1 /*
2 * Copyright 2014 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/GrResourceCache.h"
9 #include <atomic>
10 #include <ctime>
11 #include <vector>
12 #include <map>
13 #include <sstream>
14 #ifdef NOT_BUILD_FOR_OHOS_SDK
15 #include <parameters.h>
16 #endif
17 #include "include/core/SkString.h"
18 #include "include/gpu/GrDirectContext.h"
19 #include "include/private/GrSingleOwner.h"
20 #include "include/private/SkTo.h"
21 #include "include/utils/SkRandom.h"
22 #include "src/core/SkMessageBus.h"
23 #include "src/core/SkOpts.h"
24 #include "src/core/SkScopeExit.h"
25 #include "src/core/SkTSort.h"
26 #include "src/gpu/GrCaps.h"
27 #include "src/gpu/GrDirectContextPriv.h"
28 #include "src/gpu/GrGpuResourceCacheAccess.h"
29 #include "src/gpu/GrProxyProvider.h"
30 #include "src/gpu/GrTexture.h"
31 #include "src/gpu/GrTextureProxyCacheAccess.h"
32 #include "src/gpu/GrThreadSafeCache.h"
33 #include "src/gpu/GrTracing.h"
34 #include "src/gpu/SkGr.h"
35
36 DECLARE_SKMESSAGEBUS_MESSAGE(GrUniqueKeyInvalidatedMessage, uint32_t, true);
37
38 DECLARE_SKMESSAGEBUS_MESSAGE(GrTextureFreedMessage, GrDirectContext::DirectContextID, true);
39
40 #define ASSERT_SINGLE_OWNER GR_ASSERT_SINGLE_OWNER(fSingleOwner)
41
42 //////////////////////////////////////////////////////////////////////////////
43
GenerateResourceType()44 GrScratchKey::ResourceType GrScratchKey::GenerateResourceType() {
45 static std::atomic<int32_t> nextType{INHERITED::kInvalidDomain + 1};
46
47 int32_t type = nextType.fetch_add(1, std::memory_order_relaxed);
48 if (type > SkTo<int32_t>(UINT16_MAX)) {
49 SK_ABORT("Too many Resource Types");
50 }
51
52 return static_cast<ResourceType>(type);
53 }
54
GenerateDomain()55 GrUniqueKey::Domain GrUniqueKey::GenerateDomain() {
56 static std::atomic<int32_t> nextDomain{INHERITED::kInvalidDomain + 1};
57
58 int32_t domain = nextDomain.fetch_add(1, std::memory_order_relaxed);
59 if (domain > SkTo<int32_t>(UINT16_MAX)) {
60 SK_ABORT("Too many GrUniqueKey Domains");
61 }
62
63 return static_cast<Domain>(domain);
64 }
65
GrResourceKeyHash(const uint32_t * data,size_t size)66 uint32_t GrResourceKeyHash(const uint32_t* data, size_t size) {
67 return SkOpts::hash(data, size);
68 }
69
70 //////////////////////////////////////////////////////////////////////////////
71
72 class GrResourceCache::AutoValidate : ::SkNoncopyable {
73 public:
AutoValidate(GrResourceCache * cache)74 AutoValidate(GrResourceCache* cache) : fCache(cache) { cache->validate(); }
~AutoValidate()75 ~AutoValidate() { fCache->validate(); }
76 private:
77 GrResourceCache* fCache;
78 };
79
80 //////////////////////////////////////////////////////////////////////////////
81
82 inline GrResourceCache::TextureAwaitingUnref::TextureAwaitingUnref() = default;
83
TextureAwaitingUnref(GrTexture * texture)84 inline GrResourceCache::TextureAwaitingUnref::TextureAwaitingUnref(GrTexture* texture)
85 : fTexture(texture), fNumUnrefs(1) {}
86
TextureAwaitingUnref(TextureAwaitingUnref && that)87 inline GrResourceCache::TextureAwaitingUnref::TextureAwaitingUnref(TextureAwaitingUnref&& that) {
88 fTexture = std::exchange(that.fTexture, nullptr);
89 fNumUnrefs = std::exchange(that.fNumUnrefs, 0);
90 }
91
operator =(TextureAwaitingUnref && that)92 inline GrResourceCache::TextureAwaitingUnref& GrResourceCache::TextureAwaitingUnref::operator=(
93 TextureAwaitingUnref&& that) {
94 fTexture = std::exchange(that.fTexture, nullptr);
95 fNumUnrefs = std::exchange(that.fNumUnrefs, 0);
96 return *this;
97 }
98
~TextureAwaitingUnref()99 inline GrResourceCache::TextureAwaitingUnref::~TextureAwaitingUnref() {
100 if (fTexture) {
101 for (int i = 0; i < fNumUnrefs; ++i) {
102 fTexture->unref();
103 }
104 }
105 }
106
addRef()107 inline void GrResourceCache::TextureAwaitingUnref::TextureAwaitingUnref::addRef() { ++fNumUnrefs; }
108
unref()109 inline void GrResourceCache::TextureAwaitingUnref::unref() {
110 SkASSERT(fNumUnrefs > 0);
111 fTexture->unref();
112 --fNumUnrefs;
113 }
114
finished()115 inline bool GrResourceCache::TextureAwaitingUnref::finished() { return !fNumUnrefs; }
116
117 //////////////////////////////////////////////////////////////////////////////
118
GrResourceCache(GrSingleOwner * singleOwner,GrDirectContext::DirectContextID owningContextID,uint32_t familyID)119 GrResourceCache::GrResourceCache(GrSingleOwner* singleOwner,
120 GrDirectContext::DirectContextID owningContextID,
121 uint32_t familyID)
122 : fInvalidUniqueKeyInbox(familyID)
123 , fFreedTextureInbox(owningContextID)
124 , fOwningContextID(owningContextID)
125 , fContextUniqueID(familyID)
126 , fSingleOwner(singleOwner) {
127 SkASSERT(owningContextID.isValid());
128 SkASSERT(familyID != SK_InvalidUniqueID);
129 #ifdef NOT_BUILD_FOR_OHOS_SDK
130 static int overtimeDuration =
131 std::atoi(OHOS::system::GetParameter("persist.sys.graphic.mem.async_free_cache_overtime", "600").c_str());
132 static double maxBytesRate =
133 std::atof(OHOS::system::GetParameter("persist.sys.graphic.mem.async_free_cache_max_rate", "0.9").c_str());
134 #else
135 static int overtimeDuration = 600;
136 static double maxBytesRate = 0.9;
137 #endif
138 fMaxBytesRate = maxBytesRate;
139 fOvertimeDuration = overtimeDuration;
140 }
141
~GrResourceCache()142 GrResourceCache::~GrResourceCache() {
143 this->releaseAll();
144 }
145
setLimit(size_t bytes)146 void GrResourceCache::setLimit(size_t bytes) {
147 fMaxBytes = bytes;
148 this->purgeAsNeeded();
149 }
150
151 #ifdef SKIA_DFX_FOR_OHOS
152 static constexpr int MB = 1024 * 1024;
153
154 #ifdef SKIA_OHOS_FOR_OHOS_TRACE
155 bool GrResourceCache::purgeUnlocakedResTraceEnabled_ =
156 std::atoi((OHOS::system::GetParameter("sys.graphic.skia.cache.debug", "0").c_str())) == 1;
157 #endif
158
dumpInfo(SkString * out)159 void GrResourceCache::dumpInfo(SkString* out) {
160 if (out == nullptr) {
161 SkDebugf("OHOS GrResourceCache::dumpInfo outPtr is nullptr!");
162 return;
163 }
164 auto info = cacheInfo();
165 constexpr uint8_t STEP_INDEX = 1;
166 SkTArray<SkString> lines;
167 SkStrSplit(info.substr(STEP_INDEX, info.length() - STEP_INDEX).c_str(), ";", &lines);
168 for (int i = 0; i < lines.size(); ++i) {
169 out->appendf(" %s\n", lines[i].c_str());
170 }
171 }
172
cacheInfo()173 std::string GrResourceCache::cacheInfo()
174 {
175 auto fPurgeableQueueInfoStr = cacheInfoPurgeableQueue();
176 auto fNonpurgeableResourcesInfoStr = cacheInfoNoPurgeableQueue();
177 size_t fRealAllocBytes = cacheInfoRealAllocSize();
178 auto fRealAllocInfoStr = cacheInfoRealAllocQueue();
179 auto fRealBytesOfPidInfoStr = realBytesOfPid();
180
181 std::ostringstream cacheInfoStream;
182 cacheInfoStream << "[fPurgeableQueueInfoStr.count : " << fPurgeableQueue.count()
183 << "; fNonpurgeableResources.count : " << fNonpurgeableResources.count()
184 << "; fBudgetedBytes : " << fBudgetedBytes
185 << "(" << static_cast<size_t>(fBudgetedBytes / MB)
186 << " MB) / " << fMaxBytes
187 << "(" << static_cast<size_t>(fMaxBytes / MB)
188 << " MB); fBudgetedCount : " << fBudgetedCount
189 << "; fBytes : " << fBytes
190 << "(" << static_cast<size_t>(fBytes / MB)
191 << " MB); fPurgeableBytes : " << fPurgeableBytes
192 << "(" << static_cast<size_t>(fPurgeableBytes / MB)
193 << " MB); fAllocImageBytes : " << fAllocImageBytes
194 << "(" << static_cast<size_t>(fAllocImageBytes / MB)
195 << " MB); fAllocBufferBytes : " << fAllocBufferBytes
196 << "(" << static_cast<size_t>(fAllocBufferBytes / MB)
197 << " MB); fRealAllocBytes : " << fRealAllocBytes
198 << "(" << static_cast<size_t>(fRealAllocBytes / MB)
199 << " MB); fTimestamp : " << fTimestamp
200 << "; " << fPurgeableQueueInfoStr << "; " << fNonpurgeableResourcesInfoStr
201 << "; " << fRealAllocInfoStr << "; " << fRealBytesOfPidInfoStr;
202 return cacheInfoStream.str();
203 }
204
205 #ifdef SKIA_OHOS_FOR_OHOS_TRACE
traceBeforePurgeUnlockRes(const std::string & method,SimpleCacheInfo & simpleCacheInfo)206 void GrResourceCache::traceBeforePurgeUnlockRes(const std::string& method, SimpleCacheInfo& simpleCacheInfo)
207 {
208 if (purgeUnlocakedResTraceEnabled_) {
209 StartTrace(HITRACE_TAG_GRAPHIC_AGP, method + " begin cacheInfo = " + cacheInfo());
210 } else {
211 simpleCacheInfo.fPurgeableQueueCount = fPurgeableQueue.count();
212 simpleCacheInfo.fNonpurgeableResourcesCount = fNonpurgeableResources.count();
213 simpleCacheInfo.fPurgeableBytes = fPurgeableBytes;
214 simpleCacheInfo.fBudgetedCount = fBudgetedCount;
215 simpleCacheInfo.fBudgetedBytes = fBudgetedBytes;
216 simpleCacheInfo.fAllocImageBytes = fAllocImageBytes;
217 simpleCacheInfo.fAllocBufferBytes = fAllocBufferBytes;
218 }
219 }
220
traceAfterPurgeUnlockRes(const std::string & method,const SimpleCacheInfo & simpleCacheInfo)221 void GrResourceCache::traceAfterPurgeUnlockRes(const std::string& method, const SimpleCacheInfo& simpleCacheInfo)
222 {
223 if (purgeUnlocakedResTraceEnabled_) {
224 HITRACE_OHOS_NAME_FMT_ALWAYS("%s end cacheInfo = %s", method.c_str(), cacheInfo().c_str());
225 FinishTrace(HITRACE_TAG_GRAPHIC_AGP);
226 } else {
227 HITRACE_OHOS_NAME_FMT_ALWAYS("%s end cacheInfo = %s",
228 method.c_str(), cacheInfoComparison(simpleCacheInfo).c_str());
229 }
230 }
231
cacheInfoComparison(const SimpleCacheInfo & simpleCacheInfo)232 std::string GrResourceCache::cacheInfoComparison(const SimpleCacheInfo& simpleCacheInfo)
233 {
234 std::ostringstream cacheInfoComparison;
235 cacheInfoComparison << "PurgeableCount : " << simpleCacheInfo.fPurgeableQueueCount
236 << " / " << fPurgeableQueue.count()
237 << "; NonpurgeableCount : " << simpleCacheInfo.fNonpurgeableResourcesCount
238 << " / " << fNonpurgeableResources.count()
239 << "; PurgeableBytes : " << simpleCacheInfo.fPurgeableBytes << " / " << fPurgeableBytes
240 << "; BudgetedCount : " << simpleCacheInfo.fBudgetedCount << " / " << fBudgetedCount
241 << "; BudgetedBytes : " << simpleCacheInfo.fBudgetedBytes << " / " << fBudgetedBytes
242 << "; AllocImageBytes : " << simpleCacheInfo.fAllocImageBytes << " / " << fAllocImageBytes
243 << "; AllocBufferBytes : " << simpleCacheInfo.fAllocBufferBytes << " / " << fAllocBufferBytes;
244 return cacheInfoComparison.str();
245 }
246 #endif // SKIA_OHOS_FOR_OHOS_TRACE
247
cacheInfoPurgeableQueue()248 std::string GrResourceCache::cacheInfoPurgeableQueue()
249 {
250 std::map<uint32_t, int> purgSizeInfoWid;
251 std::map<uint32_t, int> purgCountInfoWid;
252 std::map<uint32_t, std::string> purgNameInfoWid;
253 std::map<uint32_t, int> purgPidInfoWid;
254
255 std::map<uint32_t, int> purgSizeInfoPid;
256 std::map<uint32_t, int> purgCountInfoPid;
257 std::map<uint32_t, std::string> purgNameInfoPid;
258
259 std::map<uint32_t, int> purgSizeInfoFid;
260 std::map<uint32_t, int> purgCountInfoFid;
261 std::map<uint32_t, std::string> purgNameInfoFid;
262
263 int purgCountUnknown = 0;
264 int purgSizeUnknown = 0;
265
266 for (int i = 0; i < fPurgeableQueue.count(); i++) {
267 auto resource = fPurgeableQueue.at(i);
268 auto resourceTag = resource->getResourceTag();
269 if (resourceTag.fWid != 0) {
270 updatePurgeableWidMap(resource, purgNameInfoWid, purgSizeInfoWid, purgPidInfoWid, purgCountInfoWid);
271 } else if (resourceTag.fPid != 0) {
272 updatePurgeablePidMap(resource, purgNameInfoPid, purgSizeInfoPid, purgCountInfoPid);
273 } else if (resourceTag.fFid != 0) {
274 updatePurgeableFidMap(resource, purgNameInfoFid, purgSizeInfoFid, purgCountInfoFid);
275 } else {
276 purgCountUnknown++;
277 purgSizeUnknown += resource->gpuMemorySize();
278 }
279 }
280
281 std::string infoStr;
282 if (purgSizeInfoWid.size() > 0) {
283 infoStr += ";PurgeableInfo_Node:[";
284 updatePurgeableWidInfo(infoStr, purgNameInfoWid, purgSizeInfoWid, purgPidInfoWid, purgCountInfoWid);
285 }
286 if (purgSizeInfoPid.size() > 0) {
287 infoStr += ";PurgeableInfo_Pid:[";
288 updatePurgeablePidInfo(infoStr, purgNameInfoWid, purgSizeInfoWid, purgCountInfoWid);
289 }
290 if (purgSizeInfoFid.size() > 0) {
291 infoStr += ";PurgeableInfo_Fid:[";
292 updatePurgeableFidInfo(infoStr, purgNameInfoFid, purgSizeInfoFid, purgCountInfoFid);
293 }
294 updatePurgeableUnknownInfo(infoStr, ";PurgeableInfo_Unknown:", purgCountUnknown, purgSizeUnknown);
295 return infoStr;
296 }
297
cacheInfoNoPurgeableQueue()298 std::string GrResourceCache::cacheInfoNoPurgeableQueue()
299 {
300 std::map<uint32_t, int> noPurgSizeInfoWid;
301 std::map<uint32_t, int> noPurgCountInfoWid;
302 std::map<uint32_t, std::string> noPurgNameInfoWid;
303 std::map<uint32_t, int> noPurgPidInfoWid;
304
305 std::map<uint32_t, int> noPurgSizeInfoPid;
306 std::map<uint32_t, int> noPurgCountInfoPid;
307 std::map<uint32_t, std::string> noPurgNameInfoPid;
308
309 std::map<uint32_t, int> noPurgSizeInfoFid;
310 std::map<uint32_t, int> noPurgCountInfoFid;
311 std::map<uint32_t, std::string> noPurgNameInfoFid;
312
313 int noPurgCountUnknown = 0;
314 int noPurgSizeUnknown = 0;
315
316 for (int i = 0; i < fNonpurgeableResources.count(); i++) {
317 auto resource = fNonpurgeableResources[i];
318 if (resource == nullptr) {
319 continue;
320 }
321 auto resourceTag = resource->getResourceTag();
322 if (resourceTag.fWid != 0) {
323 updatePurgeableWidMap(resource, noPurgNameInfoWid, noPurgSizeInfoWid, noPurgPidInfoWid, noPurgCountInfoWid);
324 } else if (resourceTag.fPid != 0) {
325 updatePurgeablePidMap(resource, noPurgNameInfoPid, noPurgSizeInfoPid, noPurgCountInfoPid);
326 } else if (resourceTag.fFid != 0) {
327 updatePurgeableFidMap(resource, noPurgNameInfoFid, noPurgSizeInfoFid, noPurgCountInfoFid);
328 } else {
329 noPurgCountUnknown++;
330 noPurgSizeUnknown += resource->gpuMemorySize();
331 }
332 }
333
334 std::string infoStr;
335 if (noPurgSizeInfoWid.size() > 0) {
336 infoStr += ";NonPurgeableInfo_Node:[";
337 updatePurgeableWidInfo(infoStr, noPurgNameInfoWid, noPurgSizeInfoWid, noPurgPidInfoWid, noPurgCountInfoWid);
338 }
339 if (noPurgSizeInfoPid.size() > 0) {
340 infoStr += ";NonPurgeableInfo_Pid:[";
341 updatePurgeablePidInfo(infoStr, noPurgNameInfoPid, noPurgSizeInfoPid, noPurgCountInfoPid);
342 }
343 if (noPurgSizeInfoFid.size() > 0) {
344 infoStr += ";NonPurgeableInfo_Fid:[";
345 updatePurgeableFidInfo(infoStr, noPurgNameInfoFid, noPurgSizeInfoFid, noPurgCountInfoFid);
346 }
347 updatePurgeableUnknownInfo(infoStr, ";NonPurgeableInfo_Unknown:", noPurgCountUnknown, noPurgSizeUnknown);
348 return infoStr;
349 }
350
cacheInfoRealAllocSize()351 size_t GrResourceCache::cacheInfoRealAllocSize()
352 {
353 size_t realAllocImageSize = 0;
354 for (int i = 0; i < fPurgeableQueue.count(); i++) {
355 auto resource = fPurgeableQueue.at(i);
356 if (resource == nullptr || !resource->isRealAlloc()) {
357 continue;
358 }
359 realAllocImageSize += resource->getRealAllocSize();
360 }
361 for (int i = 0; i < fNonpurgeableResources.count(); i++) {
362 auto resource = fNonpurgeableResources[i];
363 if (resource == nullptr || !resource->isRealAlloc()) {
364 continue;
365 }
366 realAllocImageSize += resource->getRealAllocSize();
367 }
368 return realAllocImageSize;
369 }
370
cacheInfoRealAllocQueue()371 std::string GrResourceCache::cacheInfoRealAllocQueue()
372 {
373 std::map<uint32_t, std::string> realAllocNameInfoWid;
374 std::map<uint32_t, int> realAllocSizeInfoWid;
375 std::map<uint32_t, int> realAllocPidInfoWid;
376 std::map<uint32_t, int> realAllocCountInfoWid;
377
378 std::map<uint32_t, std::string> realAllocNameInfoPid;
379 std::map<uint32_t, int> realAllocSizeInfoPid;
380 std::map<uint32_t, int> realAllocCountInfoPid;
381
382 std::map<uint32_t, std::string> realAllocNameInfoFid;
383 std::map<uint32_t, int> realAllocSizeInfoFid;
384 std::map<uint32_t, int> realAllocCountInfoFid;
385
386 int realAllocCountUnknown = 0;
387 int realAllocSizeUnknown = 0;
388
389 for (int i = 0; i < fNonpurgeableResources.count(); i++) {
390 auto resource = fNonpurgeableResources[i];
391 if (resource == nullptr || !resource->isRealAlloc()) {
392 continue;
393 }
394 auto resourceTag = resource->getResourceTag();
395 if (resourceTag.fWid != 0) {
396 updateRealAllocWidMap(
397 resource, realAllocNameInfoWid, realAllocSizeInfoWid, realAllocPidInfoWid, realAllocCountInfoWid);
398 } else if (resourceTag.fPid != 0) {
399 updateRealAllocPidMap(resource, realAllocNameInfoPid, realAllocSizeInfoPid, realAllocCountInfoPid);
400 } else if (resourceTag.fFid != 0) {
401 updateRealAllocFidMap(resource, realAllocNameInfoFid, realAllocSizeInfoFid, realAllocCountInfoFid);
402 } else {
403 realAllocCountUnknown++;
404 realAllocSizeUnknown += resource->getRealAllocSize();
405 }
406 }
407
408 for (int i = 0; i < fPurgeableQueue.count(); i++) {
409 auto resource = fPurgeableQueue.at(i);
410 if (resource == nullptr || !resource->isRealAlloc()) {
411 continue;
412 }
413 auto resourceTag = resource->getResourceTag();
414 if (resourceTag.fWid != 0) {
415 updateRealAllocWidMap(
416 resource, realAllocNameInfoWid, realAllocSizeInfoWid, realAllocPidInfoWid, realAllocCountInfoWid);
417 } else if (resourceTag.fPid != 0) {
418 updateRealAllocPidMap(resource, realAllocNameInfoPid, realAllocSizeInfoPid, realAllocCountInfoPid);
419 } else if (resourceTag.fFid != 0) {
420 updateRealAllocFidMap(resource, realAllocNameInfoFid, realAllocSizeInfoFid, realAllocCountInfoFid);
421 } else {
422 realAllocCountUnknown++;
423 realAllocSizeUnknown += resource->getRealAllocSize();
424 }
425 }
426
427 std::string infoStr;
428 if (realAllocSizeInfoWid.size() > 0) {
429 infoStr += ";RealAllocInfo_Node:[";
430 updatePurgeableWidInfo(
431 infoStr, realAllocNameInfoWid, realAllocSizeInfoWid, realAllocPidInfoWid, realAllocCountInfoWid);
432 }
433 if (realAllocSizeInfoPid.size() > 0) {
434 infoStr += ";RealAllocInfo_Pid:[";
435 updatePurgeablePidInfo(infoStr, realAllocNameInfoPid, realAllocSizeInfoPid, realAllocCountInfoPid);
436 }
437 if (realAllocSizeInfoFid.size() > 0) {
438 infoStr += ";RealAllocInfo_Fid:[";
439 updatePurgeableFidInfo(infoStr, realAllocNameInfoFid, realAllocSizeInfoFid, realAllocCountInfoFid);
440 }
441 updatePurgeableUnknownInfo(infoStr, ";RealAllocInfo_Unknown:", realAllocCountUnknown, realAllocSizeUnknown);
442 return infoStr;
443 }
444
realBytesOfPid()445 std::string GrResourceCache::realBytesOfPid()
446 {
447 std::string infoStr;
448 infoStr += ";fBytesOfPid : [";
449 if (fBytesOfPid.size() > 0) {
450 for (auto it = fBytesOfPid.begin(); it != fBytesOfPid.end(); it++) {
451 infoStr += std::to_string(it->first) + ":" + std::to_string(it->second) + ", ";
452 }
453 }
454 infoStr += "]";
455 return infoStr;
456 }
457
updatePurgeableWidMap(GrGpuResource * resource,std::map<uint32_t,std::string> & nameInfoWid,std::map<uint32_t,int> & sizeInfoWid,std::map<uint32_t,int> & pidInfoWid,std::map<uint32_t,int> & countInfoWid)458 void GrResourceCache::updatePurgeableWidMap(GrGpuResource* resource,
459 std::map<uint32_t, std::string>& nameInfoWid,
460 std::map<uint32_t, int>& sizeInfoWid,
461 std::map<uint32_t, int>& pidInfoWid,
462 std::map<uint32_t, int>& countInfoWid)
463 {
464 auto resourceTag = resource->getResourceTag();
465 auto it = sizeInfoWid.find(resourceTag.fWid);
466 if (it != sizeInfoWid.end()) {
467 sizeInfoWid[resourceTag.fWid] = it->second + resource->gpuMemorySize();
468 countInfoWid[resourceTag.fWid]++;
469 } else {
470 sizeInfoWid[resourceTag.fWid] = resource->gpuMemorySize();
471 nameInfoWid[resourceTag.fWid] = resourceTag.fName;
472 pidInfoWid[resourceTag.fWid] = resourceTag.fPid;
473 countInfoWid[resourceTag.fWid] = 1;
474 }
475 }
476
updatePurgeablePidMap(GrGpuResource * resource,std::map<uint32_t,std::string> & nameInfoPid,std::map<uint32_t,int> & sizeInfoPid,std::map<uint32_t,int> & countInfoPid)477 void GrResourceCache::updatePurgeablePidMap(GrGpuResource* resource,
478 std::map<uint32_t, std::string>& nameInfoPid,
479 std::map<uint32_t, int>& sizeInfoPid,
480 std::map<uint32_t, int>& countInfoPid)
481 {
482 auto resourceTag = resource->getResourceTag();
483 auto it = sizeInfoPid.find(resourceTag.fPid);
484 if (it != sizeInfoPid.end()) {
485 sizeInfoPid[resourceTag.fPid] = it->second + resource->gpuMemorySize();
486 countInfoPid[resourceTag.fPid]++;
487 } else {
488 sizeInfoPid[resourceTag.fPid] = resource->gpuMemorySize();
489 nameInfoPid[resourceTag.fPid] = resourceTag.fName;
490 countInfoPid[resourceTag.fPid] = 1;
491 }
492 }
493
updatePurgeableFidMap(GrGpuResource * resource,std::map<uint32_t,std::string> & nameInfoFid,std::map<uint32_t,int> & sizeInfoFid,std::map<uint32_t,int> & countInfoFid)494 void GrResourceCache::updatePurgeableFidMap(GrGpuResource* resource,
495 std::map<uint32_t, std::string>& nameInfoFid,
496 std::map<uint32_t, int>& sizeInfoFid,
497 std::map<uint32_t, int>& countInfoFid)
498 {
499 auto resourceTag = resource->getResourceTag();
500 auto it = sizeInfoFid.find(resourceTag.fFid);
501 if (it != sizeInfoFid.end()) {
502 sizeInfoFid[resourceTag.fFid] = it->second + resource->gpuMemorySize();
503 countInfoFid[resourceTag.fFid]++;
504 } else {
505 sizeInfoFid[resourceTag.fFid] = resource->gpuMemorySize();
506 nameInfoFid[resourceTag.fFid] = resourceTag.fName;
507 countInfoFid[resourceTag.fFid] = 1;
508 }
509 }
510
updateRealAllocWidMap(GrGpuResource * resource,std::map<uint32_t,std::string> & nameInfoWid,std::map<uint32_t,int> & sizeInfoWid,std::map<uint32_t,int> & pidInfoWid,std::map<uint32_t,int> & countInfoWid)511 void GrResourceCache::updateRealAllocWidMap(GrGpuResource* resource,
512 std::map<uint32_t, std::string>& nameInfoWid,
513 std::map<uint32_t, int>& sizeInfoWid,
514 std::map<uint32_t, int>& pidInfoWid,
515 std::map<uint32_t, int>& countInfoWid)
516 {
517 size_t size = resource->getRealAllocSize();
518 auto resourceTag = resource->getResourceTag();
519 auto it = sizeInfoWid.find(resourceTag.fWid);
520 if (it != sizeInfoWid.end()) {
521 sizeInfoWid[resourceTag.fWid] = it->second + size;
522 countInfoWid[resourceTag.fWid]++;
523 } else {
524 sizeInfoWid[resourceTag.fWid] = size;
525 nameInfoWid[resourceTag.fWid] = resourceTag.fName;
526 pidInfoWid[resourceTag.fWid] = resourceTag.fPid;
527 countInfoWid[resourceTag.fWid] = 1;
528 }
529 }
530
updateRealAllocPidMap(GrGpuResource * resource,std::map<uint32_t,std::string> & nameInfoPid,std::map<uint32_t,int> & sizeInfoPid,std::map<uint32_t,int> & countInfoPid)531 void GrResourceCache::updateRealAllocPidMap(GrGpuResource* resource,
532 std::map<uint32_t, std::string>& nameInfoPid,
533 std::map<uint32_t, int>& sizeInfoPid,
534 std::map<uint32_t, int>& countInfoPid)
535 {
536 size_t size = resource->getRealAllocSize();
537 auto resourceTag = resource->getResourceTag();
538 auto it = sizeInfoPid.find(resourceTag.fPid);
539 if (it != sizeInfoPid.end()) {
540 sizeInfoPid[resourceTag.fPid] = it->second + size;
541 countInfoPid[resourceTag.fPid]++;
542 } else {
543 sizeInfoPid[resourceTag.fPid] = size;
544 nameInfoPid[resourceTag.fPid] = resourceTag.fName;
545 countInfoPid[resourceTag.fPid] = 1;
546 }
547 }
548
updateRealAllocFidMap(GrGpuResource * resource,std::map<uint32_t,std::string> & nameInfoFid,std::map<uint32_t,int> & sizeInfoFid,std::map<uint32_t,int> & countInfoFid)549 void GrResourceCache::updateRealAllocFidMap(GrGpuResource* resource,
550 std::map<uint32_t, std::string>& nameInfoFid,
551 std::map<uint32_t, int>& sizeInfoFid,
552 std::map<uint32_t, int>& countInfoFid)
553 {
554 size_t size = resource->getRealAllocSize();
555 auto resourceTag = resource->getResourceTag();
556 auto it = sizeInfoFid.find(resourceTag.fFid);
557 if (it != sizeInfoFid.end()) {
558 sizeInfoFid[resourceTag.fFid] = it->second + size;
559 countInfoFid[resourceTag.fFid]++;
560 } else {
561 sizeInfoFid[resourceTag.fFid] = size;
562 nameInfoFid[resourceTag.fFid] = resourceTag.fName;
563 countInfoFid[resourceTag.fFid] = 1;
564 }
565 }
566
updatePurgeableWidInfo(std::string & infoStr,std::map<uint32_t,std::string> & nameInfoWid,std::map<uint32_t,int> & sizeInfoWid,std::map<uint32_t,int> & pidInfoWid,std::map<uint32_t,int> & countInfoWid)567 void GrResourceCache::updatePurgeableWidInfo(std::string& infoStr,
568 std::map<uint32_t, std::string>& nameInfoWid,
569 std::map<uint32_t, int>& sizeInfoWid,
570 std::map<uint32_t, int>& pidInfoWid,
571 std::map<uint32_t, int>& countInfoWid)
572 {
573 for (auto it = sizeInfoWid.begin(); it != sizeInfoWid.end(); it++) {
574 infoStr += "[" + nameInfoWid[it->first] +
575 ",pid=" + std::to_string(pidInfoWid[it->first]) +
576 ",NodeId=" + std::to_string(it->first & 0xFFFFFFFF) +
577 ",count=" + std::to_string(countInfoWid[it->first]) +
578 ",size=" + std::to_string(it->second) +
579 "(" + std::to_string(it->second / MB) + " MB)],";
580 }
581 infoStr += ']';
582 }
583
updatePurgeablePidInfo(std::string & infoStr,std::map<uint32_t,std::string> & nameInfoPid,std::map<uint32_t,int> & sizeInfoPid,std::map<uint32_t,int> & countInfoPid)584 void GrResourceCache::updatePurgeablePidInfo(std::string& infoStr,
585 std::map<uint32_t, std::string>& nameInfoPid,
586 std::map<uint32_t, int>& sizeInfoPid,
587 std::map<uint32_t, int>& countInfoPid)
588 {
589 for (auto it = sizeInfoPid.begin(); it != sizeInfoPid.end(); it++) {
590 infoStr += "[" + nameInfoPid[it->first] +
591 ",pid=" + std::to_string(it->first) +
592 ",count=" + std::to_string(countInfoPid[it->first]) +
593 ",size=" + std::to_string(it->second) +
594 "(" + std::to_string(it->second / MB) + " MB)],";
595 }
596 infoStr += ']';
597 }
598
updatePurgeableFidInfo(std::string & infoStr,std::map<uint32_t,std::string> & nameInfoFid,std::map<uint32_t,int> & sizeInfoFid,std::map<uint32_t,int> & countInfoFid)599 void GrResourceCache::updatePurgeableFidInfo(std::string& infoStr,
600 std::map<uint32_t, std::string>& nameInfoFid,
601 std::map<uint32_t, int>& sizeInfoFid,
602 std::map<uint32_t, int>& countInfoFid)
603 {
604 for (auto it = sizeInfoFid.begin(); it != sizeInfoFid.end(); it++) {
605 infoStr += "[" + nameInfoFid[it->first] +
606 ",typeid=" + std::to_string(it->first) +
607 ",count=" + std::to_string(countInfoFid[it->first]) +
608 ",size=" + std::to_string(it->second) +
609 "(" + std::to_string(it->second / MB) + " MB)],";
610 }
611 infoStr += ']';
612 }
613
updatePurgeableUnknownInfo(std::string & infoStr,const std::string & unknownPrefix,const int countUnknown,const int sizeUnknown)614 void GrResourceCache::updatePurgeableUnknownInfo(
615 std::string& infoStr, const std::string& unknownPrefix, const int countUnknown, const int sizeUnknown)
616 {
617 if (countUnknown > 0) {
618 infoStr += unknownPrefix +
619 "[count=" + std::to_string(countUnknown) +
620 ",size=" + std::to_string(sizeUnknown) +
621 "(" + std::to_string(sizeUnknown / MB) + "MB)]";
622 }
623 }
624 #endif
625
insertResource(GrGpuResource * resource)626 void GrResourceCache::insertResource(GrGpuResource* resource)
627 {
628 ASSERT_SINGLE_OWNER
629 SkASSERT(resource);
630 SkASSERT(!this->isInCache(resource));
631 SkASSERT(!resource->wasDestroyed());
632 SkASSERT(!resource->resourcePriv().isPurgeable());
633
634 // We must set the timestamp before adding to the array in case the timestamp wraps and we wind
635 // up iterating over all the resources that already have timestamps.
636 resource->cacheAccess().setTimestamp(this->getNextTimestamp());
637
638 this->addToNonpurgeableArray(resource);
639
640 size_t size = resource->gpuMemorySize();
641 SkDEBUGCODE(++fCount;)
642 fBytes += size;
643
644 // OH ISSUE: memory count
645 auto pid = resource->getResourceTag().fPid;
646 if (pid && resource->isRealAlloc()) {
647 auto& pidSize = fBytesOfPid[pid];
648 pidSize += size;
649 fUpdatedBytesOfPid[pid] = pidSize;
650 if (pidSize >= fMemoryControl_ && fExitedPid_.find(pid) == fExitedPid_.end() && fMemoryOverflowCallback_) {
651 fMemoryOverflowCallback_(pid, pidSize, true);
652 fExitedPid_.insert(pid);
653 SkDebugf("OHOS resource overflow! pid[%{public}d], size[%{public}zu]", pid, pidSize);
654 #ifdef SKIA_OHOS_FOR_OHOS_TRACE
655 HITRACE_METER_FMT(HITRACE_TAG_GRAPHIC_AGP, "OHOS gpu resource overflow: pid(%d), size:(%zu)",
656 pid, pidSize);
657 #endif
658 }
659 }
660
661 #if GR_CACHE_STATS
662 fHighWaterCount = std::max(this->getResourceCount(), fHighWaterCount);
663 fHighWaterBytes = std::max(fBytes, fHighWaterBytes);
664 #endif
665 if (GrBudgetedType::kBudgeted == resource->resourcePriv().budgetedType()) {
666 ++fBudgetedCount;
667 fBudgetedBytes += size;
668 TRACE_COUNTER2("skia.gpu.cache", "skia budget", "used",
669 fBudgetedBytes, "free", fMaxBytes - fBudgetedBytes);
670 #if GR_CACHE_STATS
671 fBudgetedHighWaterCount = std::max(fBudgetedCount, fBudgetedHighWaterCount);
672 fBudgetedHighWaterBytes = std::max(fBudgetedBytes, fBudgetedHighWaterBytes);
673 #endif
674 }
675 SkASSERT(!resource->cacheAccess().isUsableAsScratch());
676 #ifdef SKIA_OHOS_FOR_OHOS_TRACE
677 if (fBudgetedBytes >= fMaxBytes) {
678 HITRACE_OHOS_NAME_FMT_ALWAYS("cache over fBudgetedBytes:(%u),fMaxBytes:(%u)", fBudgetedBytes, fMaxBytes);
679 #ifdef SKIA_DFX_FOR_OHOS
680 SimpleCacheInfo simpleCacheInfo;
681 traceBeforePurgeUnlockRes("insertResource", simpleCacheInfo);
682 #endif
683 this->purgeAsNeeded();
684 #ifdef SKIA_DFX_FOR_OHOS
685 traceAfterPurgeUnlockRes("insertResource", simpleCacheInfo);
686 #endif
687 } else {
688 this->purgeAsNeeded();
689 }
690 #else
691 this->purgeAsNeeded();
692 #endif
693 }
694
removeResource(GrGpuResource * resource)695 void GrResourceCache::removeResource(GrGpuResource* resource) {
696 ASSERT_SINGLE_OWNER
697 this->validate();
698 SkASSERT(this->isInCache(resource));
699
700 size_t size = resource->gpuMemorySize();
701 if (resource->resourcePriv().isPurgeable()) {
702 fPurgeableQueue.remove(resource);
703 fPurgeableBytes -= size;
704 } else {
705 this->removeFromNonpurgeableArray(resource);
706 }
707
708 SkDEBUGCODE(--fCount;)
709 fBytes -= size;
710
711 // OH ISSUE: memory count
712 auto pid = resource->getResourceTag().fPid;
713 if (pid && resource->isRealAlloc()) {
714 auto& pidSize = fBytesOfPid[pid];
715 pidSize -= size;
716 fUpdatedBytesOfPid[pid] = pidSize;
717 if (pidSize == 0) {
718 fBytesOfPid.erase(pid);
719 }
720 }
721
722 if (GrBudgetedType::kBudgeted == resource->resourcePriv().budgetedType()) {
723 --fBudgetedCount;
724 fBudgetedBytes -= size;
725 TRACE_COUNTER2("skia.gpu.cache", "skia budget", "used",
726 fBudgetedBytes, "free", fMaxBytes - fBudgetedBytes);
727 }
728
729 if (resource->cacheAccess().isUsableAsScratch()) {
730 fScratchMap.remove(resource->resourcePriv().getScratchKey(), resource);
731 }
732 if (resource->getUniqueKey().isValid()) {
733 fUniqueHash.remove(resource->getUniqueKey());
734 }
735 this->validate();
736 }
737
abandonAll()738 void GrResourceCache::abandonAll() {
739 AutoValidate av(this);
740
741 // We need to make sure to free any resources that were waiting on a free message but never
742 // received one.
743 fTexturesAwaitingUnref.reset();
744
745 while (fNonpurgeableResources.count()) {
746 GrGpuResource* back = *(fNonpurgeableResources.end() - 1);
747 SkASSERT(!back->wasDestroyed());
748 back->cacheAccess().abandon();
749 }
750
751 while (fPurgeableQueue.count()) {
752 GrGpuResource* top = fPurgeableQueue.peek();
753 SkASSERT(!top->wasDestroyed());
754 top->cacheAccess().abandon();
755 }
756
757 fThreadSafeCache->dropAllRefs();
758
759 SkASSERT(!fScratchMap.count());
760 SkASSERT(!fUniqueHash.count());
761 SkASSERT(!fCount);
762 SkASSERT(!this->getResourceCount());
763 SkASSERT(!fBytes);
764 SkASSERT(!fBudgetedCount);
765 SkASSERT(!fBudgetedBytes);
766 SkASSERT(!fPurgeableBytes);
767 SkASSERT(!fTexturesAwaitingUnref.count());
768 }
769
releaseAll()770 void GrResourceCache::releaseAll() {
771 AutoValidate av(this);
772
773 fThreadSafeCache->dropAllRefs();
774
775 this->processFreedGpuResources();
776
777 // We need to make sure to free any resources that were waiting on a free message but never
778 // received one.
779 fTexturesAwaitingUnref.reset();
780
781 SkASSERT(fProxyProvider); // better have called setProxyProvider
782 SkASSERT(fThreadSafeCache); // better have called setThreadSafeCache too
783
784 // We must remove the uniqueKeys from the proxies here. While they possess a uniqueKey
785 // they also have a raw pointer back to this class (which is presumably going away)!
786 fProxyProvider->removeAllUniqueKeys();
787
788 while (fNonpurgeableResources.count()) {
789 GrGpuResource* back = *(fNonpurgeableResources.end() - 1);
790 SkASSERT(!back->wasDestroyed());
791 back->cacheAccess().release();
792 }
793
794 while (fPurgeableQueue.count()) {
795 GrGpuResource* top = fPurgeableQueue.peek();
796 SkASSERT(!top->wasDestroyed());
797 top->cacheAccess().release();
798 }
799
800 SkASSERT(!fScratchMap.count());
801 SkASSERT(!fUniqueHash.count());
802 SkASSERT(!fCount);
803 SkASSERT(!this->getResourceCount());
804 SkASSERT(!fBytes);
805 SkASSERT(!fBudgetedCount);
806 SkASSERT(!fBudgetedBytes);
807 SkASSERT(!fPurgeableBytes);
808 SkASSERT(!fTexturesAwaitingUnref.count());
809 }
810
releaseByTag(const GrGpuResourceTag & tag)811 void GrResourceCache::releaseByTag(const GrGpuResourceTag& tag) {
812 AutoValidate av(this);
813 this->processFreedGpuResources();
814 SkASSERT(fProxyProvider); // better have called setProxyProvider
815 std::vector<GrGpuResource*> recycleVector;
816 for (int i = 0; i < fNonpurgeableResources.count(); i++) {
817 GrGpuResource* resource = fNonpurgeableResources[i];
818 if (tag.filter(resource->getResourceTag())) {
819 recycleVector.emplace_back(resource);
820 if (resource->getUniqueKey().isValid()) {
821 fProxyProvider->processInvalidUniqueKey(resource->getUniqueKey(), nullptr,
822 GrProxyProvider::InvalidateGPUResource::kNo);
823 }
824 }
825 }
826
827 for (int i = 0; i < fPurgeableQueue.count(); i++) {
828 GrGpuResource* resource = fPurgeableQueue.at(i);
829 if (tag.filter(resource->getResourceTag())) {
830 recycleVector.emplace_back(resource);
831 if (resource->getUniqueKey().isValid()) {
832 fProxyProvider->processInvalidUniqueKey(resource->getUniqueKey(), nullptr,
833 GrProxyProvider::InvalidateGPUResource::kNo);
834 }
835 }
836 }
837
838 for (auto resource : recycleVector) {
839 SkASSERT(!resource->wasDestroyed());
840 resource->cacheAccess().release();
841 }
842 }
843
setCurrentGrResourceTag(const GrGpuResourceTag & tag)844 void GrResourceCache::setCurrentGrResourceTag(const GrGpuResourceTag& tag) {
845 if (tag.isGrTagValid()) {
846 grResourceTagCacheStack.push(tag);
847 return;
848 }
849 if (!grResourceTagCacheStack.empty()) {
850 grResourceTagCacheStack.pop();
851 }
852 }
853
popGrResourceTag()854 void GrResourceCache::popGrResourceTag()
855 {
856 if (!grResourceTagCacheStack.empty()) {
857 grResourceTagCacheStack.pop();
858 }
859 }
860
getCurrentGrResourceTag() const861 GrGpuResourceTag GrResourceCache::getCurrentGrResourceTag() const {
862 if (grResourceTagCacheStack.empty()) {
863 return{};
864 }
865 return grResourceTagCacheStack.top();
866 }
867
getAllGrGpuResourceTags() const868 std::set<GrGpuResourceTag> GrResourceCache::getAllGrGpuResourceTags() const {
869 std::set<GrGpuResourceTag> result;
870 for (int i = 0; i < fNonpurgeableResources.count(); ++i) {
871 auto tag = fNonpurgeableResources[i]->getResourceTag();
872 result.insert(tag);
873 }
874 return result;
875 }
876
877 // OH ISSUE: get the memory information of the updated pid.
getUpdatedMemoryMap(std::unordered_map<int32_t,size_t> & out)878 void GrResourceCache::getUpdatedMemoryMap(std::unordered_map<int32_t, size_t> &out)
879 {
880 fUpdatedBytesOfPid.swap(out);
881 }
882
883 // OH ISSUE: init gpu memory limit.
initGpuMemoryLimit(MemoryOverflowCalllback callback,uint64_t size)884 void GrResourceCache::initGpuMemoryLimit(MemoryOverflowCalllback callback, uint64_t size)
885 {
886 if (fMemoryOverflowCallback_ == nullptr) {
887 fMemoryOverflowCallback_ = callback;
888 fMemoryControl_ = size;
889 }
890 }
891
892 // OH ISSUE: check whether the PID is abnormal.
isPidAbnormal() const893 bool GrResourceCache::isPidAbnormal() const
894 {
895 return fExitedPid_.find(getCurrentGrResourceTag().fPid) != fExitedPid_.end();
896 }
897
898 // OH ISSUE: change the fbyte when the resource tag changes.
changeByteOfPid(int32_t beforePid,int32_t afterPid,size_t bytes,bool beforeRealAlloc,bool afterRealAlloc)899 void GrResourceCache::changeByteOfPid(int32_t beforePid, int32_t afterPid,
900 size_t bytes, bool beforeRealAlloc, bool afterRealAlloc)
901 {
902 if (beforePid && beforeRealAlloc) {
903 auto& pidSize = fBytesOfPid[beforePid];
904 pidSize -= bytes;
905 fUpdatedBytesOfPid[beforePid] = pidSize;
906 if (pidSize == 0) {
907 fBytesOfPid.erase(beforePid);
908 }
909 }
910 if (afterPid && afterRealAlloc) {
911 auto& size = fBytesOfPid[afterPid];
912 size += bytes;
913 fUpdatedBytesOfPid[afterPid] = size;
914 }
915 }
916
refResource(GrGpuResource * resource)917 void GrResourceCache::refResource(GrGpuResource* resource) {
918 SkASSERT(resource);
919 SkASSERT(resource->getContext()->priv().getResourceCache() == this);
920 if (resource->cacheAccess().hasRef()) {
921 resource->ref();
922 } else {
923 this->refAndMakeResourceMRU(resource);
924 }
925 this->validate();
926 }
927
928 class GrResourceCache::AvailableForScratchUse {
929 public:
AvailableForScratchUse()930 AvailableForScratchUse() { }
931
operator ()(const GrGpuResource * resource) const932 bool operator()(const GrGpuResource* resource) const {
933 // Everything that is in the scratch map should be usable as a
934 // scratch resource.
935 return true;
936 }
937 };
938
findAndRefScratchResource(const GrScratchKey & scratchKey)939 GrGpuResource* GrResourceCache::findAndRefScratchResource(const GrScratchKey& scratchKey) {
940 SkASSERT(scratchKey.isValid());
941
942 GrGpuResource* resource = fScratchMap.find(scratchKey, AvailableForScratchUse());
943 if (resource) {
944 fScratchMap.remove(scratchKey, resource);
945 this->refAndMakeResourceMRU(resource);
946 this->validate();
947 }
948 return resource;
949 }
950
willRemoveScratchKey(const GrGpuResource * resource)951 void GrResourceCache::willRemoveScratchKey(const GrGpuResource* resource) {
952 ASSERT_SINGLE_OWNER
953 SkASSERT(resource->resourcePriv().getScratchKey().isValid());
954 if (resource->cacheAccess().isUsableAsScratch()) {
955 fScratchMap.remove(resource->resourcePriv().getScratchKey(), resource);
956 }
957 }
958
removeUniqueKey(GrGpuResource * resource)959 void GrResourceCache::removeUniqueKey(GrGpuResource* resource) {
960 ASSERT_SINGLE_OWNER
961 // Someone has a ref to this resource in order to have removed the key. When the ref count
962 // reaches zero we will get a ref cnt notification and figure out what to do with it.
963 if (resource->getUniqueKey().isValid()) {
964 SkASSERT(resource == fUniqueHash.find(resource->getUniqueKey()));
965 fUniqueHash.remove(resource->getUniqueKey());
966 }
967 resource->cacheAccess().removeUniqueKey();
968 if (resource->cacheAccess().isUsableAsScratch()) {
969 fScratchMap.insert(resource->resourcePriv().getScratchKey(), resource);
970 }
971
972 // Removing a unique key from a kUnbudgetedCacheable resource would make the resource
973 // require purging. However, the resource must be ref'ed to get here and therefore can't
974 // be purgeable. We'll purge it when the refs reach zero.
975 SkASSERT(!resource->resourcePriv().isPurgeable());
976 this->validate();
977 }
978
changeUniqueKey(GrGpuResource * resource,const GrUniqueKey & newKey)979 void GrResourceCache::changeUniqueKey(GrGpuResource* resource, const GrUniqueKey& newKey) {
980 ASSERT_SINGLE_OWNER
981 SkASSERT(resource);
982 SkASSERT(this->isInCache(resource));
983
984 // If another resource has the new key, remove its key then install the key on this resource.
985 if (newKey.isValid()) {
986 if (GrGpuResource* old = fUniqueHash.find(newKey)) {
987 // If the old resource using the key is purgeable and is unreachable, then remove it.
988 if (!old->resourcePriv().getScratchKey().isValid() &&
989 old->resourcePriv().isPurgeable()) {
990 old->cacheAccess().release();
991 } else {
992 // removeUniqueKey expects an external owner of the resource.
993 this->removeUniqueKey(sk_ref_sp(old).get());
994 }
995 }
996 SkASSERT(nullptr == fUniqueHash.find(newKey));
997
998 // Remove the entry for this resource if it already has a unique key.
999 if (resource->getUniqueKey().isValid()) {
1000 SkASSERT(resource == fUniqueHash.find(resource->getUniqueKey()));
1001 fUniqueHash.remove(resource->getUniqueKey());
1002 SkASSERT(nullptr == fUniqueHash.find(resource->getUniqueKey()));
1003 } else {
1004 // 'resource' didn't have a valid unique key before so it is switching sides. Remove it
1005 // from the ScratchMap. The isUsableAsScratch call depends on us not adding the new
1006 // unique key until after this check.
1007 if (resource->cacheAccess().isUsableAsScratch()) {
1008 fScratchMap.remove(resource->resourcePriv().getScratchKey(), resource);
1009 }
1010 }
1011
1012 resource->cacheAccess().setUniqueKey(newKey);
1013 fUniqueHash.add(resource);
1014 } else {
1015 this->removeUniqueKey(resource);
1016 }
1017
1018 this->validate();
1019 }
1020
refAndMakeResourceMRU(GrGpuResource * resource)1021 void GrResourceCache::refAndMakeResourceMRU(GrGpuResource* resource) {
1022 ASSERT_SINGLE_OWNER
1023 SkASSERT(resource);
1024 SkASSERT(this->isInCache(resource));
1025
1026 if (resource->resourcePriv().isPurgeable()) {
1027 // It's about to become unpurgeable.
1028 fPurgeableBytes -= resource->gpuMemorySize();
1029 fPurgeableQueue.remove(resource);
1030 this->addToNonpurgeableArray(resource);
1031 } else if (!resource->cacheAccess().hasRefOrCommandBufferUsage() &&
1032 resource->resourcePriv().budgetedType() == GrBudgetedType::kBudgeted) {
1033 SkASSERT(fNumBudgetedResourcesFlushWillMakePurgeable > 0);
1034 fNumBudgetedResourcesFlushWillMakePurgeable--;
1035 }
1036 resource->cacheAccess().ref();
1037
1038 resource->cacheAccess().setTimestamp(this->getNextTimestamp());
1039 this->validate();
1040 }
1041
notifyARefCntReachedZero(GrGpuResource * resource,GrGpuResource::LastRemovedRef removedRef)1042 void GrResourceCache::notifyARefCntReachedZero(GrGpuResource* resource,
1043 GrGpuResource::LastRemovedRef removedRef) {
1044 ASSERT_SINGLE_OWNER
1045 SkASSERT(resource);
1046 SkASSERT(!resource->wasDestroyed());
1047 SkASSERT(this->isInCache(resource));
1048 // This resource should always be in the nonpurgeable array when this function is called. It
1049 // will be moved to the queue if it is newly purgeable.
1050 SkASSERT(fNonpurgeableResources[*resource->cacheAccess().accessCacheIndex()] == resource);
1051
1052 if (removedRef == GrGpuResource::LastRemovedRef::kMainRef) {
1053 if (resource->cacheAccess().isUsableAsScratch()) {
1054 fScratchMap.insert(resource->resourcePriv().getScratchKey(), resource);
1055 }
1056 }
1057
1058 if (resource->cacheAccess().hasRefOrCommandBufferUsage()) {
1059 this->validate();
1060 return;
1061 }
1062
1063 #ifdef SK_DEBUG
1064 // When the timestamp overflows validate() is called. validate() checks that resources in
1065 // the nonpurgeable array are indeed not purgeable. However, the movement from the array to
1066 // the purgeable queue happens just below in this function. So we mark it as an exception.
1067 if (resource->resourcePriv().isPurgeable()) {
1068 fNewlyPurgeableResourceForValidation = resource;
1069 }
1070 #endif
1071 resource->cacheAccess().setTimestamp(this->getNextTimestamp());
1072 SkDEBUGCODE(fNewlyPurgeableResourceForValidation = nullptr);
1073
1074 if (!resource->resourcePriv().isPurgeable() &&
1075 resource->resourcePriv().budgetedType() == GrBudgetedType::kBudgeted) {
1076 ++fNumBudgetedResourcesFlushWillMakePurgeable;
1077 }
1078
1079 if (!resource->resourcePriv().isPurgeable()) {
1080 this->validate();
1081 return;
1082 }
1083
1084 this->removeFromNonpurgeableArray(resource);
1085 fPurgeableQueue.insert(resource);
1086 resource->cacheAccess().setTimeWhenResourceBecomePurgeable();
1087 fPurgeableBytes += resource->gpuMemorySize();
1088
1089 bool hasUniqueKey = resource->getUniqueKey().isValid();
1090
1091 GrBudgetedType budgetedType = resource->resourcePriv().budgetedType();
1092
1093 if (budgetedType == GrBudgetedType::kBudgeted) {
1094 // Purge the resource immediately if we're over budget
1095 // Also purge if the resource has neither a valid scratch key nor a unique key.
1096 bool hasKey = resource->resourcePriv().getScratchKey().isValid() || hasUniqueKey;
1097 if (!this->overBudget() && hasKey) {
1098 return;
1099 }
1100 } else {
1101 // We keep unbudgeted resources with a unique key in the purgeable queue of the cache so
1102 // they can be reused again by the image connected to the unique key.
1103 if (hasUniqueKey && budgetedType == GrBudgetedType::kUnbudgetedCacheable) {
1104 return;
1105 }
1106 // Check whether this resource could still be used as a scratch resource.
1107 if (!resource->resourcePriv().refsWrappedObjects() &&
1108 resource->resourcePriv().getScratchKey().isValid()) {
1109 // We won't purge an existing resource to make room for this one.
1110 if (this->wouldFit(resource->gpuMemorySize())) {
1111 resource->resourcePriv().makeBudgeted();
1112 return;
1113 }
1114 }
1115 }
1116
1117 SkDEBUGCODE(int beforeCount = this->getResourceCount();)
1118 resource->cacheAccess().release();
1119 // We should at least free this resource, perhaps dependent resources as well.
1120 SkASSERT(this->getResourceCount() < beforeCount);
1121 this->validate();
1122 }
1123
didChangeBudgetStatus(GrGpuResource * resource)1124 void GrResourceCache::didChangeBudgetStatus(GrGpuResource* resource) {
1125 ASSERT_SINGLE_OWNER
1126 SkASSERT(resource);
1127 SkASSERT(this->isInCache(resource));
1128
1129 size_t size = resource->gpuMemorySize();
1130 // Changing from BudgetedType::kUnbudgetedCacheable to another budgeted type could make
1131 // resource become purgeable. However, we should never allow that transition. Wrapped
1132 // resources are the only resources that can be in that state and they aren't allowed to
1133 // transition from one budgeted state to another.
1134 SkDEBUGCODE(bool wasPurgeable = resource->resourcePriv().isPurgeable());
1135 if (resource->resourcePriv().budgetedType() == GrBudgetedType::kBudgeted) {
1136 ++fBudgetedCount;
1137 fBudgetedBytes += size;
1138 #if GR_CACHE_STATS
1139 fBudgetedHighWaterBytes = std::max(fBudgetedBytes, fBudgetedHighWaterBytes);
1140 fBudgetedHighWaterCount = std::max(fBudgetedCount, fBudgetedHighWaterCount);
1141 #endif
1142 if (!resource->resourcePriv().isPurgeable() &&
1143 !resource->cacheAccess().hasRefOrCommandBufferUsage()) {
1144 ++fNumBudgetedResourcesFlushWillMakePurgeable;
1145 }
1146 if (resource->cacheAccess().isUsableAsScratch()) {
1147 fScratchMap.insert(resource->resourcePriv().getScratchKey(), resource);
1148 }
1149 this->purgeAsNeeded();
1150 } else {
1151 SkASSERT(resource->resourcePriv().budgetedType() != GrBudgetedType::kUnbudgetedCacheable);
1152 --fBudgetedCount;
1153 fBudgetedBytes -= size;
1154 if (!resource->resourcePriv().isPurgeable() &&
1155 !resource->cacheAccess().hasRefOrCommandBufferUsage()) {
1156 --fNumBudgetedResourcesFlushWillMakePurgeable;
1157 }
1158 if (!resource->cacheAccess().hasRef() && !resource->getUniqueKey().isValid() &&
1159 resource->resourcePriv().getScratchKey().isValid()) {
1160 fScratchMap.remove(resource->resourcePriv().getScratchKey(), resource);
1161 }
1162 }
1163 SkASSERT(wasPurgeable == resource->resourcePriv().isPurgeable());
1164 TRACE_COUNTER2("skia.gpu.cache", "skia budget", "used",
1165 fBudgetedBytes, "free", fMaxBytes - fBudgetedBytes);
1166
1167 this->validate();
1168 }
1169
1170 static constexpr int timeUnit = 1000;
1171
1172 // OH ISSUE: allow access to release interface
allowToPurge(const std::function<bool (void)> & nextFrameHasArrived)1173 bool GrResourceCache::allowToPurge(const std::function<bool(void)>& nextFrameHasArrived)
1174 {
1175 if (!fEnabled) {
1176 return true;
1177 }
1178 if (fFrameInfo.duringFrame == 0) {
1179 if (nextFrameHasArrived && nextFrameHasArrived()) {
1180 return false;
1181 }
1182 return true;
1183 }
1184 if (fFrameInfo.frameCount != fLastFrameCount) { // the next frame arrives
1185 struct timespec startTime = {0, 0};
1186 if (clock_gettime(CLOCK_REALTIME, &startTime) == -1) {
1187 return true;
1188 }
1189 fStartTime = startTime.tv_sec * timeUnit * timeUnit + startTime.tv_nsec / timeUnit;
1190 fLastFrameCount = fFrameInfo.frameCount;
1191 return true;
1192 }
1193 struct timespec endTime = {0, 0};
1194 if (clock_gettime(CLOCK_REALTIME, &endTime) == -1) {
1195 return true;
1196 }
1197 if (((endTime.tv_sec * timeUnit * timeUnit + endTime.tv_nsec / timeUnit) - fStartTime) >= fOvertimeDuration) {
1198 return false;
1199 }
1200 return true;
1201 }
1202
purgeAsNeeded(const std::function<bool (void)> & nextFrameHasArrived)1203 void GrResourceCache::purgeAsNeeded(const std::function<bool(void)>& nextFrameHasArrived) {
1204 SkTArray<GrUniqueKeyInvalidatedMessage> invalidKeyMsgs;
1205 fInvalidUniqueKeyInbox.poll(&invalidKeyMsgs);
1206 if (invalidKeyMsgs.count()) {
1207 SkASSERT(fProxyProvider);
1208
1209 for (int i = 0; i < invalidKeyMsgs.count(); ++i) {
1210 if (invalidKeyMsgs[i].inThreadSafeCache()) {
1211 fThreadSafeCache->remove(invalidKeyMsgs[i].key());
1212 SkASSERT(!fThreadSafeCache->has(invalidKeyMsgs[i].key()));
1213 } else {
1214 fProxyProvider->processInvalidUniqueKey(
1215 invalidKeyMsgs[i].key(), nullptr,
1216 GrProxyProvider::InvalidateGPUResource::kYes);
1217 SkASSERT(!this->findAndRefUniqueResource(invalidKeyMsgs[i].key()));
1218 }
1219 }
1220 }
1221
1222 this->processFreedGpuResources();
1223
1224 bool stillOverbudget = this->overBudget(nextFrameHasArrived);
1225 while (stillOverbudget && fPurgeableQueue.count() && this->allowToPurge(nextFrameHasArrived)) {
1226 GrGpuResource* resource = fPurgeableQueue.peek();
1227 SkASSERT(resource->resourcePriv().isPurgeable());
1228 resource->cacheAccess().release();
1229 stillOverbudget = this->overBudget(nextFrameHasArrived);
1230 }
1231
1232 if (stillOverbudget) {
1233 fThreadSafeCache->dropUniqueRefs(this);
1234
1235 stillOverbudget = this->overBudget(nextFrameHasArrived);
1236 while (stillOverbudget && fPurgeableQueue.count() && this->allowToPurge(nextFrameHasArrived)) {
1237 GrGpuResource* resource = fPurgeableQueue.peek();
1238 SkASSERT(resource->resourcePriv().isPurgeable());
1239 resource->cacheAccess().release();
1240 stillOverbudget = this->overBudget(nextFrameHasArrived);
1241 }
1242 }
1243
1244 this->validate();
1245 }
1246
purgeUnlockedResources(const GrStdSteadyClock::time_point * purgeTime,bool scratchResourcesOnly)1247 void GrResourceCache::purgeUnlockedResources(const GrStdSteadyClock::time_point* purgeTime,
1248 bool scratchResourcesOnly) {
1249 #if defined (SKIA_OHOS_FOR_OHOS_TRACE) && defined (SKIA_DFX_FOR_OHOS)
1250 SimpleCacheInfo simpleCacheInfo;
1251 traceBeforePurgeUnlockRes("purgeUnlockedResources", simpleCacheInfo);
1252 #endif
1253 if (!scratchResourcesOnly) {
1254 if (purgeTime) {
1255 fThreadSafeCache->dropUniqueRefsOlderThan(*purgeTime);
1256 } else {
1257 fThreadSafeCache->dropUniqueRefs(nullptr);
1258 }
1259
1260 // We could disable maintaining the heap property here, but it would add a lot of
1261 // complexity. Moreover, this is rarely called.
1262 while (fPurgeableQueue.count()) {
1263 GrGpuResource* resource = fPurgeableQueue.peek();
1264
1265 const GrStdSteadyClock::time_point resourceTime =
1266 resource->cacheAccess().timeWhenResourceBecamePurgeable();
1267 if (purgeTime && resourceTime >= *purgeTime) {
1268 // Resources were given both LRU timestamps and tagged with a frame number when
1269 // they first became purgeable. The LRU timestamp won't change again until the
1270 // resource is made non-purgeable again. So, at this point all the remaining
1271 // resources in the timestamp-sorted queue will have a frame number >= to this
1272 // one.
1273 break;
1274 }
1275
1276 SkASSERT(resource->resourcePriv().isPurgeable());
1277 resource->cacheAccess().release();
1278 }
1279 } else {
1280 // Early out if the very first item is too new to purge to avoid sorting the queue when
1281 // nothing will be deleted.
1282 if (purgeTime && fPurgeableQueue.count() &&
1283 fPurgeableQueue.peek()->cacheAccess().timeWhenResourceBecamePurgeable() >= *purgeTime) {
1284 #if defined (SKIA_OHOS_FOR_OHOS_TRACE) && defined (SKIA_DFX_FOR_OHOS)
1285 traceAfterPurgeUnlockRes("purgeUnlockedResources", simpleCacheInfo);
1286 #endif
1287 return;
1288 }
1289
1290 // Sort the queue
1291 fPurgeableQueue.sort();
1292
1293 // Make a list of the scratch resources to delete
1294 SkTDArray<GrGpuResource*> scratchResources;
1295 for (int i = 0; i < fPurgeableQueue.count(); i++) {
1296 GrGpuResource* resource = fPurgeableQueue.at(i);
1297
1298 const GrStdSteadyClock::time_point resourceTime =
1299 resource->cacheAccess().timeWhenResourceBecamePurgeable();
1300 if (purgeTime && resourceTime >= *purgeTime) {
1301 // scratch or not, all later iterations will be too recently used to purge.
1302 break;
1303 }
1304 SkASSERT(resource->resourcePriv().isPurgeable());
1305 if (!resource->getUniqueKey().isValid()) {
1306 *scratchResources.append() = resource;
1307 }
1308 }
1309
1310 // Delete the scratch resources. This must be done as a separate pass
1311 // to avoid messing up the sorted order of the queue
1312 for (int i = 0; i < scratchResources.count(); i++) {
1313 scratchResources.getAt(i)->cacheAccess().release();
1314 }
1315 }
1316
1317 this->validate();
1318 #if defined (SKIA_OHOS_FOR_OHOS_TRACE) && defined (SKIA_DFX_FOR_OHOS)
1319 traceAfterPurgeUnlockRes("purgeUnlockedResources", simpleCacheInfo);
1320 #endif
1321 }
1322
purgeUnlockAndSafeCacheGpuResources()1323 void GrResourceCache::purgeUnlockAndSafeCacheGpuResources() {
1324 #if defined (SKIA_OHOS_FOR_OHOS_TRACE) && defined (SKIA_DFX_FOR_OHOS)
1325 SimpleCacheInfo simpleCacheInfo;
1326 traceBeforePurgeUnlockRes("purgeUnlockAndSafeCacheGpuResources", simpleCacheInfo);
1327 #endif
1328 fThreadSafeCache->dropUniqueRefs(nullptr);
1329 // Sort the queue
1330 fPurgeableQueue.sort();
1331
1332 //Make a list of the scratch resources to delete
1333 SkTDArray<GrGpuResource*> scratchResources;
1334 for (int i = 0; i < fPurgeableQueue.count(); i++) {
1335 GrGpuResource* resource = fPurgeableQueue.at(i);
1336 if (!resource) {
1337 continue;
1338 }
1339 SkASSERT(resource->resourcePriv().isPurgeable());
1340 if (!resource->getUniqueKey().isValid()) {
1341 *scratchResources.append() = resource;
1342 }
1343 }
1344
1345 //Delete the scatch resource. This must be done as a separate pass
1346 //to avoid messing up the sorted order of the queue
1347 for (int i = 0; i <scratchResources.count(); i++) {
1348 scratchResources.getAt(i)->cacheAccess().release();
1349 }
1350
1351 this->validate();
1352 #if defined (SKIA_OHOS_FOR_OHOS_TRACE) && defined (SKIA_DFX_FOR_OHOS)
1353 traceAfterPurgeUnlockRes("purgeUnlockAndSafeCacheGpuResources", simpleCacheInfo);
1354 #endif
1355 }
1356
1357 // OH ISSUE: suppress release window
suppressGpuCacheBelowCertainRatio(const std::function<bool (void)> & nextFrameHasArrived)1358 void GrResourceCache::suppressGpuCacheBelowCertainRatio(const std::function<bool(void)>& nextFrameHasArrived)
1359 {
1360 if (!fEnabled) {
1361 return;
1362 }
1363 this->purgeAsNeeded(nextFrameHasArrived);
1364 }
1365
purgeCacheBetweenFrames(bool scratchResourcesOnly,const std::set<int> & exitedPidSet,const std::set<int> & protectedPidSet)1366 void GrResourceCache::purgeCacheBetweenFrames(bool scratchResourcesOnly, const std::set<int>& exitedPidSet,
1367 const std::set<int>& protectedPidSet) {
1368 HITRACE_OHOS_NAME_FMT_ALWAYS("PurgeGrResourceCache cur=%d, limit=%d", fBudgetedBytes, fMaxBytes);
1369 if (exitedPidSet.size() > 1) {
1370 for (int i = 1; i < fPurgeableQueue.count(); i++) {
1371 GrGpuResource* resource = fPurgeableQueue.at(i);
1372 SkASSERT(resource->resourcePriv().isPurgeable());
1373 if (exitedPidSet.find(resource->getResourceTag().fPid) != exitedPidSet.end()) {
1374 resource->cacheAccess().release();
1375 this->validate();
1376 return;
1377 }
1378 }
1379 }
1380 fPurgeableQueue.sort();
1381 const char* softLimitPercentage = "0.9";
1382 #ifdef NOT_BUILD_FOR_OHOS_SDK
1383 static int softLimit =
1384 std::atof(OHOS::system::GetParameter("persist.sys.graphic.mem.soft_limit",
1385 softLimitPercentage).c_str()) * fMaxBytes;
1386 #else
1387 static int softLimit = 0.9 * fMaxBytes;
1388 #endif
1389 if (fBudgetedBytes >= softLimit) {
1390 for (int i=0; i < fPurgeableQueue.count(); i++) {
1391 GrGpuResource* resource = fPurgeableQueue.at(i);
1392 SkASSERT(resource->resourcePriv().isPurgeable());
1393 if (protectedPidSet.find(resource->getResourceTag().fPid) == protectedPidSet.end()
1394 && (!scratchResourcesOnly || !resource->getUniqueKey().isValid())) {
1395 resource->cacheAccess().release();
1396 this->validate();
1397 return;
1398 }
1399 }
1400 }
1401 }
1402
purgeUnlockedResourcesByPid(bool scratchResourceOnly,const std::set<int> & exitedPidSet)1403 void GrResourceCache::purgeUnlockedResourcesByPid(bool scratchResourceOnly, const std::set<int>& exitedPidSet) {
1404 #if defined (SKIA_OHOS_FOR_OHOS_TRACE) && defined (SKIA_DFX_FOR_OHOS)
1405 SimpleCacheInfo simpleCacheInfo;
1406 traceBeforePurgeUnlockRes("purgeUnlockedResourcesByPid", simpleCacheInfo);
1407 #endif
1408 // Sort the queue
1409 fPurgeableQueue.sort();
1410
1411 //Make lists of the need purged resources to delete
1412 fThreadSafeCache->dropUniqueRefs(nullptr);
1413 SkTDArray<GrGpuResource*> exitPidResources;
1414 SkTDArray<GrGpuResource*> scratchResources;
1415 for (int i = 0; i < fPurgeableQueue.count(); i++) {
1416 GrGpuResource* resource = fPurgeableQueue.at(i);
1417 if (!resource) {
1418 continue;
1419 }
1420 SkASSERT(resource->resourcePriv().isPurgeable());
1421 if (exitedPidSet.count(resource->getResourceTag().fPid)) {
1422 *exitPidResources.append() = resource;
1423 } else if (!resource->getUniqueKey().isValid()) {
1424 *scratchResources.append() = resource;
1425 }
1426 }
1427
1428 //Delete the exited pid and scatch resource. This must be done as a separate pass
1429 //to avoid messing up the sorted order of the queue
1430 for (int i = 0; i <exitPidResources.count(); i++) {
1431 exitPidResources.getAt(i)->cacheAccess().release();
1432 }
1433 for (int i = 0; i <scratchResources.count(); i++) {
1434 scratchResources.getAt(i)->cacheAccess().release();
1435 }
1436
1437 for (auto pid : exitedPidSet) {
1438 fExitedPid_.erase(pid);
1439 }
1440
1441 this->validate();
1442 #if defined (SKIA_OHOS_FOR_OHOS_TRACE) && defined (SKIA_DFX_FOR_OHOS)
1443 traceAfterPurgeUnlockRes("purgeUnlockedResourcesByPid", simpleCacheInfo);
1444 #endif
1445 }
1446
purgeUnlockedResourcesByTag(bool scratchResourcesOnly,const GrGpuResourceTag & tag)1447 void GrResourceCache::purgeUnlockedResourcesByTag(bool scratchResourcesOnly, const GrGpuResourceTag& tag) {
1448 // Sort the queue
1449 fPurgeableQueue.sort();
1450
1451 //Make a list of the scratch resources to delete
1452 SkTDArray<GrGpuResource*> scratchResources;
1453 for (int i = 0; i < fPurgeableQueue.count(); i++) {
1454 GrGpuResource* resource = fPurgeableQueue.at(i);
1455 SkASSERT(resource->resourcePriv().isPurgeable());
1456 if (tag.filter(resource->getResourceTag()) && (!scratchResourcesOnly || !resource->getUniqueKey().isValid())) {
1457 *scratchResources.append() = resource;
1458 }
1459 }
1460
1461 //Delete the scatch resource. This must be done as a separate pass
1462 //to avoid messing up the sorted order of the queue
1463 for (int i = 0; i <scratchResources.count(); i++) {
1464 scratchResources.getAt(i)->cacheAccess().release();
1465 }
1466
1467 this->validate();
1468 }
1469
purgeToMakeHeadroom(size_t desiredHeadroomBytes)1470 bool GrResourceCache::purgeToMakeHeadroom(size_t desiredHeadroomBytes) {
1471 AutoValidate av(this);
1472 if (desiredHeadroomBytes > fMaxBytes) {
1473 return false;
1474 }
1475 if (this->wouldFit(desiredHeadroomBytes)) {
1476 return true;
1477 }
1478 fPurgeableQueue.sort();
1479
1480 size_t projectedBudget = fBudgetedBytes;
1481 int purgeCnt = 0;
1482 for (int i = 0; i < fPurgeableQueue.count(); i++) {
1483 GrGpuResource* resource = fPurgeableQueue.at(i);
1484 if (GrBudgetedType::kBudgeted == resource->resourcePriv().budgetedType()) {
1485 projectedBudget -= resource->gpuMemorySize();
1486 }
1487 if (projectedBudget + desiredHeadroomBytes <= fMaxBytes) {
1488 purgeCnt = i + 1;
1489 break;
1490 }
1491 }
1492 if (purgeCnt == 0) {
1493 return false;
1494 }
1495
1496 // Success! Release the resources.
1497 // Copy to array first so we don't mess with the queue.
1498 std::vector<GrGpuResource*> resources;
1499 resources.reserve(purgeCnt);
1500 for (int i = 0; i < purgeCnt; i++) {
1501 resources.push_back(fPurgeableQueue.at(i));
1502 }
1503 for (GrGpuResource* resource : resources) {
1504 resource->cacheAccess().release();
1505 }
1506 return true;
1507 }
1508
purgeUnlockedResources(size_t bytesToPurge,bool preferScratchResources)1509 void GrResourceCache::purgeUnlockedResources(size_t bytesToPurge, bool preferScratchResources) {
1510
1511 const size_t tmpByteBudget = std::max((size_t)0, fBytes - bytesToPurge);
1512 bool stillOverbudget = tmpByteBudget < fBytes;
1513
1514 if (preferScratchResources && bytesToPurge < fPurgeableBytes) {
1515 // Sort the queue
1516 fPurgeableQueue.sort();
1517
1518 // Make a list of the scratch resources to delete
1519 SkTDArray<GrGpuResource*> scratchResources;
1520 size_t scratchByteCount = 0;
1521 for (int i = 0; i < fPurgeableQueue.count() && stillOverbudget; i++) {
1522 GrGpuResource* resource = fPurgeableQueue.at(i);
1523 SkASSERT(resource->resourcePriv().isPurgeable());
1524 if (!resource->getUniqueKey().isValid()) {
1525 *scratchResources.append() = resource;
1526 scratchByteCount += resource->gpuMemorySize();
1527 stillOverbudget = tmpByteBudget < fBytes - scratchByteCount;
1528 }
1529 }
1530
1531 // Delete the scratch resources. This must be done as a separate pass
1532 // to avoid messing up the sorted order of the queue
1533 for (int i = 0; i < scratchResources.count(); i++) {
1534 scratchResources.getAt(i)->cacheAccess().release();
1535 }
1536 stillOverbudget = tmpByteBudget < fBytes;
1537
1538 this->validate();
1539 }
1540
1541 // Purge any remaining resources in LRU order
1542 if (stillOverbudget) {
1543 const size_t cachedByteCount = fMaxBytes;
1544 fMaxBytes = tmpByteBudget;
1545 this->purgeAsNeeded();
1546 fMaxBytes = cachedByteCount;
1547 }
1548 }
1549
requestsFlush() const1550 bool GrResourceCache::requestsFlush() const {
1551 return this->overBudget() && !fPurgeableQueue.count() &&
1552 fNumBudgetedResourcesFlushWillMakePurgeable > 0;
1553 }
1554
insertDelayedTextureUnref(GrTexture * texture)1555 void GrResourceCache::insertDelayedTextureUnref(GrTexture* texture) {
1556 texture->ref();
1557 uint32_t id = texture->uniqueID().asUInt();
1558 if (auto* data = fTexturesAwaitingUnref.find(id)) {
1559 data->addRef();
1560 } else {
1561 fTexturesAwaitingUnref.set(id, {texture});
1562 }
1563 }
1564
processFreedGpuResources()1565 void GrResourceCache::processFreedGpuResources() {
1566 if (!fTexturesAwaitingUnref.count()) {
1567 return;
1568 }
1569
1570 SkTArray<GrTextureFreedMessage> msgs;
1571 fFreedTextureInbox.poll(&msgs);
1572 for (int i = 0; i < msgs.count(); ++i) {
1573 SkASSERT(msgs[i].fIntendedRecipient == fOwningContextID);
1574 uint32_t id = msgs[i].fTexture->uniqueID().asUInt();
1575 TextureAwaitingUnref* info = fTexturesAwaitingUnref.find(id);
1576 // If the GrContext was released or abandoned then fTexturesAwaitingUnref should have been
1577 // empty and we would have returned early above. Thus, any texture from a message should be
1578 // in the list of fTexturesAwaitingUnref.
1579 SkASSERT(info);
1580 info->unref();
1581 if (info->finished()) {
1582 fTexturesAwaitingUnref.remove(id);
1583 }
1584 }
1585 }
1586
addToNonpurgeableArray(GrGpuResource * resource)1587 void GrResourceCache::addToNonpurgeableArray(GrGpuResource* resource) {
1588 int index = fNonpurgeableResources.count();
1589 *fNonpurgeableResources.append() = resource;
1590 *resource->cacheAccess().accessCacheIndex() = index;
1591 }
1592
removeFromNonpurgeableArray(GrGpuResource * resource)1593 void GrResourceCache::removeFromNonpurgeableArray(GrGpuResource* resource) {
1594 int* index = resource->cacheAccess().accessCacheIndex();
1595 // Fill the hole we will create in the array with the tail object, adjust its index, and
1596 // then pop the array
1597 GrGpuResource* tail = *(fNonpurgeableResources.end() - 1);
1598 SkASSERT(fNonpurgeableResources[*index] == resource);
1599 fNonpurgeableResources[*index] = tail;
1600 *tail->cacheAccess().accessCacheIndex() = *index;
1601 fNonpurgeableResources.pop();
1602 SkDEBUGCODE(*index = -1);
1603 }
1604
getNextTimestamp()1605 uint32_t GrResourceCache::getNextTimestamp() {
1606 // If we wrap then all the existing resources will appear older than any resources that get
1607 // a timestamp after the wrap.
1608 if (0 == fTimestamp) {
1609 int count = this->getResourceCount();
1610 if (count) {
1611 // Reset all the timestamps. We sort the resources by timestamp and then assign
1612 // sequential timestamps beginning with 0. This is O(n*lg(n)) but it should be extremely
1613 // rare.
1614 SkTDArray<GrGpuResource*> sortedPurgeableResources;
1615 sortedPurgeableResources.setReserve(fPurgeableQueue.count());
1616
1617 while (fPurgeableQueue.count()) {
1618 *sortedPurgeableResources.append() = fPurgeableQueue.peek();
1619 fPurgeableQueue.pop();
1620 }
1621
1622 SkTQSort(fNonpurgeableResources.begin(), fNonpurgeableResources.end(),
1623 CompareTimestamp);
1624
1625 // Pick resources out of the purgeable and non-purgeable arrays based on lowest
1626 // timestamp and assign new timestamps.
1627 int currP = 0;
1628 int currNP = 0;
1629 while (currP < sortedPurgeableResources.count() &&
1630 currNP < fNonpurgeableResources.count()) {
1631 uint32_t tsP = sortedPurgeableResources[currP]->cacheAccess().timestamp();
1632 uint32_t tsNP = fNonpurgeableResources[currNP]->cacheAccess().timestamp();
1633 SkASSERT(tsP != tsNP);
1634 if (tsP < tsNP) {
1635 sortedPurgeableResources[currP++]->cacheAccess().setTimestamp(fTimestamp++);
1636 } else {
1637 // Correct the index in the nonpurgeable array stored on the resource post-sort.
1638 *fNonpurgeableResources[currNP]->cacheAccess().accessCacheIndex() = currNP;
1639 fNonpurgeableResources[currNP++]->cacheAccess().setTimestamp(fTimestamp++);
1640 }
1641 }
1642
1643 // The above loop ended when we hit the end of one array. Finish the other one.
1644 while (currP < sortedPurgeableResources.count()) {
1645 sortedPurgeableResources[currP++]->cacheAccess().setTimestamp(fTimestamp++);
1646 }
1647 while (currNP < fNonpurgeableResources.count()) {
1648 *fNonpurgeableResources[currNP]->cacheAccess().accessCacheIndex() = currNP;
1649 fNonpurgeableResources[currNP++]->cacheAccess().setTimestamp(fTimestamp++);
1650 }
1651
1652 // Rebuild the queue.
1653 for (int i = 0; i < sortedPurgeableResources.count(); ++i) {
1654 fPurgeableQueue.insert(sortedPurgeableResources[i]);
1655 }
1656
1657 this->validate();
1658 SkASSERT(count == this->getResourceCount());
1659
1660 // count should be the next timestamp we return.
1661 SkASSERT(fTimestamp == SkToU32(count));
1662 }
1663 }
1664 return fTimestamp++;
1665 }
1666
dumpMemoryStatistics(SkTraceMemoryDump * traceMemoryDump) const1667 void GrResourceCache::dumpMemoryStatistics(SkTraceMemoryDump* traceMemoryDump) const {
1668 SkTDArray<GrGpuResource*> resources;
1669 for (int i = 0; i < fNonpurgeableResources.count(); ++i) {
1670 *resources.append() = fNonpurgeableResources[i];
1671 }
1672 for (int i = 0; i < fPurgeableQueue.count(); ++i) {
1673 *resources.append() = fPurgeableQueue.at(i);
1674 }
1675 for (int i = 0; i < resources.count(); i++) {
1676 auto resource = resources.getAt(i);
1677 if (!resource || resource->wasDestroyed()) {
1678 continue;
1679 }
1680 resource->dumpMemoryStatistics(traceMemoryDump);
1681 }
1682 }
1683
dumpMemoryStatistics(SkTraceMemoryDump * traceMemoryDump,const GrGpuResourceTag & tag) const1684 void GrResourceCache::dumpMemoryStatistics(SkTraceMemoryDump* traceMemoryDump, const GrGpuResourceTag& tag) const {
1685 for (int i = 0; i < fNonpurgeableResources.count(); ++i) {
1686 if (tag.filter(fNonpurgeableResources[i]->getResourceTag())) {
1687 fNonpurgeableResources[i]->dumpMemoryStatistics(traceMemoryDump);
1688 }
1689 }
1690 for (int i = 0; i < fPurgeableQueue.count(); ++i) {
1691 if (tag.filter(fPurgeableQueue.at(i)->getResourceTag())) {
1692 fPurgeableQueue.at(i)->dumpMemoryStatistics(traceMemoryDump);
1693 }
1694 }
1695 }
1696
1697 #if GR_CACHE_STATS
getStats(Stats * stats) const1698 void GrResourceCache::getStats(Stats* stats) const {
1699 stats->reset();
1700
1701 stats->fTotal = this->getResourceCount();
1702 stats->fNumNonPurgeable = fNonpurgeableResources.count();
1703 stats->fNumPurgeable = fPurgeableQueue.count();
1704
1705 for (int i = 0; i < fNonpurgeableResources.count(); ++i) {
1706 stats->update(fNonpurgeableResources[i]);
1707 }
1708 for (int i = 0; i < fPurgeableQueue.count(); ++i) {
1709 stats->update(fPurgeableQueue.at(i));
1710 }
1711 }
1712
1713 #if GR_TEST_UTILS
dumpStats(SkString * out) const1714 void GrResourceCache::dumpStats(SkString* out) const {
1715 this->validate();
1716
1717 Stats stats;
1718
1719 this->getStats(&stats);
1720
1721 float byteUtilization = (100.f * fBudgetedBytes) / fMaxBytes;
1722
1723 out->appendf("Budget: %d bytes\n", (int)fMaxBytes);
1724 out->appendf("\t\tEntry Count: current %d"
1725 " (%d budgeted, %d wrapped, %d locked, %d scratch), high %d\n",
1726 stats.fTotal, fBudgetedCount, stats.fWrapped, stats.fNumNonPurgeable,
1727 stats.fScratch, fHighWaterCount);
1728 out->appendf("\t\tEntry Bytes: current %d (budgeted %d, %.2g%% full, %d unbudgeted) high %d\n",
1729 SkToInt(fBytes), SkToInt(fBudgetedBytes), byteUtilization,
1730 SkToInt(stats.fUnbudgetedSize), SkToInt(fHighWaterBytes));
1731 }
1732
dumpStatsKeyValuePairs(SkTArray<SkString> * keys,SkTArray<double> * values) const1733 void GrResourceCache::dumpStatsKeyValuePairs(SkTArray<SkString>* keys,
1734 SkTArray<double>* values) const {
1735 this->validate();
1736
1737 Stats stats;
1738 this->getStats(&stats);
1739
1740 keys->push_back(SkString("gpu_cache_purgable_entries")); values->push_back(stats.fNumPurgeable);
1741 }
1742 #endif // GR_TEST_UTILS
1743 #endif // GR_CACHE_STATS
1744
1745 #ifdef SK_DEBUG
validate() const1746 void GrResourceCache::validate() const {
1747 // Reduce the frequency of validations for large resource counts.
1748 static SkRandom gRandom;
1749 int mask = (SkNextPow2(fCount + 1) >> 5) - 1;
1750 if (~mask && (gRandom.nextU() & mask)) {
1751 return;
1752 }
1753
1754 struct Stats {
1755 size_t fBytes;
1756 int fBudgetedCount;
1757 size_t fBudgetedBytes;
1758 int fLocked;
1759 int fScratch;
1760 int fCouldBeScratch;
1761 int fContent;
1762 const ScratchMap* fScratchMap;
1763 const UniqueHash* fUniqueHash;
1764
1765 Stats(const GrResourceCache* cache) {
1766 memset(this, 0, sizeof(*this));
1767 fScratchMap = &cache->fScratchMap;
1768 fUniqueHash = &cache->fUniqueHash;
1769 }
1770
1771 void update(GrGpuResource* resource) {
1772 fBytes += resource->gpuMemorySize();
1773
1774 if (!resource->resourcePriv().isPurgeable()) {
1775 ++fLocked;
1776 }
1777
1778 const GrScratchKey& scratchKey = resource->resourcePriv().getScratchKey();
1779 const GrUniqueKey& uniqueKey = resource->getUniqueKey();
1780
1781 if (resource->cacheAccess().isUsableAsScratch()) {
1782 SkASSERT(!uniqueKey.isValid());
1783 SkASSERT(GrBudgetedType::kBudgeted == resource->resourcePriv().budgetedType());
1784 SkASSERT(!resource->cacheAccess().hasRef());
1785 ++fScratch;
1786 SkASSERT(fScratchMap->countForKey(scratchKey));
1787 SkASSERT(!resource->resourcePriv().refsWrappedObjects());
1788 } else if (scratchKey.isValid()) {
1789 SkASSERT(GrBudgetedType::kBudgeted != resource->resourcePriv().budgetedType() ||
1790 uniqueKey.isValid() || resource->cacheAccess().hasRef());
1791 SkASSERT(!resource->resourcePriv().refsWrappedObjects());
1792 SkASSERT(!fScratchMap->has(resource, scratchKey));
1793 }
1794 if (uniqueKey.isValid()) {
1795 ++fContent;
1796 SkASSERT(fUniqueHash->find(uniqueKey) == resource);
1797 SkASSERT(GrBudgetedType::kBudgeted == resource->resourcePriv().budgetedType() ||
1798 resource->resourcePriv().refsWrappedObjects());
1799 }
1800
1801 if (GrBudgetedType::kBudgeted == resource->resourcePriv().budgetedType()) {
1802 ++fBudgetedCount;
1803 fBudgetedBytes += resource->gpuMemorySize();
1804 }
1805 }
1806 };
1807
1808 {
1809 int count = 0;
1810 fScratchMap.foreach([&](const GrGpuResource& resource) {
1811 SkASSERT(resource.cacheAccess().isUsableAsScratch());
1812 count++;
1813 });
1814 SkASSERT(count == fScratchMap.count());
1815 }
1816
1817 Stats stats(this);
1818 size_t purgeableBytes = 0;
1819 int numBudgetedResourcesFlushWillMakePurgeable = 0;
1820
1821 for (int i = 0; i < fNonpurgeableResources.count(); ++i) {
1822 SkASSERT(!fNonpurgeableResources[i]->resourcePriv().isPurgeable() ||
1823 fNewlyPurgeableResourceForValidation == fNonpurgeableResources[i]);
1824 SkASSERT(*fNonpurgeableResources[i]->cacheAccess().accessCacheIndex() == i);
1825 SkASSERT(!fNonpurgeableResources[i]->wasDestroyed());
1826 if (fNonpurgeableResources[i]->resourcePriv().budgetedType() == GrBudgetedType::kBudgeted &&
1827 !fNonpurgeableResources[i]->cacheAccess().hasRefOrCommandBufferUsage() &&
1828 fNewlyPurgeableResourceForValidation != fNonpurgeableResources[i]) {
1829 ++numBudgetedResourcesFlushWillMakePurgeable;
1830 }
1831 stats.update(fNonpurgeableResources[i]);
1832 }
1833 for (int i = 0; i < fPurgeableQueue.count(); ++i) {
1834 SkASSERT(fPurgeableQueue.at(i)->resourcePriv().isPurgeable());
1835 SkASSERT(*fPurgeableQueue.at(i)->cacheAccess().accessCacheIndex() == i);
1836 SkASSERT(!fPurgeableQueue.at(i)->wasDestroyed());
1837 stats.update(fPurgeableQueue.at(i));
1838 purgeableBytes += fPurgeableQueue.at(i)->gpuMemorySize();
1839 }
1840
1841 SkASSERT(fCount == this->getResourceCount());
1842 SkASSERT(fBudgetedCount <= fCount);
1843 SkASSERT(fBudgetedBytes <= fBytes);
1844 SkASSERT(stats.fBytes == fBytes);
1845 SkASSERT(fNumBudgetedResourcesFlushWillMakePurgeable ==
1846 numBudgetedResourcesFlushWillMakePurgeable);
1847 SkASSERT(stats.fBudgetedBytes == fBudgetedBytes);
1848 SkASSERT(stats.fBudgetedCount == fBudgetedCount);
1849 SkASSERT(purgeableBytes == fPurgeableBytes);
1850 #if GR_CACHE_STATS
1851 SkASSERT(fBudgetedHighWaterCount <= fHighWaterCount);
1852 SkASSERT(fBudgetedHighWaterBytes <= fHighWaterBytes);
1853 SkASSERT(fBytes <= fHighWaterBytes);
1854 SkASSERT(fCount <= fHighWaterCount);
1855 SkASSERT(fBudgetedBytes <= fBudgetedHighWaterBytes);
1856 SkASSERT(fBudgetedCount <= fBudgetedHighWaterCount);
1857 #endif
1858 SkASSERT(stats.fContent == fUniqueHash.count());
1859 SkASSERT(stats.fScratch == fScratchMap.count());
1860
1861 // This assertion is not currently valid because we can be in recursive notifyCntReachedZero()
1862 // calls. This will be fixed when subresource registration is explicit.
1863 // bool overBudget = budgetedBytes > fMaxBytes || budgetedCount > fMaxCount;
1864 // SkASSERT(!overBudget || locked == count || fPurging);
1865 }
1866
isInCache(const GrGpuResource * resource) const1867 bool GrResourceCache::isInCache(const GrGpuResource* resource) const {
1868 int index = *resource->cacheAccess().accessCacheIndex();
1869 if (index < 0) {
1870 return false;
1871 }
1872 if (index < fPurgeableQueue.count() && fPurgeableQueue.at(index) == resource) {
1873 return true;
1874 }
1875 if (index < fNonpurgeableResources.count() && fNonpurgeableResources[index] == resource) {
1876 return true;
1877 }
1878 SkDEBUGFAIL("Resource index should be -1 or the resource should be in the cache.");
1879 return false;
1880 }
1881
1882 #endif // SK_DEBUG
1883
1884 #if GR_TEST_UTILS
1885
countUniqueKeysWithTag(const char * tag) const1886 int GrResourceCache::countUniqueKeysWithTag(const char* tag) const {
1887 int count = 0;
1888 fUniqueHash.foreach([&](const GrGpuResource& resource){
1889 if (0 == strcmp(tag, resource.getUniqueKey().tag())) {
1890 ++count;
1891 }
1892 });
1893 return count;
1894 }
1895
changeTimestamp(uint32_t newTimestamp)1896 void GrResourceCache::changeTimestamp(uint32_t newTimestamp) {
1897 fTimestamp = newTimestamp;
1898 }
1899
1900 #endif // GR_TEST_UTILS
1901