• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Deadline Scheduling Class (SCHED_DEADLINE)
4  *
5  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6  *
7  * Tasks that periodically executes their instances for less than their
8  * runtime won't miss any of their deadlines.
9  * Tasks that are not periodic or sporadic or that tries to execute more
10  * than their reserved bandwidth will be slowed down (and may potentially
11  * miss some of their deadlines), and won't affect any other task.
12  *
13  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14  *                    Juri Lelli <juri.lelli@gmail.com>,
15  *                    Michael Trimarchi <michael@amarulasolutions.com>,
16  *                    Fabio Checconi <fchecconi@gmail.com>
17  */
18 
19 #include <linux/cpuset.h>
20 
21 /*
22  * Default limits for DL period; on the top end we guard against small util
23  * tasks still getting ridiculously long effective runtimes, on the bottom end we
24  * guard against timer DoS.
25  */
26 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
27 static unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
28 #ifdef CONFIG_SYSCTL
29 static struct ctl_table sched_dl_sysctls[] = {
30 	{
31 		.procname       = "sched_deadline_period_max_us",
32 		.data           = &sysctl_sched_dl_period_max,
33 		.maxlen         = sizeof(unsigned int),
34 		.mode           = 0644,
35 		.proc_handler   = proc_douintvec_minmax,
36 		.extra1         = (void *)&sysctl_sched_dl_period_min,
37 	},
38 	{
39 		.procname       = "sched_deadline_period_min_us",
40 		.data           = &sysctl_sched_dl_period_min,
41 		.maxlen         = sizeof(unsigned int),
42 		.mode           = 0644,
43 		.proc_handler   = proc_douintvec_minmax,
44 		.extra2         = (void *)&sysctl_sched_dl_period_max,
45 	},
46 };
47 
sched_dl_sysctl_init(void)48 static int __init sched_dl_sysctl_init(void)
49 {
50 	register_sysctl_init("kernel", sched_dl_sysctls);
51 	return 0;
52 }
53 late_initcall(sched_dl_sysctl_init);
54 #endif
55 
dl_server(struct sched_dl_entity * dl_se)56 static bool dl_server(struct sched_dl_entity *dl_se)
57 {
58 	return dl_se->dl_server;
59 }
60 
dl_task_of(struct sched_dl_entity * dl_se)61 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
62 {
63 	BUG_ON(dl_server(dl_se));
64 	return container_of(dl_se, struct task_struct, dl);
65 }
66 
rq_of_dl_rq(struct dl_rq * dl_rq)67 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
68 {
69 	return container_of(dl_rq, struct rq, dl);
70 }
71 
rq_of_dl_se(struct sched_dl_entity * dl_se)72 static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se)
73 {
74 	struct rq *rq = dl_se->rq;
75 
76 	if (!dl_server(dl_se))
77 		rq = task_rq(dl_task_of(dl_se));
78 
79 	return rq;
80 }
81 
dl_rq_of_se(struct sched_dl_entity * dl_se)82 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
83 {
84 	return &rq_of_dl_se(dl_se)->dl;
85 }
86 
on_dl_rq(struct sched_dl_entity * dl_se)87 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
88 {
89 	return !RB_EMPTY_NODE(&dl_se->rb_node);
90 }
91 
92 #ifdef CONFIG_RT_MUTEXES
pi_of(struct sched_dl_entity * dl_se)93 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
94 {
95 	return dl_se->pi_se;
96 }
97 
is_dl_boosted(struct sched_dl_entity * dl_se)98 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
99 {
100 	return pi_of(dl_se) != dl_se;
101 }
102 #else
pi_of(struct sched_dl_entity * dl_se)103 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
104 {
105 	return dl_se;
106 }
107 
is_dl_boosted(struct sched_dl_entity * dl_se)108 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
109 {
110 	return false;
111 }
112 #endif
113 
114 #ifdef CONFIG_SMP
dl_bw_of(int i)115 static inline struct dl_bw *dl_bw_of(int i)
116 {
117 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
118 			 "sched RCU must be held");
119 	return &cpu_rq(i)->rd->dl_bw;
120 }
121 
dl_bw_cpus(int i)122 static inline int dl_bw_cpus(int i)
123 {
124 	struct root_domain *rd = cpu_rq(i)->rd;
125 	int cpus;
126 
127 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
128 			 "sched RCU must be held");
129 
130 	if (cpumask_subset(rd->span, cpu_active_mask))
131 		return cpumask_weight(rd->span);
132 
133 	cpus = 0;
134 
135 	for_each_cpu_and(i, rd->span, cpu_active_mask)
136 		cpus++;
137 
138 	return cpus;
139 }
140 
__dl_bw_capacity(const struct cpumask * mask)141 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
142 {
143 	unsigned long cap = 0;
144 	int i;
145 
146 	for_each_cpu_and(i, mask, cpu_active_mask)
147 		cap += arch_scale_cpu_capacity(i);
148 
149 	return cap;
150 }
151 
152 /*
153  * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
154  * of the CPU the task is running on rather rd's \Sum CPU capacity.
155  */
dl_bw_capacity(int i)156 static inline unsigned long dl_bw_capacity(int i)
157 {
158 	if (!sched_asym_cpucap_active() &&
159 	    arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) {
160 		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
161 	} else {
162 		RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
163 				 "sched RCU must be held");
164 
165 		return __dl_bw_capacity(cpu_rq(i)->rd->span);
166 	}
167 }
168 
dl_bw_visited(int cpu,u64 gen)169 static inline bool dl_bw_visited(int cpu, u64 gen)
170 {
171 	struct root_domain *rd = cpu_rq(cpu)->rd;
172 
173 	if (rd->visit_gen == gen)
174 		return true;
175 
176 	rd->visit_gen = gen;
177 	return false;
178 }
179 
180 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)181 void __dl_update(struct dl_bw *dl_b, s64 bw)
182 {
183 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
184 	int i;
185 
186 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
187 			 "sched RCU must be held");
188 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
189 		struct rq *rq = cpu_rq(i);
190 
191 		rq->dl.extra_bw += bw;
192 	}
193 }
194 #else
dl_bw_of(int i)195 static inline struct dl_bw *dl_bw_of(int i)
196 {
197 	return &cpu_rq(i)->dl.dl_bw;
198 }
199 
dl_bw_cpus(int i)200 static inline int dl_bw_cpus(int i)
201 {
202 	return 1;
203 }
204 
dl_bw_capacity(int i)205 static inline unsigned long dl_bw_capacity(int i)
206 {
207 	return SCHED_CAPACITY_SCALE;
208 }
209 
dl_bw_visited(int cpu,u64 gen)210 static inline bool dl_bw_visited(int cpu, u64 gen)
211 {
212 	return false;
213 }
214 
215 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)216 void __dl_update(struct dl_bw *dl_b, s64 bw)
217 {
218 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
219 
220 	dl->extra_bw += bw;
221 }
222 #endif
223 
224 static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)225 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
226 {
227 	dl_b->total_bw -= tsk_bw;
228 	__dl_update(dl_b, (s32)tsk_bw / cpus);
229 }
230 
231 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)232 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
233 {
234 	dl_b->total_bw += tsk_bw;
235 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
236 }
237 
238 static inline bool
__dl_overflow(struct dl_bw * dl_b,unsigned long cap,u64 old_bw,u64 new_bw)239 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
240 {
241 	return dl_b->bw != -1 &&
242 	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
243 }
244 
245 static inline
__add_running_bw(u64 dl_bw,struct dl_rq * dl_rq)246 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
247 {
248 	u64 old = dl_rq->running_bw;
249 
250 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
251 	dl_rq->running_bw += dl_bw;
252 	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
253 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
254 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
255 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
256 }
257 
258 static inline
__sub_running_bw(u64 dl_bw,struct dl_rq * dl_rq)259 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
260 {
261 	u64 old = dl_rq->running_bw;
262 
263 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
264 	dl_rq->running_bw -= dl_bw;
265 	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
266 	if (dl_rq->running_bw > old)
267 		dl_rq->running_bw = 0;
268 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
269 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
270 }
271 
272 static inline
__add_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)273 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
274 {
275 	u64 old = dl_rq->this_bw;
276 
277 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
278 	dl_rq->this_bw += dl_bw;
279 	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
280 }
281 
282 static inline
__sub_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)283 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
284 {
285 	u64 old = dl_rq->this_bw;
286 
287 	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
288 	dl_rq->this_bw -= dl_bw;
289 	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
290 	if (dl_rq->this_bw > old)
291 		dl_rq->this_bw = 0;
292 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
293 }
294 
295 static inline
add_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)296 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
297 {
298 	if (!dl_entity_is_special(dl_se))
299 		__add_rq_bw(dl_se->dl_bw, dl_rq);
300 }
301 
302 static inline
sub_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)303 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
304 {
305 	if (!dl_entity_is_special(dl_se))
306 		__sub_rq_bw(dl_se->dl_bw, dl_rq);
307 }
308 
309 static inline
add_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)310 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
311 {
312 	if (!dl_entity_is_special(dl_se))
313 		__add_running_bw(dl_se->dl_bw, dl_rq);
314 }
315 
316 static inline
sub_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)317 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
318 {
319 	if (!dl_entity_is_special(dl_se))
320 		__sub_running_bw(dl_se->dl_bw, dl_rq);
321 }
322 
dl_rq_change_utilization(struct rq * rq,struct sched_dl_entity * dl_se,u64 new_bw)323 static void dl_rq_change_utilization(struct rq *rq, struct sched_dl_entity *dl_se, u64 new_bw)
324 {
325 	if (dl_se->dl_non_contending) {
326 		sub_running_bw(dl_se, &rq->dl);
327 		dl_se->dl_non_contending = 0;
328 
329 		/*
330 		 * If the timer handler is currently running and the
331 		 * timer cannot be canceled, inactive_task_timer()
332 		 * will see that dl_not_contending is not set, and
333 		 * will not touch the rq's active utilization,
334 		 * so we are still safe.
335 		 */
336 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
337 			if (!dl_server(dl_se))
338 				put_task_struct(dl_task_of(dl_se));
339 		}
340 	}
341 	__sub_rq_bw(dl_se->dl_bw, &rq->dl);
342 	__add_rq_bw(new_bw, &rq->dl);
343 }
344 
dl_change_utilization(struct task_struct * p,u64 new_bw)345 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
346 {
347 	WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
348 
349 	if (task_on_rq_queued(p))
350 		return;
351 
352 	dl_rq_change_utilization(task_rq(p), &p->dl, new_bw);
353 }
354 
355 static void __dl_clear_params(struct sched_dl_entity *dl_se);
356 
357 /*
358  * The utilization of a task cannot be immediately removed from
359  * the rq active utilization (running_bw) when the task blocks.
360  * Instead, we have to wait for the so called "0-lag time".
361  *
362  * If a task blocks before the "0-lag time", a timer (the inactive
363  * timer) is armed, and running_bw is decreased when the timer
364  * fires.
365  *
366  * If the task wakes up again before the inactive timer fires,
367  * the timer is canceled, whereas if the task wakes up after the
368  * inactive timer fired (and running_bw has been decreased) the
369  * task's utilization has to be added to running_bw again.
370  * A flag in the deadline scheduling entity (dl_non_contending)
371  * is used to avoid race conditions between the inactive timer handler
372  * and task wakeups.
373  *
374  * The following diagram shows how running_bw is updated. A task is
375  * "ACTIVE" when its utilization contributes to running_bw; an
376  * "ACTIVE contending" task is in the TASK_RUNNING state, while an
377  * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
378  * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
379  * time already passed, which does not contribute to running_bw anymore.
380  *                              +------------------+
381  *             wakeup           |    ACTIVE        |
382  *          +------------------>+   contending     |
383  *          | add_running_bw    |                  |
384  *          |                   +----+------+------+
385  *          |                        |      ^
386  *          |                dequeue |      |
387  * +--------+-------+                |      |
388  * |                |   t >= 0-lag   |      | wakeup
389  * |    INACTIVE    |<---------------+      |
390  * |                | sub_running_bw |      |
391  * +--------+-------+                |      |
392  *          ^                        |      |
393  *          |              t < 0-lag |      |
394  *          |                        |      |
395  *          |                        V      |
396  *          |                   +----+------+------+
397  *          | sub_running_bw    |    ACTIVE        |
398  *          +-------------------+                  |
399  *            inactive timer    |  non contending  |
400  *            fired             +------------------+
401  *
402  * The task_non_contending() function is invoked when a task
403  * blocks, and checks if the 0-lag time already passed or
404  * not (in the first case, it directly updates running_bw;
405  * in the second case, it arms the inactive timer).
406  *
407  * The task_contending() function is invoked when a task wakes
408  * up, and checks if the task is still in the "ACTIVE non contending"
409  * state or not (in the second case, it updates running_bw).
410  */
task_non_contending(struct sched_dl_entity * dl_se)411 static void task_non_contending(struct sched_dl_entity *dl_se)
412 {
413 	struct hrtimer *timer = &dl_se->inactive_timer;
414 	struct rq *rq = rq_of_dl_se(dl_se);
415 	struct dl_rq *dl_rq = &rq->dl;
416 	s64 zerolag_time;
417 
418 	/*
419 	 * If this is a non-deadline task that has been boosted,
420 	 * do nothing
421 	 */
422 	if (dl_se->dl_runtime == 0)
423 		return;
424 
425 	if (dl_entity_is_special(dl_se))
426 		return;
427 
428 	WARN_ON(dl_se->dl_non_contending);
429 
430 	zerolag_time = dl_se->deadline -
431 		 div64_long((dl_se->runtime * dl_se->dl_period),
432 			dl_se->dl_runtime);
433 
434 	/*
435 	 * Using relative times instead of the absolute "0-lag time"
436 	 * allows to simplify the code
437 	 */
438 	zerolag_time -= rq_clock(rq);
439 
440 	/*
441 	 * If the "0-lag time" already passed, decrease the active
442 	 * utilization now, instead of starting a timer
443 	 */
444 	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
445 		if (dl_server(dl_se)) {
446 			sub_running_bw(dl_se, dl_rq);
447 		} else {
448 			struct task_struct *p = dl_task_of(dl_se);
449 
450 			if (dl_task(p))
451 				sub_running_bw(dl_se, dl_rq);
452 
453 			if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
454 				struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
455 
456 				if (READ_ONCE(p->__state) == TASK_DEAD)
457 					sub_rq_bw(dl_se, &rq->dl);
458 				raw_spin_lock(&dl_b->lock);
459 				__dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p)));
460 				raw_spin_unlock(&dl_b->lock);
461 				__dl_clear_params(dl_se);
462 			}
463 		}
464 
465 		return;
466 	}
467 
468 	dl_se->dl_non_contending = 1;
469 	if (!dl_server(dl_se))
470 		get_task_struct(dl_task_of(dl_se));
471 
472 	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
473 }
474 
task_contending(struct sched_dl_entity * dl_se,int flags)475 static void task_contending(struct sched_dl_entity *dl_se, int flags)
476 {
477 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
478 
479 	/*
480 	 * If this is a non-deadline task that has been boosted,
481 	 * do nothing
482 	 */
483 	if (dl_se->dl_runtime == 0)
484 		return;
485 
486 	if (flags & ENQUEUE_MIGRATED)
487 		add_rq_bw(dl_se, dl_rq);
488 
489 	if (dl_se->dl_non_contending) {
490 		dl_se->dl_non_contending = 0;
491 		/*
492 		 * If the timer handler is currently running and the
493 		 * timer cannot be canceled, inactive_task_timer()
494 		 * will see that dl_not_contending is not set, and
495 		 * will not touch the rq's active utilization,
496 		 * so we are still safe.
497 		 */
498 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
499 			if (!dl_server(dl_se))
500 				put_task_struct(dl_task_of(dl_se));
501 		}
502 	} else {
503 		/*
504 		 * Since "dl_non_contending" is not set, the
505 		 * task's utilization has already been removed from
506 		 * active utilization (either when the task blocked,
507 		 * when the "inactive timer" fired).
508 		 * So, add it back.
509 		 */
510 		add_running_bw(dl_se, dl_rq);
511 	}
512 }
513 
is_leftmost(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)514 static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
515 {
516 	return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
517 }
518 
519 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
520 
init_dl_bw(struct dl_bw * dl_b)521 void init_dl_bw(struct dl_bw *dl_b)
522 {
523 	raw_spin_lock_init(&dl_b->lock);
524 	if (global_rt_runtime() == RUNTIME_INF)
525 		dl_b->bw = -1;
526 	else
527 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
528 	dl_b->total_bw = 0;
529 }
530 
init_dl_rq(struct dl_rq * dl_rq)531 void init_dl_rq(struct dl_rq *dl_rq)
532 {
533 	dl_rq->root = RB_ROOT_CACHED;
534 
535 #ifdef CONFIG_SMP
536 	/* zero means no -deadline tasks */
537 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
538 
539 	dl_rq->overloaded = 0;
540 	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
541 #else
542 	init_dl_bw(&dl_rq->dl_bw);
543 #endif
544 
545 	dl_rq->running_bw = 0;
546 	dl_rq->this_bw = 0;
547 	init_dl_rq_bw_ratio(dl_rq);
548 }
549 
550 #ifdef CONFIG_SMP
551 
dl_overloaded(struct rq * rq)552 static inline int dl_overloaded(struct rq *rq)
553 {
554 	return atomic_read(&rq->rd->dlo_count);
555 }
556 
dl_set_overload(struct rq * rq)557 static inline void dl_set_overload(struct rq *rq)
558 {
559 	if (!rq->online)
560 		return;
561 
562 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
563 	/*
564 	 * Must be visible before the overload count is
565 	 * set (as in sched_rt.c).
566 	 *
567 	 * Matched by the barrier in pull_dl_task().
568 	 */
569 	smp_wmb();
570 	atomic_inc(&rq->rd->dlo_count);
571 }
572 
dl_clear_overload(struct rq * rq)573 static inline void dl_clear_overload(struct rq *rq)
574 {
575 	if (!rq->online)
576 		return;
577 
578 	atomic_dec(&rq->rd->dlo_count);
579 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
580 }
581 
582 #define __node_2_pdl(node) \
583 	rb_entry((node), struct task_struct, pushable_dl_tasks)
584 
__pushable_less(struct rb_node * a,const struct rb_node * b)585 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
586 {
587 	return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
588 }
589 
has_pushable_dl_tasks(struct rq * rq)590 static inline int has_pushable_dl_tasks(struct rq *rq)
591 {
592 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
593 }
594 
595 /*
596  * The list of pushable -deadline task is not a plist, like in
597  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
598  */
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)599 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
600 {
601 	struct rb_node *leftmost;
602 
603 	WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
604 
605 	leftmost = rb_add_cached(&p->pushable_dl_tasks,
606 				 &rq->dl.pushable_dl_tasks_root,
607 				 __pushable_less);
608 	if (leftmost)
609 		rq->dl.earliest_dl.next = p->dl.deadline;
610 
611 	if (!rq->dl.overloaded) {
612 		dl_set_overload(rq);
613 		rq->dl.overloaded = 1;
614 	}
615 }
616 
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)617 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
618 {
619 	struct dl_rq *dl_rq = &rq->dl;
620 	struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
621 	struct rb_node *leftmost;
622 
623 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
624 		return;
625 
626 	leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
627 	if (leftmost)
628 		dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
629 
630 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
631 
632 	if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) {
633 		dl_clear_overload(rq);
634 		rq->dl.overloaded = 0;
635 	}
636 }
637 
638 static int push_dl_task(struct rq *rq);
639 
need_pull_dl_task(struct rq * rq,struct task_struct * prev)640 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
641 {
642 	return rq->online && dl_task(prev);
643 }
644 
645 static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
646 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
647 
648 static void push_dl_tasks(struct rq *);
649 static void pull_dl_task(struct rq *);
650 
deadline_queue_push_tasks(struct rq * rq)651 static inline void deadline_queue_push_tasks(struct rq *rq)
652 {
653 	if (!has_pushable_dl_tasks(rq))
654 		return;
655 
656 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
657 }
658 
deadline_queue_pull_task(struct rq * rq)659 static inline void deadline_queue_pull_task(struct rq *rq)
660 {
661 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
662 }
663 
664 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
665 
dl_task_offline_migration(struct rq * rq,struct task_struct * p)666 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
667 {
668 	struct rq *later_rq = NULL;
669 	struct dl_bw *dl_b;
670 
671 	later_rq = find_lock_later_rq(p, rq);
672 	if (!later_rq) {
673 		int cpu;
674 
675 		/*
676 		 * If we cannot preempt any rq, fall back to pick any
677 		 * online CPU:
678 		 */
679 		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
680 		if (cpu >= nr_cpu_ids) {
681 			/*
682 			 * Failed to find any suitable CPU.
683 			 * The task will never come back!
684 			 */
685 			WARN_ON_ONCE(dl_bandwidth_enabled());
686 
687 			/*
688 			 * If admission control is disabled we
689 			 * try a little harder to let the task
690 			 * run.
691 			 */
692 			cpu = cpumask_any(cpu_active_mask);
693 		}
694 		later_rq = cpu_rq(cpu);
695 		double_lock_balance(rq, later_rq);
696 	}
697 
698 	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
699 		/*
700 		 * Inactive timer is armed (or callback is running, but
701 		 * waiting for us to release rq locks). In any case, when it
702 		 * will fire (or continue), it will see running_bw of this
703 		 * task migrated to later_rq (and correctly handle it).
704 		 */
705 		sub_running_bw(&p->dl, &rq->dl);
706 		sub_rq_bw(&p->dl, &rq->dl);
707 
708 		add_rq_bw(&p->dl, &later_rq->dl);
709 		add_running_bw(&p->dl, &later_rq->dl);
710 	} else {
711 		sub_rq_bw(&p->dl, &rq->dl);
712 		add_rq_bw(&p->dl, &later_rq->dl);
713 	}
714 
715 	/*
716 	 * And we finally need to fix up root_domain(s) bandwidth accounting,
717 	 * since p is still hanging out in the old (now moved to default) root
718 	 * domain.
719 	 */
720 	dl_b = &rq->rd->dl_bw;
721 	raw_spin_lock(&dl_b->lock);
722 	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
723 	raw_spin_unlock(&dl_b->lock);
724 
725 	dl_b = &later_rq->rd->dl_bw;
726 	raw_spin_lock(&dl_b->lock);
727 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
728 	raw_spin_unlock(&dl_b->lock);
729 
730 	set_task_cpu(p, later_rq->cpu);
731 	double_unlock_balance(later_rq, rq);
732 
733 	return later_rq;
734 }
735 
736 #else
737 
738 static inline
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)739 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
740 {
741 }
742 
743 static inline
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)744 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
745 {
746 }
747 
748 static inline
inc_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)749 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
750 {
751 }
752 
753 static inline
dec_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)754 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
755 {
756 }
757 
deadline_queue_push_tasks(struct rq * rq)758 static inline void deadline_queue_push_tasks(struct rq *rq)
759 {
760 }
761 
deadline_queue_pull_task(struct rq * rq)762 static inline void deadline_queue_pull_task(struct rq *rq)
763 {
764 }
765 #endif /* CONFIG_SMP */
766 
767 static void
768 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags);
769 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
770 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags);
771 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags);
772 
replenish_dl_new_period(struct sched_dl_entity * dl_se,struct rq * rq)773 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
774 					    struct rq *rq)
775 {
776 	/* for non-boosted task, pi_of(dl_se) == dl_se */
777 	dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
778 	dl_se->runtime = pi_of(dl_se)->dl_runtime;
779 
780 	/*
781 	 * If it is a deferred reservation, and the server
782 	 * is not handling an starvation case, defer it.
783 	 */
784 	if (dl_se->dl_defer && !dl_se->dl_defer_running) {
785 		dl_se->dl_throttled = 1;
786 		dl_se->dl_defer_armed = 1;
787 	}
788 }
789 
790 /*
791  * We are being explicitly informed that a new instance is starting,
792  * and this means that:
793  *  - the absolute deadline of the entity has to be placed at
794  *    current time + relative deadline;
795  *  - the runtime of the entity has to be set to the maximum value.
796  *
797  * The capability of specifying such event is useful whenever a -deadline
798  * entity wants to (try to!) synchronize its behaviour with the scheduler's
799  * one, and to (try to!) reconcile itself with its own scheduling
800  * parameters.
801  */
setup_new_dl_entity(struct sched_dl_entity * dl_se)802 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
803 {
804 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
805 	struct rq *rq = rq_of_dl_rq(dl_rq);
806 
807 	WARN_ON(is_dl_boosted(dl_se));
808 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
809 
810 	/*
811 	 * We are racing with the deadline timer. So, do nothing because
812 	 * the deadline timer handler will take care of properly recharging
813 	 * the runtime and postponing the deadline
814 	 */
815 	if (dl_se->dl_throttled)
816 		return;
817 
818 	/*
819 	 * We use the regular wall clock time to set deadlines in the
820 	 * future; in fact, we must consider execution overheads (time
821 	 * spent on hardirq context, etc.).
822 	 */
823 	replenish_dl_new_period(dl_se, rq);
824 }
825 
826 static int start_dl_timer(struct sched_dl_entity *dl_se);
827 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t);
828 
829 /*
830  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
831  * possibility of a entity lasting more than what it declared, and thus
832  * exhausting its runtime.
833  *
834  * Here we are interested in making runtime overrun possible, but we do
835  * not want a entity which is misbehaving to affect the scheduling of all
836  * other entities.
837  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
838  * is used, in order to confine each entity within its own bandwidth.
839  *
840  * This function deals exactly with that, and ensures that when the runtime
841  * of a entity is replenished, its deadline is also postponed. That ensures
842  * the overrunning entity can't interfere with other entity in the system and
843  * can't make them miss their deadlines. Reasons why this kind of overruns
844  * could happen are, typically, a entity voluntarily trying to overcome its
845  * runtime, or it just underestimated it during sched_setattr().
846  */
replenish_dl_entity(struct sched_dl_entity * dl_se)847 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
848 {
849 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
850 	struct rq *rq = rq_of_dl_rq(dl_rq);
851 
852 	WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
853 
854 	/*
855 	 * This could be the case for a !-dl task that is boosted.
856 	 * Just go with full inherited parameters.
857 	 *
858 	 * Or, it could be the case of a deferred reservation that
859 	 * was not able to consume its runtime in background and
860 	 * reached this point with current u > U.
861 	 *
862 	 * In both cases, set a new period.
863 	 */
864 	if (dl_se->dl_deadline == 0 ||
865 	    (dl_se->dl_defer_armed && dl_entity_overflow(dl_se, rq_clock(rq)))) {
866 		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
867 		dl_se->runtime = pi_of(dl_se)->dl_runtime;
868 	}
869 
870 	if (dl_se->dl_yielded && dl_se->runtime > 0)
871 		dl_se->runtime = 0;
872 
873 	/*
874 	 * We keep moving the deadline away until we get some
875 	 * available runtime for the entity. This ensures correct
876 	 * handling of situations where the runtime overrun is
877 	 * arbitrary large.
878 	 */
879 	while (dl_se->runtime <= 0) {
880 		dl_se->deadline += pi_of(dl_se)->dl_period;
881 		dl_se->runtime += pi_of(dl_se)->dl_runtime;
882 	}
883 
884 	/*
885 	 * At this point, the deadline really should be "in
886 	 * the future" with respect to rq->clock. If it's
887 	 * not, we are, for some reason, lagging too much!
888 	 * Anyway, after having warn userspace abut that,
889 	 * we still try to keep the things running by
890 	 * resetting the deadline and the budget of the
891 	 * entity.
892 	 */
893 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
894 		printk_deferred_once("sched: DL replenish lagged too much\n");
895 		replenish_dl_new_period(dl_se, rq);
896 	}
897 
898 	if (dl_se->dl_yielded)
899 		dl_se->dl_yielded = 0;
900 	if (dl_se->dl_throttled)
901 		dl_se->dl_throttled = 0;
902 
903 	/*
904 	 * If this is the replenishment of a deferred reservation,
905 	 * clear the flag and return.
906 	 */
907 	if (dl_se->dl_defer_armed) {
908 		dl_se->dl_defer_armed = 0;
909 		return;
910 	}
911 
912 	/*
913 	 * A this point, if the deferred server is not armed, and the deadline
914 	 * is in the future, if it is not running already, throttle the server
915 	 * and arm the defer timer.
916 	 */
917 	if (dl_se->dl_defer && !dl_se->dl_defer_running &&
918 	    dl_time_before(rq_clock(dl_se->rq), dl_se->deadline - dl_se->runtime)) {
919 		if (!is_dl_boosted(dl_se)) {
920 
921 			/*
922 			 * Set dl_se->dl_defer_armed and dl_throttled variables to
923 			 * inform the start_dl_timer() that this is a deferred
924 			 * activation.
925 			 */
926 			dl_se->dl_defer_armed = 1;
927 			dl_se->dl_throttled = 1;
928 			if (!start_dl_timer(dl_se)) {
929 				/*
930 				 * If for whatever reason (delays), a previous timer was
931 				 * queued but not serviced, cancel it and clean the
932 				 * deferrable server variables intended for start_dl_timer().
933 				 */
934 				hrtimer_try_to_cancel(&dl_se->dl_timer);
935 				dl_se->dl_defer_armed = 0;
936 				dl_se->dl_throttled = 0;
937 			}
938 		}
939 	}
940 }
941 
942 /*
943  * Here we check if --at time t-- an entity (which is probably being
944  * [re]activated or, in general, enqueued) can use its remaining runtime
945  * and its current deadline _without_ exceeding the bandwidth it is
946  * assigned (function returns true if it can't). We are in fact applying
947  * one of the CBS rules: when a task wakes up, if the residual runtime
948  * over residual deadline fits within the allocated bandwidth, then we
949  * can keep the current (absolute) deadline and residual budget without
950  * disrupting the schedulability of the system. Otherwise, we should
951  * refill the runtime and set the deadline a period in the future,
952  * because keeping the current (absolute) deadline of the task would
953  * result in breaking guarantees promised to other tasks (refer to
954  * Documentation/scheduler/sched-deadline.rst for more information).
955  *
956  * This function returns true if:
957  *
958  *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
959  *
960  * IOW we can't recycle current parameters.
961  *
962  * Notice that the bandwidth check is done against the deadline. For
963  * task with deadline equal to period this is the same of using
964  * dl_period instead of dl_deadline in the equation above.
965  */
dl_entity_overflow(struct sched_dl_entity * dl_se,u64 t)966 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
967 {
968 	u64 left, right;
969 
970 	/*
971 	 * left and right are the two sides of the equation above,
972 	 * after a bit of shuffling to use multiplications instead
973 	 * of divisions.
974 	 *
975 	 * Note that none of the time values involved in the two
976 	 * multiplications are absolute: dl_deadline and dl_runtime
977 	 * are the relative deadline and the maximum runtime of each
978 	 * instance, runtime is the runtime left for the last instance
979 	 * and (deadline - t), since t is rq->clock, is the time left
980 	 * to the (absolute) deadline. Even if overflowing the u64 type
981 	 * is very unlikely to occur in both cases, here we scale down
982 	 * as we want to avoid that risk at all. Scaling down by 10
983 	 * means that we reduce granularity to 1us. We are fine with it,
984 	 * since this is only a true/false check and, anyway, thinking
985 	 * of anything below microseconds resolution is actually fiction
986 	 * (but still we want to give the user that illusion >;).
987 	 */
988 	left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
989 	right = ((dl_se->deadline - t) >> DL_SCALE) *
990 		(pi_of(dl_se)->dl_runtime >> DL_SCALE);
991 
992 	return dl_time_before(right, left);
993 }
994 
995 /*
996  * Revised wakeup rule [1]: For self-suspending tasks, rather then
997  * re-initializing task's runtime and deadline, the revised wakeup
998  * rule adjusts the task's runtime to avoid the task to overrun its
999  * density.
1000  *
1001  * Reasoning: a task may overrun the density if:
1002  *    runtime / (deadline - t) > dl_runtime / dl_deadline
1003  *
1004  * Therefore, runtime can be adjusted to:
1005  *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
1006  *
1007  * In such way that runtime will be equal to the maximum density
1008  * the task can use without breaking any rule.
1009  *
1010  * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
1011  * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
1012  */
1013 static void
update_dl_revised_wakeup(struct sched_dl_entity * dl_se,struct rq * rq)1014 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
1015 {
1016 	u64 laxity = dl_se->deadline - rq_clock(rq);
1017 
1018 	/*
1019 	 * If the task has deadline < period, and the deadline is in the past,
1020 	 * it should already be throttled before this check.
1021 	 *
1022 	 * See update_dl_entity() comments for further details.
1023 	 */
1024 	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
1025 
1026 	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
1027 }
1028 
1029 /*
1030  * Regarding the deadline, a task with implicit deadline has a relative
1031  * deadline == relative period. A task with constrained deadline has a
1032  * relative deadline <= relative period.
1033  *
1034  * We support constrained deadline tasks. However, there are some restrictions
1035  * applied only for tasks which do not have an implicit deadline. See
1036  * update_dl_entity() to know more about such restrictions.
1037  *
1038  * The dl_is_implicit() returns true if the task has an implicit deadline.
1039  */
dl_is_implicit(struct sched_dl_entity * dl_se)1040 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
1041 {
1042 	return dl_se->dl_deadline == dl_se->dl_period;
1043 }
1044 
1045 /*
1046  * When a deadline entity is placed in the runqueue, its runtime and deadline
1047  * might need to be updated. This is done by a CBS wake up rule. There are two
1048  * different rules: 1) the original CBS; and 2) the Revisited CBS.
1049  *
1050  * When the task is starting a new period, the Original CBS is used. In this
1051  * case, the runtime is replenished and a new absolute deadline is set.
1052  *
1053  * When a task is queued before the begin of the next period, using the
1054  * remaining runtime and deadline could make the entity to overflow, see
1055  * dl_entity_overflow() to find more about runtime overflow. When such case
1056  * is detected, the runtime and deadline need to be updated.
1057  *
1058  * If the task has an implicit deadline, i.e., deadline == period, the Original
1059  * CBS is applied. The runtime is replenished and a new absolute deadline is
1060  * set, as in the previous cases.
1061  *
1062  * However, the Original CBS does not work properly for tasks with
1063  * deadline < period, which are said to have a constrained deadline. By
1064  * applying the Original CBS, a constrained deadline task would be able to run
1065  * runtime/deadline in a period. With deadline < period, the task would
1066  * overrun the runtime/period allowed bandwidth, breaking the admission test.
1067  *
1068  * In order to prevent this misbehave, the Revisited CBS is used for
1069  * constrained deadline tasks when a runtime overflow is detected. In the
1070  * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1071  * the remaining runtime of the task is reduced to avoid runtime overflow.
1072  * Please refer to the comments update_dl_revised_wakeup() function to find
1073  * more about the Revised CBS rule.
1074  */
update_dl_entity(struct sched_dl_entity * dl_se)1075 static void update_dl_entity(struct sched_dl_entity *dl_se)
1076 {
1077 	struct rq *rq = rq_of_dl_se(dl_se);
1078 
1079 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1080 	    dl_entity_overflow(dl_se, rq_clock(rq))) {
1081 
1082 		if (unlikely(!dl_is_implicit(dl_se) &&
1083 			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1084 			     !is_dl_boosted(dl_se))) {
1085 			update_dl_revised_wakeup(dl_se, rq);
1086 			return;
1087 		}
1088 
1089 		replenish_dl_new_period(dl_se, rq);
1090 	} else if (dl_server(dl_se) && dl_se->dl_defer) {
1091 		/*
1092 		 * The server can still use its previous deadline, so check if
1093 		 * it left the dl_defer_running state.
1094 		 */
1095 		if (!dl_se->dl_defer_running) {
1096 			dl_se->dl_defer_armed = 1;
1097 			dl_se->dl_throttled = 1;
1098 		}
1099 	}
1100 }
1101 
dl_next_period(struct sched_dl_entity * dl_se)1102 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1103 {
1104 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1105 }
1106 
1107 /*
1108  * If the entity depleted all its runtime, and if we want it to sleep
1109  * while waiting for some new execution time to become available, we
1110  * set the bandwidth replenishment timer to the replenishment instant
1111  * and try to activate it.
1112  *
1113  * Notice that it is important for the caller to know if the timer
1114  * actually started or not (i.e., the replenishment instant is in
1115  * the future or in the past).
1116  */
start_dl_timer(struct sched_dl_entity * dl_se)1117 static int start_dl_timer(struct sched_dl_entity *dl_se)
1118 {
1119 	struct hrtimer *timer = &dl_se->dl_timer;
1120 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1121 	struct rq *rq = rq_of_dl_rq(dl_rq);
1122 	ktime_t now, act;
1123 	s64 delta;
1124 
1125 	lockdep_assert_rq_held(rq);
1126 
1127 	/*
1128 	 * We want the timer to fire at the deadline, but considering
1129 	 * that it is actually coming from rq->clock and not from
1130 	 * hrtimer's time base reading.
1131 	 *
1132 	 * The deferred reservation will have its timer set to
1133 	 * (deadline - runtime). At that point, the CBS rule will decide
1134 	 * if the current deadline can be used, or if a replenishment is
1135 	 * required to avoid add too much pressure on the system
1136 	 * (current u > U).
1137 	 */
1138 	if (dl_se->dl_defer_armed) {
1139 		WARN_ON_ONCE(!dl_se->dl_throttled);
1140 		act = ns_to_ktime(dl_se->deadline - dl_se->runtime);
1141 	} else {
1142 		/* act = deadline - rel-deadline + period */
1143 		act = ns_to_ktime(dl_next_period(dl_se));
1144 	}
1145 
1146 	now = hrtimer_cb_get_time(timer);
1147 	delta = ktime_to_ns(now) - rq_clock(rq);
1148 	act = ktime_add_ns(act, delta);
1149 
1150 	/*
1151 	 * If the expiry time already passed, e.g., because the value
1152 	 * chosen as the deadline is too small, don't even try to
1153 	 * start the timer in the past!
1154 	 */
1155 	if (ktime_us_delta(act, now) < 0)
1156 		return 0;
1157 
1158 	/*
1159 	 * !enqueued will guarantee another callback; even if one is already in
1160 	 * progress. This ensures a balanced {get,put}_task_struct().
1161 	 *
1162 	 * The race against __run_timer() clearing the enqueued state is
1163 	 * harmless because we're holding task_rq()->lock, therefore the timer
1164 	 * expiring after we've done the check will wait on its task_rq_lock()
1165 	 * and observe our state.
1166 	 */
1167 	if (!hrtimer_is_queued(timer)) {
1168 		if (!dl_server(dl_se))
1169 			get_task_struct(dl_task_of(dl_se));
1170 		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1171 	}
1172 
1173 	return 1;
1174 }
1175 
__push_dl_task(struct rq * rq,struct rq_flags * rf)1176 static void __push_dl_task(struct rq *rq, struct rq_flags *rf)
1177 {
1178 #ifdef CONFIG_SMP
1179 	/*
1180 	 * Queueing this task back might have overloaded rq, check if we need
1181 	 * to kick someone away.
1182 	 */
1183 	if (has_pushable_dl_tasks(rq)) {
1184 		/*
1185 		 * Nothing relies on rq->lock after this, so its safe to drop
1186 		 * rq->lock.
1187 		 */
1188 		rq_unpin_lock(rq, rf);
1189 		push_dl_task(rq);
1190 		rq_repin_lock(rq, rf);
1191 	}
1192 #endif
1193 }
1194 
1195 /* a defer timer will not be reset if the runtime consumed was < dl_server_min_res */
1196 static const u64 dl_server_min_res = 1 * NSEC_PER_MSEC;
1197 
dl_server_timer(struct hrtimer * timer,struct sched_dl_entity * dl_se)1198 static enum hrtimer_restart dl_server_timer(struct hrtimer *timer, struct sched_dl_entity *dl_se)
1199 {
1200 	struct rq *rq = rq_of_dl_se(dl_se);
1201 	u64 fw;
1202 
1203 	scoped_guard (rq_lock, rq) {
1204 		struct rq_flags *rf = &scope.rf;
1205 
1206 		if (!dl_se->dl_throttled || !dl_se->dl_runtime)
1207 			return HRTIMER_NORESTART;
1208 
1209 		sched_clock_tick();
1210 		update_rq_clock(rq);
1211 
1212 		if (!dl_se->dl_runtime)
1213 			return HRTIMER_NORESTART;
1214 
1215 		if (dl_se->dl_defer_armed) {
1216 			/*
1217 			 * First check if the server could consume runtime in background.
1218 			 * If so, it is possible to push the defer timer for this amount
1219 			 * of time. The dl_server_min_res serves as a limit to avoid
1220 			 * forwarding the timer for a too small amount of time.
1221 			 */
1222 			if (dl_time_before(rq_clock(dl_se->rq),
1223 					   (dl_se->deadline - dl_se->runtime - dl_server_min_res))) {
1224 
1225 				/* reset the defer timer */
1226 				fw = dl_se->deadline - rq_clock(dl_se->rq) - dl_se->runtime;
1227 
1228 				hrtimer_forward_now(timer, ns_to_ktime(fw));
1229 				return HRTIMER_RESTART;
1230 			}
1231 
1232 			dl_se->dl_defer_running = 1;
1233 		}
1234 
1235 		enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1236 
1237 		if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &dl_se->rq->curr->dl))
1238 			resched_curr(rq);
1239 
1240 		__push_dl_task(rq, rf);
1241 	}
1242 
1243 	return HRTIMER_NORESTART;
1244 }
1245 
1246 /*
1247  * This is the bandwidth enforcement timer callback. If here, we know
1248  * a task is not on its dl_rq, since the fact that the timer was running
1249  * means the task is throttled and needs a runtime replenishment.
1250  *
1251  * However, what we actually do depends on the fact the task is active,
1252  * (it is on its rq) or has been removed from there by a call to
1253  * dequeue_task_dl(). In the former case we must issue the runtime
1254  * replenishment and add the task back to the dl_rq; in the latter, we just
1255  * do nothing but clearing dl_throttled, so that runtime and deadline
1256  * updating (and the queueing back to dl_rq) will be done by the
1257  * next call to enqueue_task_dl().
1258  */
dl_task_timer(struct hrtimer * timer)1259 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1260 {
1261 	struct sched_dl_entity *dl_se = container_of(timer,
1262 						     struct sched_dl_entity,
1263 						     dl_timer);
1264 	struct task_struct *p;
1265 	struct rq_flags rf;
1266 	struct rq *rq;
1267 
1268 	if (dl_server(dl_se))
1269 		return dl_server_timer(timer, dl_se);
1270 
1271 	p = dl_task_of(dl_se);
1272 	rq = task_rq_lock(p, &rf);
1273 
1274 	/*
1275 	 * The task might have changed its scheduling policy to something
1276 	 * different than SCHED_DEADLINE (through switched_from_dl()).
1277 	 */
1278 	if (!dl_task(p))
1279 		goto unlock;
1280 
1281 	/*
1282 	 * The task might have been boosted by someone else and might be in the
1283 	 * boosting/deboosting path, its not throttled.
1284 	 */
1285 	if (is_dl_boosted(dl_se))
1286 		goto unlock;
1287 
1288 	/*
1289 	 * Spurious timer due to start_dl_timer() race; or we already received
1290 	 * a replenishment from rt_mutex_setprio().
1291 	 */
1292 	if (!dl_se->dl_throttled)
1293 		goto unlock;
1294 
1295 	sched_clock_tick();
1296 	update_rq_clock(rq);
1297 
1298 	/*
1299 	 * If the throttle happened during sched-out; like:
1300 	 *
1301 	 *   schedule()
1302 	 *     deactivate_task()
1303 	 *       dequeue_task_dl()
1304 	 *         update_curr_dl()
1305 	 *           start_dl_timer()
1306 	 *         __dequeue_task_dl()
1307 	 *     prev->on_rq = 0;
1308 	 *
1309 	 * We can be both throttled and !queued. Replenish the counter
1310 	 * but do not enqueue -- wait for our wakeup to do that.
1311 	 */
1312 	if (!task_on_rq_queued(p)) {
1313 		replenish_dl_entity(dl_se);
1314 		goto unlock;
1315 	}
1316 
1317 #ifdef CONFIG_SMP
1318 	if (unlikely(!rq->online)) {
1319 		/*
1320 		 * If the runqueue is no longer available, migrate the
1321 		 * task elsewhere. This necessarily changes rq.
1322 		 */
1323 		lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1324 		rq = dl_task_offline_migration(rq, p);
1325 		rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1326 		update_rq_clock(rq);
1327 
1328 		/*
1329 		 * Now that the task has been migrated to the new RQ and we
1330 		 * have that locked, proceed as normal and enqueue the task
1331 		 * there.
1332 		 */
1333 	}
1334 #endif
1335 
1336 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1337 	if (dl_task(rq->donor))
1338 		wakeup_preempt_dl(rq, p, 0);
1339 	else
1340 		resched_curr(rq);
1341 
1342 	__push_dl_task(rq, &rf);
1343 
1344 unlock:
1345 	task_rq_unlock(rq, p, &rf);
1346 
1347 	/*
1348 	 * This can free the task_struct, including this hrtimer, do not touch
1349 	 * anything related to that after this.
1350 	 */
1351 	put_task_struct(p);
1352 
1353 	return HRTIMER_NORESTART;
1354 }
1355 
init_dl_task_timer(struct sched_dl_entity * dl_se)1356 static void init_dl_task_timer(struct sched_dl_entity *dl_se)
1357 {
1358 	struct hrtimer *timer = &dl_se->dl_timer;
1359 
1360 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1361 	timer->function = dl_task_timer;
1362 }
1363 
1364 /*
1365  * During the activation, CBS checks if it can reuse the current task's
1366  * runtime and period. If the deadline of the task is in the past, CBS
1367  * cannot use the runtime, and so it replenishes the task. This rule
1368  * works fine for implicit deadline tasks (deadline == period), and the
1369  * CBS was designed for implicit deadline tasks. However, a task with
1370  * constrained deadline (deadline < period) might be awakened after the
1371  * deadline, but before the next period. In this case, replenishing the
1372  * task would allow it to run for runtime / deadline. As in this case
1373  * deadline < period, CBS enables a task to run for more than the
1374  * runtime / period. In a very loaded system, this can cause a domino
1375  * effect, making other tasks miss their deadlines.
1376  *
1377  * To avoid this problem, in the activation of a constrained deadline
1378  * task after the deadline but before the next period, throttle the
1379  * task and set the replenishing timer to the begin of the next period,
1380  * unless it is boosted.
1381  */
dl_check_constrained_dl(struct sched_dl_entity * dl_se)1382 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1383 {
1384 	struct rq *rq = rq_of_dl_se(dl_se);
1385 
1386 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1387 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1388 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se)))
1389 			return;
1390 		dl_se->dl_throttled = 1;
1391 		if (dl_se->runtime > 0)
1392 			dl_se->runtime = 0;
1393 	}
1394 }
1395 
1396 static
dl_runtime_exceeded(struct sched_dl_entity * dl_se)1397 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1398 {
1399 	return (dl_se->runtime <= 0);
1400 }
1401 
1402 /*
1403  * This function implements the GRUB accounting rule. According to the
1404  * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt",
1405  * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt",
1406  * where u is the utilization of the task, Umax is the maximum reclaimable
1407  * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1408  * as the difference between the "total runqueue utilization" and the
1409  * "runqueue active utilization", and Uextra is the (per runqueue) extra
1410  * reclaimable utilization.
1411  * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied
1412  * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
1413  * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw
1414  * is multiplied by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1415  * Since delta is a 64 bit variable, to have an overflow its value should be
1416  * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is
1417  * not an issue here.
1418  */
grub_reclaim(u64 delta,struct rq * rq,struct sched_dl_entity * dl_se)1419 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1420 {
1421 	u64 u_act;
1422 	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1423 
1424 	/*
1425 	 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we
1426 	 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra
1427 	 * can be larger than u_max. So, u_max - u_inact - u_extra would be
1428 	 * negative leading to wrong results.
1429 	 */
1430 	if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw)
1431 		u_act = dl_se->dl_bw;
1432 	else
1433 		u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw;
1434 
1435 	u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT;
1436 	return (delta * u_act) >> BW_SHIFT;
1437 }
1438 
dl_scaled_delta_exec(struct rq * rq,struct sched_dl_entity * dl_se,s64 delta_exec)1439 s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1440 {
1441 	s64 scaled_delta_exec;
1442 
1443 	/*
1444 	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1445 	 * spare reclaimed bandwidth is used to clock down frequency.
1446 	 *
1447 	 * For the others, we still need to scale reservation parameters
1448 	 * according to current frequency and CPU maximum capacity.
1449 	 */
1450 	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1451 		scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se);
1452 	} else {
1453 		int cpu = cpu_of(rq);
1454 		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1455 		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1456 
1457 		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1458 		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1459 	}
1460 
1461 	return scaled_delta_exec;
1462 }
1463 
1464 static inline void
1465 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1466 			int flags);
update_curr_dl_se(struct rq * rq,struct sched_dl_entity * dl_se,s64 delta_exec)1467 static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1468 {
1469 	s64 scaled_delta_exec;
1470 
1471 	if (unlikely(delta_exec <= 0)) {
1472 		if (unlikely(dl_se->dl_yielded))
1473 			goto throttle;
1474 		return;
1475 	}
1476 
1477 	if (dl_server(dl_se) && dl_se->dl_throttled && !dl_se->dl_defer)
1478 		return;
1479 
1480 	if (dl_entity_is_special(dl_se))
1481 		return;
1482 
1483 	scaled_delta_exec = delta_exec;
1484 	if (!dl_server(dl_se))
1485 		scaled_delta_exec = dl_scaled_delta_exec(rq, dl_se, delta_exec);
1486 
1487 	dl_se->runtime -= scaled_delta_exec;
1488 
1489 	/*
1490 	 * The fair server can consume its runtime while throttled (not queued/
1491 	 * running as regular CFS).
1492 	 *
1493 	 * If the server consumes its entire runtime in this state. The server
1494 	 * is not required for the current period. Thus, reset the server by
1495 	 * starting a new period, pushing the activation.
1496 	 */
1497 	if (dl_se->dl_defer && dl_se->dl_throttled && dl_runtime_exceeded(dl_se)) {
1498 		/*
1499 		 * If the server was previously activated - the starving condition
1500 		 * took place, it this point it went away because the fair scheduler
1501 		 * was able to get runtime in background. So return to the initial
1502 		 * state.
1503 		 */
1504 		dl_se->dl_defer_running = 0;
1505 
1506 		hrtimer_try_to_cancel(&dl_se->dl_timer);
1507 
1508 		replenish_dl_new_period(dl_se, dl_se->rq);
1509 
1510 		/*
1511 		 * Not being able to start the timer seems problematic. If it could not
1512 		 * be started for whatever reason, we need to "unthrottle" the DL server
1513 		 * and queue right away. Otherwise nothing might queue it. That's similar
1514 		 * to what enqueue_dl_entity() does on start_dl_timer==0. For now, just warn.
1515 		 */
1516 		WARN_ON_ONCE(!start_dl_timer(dl_se));
1517 
1518 		return;
1519 	}
1520 
1521 throttle:
1522 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1523 		dl_se->dl_throttled = 1;
1524 
1525 		/* If requested, inform the user about runtime overruns. */
1526 		if (dl_runtime_exceeded(dl_se) &&
1527 		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1528 			dl_se->dl_overrun = 1;
1529 
1530 		dequeue_dl_entity(dl_se, 0);
1531 		if (!dl_server(dl_se)) {
1532 			update_stats_dequeue_dl(&rq->dl, dl_se, 0);
1533 			dequeue_pushable_dl_task(rq, dl_task_of(dl_se));
1534 		}
1535 
1536 		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) {
1537 			if (dl_server(dl_se)) {
1538 				replenish_dl_new_period(dl_se, rq);
1539 				start_dl_timer(dl_se);
1540 			} else {
1541 				enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH);
1542 			}
1543 		}
1544 
1545 		if (!is_leftmost(dl_se, &rq->dl))
1546 			resched_curr(rq);
1547 	}
1548 
1549 	/*
1550 	 * The fair server (sole dl_server) does not account for real-time
1551 	 * workload because it is running fair work.
1552 	 */
1553 	if (dl_se == &rq->fair_server)
1554 		return;
1555 
1556 #ifdef CONFIG_RT_GROUP_SCHED
1557 	/*
1558 	 * Because -- for now -- we share the rt bandwidth, we need to
1559 	 * account our runtime there too, otherwise actual rt tasks
1560 	 * would be able to exceed the shared quota.
1561 	 *
1562 	 * Account to the root rt group for now.
1563 	 *
1564 	 * The solution we're working towards is having the RT groups scheduled
1565 	 * using deadline servers -- however there's a few nasties to figure
1566 	 * out before that can happen.
1567 	 */
1568 	if (rt_bandwidth_enabled()) {
1569 		struct rt_rq *rt_rq = &rq->rt;
1570 
1571 		raw_spin_lock(&rt_rq->rt_runtime_lock);
1572 		/*
1573 		 * We'll let actual RT tasks worry about the overflow here, we
1574 		 * have our own CBS to keep us inline; only account when RT
1575 		 * bandwidth is relevant.
1576 		 */
1577 		if (sched_rt_bandwidth_account(rt_rq))
1578 			rt_rq->rt_time += delta_exec;
1579 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1580 	}
1581 #endif
1582 }
1583 
1584 /*
1585  * In the non-defer mode, the idle time is not accounted, as the
1586  * server provides a guarantee.
1587  *
1588  * If the dl_server is in defer mode, the idle time is also considered
1589  * as time available for the fair server, avoiding a penalty for the
1590  * rt scheduler that did not consumed that time.
1591  */
dl_server_update_idle_time(struct rq * rq,struct task_struct * p)1592 void dl_server_update_idle_time(struct rq *rq, struct task_struct *p)
1593 {
1594 	s64 delta_exec;
1595 
1596 	if (!rq->fair_server.dl_defer)
1597 		return;
1598 
1599 	/* no need to discount more */
1600 	if (rq->fair_server.runtime < 0)
1601 		return;
1602 
1603 	delta_exec = rq_clock_task(rq) - p->se.exec_start;
1604 	if (delta_exec < 0)
1605 		return;
1606 
1607 	rq->fair_server.runtime -= delta_exec;
1608 
1609 	if (rq->fair_server.runtime < 0) {
1610 		rq->fair_server.dl_defer_running = 0;
1611 		rq->fair_server.runtime = 0;
1612 	}
1613 
1614 	p->se.exec_start = rq_clock_task(rq);
1615 }
1616 
dl_server_update(struct sched_dl_entity * dl_se,s64 delta_exec)1617 void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec)
1618 {
1619 	/* 0 runtime = fair server disabled */
1620 	if (dl_se->dl_runtime)
1621 		update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
1622 }
1623 
dl_server_start(struct sched_dl_entity * dl_se)1624 void dl_server_start(struct sched_dl_entity *dl_se)
1625 {
1626 	struct rq *rq = dl_se->rq;
1627 
1628 	/*
1629 	 * XXX: the apply do not work fine at the init phase for the
1630 	 * fair server because things are not yet set. We need to improve
1631 	 * this before getting generic.
1632 	 */
1633 	if (!dl_server(dl_se)) {
1634 		u64 runtime =  50 * NSEC_PER_MSEC;
1635 		u64 period = 1000 * NSEC_PER_MSEC;
1636 
1637 		dl_server_apply_params(dl_se, runtime, period, 1);
1638 
1639 		dl_se->dl_server = 1;
1640 		dl_se->dl_defer = 1;
1641 		setup_new_dl_entity(dl_se);
1642 	}
1643 
1644 	if (!dl_se->dl_runtime || dl_se->dl_server_active)
1645 		return;
1646 
1647 	dl_se->dl_server_active = 1;
1648 	enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP);
1649 	if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &rq->curr->dl))
1650 		resched_curr(dl_se->rq);
1651 }
1652 
dl_server_stop(struct sched_dl_entity * dl_se)1653 void dl_server_stop(struct sched_dl_entity *dl_se)
1654 {
1655 	if (!dl_se->dl_runtime)
1656 		return;
1657 
1658 	dequeue_dl_entity(dl_se, DEQUEUE_SLEEP);
1659 	hrtimer_try_to_cancel(&dl_se->dl_timer);
1660 	dl_se->dl_defer_armed = 0;
1661 	dl_se->dl_throttled = 0;
1662 	dl_se->dl_server_active = 0;
1663 }
1664 
dl_server_init(struct sched_dl_entity * dl_se,struct rq * rq,dl_server_pick_f pick_task)1665 void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
1666 		    dl_server_pick_f pick_task)
1667 {
1668 	dl_se->rq = rq;
1669 	dl_se->server_pick_task = pick_task;
1670 }
1671 
__dl_server_attach_root(struct sched_dl_entity * dl_se,struct rq * rq)1672 void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq)
1673 {
1674 	u64 new_bw = dl_se->dl_bw;
1675 	int cpu = cpu_of(rq);
1676 	struct dl_bw *dl_b;
1677 
1678 	dl_b = dl_bw_of(cpu_of(rq));
1679 	guard(raw_spinlock)(&dl_b->lock);
1680 
1681 	if (!dl_bw_cpus(cpu))
1682 		return;
1683 
1684 	__dl_add(dl_b, new_bw, dl_bw_cpus(cpu));
1685 }
1686 
dl_server_apply_params(struct sched_dl_entity * dl_se,u64 runtime,u64 period,bool init)1687 int dl_server_apply_params(struct sched_dl_entity *dl_se, u64 runtime, u64 period, bool init)
1688 {
1689 	u64 old_bw = init ? 0 : to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1690 	u64 new_bw = to_ratio(period, runtime);
1691 	struct rq *rq = dl_se->rq;
1692 	int cpu = cpu_of(rq);
1693 	struct dl_bw *dl_b;
1694 	unsigned long cap;
1695 	int retval = 0;
1696 	int cpus;
1697 
1698 	dl_b = dl_bw_of(cpu);
1699 	guard(raw_spinlock)(&dl_b->lock);
1700 
1701 	cpus = dl_bw_cpus(cpu);
1702 	cap = dl_bw_capacity(cpu);
1703 
1704 	if (__dl_overflow(dl_b, cap, old_bw, new_bw))
1705 		return -EBUSY;
1706 
1707 	if (init) {
1708 		__add_rq_bw(new_bw, &rq->dl);
1709 		__dl_add(dl_b, new_bw, cpus);
1710 	} else {
1711 		__dl_sub(dl_b, dl_se->dl_bw, cpus);
1712 		__dl_add(dl_b, new_bw, cpus);
1713 
1714 		dl_rq_change_utilization(rq, dl_se, new_bw);
1715 	}
1716 
1717 	dl_se->dl_runtime = runtime;
1718 	dl_se->dl_deadline = period;
1719 	dl_se->dl_period = period;
1720 
1721 	dl_se->runtime = 0;
1722 	dl_se->deadline = 0;
1723 
1724 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1725 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
1726 
1727 	return retval;
1728 }
1729 
1730 /*
1731  * Update the current task's runtime statistics (provided it is still
1732  * a -deadline task and has not been removed from the dl_rq).
1733  */
update_curr_dl(struct rq * rq)1734 static void update_curr_dl(struct rq *rq)
1735 {
1736 	struct task_struct *donor = rq->donor;
1737 	struct sched_dl_entity *dl_se = &donor->dl;
1738 	s64 delta_exec;
1739 
1740 	if (!dl_task(donor) || !on_dl_rq(dl_se))
1741 		return;
1742 
1743 	/*
1744 	 * Consumed budget is computed considering the time as
1745 	 * observed by schedulable tasks (excluding time spent
1746 	 * in hardirq context, etc.). Deadlines are instead
1747 	 * computed using hard walltime. This seems to be the more
1748 	 * natural solution, but the full ramifications of this
1749 	 * approach need further study.
1750 	 */
1751 	delta_exec = update_curr_common(rq);
1752 	update_curr_dl_se(rq, dl_se, delta_exec);
1753 }
1754 
inactive_task_timer(struct hrtimer * timer)1755 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1756 {
1757 	struct sched_dl_entity *dl_se = container_of(timer,
1758 						     struct sched_dl_entity,
1759 						     inactive_timer);
1760 	struct task_struct *p = NULL;
1761 	struct rq_flags rf;
1762 	struct rq *rq;
1763 
1764 	if (!dl_server(dl_se)) {
1765 		p = dl_task_of(dl_se);
1766 		rq = task_rq_lock(p, &rf);
1767 	} else {
1768 		rq = dl_se->rq;
1769 		rq_lock(rq, &rf);
1770 	}
1771 
1772 	sched_clock_tick();
1773 	update_rq_clock(rq);
1774 
1775 	if (dl_server(dl_se))
1776 		goto no_task;
1777 
1778 	if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1779 		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1780 
1781 		if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1782 			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1783 			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1784 			dl_se->dl_non_contending = 0;
1785 		}
1786 
1787 		raw_spin_lock(&dl_b->lock);
1788 		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1789 		raw_spin_unlock(&dl_b->lock);
1790 		__dl_clear_params(dl_se);
1791 
1792 		goto unlock;
1793 	}
1794 
1795 no_task:
1796 	if (dl_se->dl_non_contending == 0)
1797 		goto unlock;
1798 
1799 	sub_running_bw(dl_se, &rq->dl);
1800 	dl_se->dl_non_contending = 0;
1801 unlock:
1802 
1803 	if (!dl_server(dl_se)) {
1804 		task_rq_unlock(rq, p, &rf);
1805 		put_task_struct(p);
1806 	} else {
1807 		rq_unlock(rq, &rf);
1808 	}
1809 
1810 	return HRTIMER_NORESTART;
1811 }
1812 
init_dl_inactive_task_timer(struct sched_dl_entity * dl_se)1813 static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1814 {
1815 	struct hrtimer *timer = &dl_se->inactive_timer;
1816 
1817 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1818 	timer->function = inactive_task_timer;
1819 }
1820 
1821 #define __node_2_dle(node) \
1822 	rb_entry((node), struct sched_dl_entity, rb_node)
1823 
1824 #ifdef CONFIG_SMP
1825 
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1826 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1827 {
1828 	struct rq *rq = rq_of_dl_rq(dl_rq);
1829 
1830 	if (dl_rq->earliest_dl.curr == 0 ||
1831 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1832 		if (dl_rq->earliest_dl.curr == 0)
1833 			cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1834 		dl_rq->earliest_dl.curr = deadline;
1835 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1836 	}
1837 }
1838 
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1839 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1840 {
1841 	struct rq *rq = rq_of_dl_rq(dl_rq);
1842 
1843 	/*
1844 	 * Since we may have removed our earliest (and/or next earliest)
1845 	 * task we must recompute them.
1846 	 */
1847 	if (!dl_rq->dl_nr_running) {
1848 		dl_rq->earliest_dl.curr = 0;
1849 		dl_rq->earliest_dl.next = 0;
1850 		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1851 		cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1852 	} else {
1853 		struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1854 		struct sched_dl_entity *entry = __node_2_dle(leftmost);
1855 
1856 		dl_rq->earliest_dl.curr = entry->deadline;
1857 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1858 	}
1859 }
1860 
1861 #else
1862 
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1863 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1864 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1865 
1866 #endif /* CONFIG_SMP */
1867 
1868 static inline
inc_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1869 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1870 {
1871 	u64 deadline = dl_se->deadline;
1872 
1873 	dl_rq->dl_nr_running++;
1874 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1875 
1876 	inc_dl_deadline(dl_rq, deadline);
1877 }
1878 
1879 static inline
dec_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1880 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1881 {
1882 	WARN_ON(!dl_rq->dl_nr_running);
1883 	dl_rq->dl_nr_running--;
1884 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1885 
1886 	dec_dl_deadline(dl_rq, dl_se->deadline);
1887 }
1888 
__dl_less(struct rb_node * a,const struct rb_node * b)1889 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1890 {
1891 	return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1892 }
1893 
1894 static __always_inline struct sched_statistics *
__schedstats_from_dl_se(struct sched_dl_entity * dl_se)1895 __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1896 {
1897 	if (!schedstat_enabled())
1898 		return NULL;
1899 
1900 	if (dl_server(dl_se))
1901 		return NULL;
1902 
1903 	return &dl_task_of(dl_se)->stats;
1904 }
1905 
1906 static inline void
update_stats_wait_start_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1907 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1908 {
1909 	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1910 	if (stats)
1911 		__update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1912 }
1913 
1914 static inline void
update_stats_wait_end_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1915 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1916 {
1917 	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1918 	if (stats)
1919 		__update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1920 }
1921 
1922 static inline void
update_stats_enqueue_sleeper_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1923 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1924 {
1925 	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1926 	if (stats)
1927 		__update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1928 }
1929 
1930 static inline void
update_stats_enqueue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)1931 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1932 			int flags)
1933 {
1934 	if (!schedstat_enabled())
1935 		return;
1936 
1937 	if (flags & ENQUEUE_WAKEUP)
1938 		update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1939 }
1940 
1941 static inline void
update_stats_dequeue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)1942 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1943 			int flags)
1944 {
1945 	struct task_struct *p = dl_task_of(dl_se);
1946 
1947 	if (!schedstat_enabled())
1948 		return;
1949 
1950 	if ((flags & DEQUEUE_SLEEP)) {
1951 		unsigned int state;
1952 
1953 		state = READ_ONCE(p->__state);
1954 		if (state & TASK_INTERRUPTIBLE)
1955 			__schedstat_set(p->stats.sleep_start,
1956 					rq_clock(rq_of_dl_rq(dl_rq)));
1957 
1958 		if (state & TASK_UNINTERRUPTIBLE)
1959 			__schedstat_set(p->stats.block_start,
1960 					rq_clock(rq_of_dl_rq(dl_rq)));
1961 	}
1962 }
1963 
__enqueue_dl_entity(struct sched_dl_entity * dl_se)1964 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1965 {
1966 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1967 
1968 	WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
1969 
1970 	rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1971 
1972 	inc_dl_tasks(dl_se, dl_rq);
1973 }
1974 
__dequeue_dl_entity(struct sched_dl_entity * dl_se)1975 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1976 {
1977 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1978 
1979 	if (RB_EMPTY_NODE(&dl_se->rb_node))
1980 		return;
1981 
1982 	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1983 
1984 	RB_CLEAR_NODE(&dl_se->rb_node);
1985 
1986 	dec_dl_tasks(dl_se, dl_rq);
1987 }
1988 
1989 static void
enqueue_dl_entity(struct sched_dl_entity * dl_se,int flags)1990 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1991 {
1992 	WARN_ON_ONCE(on_dl_rq(dl_se));
1993 
1994 	update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
1995 
1996 	/*
1997 	 * Check if a constrained deadline task was activated
1998 	 * after the deadline but before the next period.
1999 	 * If that is the case, the task will be throttled and
2000 	 * the replenishment timer will be set to the next period.
2001 	 */
2002 	if (!dl_se->dl_throttled && !dl_is_implicit(dl_se))
2003 		dl_check_constrained_dl(dl_se);
2004 
2005 	if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) {
2006 		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2007 
2008 		add_rq_bw(dl_se, dl_rq);
2009 		add_running_bw(dl_se, dl_rq);
2010 	}
2011 
2012 	/*
2013 	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
2014 	 * its budget it needs a replenishment and, since it now is on
2015 	 * its rq, the bandwidth timer callback (which clearly has not
2016 	 * run yet) will take care of this.
2017 	 * However, the active utilization does not depend on the fact
2018 	 * that the task is on the runqueue or not (but depends on the
2019 	 * task's state - in GRUB parlance, "inactive" vs "active contending").
2020 	 * In other words, even if a task is throttled its utilization must
2021 	 * be counted in the active utilization; hence, we need to call
2022 	 * add_running_bw().
2023 	 */
2024 	if (!dl_se->dl_defer && dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
2025 		if (flags & ENQUEUE_WAKEUP)
2026 			task_contending(dl_se, flags);
2027 
2028 		return;
2029 	}
2030 
2031 	/*
2032 	 * If this is a wakeup or a new instance, the scheduling
2033 	 * parameters of the task might need updating. Otherwise,
2034 	 * we want a replenishment of its runtime.
2035 	 */
2036 	if (flags & ENQUEUE_WAKEUP) {
2037 		task_contending(dl_se, flags);
2038 		update_dl_entity(dl_se);
2039 	} else if (flags & ENQUEUE_REPLENISH) {
2040 		replenish_dl_entity(dl_se);
2041 	} else if ((flags & ENQUEUE_RESTORE) &&
2042 		   !is_dl_boosted(dl_se) &&
2043 		   dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) {
2044 		setup_new_dl_entity(dl_se);
2045 	}
2046 
2047 	/*
2048 	 * If the reservation is still throttled, e.g., it got replenished but is a
2049 	 * deferred task and still got to wait, don't enqueue.
2050 	 */
2051 	if (dl_se->dl_throttled && start_dl_timer(dl_se))
2052 		return;
2053 
2054 	/*
2055 	 * We're about to enqueue, make sure we're not ->dl_throttled!
2056 	 * In case the timer was not started, say because the defer time
2057 	 * has passed, mark as not throttled and mark unarmed.
2058 	 * Also cancel earlier timers, since letting those run is pointless.
2059 	 */
2060 	if (dl_se->dl_throttled) {
2061 		hrtimer_try_to_cancel(&dl_se->dl_timer);
2062 		dl_se->dl_defer_armed = 0;
2063 		dl_se->dl_throttled = 0;
2064 	}
2065 
2066 	__enqueue_dl_entity(dl_se);
2067 }
2068 
dequeue_dl_entity(struct sched_dl_entity * dl_se,int flags)2069 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags)
2070 {
2071 	__dequeue_dl_entity(dl_se);
2072 
2073 	if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) {
2074 		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2075 
2076 		sub_running_bw(dl_se, dl_rq);
2077 		sub_rq_bw(dl_se, dl_rq);
2078 	}
2079 
2080 	/*
2081 	 * This check allows to start the inactive timer (or to immediately
2082 	 * decrease the active utilization, if needed) in two cases:
2083 	 * when the task blocks and when it is terminating
2084 	 * (p->state == TASK_DEAD). We can handle the two cases in the same
2085 	 * way, because from GRUB's point of view the same thing is happening
2086 	 * (the task moves from "active contending" to "active non contending"
2087 	 * or "inactive")
2088 	 */
2089 	if (flags & DEQUEUE_SLEEP)
2090 		task_non_contending(dl_se);
2091 }
2092 
enqueue_task_dl(struct rq * rq,struct task_struct * p,int flags)2093 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2094 {
2095 	if (is_dl_boosted(&p->dl)) {
2096 		/*
2097 		 * Because of delays in the detection of the overrun of a
2098 		 * thread's runtime, it might be the case that a thread
2099 		 * goes to sleep in a rt mutex with negative runtime. As
2100 		 * a consequence, the thread will be throttled.
2101 		 *
2102 		 * While waiting for the mutex, this thread can also be
2103 		 * boosted via PI, resulting in a thread that is throttled
2104 		 * and boosted at the same time.
2105 		 *
2106 		 * In this case, the boost overrides the throttle.
2107 		 */
2108 		if (p->dl.dl_throttled) {
2109 			/*
2110 			 * The replenish timer needs to be canceled. No
2111 			 * problem if it fires concurrently: boosted threads
2112 			 * are ignored in dl_task_timer().
2113 			 *
2114 			 * If the timer callback was running (hrtimer_try_to_cancel == -1),
2115 			 * it will eventually call put_task_struct().
2116 			 */
2117 			if (hrtimer_try_to_cancel(&p->dl.dl_timer) == 1 &&
2118 			    !dl_server(&p->dl))
2119 				put_task_struct(p);
2120 			p->dl.dl_throttled = 0;
2121 		}
2122 	} else if (!dl_prio(p->normal_prio)) {
2123 		/*
2124 		 * Special case in which we have a !SCHED_DEADLINE task that is going
2125 		 * to be deboosted, but exceeds its runtime while doing so. No point in
2126 		 * replenishing it, as it's going to return back to its original
2127 		 * scheduling class after this. If it has been throttled, we need to
2128 		 * clear the flag, otherwise the task may wake up as throttled after
2129 		 * being boosted again with no means to replenish the runtime and clear
2130 		 * the throttle.
2131 		 */
2132 		p->dl.dl_throttled = 0;
2133 		if (!(flags & ENQUEUE_REPLENISH))
2134 			printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
2135 					     task_pid_nr(p));
2136 
2137 		return;
2138 	}
2139 
2140 	check_schedstat_required();
2141 	update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
2142 
2143 	if (p->on_rq == TASK_ON_RQ_MIGRATING)
2144 		flags |= ENQUEUE_MIGRATING;
2145 
2146 	enqueue_dl_entity(&p->dl, flags);
2147 
2148 	if (dl_server(&p->dl))
2149 		return;
2150 
2151 	if (task_is_blocked(p))
2152 		return;
2153 
2154 	if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1)
2155 		enqueue_pushable_dl_task(rq, p);
2156 }
2157 
dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)2158 static bool dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2159 {
2160 	update_curr_dl(rq);
2161 
2162 	if (p->on_rq == TASK_ON_RQ_MIGRATING)
2163 		flags |= DEQUEUE_MIGRATING;
2164 
2165 	dequeue_dl_entity(&p->dl, flags);
2166 	if (!p->dl.dl_throttled && !dl_server(&p->dl))
2167 		dequeue_pushable_dl_task(rq, p);
2168 
2169 	return true;
2170 }
2171 
2172 /*
2173  * Yield task semantic for -deadline tasks is:
2174  *
2175  *   get off from the CPU until our next instance, with
2176  *   a new runtime. This is of little use now, since we
2177  *   don't have a bandwidth reclaiming mechanism. Anyway,
2178  *   bandwidth reclaiming is planned for the future, and
2179  *   yield_task_dl will indicate that some spare budget
2180  *   is available for other task instances to use it.
2181  */
yield_task_dl(struct rq * rq)2182 static void yield_task_dl(struct rq *rq)
2183 {
2184 	/*
2185 	 * We make the task go to sleep until its current deadline by
2186 	 * forcing its runtime to zero. This way, update_curr_dl() stops
2187 	 * it and the bandwidth timer will wake it up and will give it
2188 	 * new scheduling parameters (thanks to dl_yielded=1).
2189 	 */
2190 	rq->curr->dl.dl_yielded = 1;
2191 
2192 	update_rq_clock(rq);
2193 	update_curr_dl(rq);
2194 	/*
2195 	 * Tell update_rq_clock() that we've just updated,
2196 	 * so we don't do microscopic update in schedule()
2197 	 * and double the fastpath cost.
2198 	 */
2199 	rq_clock_skip_update(rq);
2200 }
2201 
2202 #ifdef CONFIG_SMP
2203 
dl_task_is_earliest_deadline(struct task_struct * p,struct rq * rq)2204 static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
2205 						 struct rq *rq)
2206 {
2207 	return (!rq->dl.dl_nr_running ||
2208 		dl_time_before(p->dl.deadline,
2209 			       rq->dl.earliest_dl.curr));
2210 }
2211 
2212 static int find_later_rq(struct task_struct *sched_ctx, struct task_struct *exec_ctx);
2213 
2214 static int
select_task_rq_dl(struct task_struct * p,int cpu,int flags)2215 select_task_rq_dl(struct task_struct *p, int cpu, int flags)
2216 {
2217 	struct task_struct *curr, *donor;
2218 	bool select_rq;
2219 	struct rq *rq;
2220 	int target_cpu = -1;
2221 
2222 	trace_android_rvh_select_task_rq_dl(p, cpu, flags & 0xF,
2223 			flags, &target_cpu);
2224 	if (target_cpu >= 0)
2225 		return target_cpu;
2226 
2227 	if (!(flags & WF_TTWU))
2228 		goto out;
2229 
2230 	rq = cpu_rq(cpu);
2231 
2232 	rcu_read_lock();
2233 	curr = READ_ONCE(rq->curr); /* unlocked access */
2234 	donor = READ_ONCE(rq->donor);
2235 
2236 	/*
2237 	 * If we are dealing with a -deadline task, we must
2238 	 * decide where to wake it up.
2239 	 * If it has a later deadline and the current task
2240 	 * on this rq can't move (provided the waking task
2241 	 * can!) we prefer to send it somewhere else. On the
2242 	 * other hand, if it has a shorter deadline, we
2243 	 * try to make it stay here, it might be important.
2244 	 */
2245 	select_rq = unlikely(dl_task(donor)) &&
2246 		    (curr->nr_cpus_allowed < 2 ||
2247 		     !dl_entity_preempt(&p->dl, &donor->dl)) &&
2248 		    p->nr_cpus_allowed > 1;
2249 
2250 	/*
2251 	 * Take the capacity of the CPU into account to
2252 	 * ensure it fits the requirement of the task.
2253 	 */
2254 	if (sched_asym_cpucap_active())
2255 		select_rq |= !dl_task_fits_capacity(p, cpu);
2256 
2257 	if (select_rq) {
2258 		int target = find_later_rq(p, p);
2259 
2260 		if (target != -1 &&
2261 		    dl_task_is_earliest_deadline(p, cpu_rq(target)))
2262 			cpu = target;
2263 	}
2264 	rcu_read_unlock();
2265 
2266 out:
2267 	return cpu;
2268 }
2269 
migrate_task_rq_dl(struct task_struct * p,int new_cpu __maybe_unused)2270 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
2271 {
2272 	struct rq_flags rf;
2273 	struct rq *rq;
2274 
2275 	if (READ_ONCE(p->__state) != TASK_WAKING)
2276 		return;
2277 
2278 	rq = task_rq(p);
2279 	/*
2280 	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
2281 	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
2282 	 * rq->lock is not... So, lock it
2283 	 */
2284 	rq_lock(rq, &rf);
2285 	if (p->dl.dl_non_contending) {
2286 		update_rq_clock(rq);
2287 		sub_running_bw(&p->dl, &rq->dl);
2288 		p->dl.dl_non_contending = 0;
2289 		/*
2290 		 * If the timer handler is currently running and the
2291 		 * timer cannot be canceled, inactive_task_timer()
2292 		 * will see that dl_not_contending is not set, and
2293 		 * will not touch the rq's active utilization,
2294 		 * so we are still safe.
2295 		 */
2296 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2297 			put_task_struct(p);
2298 	}
2299 	sub_rq_bw(&p->dl, &rq->dl);
2300 	rq_unlock(rq, &rf);
2301 }
2302 
check_preempt_equal_dl(struct rq * rq,struct task_struct * p)2303 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
2304 {
2305 	struct task_struct *exec_ctx;
2306 
2307 	/*
2308 	 * Current can't be migrated, useless to reschedule,
2309 	 * let's hope p can move out.
2310 	 */
2311 	if (rq->curr->nr_cpus_allowed == 1 ||
2312 	    !cpudl_find(&rq->rd->cpudl, rq->donor, rq->curr, NULL))
2313 		return;
2314 
2315 	exec_ctx = find_exec_ctx(rq, p);
2316 	if (task_current(rq, exec_ctx))
2317 		return;
2318 
2319 	/*
2320 	 * p is migratable, so let's not schedule it and
2321 	 * see if it is pushed or pulled somewhere else.
2322 	 */
2323 	if (p->nr_cpus_allowed != 1 &&
2324 	    cpudl_find(&rq->rd->cpudl, p, exec_ctx, NULL))
2325 		return;
2326 
2327 	resched_curr(rq);
2328 }
2329 
balance_dl(struct rq * rq,struct task_struct * p,struct rq_flags * rf)2330 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
2331 {
2332 	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
2333 		/*
2334 		 * This is OK, because current is on_cpu, which avoids it being
2335 		 * picked for load-balance and preemption/IRQs are still
2336 		 * disabled avoiding further scheduler activity on it and we've
2337 		 * not yet started the picking loop.
2338 		 */
2339 		rq_unpin_lock(rq, rf);
2340 		pull_dl_task(rq);
2341 		rq_repin_lock(rq, rf);
2342 	}
2343 
2344 	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
2345 }
2346 #endif /* CONFIG_SMP */
2347 
2348 /*
2349  * Only called when both the current and waking task are -deadline
2350  * tasks.
2351  */
wakeup_preempt_dl(struct rq * rq,struct task_struct * p,int flags)2352 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
2353 				  int flags)
2354 {
2355 	if (dl_entity_preempt(&p->dl, &rq->donor->dl)) {
2356 		resched_curr(rq);
2357 		return;
2358 	}
2359 
2360 #ifdef CONFIG_SMP
2361 	/*
2362 	 * In the unlikely case current and p have the same deadline
2363 	 * let us try to decide what's the best thing to do...
2364 	 */
2365 	if ((p->dl.deadline == rq->donor->dl.deadline) &&
2366 	    !test_tsk_need_resched(rq->curr))
2367 		check_preempt_equal_dl(rq, p);
2368 #endif /* CONFIG_SMP */
2369 }
2370 
2371 #ifdef CONFIG_SCHED_HRTICK
start_hrtick_dl(struct rq * rq,struct sched_dl_entity * dl_se)2372 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2373 {
2374 	hrtick_start(rq, dl_se->runtime);
2375 }
2376 #else /* !CONFIG_SCHED_HRTICK */
start_hrtick_dl(struct rq * rq,struct sched_dl_entity * dl_se)2377 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2378 {
2379 }
2380 #endif
2381 
set_next_task_dl(struct rq * rq,struct task_struct * p,bool first)2382 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
2383 {
2384 	struct sched_dl_entity *dl_se = &p->dl;
2385 	struct dl_rq *dl_rq = &rq->dl;
2386 
2387 	p->se.exec_start = rq_clock_task(rq);
2388 	if (on_dl_rq(&p->dl))
2389 		update_stats_wait_end_dl(dl_rq, dl_se);
2390 
2391 	/* You can't push away the running task */
2392 	dequeue_pushable_dl_task(rq, p);
2393 
2394 	if (!first)
2395 		return;
2396 
2397 	if (rq->donor->sched_class != &dl_sched_class)
2398 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2399 
2400 	deadline_queue_push_tasks(rq);
2401 
2402 	if (hrtick_enabled_dl(rq))
2403 		start_hrtick_dl(rq, &p->dl);
2404 }
2405 
pick_next_dl_entity(struct dl_rq * dl_rq)2406 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
2407 {
2408 	struct rb_node *left = rb_first_cached(&dl_rq->root);
2409 
2410 	if (!left)
2411 		return NULL;
2412 
2413 	return __node_2_dle(left);
2414 }
2415 
2416 /*
2417  * __pick_next_task_dl - Helper to pick the next -deadline task to run.
2418  * @rq: The runqueue to pick the next task from.
2419  */
__pick_task_dl(struct rq * rq)2420 static struct task_struct *__pick_task_dl(struct rq *rq)
2421 {
2422 	struct sched_dl_entity *dl_se;
2423 	struct dl_rq *dl_rq = &rq->dl;
2424 	struct task_struct *p;
2425 
2426 again:
2427 	if (!sched_dl_runnable(rq))
2428 		return NULL;
2429 
2430 	dl_se = pick_next_dl_entity(dl_rq);
2431 	WARN_ON_ONCE(!dl_se);
2432 
2433 	if (dl_server(dl_se)) {
2434 		p = dl_se->server_pick_task(dl_se);
2435 		if (!p) {
2436 			dl_server_stop(dl_se);
2437 			goto again;
2438 		}
2439 		rq->dl_server = dl_se;
2440 		trace_android_vh_dump_dl_server(dl_se, p);
2441 	} else {
2442 		p = dl_task_of(dl_se);
2443 	}
2444 
2445 	return p;
2446 }
2447 
pick_task_dl(struct rq * rq)2448 static struct task_struct *pick_task_dl(struct rq *rq)
2449 {
2450 	return __pick_task_dl(rq);
2451 }
2452 
put_prev_task_dl(struct rq * rq,struct task_struct * p,struct task_struct * next)2453 static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct task_struct *next)
2454 {
2455 	struct sched_dl_entity *dl_se = &p->dl;
2456 	struct dl_rq *dl_rq = &rq->dl;
2457 
2458 	if (on_dl_rq(&p->dl))
2459 		update_stats_wait_start_dl(dl_rq, dl_se);
2460 
2461 	update_curr_dl(rq);
2462 
2463 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2464 
2465 	if (task_is_blocked(p))
2466 		return;
2467 
2468 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2469 		enqueue_pushable_dl_task(rq, p);
2470 }
2471 
2472 /*
2473  * scheduler tick hitting a task of our scheduling class.
2474  *
2475  * NOTE: This function can be called remotely by the tick offload that
2476  * goes along full dynticks. Therefore no local assumption can be made
2477  * and everything must be accessed through the @rq and @curr passed in
2478  * parameters.
2479  */
task_tick_dl(struct rq * rq,struct task_struct * p,int queued)2480 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2481 {
2482 	update_curr_dl(rq);
2483 
2484 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2485 	/*
2486 	 * Even when we have runtime, update_curr_dl() might have resulted in us
2487 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
2488 	 * be set and schedule() will start a new hrtick for the next task.
2489 	 */
2490 	if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2491 	    is_leftmost(&p->dl, &rq->dl))
2492 		start_hrtick_dl(rq, &p->dl);
2493 }
2494 
task_fork_dl(struct task_struct * p)2495 static void task_fork_dl(struct task_struct *p)
2496 {
2497 	/*
2498 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2499 	 * sched_fork()
2500 	 */
2501 }
2502 
2503 #ifdef CONFIG_SMP
2504 
2505 /* Only try algorithms three times */
2506 #define DL_MAX_TRIES 3
2507 
2508 /*
2509  * Return the earliest pushable rq's task, which is suitable to be executed
2510  * on the CPU, NULL otherwise:
2511  */
pick_earliest_pushable_dl_task(struct rq * rq,int cpu)2512 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2513 {
2514 	struct task_struct *p = NULL;
2515 	struct rb_node *next_node;
2516 
2517 	if (!has_pushable_dl_tasks(rq))
2518 		return NULL;
2519 
2520 	next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2521 
2522 next_node:
2523 	if (next_node) {
2524 		p = __node_2_pdl(next_node);
2525 
2526 		if (task_is_pushable(rq, p, cpu) == 1)
2527 			return p;
2528 
2529 		next_node = rb_next(next_node);
2530 		goto next_node;
2531 	}
2532 
2533 	return NULL;
2534 }
2535 
2536 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2537 
find_later_rq(struct task_struct * sched_ctx,struct task_struct * exec_ctx)2538 static int find_later_rq(struct task_struct *sched_ctx, struct task_struct *exec_ctx)
2539 {
2540 	struct sched_domain *sd;
2541 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2542 	int this_cpu = smp_processor_id();
2543 	int cpu = task_cpu(sched_ctx);
2544 
2545 	/* Make sure the mask is initialized first */
2546 	if (unlikely(!later_mask))
2547 		return -1;
2548 
2549 	if (exec_ctx && exec_ctx->nr_cpus_allowed == 1)
2550 		return -1;
2551 
2552 	/*
2553 	 * We have to consider system topology and task affinity
2554 	 * first, then we can look for a suitable CPU.
2555 	 */
2556 	if (!cpudl_find(&task_rq(exec_ctx)->rd->cpudl, sched_ctx, exec_ctx, later_mask))
2557 		return -1;
2558 
2559 	/*
2560 	 * If we are here, some targets have been found, including
2561 	 * the most suitable which is, among the runqueues where the
2562 	 * current tasks have later deadlines than the task's one, the
2563 	 * rq with the latest possible one.
2564 	 *
2565 	 * Now we check how well this matches with task's
2566 	 * affinity and system topology.
2567 	 *
2568 	 * The last CPU where the task run is our first
2569 	 * guess, since it is most likely cache-hot there.
2570 	 */
2571 	if (cpumask_test_cpu(cpu, later_mask))
2572 		return cpu;
2573 	/*
2574 	 * Check if this_cpu is to be skipped (i.e., it is
2575 	 * not in the mask) or not.
2576 	 */
2577 	if (!cpumask_test_cpu(this_cpu, later_mask))
2578 		this_cpu = -1;
2579 
2580 	rcu_read_lock();
2581 	for_each_domain(cpu, sd) {
2582 		if (sd->flags & SD_WAKE_AFFINE) {
2583 			int best_cpu;
2584 
2585 			/*
2586 			 * If possible, preempting this_cpu is
2587 			 * cheaper than migrating.
2588 			 */
2589 			if (this_cpu != -1 &&
2590 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2591 				rcu_read_unlock();
2592 				return this_cpu;
2593 			}
2594 
2595 			best_cpu = cpumask_any_and_distribute(later_mask,
2596 							      sched_domain_span(sd));
2597 			/*
2598 			 * Last chance: if a CPU being in both later_mask
2599 			 * and current sd span is valid, that becomes our
2600 			 * choice. Of course, the latest possible CPU is
2601 			 * already under consideration through later_mask.
2602 			 */
2603 			if (best_cpu < nr_cpu_ids) {
2604 				rcu_read_unlock();
2605 				return best_cpu;
2606 			}
2607 		}
2608 	}
2609 	rcu_read_unlock();
2610 
2611 	/*
2612 	 * At this point, all our guesses failed, we just return
2613 	 * 'something', and let the caller sort the things out.
2614 	 */
2615 	if (this_cpu != -1)
2616 		return this_cpu;
2617 
2618 	cpu = cpumask_any_distribute(later_mask);
2619 	if (cpu < nr_cpu_ids)
2620 		return cpu;
2621 
2622 	return -1;
2623 }
2624 
pick_next_pushable_dl_task(struct rq * rq)2625 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2626 {
2627 	struct task_struct *p = NULL;
2628 	struct rb_node *next_node;
2629 
2630 	if (!has_pushable_dl_tasks(rq))
2631 		return NULL;
2632 
2633 	next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2634 	while (next_node) {
2635 		p = __node_2_pdl(next_node);
2636 		/*
2637 		 * cpu argument doesn't matter because we treat a -1 result
2638 		 * (pushable but can't go to cpu0) the same as a 1 result
2639 		 * (pushable to cpu0). All we care about here is general
2640 		 * pushability.
2641 		 */
2642 		if (task_is_pushable(rq, p, 0))
2643 			break;
2644 
2645 		next_node = rb_next(next_node);
2646 	}
2647 
2648 	if (!p)
2649 		return NULL;
2650 
2651 	WARN_ON_ONCE(rq->cpu != task_cpu(p));
2652 	WARN_ON_ONCE(task_current(rq, p));
2653 	WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
2654 
2655 	WARN_ON_ONCE(!task_on_rq_queued(p));
2656 	WARN_ON_ONCE(!dl_task(p));
2657 
2658 	return p;
2659 }
2660 
__dl_revalidate_rq_state(struct task_struct * task,struct rq * rq,struct rq * later)2661 static inline bool __dl_revalidate_rq_state(struct task_struct *task, struct rq *rq,
2662 					    struct rq *later)
2663 {
2664 	if (!dl_task(task))
2665 		return false;
2666 	return __revalidate_rq_state(task, rq, later);
2667 }
2668 
dl_revalidate_rq_state(struct task_struct * task,struct rq * rq,struct rq * later,bool * retry)2669 static inline bool dl_revalidate_rq_state(struct task_struct *task, struct rq *rq,
2670 					  struct rq *later, bool *retry)
2671 {
2672 	if (!sched_proxy_exec())
2673 		return __dl_revalidate_rq_state(task, rq, later);
2674 
2675 	if (!dl_task(task) || is_migration_disabled(task))
2676 		return false;
2677 
2678 	if (rq != this_rq()) {
2679 		struct task_struct *next_task = pick_next_pushable_dl_task(rq);
2680 		struct task_struct *exec_ctx;
2681 
2682 		if (next_task != task)
2683 			return false;
2684 
2685 		exec_ctx = find_exec_ctx(rq, next_task);
2686 		*retry = (exec_ctx && !cpumask_test_cpu(later->cpu,
2687 							&exec_ctx->cpus_mask));
2688 	} else {
2689 		int pushable = task_is_pushable(rq, task, later->cpu);
2690 
2691 		*retry = (pushable == -1);
2692 		if (!pushable)
2693 			return false;
2694 	}
2695 	return true;
2696 }
2697 
2698 /* Locks the rq it finds */
find_lock_later_rq(struct task_struct * task,struct rq * rq)2699 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2700 {
2701 	struct task_struct *exec_ctx;
2702 	struct rq *later_rq = NULL;
2703 	bool retry;
2704 	int tries;
2705 	int cpu;
2706 
2707 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2708 		retry = false;
2709 		exec_ctx = find_exec_ctx(rq, task);
2710 		if (!exec_ctx)
2711 			break;
2712 		cpu = find_later_rq(task, exec_ctx);
2713 
2714 		if ((cpu == -1) || (cpu == rq->cpu))
2715 			break;
2716 
2717 		later_rq = cpu_rq(cpu);
2718 
2719 		if (!dl_task_is_earliest_deadline(task, later_rq)) {
2720 			/*
2721 			 * Target rq has tasks of equal or earlier deadline,
2722 			 * retrying does not release any lock and is unlikely
2723 			 * to yield a different result.
2724 			 */
2725 			later_rq = NULL;
2726 			break;
2727 		}
2728 
2729 		/* Retry if something changed. */
2730 		if (double_lock_balance(rq, later_rq)) {
2731 			if (unlikely(!dl_revalidate_rq_state(task, rq, later_rq, &retry))) {
2732 				double_unlock_balance(rq, later_rq);
2733 				later_rq = NULL;
2734 				break;
2735 			}
2736 		}
2737 
2738 		/*
2739 		 * If the rq we found has no -deadline task, or
2740 		 * its earliest one has a later deadline than our
2741 		 * task, the rq is a good one.
2742 		 */
2743 		if (!retry && dl_task_is_earliest_deadline(task, later_rq))
2744 			break;
2745 
2746 		/* Otherwise we try again. */
2747 		double_unlock_balance(rq, later_rq);
2748 		later_rq = NULL;
2749 	}
2750 
2751 	return later_rq;
2752 }
2753 
2754 /*
2755  * See if the non running -deadline tasks on this rq
2756  * can be sent to some other CPU where they can preempt
2757  * and start executing.
2758  */
push_dl_task(struct rq * rq)2759 static int push_dl_task(struct rq *rq)
2760 {
2761 	struct task_struct *next_task;
2762 	struct rq *later_rq;
2763 	int ret = 0;
2764 
2765 	next_task = pick_next_pushable_dl_task(rq);
2766 	if (!next_task)
2767 		return 0;
2768 
2769 retry:
2770 	/*
2771 	 * If next_task preempts rq->curr, and rq->curr
2772 	 * can move away, it makes sense to just reschedule
2773 	 * without going further in pushing next_task.
2774 	 */
2775 	if (dl_task(rq->donor) &&
2776 	    dl_time_before(next_task->dl.deadline, rq->donor->dl.deadline) &&
2777 	    rq->curr->nr_cpus_allowed > 1) {
2778 		resched_curr(rq);
2779 		return 0;
2780 	}
2781 
2782 	if (is_migration_disabled(next_task))
2783 		return 0;
2784 
2785 	if (WARN_ON(next_task == rq->curr))
2786 		return 0;
2787 
2788 	/* We might release rq lock */
2789 	get_task_struct(next_task);
2790 
2791 	/* Will lock the rq it'll find */
2792 	later_rq = find_lock_later_rq(next_task, rq);
2793 	if (!later_rq) {
2794 		struct task_struct *task;
2795 
2796 		/*
2797 		 * We must check all this again, since
2798 		 * find_lock_later_rq releases rq->lock and it is
2799 		 * then possible that next_task has migrated.
2800 		 */
2801 		task = pick_next_pushable_dl_task(rq);
2802 		if (task == next_task) {
2803 			/*
2804 			 * The task is still there. We don't try
2805 			 * again, some other CPU will pull it when ready.
2806 			 */
2807 			goto out;
2808 		}
2809 
2810 		if (!task)
2811 			/* No more tasks */
2812 			goto out;
2813 
2814 		put_task_struct(next_task);
2815 		next_task = task;
2816 		goto retry;
2817 	}
2818 
2819 	move_queued_task_locked(rq, later_rq, next_task);
2820 	ret = 1;
2821 
2822 	resched_curr(later_rq);
2823 
2824 	double_unlock_balance(rq, later_rq);
2825 
2826 out:
2827 	put_task_struct(next_task);
2828 
2829 	return ret;
2830 }
2831 
push_dl_tasks(struct rq * rq)2832 static void push_dl_tasks(struct rq *rq)
2833 {
2834 	/* push_dl_task() will return true if it moved a -deadline task */
2835 	while (push_dl_task(rq))
2836 		;
2837 }
2838 
pull_dl_task(struct rq * this_rq)2839 static void pull_dl_task(struct rq *this_rq)
2840 {
2841 	int this_cpu = this_rq->cpu, cpu;
2842 	struct task_struct *p, *push_task;
2843 	bool resched = false;
2844 	struct rq *src_rq;
2845 	u64 dmin = LONG_MAX;
2846 
2847 	if (likely(!dl_overloaded(this_rq)))
2848 		return;
2849 
2850 	/*
2851 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2852 	 * see overloaded we must also see the dlo_mask bit.
2853 	 */
2854 	smp_rmb();
2855 
2856 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2857 		if (this_cpu == cpu)
2858 			continue;
2859 
2860 		src_rq = cpu_rq(cpu);
2861 
2862 		/*
2863 		 * It looks racy, and it is! However, as in sched_rt.c,
2864 		 * we are fine with this.
2865 		 */
2866 		if (this_rq->dl.dl_nr_running &&
2867 		    dl_time_before(this_rq->dl.earliest_dl.curr,
2868 				   src_rq->dl.earliest_dl.next))
2869 			continue;
2870 
2871 		/* Might drop this_rq->lock */
2872 		push_task = NULL;
2873 		double_lock_balance(this_rq, src_rq);
2874 
2875 		/*
2876 		 * If there are no more pullable tasks on the
2877 		 * rq, we're done with it.
2878 		 */
2879 		if (src_rq->dl.dl_nr_running <= 1)
2880 			goto skip;
2881 
2882 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2883 
2884 		/*
2885 		 * We found a task to be pulled if:
2886 		 *  - it preempts our current (if there's one),
2887 		 *  - it will preempt the last one we pulled (if any).
2888 		 */
2889 		if (p && dl_time_before(p->dl.deadline, dmin) &&
2890 		    dl_task_is_earliest_deadline(p, this_rq)) {
2891 			WARN_ON(p == src_rq->curr);
2892 			WARN_ON(!task_on_rq_queued(p));
2893 
2894 			/*
2895 			 * Then we pull iff p has actually an earlier
2896 			 * deadline than the current task of its runqueue.
2897 			 */
2898 			if (dl_time_before(p->dl.deadline,
2899 					   src_rq->donor->dl.deadline))
2900 				goto skip;
2901 
2902 			if (is_migration_disabled(p)) {
2903 				push_task = get_push_task(src_rq);
2904 			} else {
2905 				move_queued_task_locked(src_rq, this_rq, p);
2906 				dmin = p->dl.deadline;
2907 				resched = true;
2908 			}
2909 
2910 			/* Is there any other task even earlier? */
2911 		}
2912 skip:
2913 		double_unlock_balance(this_rq, src_rq);
2914 
2915 		if (push_task) {
2916 			preempt_disable();
2917 			raw_spin_rq_unlock(this_rq);
2918 			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2919 					    push_task, &src_rq->push_work);
2920 			preempt_enable();
2921 			raw_spin_rq_lock(this_rq);
2922 		}
2923 	}
2924 
2925 	if (resched)
2926 		resched_curr(this_rq);
2927 }
2928 
2929 /*
2930  * Since the task is not running and a reschedule is not going to happen
2931  * anytime soon on its runqueue, we try pushing it away now.
2932  */
task_woken_dl(struct rq * rq,struct task_struct * p)2933 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2934 {
2935 	if (!task_on_cpu(rq, p) &&
2936 	    !test_tsk_need_resched(rq->curr) &&
2937 	    p->nr_cpus_allowed > 1 &&
2938 	    dl_task(rq->donor) &&
2939 	    (rq->curr->nr_cpus_allowed < 2 ||
2940 	     !dl_entity_preempt(&p->dl, &rq->donor->dl))) {
2941 		push_dl_tasks(rq);
2942 	}
2943 }
2944 
set_cpus_allowed_dl(struct task_struct * p,struct affinity_context * ctx)2945 static void set_cpus_allowed_dl(struct task_struct *p,
2946 				struct affinity_context *ctx)
2947 {
2948 	struct root_domain *src_rd;
2949 	struct rq *rq;
2950 
2951 	WARN_ON_ONCE(!dl_task(p));
2952 
2953 	rq = task_rq(p);
2954 	src_rd = rq->rd;
2955 	/*
2956 	 * Migrating a SCHED_DEADLINE task between exclusive
2957 	 * cpusets (different root_domains) entails a bandwidth
2958 	 * update. We already made space for us in the destination
2959 	 * domain (see cpuset_can_attach()).
2960 	 */
2961 	if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
2962 		struct dl_bw *src_dl_b;
2963 
2964 		src_dl_b = dl_bw_of(cpu_of(rq));
2965 		/*
2966 		 * We now free resources of the root_domain we are migrating
2967 		 * off. In the worst case, sched_setattr() may temporary fail
2968 		 * until we complete the update.
2969 		 */
2970 		raw_spin_lock(&src_dl_b->lock);
2971 		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2972 		raw_spin_unlock(&src_dl_b->lock);
2973 	}
2974 
2975 	set_cpus_allowed_common(p, ctx);
2976 }
2977 
2978 /* Assumes rq->lock is held */
rq_online_dl(struct rq * rq)2979 static void rq_online_dl(struct rq *rq)
2980 {
2981 	if (rq->dl.overloaded)
2982 		dl_set_overload(rq);
2983 
2984 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2985 	if (rq->dl.dl_nr_running > 0)
2986 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2987 }
2988 
2989 /* Assumes rq->lock is held */
rq_offline_dl(struct rq * rq)2990 static void rq_offline_dl(struct rq *rq)
2991 {
2992 	if (rq->dl.overloaded)
2993 		dl_clear_overload(rq);
2994 
2995 	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2996 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2997 }
2998 
init_sched_dl_class(void)2999 void __init init_sched_dl_class(void)
3000 {
3001 	unsigned int i;
3002 
3003 	for_each_possible_cpu(i)
3004 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
3005 					GFP_KERNEL, cpu_to_node(i));
3006 }
3007 
dl_add_task_root_domain(struct task_struct * p)3008 void dl_add_task_root_domain(struct task_struct *p)
3009 {
3010 	struct rq_flags rf;
3011 	struct rq *rq;
3012 	struct dl_bw *dl_b;
3013 
3014 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3015 	if (!dl_task(p)) {
3016 		raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
3017 		return;
3018 	}
3019 
3020 	rq = __task_rq_lock(p, &rf);
3021 
3022 	dl_b = &rq->rd->dl_bw;
3023 	raw_spin_lock(&dl_b->lock);
3024 
3025 	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
3026 
3027 	raw_spin_unlock(&dl_b->lock);
3028 
3029 	task_rq_unlock(rq, p, &rf);
3030 }
3031 
dl_clear_root_domain(struct root_domain * rd)3032 void dl_clear_root_domain(struct root_domain *rd)
3033 {
3034 	unsigned long flags;
3035 
3036 	raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
3037 	rd->dl_bw.total_bw = 0;
3038 	raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
3039 }
3040 
3041 #endif /* CONFIG_SMP */
3042 
switched_from_dl(struct rq * rq,struct task_struct * p)3043 static void switched_from_dl(struct rq *rq, struct task_struct *p)
3044 {
3045 	/*
3046 	 * task_non_contending() can start the "inactive timer" (if the 0-lag
3047 	 * time is in the future). If the task switches back to dl before
3048 	 * the "inactive timer" fires, it can continue to consume its current
3049 	 * runtime using its current deadline. If it stays outside of
3050 	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
3051 	 * will reset the task parameters.
3052 	 */
3053 	if (task_on_rq_queued(p) && p->dl.dl_runtime)
3054 		task_non_contending(&p->dl);
3055 
3056 	/*
3057 	 * In case a task is setscheduled out from SCHED_DEADLINE we need to
3058 	 * keep track of that on its cpuset (for correct bandwidth tracking).
3059 	 */
3060 	dec_dl_tasks_cs(p);
3061 
3062 	if (!task_on_rq_queued(p)) {
3063 		/*
3064 		 * Inactive timer is armed. However, p is leaving DEADLINE and
3065 		 * might migrate away from this rq while continuing to run on
3066 		 * some other class. We need to remove its contribution from
3067 		 * this rq running_bw now, or sub_rq_bw (below) will complain.
3068 		 */
3069 		if (p->dl.dl_non_contending)
3070 			sub_running_bw(&p->dl, &rq->dl);
3071 		sub_rq_bw(&p->dl, &rq->dl);
3072 	}
3073 
3074 	/*
3075 	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
3076 	 * at the 0-lag time, because the task could have been migrated
3077 	 * while SCHED_OTHER in the meanwhile.
3078 	 */
3079 	if (p->dl.dl_non_contending)
3080 		p->dl.dl_non_contending = 0;
3081 
3082 	/*
3083 	 * Since this might be the only -deadline task on the rq,
3084 	 * this is the right place to try to pull some other one
3085 	 * from an overloaded CPU, if any.
3086 	 */
3087 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
3088 		return;
3089 
3090 	deadline_queue_pull_task(rq);
3091 }
3092 
3093 /*
3094  * When switching to -deadline, we may overload the rq, then
3095  * we try to push someone off, if possible.
3096  */
switched_to_dl(struct rq * rq,struct task_struct * p)3097 static void switched_to_dl(struct rq *rq, struct task_struct *p)
3098 {
3099 	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
3100 		put_task_struct(p);
3101 
3102 	/*
3103 	 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
3104 	 * track of that on its cpuset (for correct bandwidth tracking).
3105 	 */
3106 	inc_dl_tasks_cs(p);
3107 
3108 	/* If p is not queued we will update its parameters at next wakeup. */
3109 	if (!task_on_rq_queued(p)) {
3110 		add_rq_bw(&p->dl, &rq->dl);
3111 
3112 		return;
3113 	}
3114 
3115 	if (rq->donor != p) {
3116 #ifdef CONFIG_SMP
3117 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
3118 			deadline_queue_push_tasks(rq);
3119 #endif
3120 		if (dl_task(rq->donor))
3121 			wakeup_preempt_dl(rq, p, 0);
3122 		else
3123 			resched_curr(rq);
3124 	} else {
3125 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
3126 	}
3127 }
3128 
3129 /*
3130  * If the scheduling parameters of a -deadline task changed,
3131  * a push or pull operation might be needed.
3132  */
prio_changed_dl(struct rq * rq,struct task_struct * p,int oldprio)3133 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
3134 			    int oldprio)
3135 {
3136 	if (!task_on_rq_queued(p))
3137 		return;
3138 
3139 #ifdef CONFIG_SMP
3140 	/*
3141 	 * This might be too much, but unfortunately
3142 	 * we don't have the old deadline value, and
3143 	 * we can't argue if the task is increasing
3144 	 * or lowering its prio, so...
3145 	 */
3146 	if (!rq->dl.overloaded)
3147 		deadline_queue_pull_task(rq);
3148 
3149 	if (task_current_donor(rq, p)) {
3150 		/*
3151 		 * If we now have a earlier deadline task than p,
3152 		 * then reschedule, provided p is still on this
3153 		 * runqueue.
3154 		 */
3155 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
3156 			resched_curr(rq);
3157 	} else {
3158 		/*
3159 		 * Current may not be deadline in case p was throttled but we
3160 		 * have just replenished it (e.g. rt_mutex_setprio()).
3161 		 *
3162 		 * Otherwise, if p was given an earlier deadline, reschedule.
3163 		 */
3164 		if (!dl_task(rq->curr) ||
3165 		    dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
3166 			resched_curr(rq);
3167 	}
3168 #else
3169 	/*
3170 	 * We don't know if p has a earlier or later deadline, so let's blindly
3171 	 * set a (maybe not needed) rescheduling point.
3172 	 */
3173 	resched_curr(rq);
3174 #endif
3175 }
3176 
3177 #ifdef CONFIG_SCHED_CORE
task_is_throttled_dl(struct task_struct * p,int cpu)3178 static int task_is_throttled_dl(struct task_struct *p, int cpu)
3179 {
3180 	return p->dl.dl_throttled;
3181 }
3182 #endif
3183 
3184 DEFINE_SCHED_CLASS(dl) = {
3185 
3186 	.enqueue_task		= enqueue_task_dl,
3187 	.dequeue_task		= dequeue_task_dl,
3188 	.yield_task		= yield_task_dl,
3189 
3190 	.wakeup_preempt		= wakeup_preempt_dl,
3191 
3192 	.pick_task		= pick_task_dl,
3193 	.put_prev_task		= put_prev_task_dl,
3194 	.set_next_task		= set_next_task_dl,
3195 
3196 #ifdef CONFIG_SMP
3197 	.balance		= balance_dl,
3198 	.select_task_rq		= select_task_rq_dl,
3199 	.migrate_task_rq	= migrate_task_rq_dl,
3200 	.set_cpus_allowed       = set_cpus_allowed_dl,
3201 	.rq_online              = rq_online_dl,
3202 	.rq_offline             = rq_offline_dl,
3203 	.task_woken		= task_woken_dl,
3204 	.find_lock_rq		= find_lock_later_rq,
3205 #endif
3206 
3207 	.task_tick		= task_tick_dl,
3208 	.task_fork              = task_fork_dl,
3209 
3210 	.prio_changed           = prio_changed_dl,
3211 	.switched_from		= switched_from_dl,
3212 	.switched_to		= switched_to_dl,
3213 
3214 	.update_curr		= update_curr_dl,
3215 #ifdef CONFIG_SCHED_CORE
3216 	.task_is_throttled	= task_is_throttled_dl,
3217 #endif
3218 };
3219 
3220 /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
3221 static u64 dl_generation;
3222 
sched_dl_global_validate(void)3223 int sched_dl_global_validate(void)
3224 {
3225 	u64 runtime = global_rt_runtime();
3226 	u64 period = global_rt_period();
3227 	u64 new_bw = to_ratio(period, runtime);
3228 	u64 gen = ++dl_generation;
3229 	struct dl_bw *dl_b;
3230 	int cpu, cpus, ret = 0;
3231 	unsigned long flags;
3232 
3233 	/*
3234 	 * Here we want to check the bandwidth not being set to some
3235 	 * value smaller than the currently allocated bandwidth in
3236 	 * any of the root_domains.
3237 	 */
3238 	for_each_online_cpu(cpu) {
3239 		rcu_read_lock_sched();
3240 
3241 		if (dl_bw_visited(cpu, gen))
3242 			goto next;
3243 
3244 		dl_b = dl_bw_of(cpu);
3245 		cpus = dl_bw_cpus(cpu);
3246 
3247 		raw_spin_lock_irqsave(&dl_b->lock, flags);
3248 		if (new_bw * cpus < dl_b->total_bw)
3249 			ret = -EBUSY;
3250 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3251 
3252 next:
3253 		rcu_read_unlock_sched();
3254 
3255 		if (ret)
3256 			break;
3257 	}
3258 
3259 	return ret;
3260 }
3261 
init_dl_rq_bw_ratio(struct dl_rq * dl_rq)3262 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
3263 {
3264 	if (global_rt_runtime() == RUNTIME_INF) {
3265 		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
3266 		dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT;
3267 	} else {
3268 		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
3269 			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
3270 		dl_rq->max_bw = dl_rq->extra_bw =
3271 			to_ratio(global_rt_period(), global_rt_runtime());
3272 	}
3273 }
3274 
sched_dl_do_global(void)3275 void sched_dl_do_global(void)
3276 {
3277 	u64 new_bw = -1;
3278 	u64 gen = ++dl_generation;
3279 	struct dl_bw *dl_b;
3280 	int cpu;
3281 	unsigned long flags;
3282 
3283 	if (global_rt_runtime() != RUNTIME_INF)
3284 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
3285 
3286 	for_each_possible_cpu(cpu)
3287 		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
3288 
3289 	for_each_possible_cpu(cpu) {
3290 		rcu_read_lock_sched();
3291 
3292 		if (dl_bw_visited(cpu, gen)) {
3293 			rcu_read_unlock_sched();
3294 			continue;
3295 		}
3296 
3297 		dl_b = dl_bw_of(cpu);
3298 
3299 		raw_spin_lock_irqsave(&dl_b->lock, flags);
3300 		dl_b->bw = new_bw;
3301 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3302 
3303 		rcu_read_unlock_sched();
3304 	}
3305 }
3306 
3307 /*
3308  * We must be sure that accepting a new task (or allowing changing the
3309  * parameters of an existing one) is consistent with the bandwidth
3310  * constraints. If yes, this function also accordingly updates the currently
3311  * allocated bandwidth to reflect the new situation.
3312  *
3313  * This function is called while holding p's rq->lock.
3314  */
sched_dl_overflow(struct task_struct * p,int policy,const struct sched_attr * attr)3315 int sched_dl_overflow(struct task_struct *p, int policy,
3316 		      const struct sched_attr *attr)
3317 {
3318 	u64 period = attr->sched_period ?: attr->sched_deadline;
3319 	u64 runtime = attr->sched_runtime;
3320 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
3321 	int cpus, err = -1, cpu = task_cpu(p);
3322 	struct dl_bw *dl_b = dl_bw_of(cpu);
3323 	unsigned long cap;
3324 
3325 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
3326 		return 0;
3327 
3328 	/* !deadline task may carry old deadline bandwidth */
3329 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
3330 		return 0;
3331 
3332 	/*
3333 	 * Either if a task, enters, leave, or stays -deadline but changes
3334 	 * its parameters, we may need to update accordingly the total
3335 	 * allocated bandwidth of the container.
3336 	 */
3337 	raw_spin_lock(&dl_b->lock);
3338 	cpus = dl_bw_cpus(cpu);
3339 	cap = dl_bw_capacity(cpu);
3340 
3341 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
3342 	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
3343 		if (hrtimer_active(&p->dl.inactive_timer))
3344 			__dl_sub(dl_b, p->dl.dl_bw, cpus);
3345 		__dl_add(dl_b, new_bw, cpus);
3346 		err = 0;
3347 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
3348 		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
3349 		/*
3350 		 * XXX this is slightly incorrect: when the task
3351 		 * utilization decreases, we should delay the total
3352 		 * utilization change until the task's 0-lag point.
3353 		 * But this would require to set the task's "inactive
3354 		 * timer" when the task is not inactive.
3355 		 */
3356 		__dl_sub(dl_b, p->dl.dl_bw, cpus);
3357 		__dl_add(dl_b, new_bw, cpus);
3358 		dl_change_utilization(p, new_bw);
3359 		err = 0;
3360 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
3361 		/*
3362 		 * Do not decrease the total deadline utilization here,
3363 		 * switched_from_dl() will take care to do it at the correct
3364 		 * (0-lag) time.
3365 		 */
3366 		err = 0;
3367 	}
3368 	raw_spin_unlock(&dl_b->lock);
3369 
3370 	return err;
3371 }
3372 
3373 /*
3374  * This function initializes the sched_dl_entity of a newly becoming
3375  * SCHED_DEADLINE task.
3376  *
3377  * Only the static values are considered here, the actual runtime and the
3378  * absolute deadline will be properly calculated when the task is enqueued
3379  * for the first time with its new policy.
3380  */
__setparam_dl(struct task_struct * p,const struct sched_attr * attr)3381 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3382 {
3383 	struct sched_dl_entity *dl_se = &p->dl;
3384 
3385 	dl_se->dl_runtime = attr->sched_runtime;
3386 	dl_se->dl_deadline = attr->sched_deadline;
3387 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3388 	dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
3389 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3390 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
3391 }
3392 
__getparam_dl(struct task_struct * p,struct sched_attr * attr)3393 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3394 {
3395 	struct sched_dl_entity *dl_se = &p->dl;
3396 
3397 	attr->sched_priority = p->rt_priority;
3398 	attr->sched_runtime = dl_se->dl_runtime;
3399 	attr->sched_deadline = dl_se->dl_deadline;
3400 	attr->sched_period = dl_se->dl_period;
3401 	attr->sched_flags &= ~SCHED_DL_FLAGS;
3402 	attr->sched_flags |= dl_se->flags;
3403 }
3404 
3405 /*
3406  * This function validates the new parameters of a -deadline task.
3407  * We ask for the deadline not being zero, and greater or equal
3408  * than the runtime, as well as the period of being zero or
3409  * greater than deadline. Furthermore, we have to be sure that
3410  * user parameters are above the internal resolution of 1us (we
3411  * check sched_runtime only since it is always the smaller one) and
3412  * below 2^63 ns (we have to check both sched_deadline and
3413  * sched_period, as the latter can be zero).
3414  */
__checkparam_dl(const struct sched_attr * attr)3415 bool __checkparam_dl(const struct sched_attr *attr)
3416 {
3417 	u64 period, max, min;
3418 
3419 	/* special dl tasks don't actually use any parameter */
3420 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
3421 		return true;
3422 
3423 	/* deadline != 0 */
3424 	if (attr->sched_deadline == 0)
3425 		return false;
3426 
3427 	/*
3428 	 * Since we truncate DL_SCALE bits, make sure we're at least
3429 	 * that big.
3430 	 */
3431 	if (attr->sched_runtime < (1ULL << DL_SCALE))
3432 		return false;
3433 
3434 	/*
3435 	 * Since we use the MSB for wrap-around and sign issues, make
3436 	 * sure it's not set (mind that period can be equal to zero).
3437 	 */
3438 	if (attr->sched_deadline & (1ULL << 63) ||
3439 	    attr->sched_period & (1ULL << 63))
3440 		return false;
3441 
3442 	period = attr->sched_period;
3443 	if (!period)
3444 		period = attr->sched_deadline;
3445 
3446 	/* runtime <= deadline <= period (if period != 0) */
3447 	if (period < attr->sched_deadline ||
3448 	    attr->sched_deadline < attr->sched_runtime)
3449 		return false;
3450 
3451 	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
3452 	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
3453 
3454 	if (period < min || period > max)
3455 		return false;
3456 
3457 	return true;
3458 }
3459 
3460 /*
3461  * This function clears the sched_dl_entity static params.
3462  */
__dl_clear_params(struct sched_dl_entity * dl_se)3463 static void __dl_clear_params(struct sched_dl_entity *dl_se)
3464 {
3465 	dl_se->dl_runtime		= 0;
3466 	dl_se->dl_deadline		= 0;
3467 	dl_se->dl_period		= 0;
3468 	dl_se->flags			= 0;
3469 	dl_se->dl_bw			= 0;
3470 	dl_se->dl_density		= 0;
3471 
3472 	dl_se->dl_throttled		= 0;
3473 	dl_se->dl_yielded		= 0;
3474 	dl_se->dl_non_contending	= 0;
3475 	dl_se->dl_overrun		= 0;
3476 	dl_se->dl_server		= 0;
3477 
3478 #ifdef CONFIG_RT_MUTEXES
3479 	dl_se->pi_se			= dl_se;
3480 #endif
3481 }
3482 
init_dl_entity(struct sched_dl_entity * dl_se)3483 void init_dl_entity(struct sched_dl_entity *dl_se)
3484 {
3485 	RB_CLEAR_NODE(&dl_se->rb_node);
3486 	init_dl_task_timer(dl_se);
3487 	init_dl_inactive_task_timer(dl_se);
3488 	__dl_clear_params(dl_se);
3489 }
3490 
dl_param_changed(struct task_struct * p,const struct sched_attr * attr)3491 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
3492 {
3493 	struct sched_dl_entity *dl_se = &p->dl;
3494 
3495 	if (dl_se->dl_runtime != attr->sched_runtime ||
3496 	    dl_se->dl_deadline != attr->sched_deadline ||
3497 	    dl_se->dl_period != attr->sched_period ||
3498 	    dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
3499 		return true;
3500 
3501 	return false;
3502 }
3503 
3504 #ifdef CONFIG_SMP
dl_cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)3505 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3506 				 const struct cpumask *trial)
3507 {
3508 	unsigned long flags, cap;
3509 	struct dl_bw *cur_dl_b;
3510 	int ret = 1;
3511 
3512 	rcu_read_lock_sched();
3513 	cur_dl_b = dl_bw_of(cpumask_any(cur));
3514 	cap = __dl_bw_capacity(trial);
3515 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3516 	if (__dl_overflow(cur_dl_b, cap, 0, 0))
3517 		ret = 0;
3518 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3519 	rcu_read_unlock_sched();
3520 
3521 	return ret;
3522 }
3523 
3524 enum dl_bw_request {
3525 	dl_bw_req_check_overflow = 0,
3526 	dl_bw_req_alloc,
3527 	dl_bw_req_free
3528 };
3529 
dl_bw_manage(enum dl_bw_request req,int cpu,u64 dl_bw)3530 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
3531 {
3532 	unsigned long flags;
3533 	struct dl_bw *dl_b;
3534 	bool overflow = 0;
3535 
3536 	rcu_read_lock_sched();
3537 	dl_b = dl_bw_of(cpu);
3538 	raw_spin_lock_irqsave(&dl_b->lock, flags);
3539 
3540 	if (req == dl_bw_req_free) {
3541 		__dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
3542 	} else {
3543 		unsigned long cap = dl_bw_capacity(cpu);
3544 
3545 		overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
3546 
3547 		if (req == dl_bw_req_alloc && !overflow) {
3548 			/*
3549 			 * We reserve space in the destination
3550 			 * root_domain, as we can't fail after this point.
3551 			 * We will free resources in the source root_domain
3552 			 * later on (see set_cpus_allowed_dl()).
3553 			 */
3554 			__dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
3555 		}
3556 	}
3557 
3558 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3559 	rcu_read_unlock_sched();
3560 
3561 	return overflow ? -EBUSY : 0;
3562 }
3563 
dl_bw_check_overflow(int cpu)3564 int dl_bw_check_overflow(int cpu)
3565 {
3566 	return dl_bw_manage(dl_bw_req_check_overflow, cpu, 0);
3567 }
3568 
dl_bw_alloc(int cpu,u64 dl_bw)3569 int dl_bw_alloc(int cpu, u64 dl_bw)
3570 {
3571 	return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
3572 }
3573 
dl_bw_free(int cpu,u64 dl_bw)3574 void dl_bw_free(int cpu, u64 dl_bw)
3575 {
3576 	dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
3577 }
3578 #endif
3579 
3580 #ifdef CONFIG_SCHED_DEBUG
print_dl_stats(struct seq_file * m,int cpu)3581 void print_dl_stats(struct seq_file *m, int cpu)
3582 {
3583 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3584 }
3585 #endif /* CONFIG_SCHED_DEBUG */
3586