1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Hash: Hash algorithms under the crypto API
4 *
5 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
6 */
7
8 #ifndef _CRYPTO_HASH_H
9 #define _CRYPTO_HASH_H
10
11 #include <linux/atomic.h>
12 #include <linux/crypto.h>
13 #include <linux/string.h>
14
15 struct crypto_ahash;
16
17 /**
18 * DOC: Message Digest Algorithm Definitions
19 *
20 * These data structures define modular message digest algorithm
21 * implementations, managed via crypto_register_ahash(),
22 * crypto_register_shash(), crypto_unregister_ahash() and
23 * crypto_unregister_shash().
24 */
25
26 /*
27 * struct hash_alg_common - define properties of message digest
28 * @digestsize: Size of the result of the transformation. A buffer of this size
29 * must be available to the @final and @finup calls, so they can
30 * store the resulting hash into it. For various predefined sizes,
31 * search include/crypto/ using
32 * git grep _DIGEST_SIZE include/crypto.
33 * @statesize: Size of the block for partial state of the transformation. A
34 * buffer of this size must be passed to the @export function as it
35 * will save the partial state of the transformation into it. On the
36 * other side, the @import function will load the state from a
37 * buffer of this size as well.
38 * @base: Start of data structure of cipher algorithm. The common data
39 * structure of crypto_alg contains information common to all ciphers.
40 * The hash_alg_common data structure now adds the hash-specific
41 * information.
42 */
43 #define HASH_ALG_COMMON { \
44 unsigned int digestsize; \
45 unsigned int statesize; \
46 \
47 struct crypto_alg base; \
48 }
49 struct hash_alg_common HASH_ALG_COMMON;
50
51 struct ahash_request {
52 struct crypto_async_request base;
53
54 unsigned int nbytes;
55 struct scatterlist *src;
56 u8 *result;
57
58 /* This field may only be used by the ahash API code. */
59 void *priv;
60
61 void *__ctx[] CRYPTO_MINALIGN_ATTR;
62 };
63
64 /**
65 * struct ahash_alg - asynchronous message digest definition
66 * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
67 * state of the HASH transformation at the beginning. This shall fill in
68 * the internal structures used during the entire duration of the whole
69 * transformation. No data processing happens at this point. Driver code
70 * implementation must not use req->result.
71 * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
72 * function actually pushes blocks of data from upper layers into the
73 * driver, which then passes those to the hardware as seen fit. This
74 * function must not finalize the HASH transformation by calculating the
75 * final message digest as this only adds more data into the
76 * transformation. This function shall not modify the transformation
77 * context, as this function may be called in parallel with the same
78 * transformation object. Data processing can happen synchronously
79 * [SHASH] or asynchronously [AHASH] at this point. Driver must not use
80 * req->result.
81 * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
82 * transformation and retrieves the resulting hash from the driver and
83 * pushes it back to upper layers. No data processing happens at this
84 * point unless hardware requires it to finish the transformation
85 * (then the data buffered by the device driver is processed).
86 * @finup: **[optional]** Combination of @update and @final. This function is effectively a
87 * combination of @update and @final calls issued in sequence. As some
88 * hardware cannot do @update and @final separately, this callback was
89 * added to allow such hardware to be used at least by IPsec. Data
90 * processing can happen synchronously [SHASH] or asynchronously [AHASH]
91 * at this point.
92 * @digest: Combination of @init and @update and @final. This function
93 * effectively behaves as the entire chain of operations, @init,
94 * @update and @final issued in sequence. Just like @finup, this was
95 * added for hardware which cannot do even the @finup, but can only do
96 * the whole transformation in one run. Data processing can happen
97 * synchronously [SHASH] or asynchronously [AHASH] at this point.
98 * @setkey: Set optional key used by the hashing algorithm. Intended to push
99 * optional key used by the hashing algorithm from upper layers into
100 * the driver. This function can store the key in the transformation
101 * context or can outright program it into the hardware. In the former
102 * case, one must be careful to program the key into the hardware at
103 * appropriate time and one must be careful that .setkey() can be
104 * called multiple times during the existence of the transformation
105 * object. Not all hashing algorithms do implement this function as it
106 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
107 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
108 * this function. This function must be called before any other of the
109 * @init, @update, @final, @finup, @digest is called. No data
110 * processing happens at this point.
111 * @export: Export partial state of the transformation. This function dumps the
112 * entire state of the ongoing transformation into a provided block of
113 * data so it can be @import 'ed back later on. This is useful in case
114 * you want to save partial result of the transformation after
115 * processing certain amount of data and reload this partial result
116 * multiple times later on for multiple re-use. No data processing
117 * happens at this point. Driver must not use req->result.
118 * @import: Import partial state of the transformation. This function loads the
119 * entire state of the ongoing transformation from a provided block of
120 * data so the transformation can continue from this point onward. No
121 * data processing happens at this point. Driver must not use
122 * req->result.
123 * @init_tfm: Initialize the cryptographic transformation object.
124 * This function is called only once at the instantiation
125 * time, right after the transformation context was
126 * allocated. In case the cryptographic hardware has
127 * some special requirements which need to be handled
128 * by software, this function shall check for the precise
129 * requirement of the transformation and put any software
130 * fallbacks in place.
131 * @exit_tfm: Deinitialize the cryptographic transformation object.
132 * This is a counterpart to @init_tfm, used to remove
133 * various changes set in @init_tfm.
134 * @clone_tfm: Copy transform into new object, may allocate memory.
135 * @halg: see struct hash_alg_common
136 */
137 struct ahash_alg {
138 int (*init)(struct ahash_request *req);
139 int (*update)(struct ahash_request *req);
140 int (*final)(struct ahash_request *req);
141 int (*finup)(struct ahash_request *req);
142 int (*digest)(struct ahash_request *req);
143 int (*export)(struct ahash_request *req, void *out);
144 int (*import)(struct ahash_request *req, const void *in);
145 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
146 unsigned int keylen);
147 int (*init_tfm)(struct crypto_ahash *tfm);
148 void (*exit_tfm)(struct crypto_ahash *tfm);
149 int (*clone_tfm)(struct crypto_ahash *dst, struct crypto_ahash *src);
150
151 struct hash_alg_common halg;
152 };
153
154 struct shash_desc {
155 struct crypto_shash *tfm;
156 void *__ctx[] __aligned(ARCH_SLAB_MINALIGN);
157 };
158
159 #define HASH_MAX_DIGESTSIZE 64
160
161 #define HASH_MAX_MB_MSGS 2 /* max value of crypto_shash_mb_max_msgs() */
162
163 /*
164 * Worst case is hmac(sha3-224-generic). Its context is a nested 'shash_desc'
165 * containing a 'struct sha3_state'.
166 */
167 #define HASH_MAX_DESCSIZE (sizeof(struct shash_desc) + 360)
168
169 #define SHASH_DESC_ON_STACK(shash, ctx) \
170 char __##shash##_desc[sizeof(struct shash_desc) + HASH_MAX_DESCSIZE] \
171 __aligned(__alignof__(struct shash_desc)); \
172 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
173
174 /**
175 * struct shash_alg - synchronous message digest definition
176 * @init: see struct ahash_alg
177 * @update: see struct ahash_alg
178 * @final: see struct ahash_alg
179 * @finup: see struct ahash_alg
180 * @digest: see struct ahash_alg
181 * @export: see struct ahash_alg
182 * @import: see struct ahash_alg
183 * @setkey: see struct ahash_alg
184 * @finup_mb: **[optional]** Multibuffer hashing support. Finish calculating
185 * the digests of multiple messages, interleaving the instructions to
186 * potentially achieve better performance than hashing each message
187 * individually. The num_msgs argument will be between 2 and
188 * @mb_max_msgs inclusively. If there are particular values of len
189 * or num_msgs, or a particular calling context (e.g. no-SIMD) that
190 * the implementation does not support with this function, then it
191 * must return -EOPNOTSUPP in those cases to cause the crypto API to
192 * fall back to repeated finups.
193 * @init_tfm: Initialize the cryptographic transformation object.
194 * This function is called only once at the instantiation
195 * time, right after the transformation context was
196 * allocated. In case the cryptographic hardware has
197 * some special requirements which need to be handled
198 * by software, this function shall check for the precise
199 * requirement of the transformation and put any software
200 * fallbacks in place.
201 * @exit_tfm: Deinitialize the cryptographic transformation object.
202 * This is a counterpart to @init_tfm, used to remove
203 * various changes set in @init_tfm.
204 * @clone_tfm: Copy transform into new object, may allocate memory.
205 * @descsize: Size of the operational state for the message digest. This state
206 * size is the memory size that needs to be allocated for
207 * shash_desc.__ctx
208 * @mb_max_msgs: Maximum supported value of num_msgs argument to @finup_mb
209 * @halg: see struct hash_alg_common
210 * @HASH_ALG_COMMON: see struct hash_alg_common
211 */
212 struct shash_alg {
213 int (*init)(struct shash_desc *desc);
214 int (*update)(struct shash_desc *desc, const u8 *data,
215 unsigned int len);
216 int (*final)(struct shash_desc *desc, u8 *out);
217 int (*finup)(struct shash_desc *desc, const u8 *data,
218 unsigned int len, u8 *out);
219 int (*digest)(struct shash_desc *desc, const u8 *data,
220 unsigned int len, u8 *out);
221 int (*export)(struct shash_desc *desc, void *out);
222 int (*import)(struct shash_desc *desc, const void *in);
223 int (*setkey)(struct crypto_shash *tfm, const u8 *key,
224 unsigned int keylen);
225 int (*finup_mb)(struct shash_desc *desc, const u8 * const data[],
226 unsigned int len, u8 * const outs[],
227 unsigned int num_msgs);
228 int (*init_tfm)(struct crypto_shash *tfm);
229 void (*exit_tfm)(struct crypto_shash *tfm);
230 int (*clone_tfm)(struct crypto_shash *dst, struct crypto_shash *src);
231
232 unsigned int descsize;
233 unsigned int mb_max_msgs;
234
235 union {
236 struct HASH_ALG_COMMON;
237 struct hash_alg_common halg;
238 };
239 };
240 #undef HASH_ALG_COMMON
241
242 struct crypto_ahash {
243 bool using_shash; /* Underlying algorithm is shash, not ahash */
244 unsigned int statesize;
245 unsigned int reqsize;
246 struct crypto_tfm base;
247 };
248
249 struct crypto_shash {
250 unsigned int descsize;
251 struct crypto_tfm base;
252 };
253
254 /**
255 * DOC: Asynchronous Message Digest API
256 *
257 * The asynchronous message digest API is used with the ciphers of type
258 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
259 *
260 * The asynchronous cipher operation discussion provided for the
261 * CRYPTO_ALG_TYPE_SKCIPHER API applies here as well.
262 */
263
__crypto_ahash_cast(struct crypto_tfm * tfm)264 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
265 {
266 return container_of(tfm, struct crypto_ahash, base);
267 }
268
269 /**
270 * crypto_alloc_ahash() - allocate ahash cipher handle
271 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
272 * ahash cipher
273 * @type: specifies the type of the cipher
274 * @mask: specifies the mask for the cipher
275 *
276 * Allocate a cipher handle for an ahash. The returned struct
277 * crypto_ahash is the cipher handle that is required for any subsequent
278 * API invocation for that ahash.
279 *
280 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
281 * of an error, PTR_ERR() returns the error code.
282 */
283 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
284 u32 mask);
285
286 struct crypto_ahash *crypto_clone_ahash(struct crypto_ahash *tfm);
287
crypto_ahash_tfm(struct crypto_ahash * tfm)288 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
289 {
290 return &tfm->base;
291 }
292
293 /**
294 * crypto_free_ahash() - zeroize and free the ahash handle
295 * @tfm: cipher handle to be freed
296 *
297 * If @tfm is a NULL or error pointer, this function does nothing.
298 */
crypto_free_ahash(struct crypto_ahash * tfm)299 static inline void crypto_free_ahash(struct crypto_ahash *tfm)
300 {
301 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
302 }
303
304 /**
305 * crypto_has_ahash() - Search for the availability of an ahash.
306 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
307 * ahash
308 * @type: specifies the type of the ahash
309 * @mask: specifies the mask for the ahash
310 *
311 * Return: true when the ahash is known to the kernel crypto API; false
312 * otherwise
313 */
314 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
315
crypto_ahash_alg_name(struct crypto_ahash * tfm)316 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
317 {
318 return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
319 }
320
crypto_ahash_driver_name(struct crypto_ahash * tfm)321 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
322 {
323 return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
324 }
325
326 /**
327 * crypto_ahash_blocksize() - obtain block size for cipher
328 * @tfm: cipher handle
329 *
330 * The block size for the message digest cipher referenced with the cipher
331 * handle is returned.
332 *
333 * Return: block size of cipher
334 */
crypto_ahash_blocksize(struct crypto_ahash * tfm)335 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
336 {
337 return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
338 }
339
__crypto_hash_alg_common(struct crypto_alg * alg)340 static inline struct hash_alg_common *__crypto_hash_alg_common(
341 struct crypto_alg *alg)
342 {
343 return container_of(alg, struct hash_alg_common, base);
344 }
345
crypto_hash_alg_common(struct crypto_ahash * tfm)346 static inline struct hash_alg_common *crypto_hash_alg_common(
347 struct crypto_ahash *tfm)
348 {
349 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
350 }
351
352 /**
353 * crypto_ahash_digestsize() - obtain message digest size
354 * @tfm: cipher handle
355 *
356 * The size for the message digest created by the message digest cipher
357 * referenced with the cipher handle is returned.
358 *
359 *
360 * Return: message digest size of cipher
361 */
crypto_ahash_digestsize(struct crypto_ahash * tfm)362 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
363 {
364 return crypto_hash_alg_common(tfm)->digestsize;
365 }
366
367 /**
368 * crypto_ahash_statesize() - obtain size of the ahash state
369 * @tfm: cipher handle
370 *
371 * Return the size of the ahash state. With the crypto_ahash_export()
372 * function, the caller can export the state into a buffer whose size is
373 * defined with this function.
374 *
375 * Return: size of the ahash state
376 */
crypto_ahash_statesize(struct crypto_ahash * tfm)377 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
378 {
379 return tfm->statesize;
380 }
381
crypto_ahash_get_flags(struct crypto_ahash * tfm)382 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
383 {
384 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
385 }
386
crypto_ahash_set_flags(struct crypto_ahash * tfm,u32 flags)387 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
388 {
389 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
390 }
391
crypto_ahash_clear_flags(struct crypto_ahash * tfm,u32 flags)392 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
393 {
394 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
395 }
396
397 /**
398 * crypto_ahash_reqtfm() - obtain cipher handle from request
399 * @req: asynchronous request handle that contains the reference to the ahash
400 * cipher handle
401 *
402 * Return the ahash cipher handle that is registered with the asynchronous
403 * request handle ahash_request.
404 *
405 * Return: ahash cipher handle
406 */
crypto_ahash_reqtfm(struct ahash_request * req)407 static inline struct crypto_ahash *crypto_ahash_reqtfm(
408 struct ahash_request *req)
409 {
410 return __crypto_ahash_cast(req->base.tfm);
411 }
412
413 /**
414 * crypto_ahash_reqsize() - obtain size of the request data structure
415 * @tfm: cipher handle
416 *
417 * Return: size of the request data
418 */
crypto_ahash_reqsize(struct crypto_ahash * tfm)419 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
420 {
421 return tfm->reqsize;
422 }
423
ahash_request_ctx(struct ahash_request * req)424 static inline void *ahash_request_ctx(struct ahash_request *req)
425 {
426 return req->__ctx;
427 }
428
429 /**
430 * crypto_ahash_setkey - set key for cipher handle
431 * @tfm: cipher handle
432 * @key: buffer holding the key
433 * @keylen: length of the key in bytes
434 *
435 * The caller provided key is set for the ahash cipher. The cipher
436 * handle must point to a keyed hash in order for this function to succeed.
437 *
438 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
439 */
440 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
441 unsigned int keylen);
442
443 /**
444 * crypto_ahash_finup() - update and finalize message digest
445 * @req: reference to the ahash_request handle that holds all information
446 * needed to perform the cipher operation
447 *
448 * This function is a "short-hand" for the function calls of
449 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
450 * meaning as discussed for those separate functions.
451 *
452 * Return: see crypto_ahash_final()
453 */
454 int crypto_ahash_finup(struct ahash_request *req);
455
456 /**
457 * crypto_ahash_final() - calculate message digest
458 * @req: reference to the ahash_request handle that holds all information
459 * needed to perform the cipher operation
460 *
461 * Finalize the message digest operation and create the message digest
462 * based on all data added to the cipher handle. The message digest is placed
463 * into the output buffer registered with the ahash_request handle.
464 *
465 * Return:
466 * 0 if the message digest was successfully calculated;
467 * -EINPROGRESS if data is fed into hardware (DMA) or queued for later;
468 * -EBUSY if queue is full and request should be resubmitted later;
469 * other < 0 if an error occurred
470 */
471 int crypto_ahash_final(struct ahash_request *req);
472
473 /**
474 * crypto_ahash_digest() - calculate message digest for a buffer
475 * @req: reference to the ahash_request handle that holds all information
476 * needed to perform the cipher operation
477 *
478 * This function is a "short-hand" for the function calls of crypto_ahash_init,
479 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
480 * meaning as discussed for those separate three functions.
481 *
482 * Return: see crypto_ahash_final()
483 */
484 int crypto_ahash_digest(struct ahash_request *req);
485
486 /**
487 * crypto_ahash_export() - extract current message digest state
488 * @req: reference to the ahash_request handle whose state is exported
489 * @out: output buffer of sufficient size that can hold the hash state
490 *
491 * This function exports the hash state of the ahash_request handle into the
492 * caller-allocated output buffer out which must have sufficient size (e.g. by
493 * calling crypto_ahash_statesize()).
494 *
495 * Return: 0 if the export was successful; < 0 if an error occurred
496 */
497 int crypto_ahash_export(struct ahash_request *req, void *out);
498
499 /**
500 * crypto_ahash_import() - import message digest state
501 * @req: reference to ahash_request handle the state is imported into
502 * @in: buffer holding the state
503 *
504 * This function imports the hash state into the ahash_request handle from the
505 * input buffer. That buffer should have been generated with the
506 * crypto_ahash_export function.
507 *
508 * Return: 0 if the import was successful; < 0 if an error occurred
509 */
510 int crypto_ahash_import(struct ahash_request *req, const void *in);
511
512 /**
513 * crypto_ahash_init() - (re)initialize message digest handle
514 * @req: ahash_request handle that already is initialized with all necessary
515 * data using the ahash_request_* API functions
516 *
517 * The call (re-)initializes the message digest referenced by the ahash_request
518 * handle. Any potentially existing state created by previous operations is
519 * discarded.
520 *
521 * Return: see crypto_ahash_final()
522 */
523 int crypto_ahash_init(struct ahash_request *req);
524
525 /**
526 * crypto_ahash_update() - add data to message digest for processing
527 * @req: ahash_request handle that was previously initialized with the
528 * crypto_ahash_init call.
529 *
530 * Updates the message digest state of the &ahash_request handle. The input data
531 * is pointed to by the scatter/gather list registered in the &ahash_request
532 * handle
533 *
534 * Return: see crypto_ahash_final()
535 */
536 int crypto_ahash_update(struct ahash_request *req);
537
538 /**
539 * DOC: Asynchronous Hash Request Handle
540 *
541 * The &ahash_request data structure contains all pointers to data
542 * required for the asynchronous cipher operation. This includes the cipher
543 * handle (which can be used by multiple &ahash_request instances), pointer
544 * to plaintext and the message digest output buffer, asynchronous callback
545 * function, etc. It acts as a handle to the ahash_request_* API calls in a
546 * similar way as ahash handle to the crypto_ahash_* API calls.
547 */
548
549 /**
550 * ahash_request_set_tfm() - update cipher handle reference in request
551 * @req: request handle to be modified
552 * @tfm: cipher handle that shall be added to the request handle
553 *
554 * Allow the caller to replace the existing ahash handle in the request
555 * data structure with a different one.
556 */
ahash_request_set_tfm(struct ahash_request * req,struct crypto_ahash * tfm)557 static inline void ahash_request_set_tfm(struct ahash_request *req,
558 struct crypto_ahash *tfm)
559 {
560 req->base.tfm = crypto_ahash_tfm(tfm);
561 }
562
563 /**
564 * ahash_request_alloc() - allocate request data structure
565 * @tfm: cipher handle to be registered with the request
566 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
567 *
568 * Allocate the request data structure that must be used with the ahash
569 * message digest API calls. During
570 * the allocation, the provided ahash handle
571 * is registered in the request data structure.
572 *
573 * Return: allocated request handle in case of success, or NULL if out of memory
574 */
ahash_request_alloc_noprof(struct crypto_ahash * tfm,gfp_t gfp)575 static inline struct ahash_request *ahash_request_alloc_noprof(
576 struct crypto_ahash *tfm, gfp_t gfp)
577 {
578 struct ahash_request *req;
579
580 req = kmalloc_noprof(sizeof(struct ahash_request) +
581 crypto_ahash_reqsize(tfm), gfp);
582
583 if (likely(req))
584 ahash_request_set_tfm(req, tfm);
585
586 return req;
587 }
588 #define ahash_request_alloc(...) alloc_hooks(ahash_request_alloc_noprof(__VA_ARGS__))
589
590 /**
591 * ahash_request_free() - zeroize and free the request data structure
592 * @req: request data structure cipher handle to be freed
593 */
ahash_request_free(struct ahash_request * req)594 static inline void ahash_request_free(struct ahash_request *req)
595 {
596 kfree_sensitive(req);
597 }
598
ahash_request_zero(struct ahash_request * req)599 static inline void ahash_request_zero(struct ahash_request *req)
600 {
601 memzero_explicit(req, sizeof(*req) +
602 crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
603 }
604
ahash_request_cast(struct crypto_async_request * req)605 static inline struct ahash_request *ahash_request_cast(
606 struct crypto_async_request *req)
607 {
608 return container_of(req, struct ahash_request, base);
609 }
610
611 /**
612 * ahash_request_set_callback() - set asynchronous callback function
613 * @req: request handle
614 * @flags: specify zero or an ORing of the flags
615 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
616 * increase the wait queue beyond the initial maximum size;
617 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
618 * @compl: callback function pointer to be registered with the request handle
619 * @data: The data pointer refers to memory that is not used by the kernel
620 * crypto API, but provided to the callback function for it to use. Here,
621 * the caller can provide a reference to memory the callback function can
622 * operate on. As the callback function is invoked asynchronously to the
623 * related functionality, it may need to access data structures of the
624 * related functionality which can be referenced using this pointer. The
625 * callback function can access the memory via the "data" field in the
626 * &crypto_async_request data structure provided to the callback function.
627 *
628 * This function allows setting the callback function that is triggered once
629 * the cipher operation completes.
630 *
631 * The callback function is registered with the &ahash_request handle and
632 * must comply with the following template::
633 *
634 * void callback_function(struct crypto_async_request *req, int error)
635 */
ahash_request_set_callback(struct ahash_request * req,u32 flags,crypto_completion_t compl,void * data)636 static inline void ahash_request_set_callback(struct ahash_request *req,
637 u32 flags,
638 crypto_completion_t compl,
639 void *data)
640 {
641 req->base.complete = compl;
642 req->base.data = data;
643 req->base.flags = flags;
644 }
645
646 /**
647 * ahash_request_set_crypt() - set data buffers
648 * @req: ahash_request handle to be updated
649 * @src: source scatter/gather list
650 * @result: buffer that is filled with the message digest -- the caller must
651 * ensure that the buffer has sufficient space by, for example, calling
652 * crypto_ahash_digestsize()
653 * @nbytes: number of bytes to process from the source scatter/gather list
654 *
655 * By using this call, the caller references the source scatter/gather list.
656 * The source scatter/gather list points to the data the message digest is to
657 * be calculated for.
658 */
ahash_request_set_crypt(struct ahash_request * req,struct scatterlist * src,u8 * result,unsigned int nbytes)659 static inline void ahash_request_set_crypt(struct ahash_request *req,
660 struct scatterlist *src, u8 *result,
661 unsigned int nbytes)
662 {
663 req->src = src;
664 req->nbytes = nbytes;
665 req->result = result;
666 }
667
668 /**
669 * DOC: Synchronous Message Digest API
670 *
671 * The synchronous message digest API is used with the ciphers of type
672 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
673 *
674 * The message digest API is able to maintain state information for the
675 * caller.
676 *
677 * The synchronous message digest API can store user-related context in its
678 * shash_desc request data structure.
679 */
680
681 /**
682 * crypto_alloc_shash() - allocate message digest handle
683 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
684 * message digest cipher
685 * @type: specifies the type of the cipher
686 * @mask: specifies the mask for the cipher
687 *
688 * Allocate a cipher handle for a message digest. The returned &struct
689 * crypto_shash is the cipher handle that is required for any subsequent
690 * API invocation for that message digest.
691 *
692 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
693 * of an error, PTR_ERR() returns the error code.
694 */
695 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
696 u32 mask);
697
698 struct crypto_shash *crypto_clone_shash(struct crypto_shash *tfm);
699
700 int crypto_has_shash(const char *alg_name, u32 type, u32 mask);
701
crypto_shash_tfm(struct crypto_shash * tfm)702 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
703 {
704 return &tfm->base;
705 }
706
707 /**
708 * crypto_free_shash() - zeroize and free the message digest handle
709 * @tfm: cipher handle to be freed
710 *
711 * If @tfm is a NULL or error pointer, this function does nothing.
712 */
crypto_free_shash(struct crypto_shash * tfm)713 static inline void crypto_free_shash(struct crypto_shash *tfm)
714 {
715 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
716 }
717
crypto_shash_alg_name(struct crypto_shash * tfm)718 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
719 {
720 return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
721 }
722
crypto_shash_driver_name(struct crypto_shash * tfm)723 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
724 {
725 return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
726 }
727
728 /**
729 * crypto_shash_blocksize() - obtain block size for cipher
730 * @tfm: cipher handle
731 *
732 * The block size for the message digest cipher referenced with the cipher
733 * handle is returned.
734 *
735 * Return: block size of cipher
736 */
crypto_shash_blocksize(struct crypto_shash * tfm)737 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
738 {
739 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
740 }
741
__crypto_shash_alg(struct crypto_alg * alg)742 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
743 {
744 return container_of(alg, struct shash_alg, base);
745 }
746
crypto_shash_alg(struct crypto_shash * tfm)747 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
748 {
749 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
750 }
751
752 /**
753 * crypto_shash_digestsize() - obtain message digest size
754 * @tfm: cipher handle
755 *
756 * The size for the message digest created by the message digest cipher
757 * referenced with the cipher handle is returned.
758 *
759 * Return: digest size of cipher
760 */
crypto_shash_digestsize(struct crypto_shash * tfm)761 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
762 {
763 return crypto_shash_alg(tfm)->digestsize;
764 }
765
crypto_shash_statesize(struct crypto_shash * tfm)766 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
767 {
768 return crypto_shash_alg(tfm)->statesize;
769 }
770
771 /**
772 * crypto_shash_mb_max_msgs() - get max multibuffer interleaving factor
773 * @tfm: hash transformation object
774 *
775 * Return the maximum supported multibuffer hashing interleaving factor, i.e.
776 * the maximum num_msgs that can be passed to crypto_shash_finup_mb(). The
777 * return value will be between 1 and HASH_MAX_MB_MSGS inclusively.
778 */
crypto_shash_mb_max_msgs(struct crypto_shash * tfm)779 static inline unsigned int crypto_shash_mb_max_msgs(struct crypto_shash *tfm)
780 {
781 return crypto_shash_alg(tfm)->mb_max_msgs;
782 }
783
crypto_shash_get_flags(struct crypto_shash * tfm)784 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
785 {
786 return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
787 }
788
crypto_shash_set_flags(struct crypto_shash * tfm,u32 flags)789 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
790 {
791 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
792 }
793
crypto_shash_clear_flags(struct crypto_shash * tfm,u32 flags)794 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
795 {
796 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
797 }
798
799 /**
800 * crypto_shash_descsize() - obtain the operational state size
801 * @tfm: cipher handle
802 *
803 * The size of the operational state the cipher needs during operation is
804 * returned for the hash referenced with the cipher handle. This size is
805 * required to calculate the memory requirements to allow the caller allocating
806 * sufficient memory for operational state.
807 *
808 * The operational state is defined with struct shash_desc where the size of
809 * that data structure is to be calculated as
810 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
811 *
812 * Return: size of the operational state
813 */
crypto_shash_descsize(struct crypto_shash * tfm)814 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
815 {
816 return tfm->descsize;
817 }
818
shash_desc_ctx(struct shash_desc * desc)819 static inline void *shash_desc_ctx(struct shash_desc *desc)
820 {
821 return desc->__ctx;
822 }
823
824 /**
825 * crypto_shash_setkey() - set key for message digest
826 * @tfm: cipher handle
827 * @key: buffer holding the key
828 * @keylen: length of the key in bytes
829 *
830 * The caller provided key is set for the keyed message digest cipher. The
831 * cipher handle must point to a keyed message digest cipher in order for this
832 * function to succeed.
833 *
834 * Context: Any context.
835 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
836 */
837 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
838 unsigned int keylen);
839
840 /**
841 * crypto_shash_digest() - calculate message digest for buffer
842 * @desc: see crypto_shash_final()
843 * @data: see crypto_shash_update()
844 * @len: see crypto_shash_update()
845 * @out: see crypto_shash_final()
846 *
847 * This function is a "short-hand" for the function calls of crypto_shash_init,
848 * crypto_shash_update and crypto_shash_final. The parameters have the same
849 * meaning as discussed for those separate three functions.
850 *
851 * Context: Any context.
852 * Return: 0 if the message digest creation was successful; < 0 if an error
853 * occurred
854 */
855 int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
856 unsigned int len, u8 *out);
857
858 /**
859 * crypto_shash_tfm_digest() - calculate message digest for buffer
860 * @tfm: hash transformation object
861 * @data: see crypto_shash_update()
862 * @len: see crypto_shash_update()
863 * @out: see crypto_shash_final()
864 *
865 * This is a simplified version of crypto_shash_digest() for users who don't
866 * want to allocate their own hash descriptor (shash_desc). Instead,
867 * crypto_shash_tfm_digest() takes a hash transformation object (crypto_shash)
868 * directly, and it allocates a hash descriptor on the stack internally.
869 * Note that this stack allocation may be fairly large.
870 *
871 * Context: Any context.
872 * Return: 0 on success; < 0 if an error occurred.
873 */
874 int crypto_shash_tfm_digest(struct crypto_shash *tfm, const u8 *data,
875 unsigned int len, u8 *out);
876
877 /**
878 * crypto_shash_export() - extract operational state for message digest
879 * @desc: reference to the operational state handle whose state is exported
880 * @out: output buffer of sufficient size that can hold the hash state
881 *
882 * This function exports the hash state of the operational state handle into the
883 * caller-allocated output buffer out which must have sufficient size (e.g. by
884 * calling crypto_shash_descsize).
885 *
886 * Context: Any context.
887 * Return: 0 if the export creation was successful; < 0 if an error occurred
888 */
889 int crypto_shash_export(struct shash_desc *desc, void *out);
890
891 /**
892 * crypto_shash_import() - import operational state
893 * @desc: reference to the operational state handle the state imported into
894 * @in: buffer holding the state
895 *
896 * This function imports the hash state into the operational state handle from
897 * the input buffer. That buffer should have been generated with the
898 * crypto_ahash_export function.
899 *
900 * Context: Any context.
901 * Return: 0 if the import was successful; < 0 if an error occurred
902 */
903 int crypto_shash_import(struct shash_desc *desc, const void *in);
904
905 /**
906 * crypto_shash_init() - (re)initialize message digest
907 * @desc: operational state handle that is already filled
908 *
909 * The call (re-)initializes the message digest referenced by the
910 * operational state handle. Any potentially existing state created by
911 * previous operations is discarded.
912 *
913 * Context: Any context.
914 * Return: 0 if the message digest initialization was successful; < 0 if an
915 * error occurred
916 */
crypto_shash_init(struct shash_desc * desc)917 static inline int crypto_shash_init(struct shash_desc *desc)
918 {
919 struct crypto_shash *tfm = desc->tfm;
920
921 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
922 return -ENOKEY;
923
924 return crypto_shash_alg(tfm)->init(desc);
925 }
926
927 /**
928 * crypto_shash_update() - add data to message digest for processing
929 * @desc: operational state handle that is already initialized
930 * @data: input data to be added to the message digest
931 * @len: length of the input data
932 *
933 * Updates the message digest state of the operational state handle.
934 *
935 * Context: Any context.
936 * Return: 0 if the message digest update was successful; < 0 if an error
937 * occurred
938 */
939 int crypto_shash_update(struct shash_desc *desc, const u8 *data,
940 unsigned int len);
941
942 /**
943 * crypto_shash_final() - calculate message digest
944 * @desc: operational state handle that is already filled with data
945 * @out: output buffer filled with the message digest
946 *
947 * Finalize the message digest operation and create the message digest
948 * based on all data added to the cipher handle. The message digest is placed
949 * into the output buffer. The caller must ensure that the output buffer is
950 * large enough by using crypto_shash_digestsize.
951 *
952 * Context: Any context.
953 * Return: 0 if the message digest creation was successful; < 0 if an error
954 * occurred
955 */
956 int crypto_shash_final(struct shash_desc *desc, u8 *out);
957
958 /**
959 * crypto_shash_finup() - calculate message digest of buffer
960 * @desc: see crypto_shash_final()
961 * @data: see crypto_shash_update()
962 * @len: see crypto_shash_update()
963 * @out: see crypto_shash_final()
964 *
965 * This function is a "short-hand" for the function calls of
966 * crypto_shash_update and crypto_shash_final. The parameters have the same
967 * meaning as discussed for those separate functions.
968 *
969 * Context: Any context.
970 * Return: 0 if the message digest creation was successful; < 0 if an error
971 * occurred
972 */
973 int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
974 unsigned int len, u8 *out);
975
976 /**
977 * crypto_shash_finup_mb() - multibuffer message hashing
978 * @desc: the starting state that is forked for each message. It contains the
979 * state after hashing a (possibly-empty) common prefix of the messages.
980 * @data: the data of each message (not including any common prefix from @desc)
981 * @len: length of each data buffer in bytes
982 * @outs: output buffer for each message digest
983 * @num_msgs: number of messages, i.e. the number of entries in @data and @outs.
984 * This can't be more than crypto_shash_mb_max_msgs().
985 *
986 * This function provides support for hashing multiple messages with the
987 * instructions interleaved, if supported by the algorithm. This can
988 * significantly improve performance, depending on the CPU and algorithm.
989 *
990 * Context: Any context.
991 * Return: 0 on success; a negative errno value on failure.
992 */
993 int crypto_shash_finup_mb(struct shash_desc *desc, const u8 * const data[],
994 unsigned int len, u8 * const outs[],
995 unsigned int num_msgs);
996
shash_desc_zero(struct shash_desc * desc)997 static inline void shash_desc_zero(struct shash_desc *desc)
998 {
999 memzero_explicit(desc,
1000 sizeof(*desc) + crypto_shash_descsize(desc->tfm));
1001 }
1002
1003 #endif /* _CRYPTO_HASH_H */
1004