 * workqueues will queue new works to their inactive_works list instead of
6182 * pool->worklist.
6183 *
6184 * CONTEXT:
6185 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6186 */
freeze_workqueues_begin(void)6187 void freeze_workqueues_begin(void)
6188 {
6189 struct workqueue_struct *wq;
6190
6191 mutex_lock(&wq_pool_mutex);
6192
6193 WARN_ON_ONCE(workqueue_freezing);
6194 workqueue_freezing = true;
6195
6196 list_for_each_entry(wq, &workqueues, list) {
6197 mutex_lock(&wq->mutex);
6198 wq_adjust_max_active(wq);
6199 mutex_unlock(&wq->mutex);
6200 }
6201
6202 mutex_unlock(&wq_pool_mutex);
6203 }
6204
6205 /**
6206 * freeze_workqueues_busy - are freezable workqueues still busy?
6207 *
6208 * Check whether freezing is complete. This function must be called
6209 * between freeze_workqueues_begin() and thaw_workqueues().
6210 *
6211 * CONTEXT:
6212 * Grabs and releases wq_pool_mutex.
6213 *
6214 * Return:
6215 * %true if some freezable workqueues are still busy. %false if freezing
6216 * is complete.
6217 */
freeze_workqueues_busy(void)6218 bool freeze_workqueues_busy(void)
6219 {
6220 bool busy = false;
6221 struct workqueue_struct *wq;
6222 struct pool_workqueue *pwq;
6223
6224 mutex_lock(&wq_pool_mutex);
6225
6226 WARN_ON_ONCE(!workqueue_freezing);
6227
6228 list_for_each_entry(wq, &workqueues, list) {
6229 if (!(wq->flags & WQ_FREEZABLE))
6230 continue;
6231 /*
6232 * nr_active is monotonically decreasing. It's safe
6233 * to peek without lock.
6234 */
6235 rcu_read_lock();
6236 for_each_pwq(pwq, wq) {
6237 WARN_ON_ONCE(pwq->nr_active < 0);
6238 if (pwq->nr_active) {
6239 busy = true;
6240 rcu_read_unlock();
6241 goto out_unlock;
6242 }
6243 }
6244 rcu_read_unlock();
6245 }
6246 out_unlock:
6247 mutex_unlock(&wq_pool_mutex);
6248 return busy;
6249 }
6250
6251 /**
6252 * thaw_workqueues - thaw workqueues
6253 *
6254 * Thaw workqueues. Normal queueing is restored and all collected
6255 * frozen works are transferred to their respective pool worklists.
6256 *
6257 * CONTEXT:
6258 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6259 */
thaw_workqueues(void)6260 void thaw_workqueues(void)
6261 {
6262 struct workqueue_struct *wq;
6263
6264 mutex_lock(&wq_pool_mutex);
6265
6266 if (!workqueue_freezing)
6267 goto out_unlock;
6268
6269 workqueue_freezing = false;
6270
6271 /* restore max_active and repopulate worklist */
6272 list_for_each_entry(wq, &workqueues, list) {
6273 mutex_lock(&wq->mutex);
6274 wq_adjust_max_active(wq);
6275 mutex_unlock(&wq->mutex);
6276 }
6277
6278 out_unlock:
6279 mutex_unlock(&wq_pool_mutex);
6280 }
6281 #endif /* CONFIG_FREEZER */
6282
workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)6283 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6284 {
6285 LIST_HEAD(ctxs);
6286 int ret = 0;
6287 struct workqueue_struct *wq;
6288 struct apply_wqattrs_ctx *ctx, *n;
6289
6290 lockdep_assert_held(&wq_pool_mutex);
6291
6292 list_for_each_entry(wq, &workqueues, list) {
6293 if (!(wq->flags & WQ_UNBOUND))
6294 continue;
6295 /* creating multiple pwqs breaks ordering guarantee */
6296 if (wq->flags & __WQ_ORDERED)
6297 continue;
6298
6299 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6300 if (IS_ERR(ctx)) {
6301 ret = PTR_ERR(ctx);
6302 break;
6303 }
6304
6305 list_add_tail(&ctx->list, &ctxs);
6306 }
6307
6308 list_for_each_entry_safe(ctx, n, &ctxs, list) {
6309 if (!ret)
6310 apply_wqattrs_commit(ctx);
6311 apply_wqattrs_cleanup(ctx);
6312 }
6313
6314 if (!ret) {
6315 mutex_lock(&wq_pool_attach_mutex);
6316 cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6317 mutex_unlock(&wq_pool_attach_mutex);
6318 }
6319 return ret;
6320 }
6321
6322 /**
6323 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
6324 * @cpumask: the cpumask to set
6325 *
6326 * The low-level workqueues cpumask is a global cpumask that limits
6327 * the affinity of all unbound workqueues. This function check the @cpumask
6328 * and apply it to all unbound workqueues and updates all pwqs of them.
6329 *
6330 * Return: 0 - Success
6331 * -EINVAL - Invalid @cpumask
6332 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
6333 */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)6334 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
6335 {
6336 int ret = -EINVAL;
6337
6338 /*
6339 * Not excluding isolated cpus on purpose.
6340 * If the user wishes to include them, we allow that.
6341 */
6342 cpumask_and(cpumask, cpumask, cpu_possible_mask);
6343 if (!cpumask_empty(cpumask)) {
6344 apply_wqattrs_lock();
6345 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
6346 ret = 0;
6347 goto out_unlock;
6348 }
6349
6350 ret = workqueue_apply_unbound_cpumask(cpumask);
6351
6352 out_unlock:
6353 apply_wqattrs_unlock();
6354 }
6355
6356 return ret;
6357 }
6358
parse_affn_scope(const char * val)6359 static int parse_affn_scope(const char *val)
6360 {
6361 int i;
6362
6363 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6364 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6365 return i;
6366 }
6367 return -EINVAL;
6368 }
6369
wq_affn_dfl_set(const char * val,const struct kernel_param * kp)6370 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6371 {
6372 struct workqueue_struct *wq;
6373 int affn, cpu;
6374
6375 affn = parse_affn_scope(val);
6376 if (affn < 0)
6377 return affn;
6378 if (affn == WQ_AFFN_DFL)
6379 return -EINVAL;
6380
6381 cpus_read_lock();
6382 mutex_lock(&wq_pool_mutex);
6383
6384 wq_affn_dfl = affn;
6385
6386 list_for_each_entry(wq, &workqueues, list) {
6387 for_each_online_cpu(cpu) {
6388 wq_update_pod(wq, cpu, cpu, true);
6389 }
6390 }
6391
6392 mutex_unlock(&wq_pool_mutex);
6393 cpus_read_unlock();
6394
6395 return 0;
6396 }
6397
wq_affn_dfl_get(char * buffer,const struct kernel_param * kp)6398 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
6399 {
6400 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
6401 }
6402
6403 static const struct kernel_param_ops wq_affn_dfl_ops = {
6404 .set = wq_affn_dfl_set,
6405 .get = wq_affn_dfl_get,
6406 };
6407
6408 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
6409
6410 #ifdef CONFIG_SYSFS
6411 /*
6412 * Workqueues with WQ_SYSFS flag set is visible to userland via
6413 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
6414 * following attributes.
6415 *
6416 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
6417 * max_active RW int : maximum number of in-flight work items
6418 *
6419 * Unbound workqueues have the following extra attributes.
6420 *
6421 * nice RW int : nice value of the workers
6422 * cpumask RW mask : bitmask of allowed CPUs for the workers
6423 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none)
6424 * affinity_strict RW bool : worker CPU affinity is strict
6425 */
6426 struct wq_device {
6427 struct workqueue_struct *wq;
6428 struct device dev;
6429 };
6430
dev_to_wq(struct device * dev)6431 static struct workqueue_struct *dev_to_wq(struct device *dev)
6432 {
6433 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6434
6435 return wq_dev->wq;
6436 }
6437
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)6438 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
6439 char *buf)
6440 {
6441 struct workqueue_struct *wq = dev_to_wq(dev);
6442
6443 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
6444 }
6445 static DEVICE_ATTR_RO(per_cpu);
6446
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)6447 static ssize_t max_active_show(struct device *dev,
6448 struct device_attribute *attr, char *buf)
6449 {
6450 struct workqueue_struct *wq = dev_to_wq(dev);
6451
6452 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
6453 }
6454
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)6455 static ssize_t max_active_store(struct device *dev,
6456 struct device_attribute *attr, const char *buf,
6457 size_t count)
6458 {
6459 struct workqueue_struct *wq = dev_to_wq(dev);
6460 int val;
6461
6462 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
6463 return -EINVAL;
6464
6465 workqueue_set_max_active(wq, val);
6466 return count;
6467 }
6468 static DEVICE_ATTR_RW(max_active);
6469
6470 static struct attribute *wq_sysfs_attrs[] = {
6471 &dev_attr_per_cpu.attr,
6472 &dev_attr_max_active.attr,
6473 NULL,
6474 };
6475 ATTRIBUTE_GROUPS(wq_sysfs);
6476
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)6477 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
6478 char *buf)
6479 {
6480 struct workqueue_struct *wq = dev_to_wq(dev);
6481 int written;
6482
6483 mutex_lock(&wq->mutex);
6484 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
6485 mutex_unlock(&wq->mutex);
6486
6487 return written;
6488 }
6489
6490 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)6491 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
6492 {
6493 struct workqueue_attrs *attrs;
6494
6495 lockdep_assert_held(&wq_pool_mutex);
6496
6497 attrs = alloc_workqueue_attrs();
6498 if (!attrs)
6499 return NULL;
6500
6501 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6502 return attrs;
6503 }
6504
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)6505 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
6506 const char *buf, size_t count)
6507 {
6508 struct workqueue_struct *wq = dev_to_wq(dev);
6509 struct workqueue_attrs *attrs;
6510 int ret = -ENOMEM;
6511
6512 apply_wqattrs_lock();
6513
6514 attrs = wq_sysfs_prep_attrs(wq);
6515 if (!attrs)
6516 goto out_unlock;
6517
6518 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
6519 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
6520 ret = apply_workqueue_attrs_locked(wq, attrs);
6521 else
6522 ret = -EINVAL;
6523
6524 out_unlock:
6525 apply_wqattrs_unlock();
6526 free_workqueue_attrs(attrs);
6527 return ret ?: count;
6528 }
6529
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)6530 static ssize_t wq_cpumask_show(struct device *dev,
6531 struct device_attribute *attr, char *buf)
6532 {
6533 struct workqueue_struct *wq = dev_to_wq(dev);
6534 int written;
6535
6536 mutex_lock(&wq->mutex);
6537 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
6538 cpumask_pr_args(wq->unbound_attrs->cpumask));
6539 mutex_unlock(&wq->mutex);
6540 return written;
6541 }
6542
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)6543 static ssize_t wq_cpumask_store(struct device *dev,
6544 struct device_attribute *attr,
6545 const char *buf, size_t count)
6546 {
6547 struct workqueue_struct *wq = dev_to_wq(dev);
6548 struct workqueue_attrs *attrs;
6549 int ret = -ENOMEM;
6550
6551 apply_wqattrs_lock();
6552
6553 attrs = wq_sysfs_prep_attrs(wq);
6554 if (!attrs)
6555 goto out_unlock;
6556
6557 ret = cpumask_parse(buf, attrs->cpumask);
6558 if (!ret)
6559 ret = apply_workqueue_attrs_locked(wq, attrs);
6560
6561 out_unlock:
6562 apply_wqattrs_unlock();
6563 free_workqueue_attrs(attrs);
6564 return ret ?: count;
6565 }
6566
wq_affn_scope_show(struct device * dev,struct device_attribute * attr,char * buf)6567 static ssize_t wq_affn_scope_show(struct device *dev,
6568 struct device_attribute *attr, char *buf)
6569 {
6570 struct workqueue_struct *wq = dev_to_wq(dev);
6571 int written;
6572
6573 mutex_lock(&wq->mutex);
6574 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
6575 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
6576 wq_affn_names[WQ_AFFN_DFL],
6577 wq_affn_names[wq_affn_dfl]);
6578 else
6579 written = scnprintf(buf, PAGE_SIZE, "%s\n",
6580 wq_affn_names[wq->unbound_attrs->affn_scope]);
6581 mutex_unlock(&wq->mutex);
6582
6583 return written;
6584 }
6585
wq_affn_scope_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)6586 static ssize_t wq_affn_scope_store(struct device *dev,
6587 struct device_attribute *attr,
6588 const char *buf, size_t count)
6589 {
6590 struct workqueue_struct *wq = dev_to_wq(dev);
6591 struct workqueue_attrs *attrs;
6592 int affn, ret = -ENOMEM;
6593
6594 affn = parse_affn_scope(buf);
6595 if (affn < 0)
6596 return affn;
6597
6598 apply_wqattrs_lock();
6599 attrs = wq_sysfs_prep_attrs(wq);
6600 if (attrs) {
6601 attrs->affn_scope = affn;
6602 ret = apply_workqueue_attrs_locked(wq, attrs);
6603 }
6604 apply_wqattrs_unlock();
6605 free_workqueue_attrs(attrs);
6606 return ret ?: count;
6607 }
6608
wq_affinity_strict_show(struct device * dev,struct device_attribute * attr,char * buf)6609 static ssize_t wq_affinity_strict_show(struct device *dev,
6610 struct device_attribute *attr, char *buf)
6611 {
6612 struct workqueue_struct *wq = dev_to_wq(dev);
6613
6614 return scnprintf(buf, PAGE_SIZE, "%d\n",
6615 wq->unbound_attrs->affn_strict);
6616 }
6617
wq_affinity_strict_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)6618 static ssize_t wq_affinity_strict_store(struct device *dev,
6619 struct device_attribute *attr,
6620 const char *buf, size_t count)
6621 {
6622 struct workqueue_struct *wq = dev_to_wq(dev);
6623 struct workqueue_attrs *attrs;
6624 int v, ret = -ENOMEM;
6625
6626 if (sscanf(buf, "%d", &v) != 1)
6627 return -EINVAL;
6628
6629 apply_wqattrs_lock();
6630 attrs = wq_sysfs_prep_attrs(wq);
6631 if (attrs) {
6632 attrs->affn_strict = (bool)v;
6633 ret = apply_workqueue_attrs_locked(wq, attrs);
6634 }
6635 apply_wqattrs_unlock();
6636 free_workqueue_attrs(attrs);
6637 return ret ?: count;
6638 }
6639
6640 static struct device_attribute wq_sysfs_unbound_attrs[] = {
6641 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
6642 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
6643 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
6644 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
6645 __ATTR_NULL,
6646 };
6647
6648 static struct bus_type wq_subsys = {
6649 .name = "workqueue",
6650 .dev_groups = wq_sysfs_groups,
6651 };
6652
wq_unbound_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)6653 static ssize_t wq_unbound_cpumask_show(struct device *dev,
6654 struct device_attribute *attr, char *buf)
6655 {
6656 int written;
6657
6658 mutex_lock(&wq_pool_mutex);
6659 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
6660 cpumask_pr_args(wq_unbound_cpumask));
6661 mutex_unlock(&wq_pool_mutex);
6662
6663 return written;
6664 }
6665
wq_unbound_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)6666 static ssize_t wq_unbound_cpumask_store(struct device *dev,
6667 struct device_attribute *attr, const char *buf, size_t count)
6668 {
6669 cpumask_var_t cpumask;
6670 int ret;
6671
6672 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6673 return -ENOMEM;
6674
6675 ret = cpumask_parse(buf, cpumask);
6676 if (!ret)
6677 ret = workqueue_set_unbound_cpumask(cpumask);
6678
6679 free_cpumask_var(cpumask);
6680 return ret ? ret : count;
6681 }
6682
6683 static struct device_attribute wq_sysfs_cpumask_attr =
6684 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
6685 wq_unbound_cpumask_store);
6686
wq_sysfs_init(void)6687 static int __init wq_sysfs_init(void)
6688 {
6689 struct device *dev_root;
6690 int err;
6691
6692 err = subsys_virtual_register(&wq_subsys, NULL);
6693 if (err)
6694 return err;
6695
6696 dev_root = bus_get_dev_root(&wq_subsys);
6697 if (dev_root) {
6698 err = device_create_file(dev_root, &wq_sysfs_cpumask_attr);
6699 put_device(dev_root);
6700 }
6701 return err;
6702 }
6703 core_initcall(wq_sysfs_init);
6704
wq_device_release(struct device * dev)6705 static void wq_device_release(struct device *dev)
6706 {
6707 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6708
6709 kfree(wq_dev);
6710 }
6711
6712 /**
6713 * workqueue_sysfs_register - make a workqueue visible in sysfs
6714 * @wq: the workqueue to register
6715 *
6716 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
6717 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
6718 * which is the preferred method.
6719 *
6720 * Workqueue user should use this function directly iff it wants to apply
6721 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
6722 * apply_workqueue_attrs() may race against userland updating the
6723 * attributes.
6724 *
6725 * Return: 0 on success, -errno on failure.
6726 */
workqueue_sysfs_register(struct workqueue_struct * wq)6727 int workqueue_sysfs_register(struct workqueue_struct *wq)
6728 {
6729 struct wq_device *wq_dev;
6730 int ret;
6731
6732 /*
6733 * Adjusting max_active or creating new pwqs by applying
6734 * attributes breaks ordering guarantee. Disallow exposing ordered
6735 * workqueues.
6736 */
6737 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6738 return -EINVAL;
6739
6740 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
6741 if (!wq_dev)
6742 return -ENOMEM;
6743
6744 wq_dev->wq = wq;
6745 wq_dev->dev.bus = &wq_subsys;
6746 wq_dev->dev.release = wq_device_release;
6747 dev_set_name(&wq_dev->dev, "%s", wq->name);
6748
6749 /*
6750 * unbound_attrs are created separately. Suppress uevent until
6751 * everything is ready.
6752 */
6753 dev_set_uevent_suppress(&wq_dev->dev, true);
6754
6755 ret = device_register(&wq_dev->dev);
6756 if (ret) {
6757 put_device(&wq_dev->dev);
6758 wq->wq_dev = NULL;
6759 return ret;
6760 }
6761
6762 if (wq->flags & WQ_UNBOUND) {
6763 struct device_attribute *attr;
6764
6765 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
6766 ret = device_create_file(&wq_dev->dev, attr);
6767 if (ret) {
6768 device_unregister(&wq_dev->dev);
6769 wq->wq_dev = NULL;
6770 return ret;
6771 }
6772 }
6773 }
6774
6775 dev_set_uevent_suppress(&wq_dev->dev, false);
6776 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
6777 return 0;
6778 }
6779
6780 /**
6781 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
6782 * @wq: the workqueue to unregister
6783 *
6784 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
6785 */
workqueue_sysfs_unregister(struct workqueue_struct * wq)6786 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
6787 {
6788 struct wq_device *wq_dev = wq->wq_dev;
6789
6790 if (!wq->wq_dev)
6791 return;
6792
6793 wq->wq_dev = NULL;
6794 device_unregister(&wq_dev->dev);
6795 }
6796 #else /* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)6797 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
6798 #endif /* CONFIG_SYSFS */
6799
6800 /*
6801 * Workqueue watchdog.
6802 *
6803 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
6804 * flush dependency, a concurrency managed work item which stays RUNNING
6805 * indefinitely. Workqueue stalls can be very difficult to debug as the
6806 * usual warning mechanisms don't trigger and internal workqueue state is
6807 * largely opaque.
6808 *
6809 * Workqueue watchdog monitors all worker pools periodically and dumps
6810 * state if some pools failed to make forward progress for a while where
6811 * forward progress is defined as the first item on ->worklist changing.
6812 *
6813 * This mechanism is controlled through the kernel parameter
6814 * "workqueue.watchdog_thresh" which can be updated at runtime through the
6815 * corresponding sysfs parameter file.
6816 */
6817 #ifdef CONFIG_WQ_WATCHDOG
6818
6819 static unsigned long wq_watchdog_thresh = 30;
6820 static struct timer_list wq_watchdog_timer;
6821
6822 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
6823 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
6824
6825 /*
6826 * Show workers that might prevent the processing of pending work items.
6827 * The only candidates are CPU-bound workers in the running state.
6828 * Pending work items should be handled by another idle worker
6829 * in all other situations.
6830 */
show_cpu_pool_hog(struct worker_pool * pool)6831 static void show_cpu_pool_hog(struct worker_pool *pool)
6832 {
6833 struct worker *worker;
6834 unsigned long flags;
6835 int bkt;
6836
6837 raw_spin_lock_irqsave(&pool->lock, flags);
6838
6839 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6840 if (task_is_running(worker->task)) {
6841 /*
6842 * Defer printing to avoid deadlocks in console
6843 * drivers that queue work while holding locks
6844 * also taken in their write paths.
6845 */
6846 printk_deferred_enter();
6847
6848 pr_info("pool %d:\n", pool->id);
6849 sched_show_task(worker->task);
6850
6851 printk_deferred_exit();
6852 }
6853 }
6854
6855 raw_spin_unlock_irqrestore(&pool->lock, flags);
6856 }
6857
show_cpu_pools_hogs(void)6858 static void show_cpu_pools_hogs(void)
6859 {
6860 struct worker_pool *pool;
6861 int pi;
6862
6863 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
6864
6865 rcu_read_lock();
6866
6867 for_each_pool(pool, pi) {
6868 if (pool->cpu_stall)
6869 show_cpu_pool_hog(pool);
6870
6871 }
6872
6873 rcu_read_unlock();
6874 }
6875
wq_watchdog_reset_touched(void)6876 static void wq_watchdog_reset_touched(void)
6877 {
6878 int cpu;
6879
6880 wq_watchdog_touched = jiffies;
6881 for_each_possible_cpu(cpu)
6882 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6883 }
6884
wq_watchdog_timer_fn(struct timer_list * unused)6885 static void wq_watchdog_timer_fn(struct timer_list *unused)
6886 {
6887 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
6888 bool lockup_detected = false;
6889 bool cpu_pool_stall = false;
6890 unsigned long now = jiffies;
6891 struct worker_pool *pool;
6892 int pi;
6893
6894 if (!thresh)
6895 return;
6896
6897 rcu_read_lock();
6898
6899 for_each_pool(pool, pi) {
6900 unsigned long pool_ts, touched, ts;
6901
6902 pool->cpu_stall = false;
6903 if (list_empty(&pool->worklist))
6904 continue;
6905
6906 /*
6907 * If a virtual machine is stopped by the host it can look to
6908 * the watchdog like a stall.
6909 */
6910 kvm_check_and_clear_guest_paused();
6911
6912 /* get the latest of pool and touched timestamps */
6913 if (pool->cpu >= 0)
6914 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
6915 else
6916 touched = READ_ONCE(wq_watchdog_touched);
6917 pool_ts = READ_ONCE(pool->watchdog_ts);
6918
6919 if (time_after(pool_ts, touched))
6920 ts = pool_ts;
6921 else
6922 ts = touched;
6923
6924 /* did we stall? */
6925 if (time_after(now, ts + thresh)) {
6926 lockup_detected = true;
6927 if (pool->cpu >= 0) {
6928 pool->cpu_stall = true;
6929 cpu_pool_stall = true;
6930 }
6931 pr_emerg("BUG: workqueue lockup - pool");
6932 pr_cont_pool_info(pool);
6933 pr_cont(" stuck for %us!\n",
6934 jiffies_to_msecs(now - pool_ts) / 1000);
6935 }
6936
6937
6938 }
6939
6940 rcu_read_unlock();
6941
6942 if (lockup_detected)
6943 show_all_workqueues();
6944
6945 if (cpu_pool_stall)
6946 show_cpu_pools_hogs();
6947
6948 wq_watchdog_reset_touched();
6949 mod_timer(&wq_watchdog_timer, jiffies + thresh);
6950 }
6951
wq_watchdog_touch(int cpu)6952 notrace void wq_watchdog_touch(int cpu)
6953 {
6954 if (cpu >= 0)
6955 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6956
6957 wq_watchdog_touched = jiffies;
6958 }
6959
wq_watchdog_set_thresh(unsigned long thresh)6960 static void wq_watchdog_set_thresh(unsigned long thresh)
6961 {
6962 wq_watchdog_thresh = 0;
6963 del_timer_sync(&wq_watchdog_timer);
6964
6965 if (thresh) {
6966 wq_watchdog_thresh = thresh;
6967 wq_watchdog_reset_touched();
6968 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
6969 }
6970 }
6971
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)6972 static int wq_watchdog_param_set_thresh(const char *val,
6973 const struct kernel_param *kp)
6974 {
6975 unsigned long thresh;
6976 int ret;
6977
6978 ret = kstrtoul(val, 0, &thresh);
6979 if (ret)
6980 return ret;
6981
6982 if (system_wq)
6983 wq_watchdog_set_thresh(thresh);
6984 else
6985 wq_watchdog_thresh = thresh;
6986
6987 return 0;
6988 }
6989
6990 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
6991 .set = wq_watchdog_param_set_thresh,
6992 .get = param_get_ulong,
6993 };
6994
6995 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
6996 0644);
6997
wq_watchdog_init(void)6998 static void wq_watchdog_init(void)
6999 {
7000 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7001 wq_watchdog_set_thresh(wq_watchdog_thresh);
7002 }
7003
7004 #else /* CONFIG_WQ_WATCHDOG */
7005
wq_watchdog_init(void)7006 static inline void wq_watchdog_init(void) { }
7007
7008 #endif /* CONFIG_WQ_WATCHDOG */
7009
restrict_unbound_cpumask(const char * name,const struct cpumask * mask)7010 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7011 {
7012 if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7013 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7014 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7015 return;
7016 }
7017
7018 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7019 }
7020
7021 /**
7022 * workqueue_init_early - early init for workqueue subsystem
7023 *
7024 * This is the first step of three-staged workqueue subsystem initialization and
7025 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7026 * up. It sets up all the data structures and system workqueues and allows early
7027 * boot code to create workqueues and queue/cancel work items. Actual work item
7028 * execution starts only after kthreads can be created and scheduled right
7029 * before early initcalls.
7030 */
workqueue_init_early(void)7031 void __init workqueue_init_early(void)
7032 {
7033 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7034 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7035 int i, cpu;
7036
7037 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7038
7039 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7040 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7041 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7042 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7043 if (!cpumask_empty(&wq_cmdline_cpumask))
7044 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7045
7046 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7047
7048 wq_update_pod_attrs_buf = alloc_workqueue_attrs();
7049 BUG_ON(!wq_update_pod_attrs_buf);
7050
7051 /* initialize WQ_AFFN_SYSTEM pods */
7052 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7053 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7054 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7055 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7056
7057 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7058
7059 pt->nr_pods = 1;
7060 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7061 pt->pod_node[0] = NUMA_NO_NODE;
7062 pt->cpu_pod[0] = 0;
7063
7064 /* initialize CPU pools */
7065 for_each_possible_cpu(cpu) {
7066 struct worker_pool *pool;
7067
7068 i = 0;
7069 for_each_cpu_worker_pool(pool, cpu) {
7070 BUG_ON(init_worker_pool(pool));
7071 pool->cpu = cpu;
7072 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7073 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7074 pool->attrs->nice = std_nice[i++];
7075 pool->attrs->affn_strict = true;
7076 pool->node = cpu_to_node(cpu);
7077
7078 /* alloc pool ID */
7079 mutex_lock(&wq_pool_mutex);
7080 BUG_ON(worker_pool_assign_id(pool));
7081 mutex_unlock(&wq_pool_mutex);
7082 }
7083 }
7084
7085 /* create default unbound and ordered wq attrs */
7086 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7087 struct workqueue_attrs *attrs;
7088
7089 BUG_ON(!(attrs = alloc_workqueue_attrs()));
7090 attrs->nice = std_nice[i];
7091 unbound_std_wq_attrs[i] = attrs;
7092
7093 /*
7094 * An ordered wq should have only one pwq as ordering is
7095 * guaranteed by max_active which is enforced by pwqs.
7096 */
7097 BUG_ON(!(attrs = alloc_workqueue_attrs()));
7098 attrs->nice = std_nice[i];
7099 attrs->ordered = true;
7100 ordered_wq_attrs[i] = attrs;
7101 }
7102
7103 system_wq = alloc_workqueue("events", 0, 0);
7104 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
7105 system_long_wq = alloc_workqueue("events_long", 0, 0);
7106 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
7107 WQ_MAX_ACTIVE);
7108 system_freezable_wq = alloc_workqueue("events_freezable",
7109 WQ_FREEZABLE, 0);
7110 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7111 WQ_POWER_EFFICIENT, 0);
7112 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
7113 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7114 0);
7115 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
7116 !system_unbound_wq || !system_freezable_wq ||
7117 !system_power_efficient_wq ||
7118 !system_freezable_power_efficient_wq);
7119 }
7120
wq_cpu_intensive_thresh_init(void)7121 static void __init wq_cpu_intensive_thresh_init(void)
7122 {
7123 unsigned long thresh;
7124 unsigned long bogo;
7125
7126 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7127 BUG_ON(IS_ERR(pwq_release_worker));
7128
7129 /* if the user set it to a specific value, keep it */
7130 if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7131 return;
7132
7133 /*
7134 * The default of 10ms is derived from the fact that most modern (as of
7135 * 2023) processors can do a lot in 10ms and that it's just below what
7136 * most consider human-perceivable. However, the kernel also runs on a
7137 * lot slower CPUs including microcontrollers where the threshold is way
7138 * too low.
7139 *
7140 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7141 * This is by no means accurate but it doesn't have to be. The mechanism
7142 * is still useful even when the threshold is fully scaled up. Also, as
7143 * the reports would usually be applicable to everyone, some machines
7144 * operating on longer thresholds won't significantly diminish their
7145 * usefulness.
7146 */
7147 thresh = 10 * USEC_PER_MSEC;
7148
7149 /* see init/calibrate.c for lpj -> BogoMIPS calculation */
7150 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7151 if (bogo < 4000)
7152 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7153
7154 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7155 loops_per_jiffy, bogo, thresh);
7156
7157 wq_cpu_intensive_thresh_us = thresh;
7158 }
7159
7160 /**
7161 * workqueue_init - bring workqueue subsystem fully online
7162 *
7163 * This is the second step of three-staged workqueue subsystem initialization
7164 * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7165 * been created and work items queued on them, but there are no kworkers
7166 * executing the work items yet. Populate the worker pools with the initial
7167 * workers and enable future kworker creations.
7168 */
workqueue_init(void)7169 void __init workqueue_init(void)
7170 {
7171 struct workqueue_struct *wq;
7172 struct worker_pool *pool;
7173 int cpu, bkt;
7174
7175 wq_cpu_intensive_thresh_init();
7176
7177 mutex_lock(&wq_pool_mutex);
7178
7179 /*
7180 * Per-cpu pools created earlier could be missing node hint. Fix them
7181 * up. Also, create a rescuer for workqueues that requested it.
7182 */
7183 for_each_possible_cpu(cpu) {
7184 for_each_cpu_worker_pool(pool, cpu) {
7185 pool->node = cpu_to_node(cpu);
7186 }
7187 }
7188
7189 list_for_each_entry(wq, &workqueues, list) {
7190 WARN(init_rescuer(wq),
7191 "workqueue: failed to create early rescuer for %s",
7192 wq->name);
7193 }
7194
7195 mutex_unlock(&wq_pool_mutex);
7196
7197 /* create the initial workers */
7198 for_each_online_cpu(cpu) {
7199 for_each_cpu_worker_pool(pool, cpu) {
7200 pool->flags &= ~POOL_DISASSOCIATED;
7201 BUG_ON(!create_worker(pool));
7202 }
7203 }
7204
7205 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7206 BUG_ON(!create_worker(pool));
7207
7208 wq_online = true;
7209 wq_watchdog_init();
7210 }
7211
7212 /*
7213 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7214 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7215 * and consecutive pod ID. The rest of @pt is initialized accordingly.
7216 */
init_pod_type(struct wq_pod_type * pt,bool (* cpus_share_pod)(int,int))7217 static void __init init_pod_type(struct wq_pod_type *pt,
7218 bool (*cpus_share_pod)(int, int))
7219 {
7220 int cur, pre, cpu, pod;
7221
7222 pt->nr_pods = 0;
7223
7224 /* init @pt->cpu_pod[] according to @cpus_share_pod() */
7225 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7226 BUG_ON(!pt->cpu_pod);
7227
7228 for_each_possible_cpu(cur) {
7229 for_each_possible_cpu(pre) {
7230 if (pre >= cur) {
7231 pt->cpu_pod[cur] = pt->nr_pods++;
7232 break;
7233 }
7234 if (cpus_share_pod(cur, pre)) {
7235 pt->cpu_pod[cur] = pt->cpu_pod[pre];
7236 break;
7237 }
7238 }
7239 }
7240
7241 /* init the rest to match @pt->cpu_pod[] */
7242 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7243 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7244 BUG_ON(!pt->pod_cpus || !pt->pod_node);
7245
7246 for (pod = 0; pod < pt->nr_pods; pod++)
7247 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7248
7249 for_each_possible_cpu(cpu) {
7250 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7251 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7252 }
7253 }
7254
cpus_dont_share(int cpu0,int cpu1)7255 static bool __init cpus_dont_share(int cpu0, int cpu1)
7256 {
7257 return false;
7258 }
7259
cpus_share_smt(int cpu0,int cpu1)7260 static bool __init cpus_share_smt(int cpu0, int cpu1)
7261 {
7262 #ifdef CONFIG_SCHED_SMT
7263 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7264 #else
7265 return false;
7266 #endif
7267 }
7268
cpus_share_numa(int cpu0,int cpu1)7269 static bool __init cpus_share_numa(int cpu0, int cpu1)
7270 {
7271 return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7272 }
7273
7274 /**
7275 * workqueue_init_topology - initialize CPU pods for unbound workqueues
7276 *
7277 * This is the third step of there-staged workqueue subsystem initialization and
7278 * invoked after SMP and topology information are fully initialized. It
7279 * initializes the unbound CPU pods accordingly.
7280 */
workqueue_init_topology(void)7281 void __init workqueue_init_topology(void)
7282 {
7283 struct workqueue_struct *wq;
7284 int cpu;
7285
7286 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
7287 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
7288 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
7289 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
7290
7291 mutex_lock(&wq_pool_mutex);
7292
7293 /*
7294 * Workqueues allocated earlier would have all CPUs sharing the default
7295 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
7296 * combinations to apply per-pod sharing.
7297 */
7298 list_for_each_entry(wq, &workqueues, list) {
7299 for_each_online_cpu(cpu)
7300 wq_update_pod(wq, cpu, cpu, true);
7301 if (wq->flags & WQ_UNBOUND) {
7302 mutex_lock(&wq->mutex);
7303 wq_update_node_max_active(wq, -1);
7304 mutex_unlock(&wq->mutex);
7305 }
7306 }
7307
7308 mutex_unlock(&wq_pool_mutex);
7309 }
7310
__warn_flushing_systemwide_wq(void)7311 void __warn_flushing_systemwide_wq(void)
7312 {
7313 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
7314 dump_stack();
7315 }
7316 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
7317
workqueue_unbound_cpus_setup(char * str)7318 static int __init workqueue_unbound_cpus_setup(char *str)
7319 {
7320 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
7321 cpumask_clear(&wq_cmdline_cpumask);
7322 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
7323 }
7324
7325 return 1;
7326 }
7327 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
7328