1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/debugobjects.h>
31 #include <linux/kallsyms.h>
32 #include <linux/kfence.h>
33 #include <linux/memory.h>
34 #include <linux/math64.h>
35 #include <linux/fault-inject.h>
36 #include <linux/kmemleak.h>
37 #include <linux/stacktrace.h>
38 #include <linux/prefetch.h>
39 #include <linux/memcontrol.h>
40 #include <linux/random.h>
41 #include <kunit/test.h>
42 #include <kunit/test-bug.h>
43 #include <linux/sort.h>
44 
45 #include <linux/debugfs.h>
46 #include <trace/events/kmem.h>
47 #include <trace/hooks/mm.h>
48 
49 #include "internal.h"
50 
51 /*
52  * Lock order:
53  *   1. slab_mutex (Global Mutex)
54  *   2. node->list_lock (Spinlock)
55  *   3. kmem_cache->cpu_slab->lock (Local lock)
56  *   4. slab_lock(slab) (Only on some arches)
57  *   5. object_map_lock (Only for debugging)
58  *
59  *   slab_mutex
60  *
61  *   The role of the slab_mutex is to protect the list of all the slabs
62  *   and to synchronize major metadata changes to slab cache structures.
63  *   Also synchronizes memory hotplug callbacks.
64  *
65  *   slab_lock
66  *
67  *   The slab_lock is a wrapper around the page lock, thus it is a bit
68  *   spinlock.
69  *
70  *   The slab_lock is only used on arches that do not have the ability
71  *   to do a cmpxchg_double. It only protects:
72  *
73  *	A. slab->freelist	-> List of free objects in a slab
74  *	B. slab->inuse		-> Number of objects in use
75  *	C. slab->objects	-> Number of objects in slab
76  *	D. slab->frozen		-> frozen state
77  *
78  *   Frozen slabs
79  *
80  *   If a slab is frozen then it is exempt from list management. It is
81  *   the cpu slab which is actively allocated from by the processor that
82  *   froze it and it is not on any list. The processor that froze the
83  *   slab is the one who can perform list operations on the slab. Other
84  *   processors may put objects onto the freelist but the processor that
85  *   froze the slab is the only one that can retrieve the objects from the
86  *   slab's freelist.
87  *
88  *   CPU partial slabs
89  *
90  *   The partially empty slabs cached on the CPU partial list are used
91  *   for performance reasons, which speeds up the allocation process.
92  *   These slabs are not frozen, but are also exempt from list management,
93  *   by clearing the PG_workingset flag when moving out of the node
94  *   partial list. Please see __slab_free() for more details.
95  *
96  *   To sum up, the current scheme is:
97  *   - node partial slab: PG_Workingset && !frozen
98  *   - cpu partial slab: !PG_Workingset && !frozen
99  *   - cpu slab: !PG_Workingset && frozen
100  *   - full slab: !PG_Workingset && !frozen
101  *
102  *   list_lock
103  *
104  *   The list_lock protects the partial and full list on each node and
105  *   the partial slab counter. If taken then no new slabs may be added or
106  *   removed from the lists nor make the number of partial slabs be modified.
107  *   (Note that the total number of slabs is an atomic value that may be
108  *   modified without taking the list lock).
109  *
110  *   The list_lock is a centralized lock and thus we avoid taking it as
111  *   much as possible. As long as SLUB does not have to handle partial
112  *   slabs, operations can continue without any centralized lock. F.e.
113  *   allocating a long series of objects that fill up slabs does not require
114  *   the list lock.
115  *
116  *   For debug caches, all allocations are forced to go through a list_lock
117  *   protected region to serialize against concurrent validation.
118  *
119  *   cpu_slab->lock local lock
120  *
121  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
122  *   except the stat counters. This is a percpu structure manipulated only by
123  *   the local cpu, so the lock protects against being preempted or interrupted
124  *   by an irq. Fast path operations rely on lockless operations instead.
125  *
126  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127  *   which means the lockless fastpath cannot be used as it might interfere with
128  *   an in-progress slow path operations. In this case the local lock is always
129  *   taken but it still utilizes the freelist for the common operations.
130  *
131  *   lockless fastpaths
132  *
133  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134  *   are fully lockless when satisfied from the percpu slab (and when
135  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
136  *   They also don't disable preemption or migration or irqs. They rely on
137  *   the transaction id (tid) field to detect being preempted or moved to
138  *   another cpu.
139  *
140  *   irq, preemption, migration considerations
141  *
142  *   Interrupts are disabled as part of list_lock or local_lock operations, or
143  *   around the slab_lock operation, in order to make the slab allocator safe
144  *   to use in the context of an irq.
145  *
146  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149  *   doesn't have to be revalidated in each section protected by the local lock.
150  *
151  * SLUB assigns one slab for allocation to each processor.
152  * Allocations only occur from these slabs called cpu slabs.
153  *
154  * Slabs with free elements are kept on a partial list and during regular
155  * operations no list for full slabs is used. If an object in a full slab is
156  * freed then the slab will show up again on the partial lists.
157  * We track full slabs for debugging purposes though because otherwise we
158  * cannot scan all objects.
159  *
160  * Slabs are freed when they become empty. Teardown and setup is
161  * minimal so we rely on the page allocators per cpu caches for
162  * fast frees and allocs.
163  *
164  * slab->frozen		The slab is frozen and exempt from list processing.
165  * 			This means that the slab is dedicated to a purpose
166  * 			such as satisfying allocations for a specific
167  * 			processor. Objects may be freed in the slab while
168  * 			it is frozen but slab_free will then skip the usual
169  * 			list operations. It is up to the processor holding
170  * 			the slab to integrate the slab into the slab lists
171  * 			when the slab is no longer needed.
172  *
173  * 			One use of this flag is to mark slabs that are
174  * 			used for allocations. Then such a slab becomes a cpu
175  * 			slab. The cpu slab may be equipped with an additional
176  * 			freelist that allows lockless access to
177  * 			free objects in addition to the regular freelist
178  * 			that requires the slab lock.
179  *
180  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
181  * 			options set. This moves	slab handling out of
182  * 			the fast path and disables lockless freelists.
183  */
184 
185 /*
186  * We could simply use migrate_disable()/enable() but as long as it's a
187  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
188  */
189 #ifndef CONFIG_PREEMPT_RT
190 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
191 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
192 #define USE_LOCKLESS_FAST_PATH()	(true)
193 #else
194 #define slub_get_cpu_ptr(var)		\
195 ({					\
196 	migrate_disable();		\
197 	this_cpu_ptr(var);		\
198 })
199 #define slub_put_cpu_ptr(var)		\
200 do {					\
201 	(void)(var);			\
202 	migrate_enable();		\
203 } while (0)
204 #define USE_LOCKLESS_FAST_PATH()	(false)
205 #endif
206 
207 #ifndef CONFIG_SLUB_TINY
208 #define __fastpath_inline __always_inline
209 #else
210 #define __fastpath_inline
211 #endif
212 
213 #ifdef CONFIG_SLUB_DEBUG
214 #ifdef CONFIG_SLUB_DEBUG_ON
215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
216 #else
217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
218 #endif
219 #endif		/* CONFIG_SLUB_DEBUG */
220 
221 /* Structure holding parameters for get_partial() call chain */
222 struct partial_context {
223 	gfp_t flags;
224 	unsigned int orig_size;
225 	void *object;
226 };
227 
kmem_cache_debug(struct kmem_cache * s)228 static inline bool kmem_cache_debug(struct kmem_cache *s)
229 {
230 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
231 }
232 
slub_debug_orig_size(struct kmem_cache * s)233 static inline bool slub_debug_orig_size(struct kmem_cache *s)
234 {
235 	return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
236 			(s->flags & SLAB_KMALLOC));
237 }
238 
fixup_red_left(struct kmem_cache * s,void * p)239 void *fixup_red_left(struct kmem_cache *s, void *p)
240 {
241 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
242 		p += s->red_left_pad;
243 
244 	return p;
245 }
246 
kmem_cache_has_cpu_partial(struct kmem_cache * s)247 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
248 {
249 #ifdef CONFIG_SLUB_CPU_PARTIAL
250 	return !kmem_cache_debug(s);
251 #else
252 	return false;
253 #endif
254 }
255 
256 /*
257  * Issues still to be resolved:
258  *
259  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
260  *
261  * - Variable sizing of the per node arrays
262  */
263 
264 /* Enable to log cmpxchg failures */
265 #undef SLUB_DEBUG_CMPXCHG
266 
267 #ifndef CONFIG_SLUB_TINY
268 /*
269  * Minimum number of partial slabs. These will be left on the partial
270  * lists even if they are empty. kmem_cache_shrink may reclaim them.
271  */
272 #define MIN_PARTIAL 5
273 
274 /*
275  * Maximum number of desirable partial slabs.
276  * The existence of more partial slabs makes kmem_cache_shrink
277  * sort the partial list by the number of objects in use.
278  */
279 #define MAX_PARTIAL 10
280 #else
281 #define MIN_PARTIAL 0
282 #define MAX_PARTIAL 0
283 #endif
284 
285 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
286 				SLAB_POISON | SLAB_STORE_USER)
287 
288 /*
289  * These debug flags cannot use CMPXCHG because there might be consistency
290  * issues when checking or reading debug information
291  */
292 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
293 				SLAB_TRACE)
294 
295 
296 /*
297  * Debugging flags that require metadata to be stored in the slab.  These get
298  * disabled when slab_debug=O is used and a cache's min order increases with
299  * metadata.
300  */
301 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
302 
303 #define OO_SHIFT	16
304 #define OO_MASK		((1 << OO_SHIFT) - 1)
305 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
306 
307 /* Internal SLUB flags */
308 /* Poison object */
309 #define __OBJECT_POISON		__SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
310 /* Use cmpxchg_double */
311 
312 #ifdef system_has_freelist_aba
313 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
314 #else
315 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_UNUSED
316 #endif
317 
318 #ifdef SLAB_SUPPORTS_SYSFS
319 static int sysfs_slab_add(struct kmem_cache *);
320 static int sysfs_slab_alias(struct kmem_cache *, const char *);
321 #else
sysfs_slab_add(struct kmem_cache * s)322 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
sysfs_slab_alias(struct kmem_cache * s,const char * p)323 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
324 							{ return 0; }
325 #endif
326 
327 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
328 static void debugfs_slab_add(struct kmem_cache *);
329 #else
debugfs_slab_add(struct kmem_cache * s)330 static inline void debugfs_slab_add(struct kmem_cache *s) { }
331 #endif
332 
333 enum stat_item {
334 	ALLOC_FASTPATH,		/* Allocation from cpu slab */
335 	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
336 	FREE_FASTPATH,		/* Free to cpu slab */
337 	FREE_SLOWPATH,		/* Freeing not to cpu slab */
338 	FREE_FROZEN,		/* Freeing to frozen slab */
339 	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
340 	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
341 	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */
342 	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
343 	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
344 	ALLOC_NODE_MISMATCH,	/* Switching cpu slab */
345 	FREE_SLAB,		/* Slab freed to the page allocator */
346 	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
347 	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
348 	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
349 	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
350 	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
351 	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
352 	DEACTIVATE_BYPASS,	/* Implicit deactivation */
353 	ORDER_FALLBACK,		/* Number of times fallback was necessary */
354 	CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
355 	CMPXCHG_DOUBLE_FAIL,	/* Failures of slab freelist update */
356 	CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */
357 	CPU_PARTIAL_FREE,	/* Refill cpu partial on free */
358 	CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */
359 	CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */
360 	NR_SLUB_STAT_ITEMS
361 };
362 
363 #ifndef CONFIG_SLUB_TINY
364 /*
365  * When changing the layout, make sure freelist and tid are still compatible
366  * with this_cpu_cmpxchg_double() alignment requirements.
367  */
368 struct kmem_cache_cpu {
369 	union {
370 		struct {
371 			void **freelist;	/* Pointer to next available object */
372 			unsigned long tid;	/* Globally unique transaction id */
373 		};
374 		freelist_aba_t freelist_tid;
375 	};
376 	struct slab *slab;	/* The slab from which we are allocating */
377 #ifdef CONFIG_SLUB_CPU_PARTIAL
378 	struct slab *partial;	/* Partially allocated slabs */
379 #endif
380 	local_lock_t lock;	/* Protects the fields above */
381 #ifdef CONFIG_SLUB_STATS
382 	unsigned int stat[NR_SLUB_STAT_ITEMS];
383 #endif
384 };
385 #endif /* CONFIG_SLUB_TINY */
386 
stat(const struct kmem_cache * s,enum stat_item si)387 static inline void stat(const struct kmem_cache *s, enum stat_item si)
388 {
389 #ifdef CONFIG_SLUB_STATS
390 	/*
391 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
392 	 * avoid this_cpu_add()'s irq-disable overhead.
393 	 */
394 	raw_cpu_inc(s->cpu_slab->stat[si]);
395 #endif
396 }
397 
398 static inline
stat_add(const struct kmem_cache * s,enum stat_item si,int v)399 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
400 {
401 #ifdef CONFIG_SLUB_STATS
402 	raw_cpu_add(s->cpu_slab->stat[si], v);
403 #endif
404 }
405 
406 /*
407  * The slab lists for all objects.
408  */
409 struct kmem_cache_node {
410 	spinlock_t list_lock;
411 	unsigned long nr_partial;
412 	struct list_head partial;
413 #ifdef CONFIG_SLUB_DEBUG
414 	atomic_long_t nr_slabs;
415 	atomic_long_t total_objects;
416 	struct list_head full;
417 #endif
418 };
419 
get_node(struct kmem_cache * s,int node)420 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
421 {
422 	return s->node[node];
423 }
424 
425 /*
426  * Iterator over all nodes. The body will be executed for each node that has
427  * a kmem_cache_node structure allocated (which is true for all online nodes)
428  */
429 #define for_each_kmem_cache_node(__s, __node, __n) \
430 	for (__node = 0; __node < nr_node_ids; __node++) \
431 		 if ((__n = get_node(__s, __node)))
432 
433 /*
434  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
435  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
436  * differ during memory hotplug/hotremove operations.
437  * Protected by slab_mutex.
438  */
439 static nodemask_t slab_nodes;
440 
441 #ifndef CONFIG_SLUB_TINY
442 /*
443  * Workqueue used for flush_cpu_slab().
444  */
445 static struct workqueue_struct *flushwq;
446 #endif
447 
448 /********************************************************************
449  * 			Core slab cache functions
450  *******************************************************************/
451 
452 /*
453  * Returns freelist pointer (ptr). With hardening, this is obfuscated
454  * with an XOR of the address where the pointer is held and a per-cache
455  * random number.
456  */
freelist_ptr_encode(const struct kmem_cache * s,void * ptr,unsigned long ptr_addr)457 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
458 					    void *ptr, unsigned long ptr_addr)
459 {
460 	unsigned long encoded;
461 
462 #ifdef CONFIG_SLAB_FREELIST_HARDENED
463 	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
464 #else
465 	encoded = (unsigned long)ptr;
466 #endif
467 	return (freeptr_t){.v = encoded};
468 }
469 
freelist_ptr_decode(const struct kmem_cache * s,freeptr_t ptr,unsigned long ptr_addr)470 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
471 					freeptr_t ptr, unsigned long ptr_addr)
472 {
473 	void *decoded;
474 
475 #ifdef CONFIG_SLAB_FREELIST_HARDENED
476 	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
477 #else
478 	decoded = (void *)ptr.v;
479 #endif
480 	return decoded;
481 }
482 
get_freepointer(struct kmem_cache * s,void * object)483 static inline void *get_freepointer(struct kmem_cache *s, void *object)
484 {
485 	unsigned long ptr_addr;
486 	freeptr_t p;
487 
488 	object = kasan_reset_tag(object);
489 	ptr_addr = (unsigned long)object + s->offset;
490 	p = *(freeptr_t *)(ptr_addr);
491 	return freelist_ptr_decode(s, p, ptr_addr);
492 }
493 
494 #ifndef CONFIG_SLUB_TINY
prefetch_freepointer(const struct kmem_cache * s,void * object)495 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
496 {
497 	prefetchw(object + s->offset);
498 }
499 #endif
500 
501 /*
502  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
503  * pointer value in the case the current thread loses the race for the next
504  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
505  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
506  * KMSAN will still check all arguments of cmpxchg because of imperfect
507  * handling of inline assembly.
508  * To work around this problem, we apply __no_kmsan_checks to ensure that
509  * get_freepointer_safe() returns initialized memory.
510  */
511 __no_kmsan_checks
get_freepointer_safe(struct kmem_cache * s,void * object)512 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
513 {
514 	unsigned long freepointer_addr;
515 	freeptr_t p;
516 
517 	if (!debug_pagealloc_enabled_static())
518 		return get_freepointer(s, object);
519 
520 	object = kasan_reset_tag(object);
521 	freepointer_addr = (unsigned long)object + s->offset;
522 	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
523 	return freelist_ptr_decode(s, p, freepointer_addr);
524 }
525 
set_freepointer(struct kmem_cache * s,void * object,void * fp)526 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
527 {
528 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
529 
530 #ifdef CONFIG_SLAB_FREELIST_HARDENED
531 	BUG_ON(object == fp); /* naive detection of double free or corruption */
532 #endif
533 
534 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
535 	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
536 }
537 
538 /*
539  * See comment in calculate_sizes().
540  */
freeptr_outside_object(struct kmem_cache * s)541 static inline bool freeptr_outside_object(struct kmem_cache *s)
542 {
543 	return s->offset >= s->inuse;
544 }
545 
546 /*
547  * Return offset of the end of info block which is inuse + free pointer if
548  * not overlapping with object.
549  */
get_info_end(struct kmem_cache * s)550 static inline unsigned int get_info_end(struct kmem_cache *s)
551 {
552 	if (freeptr_outside_object(s))
553 		return s->inuse + sizeof(void *);
554 	else
555 		return s->inuse;
556 }
557 
558 /* Loop over all objects in a slab */
559 #define for_each_object(__p, __s, __addr, __objects) \
560 	for (__p = fixup_red_left(__s, __addr); \
561 		__p < (__addr) + (__objects) * (__s)->size; \
562 		__p += (__s)->size)
563 
order_objects(unsigned int order,unsigned int size)564 static inline unsigned int order_objects(unsigned int order, unsigned int size)
565 {
566 	return ((unsigned int)PAGE_SIZE << order) / size;
567 }
568 
oo_make(unsigned int order,unsigned int size)569 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
570 		unsigned int size)
571 {
572 	struct kmem_cache_order_objects x = {
573 		(order << OO_SHIFT) + order_objects(order, size)
574 	};
575 
576 	return x;
577 }
578 
oo_order(struct kmem_cache_order_objects x)579 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
580 {
581 	return x.x >> OO_SHIFT;
582 }
583 
oo_objects(struct kmem_cache_order_objects x)584 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
585 {
586 	return x.x & OO_MASK;
587 }
588 
589 #ifdef CONFIG_SLUB_CPU_PARTIAL
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)590 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
591 {
592 	unsigned int nr_slabs;
593 
594 	s->cpu_partial = nr_objects;
595 
596 	/*
597 	 * We take the number of objects but actually limit the number of
598 	 * slabs on the per cpu partial list, in order to limit excessive
599 	 * growth of the list. For simplicity we assume that the slabs will
600 	 * be half-full.
601 	 */
602 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
603 	s->cpu_partial_slabs = nr_slabs;
604 }
605 
slub_get_cpu_partial(struct kmem_cache * s)606 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
607 {
608 	return s->cpu_partial_slabs;
609 }
610 #else
611 static inline void
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)612 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
613 {
614 }
615 
slub_get_cpu_partial(struct kmem_cache * s)616 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
617 {
618 	return 0;
619 }
620 #endif /* CONFIG_SLUB_CPU_PARTIAL */
621 
622 /*
623  * Per slab locking using the pagelock
624  */
slab_lock(struct slab * slab)625 static __always_inline void slab_lock(struct slab *slab)
626 {
627 	bit_spin_lock(PG_locked, &slab->__page_flags);
628 }
629 
slab_unlock(struct slab * slab)630 static __always_inline void slab_unlock(struct slab *slab)
631 {
632 	bit_spin_unlock(PG_locked, &slab->__page_flags);
633 }
634 
635 static inline bool
__update_freelist_fast(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)636 __update_freelist_fast(struct slab *slab,
637 		      void *freelist_old, unsigned long counters_old,
638 		      void *freelist_new, unsigned long counters_new)
639 {
640 #ifdef system_has_freelist_aba
641 	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
642 	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
643 
644 	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
645 #else
646 	return false;
647 #endif
648 }
649 
650 static inline bool
__update_freelist_slow(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)651 __update_freelist_slow(struct slab *slab,
652 		      void *freelist_old, unsigned long counters_old,
653 		      void *freelist_new, unsigned long counters_new)
654 {
655 	bool ret = false;
656 
657 	slab_lock(slab);
658 	if (slab->freelist == freelist_old &&
659 	    slab->counters == counters_old) {
660 		slab->freelist = freelist_new;
661 		slab->counters = counters_new;
662 		ret = true;
663 	}
664 	slab_unlock(slab);
665 
666 	return ret;
667 }
668 
669 /*
670  * Interrupts must be disabled (for the fallback code to work right), typically
671  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
672  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
673  * allocation/ free operation in hardirq context. Therefore nothing can
674  * interrupt the operation.
675  */
__slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)676 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
677 		void *freelist_old, unsigned long counters_old,
678 		void *freelist_new, unsigned long counters_new,
679 		const char *n)
680 {
681 	bool ret;
682 
683 	if (USE_LOCKLESS_FAST_PATH())
684 		lockdep_assert_irqs_disabled();
685 
686 	if (s->flags & __CMPXCHG_DOUBLE) {
687 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
688 				            freelist_new, counters_new);
689 	} else {
690 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
691 				            freelist_new, counters_new);
692 	}
693 	if (likely(ret))
694 		return true;
695 
696 	cpu_relax();
697 	stat(s, CMPXCHG_DOUBLE_FAIL);
698 
699 #ifdef SLUB_DEBUG_CMPXCHG
700 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
701 #endif
702 
703 	return false;
704 }
705 
slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)706 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
707 		void *freelist_old, unsigned long counters_old,
708 		void *freelist_new, unsigned long counters_new,
709 		const char *n)
710 {
711 	bool ret;
712 
713 	if (s->flags & __CMPXCHG_DOUBLE) {
714 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
715 				            freelist_new, counters_new);
716 	} else {
717 		unsigned long flags;
718 
719 		local_irq_save(flags);
720 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
721 				            freelist_new, counters_new);
722 		local_irq_restore(flags);
723 	}
724 	if (likely(ret))
725 		return true;
726 
727 	cpu_relax();
728 	stat(s, CMPXCHG_DOUBLE_FAIL);
729 
730 #ifdef SLUB_DEBUG_CMPXCHG
731 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
732 #endif
733 
734 	return false;
735 }
736 
737 /*
738  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
739  * family will round up the real request size to these fixed ones, so
740  * there could be an extra area than what is requested. Save the original
741  * request size in the meta data area, for better debug and sanity check.
742  */
set_orig_size(struct kmem_cache * s,void * object,unsigned int orig_size)743 static inline void set_orig_size(struct kmem_cache *s,
744 				void *object, unsigned int orig_size)
745 {
746 	void *p = kasan_reset_tag(object);
747 	unsigned int kasan_meta_size;
748 
749 	if (!slub_debug_orig_size(s))
750 		return;
751 
752 	/*
753 	 * KASAN can save its free meta data inside of the object at offset 0.
754 	 * If this meta data size is larger than 'orig_size', it will overlap
755 	 * the data redzone in [orig_size+1, object_size]. Thus, we adjust
756 	 * 'orig_size' to be as at least as big as KASAN's meta data.
757 	 */
758 	kasan_meta_size = kasan_metadata_size(s, true);
759 	if (kasan_meta_size > orig_size)
760 		orig_size = kasan_meta_size;
761 
762 	p += get_info_end(s);
763 	p += sizeof(struct track) * 2;
764 
765 	*(unsigned int *)p = orig_size;
766 }
767 
get_orig_size(struct kmem_cache * s,void * object)768 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
769 {
770 	void *p = kasan_reset_tag(object);
771 
772 	if (!slub_debug_orig_size(s))
773 		return s->object_size;
774 
775 	p += get_info_end(s);
776 	p += sizeof(struct track) * 2;
777 
778 	return *(unsigned int *)p;
779 }
780 
781 #ifdef CONFIG_SLUB_DEBUG
782 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
783 static DEFINE_SPINLOCK(object_map_lock);
784 
__fill_map(unsigned long * obj_map,struct kmem_cache * s,struct slab * slab)785 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
786 		       struct slab *slab)
787 {
788 	void *addr = slab_address(slab);
789 	void *p;
790 
791 	bitmap_zero(obj_map, slab->objects);
792 
793 	for (p = slab->freelist; p; p = get_freepointer(s, p))
794 		set_bit(__obj_to_index(s, addr, p), obj_map);
795 }
796 
797 #if IS_ENABLED(CONFIG_KUNIT)
slab_add_kunit_errors(void)798 static bool slab_add_kunit_errors(void)
799 {
800 	struct kunit_resource *resource;
801 
802 	if (!kunit_get_current_test())
803 		return false;
804 
805 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
806 	if (!resource)
807 		return false;
808 
809 	(*(int *)resource->data)++;
810 	kunit_put_resource(resource);
811 	return true;
812 }
813 
slab_in_kunit_test(void)814 bool slab_in_kunit_test(void)
815 {
816 	struct kunit_resource *resource;
817 
818 	if (!kunit_get_current_test())
819 		return false;
820 
821 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
822 	if (!resource)
823 		return false;
824 
825 	kunit_put_resource(resource);
826 	return true;
827 }
828 #else
slab_add_kunit_errors(void)829 static inline bool slab_add_kunit_errors(void) { return false; }
830 #endif
831 
size_from_object(struct kmem_cache * s)832 static inline unsigned int size_from_object(struct kmem_cache *s)
833 {
834 	if (s->flags & SLAB_RED_ZONE)
835 		return s->size - s->red_left_pad;
836 
837 	return s->size;
838 }
839 
restore_red_left(struct kmem_cache * s,void * p)840 static inline void *restore_red_left(struct kmem_cache *s, void *p)
841 {
842 	if (s->flags & SLAB_RED_ZONE)
843 		p -= s->red_left_pad;
844 
845 	return p;
846 }
847 
848 /*
849  * Debug settings:
850  */
851 #if defined(CONFIG_SLUB_DEBUG_ON)
852 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
853 #else
854 static slab_flags_t slub_debug;
855 #endif
856 
857 static char *slub_debug_string;
858 static int disable_higher_order_debug;
859 
860 /*
861  * slub is about to manipulate internal object metadata.  This memory lies
862  * outside the range of the allocated object, so accessing it would normally
863  * be reported by kasan as a bounds error.  metadata_access_enable() is used
864  * to tell kasan that these accesses are OK.
865  */
metadata_access_enable(void)866 static inline void metadata_access_enable(void)
867 {
868 	kasan_disable_current();
869 	kmsan_disable_current();
870 }
871 
metadata_access_disable(void)872 static inline void metadata_access_disable(void)
873 {
874 	kmsan_enable_current();
875 	kasan_enable_current();
876 }
877 
878 /*
879  * Object debugging
880  */
881 
882 /* Verify that a pointer has an address that is valid within a slab page */
check_valid_pointer(struct kmem_cache * s,struct slab * slab,void * object)883 static inline int check_valid_pointer(struct kmem_cache *s,
884 				struct slab *slab, void *object)
885 {
886 	void *base;
887 
888 	if (!object)
889 		return 1;
890 
891 	base = slab_address(slab);
892 	object = kasan_reset_tag(object);
893 	object = restore_red_left(s, object);
894 	if (object < base || object >= base + slab->objects * s->size ||
895 		(object - base) % s->size) {
896 		return 0;
897 	}
898 
899 	return 1;
900 }
901 
print_section(char * level,char * text,u8 * addr,unsigned int length)902 static void print_section(char *level, char *text, u8 *addr,
903 			  unsigned int length)
904 {
905 	metadata_access_enable();
906 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
907 			16, 1, kasan_reset_tag((void *)addr), length, 1);
908 	metadata_access_disable();
909 }
910 
get_track(struct kmem_cache * s,void * object,enum track_item alloc)911 struct track *get_track(struct kmem_cache *s, void *object,
912 			enum track_item alloc)
913 {
914 	struct track *p;
915 
916 	p = object + get_info_end(s);
917 
918 	return kasan_reset_tag(p + alloc);
919 }
920 EXPORT_SYMBOL(get_track);
921 
922 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n);
923 
get_each_kmemcache_object(struct kmem_cache * s,int (* fn)(struct kmem_cache *,void *,void *),void * private)924 unsigned long get_each_kmemcache_object(struct kmem_cache *s,
925 		int (*fn)(struct kmem_cache *, void *, void *),
926 		void *private)
927 {
928 	int node;
929 	unsigned long ret = 0;
930 	struct kmem_cache_node *n;
931 
932 	for_each_kmem_cache_node(s, node, n) {
933 		unsigned long flags;
934 		struct slab *slab;
935 		void *p;
936 
937 		if (!node_nr_slabs(n))
938 			continue;
939 
940 		spin_lock_irqsave(&n->list_lock, flags);
941 		list_for_each_entry(slab, &n->partial, slab_list) {
942 			for_each_object(p, s, slab_address(slab), slab->objects) {
943 				metadata_access_enable();
944 				ret = fn(s, p, private);
945 				metadata_access_disable();
946 				if (ret) {
947 					spin_unlock_irqrestore(&n->list_lock, flags);
948 					return ret;
949 				}
950 			}
951 		}
952 #ifdef CONFIG_SLUB_DEBUG
953 		list_for_each_entry(slab, &n->full, slab_list) {
954 			for_each_object(p, s, slab_address(slab), slab->objects) {
955 				metadata_access_enable();
956 				ret = fn(s, p, private);
957 				metadata_access_disable();
958 				if (ret) {
959 					spin_unlock_irqrestore(&n->list_lock, flags);
960 					return ret;
961 				}
962 			}
963 		}
964 #endif
965 		spin_unlock_irqrestore(&n->list_lock, flags);
966 	}
967 	return ret;
968 }
969 EXPORT_SYMBOL_NS_GPL(get_each_kmemcache_object, MINIDUMP);
970 
971 #ifdef CONFIG_STACKDEPOT
set_track_prepare(gfp_t gfp_flags)972 static noinline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags)
973 {
974 	depot_stack_handle_t handle;
975 	unsigned long entries[TRACK_ADDRS_COUNT];
976 	unsigned int nr_entries;
977 
978 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
979 	handle = stack_depot_save(entries, nr_entries, gfp_flags);
980 
981 	return handle;
982 }
983 #else
set_track_prepare(gfp_t gfp_flags)984 static inline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags)
985 {
986 	return 0;
987 }
988 #endif
989 
set_track_update(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,depot_stack_handle_t handle)990 static void set_track_update(struct kmem_cache *s, void *object,
991 			     enum track_item alloc, unsigned long addr,
992 			     depot_stack_handle_t handle)
993 {
994 	struct track *p = get_track(s, object, alloc);
995 
996 #ifdef CONFIG_STACKDEPOT
997 	p->handle = handle;
998 #endif
999 	p->addr = addr;
1000 	p->cpu = smp_processor_id();
1001 	p->pid = current->pid;
1002 	p->when = jiffies;
1003 	trace_android_vh_save_track_hash(alloc == TRACK_ALLOC, p);
1004 }
1005 
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,gfp_t gfp_flags)1006 static __always_inline void set_track(struct kmem_cache *s, void *object,
1007 				      enum track_item alloc, unsigned long addr, gfp_t gfp_flags)
1008 {
1009 	depot_stack_handle_t handle = set_track_prepare(gfp_flags);
1010 
1011 	set_track_update(s, object, alloc, addr, handle);
1012 }
1013 
init_tracking(struct kmem_cache * s,void * object)1014 static void init_tracking(struct kmem_cache *s, void *object)
1015 {
1016 	struct track *p;
1017 
1018 	if (!(s->flags & SLAB_STORE_USER))
1019 		return;
1020 
1021 	p = get_track(s, object, TRACK_ALLOC);
1022 	memset(p, 0, 2*sizeof(struct track));
1023 }
1024 
print_track(const char * s,struct track * t,unsigned long pr_time)1025 static void print_track(const char *s, struct track *t, unsigned long pr_time)
1026 {
1027 	depot_stack_handle_t handle __maybe_unused;
1028 
1029 	if (!t->addr)
1030 		return;
1031 
1032 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
1033 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
1034 #ifdef CONFIG_STACKDEPOT
1035 	handle = READ_ONCE(t->handle);
1036 	if (handle)
1037 		stack_depot_print(handle);
1038 	else
1039 		pr_err("object allocation/free stack trace missing\n");
1040 #endif
1041 }
1042 
print_tracking(struct kmem_cache * s,void * object)1043 void print_tracking(struct kmem_cache *s, void *object)
1044 {
1045 	unsigned long pr_time = jiffies;
1046 	if (!(s->flags & SLAB_STORE_USER))
1047 		return;
1048 
1049 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1050 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1051 }
1052 
print_slab_info(const struct slab * slab)1053 static void print_slab_info(const struct slab *slab)
1054 {
1055 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1056 	       slab, slab->objects, slab->inuse, slab->freelist,
1057 	       &slab->__page_flags);
1058 }
1059 
skip_orig_size_check(struct kmem_cache * s,const void * object)1060 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1061 {
1062 	set_orig_size(s, (void *)object, s->object_size);
1063 }
1064 
__slab_bug(struct kmem_cache * s,const char * fmt,va_list argsp)1065 static void __slab_bug(struct kmem_cache *s, const char *fmt, va_list argsp)
1066 {
1067 	struct va_format vaf;
1068 	va_list args;
1069 
1070 	va_copy(args, argsp);
1071 	vaf.fmt = fmt;
1072 	vaf.va = &args;
1073 	pr_err("=============================================================================\n");
1074 	pr_err("BUG %s (%s): %pV\n", s ? s->name : "<unknown>", print_tainted(), &vaf);
1075 	pr_err("-----------------------------------------------------------------------------\n\n");
1076 	va_end(args);
1077 }
1078 
slab_bug(struct kmem_cache * s,const char * fmt,...)1079 static void slab_bug(struct kmem_cache *s, const char *fmt, ...)
1080 {
1081 	va_list args;
1082 
1083 	va_start(args, fmt);
1084 	__slab_bug(s, fmt, args);
1085 	va_end(args);
1086 }
1087 
1088 __printf(2, 3)
slab_fix(struct kmem_cache * s,const char * fmt,...)1089 static void slab_fix(struct kmem_cache *s, const char *fmt, ...)
1090 {
1091 	struct va_format vaf;
1092 	va_list args;
1093 
1094 	if (slab_add_kunit_errors())
1095 		return;
1096 
1097 	va_start(args, fmt);
1098 	vaf.fmt = fmt;
1099 	vaf.va = &args;
1100 	pr_err("FIX %s: %pV\n", s->name, &vaf);
1101 	va_end(args);
1102 }
1103 
print_trailer(struct kmem_cache * s,struct slab * slab,u8 * p)1104 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1105 {
1106 	unsigned int off;	/* Offset of last byte */
1107 	u8 *addr = slab_address(slab);
1108 
1109 	print_tracking(s, p);
1110 
1111 	print_slab_info(slab);
1112 
1113 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1114 	       p, p - addr, get_freepointer(s, p));
1115 
1116 	if (s->flags & SLAB_RED_ZONE)
1117 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
1118 			      s->red_left_pad);
1119 	else if (p > addr + 16)
1120 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1121 
1122 	print_section(KERN_ERR,         "Object   ", p,
1123 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
1124 	if (s->flags & SLAB_RED_ZONE)
1125 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
1126 			s->inuse - s->object_size);
1127 
1128 	off = get_info_end(s);
1129 
1130 	if (s->flags & SLAB_STORE_USER)
1131 		off += 2 * sizeof(struct track);
1132 
1133 	if (slub_debug_orig_size(s))
1134 		off += sizeof(unsigned int);
1135 
1136 	off += kasan_metadata_size(s, false);
1137 
1138 	if (off != size_from_object(s))
1139 		/* Beginning of the filler is the free pointer */
1140 		print_section(KERN_ERR, "Padding  ", p + off,
1141 			      size_from_object(s) - off);
1142 }
1143 
object_err(struct kmem_cache * s,struct slab * slab,u8 * object,const char * reason)1144 static void object_err(struct kmem_cache *s, struct slab *slab,
1145 			u8 *object, const char *reason)
1146 {
1147 	if (slab_add_kunit_errors())
1148 		return;
1149 
1150 	slab_bug(s, reason);
1151 	if (!object || !check_valid_pointer(s, slab, object)) {
1152 		print_slab_info(slab);
1153 		pr_err("Invalid pointer 0x%p\n", object);
1154 	} else {
1155 		print_trailer(s, slab, object);
1156 	}
1157 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1158 
1159 	WARN_ON(1);
1160 }
1161 
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)1162 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1163 			       void **freelist, void *nextfree)
1164 {
1165 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1166 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1167 		object_err(s, slab, *freelist, "Freechain corrupt");
1168 		*freelist = NULL;
1169 		slab_fix(s, "Isolate corrupted freechain");
1170 		return true;
1171 	}
1172 
1173 	return false;
1174 }
1175 
__slab_err(struct slab * slab)1176 static void __slab_err(struct slab *slab)
1177 {
1178 	if (slab_in_kunit_test())
1179 		return;
1180 
1181 	print_slab_info(slab);
1182 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1183 
1184 	WARN_ON(1);
1185 }
1186 
slab_err(struct kmem_cache * s,struct slab * slab,const char * fmt,...)1187 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1188 			const char *fmt, ...)
1189 {
1190 	va_list args;
1191 
1192 	if (slab_add_kunit_errors())
1193 		return;
1194 
1195 	va_start(args, fmt);
1196 	__slab_bug(s, fmt, args);
1197 	va_end(args);
1198 
1199 	__slab_err(slab);
1200 }
1201 
init_object(struct kmem_cache * s,void * object,u8 val)1202 static void init_object(struct kmem_cache *s, void *object, u8 val)
1203 {
1204 	u8 *p = kasan_reset_tag(object);
1205 	unsigned int poison_size = s->object_size;
1206 
1207 	if (s->flags & SLAB_RED_ZONE) {
1208 		/*
1209 		 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1210 		 * the shadow makes it possible to distinguish uninit-value
1211 		 * from use-after-free.
1212 		 */
1213 		memset_no_sanitize_memory(p - s->red_left_pad, val,
1214 					  s->red_left_pad);
1215 
1216 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1217 			/*
1218 			 * Redzone the extra allocated space by kmalloc than
1219 			 * requested, and the poison size will be limited to
1220 			 * the original request size accordingly.
1221 			 */
1222 			poison_size = get_orig_size(s, object);
1223 		}
1224 	}
1225 
1226 	if (s->flags & __OBJECT_POISON) {
1227 		memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1228 		memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1229 	}
1230 
1231 	if (s->flags & SLAB_RED_ZONE)
1232 		memset_no_sanitize_memory(p + poison_size, val,
1233 					  s->inuse - poison_size);
1234 }
1235 
restore_bytes(struct kmem_cache * s,const char * message,u8 data,void * from,void * to)1236 static void restore_bytes(struct kmem_cache *s, const char *message, u8 data,
1237 						void *from, void *to)
1238 {
1239 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1240 	memset(from, data, to - from);
1241 }
1242 
1243 #ifdef CONFIG_KMSAN
1244 #define pad_check_attributes noinline __no_kmsan_checks
1245 #else
1246 #define pad_check_attributes
1247 #endif
1248 
1249 static pad_check_attributes int
check_bytes_and_report(struct kmem_cache * s,struct slab * slab,u8 * object,const char * what,u8 * start,unsigned int value,unsigned int bytes,bool slab_obj_print)1250 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1251 		       u8 *object, const char *what, u8 *start, unsigned int value,
1252 		       unsigned int bytes, bool slab_obj_print)
1253 {
1254 	u8 *fault;
1255 	u8 *end;
1256 	u8 *addr = slab_address(slab);
1257 
1258 	metadata_access_enable();
1259 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1260 	metadata_access_disable();
1261 	if (!fault)
1262 		return 1;
1263 
1264 	end = start + bytes;
1265 	while (end > fault && end[-1] == value)
1266 		end--;
1267 
1268 	if (slab_add_kunit_errors())
1269 		goto skip_bug_print;
1270 
1271 	pr_err("[%s overwritten] 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1272 	       what, fault, end - 1, fault - addr, fault[0], value);
1273 
1274 	if (slab_obj_print)
1275 		object_err(s, slab, object, "Object corrupt");
1276 
1277 skip_bug_print:
1278 	restore_bytes(s, what, value, fault, end);
1279 	return 0;
1280 }
1281 
1282 /*
1283  * Object layout:
1284  *
1285  * object address
1286  * 	Bytes of the object to be managed.
1287  * 	If the freepointer may overlay the object then the free
1288  *	pointer is at the middle of the object.
1289  *
1290  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1291  * 	0xa5 (POISON_END)
1292  *
1293  * object + s->object_size
1294  * 	Padding to reach word boundary. This is also used for Redzoning.
1295  * 	Padding is extended by another word if Redzoning is enabled and
1296  * 	object_size == inuse.
1297  *
1298  * 	We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1299  * 	0xcc (SLUB_RED_ACTIVE) for objects in use.
1300  *
1301  * object + s->inuse
1302  * 	Meta data starts here.
1303  *
1304  * 	A. Free pointer (if we cannot overwrite object on free)
1305  * 	B. Tracking data for SLAB_STORE_USER
1306  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1307  *	D. Padding to reach required alignment boundary or at minimum
1308  * 		one word if debugging is on to be able to detect writes
1309  * 		before the word boundary.
1310  *
1311  *	Padding is done using 0x5a (POISON_INUSE)
1312  *
1313  * object + s->size
1314  * 	Nothing is used beyond s->size.
1315  *
1316  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1317  * ignored. And therefore no slab options that rely on these boundaries
1318  * may be used with merged slabcaches.
1319  */
1320 
check_pad_bytes(struct kmem_cache * s,struct slab * slab,u8 * p)1321 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1322 {
1323 	unsigned long off = get_info_end(s);	/* The end of info */
1324 
1325 	if (s->flags & SLAB_STORE_USER) {
1326 		/* We also have user information there */
1327 		off += 2 * sizeof(struct track);
1328 
1329 		if (s->flags & SLAB_KMALLOC)
1330 			off += sizeof(unsigned int);
1331 	}
1332 
1333 	off += kasan_metadata_size(s, false);
1334 
1335 	if (size_from_object(s) == off)
1336 		return 1;
1337 
1338 	return check_bytes_and_report(s, slab, p, "Object padding",
1339 			p + off, POISON_INUSE, size_from_object(s) - off, true);
1340 }
1341 
1342 /* Check the pad bytes at the end of a slab page */
1343 static pad_check_attributes void
slab_pad_check(struct kmem_cache * s,struct slab * slab)1344 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1345 {
1346 	u8 *start;
1347 	u8 *fault;
1348 	u8 *end;
1349 	u8 *pad;
1350 	int length;
1351 	int remainder;
1352 
1353 	if (!(s->flags & SLAB_POISON))
1354 		return;
1355 
1356 	start = slab_address(slab);
1357 	length = slab_size(slab);
1358 	end = start + length;
1359 	remainder = length % s->size;
1360 	if (!remainder)
1361 		return;
1362 
1363 	pad = end - remainder;
1364 	metadata_access_enable();
1365 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1366 	metadata_access_disable();
1367 	if (!fault)
1368 		return;
1369 	while (end > fault && end[-1] == POISON_INUSE)
1370 		end--;
1371 
1372 	slab_bug(s, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1373 		 fault, end - 1, fault - start);
1374 	print_section(KERN_ERR, "Padding ", pad, remainder);
1375 	__slab_err(slab);
1376 
1377 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1378 }
1379 
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1380 static int check_object(struct kmem_cache *s, struct slab *slab,
1381 					void *object, u8 val)
1382 {
1383 	u8 *p = object;
1384 	u8 *endobject = object + s->object_size;
1385 	unsigned int orig_size, kasan_meta_size;
1386 	int ret = 1;
1387 
1388 	if (s->flags & SLAB_RED_ZONE) {
1389 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1390 			object - s->red_left_pad, val, s->red_left_pad, ret))
1391 			ret = 0;
1392 
1393 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1394 			endobject, val, s->inuse - s->object_size, ret))
1395 			ret = 0;
1396 
1397 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1398 			orig_size = get_orig_size(s, object);
1399 
1400 			if (s->object_size > orig_size  &&
1401 				!check_bytes_and_report(s, slab, object,
1402 					"kmalloc Redzone", p + orig_size,
1403 					val, s->object_size - orig_size, ret)) {
1404 				ret = 0;
1405 			}
1406 		}
1407 	} else {
1408 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1409 			if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1410 				endobject, POISON_INUSE,
1411 				s->inuse - s->object_size, ret))
1412 				ret = 0;
1413 		}
1414 	}
1415 
1416 	if (s->flags & SLAB_POISON) {
1417 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1418 			/*
1419 			 * KASAN can save its free meta data inside of the
1420 			 * object at offset 0. Thus, skip checking the part of
1421 			 * the redzone that overlaps with the meta data.
1422 			 */
1423 			kasan_meta_size = kasan_metadata_size(s, true);
1424 			if (kasan_meta_size < s->object_size - 1 &&
1425 			    !check_bytes_and_report(s, slab, p, "Poison",
1426 					p + kasan_meta_size, POISON_FREE,
1427 					s->object_size - kasan_meta_size - 1, ret))
1428 				ret = 0;
1429 			if (kasan_meta_size < s->object_size &&
1430 			    !check_bytes_and_report(s, slab, p, "End Poison",
1431 					p + s->object_size - 1, POISON_END, 1, ret))
1432 				ret = 0;
1433 		}
1434 		/*
1435 		 * check_pad_bytes cleans up on its own.
1436 		 */
1437 		if (!check_pad_bytes(s, slab, p))
1438 			ret = 0;
1439 	}
1440 
1441 	/*
1442 	 * Cannot check freepointer while object is allocated if
1443 	 * object and freepointer overlap.
1444 	 */
1445 	if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1446 	    !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1447 		object_err(s, slab, p, "Freepointer corrupt");
1448 		/*
1449 		 * No choice but to zap it and thus lose the remainder
1450 		 * of the free objects in this slab. May cause
1451 		 * another error because the object count is now wrong.
1452 		 */
1453 		set_freepointer(s, p, NULL);
1454 		ret = 0;
1455 	}
1456 
1457 	return ret;
1458 }
1459 
check_slab(struct kmem_cache * s,struct slab * slab)1460 static int check_slab(struct kmem_cache *s, struct slab *slab)
1461 {
1462 	int maxobj;
1463 
1464 	if (!folio_test_slab(slab_folio(slab))) {
1465 		slab_err(s, slab, "Not a valid slab page");
1466 		return 0;
1467 	}
1468 
1469 	maxobj = order_objects(slab_order(slab), s->size);
1470 	if (slab->objects > maxobj) {
1471 		slab_err(s, slab, "objects %u > max %u",
1472 			slab->objects, maxobj);
1473 		return 0;
1474 	}
1475 	if (slab->inuse > slab->objects) {
1476 		slab_err(s, slab, "inuse %u > max %u",
1477 			slab->inuse, slab->objects);
1478 		return 0;
1479 	}
1480 	if (slab->frozen) {
1481 		slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed");
1482 		return 0;
1483 	}
1484 
1485 	/* Slab_pad_check fixes things up after itself */
1486 	slab_pad_check(s, slab);
1487 	return 1;
1488 }
1489 
1490 /*
1491  * Determine if a certain object in a slab is on the freelist. Must hold the
1492  * slab lock to guarantee that the chains are in a consistent state.
1493  */
on_freelist(struct kmem_cache * s,struct slab * slab,void * search)1494 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1495 {
1496 	int nr = 0;
1497 	void *fp;
1498 	void *object = NULL;
1499 	int max_objects;
1500 
1501 	fp = slab->freelist;
1502 	while (fp && nr <= slab->objects) {
1503 		if (fp == search)
1504 			return 1;
1505 		if (!check_valid_pointer(s, slab, fp)) {
1506 			if (object) {
1507 				object_err(s, slab, object,
1508 					"Freechain corrupt");
1509 				set_freepointer(s, object, NULL);
1510 			} else {
1511 				slab_err(s, slab, "Freepointer corrupt");
1512 				slab->freelist = NULL;
1513 				slab->inuse = slab->objects;
1514 				slab_fix(s, "Freelist cleared");
1515 				return 0;
1516 			}
1517 			break;
1518 		}
1519 		object = fp;
1520 		fp = get_freepointer(s, object);
1521 		nr++;
1522 	}
1523 
1524 	max_objects = order_objects(slab_order(slab), s->size);
1525 	if (max_objects > MAX_OBJS_PER_PAGE)
1526 		max_objects = MAX_OBJS_PER_PAGE;
1527 
1528 	if (slab->objects != max_objects) {
1529 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1530 			 slab->objects, max_objects);
1531 		slab->objects = max_objects;
1532 		slab_fix(s, "Number of objects adjusted");
1533 	}
1534 	if (slab->inuse != slab->objects - nr) {
1535 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1536 			 slab->inuse, slab->objects - nr);
1537 		slab->inuse = slab->objects - nr;
1538 		slab_fix(s, "Object count adjusted");
1539 	}
1540 	return search == NULL;
1541 }
1542 
trace(struct kmem_cache * s,struct slab * slab,void * object,int alloc)1543 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1544 								int alloc)
1545 {
1546 	if (s->flags & SLAB_TRACE) {
1547 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1548 			s->name,
1549 			alloc ? "alloc" : "free",
1550 			object, slab->inuse,
1551 			slab->freelist);
1552 
1553 		if (!alloc)
1554 			print_section(KERN_INFO, "Object ", (void *)object,
1555 					s->object_size);
1556 
1557 		dump_stack();
1558 	}
1559 }
1560 
1561 /*
1562  * Tracking of fully allocated slabs for debugging purposes.
1563  */
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1564 static void add_full(struct kmem_cache *s,
1565 	struct kmem_cache_node *n, struct slab *slab)
1566 {
1567 	if (!(s->flags & SLAB_STORE_USER))
1568 		return;
1569 
1570 	lockdep_assert_held(&n->list_lock);
1571 	list_add(&slab->slab_list, &n->full);
1572 }
1573 
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1574 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1575 {
1576 	if (!(s->flags & SLAB_STORE_USER))
1577 		return;
1578 
1579 	lockdep_assert_held(&n->list_lock);
1580 	list_del(&slab->slab_list);
1581 }
1582 
node_nr_slabs(struct kmem_cache_node * n)1583 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1584 {
1585 	return atomic_long_read(&n->nr_slabs);
1586 }
1587 
inc_slabs_node(struct kmem_cache * s,int node,int objects)1588 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1589 {
1590 	struct kmem_cache_node *n = get_node(s, node);
1591 
1592 	atomic_long_inc(&n->nr_slabs);
1593 	atomic_long_add(objects, &n->total_objects);
1594 }
dec_slabs_node(struct kmem_cache * s,int node,int objects)1595 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1596 {
1597 	struct kmem_cache_node *n = get_node(s, node);
1598 
1599 	atomic_long_dec(&n->nr_slabs);
1600 	atomic_long_sub(objects, &n->total_objects);
1601 }
1602 
1603 /* Object debug checks for alloc/free paths */
setup_object_debug(struct kmem_cache * s,void * object)1604 static void setup_object_debug(struct kmem_cache *s, void *object)
1605 {
1606 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1607 		return;
1608 
1609 	init_object(s, object, SLUB_RED_INACTIVE);
1610 	init_tracking(s, object);
1611 }
1612 
1613 static
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1614 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1615 {
1616 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1617 		return;
1618 
1619 	metadata_access_enable();
1620 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1621 	metadata_access_disable();
1622 }
1623 
alloc_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object)1624 static inline int alloc_consistency_checks(struct kmem_cache *s,
1625 					struct slab *slab, void *object)
1626 {
1627 	if (!check_slab(s, slab))
1628 		return 0;
1629 
1630 	if (!check_valid_pointer(s, slab, object)) {
1631 		object_err(s, slab, object, "Freelist Pointer check fails");
1632 		return 0;
1633 	}
1634 
1635 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1636 		return 0;
1637 
1638 	return 1;
1639 }
1640 
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1641 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1642 			struct slab *slab, void *object, int orig_size)
1643 {
1644 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1645 		if (!alloc_consistency_checks(s, slab, object))
1646 			goto bad;
1647 	}
1648 
1649 	/* Success. Perform special debug activities for allocs */
1650 	trace(s, slab, object, 1);
1651 	set_orig_size(s, object, orig_size);
1652 	init_object(s, object, SLUB_RED_ACTIVE);
1653 	return true;
1654 
1655 bad:
1656 	if (folio_test_slab(slab_folio(slab))) {
1657 		/*
1658 		 * If this is a slab page then lets do the best we can
1659 		 * to avoid issues in the future. Marking all objects
1660 		 * as used avoids touching the remaining objects.
1661 		 */
1662 		slab_fix(s, "Marking all objects used");
1663 		slab->inuse = slab->objects;
1664 		slab->freelist = NULL;
1665 		slab->frozen = 1; /* mark consistency-failed slab as frozen */
1666 	}
1667 	return false;
1668 }
1669 
free_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)1670 static inline int free_consistency_checks(struct kmem_cache *s,
1671 		struct slab *slab, void *object, unsigned long addr)
1672 {
1673 	if (!check_valid_pointer(s, slab, object)) {
1674 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1675 		return 0;
1676 	}
1677 
1678 	if (on_freelist(s, slab, object)) {
1679 		object_err(s, slab, object, "Object already free");
1680 		return 0;
1681 	}
1682 
1683 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1684 		return 0;
1685 
1686 	if (unlikely(s != slab->slab_cache)) {
1687 		if (!folio_test_slab(slab_folio(slab))) {
1688 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1689 				 object);
1690 		} else if (!slab->slab_cache) {
1691 			slab_err(NULL, slab, "No slab cache for object 0x%p",
1692 				 object);
1693 		} else {
1694 			object_err(s, slab, object,
1695 				   "page slab pointer corrupt.");
1696 		}
1697 		return 0;
1698 	}
1699 	return 1;
1700 }
1701 
1702 /*
1703  * Parse a block of slab_debug options. Blocks are delimited by ';'
1704  *
1705  * @str:    start of block
1706  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1707  * @slabs:  return start of list of slabs, or NULL when there's no list
1708  * @init:   assume this is initial parsing and not per-kmem-create parsing
1709  *
1710  * returns the start of next block if there's any, or NULL
1711  */
1712 static char *
parse_slub_debug_flags(char * str,slab_flags_t * flags,char ** slabs,bool init)1713 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1714 {
1715 	bool higher_order_disable = false;
1716 
1717 	/* Skip any completely empty blocks */
1718 	while (*str && *str == ';')
1719 		str++;
1720 
1721 	if (*str == ',') {
1722 		/*
1723 		 * No options but restriction on slabs. This means full
1724 		 * debugging for slabs matching a pattern.
1725 		 */
1726 		*flags = DEBUG_DEFAULT_FLAGS;
1727 		goto check_slabs;
1728 	}
1729 	*flags = 0;
1730 
1731 	/* Determine which debug features should be switched on */
1732 	for (; *str && *str != ',' && *str != ';'; str++) {
1733 		switch (tolower(*str)) {
1734 		case '-':
1735 			*flags = 0;
1736 			break;
1737 		case 'f':
1738 			*flags |= SLAB_CONSISTENCY_CHECKS;
1739 			break;
1740 		case 'z':
1741 			*flags |= SLAB_RED_ZONE;
1742 			break;
1743 		case 'p':
1744 			*flags |= SLAB_POISON;
1745 			break;
1746 		case 'u':
1747 			*flags |= SLAB_STORE_USER;
1748 			break;
1749 		case 't':
1750 			*flags |= SLAB_TRACE;
1751 			break;
1752 		case 'a':
1753 			*flags |= SLAB_FAILSLAB;
1754 			break;
1755 		case 'o':
1756 			/*
1757 			 * Avoid enabling debugging on caches if its minimum
1758 			 * order would increase as a result.
1759 			 */
1760 			higher_order_disable = true;
1761 			break;
1762 		default:
1763 			if (init)
1764 				pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1765 		}
1766 	}
1767 check_slabs:
1768 	if (*str == ',')
1769 		*slabs = ++str;
1770 	else
1771 		*slabs = NULL;
1772 
1773 	/* Skip over the slab list */
1774 	while (*str && *str != ';')
1775 		str++;
1776 
1777 	/* Skip any completely empty blocks */
1778 	while (*str && *str == ';')
1779 		str++;
1780 
1781 	if (init && higher_order_disable)
1782 		disable_higher_order_debug = 1;
1783 
1784 	if (*str)
1785 		return str;
1786 	else
1787 		return NULL;
1788 }
1789 
setup_slub_debug(char * str)1790 static int __init setup_slub_debug(char *str)
1791 {
1792 	slab_flags_t flags;
1793 	slab_flags_t global_flags;
1794 	char *saved_str;
1795 	char *slab_list;
1796 	bool global_slub_debug_changed = false;
1797 	bool slab_list_specified = false;
1798 
1799 	global_flags = DEBUG_DEFAULT_FLAGS;
1800 	if (*str++ != '=' || !*str)
1801 		/*
1802 		 * No options specified. Switch on full debugging.
1803 		 */
1804 		goto out;
1805 
1806 	saved_str = str;
1807 	while (str) {
1808 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1809 
1810 		if (!slab_list) {
1811 			global_flags = flags;
1812 			global_slub_debug_changed = true;
1813 		} else {
1814 			slab_list_specified = true;
1815 			if (flags & SLAB_STORE_USER)
1816 				stack_depot_request_early_init();
1817 		}
1818 	}
1819 
1820 	/*
1821 	 * For backwards compatibility, a single list of flags with list of
1822 	 * slabs means debugging is only changed for those slabs, so the global
1823 	 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1824 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1825 	 * long as there is no option specifying flags without a slab list.
1826 	 */
1827 	if (slab_list_specified) {
1828 		if (!global_slub_debug_changed)
1829 			global_flags = slub_debug;
1830 		slub_debug_string = saved_str;
1831 	}
1832 out:
1833 	slub_debug = global_flags;
1834 	if (slub_debug & SLAB_STORE_USER)
1835 		stack_depot_request_early_init();
1836 	if (slub_debug != 0 || slub_debug_string)
1837 		static_branch_enable(&slub_debug_enabled);
1838 	else
1839 		static_branch_disable(&slub_debug_enabled);
1840 	if ((static_branch_unlikely(&init_on_alloc) ||
1841 	     static_branch_unlikely(&init_on_free)) &&
1842 	    (slub_debug & SLAB_POISON))
1843 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1844 	return 1;
1845 }
1846 
1847 __setup("slab_debug", setup_slub_debug);
1848 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1849 
1850 /*
1851  * kmem_cache_flags - apply debugging options to the cache
1852  * @flags:		flags to set
1853  * @name:		name of the cache
1854  *
1855  * Debug option(s) are applied to @flags. In addition to the debug
1856  * option(s), if a slab name (or multiple) is specified i.e.
1857  * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1858  * then only the select slabs will receive the debug option(s).
1859  */
kmem_cache_flags(slab_flags_t flags,const char * name)1860 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1861 {
1862 	char *iter;
1863 	size_t len;
1864 	char *next_block;
1865 	slab_flags_t block_flags;
1866 	slab_flags_t slub_debug_local = slub_debug;
1867 
1868 	if (flags & SLAB_NO_USER_FLAGS)
1869 		return flags;
1870 
1871 	/*
1872 	 * If the slab cache is for debugging (e.g. kmemleak) then
1873 	 * don't store user (stack trace) information by default,
1874 	 * but let the user enable it via the command line below.
1875 	 */
1876 	if (flags & SLAB_NOLEAKTRACE)
1877 		slub_debug_local &= ~SLAB_STORE_USER;
1878 
1879 	len = strlen(name);
1880 	next_block = slub_debug_string;
1881 	/* Go through all blocks of debug options, see if any matches our slab's name */
1882 	while (next_block) {
1883 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1884 		if (!iter)
1885 			continue;
1886 		/* Found a block that has a slab list, search it */
1887 		while (*iter) {
1888 			char *end, *glob;
1889 			size_t cmplen;
1890 
1891 			end = strchrnul(iter, ',');
1892 			if (next_block && next_block < end)
1893 				end = next_block - 1;
1894 
1895 			glob = strnchr(iter, end - iter, '*');
1896 			if (glob)
1897 				cmplen = glob - iter;
1898 			else
1899 				cmplen = max_t(size_t, len, (end - iter));
1900 
1901 			if (!strncmp(name, iter, cmplen)) {
1902 				flags |= block_flags;
1903 				return flags;
1904 			}
1905 
1906 			if (!*end || *end == ';')
1907 				break;
1908 			iter = end + 1;
1909 		}
1910 	}
1911 
1912 	return flags | slub_debug_local;
1913 }
1914 #else /* !CONFIG_SLUB_DEBUG */
setup_object_debug(struct kmem_cache * s,void * object)1915 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1916 static inline
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1917 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1918 
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1919 static inline bool alloc_debug_processing(struct kmem_cache *s,
1920 	struct slab *slab, void *object, int orig_size) { return true; }
1921 
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)1922 static inline bool free_debug_processing(struct kmem_cache *s,
1923 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1924 	unsigned long addr, depot_stack_handle_t handle) { return true; }
1925 
slab_pad_check(struct kmem_cache * s,struct slab * slab)1926 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1927 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1928 			void *object, u8 val) { return 1; }
set_track_prepare(gfp_t gfp_flags)1929 static inline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags) { return 0; }
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,gfp_t gfp_flags)1930 static inline void set_track(struct kmem_cache *s, void *object,
1931 			     enum track_item alloc, unsigned long addr, gfp_t gfp_flags) {}
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1932 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1933 					struct slab *slab) {}
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1934 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1935 					struct slab *slab) {}
kmem_cache_flags(slab_flags_t flags,const char * name)1936 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1937 {
1938 	return flags;
1939 }
1940 #define slub_debug 0
1941 
1942 #define disable_higher_order_debug 0
1943 
node_nr_slabs(struct kmem_cache_node * n)1944 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1945 							{ return 0; }
inc_slabs_node(struct kmem_cache * s,int node,int objects)1946 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1947 							int objects) {}
dec_slabs_node(struct kmem_cache * s,int node,int objects)1948 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1949 							int objects) {}
1950 #ifndef CONFIG_SLUB_TINY
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)1951 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1952 			       void **freelist, void *nextfree)
1953 {
1954 	return false;
1955 }
1956 #endif
1957 #endif /* CONFIG_SLUB_DEBUG */
1958 
1959 #ifdef CONFIG_SLAB_OBJ_EXT
1960 
1961 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1962 
mark_objexts_empty(struct slabobj_ext * obj_exts)1963 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
1964 {
1965 	struct slabobj_ext *slab_exts;
1966 	struct slab *obj_exts_slab;
1967 
1968 	obj_exts_slab = virt_to_slab(obj_exts);
1969 	slab_exts = slab_obj_exts(obj_exts_slab);
1970 	if (slab_exts) {
1971 		unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1972 						 obj_exts_slab, obj_exts);
1973 		/* codetag should be NULL */
1974 		WARN_ON(slab_exts[offs].ref.ct);
1975 		set_codetag_empty(&slab_exts[offs].ref);
1976 	}
1977 }
1978 
mark_failed_objexts_alloc(struct slab * slab)1979 static inline void mark_failed_objexts_alloc(struct slab *slab)
1980 {
1981 	slab->obj_exts = OBJEXTS_ALLOC_FAIL;
1982 }
1983 
handle_failed_objexts_alloc(unsigned long obj_exts,struct slabobj_ext * vec,unsigned int objects)1984 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1985 			struct slabobj_ext *vec, unsigned int objects)
1986 {
1987 	/*
1988 	 * If vector previously failed to allocate then we have live
1989 	 * objects with no tag reference. Mark all references in this
1990 	 * vector as empty to avoid warnings later on.
1991 	 */
1992 	if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1993 		unsigned int i;
1994 
1995 		for (i = 0; i < objects; i++)
1996 			set_codetag_empty(&vec[i].ref);
1997 	}
1998 }
1999 
2000 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
2001 
mark_objexts_empty(struct slabobj_ext * obj_exts)2002 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
mark_failed_objexts_alloc(struct slab * slab)2003 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
handle_failed_objexts_alloc(unsigned long obj_exts,struct slabobj_ext * vec,unsigned int objects)2004 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
2005 			struct slabobj_ext *vec, unsigned int objects) {}
2006 
2007 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
2008 
2009 /*
2010  * The allocated objcg pointers array is not accounted directly.
2011  * Moreover, it should not come from DMA buffer and is not readily
2012  * reclaimable. So those GFP bits should be masked off.
2013  */
2014 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | \
2015 				__GFP_ACCOUNT | __GFP_NOFAIL)
2016 
init_slab_obj_exts(struct slab * slab)2017 static inline void init_slab_obj_exts(struct slab *slab)
2018 {
2019 	slab->obj_exts = 0;
2020 }
2021 
alloc_slab_obj_exts(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2022 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2023 		        gfp_t gfp, bool new_slab)
2024 {
2025 	unsigned int objects = objs_per_slab(s, slab);
2026 	unsigned long new_exts;
2027 	unsigned long old_exts;
2028 	struct slabobj_ext *vec;
2029 
2030 	gfp &= ~OBJCGS_CLEAR_MASK;
2031 	/* Prevent recursive extension vector allocation */
2032 	gfp |= __GFP_NO_OBJ_EXT;
2033 	vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
2034 			   slab_nid(slab));
2035 	if (!vec) {
2036 		/* Mark vectors which failed to allocate */
2037 		if (new_slab)
2038 			mark_failed_objexts_alloc(slab);
2039 
2040 		return -ENOMEM;
2041 	}
2042 
2043 	new_exts = (unsigned long)vec;
2044 #ifdef CONFIG_MEMCG
2045 	new_exts |= MEMCG_DATA_OBJEXTS;
2046 #endif
2047 	old_exts = READ_ONCE(slab->obj_exts);
2048 	handle_failed_objexts_alloc(old_exts, vec, objects);
2049 	if (new_slab) {
2050 		/*
2051 		 * If the slab is brand new and nobody can yet access its
2052 		 * obj_exts, no synchronization is required and obj_exts can
2053 		 * be simply assigned.
2054 		 */
2055 		slab->obj_exts = new_exts;
2056 	} else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
2057 		   cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
2058 		/*
2059 		 * If the slab is already in use, somebody can allocate and
2060 		 * assign slabobj_exts in parallel. In this case the existing
2061 		 * objcg vector should be reused.
2062 		 */
2063 		mark_objexts_empty(vec);
2064 		kfree(vec);
2065 		return 0;
2066 	}
2067 
2068 	kmemleak_not_leak(vec);
2069 	return 0;
2070 }
2071 
2072 /* Should be called only if mem_alloc_profiling_enabled() */
free_slab_obj_exts(struct slab * slab)2073 static noinline void free_slab_obj_exts(struct slab *slab)
2074 {
2075 	struct slabobj_ext *obj_exts;
2076 
2077 	obj_exts = slab_obj_exts(slab);
2078 	if (!obj_exts)
2079 		return;
2080 
2081 	/*
2082 	 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2083 	 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2084 	 * warning if slab has extensions but the extension of an object is
2085 	 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2086 	 * the extension for obj_exts is expected to be NULL.
2087 	 */
2088 	mark_objexts_empty(obj_exts);
2089 	kfree(obj_exts);
2090 	slab->obj_exts = 0;
2091 }
2092 
2093 #else /* CONFIG_SLAB_OBJ_EXT */
2094 
init_slab_obj_exts(struct slab * slab)2095 static inline void init_slab_obj_exts(struct slab *slab)
2096 {
2097 }
2098 
alloc_slab_obj_exts(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2099 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2100 			       gfp_t gfp, bool new_slab)
2101 {
2102 	return 0;
2103 }
2104 
free_slab_obj_exts(struct slab * slab)2105 static inline void free_slab_obj_exts(struct slab *slab)
2106 {
2107 }
2108 
2109 #endif /* CONFIG_SLAB_OBJ_EXT */
2110 
2111 #ifdef CONFIG_MEM_ALLOC_PROFILING
2112 
2113 static inline struct slabobj_ext *
prepare_slab_obj_exts_hook(struct kmem_cache * s,gfp_t flags,void * p)2114 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2115 {
2116 	struct slab *slab;
2117 
2118 	if (!p)
2119 		return NULL;
2120 
2121 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2122 		return NULL;
2123 
2124 	if (flags & __GFP_NO_OBJ_EXT)
2125 		return NULL;
2126 
2127 	slab = virt_to_slab(p);
2128 	if (!slab_obj_exts(slab) &&
2129 	    alloc_slab_obj_exts(slab, s, flags, false)) {
2130 		pr_warn_once("%s, %s: Failed to create slab extension vector!\n",
2131 			     __func__, s->name);
2132 		return NULL;
2133 	}
2134 
2135 	return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2136 }
2137 
2138 /* Should be called only if mem_alloc_profiling_enabled() */
2139 static noinline void
__alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2140 __alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2141 {
2142 	struct slabobj_ext *obj_exts;
2143 
2144 	obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2145 	/*
2146 	 * Currently obj_exts is used only for allocation profiling.
2147 	 * If other users appear then mem_alloc_profiling_enabled()
2148 	 * check should be added before alloc_tag_add().
2149 	 */
2150 	if (likely(obj_exts))
2151 		alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2152 }
2153 
2154 static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2155 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2156 {
2157 	if (mem_alloc_profiling_enabled())
2158 		__alloc_tagging_slab_alloc_hook(s, object, flags);
2159 }
2160 
2161 /* Should be called only if mem_alloc_profiling_enabled() */
2162 static noinline void
__alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2163 __alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2164 			       int objects)
2165 {
2166 	struct slabobj_ext *obj_exts;
2167 	int i;
2168 
2169 	/* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2170 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2171 		return;
2172 
2173 	obj_exts = slab_obj_exts(slab);
2174 	if (!obj_exts)
2175 		return;
2176 
2177 	for (i = 0; i < objects; i++) {
2178 		unsigned int off = obj_to_index(s, slab, p[i]);
2179 
2180 		alloc_tag_sub(&obj_exts[off].ref, s->size);
2181 	}
2182 }
2183 
2184 static inline void
alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2185 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2186 			     int objects)
2187 {
2188 	if (mem_alloc_profiling_enabled())
2189 		__alloc_tagging_slab_free_hook(s, slab, p, objects);
2190 }
2191 
2192 #else /* CONFIG_MEM_ALLOC_PROFILING */
2193 
2194 static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2195 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2196 {
2197 }
2198 
2199 static inline void
alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2200 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2201 			     int objects)
2202 {
2203 }
2204 
2205 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2206 
2207 
2208 #ifdef CONFIG_MEMCG
2209 
2210 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2211 
2212 static __fastpath_inline
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2213 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2214 				gfp_t flags, size_t size, void **p)
2215 {
2216 	if (likely(!memcg_kmem_online()))
2217 		return true;
2218 
2219 	if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2220 		return true;
2221 
2222 	if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2223 		return true;
2224 
2225 	if (likely(size == 1)) {
2226 		memcg_alloc_abort_single(s, *p);
2227 		*p = NULL;
2228 	} else {
2229 		kmem_cache_free_bulk(s, size, p);
2230 	}
2231 
2232 	return false;
2233 }
2234 
2235 static __fastpath_inline
memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2236 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2237 			  int objects)
2238 {
2239 	struct slabobj_ext *obj_exts;
2240 
2241 	if (!memcg_kmem_online())
2242 		return;
2243 
2244 	obj_exts = slab_obj_exts(slab);
2245 	if (likely(!obj_exts))
2246 		return;
2247 
2248 	__memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2249 }
2250 
2251 static __fastpath_inline
memcg_slab_post_charge(void * p,gfp_t flags)2252 bool memcg_slab_post_charge(void *p, gfp_t flags)
2253 {
2254 	struct slabobj_ext *slab_exts;
2255 	struct kmem_cache *s;
2256 	struct folio *folio;
2257 	struct slab *slab;
2258 	unsigned long off;
2259 
2260 	folio = virt_to_folio(p);
2261 	if (!folio_test_slab(folio)) {
2262 		int size;
2263 
2264 		if (folio_memcg_kmem(folio))
2265 			return true;
2266 
2267 		if (__memcg_kmem_charge_page(folio_page(folio, 0), flags,
2268 					     folio_order(folio)))
2269 			return false;
2270 
2271 		/*
2272 		 * This folio has already been accounted in the global stats but
2273 		 * not in the memcg stats. So, subtract from the global and use
2274 		 * the interface which adds to both global and memcg stats.
2275 		 */
2276 		size = folio_size(folio);
2277 		node_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, -size);
2278 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, size);
2279 		return true;
2280 	}
2281 
2282 	slab = folio_slab(folio);
2283 	s = slab->slab_cache;
2284 
2285 	/*
2286 	 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2287 	 * of slab_obj_exts being allocated from the same slab and thus the slab
2288 	 * becoming effectively unfreeable.
2289 	 */
2290 	if (is_kmalloc_normal(s))
2291 		return true;
2292 
2293 	/* Ignore already charged objects. */
2294 	slab_exts = slab_obj_exts(slab);
2295 	if (slab_exts) {
2296 		off = obj_to_index(s, slab, p);
2297 		if (unlikely(slab_exts[off].objcg))
2298 			return true;
2299 	}
2300 
2301 	return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
2302 }
2303 
2304 #else /* CONFIG_MEMCG */
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2305 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2306 					      struct list_lru *lru,
2307 					      gfp_t flags, size_t size,
2308 					      void **p)
2309 {
2310 	return true;
2311 }
2312 
memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2313 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2314 					void **p, int objects)
2315 {
2316 }
2317 
memcg_slab_post_charge(void * p,gfp_t flags)2318 static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
2319 {
2320 	return true;
2321 }
2322 #endif /* CONFIG_MEMCG */
2323 
2324 #ifdef CONFIG_SLUB_RCU_DEBUG
2325 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
2326 
2327 struct rcu_delayed_free {
2328 	struct rcu_head head;
2329 	void *object;
2330 };
2331 #endif
2332 
2333 /*
2334  * Hooks for other subsystems that check memory allocations. In a typical
2335  * production configuration these hooks all should produce no code at all.
2336  *
2337  * Returns true if freeing of the object can proceed, false if its reuse
2338  * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2339  * to KFENCE.
2340  */
2341 static __always_inline
slab_free_hook(struct kmem_cache * s,void * x,bool init,bool after_rcu_delay)2342 bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
2343 		    bool after_rcu_delay)
2344 {
2345 	/* Are the object contents still accessible? */
2346 	bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
2347 
2348 	kmemleak_free_recursive(x, s->flags);
2349 	kmsan_slab_free(s, x);
2350 
2351 	debug_check_no_locks_freed(x, s->object_size);
2352 
2353 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
2354 		debug_check_no_obj_freed(x, s->object_size);
2355 
2356 	/* Use KCSAN to help debug racy use-after-free. */
2357 	if (!still_accessible)
2358 		__kcsan_check_access(x, s->object_size,
2359 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2360 
2361 	if (kfence_free(x))
2362 		return false;
2363 
2364 	/*
2365 	 * Give KASAN a chance to notice an invalid free operation before we
2366 	 * modify the object.
2367 	 */
2368 	if (kasan_slab_pre_free(s, x))
2369 		return false;
2370 
2371 #ifdef CONFIG_SLUB_RCU_DEBUG
2372 	if (still_accessible) {
2373 		struct rcu_delayed_free *delayed_free;
2374 
2375 		delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
2376 		if (delayed_free) {
2377 			/*
2378 			 * Let KASAN track our call stack as a "related work
2379 			 * creation", just like if the object had been freed
2380 			 * normally via kfree_rcu().
2381 			 * We have to do this manually because the rcu_head is
2382 			 * not located inside the object.
2383 			 */
2384 			kasan_record_aux_stack_noalloc(x);
2385 
2386 			delayed_free->object = x;
2387 			call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
2388 			return false;
2389 		}
2390 	}
2391 #endif /* CONFIG_SLUB_RCU_DEBUG */
2392 
2393 	/*
2394 	 * As memory initialization might be integrated into KASAN,
2395 	 * kasan_slab_free and initialization memset's must be
2396 	 * kept together to avoid discrepancies in behavior.
2397 	 *
2398 	 * The initialization memset's clear the object and the metadata,
2399 	 * but don't touch the SLAB redzone.
2400 	 *
2401 	 * The object's freepointer is also avoided if stored outside the
2402 	 * object.
2403 	 */
2404 	if (unlikely(init)) {
2405 		int rsize;
2406 		unsigned int inuse, orig_size;
2407 
2408 		inuse = get_info_end(s);
2409 		orig_size = get_orig_size(s, x);
2410 		if (!kasan_has_integrated_init())
2411 			memset(kasan_reset_tag(x), 0, orig_size);
2412 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2413 		memset((char *)kasan_reset_tag(x) + inuse, 0,
2414 		       s->size - inuse - rsize);
2415 		/*
2416 		 * Restore orig_size, otherwize kmalloc redzone overwritten
2417 		 * would be reported
2418 		 */
2419 		set_orig_size(s, x, orig_size);
2420 
2421 	}
2422 	/* KASAN might put x into memory quarantine, delaying its reuse. */
2423 	return !kasan_slab_free(s, x, init, still_accessible);
2424 }
2425 
2426 static __fastpath_inline
slab_free_freelist_hook(struct kmem_cache * s,void ** head,void ** tail,int * cnt)2427 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2428 			     int *cnt)
2429 {
2430 
2431 	void *object;
2432 	void *next = *head;
2433 	void *old_tail = *tail;
2434 	bool init;
2435 
2436 	if (is_kfence_address(next)) {
2437 		slab_free_hook(s, next, false, false);
2438 		return false;
2439 	}
2440 
2441 	/* Head and tail of the reconstructed freelist */
2442 	*head = NULL;
2443 	*tail = NULL;
2444 
2445 	init = slab_want_init_on_free(s);
2446 
2447 	do {
2448 		object = next;
2449 		next = get_freepointer(s, object);
2450 
2451 		/* If object's reuse doesn't have to be delayed */
2452 		if (likely(slab_free_hook(s, object, init, false))) {
2453 			/* Move object to the new freelist */
2454 			set_freepointer(s, object, *head);
2455 			*head = object;
2456 			if (!*tail)
2457 				*tail = object;
2458 		} else {
2459 			/*
2460 			 * Adjust the reconstructed freelist depth
2461 			 * accordingly if object's reuse is delayed.
2462 			 */
2463 			--(*cnt);
2464 		}
2465 	} while (object != old_tail);
2466 
2467 	return *head != NULL;
2468 }
2469 
setup_object(struct kmem_cache * s,void * object)2470 static void *setup_object(struct kmem_cache *s, void *object)
2471 {
2472 	setup_object_debug(s, object);
2473 	object = kasan_init_slab_obj(s, object);
2474 	if (unlikely(s->ctor)) {
2475 		kasan_unpoison_new_object(s, object);
2476 		s->ctor(object);
2477 		kasan_poison_new_object(s, object);
2478 	}
2479 	return object;
2480 }
2481 
2482 /*
2483  * Slab allocation and freeing
2484  */
alloc_slab_page(gfp_t flags,int node,struct kmem_cache_order_objects oo)2485 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2486 		struct kmem_cache_order_objects oo)
2487 {
2488 	struct folio *folio;
2489 	struct slab *slab;
2490 	unsigned int order = oo_order(oo);
2491 
2492 	if (node == NUMA_NO_NODE)
2493 		folio = (struct folio *)alloc_pages(flags, order);
2494 	else
2495 		folio = (struct folio *)__alloc_pages_node(node, flags, order);
2496 
2497 	if (!folio)
2498 		return NULL;
2499 
2500 	slab = folio_slab(folio);
2501 	__folio_set_slab(folio);
2502 	/* Make the flag visible before any changes to folio->mapping */
2503 	smp_wmb();
2504 	if (folio_is_pfmemalloc(folio))
2505 		slab_set_pfmemalloc(slab);
2506 
2507 	trace_android_vh_slab_folio_alloced(order, flags);
2508 
2509 	return slab;
2510 }
2511 
2512 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2513 /* Pre-initialize the random sequence cache */
init_cache_random_seq(struct kmem_cache * s)2514 static int init_cache_random_seq(struct kmem_cache *s)
2515 {
2516 	unsigned int count = oo_objects(s->oo);
2517 	int err;
2518 
2519 	/* Bailout if already initialised */
2520 	if (s->random_seq)
2521 		return 0;
2522 
2523 	err = cache_random_seq_create(s, count, GFP_KERNEL);
2524 	if (err) {
2525 		pr_err("SLUB: Unable to initialize free list for %s\n",
2526 			s->name);
2527 		return err;
2528 	}
2529 
2530 	/* Transform to an offset on the set of pages */
2531 	if (s->random_seq) {
2532 		unsigned int i;
2533 
2534 		for (i = 0; i < count; i++)
2535 			s->random_seq[i] *= s->size;
2536 	}
2537 	return 0;
2538 }
2539 
2540 /* Initialize each random sequence freelist per cache */
init_freelist_randomization(void)2541 static void __init init_freelist_randomization(void)
2542 {
2543 	struct kmem_cache *s;
2544 
2545 	mutex_lock(&slab_mutex);
2546 
2547 	list_for_each_entry(s, &slab_caches, list)
2548 		init_cache_random_seq(s);
2549 
2550 	mutex_unlock(&slab_mutex);
2551 }
2552 
2553 /* Get the next entry on the pre-computed freelist randomized */
next_freelist_entry(struct kmem_cache * s,unsigned long * pos,void * start,unsigned long page_limit,unsigned long freelist_count)2554 static void *next_freelist_entry(struct kmem_cache *s,
2555 				unsigned long *pos, void *start,
2556 				unsigned long page_limit,
2557 				unsigned long freelist_count)
2558 {
2559 	unsigned int idx;
2560 
2561 	/*
2562 	 * If the target page allocation failed, the number of objects on the
2563 	 * page might be smaller than the usual size defined by the cache.
2564 	 */
2565 	do {
2566 		idx = s->random_seq[*pos];
2567 		*pos += 1;
2568 		if (*pos >= freelist_count)
2569 			*pos = 0;
2570 	} while (unlikely(idx >= page_limit));
2571 
2572 	return (char *)start + idx;
2573 }
2574 
2575 /* Shuffle the single linked freelist based on a random pre-computed sequence */
shuffle_freelist(struct kmem_cache * s,struct slab * slab)2576 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2577 {
2578 	void *start;
2579 	void *cur;
2580 	void *next;
2581 	unsigned long idx, pos, page_limit, freelist_count;
2582 
2583 	if (slab->objects < 2 || !s->random_seq)
2584 		return false;
2585 
2586 	freelist_count = oo_objects(s->oo);
2587 	pos = get_random_u32_below(freelist_count);
2588 
2589 	page_limit = slab->objects * s->size;
2590 	start = fixup_red_left(s, slab_address(slab));
2591 
2592 	/* First entry is used as the base of the freelist */
2593 	cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2594 	cur = setup_object(s, cur);
2595 	slab->freelist = cur;
2596 
2597 	for (idx = 1; idx < slab->objects; idx++) {
2598 		next = next_freelist_entry(s, &pos, start, page_limit,
2599 			freelist_count);
2600 		next = setup_object(s, next);
2601 		set_freepointer(s, cur, next);
2602 		cur = next;
2603 	}
2604 	set_freepointer(s, cur, NULL);
2605 
2606 	return true;
2607 }
2608 #else
init_cache_random_seq(struct kmem_cache * s)2609 static inline int init_cache_random_seq(struct kmem_cache *s)
2610 {
2611 	return 0;
2612 }
init_freelist_randomization(void)2613 static inline void init_freelist_randomization(void) { }
shuffle_freelist(struct kmem_cache * s,struct slab * slab)2614 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2615 {
2616 	return false;
2617 }
2618 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2619 
account_slab(struct slab * slab,int order,struct kmem_cache * s,gfp_t gfp)2620 static __always_inline void account_slab(struct slab *slab, int order,
2621 					 struct kmem_cache *s, gfp_t gfp)
2622 {
2623 	if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2624 		alloc_slab_obj_exts(slab, s, gfp, true);
2625 
2626 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2627 			    PAGE_SIZE << order);
2628 }
2629 
unaccount_slab(struct slab * slab,int order,struct kmem_cache * s)2630 static __always_inline void unaccount_slab(struct slab *slab, int order,
2631 					   struct kmem_cache *s)
2632 {
2633 	/*
2634 	 * The slab object extensions should now be freed regardless of
2635 	 * whether mem_alloc_profiling_enabled() or not because profiling
2636 	 * might have been disabled after slab->obj_exts got allocated.
2637 	 */
2638 	free_slab_obj_exts(slab);
2639 
2640 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2641 			    -(PAGE_SIZE << order));
2642 }
2643 
allocate_slab(struct kmem_cache * s,gfp_t flags,int node)2644 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2645 {
2646 	struct slab *slab;
2647 	struct kmem_cache_order_objects oo = s->oo;
2648 	gfp_t alloc_gfp;
2649 	void *start, *p, *next;
2650 	int idx;
2651 	bool shuffle;
2652 
2653 	flags &= gfp_allowed_mask;
2654 
2655 	flags |= s->allocflags;
2656 
2657 	/*
2658 	 * Let the initial higher-order allocation fail under memory pressure
2659 	 * so we fall-back to the minimum order allocation.
2660 	 */
2661 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2662 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2663 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2664 
2665 	slab = alloc_slab_page(alloc_gfp, node, oo);
2666 	if (unlikely(!slab)) {
2667 		oo = s->min;
2668 		alloc_gfp = flags;
2669 		/*
2670 		 * Allocation may have failed due to fragmentation.
2671 		 * Try a lower order alloc if possible
2672 		 */
2673 		slab = alloc_slab_page(alloc_gfp, node, oo);
2674 		if (unlikely(!slab))
2675 			return NULL;
2676 		stat(s, ORDER_FALLBACK);
2677 	}
2678 
2679 	slab->objects = oo_objects(oo);
2680 	slab->inuse = 0;
2681 	slab->frozen = 0;
2682 	init_slab_obj_exts(slab);
2683 
2684 	account_slab(slab, oo_order(oo), s, flags);
2685 
2686 	slab->slab_cache = s;
2687 
2688 	kasan_poison_slab(slab);
2689 
2690 	start = slab_address(slab);
2691 
2692 	setup_slab_debug(s, slab, start);
2693 
2694 	shuffle = shuffle_freelist(s, slab);
2695 
2696 	if (!shuffle) {
2697 		start = fixup_red_left(s, start);
2698 		start = setup_object(s, start);
2699 		slab->freelist = start;
2700 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2701 			next = p + s->size;
2702 			next = setup_object(s, next);
2703 			set_freepointer(s, p, next);
2704 			p = next;
2705 		}
2706 		set_freepointer(s, p, NULL);
2707 	}
2708 
2709 	return slab;
2710 }
2711 
new_slab(struct kmem_cache * s,gfp_t flags,int node)2712 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2713 {
2714 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2715 		flags = kmalloc_fix_flags(flags);
2716 
2717 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2718 
2719 	return allocate_slab(s,
2720 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2721 }
2722 
__free_slab(struct kmem_cache * s,struct slab * slab)2723 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2724 {
2725 	struct folio *folio = slab_folio(slab);
2726 	int order = folio_order(folio);
2727 	int pages = 1 << order;
2728 
2729 	__slab_clear_pfmemalloc(slab);
2730 	folio->mapping = NULL;
2731 	/* Make the mapping reset visible before clearing the flag */
2732 	smp_wmb();
2733 	__folio_clear_slab(folio);
2734 	mm_account_reclaimed_pages(pages);
2735 	unaccount_slab(slab, order, s);
2736 	__free_pages(&folio->page, order);
2737 }
2738 
rcu_free_slab(struct rcu_head * h)2739 static void rcu_free_slab(struct rcu_head *h)
2740 {
2741 	struct slab *slab = container_of(h, struct slab, rcu_head);
2742 
2743 	__free_slab(slab->slab_cache, slab);
2744 }
2745 
free_slab(struct kmem_cache * s,struct slab * slab)2746 static void free_slab(struct kmem_cache *s, struct slab *slab)
2747 {
2748 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2749 		void *p;
2750 
2751 		slab_pad_check(s, slab);
2752 		for_each_object(p, s, slab_address(slab), slab->objects)
2753 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2754 	}
2755 
2756 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2757 		call_rcu(&slab->rcu_head, rcu_free_slab);
2758 	else
2759 		__free_slab(s, slab);
2760 }
2761 
discard_slab(struct kmem_cache * s,struct slab * slab)2762 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2763 {
2764 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2765 	free_slab(s, slab);
2766 }
2767 
2768 /*
2769  * SLUB reuses PG_workingset bit to keep track of whether it's on
2770  * the per-node partial list.
2771  */
slab_test_node_partial(const struct slab * slab)2772 static inline bool slab_test_node_partial(const struct slab *slab)
2773 {
2774 	return folio_test_workingset(slab_folio(slab));
2775 }
2776 
slab_set_node_partial(struct slab * slab)2777 static inline void slab_set_node_partial(struct slab *slab)
2778 {
2779 	set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2780 }
2781 
slab_clear_node_partial(struct slab * slab)2782 static inline void slab_clear_node_partial(struct slab *slab)
2783 {
2784 	clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2785 }
2786 
2787 /*
2788  * Management of partially allocated slabs.
2789  */
2790 static inline void
__add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)2791 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2792 {
2793 	n->nr_partial++;
2794 	if (tail == DEACTIVATE_TO_TAIL)
2795 		list_add_tail(&slab->slab_list, &n->partial);
2796 	else
2797 		list_add(&slab->slab_list, &n->partial);
2798 	slab_set_node_partial(slab);
2799 }
2800 
add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)2801 static inline void add_partial(struct kmem_cache_node *n,
2802 				struct slab *slab, int tail)
2803 {
2804 	lockdep_assert_held(&n->list_lock);
2805 	__add_partial(n, slab, tail);
2806 }
2807 
remove_partial(struct kmem_cache_node * n,struct slab * slab)2808 static inline void remove_partial(struct kmem_cache_node *n,
2809 					struct slab *slab)
2810 {
2811 	lockdep_assert_held(&n->list_lock);
2812 	list_del(&slab->slab_list);
2813 	slab_clear_node_partial(slab);
2814 	n->nr_partial--;
2815 }
2816 
2817 /*
2818  * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2819  * slab from the n->partial list. Remove only a single object from the slab, do
2820  * the alloc_debug_processing() checks and leave the slab on the list, or move
2821  * it to full list if it was the last free object.
2822  */
alloc_single_from_partial(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab,int orig_size)2823 static void *alloc_single_from_partial(struct kmem_cache *s,
2824 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2825 {
2826 	void *object;
2827 
2828 	lockdep_assert_held(&n->list_lock);
2829 
2830 	object = slab->freelist;
2831 	slab->freelist = get_freepointer(s, object);
2832 	slab->inuse++;
2833 
2834 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2835 		if (folio_test_slab(slab_folio(slab)))
2836 			remove_partial(n, slab);
2837 		return NULL;
2838 	}
2839 
2840 	if (slab->inuse == slab->objects) {
2841 		remove_partial(n, slab);
2842 		add_full(s, n, slab);
2843 	}
2844 
2845 	return object;
2846 }
2847 
2848 /*
2849  * Called only for kmem_cache_debug() caches to allocate from a freshly
2850  * allocated slab. Allocate a single object instead of whole freelist
2851  * and put the slab to the partial (or full) list.
2852  */
alloc_single_from_new_slab(struct kmem_cache * s,struct slab * slab,int orig_size)2853 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2854 					struct slab *slab, int orig_size)
2855 {
2856 	int nid = slab_nid(slab);
2857 	struct kmem_cache_node *n = get_node(s, nid);
2858 	unsigned long flags;
2859 	void *object;
2860 
2861 
2862 	object = slab->freelist;
2863 	slab->freelist = get_freepointer(s, object);
2864 	slab->inuse = 1;
2865 
2866 	if (!alloc_debug_processing(s, slab, object, orig_size))
2867 		/*
2868 		 * It's not really expected that this would fail on a
2869 		 * freshly allocated slab, but a concurrent memory
2870 		 * corruption in theory could cause that.
2871 		 */
2872 		return NULL;
2873 
2874 	spin_lock_irqsave(&n->list_lock, flags);
2875 
2876 	if (slab->inuse == slab->objects)
2877 		add_full(s, n, slab);
2878 	else
2879 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2880 
2881 	inc_slabs_node(s, nid, slab->objects);
2882 	spin_unlock_irqrestore(&n->list_lock, flags);
2883 
2884 	return object;
2885 }
2886 
2887 #ifdef CONFIG_SLUB_CPU_PARTIAL
2888 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2889 #else
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)2890 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2891 				   int drain) { }
2892 #endif
2893 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2894 
2895 /*
2896  * Try to allocate a partial slab from a specific node.
2897  */
get_partial_node(struct kmem_cache * s,struct kmem_cache_node * n,struct partial_context * pc)2898 static struct slab *get_partial_node(struct kmem_cache *s,
2899 				     struct kmem_cache_node *n,
2900 				     struct partial_context *pc)
2901 {
2902 	struct slab *slab, *slab2, *partial = NULL;
2903 	unsigned long flags;
2904 	unsigned int partial_slabs = 0;
2905 
2906 	/*
2907 	 * Racy check. If we mistakenly see no partial slabs then we
2908 	 * just allocate an empty slab. If we mistakenly try to get a
2909 	 * partial slab and there is none available then get_partial()
2910 	 * will return NULL.
2911 	 */
2912 	if (!n || !n->nr_partial)
2913 		return NULL;
2914 
2915 	spin_lock_irqsave(&n->list_lock, flags);
2916 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2917 		if (!pfmemalloc_match(slab, pc->flags))
2918 			continue;
2919 
2920 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2921 			void *object = alloc_single_from_partial(s, n, slab,
2922 							pc->orig_size);
2923 			if (object) {
2924 				partial = slab;
2925 				pc->object = object;
2926 				break;
2927 			}
2928 			continue;
2929 		}
2930 
2931 		remove_partial(n, slab);
2932 
2933 		if (!partial) {
2934 			partial = slab;
2935 			stat(s, ALLOC_FROM_PARTIAL);
2936 
2937 			if ((slub_get_cpu_partial(s) == 0)) {
2938 				break;
2939 			}
2940 		} else {
2941 			put_cpu_partial(s, slab, 0);
2942 			stat(s, CPU_PARTIAL_NODE);
2943 
2944 			if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2945 				break;
2946 			}
2947 		}
2948 	}
2949 	spin_unlock_irqrestore(&n->list_lock, flags);
2950 	return partial;
2951 }
2952 
2953 /*
2954  * Get a slab from somewhere. Search in increasing NUMA distances.
2955  */
get_any_partial(struct kmem_cache * s,struct partial_context * pc)2956 static struct slab *get_any_partial(struct kmem_cache *s,
2957 				    struct partial_context *pc)
2958 {
2959 #ifdef CONFIG_NUMA
2960 	struct zonelist *zonelist;
2961 	struct zoneref *z;
2962 	struct zone *zone;
2963 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2964 	struct slab *slab;
2965 	unsigned int cpuset_mems_cookie;
2966 
2967 	/*
2968 	 * The defrag ratio allows a configuration of the tradeoffs between
2969 	 * inter node defragmentation and node local allocations. A lower
2970 	 * defrag_ratio increases the tendency to do local allocations
2971 	 * instead of attempting to obtain partial slabs from other nodes.
2972 	 *
2973 	 * If the defrag_ratio is set to 0 then kmalloc() always
2974 	 * returns node local objects. If the ratio is higher then kmalloc()
2975 	 * may return off node objects because partial slabs are obtained
2976 	 * from other nodes and filled up.
2977 	 *
2978 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2979 	 * (which makes defrag_ratio = 1000) then every (well almost)
2980 	 * allocation will first attempt to defrag slab caches on other nodes.
2981 	 * This means scanning over all nodes to look for partial slabs which
2982 	 * may be expensive if we do it every time we are trying to find a slab
2983 	 * with available objects.
2984 	 */
2985 	if (!s->remote_node_defrag_ratio ||
2986 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2987 		return NULL;
2988 
2989 	do {
2990 		cpuset_mems_cookie = read_mems_allowed_begin();
2991 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2992 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2993 			struct kmem_cache_node *n;
2994 
2995 			n = get_node(s, zone_to_nid(zone));
2996 
2997 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2998 					n->nr_partial > s->min_partial) {
2999 				slab = get_partial_node(s, n, pc);
3000 				if (slab) {
3001 					/*
3002 					 * Don't check read_mems_allowed_retry()
3003 					 * here - if mems_allowed was updated in
3004 					 * parallel, that was a harmless race
3005 					 * between allocation and the cpuset
3006 					 * update
3007 					 */
3008 					return slab;
3009 				}
3010 			}
3011 		}
3012 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3013 #endif	/* CONFIG_NUMA */
3014 	return NULL;
3015 }
3016 
3017 /*
3018  * Get a partial slab, lock it and return it.
3019  */
get_partial(struct kmem_cache * s,int node,struct partial_context * pc)3020 static struct slab *get_partial(struct kmem_cache *s, int node,
3021 				struct partial_context *pc)
3022 {
3023 	struct slab *slab;
3024 	int searchnode = node;
3025 
3026 	if (node == NUMA_NO_NODE)
3027 		searchnode = numa_mem_id();
3028 
3029 	slab = get_partial_node(s, get_node(s, searchnode), pc);
3030 	if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
3031 		return slab;
3032 
3033 	return get_any_partial(s, pc);
3034 }
3035 
3036 #ifndef CONFIG_SLUB_TINY
3037 
3038 #ifdef CONFIG_PREEMPTION
3039 /*
3040  * Calculate the next globally unique transaction for disambiguation
3041  * during cmpxchg. The transactions start with the cpu number and are then
3042  * incremented by CONFIG_NR_CPUS.
3043  */
3044 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
3045 #else
3046 /*
3047  * No preemption supported therefore also no need to check for
3048  * different cpus.
3049  */
3050 #define TID_STEP 1
3051 #endif /* CONFIG_PREEMPTION */
3052 
next_tid(unsigned long tid)3053 static inline unsigned long next_tid(unsigned long tid)
3054 {
3055 	return tid + TID_STEP;
3056 }
3057 
3058 #ifdef SLUB_DEBUG_CMPXCHG
tid_to_cpu(unsigned long tid)3059 static inline unsigned int tid_to_cpu(unsigned long tid)
3060 {
3061 	return tid % TID_STEP;
3062 }
3063 
tid_to_event(unsigned long tid)3064 static inline unsigned long tid_to_event(unsigned long tid)
3065 {
3066 	return tid / TID_STEP;
3067 }
3068 #endif
3069 
init_tid(int cpu)3070 static inline unsigned int init_tid(int cpu)
3071 {
3072 	return cpu;
3073 }
3074 
note_cmpxchg_failure(const char * n,const struct kmem_cache * s,unsigned long tid)3075 static inline void note_cmpxchg_failure(const char *n,
3076 		const struct kmem_cache *s, unsigned long tid)
3077 {
3078 #ifdef SLUB_DEBUG_CMPXCHG
3079 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
3080 
3081 	pr_info("%s %s: cmpxchg redo ", n, s->name);
3082 
3083 #ifdef CONFIG_PREEMPTION
3084 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
3085 		pr_warn("due to cpu change %d -> %d\n",
3086 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
3087 	else
3088 #endif
3089 	if (tid_to_event(tid) != tid_to_event(actual_tid))
3090 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
3091 			tid_to_event(tid), tid_to_event(actual_tid));
3092 	else
3093 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3094 			actual_tid, tid, next_tid(tid));
3095 #endif
3096 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
3097 }
3098 
init_kmem_cache_cpus(struct kmem_cache * s)3099 static void init_kmem_cache_cpus(struct kmem_cache *s)
3100 {
3101 	int cpu;
3102 	struct kmem_cache_cpu *c;
3103 
3104 	for_each_possible_cpu(cpu) {
3105 		c = per_cpu_ptr(s->cpu_slab, cpu);
3106 		local_lock_init(&c->lock);
3107 		c->tid = init_tid(cpu);
3108 	}
3109 }
3110 
3111 /*
3112  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3113  * unfreezes the slabs and puts it on the proper list.
3114  * Assumes the slab has been already safely taken away from kmem_cache_cpu
3115  * by the caller.
3116  */
deactivate_slab(struct kmem_cache * s,struct slab * slab,void * freelist)3117 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
3118 			    void *freelist)
3119 {
3120 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3121 	int free_delta = 0;
3122 	void *nextfree, *freelist_iter, *freelist_tail;
3123 	int tail = DEACTIVATE_TO_HEAD;
3124 	unsigned long flags = 0;
3125 	struct slab new;
3126 	struct slab old;
3127 
3128 	if (READ_ONCE(slab->freelist)) {
3129 		stat(s, DEACTIVATE_REMOTE_FREES);
3130 		tail = DEACTIVATE_TO_TAIL;
3131 	}
3132 
3133 	/*
3134 	 * Stage one: Count the objects on cpu's freelist as free_delta and
3135 	 * remember the last object in freelist_tail for later splicing.
3136 	 */
3137 	freelist_tail = NULL;
3138 	freelist_iter = freelist;
3139 	while (freelist_iter) {
3140 		nextfree = get_freepointer(s, freelist_iter);
3141 
3142 		/*
3143 		 * If 'nextfree' is invalid, it is possible that the object at
3144 		 * 'freelist_iter' is already corrupted.  So isolate all objects
3145 		 * starting at 'freelist_iter' by skipping them.
3146 		 */
3147 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
3148 			break;
3149 
3150 		freelist_tail = freelist_iter;
3151 		free_delta++;
3152 
3153 		freelist_iter = nextfree;
3154 	}
3155 
3156 	/*
3157 	 * Stage two: Unfreeze the slab while splicing the per-cpu
3158 	 * freelist to the head of slab's freelist.
3159 	 */
3160 	do {
3161 		old.freelist = READ_ONCE(slab->freelist);
3162 		old.counters = READ_ONCE(slab->counters);
3163 		VM_BUG_ON(!old.frozen);
3164 
3165 		/* Determine target state of the slab */
3166 		new.counters = old.counters;
3167 		new.frozen = 0;
3168 		if (freelist_tail) {
3169 			new.inuse -= free_delta;
3170 			set_freepointer(s, freelist_tail, old.freelist);
3171 			new.freelist = freelist;
3172 		} else {
3173 			new.freelist = old.freelist;
3174 		}
3175 	} while (!slab_update_freelist(s, slab,
3176 		old.freelist, old.counters,
3177 		new.freelist, new.counters,
3178 		"unfreezing slab"));
3179 
3180 	/*
3181 	 * Stage three: Manipulate the slab list based on the updated state.
3182 	 */
3183 	if (!new.inuse && n->nr_partial >= s->min_partial) {
3184 		stat(s, DEACTIVATE_EMPTY);
3185 		discard_slab(s, slab);
3186 		stat(s, FREE_SLAB);
3187 	} else if (new.freelist) {
3188 		spin_lock_irqsave(&n->list_lock, flags);
3189 		add_partial(n, slab, tail);
3190 		spin_unlock_irqrestore(&n->list_lock, flags);
3191 		stat(s, tail);
3192 	} else {
3193 		stat(s, DEACTIVATE_FULL);
3194 	}
3195 }
3196 
3197 #ifdef CONFIG_SLUB_CPU_PARTIAL
__put_partials(struct kmem_cache * s,struct slab * partial_slab)3198 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3199 {
3200 	struct kmem_cache_node *n = NULL, *n2 = NULL;
3201 	struct slab *slab, *slab_to_discard = NULL;
3202 	unsigned long flags = 0;
3203 
3204 	while (partial_slab) {
3205 		slab = partial_slab;
3206 		partial_slab = slab->next;
3207 
3208 		n2 = get_node(s, slab_nid(slab));
3209 		if (n != n2) {
3210 			if (n)
3211 				spin_unlock_irqrestore(&n->list_lock, flags);
3212 
3213 			n = n2;
3214 			spin_lock_irqsave(&n->list_lock, flags);
3215 		}
3216 
3217 		if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3218 			slab->next = slab_to_discard;
3219 			slab_to_discard = slab;
3220 		} else {
3221 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
3222 			stat(s, FREE_ADD_PARTIAL);
3223 		}
3224 	}
3225 
3226 	if (n)
3227 		spin_unlock_irqrestore(&n->list_lock, flags);
3228 
3229 	while (slab_to_discard) {
3230 		slab = slab_to_discard;
3231 		slab_to_discard = slab_to_discard->next;
3232 
3233 		stat(s, DEACTIVATE_EMPTY);
3234 		discard_slab(s, slab);
3235 		stat(s, FREE_SLAB);
3236 	}
3237 }
3238 
3239 /*
3240  * Put all the cpu partial slabs to the node partial list.
3241  */
put_partials(struct kmem_cache * s)3242 static void put_partials(struct kmem_cache *s)
3243 {
3244 	struct slab *partial_slab;
3245 	unsigned long flags;
3246 
3247 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3248 	partial_slab = this_cpu_read(s->cpu_slab->partial);
3249 	this_cpu_write(s->cpu_slab->partial, NULL);
3250 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3251 
3252 	if (partial_slab)
3253 		__put_partials(s, partial_slab);
3254 }
3255 
put_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)3256 static void put_partials_cpu(struct kmem_cache *s,
3257 			     struct kmem_cache_cpu *c)
3258 {
3259 	struct slab *partial_slab;
3260 
3261 	partial_slab = slub_percpu_partial(c);
3262 	c->partial = NULL;
3263 
3264 	if (partial_slab)
3265 		__put_partials(s, partial_slab);
3266 }
3267 
3268 /*
3269  * Put a slab into a partial slab slot if available.
3270  *
3271  * If we did not find a slot then simply move all the partials to the
3272  * per node partial list.
3273  */
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)3274 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3275 {
3276 	struct slab *oldslab;
3277 	struct slab *slab_to_put = NULL;
3278 	unsigned long flags;
3279 	int slabs = 0;
3280 
3281 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3282 
3283 	oldslab = this_cpu_read(s->cpu_slab->partial);
3284 
3285 	if (oldslab) {
3286 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3287 			/*
3288 			 * Partial array is full. Move the existing set to the
3289 			 * per node partial list. Postpone the actual unfreezing
3290 			 * outside of the critical section.
3291 			 */
3292 			slab_to_put = oldslab;
3293 			oldslab = NULL;
3294 		} else {
3295 			slabs = oldslab->slabs;
3296 		}
3297 	}
3298 
3299 	slabs++;
3300 
3301 	slab->slabs = slabs;
3302 	slab->next = oldslab;
3303 
3304 	this_cpu_write(s->cpu_slab->partial, slab);
3305 
3306 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3307 
3308 	if (slab_to_put) {
3309 		__put_partials(s, slab_to_put);
3310 		stat(s, CPU_PARTIAL_DRAIN);
3311 	}
3312 }
3313 
3314 #else	/* CONFIG_SLUB_CPU_PARTIAL */
3315 
put_partials(struct kmem_cache * s)3316 static inline void put_partials(struct kmem_cache *s) { }
put_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)3317 static inline void put_partials_cpu(struct kmem_cache *s,
3318 				    struct kmem_cache_cpu *c) { }
3319 
3320 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
3321 
flush_slab(struct kmem_cache * s,struct kmem_cache_cpu * c)3322 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3323 {
3324 	unsigned long flags;
3325 	struct slab *slab;
3326 	void *freelist;
3327 
3328 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3329 
3330 	slab = c->slab;
3331 	freelist = c->freelist;
3332 
3333 	c->slab = NULL;
3334 	c->freelist = NULL;
3335 	c->tid = next_tid(c->tid);
3336 
3337 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3338 
3339 	if (slab) {
3340 		deactivate_slab(s, slab, freelist);
3341 		stat(s, CPUSLAB_FLUSH);
3342 	}
3343 }
3344 
__flush_cpu_slab(struct kmem_cache * s,int cpu)3345 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3346 {
3347 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3348 	void *freelist = c->freelist;
3349 	struct slab *slab = c->slab;
3350 
3351 	c->slab = NULL;
3352 	c->freelist = NULL;
3353 	c->tid = next_tid(c->tid);
3354 
3355 	if (slab) {
3356 		deactivate_slab(s, slab, freelist);
3357 		stat(s, CPUSLAB_FLUSH);
3358 	}
3359 
3360 	put_partials_cpu(s, c);
3361 }
3362 
3363 struct slub_flush_work {
3364 	struct work_struct work;
3365 	struct kmem_cache *s;
3366 	bool skip;
3367 };
3368 
3369 /*
3370  * Flush cpu slab.
3371  *
3372  * Called from CPU work handler with migration disabled.
3373  */
flush_cpu_slab(struct work_struct * w)3374 static void flush_cpu_slab(struct work_struct *w)
3375 {
3376 	struct kmem_cache *s;
3377 	struct kmem_cache_cpu *c;
3378 	struct slub_flush_work *sfw;
3379 
3380 	sfw = container_of(w, struct slub_flush_work, work);
3381 
3382 	s = sfw->s;
3383 	c = this_cpu_ptr(s->cpu_slab);
3384 
3385 	if (c->slab)
3386 		flush_slab(s, c);
3387 
3388 	put_partials(s);
3389 }
3390 
has_cpu_slab(int cpu,struct kmem_cache * s)3391 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3392 {
3393 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3394 
3395 	return c->slab || slub_percpu_partial(c);
3396 }
3397 
3398 static DEFINE_MUTEX(flush_lock);
3399 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3400 
flush_all_cpus_locked(struct kmem_cache * s)3401 static void flush_all_cpus_locked(struct kmem_cache *s)
3402 {
3403 	struct slub_flush_work *sfw;
3404 	unsigned int cpu;
3405 
3406 	lockdep_assert_cpus_held();
3407 	mutex_lock(&flush_lock);
3408 
3409 	for_each_online_cpu(cpu) {
3410 		sfw = &per_cpu(slub_flush, cpu);
3411 		if (!has_cpu_slab(cpu, s)) {
3412 			sfw->skip = true;
3413 			continue;
3414 		}
3415 		INIT_WORK(&sfw->work, flush_cpu_slab);
3416 		sfw->skip = false;
3417 		sfw->s = s;
3418 		queue_work_on(cpu, flushwq, &sfw->work);
3419 	}
3420 
3421 	for_each_online_cpu(cpu) {
3422 		sfw = &per_cpu(slub_flush, cpu);
3423 		if (sfw->skip)
3424 			continue;
3425 		flush_work(&sfw->work);
3426 	}
3427 
3428 	mutex_unlock(&flush_lock);
3429 }
3430 
flush_all(struct kmem_cache * s)3431 static void flush_all(struct kmem_cache *s)
3432 {
3433 	cpus_read_lock();
3434 	flush_all_cpus_locked(s);
3435 	cpus_read_unlock();
3436 }
3437 
3438 /*
3439  * Use the cpu notifier to insure that the cpu slabs are flushed when
3440  * necessary.
3441  */
slub_cpu_dead(unsigned int cpu)3442 static int slub_cpu_dead(unsigned int cpu)
3443 {
3444 	struct kmem_cache *s;
3445 
3446 	mutex_lock(&slab_mutex);
3447 	list_for_each_entry(s, &slab_caches, list)
3448 		__flush_cpu_slab(s, cpu);
3449 	mutex_unlock(&slab_mutex);
3450 	return 0;
3451 }
3452 
3453 #else /* CONFIG_SLUB_TINY */
flush_all_cpus_locked(struct kmem_cache * s)3454 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
flush_all(struct kmem_cache * s)3455 static inline void flush_all(struct kmem_cache *s) { }
__flush_cpu_slab(struct kmem_cache * s,int cpu)3456 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
slub_cpu_dead(unsigned int cpu)3457 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3458 #endif /* CONFIG_SLUB_TINY */
3459 
3460 /*
3461  * Check if the objects in a per cpu structure fit numa
3462  * locality expectations.
3463  */
node_match(struct slab * slab,int node)3464 static inline int node_match(struct slab *slab, int node)
3465 {
3466 #ifdef CONFIG_NUMA
3467 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3468 		return 0;
3469 #endif
3470 	return 1;
3471 }
3472 
3473 #ifdef CONFIG_SLUB_DEBUG
count_free(struct slab * slab)3474 static int count_free(struct slab *slab)
3475 {
3476 	return slab->objects - slab->inuse;
3477 }
3478 
node_nr_objs(struct kmem_cache_node * n)3479 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3480 {
3481 	return atomic_long_read(&n->total_objects);
3482 }
3483 
3484 /* Supports checking bulk free of a constructed freelist */
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)3485 static inline bool free_debug_processing(struct kmem_cache *s,
3486 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
3487 	unsigned long addr, depot_stack_handle_t handle)
3488 {
3489 	bool checks_ok = false;
3490 	void *object = head;
3491 	int cnt = 0;
3492 
3493 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3494 		if (!check_slab(s, slab))
3495 			goto out;
3496 	}
3497 
3498 	if (slab->inuse < *bulk_cnt) {
3499 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3500 			 slab->inuse, *bulk_cnt);
3501 		goto out;
3502 	}
3503 
3504 next_object:
3505 
3506 	if (++cnt > *bulk_cnt)
3507 		goto out_cnt;
3508 
3509 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3510 		if (!free_consistency_checks(s, slab, object, addr))
3511 			goto out;
3512 	}
3513 
3514 	if (s->flags & SLAB_STORE_USER)
3515 		set_track_update(s, object, TRACK_FREE, addr, handle);
3516 	trace(s, slab, object, 0);
3517 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3518 	init_object(s, object, SLUB_RED_INACTIVE);
3519 
3520 	/* Reached end of constructed freelist yet? */
3521 	if (object != tail) {
3522 		object = get_freepointer(s, object);
3523 		goto next_object;
3524 	}
3525 	checks_ok = true;
3526 
3527 out_cnt:
3528 	if (cnt != *bulk_cnt) {
3529 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3530 			 *bulk_cnt, cnt);
3531 		*bulk_cnt = cnt;
3532 	}
3533 
3534 out:
3535 
3536 	if (!checks_ok)
3537 		slab_fix(s, "Object at 0x%p not freed", object);
3538 
3539 	return checks_ok;
3540 }
3541 #endif /* CONFIG_SLUB_DEBUG */
3542 
3543 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
count_partial(struct kmem_cache_node * n,int (* get_count)(struct slab *))3544 static unsigned long count_partial(struct kmem_cache_node *n,
3545 					int (*get_count)(struct slab *))
3546 {
3547 	unsigned long flags;
3548 	unsigned long x = 0;
3549 	struct slab *slab;
3550 
3551 	spin_lock_irqsave(&n->list_lock, flags);
3552 	list_for_each_entry(slab, &n->partial, slab_list)
3553 		x += get_count(slab);
3554 	spin_unlock_irqrestore(&n->list_lock, flags);
3555 	return x;
3556 }
3557 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3558 
3559 #ifdef CONFIG_SLUB_DEBUG
3560 #define MAX_PARTIAL_TO_SCAN 10000
3561 
count_partial_free_approx(struct kmem_cache_node * n)3562 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3563 {
3564 	unsigned long flags;
3565 	unsigned long x = 0;
3566 	struct slab *slab;
3567 
3568 	spin_lock_irqsave(&n->list_lock, flags);
3569 	if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3570 		list_for_each_entry(slab, &n->partial, slab_list)
3571 			x += slab->objects - slab->inuse;
3572 	} else {
3573 		/*
3574 		 * For a long list, approximate the total count of objects in
3575 		 * it to meet the limit on the number of slabs to scan.
3576 		 * Scan from both the list's head and tail for better accuracy.
3577 		 */
3578 		unsigned long scanned = 0;
3579 
3580 		list_for_each_entry(slab, &n->partial, slab_list) {
3581 			x += slab->objects - slab->inuse;
3582 			if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3583 				break;
3584 		}
3585 		list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3586 			x += slab->objects - slab->inuse;
3587 			if (++scanned == MAX_PARTIAL_TO_SCAN)
3588 				break;
3589 		}
3590 		x = mult_frac(x, n->nr_partial, scanned);
3591 		x = min(x, node_nr_objs(n));
3592 	}
3593 	spin_unlock_irqrestore(&n->list_lock, flags);
3594 	return x;
3595 }
3596 
3597 static noinline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)3598 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3599 {
3600 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3601 				      DEFAULT_RATELIMIT_BURST);
3602 	int cpu = raw_smp_processor_id();
3603 	int node;
3604 	struct kmem_cache_node *n;
3605 
3606 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3607 		return;
3608 
3609 	pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
3610 		cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
3611 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3612 		s->name, s->object_size, s->size, oo_order(s->oo),
3613 		oo_order(s->min));
3614 
3615 	if (oo_order(s->min) > get_order(s->object_size))
3616 		pr_warn("  %s debugging increased min order, use slab_debug=O to disable.\n",
3617 			s->name);
3618 
3619 	for_each_kmem_cache_node(s, node, n) {
3620 		unsigned long nr_slabs;
3621 		unsigned long nr_objs;
3622 		unsigned long nr_free;
3623 
3624 		nr_free  = count_partial_free_approx(n);
3625 		nr_slabs = node_nr_slabs(n);
3626 		nr_objs  = node_nr_objs(n);
3627 
3628 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
3629 			node, nr_slabs, nr_objs, nr_free);
3630 	}
3631 }
3632 #else /* CONFIG_SLUB_DEBUG */
3633 static inline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)3634 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3635 #endif
3636 
pfmemalloc_match(struct slab * slab,gfp_t gfpflags)3637 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3638 {
3639 	if (unlikely(slab_test_pfmemalloc(slab)))
3640 		return gfp_pfmemalloc_allowed(gfpflags);
3641 
3642 	return true;
3643 }
3644 
3645 #ifndef CONFIG_SLUB_TINY
3646 static inline bool
__update_cpu_freelist_fast(struct kmem_cache * s,void * freelist_old,void * freelist_new,unsigned long tid)3647 __update_cpu_freelist_fast(struct kmem_cache *s,
3648 			   void *freelist_old, void *freelist_new,
3649 			   unsigned long tid)
3650 {
3651 	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3652 	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3653 
3654 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3655 					     &old.full, new.full);
3656 }
3657 
3658 /*
3659  * Check the slab->freelist and either transfer the freelist to the
3660  * per cpu freelist or deactivate the slab.
3661  *
3662  * The slab is still frozen if the return value is not NULL.
3663  *
3664  * If this function returns NULL then the slab has been unfrozen.
3665  */
get_freelist(struct kmem_cache * s,struct slab * slab)3666 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3667 {
3668 	struct slab new;
3669 	unsigned long counters;
3670 	void *freelist;
3671 
3672 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3673 
3674 	do {
3675 		freelist = slab->freelist;
3676 		counters = slab->counters;
3677 
3678 		new.counters = counters;
3679 
3680 		new.inuse = slab->objects;
3681 		new.frozen = freelist != NULL;
3682 
3683 	} while (!__slab_update_freelist(s, slab,
3684 		freelist, counters,
3685 		NULL, new.counters,
3686 		"get_freelist"));
3687 
3688 	return freelist;
3689 }
3690 
3691 /*
3692  * Freeze the partial slab and return the pointer to the freelist.
3693  */
freeze_slab(struct kmem_cache * s,struct slab * slab)3694 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3695 {
3696 	struct slab new;
3697 	unsigned long counters;
3698 	void *freelist;
3699 
3700 	do {
3701 		freelist = slab->freelist;
3702 		counters = slab->counters;
3703 
3704 		new.counters = counters;
3705 		VM_BUG_ON(new.frozen);
3706 
3707 		new.inuse = slab->objects;
3708 		new.frozen = 1;
3709 
3710 	} while (!slab_update_freelist(s, slab,
3711 		freelist, counters,
3712 		NULL, new.counters,
3713 		"freeze_slab"));
3714 
3715 	return freelist;
3716 }
3717 
3718 /*
3719  * Slow path. The lockless freelist is empty or we need to perform
3720  * debugging duties.
3721  *
3722  * Processing is still very fast if new objects have been freed to the
3723  * regular freelist. In that case we simply take over the regular freelist
3724  * as the lockless freelist and zap the regular freelist.
3725  *
3726  * If that is not working then we fall back to the partial lists. We take the
3727  * first element of the freelist as the object to allocate now and move the
3728  * rest of the freelist to the lockless freelist.
3729  *
3730  * And if we were unable to get a new slab from the partial slab lists then
3731  * we need to allocate a new slab. This is the slowest path since it involves
3732  * a call to the page allocator and the setup of a new slab.
3733  *
3734  * Version of __slab_alloc to use when we know that preemption is
3735  * already disabled (which is the case for bulk allocation).
3736  */
___slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)3737 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3738 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3739 {
3740 	void *freelist;
3741 	struct slab *slab;
3742 	unsigned long flags;
3743 	struct partial_context pc;
3744 	bool try_thisnode = true;
3745 
3746 	stat(s, ALLOC_SLOWPATH);
3747 
3748 reread_slab:
3749 
3750 	slab = READ_ONCE(c->slab);
3751 	if (!slab) {
3752 		/*
3753 		 * if the node is not online or has no normal memory, just
3754 		 * ignore the node constraint
3755 		 */
3756 		if (unlikely(node != NUMA_NO_NODE &&
3757 			     !node_isset(node, slab_nodes)))
3758 			node = NUMA_NO_NODE;
3759 		goto new_slab;
3760 	}
3761 
3762 	if (unlikely(!node_match(slab, node))) {
3763 		/*
3764 		 * same as above but node_match() being false already
3765 		 * implies node != NUMA_NO_NODE
3766 		 */
3767 		if (!node_isset(node, slab_nodes)) {
3768 			node = NUMA_NO_NODE;
3769 		} else {
3770 			stat(s, ALLOC_NODE_MISMATCH);
3771 			goto deactivate_slab;
3772 		}
3773 	}
3774 
3775 	/*
3776 	 * By rights, we should be searching for a slab page that was
3777 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3778 	 * information when the page leaves the per-cpu allocator
3779 	 */
3780 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3781 		goto deactivate_slab;
3782 
3783 	/* must check again c->slab in case we got preempted and it changed */
3784 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3785 	if (unlikely(slab != c->slab)) {
3786 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3787 		goto reread_slab;
3788 	}
3789 	freelist = c->freelist;
3790 	if (freelist)
3791 		goto load_freelist;
3792 
3793 	freelist = get_freelist(s, slab);
3794 
3795 	if (!freelist) {
3796 		c->slab = NULL;
3797 		c->tid = next_tid(c->tid);
3798 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3799 		stat(s, DEACTIVATE_BYPASS);
3800 		goto new_slab;
3801 	}
3802 
3803 	stat(s, ALLOC_REFILL);
3804 
3805 load_freelist:
3806 
3807 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3808 
3809 	/*
3810 	 * freelist is pointing to the list of objects to be used.
3811 	 * slab is pointing to the slab from which the objects are obtained.
3812 	 * That slab must be frozen for per cpu allocations to work.
3813 	 */
3814 	VM_BUG_ON(!c->slab->frozen);
3815 	c->freelist = get_freepointer(s, freelist);
3816 	c->tid = next_tid(c->tid);
3817 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3818 	return freelist;
3819 
3820 deactivate_slab:
3821 
3822 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3823 	if (slab != c->slab) {
3824 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3825 		goto reread_slab;
3826 	}
3827 	freelist = c->freelist;
3828 	c->slab = NULL;
3829 	c->freelist = NULL;
3830 	c->tid = next_tid(c->tid);
3831 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3832 	deactivate_slab(s, slab, freelist);
3833 
3834 new_slab:
3835 
3836 #ifdef CONFIG_SLUB_CPU_PARTIAL
3837 	while (slub_percpu_partial(c)) {
3838 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3839 		if (unlikely(c->slab)) {
3840 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3841 			goto reread_slab;
3842 		}
3843 		if (unlikely(!slub_percpu_partial(c))) {
3844 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3845 			/* we were preempted and partial list got empty */
3846 			goto new_objects;
3847 		}
3848 
3849 		slab = slub_percpu_partial(c);
3850 		slub_set_percpu_partial(c, slab);
3851 
3852 		if (likely(node_match(slab, node) &&
3853 			   pfmemalloc_match(slab, gfpflags))) {
3854 			c->slab = slab;
3855 			freelist = get_freelist(s, slab);
3856 			VM_BUG_ON(!freelist);
3857 			stat(s, CPU_PARTIAL_ALLOC);
3858 			goto load_freelist;
3859 		}
3860 
3861 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3862 
3863 		slab->next = NULL;
3864 		__put_partials(s, slab);
3865 	}
3866 #endif
3867 
3868 new_objects:
3869 
3870 	pc.flags = gfpflags;
3871 	/*
3872 	 * When a preferred node is indicated but no __GFP_THISNODE
3873 	 *
3874 	 * 1) try to get a partial slab from target node only by having
3875 	 *    __GFP_THISNODE in pc.flags for get_partial()
3876 	 * 2) if 1) failed, try to allocate a new slab from target node with
3877 	 *    GPF_NOWAIT | __GFP_THISNODE opportunistically
3878 	 * 3) if 2) failed, retry with original gfpflags which will allow
3879 	 *    get_partial() try partial lists of other nodes before potentially
3880 	 *    allocating new page from other nodes
3881 	 */
3882 	if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3883 		     && try_thisnode))
3884 		pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3885 
3886 	pc.orig_size = orig_size;
3887 	slab = get_partial(s, node, &pc);
3888 	if (slab) {
3889 		if (kmem_cache_debug(s)) {
3890 			freelist = pc.object;
3891 			/*
3892 			 * For debug caches here we had to go through
3893 			 * alloc_single_from_partial() so just store the
3894 			 * tracking info and return the object.
3895 			 *
3896 			 * Due to disabled preemption we need to disallow
3897 			 * blocking. The flags are further adjusted by
3898 			 * gfp_nested_mask() in stack_depot itself.
3899 			 */
3900 			if (s->flags & SLAB_STORE_USER)
3901 				set_track(s, freelist, TRACK_ALLOC, addr,
3902 					  gfpflags & ~(__GFP_DIRECT_RECLAIM));
3903 
3904 			return freelist;
3905 		}
3906 
3907 		freelist = freeze_slab(s, slab);
3908 		goto retry_load_slab;
3909 	}
3910 
3911 	slub_put_cpu_ptr(s->cpu_slab);
3912 	slab = new_slab(s, pc.flags, node);
3913 	c = slub_get_cpu_ptr(s->cpu_slab);
3914 
3915 	if (unlikely(!slab)) {
3916 		if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3917 		    && try_thisnode) {
3918 			try_thisnode = false;
3919 			goto new_objects;
3920 		}
3921 		slab_out_of_memory(s, gfpflags, node);
3922 		return NULL;
3923 	}
3924 
3925 	stat(s, ALLOC_SLAB);
3926 
3927 	if (kmem_cache_debug(s)) {
3928 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3929 
3930 		if (unlikely(!freelist))
3931 			goto new_objects;
3932 
3933 		if (s->flags & SLAB_STORE_USER)
3934 			set_track(s, freelist, TRACK_ALLOC, addr,
3935 				  gfpflags & ~(__GFP_DIRECT_RECLAIM));
3936 
3937 		return freelist;
3938 	}
3939 
3940 	/*
3941 	 * No other reference to the slab yet so we can
3942 	 * muck around with it freely without cmpxchg
3943 	 */
3944 	freelist = slab->freelist;
3945 	slab->freelist = NULL;
3946 	slab->inuse = slab->objects;
3947 	slab->frozen = 1;
3948 
3949 	inc_slabs_node(s, slab_nid(slab), slab->objects);
3950 
3951 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3952 		/*
3953 		 * For !pfmemalloc_match() case we don't load freelist so that
3954 		 * we don't make further mismatched allocations easier.
3955 		 */
3956 		deactivate_slab(s, slab, get_freepointer(s, freelist));
3957 		return freelist;
3958 	}
3959 
3960 retry_load_slab:
3961 
3962 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3963 	if (unlikely(c->slab)) {
3964 		void *flush_freelist = c->freelist;
3965 		struct slab *flush_slab = c->slab;
3966 
3967 		c->slab = NULL;
3968 		c->freelist = NULL;
3969 		c->tid = next_tid(c->tid);
3970 
3971 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3972 
3973 		deactivate_slab(s, flush_slab, flush_freelist);
3974 
3975 		stat(s, CPUSLAB_FLUSH);
3976 
3977 		goto retry_load_slab;
3978 	}
3979 	c->slab = slab;
3980 
3981 	goto load_freelist;
3982 }
3983 
3984 /*
3985  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3986  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3987  * pointer.
3988  */
__slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)3989 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3990 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3991 {
3992 	void *p;
3993 
3994 #ifdef CONFIG_PREEMPT_COUNT
3995 	/*
3996 	 * We may have been preempted and rescheduled on a different
3997 	 * cpu before disabling preemption. Need to reload cpu area
3998 	 * pointer.
3999 	 */
4000 	c = slub_get_cpu_ptr(s->cpu_slab);
4001 #endif
4002 
4003 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
4004 #ifdef CONFIG_PREEMPT_COUNT
4005 	slub_put_cpu_ptr(s->cpu_slab);
4006 #endif
4007 	return p;
4008 }
4009 
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)4010 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
4011 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4012 {
4013 	struct kmem_cache_cpu *c;
4014 	struct slab *slab;
4015 	unsigned long tid;
4016 	void *object;
4017 
4018 redo:
4019 	/*
4020 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
4021 	 * enabled. We may switch back and forth between cpus while
4022 	 * reading from one cpu area. That does not matter as long
4023 	 * as we end up on the original cpu again when doing the cmpxchg.
4024 	 *
4025 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
4026 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
4027 	 * the tid. If we are preempted and switched to another cpu between the
4028 	 * two reads, it's OK as the two are still associated with the same cpu
4029 	 * and cmpxchg later will validate the cpu.
4030 	 */
4031 	c = raw_cpu_ptr(s->cpu_slab);
4032 	tid = READ_ONCE(c->tid);
4033 
4034 	/*
4035 	 * Irqless object alloc/free algorithm used here depends on sequence
4036 	 * of fetching cpu_slab's data. tid should be fetched before anything
4037 	 * on c to guarantee that object and slab associated with previous tid
4038 	 * won't be used with current tid. If we fetch tid first, object and
4039 	 * slab could be one associated with next tid and our alloc/free
4040 	 * request will be failed. In this case, we will retry. So, no problem.
4041 	 */
4042 	barrier();
4043 
4044 	/*
4045 	 * The transaction ids are globally unique per cpu and per operation on
4046 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
4047 	 * occurs on the right processor and that there was no operation on the
4048 	 * linked list in between.
4049 	 */
4050 
4051 	object = c->freelist;
4052 	slab = c->slab;
4053 
4054 	if (!USE_LOCKLESS_FAST_PATH() ||
4055 	    unlikely(!object || !slab || !node_match(slab, node))) {
4056 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
4057 	} else {
4058 		void *next_object = get_freepointer_safe(s, object);
4059 
4060 		/*
4061 		 * The cmpxchg will only match if there was no additional
4062 		 * operation and if we are on the right processor.
4063 		 *
4064 		 * The cmpxchg does the following atomically (without lock
4065 		 * semantics!)
4066 		 * 1. Relocate first pointer to the current per cpu area.
4067 		 * 2. Verify that tid and freelist have not been changed
4068 		 * 3. If they were not changed replace tid and freelist
4069 		 *
4070 		 * Since this is without lock semantics the protection is only
4071 		 * against code executing on this cpu *not* from access by
4072 		 * other cpus.
4073 		 */
4074 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
4075 			note_cmpxchg_failure("slab_alloc", s, tid);
4076 			goto redo;
4077 		}
4078 		prefetch_freepointer(s, next_object);
4079 		stat(s, ALLOC_FASTPATH);
4080 	}
4081 
4082 	return object;
4083 }
4084 #else /* CONFIG_SLUB_TINY */
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)4085 static void *__slab_alloc_node(struct kmem_cache *s,
4086 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4087 {
4088 	struct partial_context pc;
4089 	struct slab *slab;
4090 	void *object;
4091 
4092 	pc.flags = gfpflags;
4093 	pc.orig_size = orig_size;
4094 	slab = get_partial(s, node, &pc);
4095 
4096 	if (slab)
4097 		return pc.object;
4098 
4099 	slab = new_slab(s, gfpflags, node);
4100 	if (unlikely(!slab)) {
4101 		slab_out_of_memory(s, gfpflags, node);
4102 		return NULL;
4103 	}
4104 
4105 	object = alloc_single_from_new_slab(s, slab, orig_size);
4106 
4107 	return object;
4108 }
4109 #endif /* CONFIG_SLUB_TINY */
4110 
4111 /*
4112  * If the object has been wiped upon free, make sure it's fully initialized by
4113  * zeroing out freelist pointer.
4114  *
4115  * Note that we also wipe custom freelist pointers.
4116  */
maybe_wipe_obj_freeptr(struct kmem_cache * s,void * obj)4117 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
4118 						   void *obj)
4119 {
4120 	if (unlikely(slab_want_init_on_free(s)) && obj &&
4121 	    !freeptr_outside_object(s))
4122 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
4123 			0, sizeof(void *));
4124 }
4125 
4126 static __fastpath_inline
slab_pre_alloc_hook(struct kmem_cache * s,gfp_t flags)4127 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
4128 {
4129 	flags &= gfp_allowed_mask;
4130 
4131 	might_alloc(flags);
4132 
4133 	if (unlikely(should_failslab(s, flags)))
4134 		return NULL;
4135 
4136 	return s;
4137 }
4138 
4139 static __fastpath_inline
slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p,bool init,unsigned int orig_size)4140 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
4141 			  gfp_t flags, size_t size, void **p, bool init,
4142 			  unsigned int orig_size)
4143 {
4144 	unsigned int zero_size = s->object_size;
4145 	bool kasan_init = init;
4146 	size_t i;
4147 	gfp_t init_flags = flags & gfp_allowed_mask;
4148 
4149 	/*
4150 	 * For kmalloc object, the allocated memory size(object_size) is likely
4151 	 * larger than the requested size(orig_size). If redzone check is
4152 	 * enabled for the extra space, don't zero it, as it will be redzoned
4153 	 * soon. The redzone operation for this extra space could be seen as a
4154 	 * replacement of current poisoning under certain debug option, and
4155 	 * won't break other sanity checks.
4156 	 */
4157 	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
4158 	    (s->flags & SLAB_KMALLOC))
4159 		zero_size = orig_size;
4160 
4161 	/*
4162 	 * When slab_debug is enabled, avoid memory initialization integrated
4163 	 * into KASAN and instead zero out the memory via the memset below with
4164 	 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4165 	 * cause false-positive reports. This does not lead to a performance
4166 	 * penalty on production builds, as slab_debug is not intended to be
4167 	 * enabled there.
4168 	 */
4169 	if (__slub_debug_enabled())
4170 		kasan_init = false;
4171 
4172 	/*
4173 	 * As memory initialization might be integrated into KASAN,
4174 	 * kasan_slab_alloc and initialization memset must be
4175 	 * kept together to avoid discrepancies in behavior.
4176 	 *
4177 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4178 	 */
4179 	for (i = 0; i < size; i++) {
4180 		p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
4181 		if (p[i] && init && (!kasan_init ||
4182 				     !kasan_has_integrated_init()))
4183 			memset(p[i], 0, zero_size);
4184 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
4185 					 s->flags, init_flags);
4186 		kmsan_slab_alloc(s, p[i], init_flags);
4187 		alloc_tagging_slab_alloc_hook(s, p[i], flags);
4188 	}
4189 
4190 	return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4191 }
4192 
4193 /*
4194  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4195  * have the fastpath folded into their functions. So no function call
4196  * overhead for requests that can be satisfied on the fastpath.
4197  *
4198  * The fastpath works by first checking if the lockless freelist can be used.
4199  * If not then __slab_alloc is called for slow processing.
4200  *
4201  * Otherwise we can simply pick the next object from the lockless free list.
4202  */
slab_alloc_node(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)4203 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
4204 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4205 {
4206 	void *object;
4207 	bool init = false;
4208 
4209 	s = slab_pre_alloc_hook(s, gfpflags);
4210 	if (unlikely(!s))
4211 		return NULL;
4212 
4213 	object = kfence_alloc(s, orig_size, gfpflags);
4214 	if (unlikely(object))
4215 		goto out;
4216 
4217 	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4218 
4219 	maybe_wipe_obj_freeptr(s, object);
4220 	init = slab_want_init_on_alloc(gfpflags, s);
4221 
4222 out:
4223 	/*
4224 	 * When init equals 'true', like for kzalloc() family, only
4225 	 * @orig_size bytes might be zeroed instead of s->object_size
4226 	 * In case this fails due to memcg_slab_post_alloc_hook(),
4227 	 * object is set to NULL
4228 	 */
4229 	slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
4230 
4231 	trace_android_vh_slab_alloc_node(object, addr, s);
4232 
4233 	return object;
4234 }
4235 
kmem_cache_alloc_noprof(struct kmem_cache * s,gfp_t gfpflags)4236 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
4237 {
4238 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4239 				    s->object_size);
4240 
4241 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4242 
4243 	return ret;
4244 }
4245 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
4246 
kmem_cache_alloc_lru_noprof(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags)4247 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
4248 			   gfp_t gfpflags)
4249 {
4250 	void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4251 				    s->object_size);
4252 
4253 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4254 
4255 	return ret;
4256 }
4257 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
4258 
kmem_cache_charge(void * objp,gfp_t gfpflags)4259 bool kmem_cache_charge(void *objp, gfp_t gfpflags)
4260 {
4261 	if (!memcg_kmem_online())
4262 		return true;
4263 
4264 	return memcg_slab_post_charge(objp, gfpflags);
4265 }
4266 EXPORT_SYMBOL(kmem_cache_charge);
4267 
4268 /**
4269  * kmem_cache_alloc_node - Allocate an object on the specified node
4270  * @s: The cache to allocate from.
4271  * @gfpflags: See kmalloc().
4272  * @node: node number of the target node.
4273  *
4274  * Identical to kmem_cache_alloc but it will allocate memory on the given
4275  * node, which can improve the performance for cpu bound structures.
4276  *
4277  * Fallback to other node is possible if __GFP_THISNODE is not set.
4278  *
4279  * Return: pointer to the new object or %NULL in case of error
4280  */
kmem_cache_alloc_node_noprof(struct kmem_cache * s,gfp_t gfpflags,int node)4281 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
4282 {
4283 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
4284 
4285 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
4286 
4287 	return ret;
4288 }
4289 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
4290 
4291 /*
4292  * To avoid unnecessary overhead, we pass through large allocation requests
4293  * directly to the page allocator. We use __GFP_COMP, because we will need to
4294  * know the allocation order to free the pages properly in kfree.
4295  */
___kmalloc_large_node(size_t size,gfp_t flags,int node)4296 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
4297 {
4298 	struct folio *folio;
4299 	void *ptr = NULL;
4300 	unsigned int order = get_order(size);
4301 	bool bypass = false;
4302 
4303 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
4304 		flags = kmalloc_fix_flags(flags);
4305 
4306 	trace_android_vh_kmalloc_large_node_bypass(size, flags, node, &ptr, &bypass);
4307 	if (bypass)
4308 		return ptr;
4309 
4310 	flags |= __GFP_COMP;
4311 
4312 	if (node == NUMA_NO_NODE)
4313 		folio = (struct folio *)alloc_pages_noprof(flags, order);
4314 	else
4315 		folio = (struct folio *)__alloc_pages_noprof(flags, order, node, NULL);
4316 
4317 	if (folio) {
4318 		ptr = folio_address(folio);
4319 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4320 				      PAGE_SIZE << order);
4321 	}
4322 
4323 	trace_android_vh_kmalloc_large_alloced(folio, order, flags);
4324 
4325 	ptr = kasan_kmalloc_large(ptr, size, flags);
4326 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
4327 	kmemleak_alloc(ptr, size, 1, flags);
4328 	kmsan_kmalloc_large(ptr, size, flags);
4329 
4330 	return ptr;
4331 }
4332 
__kmalloc_large_noprof(size_t size,gfp_t flags)4333 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
4334 {
4335 	void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4336 
4337 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4338 		      flags, NUMA_NO_NODE);
4339 	return ret;
4340 }
4341 EXPORT_SYMBOL(__kmalloc_large_noprof);
4342 
__kmalloc_large_node_noprof(size_t size,gfp_t flags,int node)4343 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4344 {
4345 	void *ret = ___kmalloc_large_node(size, flags, node);
4346 
4347 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4348 		      flags, node);
4349 	return ret;
4350 }
4351 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
4352 
4353 static __always_inline
__do_kmalloc_node(size_t size,kmem_buckets * b,gfp_t flags,int node,unsigned long caller)4354 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4355 			unsigned long caller)
4356 {
4357 	struct kmem_cache *s;
4358 	void *ret;
4359 
4360 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4361 		ret = __kmalloc_large_node_noprof(size, flags, node);
4362 		trace_kmalloc(caller, ret, size,
4363 			      PAGE_SIZE << get_order(size), flags, node);
4364 		return ret;
4365 	}
4366 
4367 	if (unlikely(!size))
4368 		return ZERO_SIZE_PTR;
4369 
4370 	s = kmalloc_slab(size, b, flags, caller);
4371 
4372 	ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4373 	ret = kasan_kmalloc(s, ret, size, flags);
4374 	trace_kmalloc(caller, ret, size, s->size, flags, node);
4375 	return ret;
4376 }
__kmalloc_node_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node)4377 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4378 {
4379 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4380 }
4381 EXPORT_SYMBOL(__kmalloc_node_noprof);
4382 
__kmalloc_noprof(size_t size,gfp_t flags)4383 void *__kmalloc_noprof(size_t size, gfp_t flags)
4384 {
4385 	return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4386 }
4387 EXPORT_SYMBOL(__kmalloc_noprof);
4388 
__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node,unsigned long caller)4389 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4390 					 int node, unsigned long caller)
4391 {
4392 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4393 
4394 }
4395 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4396 
__kmalloc_cache_noprof(struct kmem_cache * s,gfp_t gfpflags,size_t size)4397 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4398 {
4399 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4400 					    _RET_IP_, size);
4401 
4402 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4403 
4404 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4405 	return ret;
4406 }
4407 EXPORT_SYMBOL(__kmalloc_cache_noprof);
4408 
__kmalloc_cache_node_noprof(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)4409 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4410 				  int node, size_t size)
4411 {
4412 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4413 
4414 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4415 
4416 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4417 	return ret;
4418 }
4419 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
4420 
free_to_partial_list(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int bulk_cnt,unsigned long addr)4421 static noinline void free_to_partial_list(
4422 	struct kmem_cache *s, struct slab *slab,
4423 	void *head, void *tail, int bulk_cnt,
4424 	unsigned long addr)
4425 {
4426 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4427 	struct slab *slab_free = NULL;
4428 	int cnt = bulk_cnt;
4429 	unsigned long flags;
4430 	depot_stack_handle_t handle = 0;
4431 
4432 	/*
4433 	 * We cannot use GFP_NOWAIT as there are callsites where waking up
4434 	 * kswapd could deadlock
4435 	 */
4436 	if (s->flags & SLAB_STORE_USER)
4437 		handle = set_track_prepare(__GFP_NOWARN);
4438 
4439 	spin_lock_irqsave(&n->list_lock, flags);
4440 
4441 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4442 		void *prior = slab->freelist;
4443 
4444 		/* Perform the actual freeing while we still hold the locks */
4445 		slab->inuse -= cnt;
4446 		set_freepointer(s, tail, prior);
4447 		slab->freelist = head;
4448 
4449 		/*
4450 		 * If the slab is empty, and node's partial list is full,
4451 		 * it should be discarded anyway no matter it's on full or
4452 		 * partial list.
4453 		 */
4454 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4455 			slab_free = slab;
4456 
4457 		if (!prior) {
4458 			/* was on full list */
4459 			remove_full(s, n, slab);
4460 			if (!slab_free) {
4461 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
4462 				stat(s, FREE_ADD_PARTIAL);
4463 			}
4464 		} else if (slab_free) {
4465 			remove_partial(n, slab);
4466 			stat(s, FREE_REMOVE_PARTIAL);
4467 		}
4468 	}
4469 
4470 	if (slab_free) {
4471 		/*
4472 		 * Update the counters while still holding n->list_lock to
4473 		 * prevent spurious validation warnings
4474 		 */
4475 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4476 	}
4477 
4478 	spin_unlock_irqrestore(&n->list_lock, flags);
4479 
4480 	if (slab_free) {
4481 		stat(s, FREE_SLAB);
4482 		free_slab(s, slab_free);
4483 	}
4484 }
4485 
4486 /*
4487  * Slow path handling. This may still be called frequently since objects
4488  * have a longer lifetime than the cpu slabs in most processing loads.
4489  *
4490  * So we still attempt to reduce cache line usage. Just take the slab
4491  * lock and free the item. If there is no additional partial slab
4492  * handling required then we can return immediately.
4493  */
__slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)4494 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4495 			void *head, void *tail, int cnt,
4496 			unsigned long addr)
4497 
4498 {
4499 	void *prior;
4500 	int was_frozen;
4501 	struct slab new;
4502 	unsigned long counters;
4503 	struct kmem_cache_node *n = NULL;
4504 	unsigned long flags;
4505 	bool on_node_partial;
4506 
4507 	stat(s, FREE_SLOWPATH);
4508 
4509 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4510 		free_to_partial_list(s, slab, head, tail, cnt, addr);
4511 		return;
4512 	}
4513 
4514 	do {
4515 		if (unlikely(n)) {
4516 			spin_unlock_irqrestore(&n->list_lock, flags);
4517 			n = NULL;
4518 		}
4519 		prior = slab->freelist;
4520 		counters = slab->counters;
4521 		set_freepointer(s, tail, prior);
4522 		new.counters = counters;
4523 		was_frozen = new.frozen;
4524 		new.inuse -= cnt;
4525 		if ((!new.inuse || !prior) && !was_frozen) {
4526 			/* Needs to be taken off a list */
4527 			if (!kmem_cache_has_cpu_partial(s) || prior) {
4528 
4529 				n = get_node(s, slab_nid(slab));
4530 				/*
4531 				 * Speculatively acquire the list_lock.
4532 				 * If the cmpxchg does not succeed then we may
4533 				 * drop the list_lock without any processing.
4534 				 *
4535 				 * Otherwise the list_lock will synchronize with
4536 				 * other processors updating the list of slabs.
4537 				 */
4538 				spin_lock_irqsave(&n->list_lock, flags);
4539 
4540 				on_node_partial = slab_test_node_partial(slab);
4541 			}
4542 		}
4543 
4544 	} while (!slab_update_freelist(s, slab,
4545 		prior, counters,
4546 		head, new.counters,
4547 		"__slab_free"));
4548 
4549 	if (likely(!n)) {
4550 
4551 		if (likely(was_frozen)) {
4552 			/*
4553 			 * The list lock was not taken therefore no list
4554 			 * activity can be necessary.
4555 			 */
4556 			stat(s, FREE_FROZEN);
4557 		} else if (kmem_cache_has_cpu_partial(s) && !prior) {
4558 			/*
4559 			 * If we started with a full slab then put it onto the
4560 			 * per cpu partial list.
4561 			 */
4562 			put_cpu_partial(s, slab, 1);
4563 			stat(s, CPU_PARTIAL_FREE);
4564 		}
4565 
4566 		return;
4567 	}
4568 
4569 	/*
4570 	 * This slab was partially empty but not on the per-node partial list,
4571 	 * in which case we shouldn't manipulate its list, just return.
4572 	 */
4573 	if (prior && !on_node_partial) {
4574 		spin_unlock_irqrestore(&n->list_lock, flags);
4575 		return;
4576 	}
4577 
4578 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4579 		goto slab_empty;
4580 
4581 	/*
4582 	 * Objects left in the slab. If it was not on the partial list before
4583 	 * then add it.
4584 	 */
4585 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4586 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
4587 		stat(s, FREE_ADD_PARTIAL);
4588 	}
4589 	spin_unlock_irqrestore(&n->list_lock, flags);
4590 	return;
4591 
4592 slab_empty:
4593 	if (prior) {
4594 		/*
4595 		 * Slab on the partial list.
4596 		 */
4597 		remove_partial(n, slab);
4598 		stat(s, FREE_REMOVE_PARTIAL);
4599 	}
4600 
4601 	spin_unlock_irqrestore(&n->list_lock, flags);
4602 	stat(s, FREE_SLAB);
4603 	discard_slab(s, slab);
4604 }
4605 
4606 #ifndef CONFIG_SLUB_TINY
4607 /*
4608  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4609  * can perform fastpath freeing without additional function calls.
4610  *
4611  * The fastpath is only possible if we are freeing to the current cpu slab
4612  * of this processor. This typically the case if we have just allocated
4613  * the item before.
4614  *
4615  * If fastpath is not possible then fall back to __slab_free where we deal
4616  * with all sorts of special processing.
4617  *
4618  * Bulk free of a freelist with several objects (all pointing to the
4619  * same slab) possible by specifying head and tail ptr, plus objects
4620  * count (cnt). Bulk free indicated by tail pointer being set.
4621  */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)4622 static __always_inline void do_slab_free(struct kmem_cache *s,
4623 				struct slab *slab, void *head, void *tail,
4624 				int cnt, unsigned long addr)
4625 {
4626 	struct kmem_cache_cpu *c;
4627 	unsigned long tid;
4628 	void **freelist;
4629 
4630 redo:
4631 	/*
4632 	 * Determine the currently cpus per cpu slab.
4633 	 * The cpu may change afterward. However that does not matter since
4634 	 * data is retrieved via this pointer. If we are on the same cpu
4635 	 * during the cmpxchg then the free will succeed.
4636 	 */
4637 	c = raw_cpu_ptr(s->cpu_slab);
4638 	tid = READ_ONCE(c->tid);
4639 
4640 	/* Same with comment on barrier() in __slab_alloc_node() */
4641 	barrier();
4642 
4643 	if (unlikely(slab != c->slab)) {
4644 		__slab_free(s, slab, head, tail, cnt, addr);
4645 		return;
4646 	}
4647 
4648 	if (USE_LOCKLESS_FAST_PATH()) {
4649 		freelist = READ_ONCE(c->freelist);
4650 
4651 		set_freepointer(s, tail, freelist);
4652 
4653 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4654 			note_cmpxchg_failure("slab_free", s, tid);
4655 			goto redo;
4656 		}
4657 	} else {
4658 		/* Update the free list under the local lock */
4659 		local_lock(&s->cpu_slab->lock);
4660 		c = this_cpu_ptr(s->cpu_slab);
4661 		if (unlikely(slab != c->slab)) {
4662 			local_unlock(&s->cpu_slab->lock);
4663 			goto redo;
4664 		}
4665 		tid = c->tid;
4666 		freelist = c->freelist;
4667 
4668 		set_freepointer(s, tail, freelist);
4669 		c->freelist = head;
4670 		c->tid = next_tid(tid);
4671 
4672 		local_unlock(&s->cpu_slab->lock);
4673 	}
4674 	stat_add(s, FREE_FASTPATH, cnt);
4675 }
4676 #else /* CONFIG_SLUB_TINY */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)4677 static void do_slab_free(struct kmem_cache *s,
4678 				struct slab *slab, void *head, void *tail,
4679 				int cnt, unsigned long addr)
4680 {
4681 	__slab_free(s, slab, head, tail, cnt, addr);
4682 }
4683 #endif /* CONFIG_SLUB_TINY */
4684 
4685 static __fastpath_inline
slab_free(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)4686 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4687 	       unsigned long addr)
4688 {
4689 	memcg_slab_free_hook(s, slab, &object, 1);
4690 	alloc_tagging_slab_free_hook(s, slab, &object, 1);
4691 
4692 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4693 		do_slab_free(s, slab, object, object, 1, addr);
4694 
4695 	trace_android_vh_slab_free(addr, s);
4696 }
4697 
4698 #ifdef CONFIG_MEMCG
4699 /* Do not inline the rare memcg charging failed path into the allocation path */
4700 static noinline
memcg_alloc_abort_single(struct kmem_cache * s,void * object)4701 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4702 {
4703 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4704 		do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4705 }
4706 #endif
4707 
4708 static __fastpath_inline
slab_free_bulk(struct kmem_cache * s,struct slab * slab,void * head,void * tail,void ** p,int cnt,unsigned long addr)4709 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4710 		    void *tail, void **p, int cnt, unsigned long addr)
4711 {
4712 	memcg_slab_free_hook(s, slab, p, cnt);
4713 	alloc_tagging_slab_free_hook(s, slab, p, cnt);
4714 	/*
4715 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4716 	 * to remove objects, whose reuse must be delayed.
4717 	 */
4718 	if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4719 		do_slab_free(s, slab, head, tail, cnt, addr);
4720 
4721 	trace_android_vh_slab_free(addr, s);
4722 
4723 }
4724 
4725 #ifdef CONFIG_SLUB_RCU_DEBUG
slab_free_after_rcu_debug(struct rcu_head * rcu_head)4726 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
4727 {
4728 	struct rcu_delayed_free *delayed_free =
4729 			container_of(rcu_head, struct rcu_delayed_free, head);
4730 	void *object = delayed_free->object;
4731 	struct slab *slab = virt_to_slab(object);
4732 	struct kmem_cache *s;
4733 
4734 	kfree(delayed_free);
4735 
4736 	if (WARN_ON(is_kfence_address(object)))
4737 		return;
4738 
4739 	/* find the object and the cache again */
4740 	if (WARN_ON(!slab))
4741 		return;
4742 	s = slab->slab_cache;
4743 	if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
4744 		return;
4745 
4746 	/* resume freeing */
4747 	if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
4748 		do_slab_free(s, slab, object, object, 1, _THIS_IP_);
4749 }
4750 #endif /* CONFIG_SLUB_RCU_DEBUG */
4751 
4752 #ifdef CONFIG_KASAN_GENERIC
___cache_free(struct kmem_cache * cache,void * x,unsigned long addr)4753 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4754 {
4755 	do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4756 }
4757 #endif
4758 
virt_to_cache(const void * obj)4759 static inline struct kmem_cache *virt_to_cache(const void *obj)
4760 {
4761 	struct slab *slab;
4762 
4763 	slab = virt_to_slab(obj);
4764 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4765 		return NULL;
4766 	return slab->slab_cache;
4767 }
4768 
cache_from_obj(struct kmem_cache * s,void * x)4769 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4770 {
4771 	struct kmem_cache *cachep;
4772 
4773 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4774 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4775 		return s;
4776 
4777 	cachep = virt_to_cache(x);
4778 	if (WARN(cachep && cachep != s,
4779 		 "%s: Wrong slab cache. %s but object is from %s\n",
4780 		 __func__, s->name, cachep->name))
4781 		print_tracking(cachep, x);
4782 	return cachep;
4783 }
4784 
4785 /**
4786  * kmem_cache_free - Deallocate an object
4787  * @s: The cache the allocation was from.
4788  * @x: The previously allocated object.
4789  *
4790  * Free an object which was previously allocated from this
4791  * cache.
4792  */
kmem_cache_free(struct kmem_cache * s,void * x)4793 void kmem_cache_free(struct kmem_cache *s, void *x)
4794 {
4795 	s = cache_from_obj(s, x);
4796 	if (!s)
4797 		return;
4798 	trace_kmem_cache_free(_RET_IP_, x, s);
4799 	slab_free(s, virt_to_slab(x), x, _RET_IP_);
4800 }
4801 EXPORT_SYMBOL(kmem_cache_free);
4802 
free_large_kmalloc(struct folio * folio,void * object)4803 static void free_large_kmalloc(struct folio *folio, void *object)
4804 {
4805 	unsigned int order = folio_order(folio);
4806 
4807 	if (WARN_ON_ONCE(order == 0))
4808 		pr_warn_once("object pointer: 0x%p\n", object);
4809 
4810 	kmemleak_free(object);
4811 	kasan_kfree_large(object);
4812 	kmsan_kfree_large(object);
4813 
4814 	lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4815 			      -(PAGE_SIZE << order));
4816 	folio_put(folio);
4817 }
4818 
4819 /**
4820  * kfree - free previously allocated memory
4821  * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4822  *
4823  * If @object is NULL, no operation is performed.
4824  */
kfree(const void * object)4825 void kfree(const void *object)
4826 {
4827 	struct folio *folio;
4828 	struct slab *slab;
4829 	struct kmem_cache *s;
4830 	void *x = (void *)object;
4831 	bool bypass = false;
4832 
4833 	trace_kfree(_RET_IP_, object);
4834 
4835 	if (unlikely(ZERO_OR_NULL_PTR(object)))
4836 		return;
4837 
4838 	folio = virt_to_folio(object);
4839 	if (unlikely(!folio_test_slab(folio))) {
4840 		trace_android_vh_kfree_bypass(folio, object, &bypass);
4841 		if (bypass)
4842 			return;
4843 		free_large_kmalloc(folio, (void *)object);
4844 		return;
4845 	}
4846 
4847 	slab = folio_slab(folio);
4848 	s = slab->slab_cache;
4849 	slab_free(s, slab, x, _RET_IP_);
4850 }
4851 EXPORT_SYMBOL(kfree);
4852 
4853 struct detached_freelist {
4854 	struct slab *slab;
4855 	void *tail;
4856 	void *freelist;
4857 	int cnt;
4858 	struct kmem_cache *s;
4859 };
4860 
4861 /*
4862  * This function progressively scans the array with free objects (with
4863  * a limited look ahead) and extract objects belonging to the same
4864  * slab.  It builds a detached freelist directly within the given
4865  * slab/objects.  This can happen without any need for
4866  * synchronization, because the objects are owned by running process.
4867  * The freelist is build up as a single linked list in the objects.
4868  * The idea is, that this detached freelist can then be bulk
4869  * transferred to the real freelist(s), but only requiring a single
4870  * synchronization primitive.  Look ahead in the array is limited due
4871  * to performance reasons.
4872  */
4873 static inline
build_detached_freelist(struct kmem_cache * s,size_t size,void ** p,struct detached_freelist * df)4874 int build_detached_freelist(struct kmem_cache *s, size_t size,
4875 			    void **p, struct detached_freelist *df)
4876 {
4877 	int lookahead = 3;
4878 	void *object;
4879 	struct folio *folio;
4880 	size_t same;
4881 
4882 	object = p[--size];
4883 	folio = virt_to_folio(object);
4884 	if (!s) {
4885 		/* Handle kalloc'ed objects */
4886 		if (unlikely(!folio_test_slab(folio))) {
4887 			free_large_kmalloc(folio, object);
4888 			df->slab = NULL;
4889 			return size;
4890 		}
4891 		/* Derive kmem_cache from object */
4892 		df->slab = folio_slab(folio);
4893 		df->s = df->slab->slab_cache;
4894 	} else {
4895 		df->slab = folio_slab(folio);
4896 		df->s = cache_from_obj(s, object); /* Support for memcg */
4897 	}
4898 
4899 	/* Start new detached freelist */
4900 	df->tail = object;
4901 	df->freelist = object;
4902 	df->cnt = 1;
4903 
4904 	if (is_kfence_address(object))
4905 		return size;
4906 
4907 	set_freepointer(df->s, object, NULL);
4908 
4909 	same = size;
4910 	while (size) {
4911 		object = p[--size];
4912 		/* df->slab is always set at this point */
4913 		if (df->slab == virt_to_slab(object)) {
4914 			/* Opportunity build freelist */
4915 			set_freepointer(df->s, object, df->freelist);
4916 			df->freelist = object;
4917 			df->cnt++;
4918 			same--;
4919 			if (size != same)
4920 				swap(p[size], p[same]);
4921 			continue;
4922 		}
4923 
4924 		/* Limit look ahead search */
4925 		if (!--lookahead)
4926 			break;
4927 	}
4928 
4929 	return same;
4930 }
4931 
4932 /*
4933  * Internal bulk free of objects that were not initialised by the post alloc
4934  * hooks and thus should not be processed by the free hooks
4935  */
__kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)4936 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4937 {
4938 	if (!size)
4939 		return;
4940 
4941 	do {
4942 		struct detached_freelist df;
4943 
4944 		size = build_detached_freelist(s, size, p, &df);
4945 		if (!df.slab)
4946 			continue;
4947 
4948 		if (kfence_free(df.freelist))
4949 			continue;
4950 
4951 		do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4952 			     _RET_IP_);
4953 	} while (likely(size));
4954 }
4955 
4956 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)4957 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4958 {
4959 	if (!size)
4960 		return;
4961 
4962 	do {
4963 		struct detached_freelist df;
4964 
4965 		size = build_detached_freelist(s, size, p, &df);
4966 		if (!df.slab)
4967 			continue;
4968 
4969 		slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
4970 			       df.cnt, _RET_IP_);
4971 	} while (likely(size));
4972 }
4973 EXPORT_SYMBOL(kmem_cache_free_bulk);
4974 
4975 #ifndef CONFIG_SLUB_TINY
4976 static inline
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)4977 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4978 			    void **p)
4979 {
4980 	struct kmem_cache_cpu *c;
4981 	unsigned long irqflags;
4982 	int i;
4983 
4984 	/*
4985 	 * Drain objects in the per cpu slab, while disabling local
4986 	 * IRQs, which protects against PREEMPT and interrupts
4987 	 * handlers invoking normal fastpath.
4988 	 */
4989 	c = slub_get_cpu_ptr(s->cpu_slab);
4990 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4991 
4992 	for (i = 0; i < size; i++) {
4993 		void *object = kfence_alloc(s, s->object_size, flags);
4994 
4995 		if (unlikely(object)) {
4996 			p[i] = object;
4997 			continue;
4998 		}
4999 
5000 		object = c->freelist;
5001 		if (unlikely(!object)) {
5002 			/*
5003 			 * We may have removed an object from c->freelist using
5004 			 * the fastpath in the previous iteration; in that case,
5005 			 * c->tid has not been bumped yet.
5006 			 * Since ___slab_alloc() may reenable interrupts while
5007 			 * allocating memory, we should bump c->tid now.
5008 			 */
5009 			c->tid = next_tid(c->tid);
5010 
5011 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5012 
5013 			/*
5014 			 * Invoking slow path likely have side-effect
5015 			 * of re-populating per CPU c->freelist
5016 			 */
5017 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
5018 					    _RET_IP_, c, s->object_size);
5019 			if (unlikely(!p[i]))
5020 				goto error;
5021 
5022 			c = this_cpu_ptr(s->cpu_slab);
5023 			maybe_wipe_obj_freeptr(s, p[i]);
5024 
5025 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5026 
5027 			continue; /* goto for-loop */
5028 		}
5029 		c->freelist = get_freepointer(s, object);
5030 		p[i] = object;
5031 		maybe_wipe_obj_freeptr(s, p[i]);
5032 		stat(s, ALLOC_FASTPATH);
5033 	}
5034 	c->tid = next_tid(c->tid);
5035 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5036 	slub_put_cpu_ptr(s->cpu_slab);
5037 
5038 	return i;
5039 
5040 error:
5041 	slub_put_cpu_ptr(s->cpu_slab);
5042 	__kmem_cache_free_bulk(s, i, p);
5043 	return 0;
5044 
5045 }
5046 #else /* CONFIG_SLUB_TINY */
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)5047 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
5048 				   size_t size, void **p)
5049 {
5050 	int i;
5051 
5052 	for (i = 0; i < size; i++) {
5053 		void *object = kfence_alloc(s, s->object_size, flags);
5054 
5055 		if (unlikely(object)) {
5056 			p[i] = object;
5057 			continue;
5058 		}
5059 
5060 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
5061 					 _RET_IP_, s->object_size);
5062 		if (unlikely(!p[i]))
5063 			goto error;
5064 
5065 		maybe_wipe_obj_freeptr(s, p[i]);
5066 	}
5067 
5068 	return i;
5069 
5070 error:
5071 	__kmem_cache_free_bulk(s, i, p);
5072 	return 0;
5073 }
5074 #endif /* CONFIG_SLUB_TINY */
5075 
5076 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_alloc_bulk_noprof(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)5077 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
5078 				 void **p)
5079 {
5080 	int i;
5081 
5082 	if (!size)
5083 		return 0;
5084 
5085 	s = slab_pre_alloc_hook(s, flags);
5086 	if (unlikely(!s))
5087 		return 0;
5088 
5089 	i = __kmem_cache_alloc_bulk(s, flags, size, p);
5090 	if (unlikely(i == 0))
5091 		return 0;
5092 
5093 	/*
5094 	 * memcg and kmem_cache debug support and memory initialization.
5095 	 * Done outside of the IRQ disabled fastpath loop.
5096 	 */
5097 	if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
5098 		    slab_want_init_on_alloc(flags, s), s->object_size))) {
5099 		return 0;
5100 	}
5101 	return i;
5102 }
5103 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
5104 
5105 
5106 /*
5107  * Object placement in a slab is made very easy because we always start at
5108  * offset 0. If we tune the size of the object to the alignment then we can
5109  * get the required alignment by putting one properly sized object after
5110  * another.
5111  *
5112  * Notice that the allocation order determines the sizes of the per cpu
5113  * caches. Each processor has always one slab available for allocations.
5114  * Increasing the allocation order reduces the number of times that slabs
5115  * must be moved on and off the partial lists and is therefore a factor in
5116  * locking overhead.
5117  */
5118 
5119 /*
5120  * Minimum / Maximum order of slab pages. This influences locking overhead
5121  * and slab fragmentation. A higher order reduces the number of partial slabs
5122  * and increases the number of allocations possible without having to
5123  * take the list_lock.
5124  */
5125 static unsigned int slub_min_order;
5126 static unsigned int slub_max_order =
5127 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
5128 static unsigned int slub_min_objects;
5129 
5130 /*
5131  * Calculate the order of allocation given an slab object size.
5132  *
5133  * The order of allocation has significant impact on performance and other
5134  * system components. Generally order 0 allocations should be preferred since
5135  * order 0 does not cause fragmentation in the page allocator. Larger objects
5136  * be problematic to put into order 0 slabs because there may be too much
5137  * unused space left. We go to a higher order if more than 1/16th of the slab
5138  * would be wasted.
5139  *
5140  * In order to reach satisfactory performance we must ensure that a minimum
5141  * number of objects is in one slab. Otherwise we may generate too much
5142  * activity on the partial lists which requires taking the list_lock. This is
5143  * less a concern for large slabs though which are rarely used.
5144  *
5145  * slab_max_order specifies the order where we begin to stop considering the
5146  * number of objects in a slab as critical. If we reach slab_max_order then
5147  * we try to keep the page order as low as possible. So we accept more waste
5148  * of space in favor of a small page order.
5149  *
5150  * Higher order allocations also allow the placement of more objects in a
5151  * slab and thereby reduce object handling overhead. If the user has
5152  * requested a higher minimum order then we start with that one instead of
5153  * the smallest order which will fit the object.
5154  */
calc_slab_order(unsigned int size,unsigned int min_order,unsigned int max_order,unsigned int fract_leftover)5155 static inline unsigned int calc_slab_order(unsigned int size,
5156 		unsigned int min_order, unsigned int max_order,
5157 		unsigned int fract_leftover)
5158 {
5159 	unsigned int order;
5160 
5161 	for (order = min_order; order <= max_order; order++) {
5162 
5163 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
5164 		unsigned int rem;
5165 
5166 		rem = slab_size % size;
5167 
5168 		if (rem <= slab_size / fract_leftover)
5169 			break;
5170 	}
5171 
5172 	return order;
5173 }
5174 
calculate_order(unsigned int size)5175 static inline int calculate_order(unsigned int size)
5176 {
5177 	unsigned int order;
5178 	unsigned int min_objects;
5179 	unsigned int max_objects;
5180 	unsigned int min_order;
5181 
5182 	min_objects = slub_min_objects;
5183 	if (!min_objects) {
5184 		/*
5185 		 * Some architectures will only update present cpus when
5186 		 * onlining them, so don't trust the number if it's just 1. But
5187 		 * we also don't want to use nr_cpu_ids always, as on some other
5188 		 * architectures, there can be many possible cpus, but never
5189 		 * onlined. Here we compromise between trying to avoid too high
5190 		 * order on systems that appear larger than they are, and too
5191 		 * low order on systems that appear smaller than they are.
5192 		 */
5193 		unsigned int nr_cpus = num_present_cpus();
5194 		if (nr_cpus <= 1)
5195 			nr_cpus = nr_cpu_ids;
5196 		min_objects = 4 * (fls(nr_cpus) + 1);
5197 	}
5198 	/* min_objects can't be 0 because get_order(0) is undefined */
5199 	max_objects = max(order_objects(slub_max_order, size), 1U);
5200 	min_objects = min(min_objects, max_objects);
5201 
5202 	min_order = max_t(unsigned int, slub_min_order,
5203 			  get_order(min_objects * size));
5204 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
5205 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
5206 
5207 	/*
5208 	 * Attempt to find best configuration for a slab. This works by first
5209 	 * attempting to generate a layout with the best possible configuration
5210 	 * and backing off gradually.
5211 	 *
5212 	 * We start with accepting at most 1/16 waste and try to find the
5213 	 * smallest order from min_objects-derived/slab_min_order up to
5214 	 * slab_max_order that will satisfy the constraint. Note that increasing
5215 	 * the order can only result in same or less fractional waste, not more.
5216 	 *
5217 	 * If that fails, we increase the acceptable fraction of waste and try
5218 	 * again. The last iteration with fraction of 1/2 would effectively
5219 	 * accept any waste and give us the order determined by min_objects, as
5220 	 * long as at least single object fits within slab_max_order.
5221 	 */
5222 	for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
5223 		order = calc_slab_order(size, min_order, slub_max_order,
5224 					fraction);
5225 		if (order <= slub_max_order)
5226 			return order;
5227 	}
5228 
5229 	/*
5230 	 * Doh this slab cannot be placed using slab_max_order.
5231 	 */
5232 	order = get_order(size);
5233 	if (order <= MAX_PAGE_ORDER)
5234 		return order;
5235 	return -ENOSYS;
5236 }
5237 
5238 static void
init_kmem_cache_node(struct kmem_cache_node * n)5239 init_kmem_cache_node(struct kmem_cache_node *n)
5240 {
5241 	n->nr_partial = 0;
5242 	spin_lock_init(&n->list_lock);
5243 	INIT_LIST_HEAD(&n->partial);
5244 #ifdef CONFIG_SLUB_DEBUG
5245 	atomic_long_set(&n->nr_slabs, 0);
5246 	atomic_long_set(&n->total_objects, 0);
5247 	INIT_LIST_HEAD(&n->full);
5248 #endif
5249 }
5250 
5251 #ifndef CONFIG_SLUB_TINY
alloc_kmem_cache_cpus(struct kmem_cache * s)5252 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5253 {
5254 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
5255 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
5256 			sizeof(struct kmem_cache_cpu));
5257 
5258 	/*
5259 	 * Must align to double word boundary for the double cmpxchg
5260 	 * instructions to work; see __pcpu_double_call_return_bool().
5261 	 */
5262 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5263 				     2 * sizeof(void *));
5264 
5265 	if (!s->cpu_slab)
5266 		return 0;
5267 
5268 	init_kmem_cache_cpus(s);
5269 
5270 	return 1;
5271 }
5272 #else
alloc_kmem_cache_cpus(struct kmem_cache * s)5273 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5274 {
5275 	return 1;
5276 }
5277 #endif /* CONFIG_SLUB_TINY */
5278 
5279 static struct kmem_cache *kmem_cache_node;
5280 
5281 /*
5282  * No kmalloc_node yet so do it by hand. We know that this is the first
5283  * slab on the node for this slabcache. There are no concurrent accesses
5284  * possible.
5285  *
5286  * Note that this function only works on the kmem_cache_node
5287  * when allocating for the kmem_cache_node. This is used for bootstrapping
5288  * memory on a fresh node that has no slab structures yet.
5289  */
early_kmem_cache_node_alloc(int node)5290 static void early_kmem_cache_node_alloc(int node)
5291 {
5292 	struct slab *slab;
5293 	struct kmem_cache_node *n;
5294 
5295 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
5296 
5297 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
5298 
5299 	BUG_ON(!slab);
5300 	if (slab_nid(slab) != node) {
5301 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5302 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5303 	}
5304 
5305 	n = slab->freelist;
5306 	BUG_ON(!n);
5307 #ifdef CONFIG_SLUB_DEBUG
5308 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
5309 #endif
5310 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
5311 	slab->freelist = get_freepointer(kmem_cache_node, n);
5312 	slab->inuse = 1;
5313 	kmem_cache_node->node[node] = n;
5314 	init_kmem_cache_node(n);
5315 	inc_slabs_node(kmem_cache_node, node, slab->objects);
5316 
5317 	/*
5318 	 * No locks need to be taken here as it has just been
5319 	 * initialized and there is no concurrent access.
5320 	 */
5321 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
5322 }
5323 
free_kmem_cache_nodes(struct kmem_cache * s)5324 static void free_kmem_cache_nodes(struct kmem_cache *s)
5325 {
5326 	int node;
5327 	struct kmem_cache_node *n;
5328 
5329 	for_each_kmem_cache_node(s, node, n) {
5330 		s->node[node] = NULL;
5331 		kmem_cache_free(kmem_cache_node, n);
5332 	}
5333 }
5334 
__kmem_cache_release(struct kmem_cache * s)5335 void __kmem_cache_release(struct kmem_cache *s)
5336 {
5337 	cache_random_seq_destroy(s);
5338 #ifndef CONFIG_SLUB_TINY
5339 	free_percpu(s->cpu_slab);
5340 #endif
5341 	free_kmem_cache_nodes(s);
5342 }
5343 
init_kmem_cache_nodes(struct kmem_cache * s)5344 static int init_kmem_cache_nodes(struct kmem_cache *s)
5345 {
5346 	int node;
5347 
5348 	for_each_node_mask(node, slab_nodes) {
5349 		struct kmem_cache_node *n;
5350 
5351 		if (slab_state == DOWN) {
5352 			early_kmem_cache_node_alloc(node);
5353 			continue;
5354 		}
5355 		n = kmem_cache_alloc_node(kmem_cache_node,
5356 						GFP_KERNEL, node);
5357 
5358 		if (!n) {
5359 			free_kmem_cache_nodes(s);
5360 			return 0;
5361 		}
5362 
5363 		init_kmem_cache_node(n);
5364 		s->node[node] = n;
5365 	}
5366 	return 1;
5367 }
5368 
set_cpu_partial(struct kmem_cache * s)5369 static void set_cpu_partial(struct kmem_cache *s)
5370 {
5371 #ifdef CONFIG_SLUB_CPU_PARTIAL
5372 	unsigned int nr_objects;
5373 
5374 	/*
5375 	 * cpu_partial determined the maximum number of objects kept in the
5376 	 * per cpu partial lists of a processor.
5377 	 *
5378 	 * Per cpu partial lists mainly contain slabs that just have one
5379 	 * object freed. If they are used for allocation then they can be
5380 	 * filled up again with minimal effort. The slab will never hit the
5381 	 * per node partial lists and therefore no locking will be required.
5382 	 *
5383 	 * For backwards compatibility reasons, this is determined as number
5384 	 * of objects, even though we now limit maximum number of pages, see
5385 	 * slub_set_cpu_partial()
5386 	 */
5387 	if (!kmem_cache_has_cpu_partial(s))
5388 		nr_objects = 0;
5389 	else if (s->size >= PAGE_SIZE)
5390 		nr_objects = 6;
5391 	else if (s->size >= 1024)
5392 		nr_objects = 24;
5393 	else if (s->size >= 256)
5394 		nr_objects = 52;
5395 	else
5396 		nr_objects = 120;
5397 
5398 	slub_set_cpu_partial(s, nr_objects);
5399 #endif
5400 }
5401 
5402 /*
5403  * calculate_sizes() determines the order and the distribution of data within
5404  * a slab object.
5405  */
calculate_sizes(struct kmem_cache_args * args,struct kmem_cache * s)5406 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
5407 {
5408 	slab_flags_t flags = s->flags;
5409 	unsigned int size = s->object_size;
5410 	unsigned int order;
5411 
5412 	/*
5413 	 * Round up object size to the next word boundary. We can only
5414 	 * place the free pointer at word boundaries and this determines
5415 	 * the possible location of the free pointer.
5416 	 */
5417 	size = ALIGN(size, sizeof(void *));
5418 
5419 #ifdef CONFIG_SLUB_DEBUG
5420 	/*
5421 	 * Determine if we can poison the object itself. If the user of
5422 	 * the slab may touch the object after free or before allocation
5423 	 * then we should never poison the object itself.
5424 	 */
5425 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5426 			!s->ctor)
5427 		s->flags |= __OBJECT_POISON;
5428 	else
5429 		s->flags &= ~__OBJECT_POISON;
5430 
5431 
5432 	/*
5433 	 * If we are Redzoning then check if there is some space between the
5434 	 * end of the object and the free pointer. If not then add an
5435 	 * additional word to have some bytes to store Redzone information.
5436 	 */
5437 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5438 		size += sizeof(void *);
5439 #endif
5440 
5441 	/*
5442 	 * With that we have determined the number of bytes in actual use
5443 	 * by the object and redzoning.
5444 	 */
5445 	s->inuse = size;
5446 
5447 	if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
5448 	    (flags & SLAB_POISON) || s->ctor ||
5449 	    ((flags & SLAB_RED_ZONE) &&
5450 	     (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
5451 		/*
5452 		 * Relocate free pointer after the object if it is not
5453 		 * permitted to overwrite the first word of the object on
5454 		 * kmem_cache_free.
5455 		 *
5456 		 * This is the case if we do RCU, have a constructor or
5457 		 * destructor, are poisoning the objects, or are
5458 		 * redzoning an object smaller than sizeof(void *) or are
5459 		 * redzoning an object with slub_debug_orig_size() enabled,
5460 		 * in which case the right redzone may be extended.
5461 		 *
5462 		 * The assumption that s->offset >= s->inuse means free
5463 		 * pointer is outside of the object is used in the
5464 		 * freeptr_outside_object() function. If that is no
5465 		 * longer true, the function needs to be modified.
5466 		 */
5467 		s->offset = size;
5468 		size += sizeof(void *);
5469 	} else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
5470 		s->offset = args->freeptr_offset;
5471 	} else {
5472 		/*
5473 		 * Store freelist pointer near middle of object to keep
5474 		 * it away from the edges of the object to avoid small
5475 		 * sized over/underflows from neighboring allocations.
5476 		 */
5477 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5478 	}
5479 
5480 #ifdef CONFIG_SLUB_DEBUG
5481 	if (flags & SLAB_STORE_USER) {
5482 		/*
5483 		 * Need to store information about allocs and frees after
5484 		 * the object.
5485 		 */
5486 		size += 2 * sizeof(struct track);
5487 
5488 		/* Save the original kmalloc request size */
5489 		if (flags & SLAB_KMALLOC)
5490 			size += sizeof(unsigned int);
5491 	}
5492 #endif
5493 
5494 	kasan_cache_create(s, &size, &s->flags);
5495 #ifdef CONFIG_SLUB_DEBUG
5496 	if (flags & SLAB_RED_ZONE) {
5497 		/*
5498 		 * Add some empty padding so that we can catch
5499 		 * overwrites from earlier objects rather than let
5500 		 * tracking information or the free pointer be
5501 		 * corrupted if a user writes before the start
5502 		 * of the object.
5503 		 */
5504 		size += sizeof(void *);
5505 
5506 		s->red_left_pad = sizeof(void *);
5507 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5508 		size += s->red_left_pad;
5509 	}
5510 #endif
5511 
5512 	/*
5513 	 * SLUB stores one object immediately after another beginning from
5514 	 * offset 0. In order to align the objects we have to simply size
5515 	 * each object to conform to the alignment.
5516 	 */
5517 	size = ALIGN(size, s->align);
5518 	s->size = size;
5519 	s->reciprocal_size = reciprocal_value(size);
5520 	order = calculate_order(size);
5521 
5522 	if ((int)order < 0)
5523 		return 0;
5524 
5525 	s->allocflags = __GFP_COMP;
5526 
5527 	if (s->flags & SLAB_CACHE_DMA)
5528 		s->allocflags |= GFP_DMA;
5529 
5530 	if (s->flags & SLAB_CACHE_DMA32)
5531 		s->allocflags |= GFP_DMA32;
5532 
5533 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5534 		s->allocflags |= __GFP_RECLAIMABLE;
5535 
5536 	/*
5537 	 * Determine the number of objects per slab
5538 	 */
5539 	s->oo = oo_make(order, size);
5540 	s->min = oo_make(get_order(size), size);
5541 
5542 	return !!oo_objects(s->oo);
5543 }
5544 
list_slab_objects(struct kmem_cache * s,struct slab * slab)5545 static void list_slab_objects(struct kmem_cache *s, struct slab *slab)
5546 {
5547 #ifdef CONFIG_SLUB_DEBUG
5548 	void *addr = slab_address(slab);
5549 	void *p;
5550 
5551 	if (!slab_add_kunit_errors())
5552 		slab_bug(s, "Objects remaining on __kmem_cache_shutdown()");
5553 
5554 	spin_lock(&object_map_lock);
5555 	__fill_map(object_map, s, slab);
5556 
5557 	for_each_object(p, s, addr, slab->objects) {
5558 
5559 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5560 			if (slab_add_kunit_errors())
5561 				continue;
5562 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5563 			print_tracking(s, p);
5564 		}
5565 	}
5566 	spin_unlock(&object_map_lock);
5567 
5568 	__slab_err(slab);
5569 #endif
5570 }
5571 
5572 /*
5573  * Attempt to free all partial slabs on a node.
5574  * This is called from __kmem_cache_shutdown(). We must take list_lock
5575  * because sysfs file might still access partial list after the shutdowning.
5576  */
free_partial(struct kmem_cache * s,struct kmem_cache_node * n)5577 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5578 {
5579 	LIST_HEAD(discard);
5580 	struct slab *slab, *h;
5581 
5582 	BUG_ON(irqs_disabled());
5583 	spin_lock_irq(&n->list_lock);
5584 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5585 		if (!slab->inuse) {
5586 			remove_partial(n, slab);
5587 			list_add(&slab->slab_list, &discard);
5588 		} else {
5589 			list_slab_objects(s, slab);
5590 		}
5591 	}
5592 	spin_unlock_irq(&n->list_lock);
5593 
5594 	list_for_each_entry_safe(slab, h, &discard, slab_list)
5595 		discard_slab(s, slab);
5596 }
5597 
__kmem_cache_empty(struct kmem_cache * s)5598 bool __kmem_cache_empty(struct kmem_cache *s)
5599 {
5600 	int node;
5601 	struct kmem_cache_node *n;
5602 
5603 	for_each_kmem_cache_node(s, node, n)
5604 		if (n->nr_partial || node_nr_slabs(n))
5605 			return false;
5606 	return true;
5607 }
5608 
5609 /*
5610  * Release all resources used by a slab cache.
5611  */
__kmem_cache_shutdown(struct kmem_cache * s)5612 int __kmem_cache_shutdown(struct kmem_cache *s)
5613 {
5614 	int node;
5615 	struct kmem_cache_node *n;
5616 
5617 	flush_all_cpus_locked(s);
5618 	/* Attempt to free all objects */
5619 	for_each_kmem_cache_node(s, node, n) {
5620 		free_partial(s, n);
5621 		if (n->nr_partial || node_nr_slabs(n))
5622 			return 1;
5623 	}
5624 	return 0;
5625 }
5626 
5627 #ifdef CONFIG_PRINTK
__kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct slab * slab)5628 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5629 {
5630 	void *base;
5631 	int __maybe_unused i;
5632 	unsigned int objnr;
5633 	void *objp;
5634 	void *objp0;
5635 	struct kmem_cache *s = slab->slab_cache;
5636 	struct track __maybe_unused *trackp;
5637 
5638 	kpp->kp_ptr = object;
5639 	kpp->kp_slab = slab;
5640 	kpp->kp_slab_cache = s;
5641 	base = slab_address(slab);
5642 	objp0 = kasan_reset_tag(object);
5643 #ifdef CONFIG_SLUB_DEBUG
5644 	objp = restore_red_left(s, objp0);
5645 #else
5646 	objp = objp0;
5647 #endif
5648 	objnr = obj_to_index(s, slab, objp);
5649 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5650 	objp = base + s->size * objnr;
5651 	kpp->kp_objp = objp;
5652 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5653 			 || (objp - base) % s->size) ||
5654 	    !(s->flags & SLAB_STORE_USER))
5655 		return;
5656 #ifdef CONFIG_SLUB_DEBUG
5657 	objp = fixup_red_left(s, objp);
5658 	trackp = get_track(s, objp, TRACK_ALLOC);
5659 	kpp->kp_ret = (void *)trackp->addr;
5660 #ifdef CONFIG_STACKDEPOT
5661 	{
5662 		depot_stack_handle_t handle;
5663 		unsigned long *entries;
5664 		unsigned int nr_entries;
5665 
5666 		handle = READ_ONCE(trackp->handle);
5667 		if (handle) {
5668 			nr_entries = stack_depot_fetch(handle, &entries);
5669 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5670 				kpp->kp_stack[i] = (void *)entries[i];
5671 		}
5672 
5673 		trackp = get_track(s, objp, TRACK_FREE);
5674 		handle = READ_ONCE(trackp->handle);
5675 		if (handle) {
5676 			nr_entries = stack_depot_fetch(handle, &entries);
5677 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5678 				kpp->kp_free_stack[i] = (void *)entries[i];
5679 		}
5680 	}
5681 #endif
5682 #endif
5683 }
5684 #endif
5685 
5686 /********************************************************************
5687  *		Kmalloc subsystem
5688  *******************************************************************/
5689 
setup_slub_min_order(char * str)5690 static int __init setup_slub_min_order(char *str)
5691 {
5692 	get_option(&str, (int *)&slub_min_order);
5693 
5694 	if (slub_min_order > slub_max_order)
5695 		slub_max_order = slub_min_order;
5696 
5697 	return 1;
5698 }
5699 
5700 __setup("slab_min_order=", setup_slub_min_order);
5701 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5702 
5703 
setup_slub_max_order(char * str)5704 static int __init setup_slub_max_order(char *str)
5705 {
5706 	get_option(&str, (int *)&slub_max_order);
5707 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5708 
5709 	if (slub_min_order > slub_max_order)
5710 		slub_min_order = slub_max_order;
5711 
5712 	return 1;
5713 }
5714 
5715 __setup("slab_max_order=", setup_slub_max_order);
5716 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5717 
setup_slub_min_objects(char * str)5718 static int __init setup_slub_min_objects(char *str)
5719 {
5720 	get_option(&str, (int *)&slub_min_objects);
5721 
5722 	return 1;
5723 }
5724 
5725 __setup("slab_min_objects=", setup_slub_min_objects);
5726 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
5727 
5728 #ifdef CONFIG_HARDENED_USERCOPY
5729 /*
5730  * Rejects incorrectly sized objects and objects that are to be copied
5731  * to/from userspace but do not fall entirely within the containing slab
5732  * cache's usercopy region.
5733  *
5734  * Returns NULL if check passes, otherwise const char * to name of cache
5735  * to indicate an error.
5736  */
__check_heap_object(const void * ptr,unsigned long n,const struct slab * slab,bool to_user)5737 void __check_heap_object(const void *ptr, unsigned long n,
5738 			 const struct slab *slab, bool to_user)
5739 {
5740 	struct kmem_cache *s;
5741 	unsigned int offset;
5742 	bool is_kfence = is_kfence_address(ptr);
5743 
5744 	ptr = kasan_reset_tag(ptr);
5745 
5746 	/* Find object and usable object size. */
5747 	s = slab->slab_cache;
5748 
5749 	/* Reject impossible pointers. */
5750 	if (ptr < slab_address(slab))
5751 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
5752 			       to_user, 0, n);
5753 
5754 	/* Find offset within object. */
5755 	if (is_kfence)
5756 		offset = ptr - kfence_object_start(ptr);
5757 	else
5758 		offset = (ptr - slab_address(slab)) % s->size;
5759 
5760 	/* Adjust for redzone and reject if within the redzone. */
5761 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
5762 		if (offset < s->red_left_pad)
5763 			usercopy_abort("SLUB object in left red zone",
5764 				       s->name, to_user, offset, n);
5765 		offset -= s->red_left_pad;
5766 	}
5767 
5768 	/* Allow address range falling entirely within usercopy region. */
5769 	if (offset >= s->useroffset &&
5770 	    offset - s->useroffset <= s->usersize &&
5771 	    n <= s->useroffset - offset + s->usersize)
5772 		return;
5773 
5774 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
5775 }
5776 #endif /* CONFIG_HARDENED_USERCOPY */
5777 
5778 #define SHRINK_PROMOTE_MAX 32
5779 
5780 /*
5781  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5782  * up most to the head of the partial lists. New allocations will then
5783  * fill those up and thus they can be removed from the partial lists.
5784  *
5785  * The slabs with the least items are placed last. This results in them
5786  * being allocated from last increasing the chance that the last objects
5787  * are freed in them.
5788  */
__kmem_cache_do_shrink(struct kmem_cache * s)5789 static int __kmem_cache_do_shrink(struct kmem_cache *s)
5790 {
5791 	int node;
5792 	int i;
5793 	struct kmem_cache_node *n;
5794 	struct slab *slab;
5795 	struct slab *t;
5796 	struct list_head discard;
5797 	struct list_head promote[SHRINK_PROMOTE_MAX];
5798 	unsigned long flags;
5799 	int ret = 0;
5800 
5801 	for_each_kmem_cache_node(s, node, n) {
5802 		INIT_LIST_HEAD(&discard);
5803 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5804 			INIT_LIST_HEAD(promote + i);
5805 
5806 		spin_lock_irqsave(&n->list_lock, flags);
5807 
5808 		/*
5809 		 * Build lists of slabs to discard or promote.
5810 		 *
5811 		 * Note that concurrent frees may occur while we hold the
5812 		 * list_lock. slab->inuse here is the upper limit.
5813 		 */
5814 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5815 			int free = slab->objects - slab->inuse;
5816 
5817 			/* Do not reread slab->inuse */
5818 			barrier();
5819 
5820 			/* We do not keep full slabs on the list */
5821 			BUG_ON(free <= 0);
5822 
5823 			if (free == slab->objects) {
5824 				list_move(&slab->slab_list, &discard);
5825 				slab_clear_node_partial(slab);
5826 				n->nr_partial--;
5827 				dec_slabs_node(s, node, slab->objects);
5828 			} else if (free <= SHRINK_PROMOTE_MAX)
5829 				list_move(&slab->slab_list, promote + free - 1);
5830 		}
5831 
5832 		/*
5833 		 * Promote the slabs filled up most to the head of the
5834 		 * partial list.
5835 		 */
5836 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5837 			list_splice(promote + i, &n->partial);
5838 
5839 		spin_unlock_irqrestore(&n->list_lock, flags);
5840 
5841 		/* Release empty slabs */
5842 		list_for_each_entry_safe(slab, t, &discard, slab_list)
5843 			free_slab(s, slab);
5844 
5845 		if (node_nr_slabs(n))
5846 			ret = 1;
5847 	}
5848 
5849 	return ret;
5850 }
5851 
__kmem_cache_shrink(struct kmem_cache * s)5852 int __kmem_cache_shrink(struct kmem_cache *s)
5853 {
5854 	flush_all(s);
5855 	return __kmem_cache_do_shrink(s);
5856 }
5857 
slab_mem_going_offline_callback(void * arg)5858 static int slab_mem_going_offline_callback(void *arg)
5859 {
5860 	struct kmem_cache *s;
5861 
5862 	mutex_lock(&slab_mutex);
5863 	list_for_each_entry(s, &slab_caches, list) {
5864 		flush_all_cpus_locked(s);
5865 		__kmem_cache_do_shrink(s);
5866 	}
5867 	mutex_unlock(&slab_mutex);
5868 
5869 	return 0;
5870 }
5871 
slab_mem_offline_callback(void * arg)5872 static void slab_mem_offline_callback(void *arg)
5873 {
5874 	struct memory_notify *marg = arg;
5875 	int offline_node;
5876 
5877 	offline_node = marg->status_change_nid_normal;
5878 
5879 	/*
5880 	 * If the node still has available memory. we need kmem_cache_node
5881 	 * for it yet.
5882 	 */
5883 	if (offline_node < 0)
5884 		return;
5885 
5886 	mutex_lock(&slab_mutex);
5887 	node_clear(offline_node, slab_nodes);
5888 	/*
5889 	 * We no longer free kmem_cache_node structures here, as it would be
5890 	 * racy with all get_node() users, and infeasible to protect them with
5891 	 * slab_mutex.
5892 	 */
5893 	mutex_unlock(&slab_mutex);
5894 }
5895 
slab_mem_going_online_callback(void * arg)5896 static int slab_mem_going_online_callback(void *arg)
5897 {
5898 	struct kmem_cache_node *n;
5899 	struct kmem_cache *s;
5900 	struct memory_notify *marg = arg;
5901 	int nid = marg->status_change_nid_normal;
5902 	int ret = 0;
5903 
5904 	/*
5905 	 * If the node's memory is already available, then kmem_cache_node is
5906 	 * already created. Nothing to do.
5907 	 */
5908 	if (nid < 0)
5909 		return 0;
5910 
5911 	/*
5912 	 * We are bringing a node online. No memory is available yet. We must
5913 	 * allocate a kmem_cache_node structure in order to bring the node
5914 	 * online.
5915 	 */
5916 	mutex_lock(&slab_mutex);
5917 	list_for_each_entry(s, &slab_caches, list) {
5918 		/*
5919 		 * The structure may already exist if the node was previously
5920 		 * onlined and offlined.
5921 		 */
5922 		if (get_node(s, nid))
5923 			continue;
5924 		/*
5925 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
5926 		 *      since memory is not yet available from the node that
5927 		 *      is brought up.
5928 		 */
5929 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
5930 		if (!n) {
5931 			ret = -ENOMEM;
5932 			goto out;
5933 		}
5934 		init_kmem_cache_node(n);
5935 		s->node[nid] = n;
5936 	}
5937 	/*
5938 	 * Any cache created after this point will also have kmem_cache_node
5939 	 * initialized for the new node.
5940 	 */
5941 	node_set(nid, slab_nodes);
5942 out:
5943 	mutex_unlock(&slab_mutex);
5944 	return ret;
5945 }
5946 
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)5947 static int slab_memory_callback(struct notifier_block *self,
5948 				unsigned long action, void *arg)
5949 {
5950 	int ret = 0;
5951 
5952 	switch (action) {
5953 	case MEM_GOING_ONLINE:
5954 		ret = slab_mem_going_online_callback(arg);
5955 		break;
5956 	case MEM_GOING_OFFLINE:
5957 		ret = slab_mem_going_offline_callback(arg);
5958 		break;
5959 	case MEM_OFFLINE:
5960 	case MEM_CANCEL_ONLINE:
5961 		slab_mem_offline_callback(arg);
5962 		break;
5963 	case MEM_ONLINE:
5964 	case MEM_CANCEL_OFFLINE:
5965 		break;
5966 	}
5967 	if (ret)
5968 		ret = notifier_from_errno(ret);
5969 	else
5970 		ret = NOTIFY_OK;
5971 	return ret;
5972 }
5973 
5974 /********************************************************************
5975  *			Basic setup of slabs
5976  *******************************************************************/
5977 
5978 /*
5979  * Used for early kmem_cache structures that were allocated using
5980  * the page allocator. Allocate them properly then fix up the pointers
5981  * that may be pointing to the wrong kmem_cache structure.
5982  */
5983 
bootstrap(struct kmem_cache * static_cache)5984 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
5985 {
5986 	int node;
5987 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
5988 	struct kmem_cache_node *n;
5989 
5990 	memcpy(s, static_cache, kmem_cache->object_size);
5991 
5992 	/*
5993 	 * This runs very early, and only the boot processor is supposed to be
5994 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
5995 	 * IPIs around.
5996 	 */
5997 	__flush_cpu_slab(s, smp_processor_id());
5998 	for_each_kmem_cache_node(s, node, n) {
5999 		struct slab *p;
6000 
6001 		list_for_each_entry(p, &n->partial, slab_list)
6002 			p->slab_cache = s;
6003 
6004 #ifdef CONFIG_SLUB_DEBUG
6005 		list_for_each_entry(p, &n->full, slab_list)
6006 			p->slab_cache = s;
6007 #endif
6008 	}
6009 	list_add(&s->list, &slab_caches);
6010 	return s;
6011 }
6012 
kmem_cache_init(void)6013 void __init kmem_cache_init(void)
6014 {
6015 	static __initdata struct kmem_cache boot_kmem_cache,
6016 		boot_kmem_cache_node;
6017 	int node;
6018 
6019 	if (debug_guardpage_minorder())
6020 		slub_max_order = 0;
6021 
6022 	/* Print slub debugging pointers without hashing */
6023 	if (__slub_debug_enabled())
6024 		no_hash_pointers_enable(NULL);
6025 
6026 	kmem_cache_node = &boot_kmem_cache_node;
6027 	kmem_cache = &boot_kmem_cache;
6028 
6029 	/*
6030 	 * Initialize the nodemask for which we will allocate per node
6031 	 * structures. Here we don't need taking slab_mutex yet.
6032 	 */
6033 	for_each_node_state(node, N_NORMAL_MEMORY)
6034 		node_set(node, slab_nodes);
6035 
6036 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
6037 			sizeof(struct kmem_cache_node),
6038 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6039 
6040 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
6041 
6042 	/* Able to allocate the per node structures */
6043 	slab_state = PARTIAL;
6044 
6045 	create_boot_cache(kmem_cache, "kmem_cache",
6046 			offsetof(struct kmem_cache, node) +
6047 				nr_node_ids * sizeof(struct kmem_cache_node *),
6048 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6049 
6050 	kmem_cache = bootstrap(&boot_kmem_cache);
6051 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
6052 
6053 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
6054 	setup_kmalloc_cache_index_table();
6055 	create_kmalloc_caches();
6056 
6057 	/* Setup random freelists for each cache */
6058 	init_freelist_randomization();
6059 
6060 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
6061 				  slub_cpu_dead);
6062 
6063 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
6064 		cache_line_size(),
6065 		slub_min_order, slub_max_order, slub_min_objects,
6066 		nr_cpu_ids, nr_node_ids);
6067 }
6068 
kmem_cache_init_late(void)6069 void __init kmem_cache_init_late(void)
6070 {
6071 #ifndef CONFIG_SLUB_TINY
6072 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
6073 	WARN_ON(!flushwq);
6074 #endif
6075 }
6076 
6077 struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))6078 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
6079 		   slab_flags_t flags, void (*ctor)(void *))
6080 {
6081 	struct kmem_cache *s;
6082 
6083 	s = find_mergeable(size, align, flags, name, ctor);
6084 	if (s) {
6085 		if (sysfs_slab_alias(s, name))
6086 			return NULL;
6087 
6088 		s->refcount++;
6089 
6090 		/*
6091 		 * Adjust the object sizes so that we clear
6092 		 * the complete object on kzalloc.
6093 		 */
6094 		s->object_size = max(s->object_size, size);
6095 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6096 	}
6097 
6098 	return s;
6099 }
6100 
do_kmem_cache_create(struct kmem_cache * s,const char * name,unsigned int size,struct kmem_cache_args * args,slab_flags_t flags)6101 int do_kmem_cache_create(struct kmem_cache *s, const char *name,
6102 			 unsigned int size, struct kmem_cache_args *args,
6103 			 slab_flags_t flags)
6104 {
6105 	int err = -EINVAL;
6106 
6107 	s->name = name;
6108 	s->size = s->object_size = size;
6109 
6110 	s->flags = kmem_cache_flags(flags, s->name);
6111 #ifdef CONFIG_SLAB_FREELIST_HARDENED
6112 	s->random = get_random_long();
6113 #endif
6114 	s->align = args->align;
6115 	s->ctor = args->ctor;
6116 #ifdef CONFIG_HARDENED_USERCOPY
6117 	s->useroffset = args->useroffset;
6118 	s->usersize = args->usersize;
6119 #endif
6120 
6121 	if (!calculate_sizes(args, s))
6122 		goto out;
6123 	if (disable_higher_order_debug) {
6124 		/*
6125 		 * Disable debugging flags that store metadata if the min slab
6126 		 * order increased.
6127 		 */
6128 		if (get_order(s->size) > get_order(s->object_size)) {
6129 			s->flags &= ~DEBUG_METADATA_FLAGS;
6130 			s->offset = 0;
6131 			if (!calculate_sizes(args, s))
6132 				goto out;
6133 		}
6134 	}
6135 
6136 #ifdef system_has_freelist_aba
6137 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
6138 		/* Enable fast mode */
6139 		s->flags |= __CMPXCHG_DOUBLE;
6140 	}
6141 #endif
6142 
6143 	/*
6144 	 * The larger the object size is, the more slabs we want on the partial
6145 	 * list to avoid pounding the page allocator excessively.
6146 	 */
6147 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
6148 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
6149 
6150 	set_cpu_partial(s);
6151 
6152 #ifdef CONFIG_NUMA
6153 	s->remote_node_defrag_ratio = 1000;
6154 #endif
6155 
6156 	/* Initialize the pre-computed randomized freelist if slab is up */
6157 	if (slab_state >= UP) {
6158 		if (init_cache_random_seq(s))
6159 			goto out;
6160 	}
6161 
6162 	if (!init_kmem_cache_nodes(s))
6163 		goto out;
6164 
6165 	if (!alloc_kmem_cache_cpus(s))
6166 		goto out;
6167 
6168 	/* Mutex is not taken during early boot */
6169 	if (slab_state <= UP) {
6170 		err = 0;
6171 		goto out;
6172 	}
6173 
6174 	err = sysfs_slab_add(s);
6175 	if (err)
6176 		goto out;
6177 
6178 	if (s->flags & SLAB_STORE_USER)
6179 		debugfs_slab_add(s);
6180 
6181 out:
6182 	if (err)
6183 		__kmem_cache_release(s);
6184 	return err;
6185 }
6186 
6187 #ifdef SLAB_SUPPORTS_SYSFS
count_inuse(struct slab * slab)6188 static int count_inuse(struct slab *slab)
6189 {
6190 	return slab->inuse;
6191 }
6192 
count_total(struct slab * slab)6193 static int count_total(struct slab *slab)
6194 {
6195 	return slab->objects;
6196 }
6197 #endif
6198 
6199 #ifdef CONFIG_SLUB_DEBUG
validate_slab(struct kmem_cache * s,struct slab * slab,unsigned long * obj_map)6200 static void validate_slab(struct kmem_cache *s, struct slab *slab,
6201 			  unsigned long *obj_map)
6202 {
6203 	void *p;
6204 	void *addr = slab_address(slab);
6205 
6206 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
6207 		return;
6208 
6209 	/* Now we know that a valid freelist exists */
6210 	__fill_map(obj_map, s, slab);
6211 	for_each_object(p, s, addr, slab->objects) {
6212 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
6213 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
6214 
6215 		if (!check_object(s, slab, p, val))
6216 			break;
6217 	}
6218 }
6219 
validate_slab_node(struct kmem_cache * s,struct kmem_cache_node * n,unsigned long * obj_map)6220 static int validate_slab_node(struct kmem_cache *s,
6221 		struct kmem_cache_node *n, unsigned long *obj_map)
6222 {
6223 	unsigned long count = 0;
6224 	struct slab *slab;
6225 	unsigned long flags;
6226 
6227 	spin_lock_irqsave(&n->list_lock, flags);
6228 
6229 	list_for_each_entry(slab, &n->partial, slab_list) {
6230 		validate_slab(s, slab, obj_map);
6231 		count++;
6232 	}
6233 	if (count != n->nr_partial) {
6234 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
6235 		       s->name, count, n->nr_partial);
6236 		slab_add_kunit_errors();
6237 	}
6238 
6239 	if (!(s->flags & SLAB_STORE_USER))
6240 		goto out;
6241 
6242 	list_for_each_entry(slab, &n->full, slab_list) {
6243 		validate_slab(s, slab, obj_map);
6244 		count++;
6245 	}
6246 	if (count != node_nr_slabs(n)) {
6247 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
6248 		       s->name, count, node_nr_slabs(n));
6249 		slab_add_kunit_errors();
6250 	}
6251 
6252 out:
6253 	spin_unlock_irqrestore(&n->list_lock, flags);
6254 	return count;
6255 }
6256 
validate_slab_cache(struct kmem_cache * s)6257 long validate_slab_cache(struct kmem_cache *s)
6258 {
6259 	int node;
6260 	unsigned long count = 0;
6261 	struct kmem_cache_node *n;
6262 	unsigned long *obj_map;
6263 
6264 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6265 	if (!obj_map)
6266 		return -ENOMEM;
6267 
6268 	flush_all(s);
6269 	for_each_kmem_cache_node(s, node, n)
6270 		count += validate_slab_node(s, n, obj_map);
6271 
6272 	bitmap_free(obj_map);
6273 
6274 	return count;
6275 }
6276 EXPORT_SYMBOL(validate_slab_cache);
6277 
6278 #ifdef CONFIG_DEBUG_FS
6279 /*
6280  * Generate lists of code addresses where slabcache objects are allocated
6281  * and freed.
6282  */
6283 
6284 struct location {
6285 	depot_stack_handle_t handle;
6286 	unsigned long count;
6287 	unsigned long addr;
6288 	unsigned long waste;
6289 	long long sum_time;
6290 	long min_time;
6291 	long max_time;
6292 	long min_pid;
6293 	long max_pid;
6294 	DECLARE_BITMAP(cpus, NR_CPUS);
6295 	nodemask_t nodes;
6296 };
6297 
6298 struct loc_track {
6299 	unsigned long max;
6300 	unsigned long count;
6301 	struct location *loc;
6302 	loff_t idx;
6303 };
6304 
6305 static struct dentry *slab_debugfs_root;
6306 
free_loc_track(struct loc_track * t)6307 static void free_loc_track(struct loc_track *t)
6308 {
6309 	if (t->max)
6310 		free_pages((unsigned long)t->loc,
6311 			get_order(sizeof(struct location) * t->max));
6312 }
6313 
alloc_loc_track(struct loc_track * t,unsigned long max,gfp_t flags)6314 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
6315 {
6316 	struct location *l;
6317 	int order;
6318 
6319 	order = get_order(sizeof(struct location) * max);
6320 
6321 	l = (void *)__get_free_pages(flags, order);
6322 	if (!l)
6323 		return 0;
6324 
6325 	if (t->count) {
6326 		memcpy(l, t->loc, sizeof(struct location) * t->count);
6327 		free_loc_track(t);
6328 	}
6329 	t->max = max;
6330 	t->loc = l;
6331 	return 1;
6332 }
6333 
add_location(struct loc_track * t,struct kmem_cache * s,const struct track * track,unsigned int orig_size)6334 static int add_location(struct loc_track *t, struct kmem_cache *s,
6335 				const struct track *track,
6336 				unsigned int orig_size)
6337 {
6338 	long start, end, pos;
6339 	struct location *l;
6340 	unsigned long caddr, chandle, cwaste;
6341 	unsigned long age = jiffies - track->when;
6342 	depot_stack_handle_t handle = 0;
6343 	unsigned int waste = s->object_size - orig_size;
6344 
6345 #ifdef CONFIG_STACKDEPOT
6346 	handle = READ_ONCE(track->handle);
6347 #endif
6348 	start = -1;
6349 	end = t->count;
6350 
6351 	for ( ; ; ) {
6352 		pos = start + (end - start + 1) / 2;
6353 
6354 		/*
6355 		 * There is nothing at "end". If we end up there
6356 		 * we need to add something to before end.
6357 		 */
6358 		if (pos == end)
6359 			break;
6360 
6361 		l = &t->loc[pos];
6362 		caddr = l->addr;
6363 		chandle = l->handle;
6364 		cwaste = l->waste;
6365 		if ((track->addr == caddr) && (handle == chandle) &&
6366 			(waste == cwaste)) {
6367 
6368 			l->count++;
6369 			if (track->when) {
6370 				l->sum_time += age;
6371 				if (age < l->min_time)
6372 					l->min_time = age;
6373 				if (age > l->max_time)
6374 					l->max_time = age;
6375 
6376 				if (track->pid < l->min_pid)
6377 					l->min_pid = track->pid;
6378 				if (track->pid > l->max_pid)
6379 					l->max_pid = track->pid;
6380 
6381 				cpumask_set_cpu(track->cpu,
6382 						to_cpumask(l->cpus));
6383 			}
6384 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
6385 			return 1;
6386 		}
6387 
6388 		if (track->addr < caddr)
6389 			end = pos;
6390 		else if (track->addr == caddr && handle < chandle)
6391 			end = pos;
6392 		else if (track->addr == caddr && handle == chandle &&
6393 				waste < cwaste)
6394 			end = pos;
6395 		else
6396 			start = pos;
6397 	}
6398 
6399 	/*
6400 	 * Not found. Insert new tracking element.
6401 	 */
6402 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6403 		return 0;
6404 
6405 	l = t->loc + pos;
6406 	if (pos < t->count)
6407 		memmove(l + 1, l,
6408 			(t->count - pos) * sizeof(struct location));
6409 	t->count++;
6410 	l->count = 1;
6411 	l->addr = track->addr;
6412 	l->sum_time = age;
6413 	l->min_time = age;
6414 	l->max_time = age;
6415 	l->min_pid = track->pid;
6416 	l->max_pid = track->pid;
6417 	l->handle = handle;
6418 	l->waste = waste;
6419 	cpumask_clear(to_cpumask(l->cpus));
6420 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6421 	nodes_clear(l->nodes);
6422 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
6423 	return 1;
6424 }
6425 
process_slab(struct loc_track * t,struct kmem_cache * s,struct slab * slab,enum track_item alloc,unsigned long * obj_map)6426 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6427 		struct slab *slab, enum track_item alloc,
6428 		unsigned long *obj_map)
6429 {
6430 	void *addr = slab_address(slab);
6431 	bool is_alloc = (alloc == TRACK_ALLOC);
6432 	void *p;
6433 
6434 	__fill_map(obj_map, s, slab);
6435 
6436 	for_each_object(p, s, addr, slab->objects)
6437 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6438 			add_location(t, s, get_track(s, p, alloc),
6439 				     is_alloc ? get_orig_size(s, p) :
6440 						s->object_size);
6441 }
6442 #endif  /* CONFIG_DEBUG_FS   */
6443 #endif	/* CONFIG_SLUB_DEBUG */
6444 
6445 #ifdef SLAB_SUPPORTS_SYSFS
6446 enum slab_stat_type {
6447 	SL_ALL,			/* All slabs */
6448 	SL_PARTIAL,		/* Only partially allocated slabs */
6449 	SL_CPU,			/* Only slabs used for cpu caches */
6450 	SL_OBJECTS,		/* Determine allocated objects not slabs */
6451 	SL_TOTAL		/* Determine object capacity not slabs */
6452 };
6453 
6454 #define SO_ALL		(1 << SL_ALL)
6455 #define SO_PARTIAL	(1 << SL_PARTIAL)
6456 #define SO_CPU		(1 << SL_CPU)
6457 #define SO_OBJECTS	(1 << SL_OBJECTS)
6458 #define SO_TOTAL	(1 << SL_TOTAL)
6459 
show_slab_objects(struct kmem_cache * s,char * buf,unsigned long flags)6460 static ssize_t show_slab_objects(struct kmem_cache *s,
6461 				 char *buf, unsigned long flags)
6462 {
6463 	unsigned long total = 0;
6464 	int node;
6465 	int x;
6466 	unsigned long *nodes;
6467 	int len = 0;
6468 
6469 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6470 	if (!nodes)
6471 		return -ENOMEM;
6472 
6473 	if (flags & SO_CPU) {
6474 		int cpu;
6475 
6476 		for_each_possible_cpu(cpu) {
6477 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6478 							       cpu);
6479 			int node;
6480 			struct slab *slab;
6481 
6482 			slab = READ_ONCE(c->slab);
6483 			if (!slab)
6484 				continue;
6485 
6486 			node = slab_nid(slab);
6487 			if (flags & SO_TOTAL)
6488 				x = slab->objects;
6489 			else if (flags & SO_OBJECTS)
6490 				x = slab->inuse;
6491 			else
6492 				x = 1;
6493 
6494 			total += x;
6495 			nodes[node] += x;
6496 
6497 #ifdef CONFIG_SLUB_CPU_PARTIAL
6498 			slab = slub_percpu_partial_read_once(c);
6499 			if (slab) {
6500 				node = slab_nid(slab);
6501 				if (flags & SO_TOTAL)
6502 					WARN_ON_ONCE(1);
6503 				else if (flags & SO_OBJECTS)
6504 					WARN_ON_ONCE(1);
6505 				else
6506 					x = data_race(slab->slabs);
6507 				total += x;
6508 				nodes[node] += x;
6509 			}
6510 #endif
6511 		}
6512 	}
6513 
6514 	/*
6515 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6516 	 * already held which will conflict with an existing lock order:
6517 	 *
6518 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6519 	 *
6520 	 * We don't really need mem_hotplug_lock (to hold off
6521 	 * slab_mem_going_offline_callback) here because slab's memory hot
6522 	 * unplug code doesn't destroy the kmem_cache->node[] data.
6523 	 */
6524 
6525 #ifdef CONFIG_SLUB_DEBUG
6526 	if (flags & SO_ALL) {
6527 		struct kmem_cache_node *n;
6528 
6529 		for_each_kmem_cache_node(s, node, n) {
6530 
6531 			if (flags & SO_TOTAL)
6532 				x = node_nr_objs(n);
6533 			else if (flags & SO_OBJECTS)
6534 				x = node_nr_objs(n) - count_partial(n, count_free);
6535 			else
6536 				x = node_nr_slabs(n);
6537 			total += x;
6538 			nodes[node] += x;
6539 		}
6540 
6541 	} else
6542 #endif
6543 	if (flags & SO_PARTIAL) {
6544 		struct kmem_cache_node *n;
6545 
6546 		for_each_kmem_cache_node(s, node, n) {
6547 			if (flags & SO_TOTAL)
6548 				x = count_partial(n, count_total);
6549 			else if (flags & SO_OBJECTS)
6550 				x = count_partial(n, count_inuse);
6551 			else
6552 				x = n->nr_partial;
6553 			total += x;
6554 			nodes[node] += x;
6555 		}
6556 	}
6557 
6558 	len += sysfs_emit_at(buf, len, "%lu", total);
6559 #ifdef CONFIG_NUMA
6560 	for (node = 0; node < nr_node_ids; node++) {
6561 		if (nodes[node])
6562 			len += sysfs_emit_at(buf, len, " N%d=%lu",
6563 					     node, nodes[node]);
6564 	}
6565 #endif
6566 	len += sysfs_emit_at(buf, len, "\n");
6567 	kfree(nodes);
6568 
6569 	return len;
6570 }
6571 
6572 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6573 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6574 
6575 struct slab_attribute {
6576 	struct attribute attr;
6577 	ssize_t (*show)(struct kmem_cache *s, char *buf);
6578 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6579 };
6580 
6581 #define SLAB_ATTR_RO(_name) \
6582 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6583 
6584 #define SLAB_ATTR(_name) \
6585 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6586 
slab_size_show(struct kmem_cache * s,char * buf)6587 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6588 {
6589 	return sysfs_emit(buf, "%u\n", s->size);
6590 }
6591 SLAB_ATTR_RO(slab_size);
6592 
align_show(struct kmem_cache * s,char * buf)6593 static ssize_t align_show(struct kmem_cache *s, char *buf)
6594 {
6595 	return sysfs_emit(buf, "%u\n", s->align);
6596 }
6597 SLAB_ATTR_RO(align);
6598 
object_size_show(struct kmem_cache * s,char * buf)6599 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6600 {
6601 	return sysfs_emit(buf, "%u\n", s->object_size);
6602 }
6603 SLAB_ATTR_RO(object_size);
6604 
objs_per_slab_show(struct kmem_cache * s,char * buf)6605 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6606 {
6607 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6608 }
6609 SLAB_ATTR_RO(objs_per_slab);
6610 
order_show(struct kmem_cache * s,char * buf)6611 static ssize_t order_show(struct kmem_cache *s, char *buf)
6612 {
6613 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6614 }
6615 SLAB_ATTR_RO(order);
6616 
min_partial_show(struct kmem_cache * s,char * buf)6617 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6618 {
6619 	return sysfs_emit(buf, "%lu\n", s->min_partial);
6620 }
6621 
min_partial_store(struct kmem_cache * s,const char * buf,size_t length)6622 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6623 				 size_t length)
6624 {
6625 	unsigned long min;
6626 	int err;
6627 
6628 	err = kstrtoul(buf, 10, &min);
6629 	if (err)
6630 		return err;
6631 
6632 	s->min_partial = min;
6633 	return length;
6634 }
6635 SLAB_ATTR(min_partial);
6636 
cpu_partial_show(struct kmem_cache * s,char * buf)6637 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6638 {
6639 	unsigned int nr_partial = 0;
6640 #ifdef CONFIG_SLUB_CPU_PARTIAL
6641 	nr_partial = s->cpu_partial;
6642 #endif
6643 
6644 	return sysfs_emit(buf, "%u\n", nr_partial);
6645 }
6646 
cpu_partial_store(struct kmem_cache * s,const char * buf,size_t length)6647 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6648 				 size_t length)
6649 {
6650 	unsigned int objects;
6651 	int err;
6652 
6653 	err = kstrtouint(buf, 10, &objects);
6654 	if (err)
6655 		return err;
6656 	if (objects && !kmem_cache_has_cpu_partial(s))
6657 		return -EINVAL;
6658 
6659 	slub_set_cpu_partial(s, objects);
6660 	flush_all(s);
6661 	return length;
6662 }
6663 SLAB_ATTR(cpu_partial);
6664 
ctor_show(struct kmem_cache * s,char * buf)6665 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6666 {
6667 	if (!s->ctor)
6668 		return 0;
6669 	return sysfs_emit(buf, "%pS\n", s->ctor);
6670 }
6671 SLAB_ATTR_RO(ctor);
6672 
aliases_show(struct kmem_cache * s,char * buf)6673 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6674 {
6675 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6676 }
6677 SLAB_ATTR_RO(aliases);
6678 
partial_show(struct kmem_cache * s,char * buf)6679 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6680 {
6681 	return show_slab_objects(s, buf, SO_PARTIAL);
6682 }
6683 SLAB_ATTR_RO(partial);
6684 
cpu_slabs_show(struct kmem_cache * s,char * buf)6685 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6686 {
6687 	return show_slab_objects(s, buf, SO_CPU);
6688 }
6689 SLAB_ATTR_RO(cpu_slabs);
6690 
objects_partial_show(struct kmem_cache * s,char * buf)6691 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6692 {
6693 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6694 }
6695 SLAB_ATTR_RO(objects_partial);
6696 
slabs_cpu_partial_show(struct kmem_cache * s,char * buf)6697 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6698 {
6699 	int objects = 0;
6700 	int slabs = 0;
6701 	int cpu __maybe_unused;
6702 	int len = 0;
6703 
6704 #ifdef CONFIG_SLUB_CPU_PARTIAL
6705 	for_each_online_cpu(cpu) {
6706 		struct slab *slab;
6707 
6708 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6709 
6710 		if (slab)
6711 			slabs += data_race(slab->slabs);
6712 	}
6713 #endif
6714 
6715 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
6716 	objects = (slabs * oo_objects(s->oo)) / 2;
6717 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
6718 
6719 #ifdef CONFIG_SLUB_CPU_PARTIAL
6720 	for_each_online_cpu(cpu) {
6721 		struct slab *slab;
6722 
6723 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6724 		if (slab) {
6725 			slabs = data_race(slab->slabs);
6726 			objects = (slabs * oo_objects(s->oo)) / 2;
6727 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
6728 					     cpu, objects, slabs);
6729 		}
6730 	}
6731 #endif
6732 	len += sysfs_emit_at(buf, len, "\n");
6733 
6734 	return len;
6735 }
6736 SLAB_ATTR_RO(slabs_cpu_partial);
6737 
reclaim_account_show(struct kmem_cache * s,char * buf)6738 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6739 {
6740 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
6741 }
6742 SLAB_ATTR_RO(reclaim_account);
6743 
hwcache_align_show(struct kmem_cache * s,char * buf)6744 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6745 {
6746 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
6747 }
6748 SLAB_ATTR_RO(hwcache_align);
6749 
6750 #ifdef CONFIG_ZONE_DMA
cache_dma_show(struct kmem_cache * s,char * buf)6751 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6752 {
6753 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
6754 }
6755 SLAB_ATTR_RO(cache_dma);
6756 #endif
6757 
6758 #ifdef CONFIG_HARDENED_USERCOPY
usersize_show(struct kmem_cache * s,char * buf)6759 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6760 {
6761 	return sysfs_emit(buf, "%u\n", s->usersize);
6762 }
6763 SLAB_ATTR_RO(usersize);
6764 #endif
6765 
destroy_by_rcu_show(struct kmem_cache * s,char * buf)6766 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6767 {
6768 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
6769 }
6770 SLAB_ATTR_RO(destroy_by_rcu);
6771 
6772 #ifdef CONFIG_SLUB_DEBUG
slabs_show(struct kmem_cache * s,char * buf)6773 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6774 {
6775 	return show_slab_objects(s, buf, SO_ALL);
6776 }
6777 SLAB_ATTR_RO(slabs);
6778 
total_objects_show(struct kmem_cache * s,char * buf)6779 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6780 {
6781 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6782 }
6783 SLAB_ATTR_RO(total_objects);
6784 
objects_show(struct kmem_cache * s,char * buf)6785 static ssize_t objects_show(struct kmem_cache *s, char *buf)
6786 {
6787 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6788 }
6789 SLAB_ATTR_RO(objects);
6790 
sanity_checks_show(struct kmem_cache * s,char * buf)6791 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6792 {
6793 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
6794 }
6795 SLAB_ATTR_RO(sanity_checks);
6796 
trace_show(struct kmem_cache * s,char * buf)6797 static ssize_t trace_show(struct kmem_cache *s, char *buf)
6798 {
6799 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
6800 }
6801 SLAB_ATTR_RO(trace);
6802 
red_zone_show(struct kmem_cache * s,char * buf)6803 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6804 {
6805 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
6806 }
6807 
6808 SLAB_ATTR_RO(red_zone);
6809 
poison_show(struct kmem_cache * s,char * buf)6810 static ssize_t poison_show(struct kmem_cache *s, char *buf)
6811 {
6812 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
6813 }
6814 
6815 SLAB_ATTR_RO(poison);
6816 
store_user_show(struct kmem_cache * s,char * buf)6817 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6818 {
6819 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
6820 }
6821 
6822 SLAB_ATTR_RO(store_user);
6823 
validate_show(struct kmem_cache * s,char * buf)6824 static ssize_t validate_show(struct kmem_cache *s, char *buf)
6825 {
6826 	return 0;
6827 }
6828 
validate_store(struct kmem_cache * s,const char * buf,size_t length)6829 static ssize_t validate_store(struct kmem_cache *s,
6830 			const char *buf, size_t length)
6831 {
6832 	int ret = -EINVAL;
6833 
6834 	if (buf[0] == '1' && kmem_cache_debug(s)) {
6835 		ret = validate_slab_cache(s);
6836 		if (ret >= 0)
6837 			ret = length;
6838 	}
6839 	return ret;
6840 }
6841 SLAB_ATTR(validate);
6842 
6843 #endif /* CONFIG_SLUB_DEBUG */
6844 
6845 #ifdef CONFIG_FAILSLAB
failslab_show(struct kmem_cache * s,char * buf)6846 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6847 {
6848 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
6849 }
6850 
failslab_store(struct kmem_cache * s,const char * buf,size_t length)6851 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6852 				size_t length)
6853 {
6854 	if (s->refcount > 1)
6855 		return -EINVAL;
6856 
6857 	if (buf[0] == '1')
6858 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6859 	else
6860 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6861 
6862 	return length;
6863 }
6864 SLAB_ATTR(failslab);
6865 #endif
6866 
shrink_show(struct kmem_cache * s,char * buf)6867 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6868 {
6869 	return 0;
6870 }
6871 
shrink_store(struct kmem_cache * s,const char * buf,size_t length)6872 static ssize_t shrink_store(struct kmem_cache *s,
6873 			const char *buf, size_t length)
6874 {
6875 	if (buf[0] == '1')
6876 		kmem_cache_shrink(s);
6877 	else
6878 		return -EINVAL;
6879 	return length;
6880 }
6881 SLAB_ATTR(shrink);
6882 
6883 #ifdef CONFIG_NUMA
remote_node_defrag_ratio_show(struct kmem_cache * s,char * buf)6884 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
6885 {
6886 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
6887 }
6888 
remote_node_defrag_ratio_store(struct kmem_cache * s,const char * buf,size_t length)6889 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
6890 				const char *buf, size_t length)
6891 {
6892 	unsigned int ratio;
6893 	int err;
6894 
6895 	err = kstrtouint(buf, 10, &ratio);
6896 	if (err)
6897 		return err;
6898 	if (ratio > 100)
6899 		return -ERANGE;
6900 
6901 	s->remote_node_defrag_ratio = ratio * 10;
6902 
6903 	return length;
6904 }
6905 SLAB_ATTR(remote_node_defrag_ratio);
6906 #endif
6907 
6908 #ifdef CONFIG_SLUB_STATS
show_stat(struct kmem_cache * s,char * buf,enum stat_item si)6909 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6910 {
6911 	unsigned long sum  = 0;
6912 	int cpu;
6913 	int len = 0;
6914 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
6915 
6916 	if (!data)
6917 		return -ENOMEM;
6918 
6919 	for_each_online_cpu(cpu) {
6920 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
6921 
6922 		data[cpu] = x;
6923 		sum += x;
6924 	}
6925 
6926 	len += sysfs_emit_at(buf, len, "%lu", sum);
6927 
6928 #ifdef CONFIG_SMP
6929 	for_each_online_cpu(cpu) {
6930 		if (data[cpu])
6931 			len += sysfs_emit_at(buf, len, " C%d=%u",
6932 					     cpu, data[cpu]);
6933 	}
6934 #endif
6935 	kfree(data);
6936 	len += sysfs_emit_at(buf, len, "\n");
6937 
6938 	return len;
6939 }
6940 
clear_stat(struct kmem_cache * s,enum stat_item si)6941 static void clear_stat(struct kmem_cache *s, enum stat_item si)
6942 {
6943 	int cpu;
6944 
6945 	for_each_online_cpu(cpu)
6946 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
6947 }
6948 
6949 #define STAT_ATTR(si, text) 					\
6950 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
6951 {								\
6952 	return show_stat(s, buf, si);				\
6953 }								\
6954 static ssize_t text##_store(struct kmem_cache *s,		\
6955 				const char *buf, size_t length)	\
6956 {								\
6957 	if (buf[0] != '0')					\
6958 		return -EINVAL;					\
6959 	clear_stat(s, si);					\
6960 	return length;						\
6961 }								\
6962 SLAB_ATTR(text);						\
6963 
6964 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
6965 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
6966 STAT_ATTR(FREE_FASTPATH, free_fastpath);
6967 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
6968 STAT_ATTR(FREE_FROZEN, free_frozen);
6969 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
6970 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
6971 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
6972 STAT_ATTR(ALLOC_SLAB, alloc_slab);
6973 STAT_ATTR(ALLOC_REFILL, alloc_refill);
6974 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
6975 STAT_ATTR(FREE_SLAB, free_slab);
6976 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
6977 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
6978 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
6979 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
6980 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
6981 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
6982 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
6983 STAT_ATTR(ORDER_FALLBACK, order_fallback);
6984 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
6985 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
6986 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
6987 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
6988 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
6989 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6990 #endif	/* CONFIG_SLUB_STATS */
6991 
6992 #ifdef CONFIG_KFENCE
skip_kfence_show(struct kmem_cache * s,char * buf)6993 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
6994 {
6995 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
6996 }
6997 
skip_kfence_store(struct kmem_cache * s,const char * buf,size_t length)6998 static ssize_t skip_kfence_store(struct kmem_cache *s,
6999 			const char *buf, size_t length)
7000 {
7001 	int ret = length;
7002 
7003 	if (buf[0] == '0')
7004 		s->flags &= ~SLAB_SKIP_KFENCE;
7005 	else if (buf[0] == '1')
7006 		s->flags |= SLAB_SKIP_KFENCE;
7007 	else
7008 		ret = -EINVAL;
7009 
7010 	return ret;
7011 }
7012 SLAB_ATTR(skip_kfence);
7013 #endif
7014 
7015 static struct attribute *slab_attrs[] = {
7016 	&slab_size_attr.attr,
7017 	&object_size_attr.attr,
7018 	&objs_per_slab_attr.attr,
7019 	&order_attr.attr,
7020 	&min_partial_attr.attr,
7021 	&cpu_partial_attr.attr,
7022 	&objects_partial_attr.attr,
7023 	&partial_attr.attr,
7024 	&cpu_slabs_attr.attr,
7025 	&ctor_attr.attr,
7026 	&aliases_attr.attr,
7027 	&align_attr.attr,
7028 	&hwcache_align_attr.attr,
7029 	&reclaim_account_attr.attr,
7030 	&destroy_by_rcu_attr.attr,
7031 	&shrink_attr.attr,
7032 	&slabs_cpu_partial_attr.attr,
7033 #ifdef CONFIG_SLUB_DEBUG
7034 	&total_objects_attr.attr,
7035 	&objects_attr.attr,
7036 	&slabs_attr.attr,
7037 	&sanity_checks_attr.attr,
7038 	&trace_attr.attr,
7039 	&red_zone_attr.attr,
7040 	&poison_attr.attr,
7041 	&store_user_attr.attr,
7042 	&validate_attr.attr,
7043 #endif
7044 #ifdef CONFIG_ZONE_DMA
7045 	&cache_dma_attr.attr,
7046 #endif
7047 #ifdef CONFIG_NUMA
7048 	&remote_node_defrag_ratio_attr.attr,
7049 #endif
7050 #ifdef CONFIG_SLUB_STATS
7051 	&alloc_fastpath_attr.attr,
7052 	&alloc_slowpath_attr.attr,
7053 	&free_fastpath_attr.attr,
7054 	&free_slowpath_attr.attr,
7055 	&free_frozen_attr.attr,
7056 	&free_add_partial_attr.attr,
7057 	&free_remove_partial_attr.attr,
7058 	&alloc_from_partial_attr.attr,
7059 	&alloc_slab_attr.attr,
7060 	&alloc_refill_attr.attr,
7061 	&alloc_node_mismatch_attr.attr,
7062 	&free_slab_attr.attr,
7063 	&cpuslab_flush_attr.attr,
7064 	&deactivate_full_attr.attr,
7065 	&deactivate_empty_attr.attr,
7066 	&deactivate_to_head_attr.attr,
7067 	&deactivate_to_tail_attr.attr,
7068 	&deactivate_remote_frees_attr.attr,
7069 	&deactivate_bypass_attr.attr,
7070 	&order_fallback_attr.attr,
7071 	&cmpxchg_double_fail_attr.attr,
7072 	&cmpxchg_double_cpu_fail_attr.attr,
7073 	&cpu_partial_alloc_attr.attr,
7074 	&cpu_partial_free_attr.attr,
7075 	&cpu_partial_node_attr.attr,
7076 	&cpu_partial_drain_attr.attr,
7077 #endif
7078 #ifdef CONFIG_FAILSLAB
7079 	&failslab_attr.attr,
7080 #endif
7081 #ifdef CONFIG_HARDENED_USERCOPY
7082 	&usersize_attr.attr,
7083 #endif
7084 #ifdef CONFIG_KFENCE
7085 	&skip_kfence_attr.attr,
7086 #endif
7087 
7088 	NULL
7089 };
7090 
7091 static const struct attribute_group slab_attr_group = {
7092 	.attrs = slab_attrs,
7093 };
7094 
slab_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)7095 static ssize_t slab_attr_show(struct kobject *kobj,
7096 				struct attribute *attr,
7097 				char *buf)
7098 {
7099 	struct slab_attribute *attribute;
7100 	struct kmem_cache *s;
7101 
7102 	attribute = to_slab_attr(attr);
7103 	s = to_slab(kobj);
7104 
7105 	if (!attribute->show)
7106 		return -EIO;
7107 
7108 	return attribute->show(s, buf);
7109 }
7110 
slab_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)7111 static ssize_t slab_attr_store(struct kobject *kobj,
7112 				struct attribute *attr,
7113 				const char *buf, size_t len)
7114 {
7115 	struct slab_attribute *attribute;
7116 	struct kmem_cache *s;
7117 
7118 	attribute = to_slab_attr(attr);
7119 	s = to_slab(kobj);
7120 
7121 	if (!attribute->store)
7122 		return -EIO;
7123 
7124 	return attribute->store(s, buf, len);
7125 }
7126 
kmem_cache_release(struct kobject * k)7127 static void kmem_cache_release(struct kobject *k)
7128 {
7129 	slab_kmem_cache_release(to_slab(k));
7130 }
7131 
7132 static const struct sysfs_ops slab_sysfs_ops = {
7133 	.show = slab_attr_show,
7134 	.store = slab_attr_store,
7135 };
7136 
7137 static const struct kobj_type slab_ktype = {
7138 	.sysfs_ops = &slab_sysfs_ops,
7139 	.release = kmem_cache_release,
7140 };
7141 
7142 static struct kset *slab_kset;
7143 
cache_kset(struct kmem_cache * s)7144 static inline struct kset *cache_kset(struct kmem_cache *s)
7145 {
7146 	return slab_kset;
7147 }
7148 
7149 #define ID_STR_LENGTH 32
7150 
7151 /* Create a unique string id for a slab cache:
7152  *
7153  * Format	:[flags-]size
7154  */
create_unique_id(struct kmem_cache * s)7155 static char *create_unique_id(struct kmem_cache *s)
7156 {
7157 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
7158 	char *p = name;
7159 
7160 	if (!name)
7161 		return ERR_PTR(-ENOMEM);
7162 
7163 	*p++ = ':';
7164 	/*
7165 	 * First flags affecting slabcache operations. We will only
7166 	 * get here for aliasable slabs so we do not need to support
7167 	 * too many flags. The flags here must cover all flags that
7168 	 * are matched during merging to guarantee that the id is
7169 	 * unique.
7170 	 */
7171 	if (s->flags & SLAB_CACHE_DMA)
7172 		*p++ = 'd';
7173 	if (s->flags & SLAB_CACHE_DMA32)
7174 		*p++ = 'D';
7175 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
7176 		*p++ = 'a';
7177 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
7178 		*p++ = 'F';
7179 	if (s->flags & SLAB_ACCOUNT)
7180 		*p++ = 'A';
7181 	if (p != name + 1)
7182 		*p++ = '-';
7183 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
7184 
7185 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
7186 		kfree(name);
7187 		return ERR_PTR(-EINVAL);
7188 	}
7189 	kmsan_unpoison_memory(name, p - name);
7190 	return name;
7191 }
7192 
sysfs_slab_add(struct kmem_cache * s)7193 static int sysfs_slab_add(struct kmem_cache *s)
7194 {
7195 	int err;
7196 	const char *name;
7197 	struct kset *kset = cache_kset(s);
7198 	int unmergeable = slab_unmergeable(s);
7199 
7200 	if (!unmergeable && disable_higher_order_debug &&
7201 			(slub_debug & DEBUG_METADATA_FLAGS))
7202 		unmergeable = 1;
7203 
7204 	if (unmergeable) {
7205 		/*
7206 		 * Slabcache can never be merged so we can use the name proper.
7207 		 * This is typically the case for debug situations. In that
7208 		 * case we can catch duplicate names easily.
7209 		 */
7210 		sysfs_remove_link(&slab_kset->kobj, s->name);
7211 		name = s->name;
7212 	} else {
7213 		/*
7214 		 * Create a unique name for the slab as a target
7215 		 * for the symlinks.
7216 		 */
7217 		name = create_unique_id(s);
7218 		if (IS_ERR(name))
7219 			return PTR_ERR(name);
7220 	}
7221 
7222 	s->kobj.kset = kset;
7223 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
7224 	if (err)
7225 		goto out;
7226 
7227 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
7228 	if (err)
7229 		goto out_del_kobj;
7230 
7231 	if (!unmergeable) {
7232 		/* Setup first alias */
7233 		sysfs_slab_alias(s, s->name);
7234 	}
7235 out:
7236 	if (!unmergeable)
7237 		kfree(name);
7238 	return err;
7239 out_del_kobj:
7240 	kobject_del(&s->kobj);
7241 	goto out;
7242 }
7243 
sysfs_slab_unlink(struct kmem_cache * s)7244 void sysfs_slab_unlink(struct kmem_cache *s)
7245 {
7246 	kobject_del(&s->kobj);
7247 }
7248 
sysfs_slab_release(struct kmem_cache * s)7249 void sysfs_slab_release(struct kmem_cache *s)
7250 {
7251 	kobject_put(&s->kobj);
7252 }
7253 
7254 /*
7255  * Need to buffer aliases during bootup until sysfs becomes
7256  * available lest we lose that information.
7257  */
7258 struct saved_alias {
7259 	struct kmem_cache *s;
7260 	const char *name;
7261 	struct saved_alias *next;
7262 };
7263 
7264 static struct saved_alias *alias_list;
7265 
sysfs_slab_alias(struct kmem_cache * s,const char * name)7266 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7267 {
7268 	struct saved_alias *al;
7269 
7270 	if (slab_state == FULL) {
7271 		/*
7272 		 * If we have a leftover link then remove it.
7273 		 */
7274 		sysfs_remove_link(&slab_kset->kobj, name);
7275 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
7276 	}
7277 
7278 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7279 	if (!al)
7280 		return -ENOMEM;
7281 
7282 	al->s = s;
7283 	al->name = name;
7284 	al->next = alias_list;
7285 	alias_list = al;
7286 	kmsan_unpoison_memory(al, sizeof(*al));
7287 	return 0;
7288 }
7289 
slab_sysfs_init(void)7290 static int __init slab_sysfs_init(void)
7291 {
7292 	struct kmem_cache *s;
7293 	int err;
7294 
7295 	mutex_lock(&slab_mutex);
7296 
7297 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
7298 	if (!slab_kset) {
7299 		mutex_unlock(&slab_mutex);
7300 		pr_err("Cannot register slab subsystem.\n");
7301 		return -ENOMEM;
7302 	}
7303 
7304 	slab_state = FULL;
7305 
7306 	list_for_each_entry(s, &slab_caches, list) {
7307 		err = sysfs_slab_add(s);
7308 		if (err)
7309 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7310 			       s->name);
7311 	}
7312 
7313 	while (alias_list) {
7314 		struct saved_alias *al = alias_list;
7315 
7316 		alias_list = alias_list->next;
7317 		err = sysfs_slab_alias(al->s, al->name);
7318 		if (err)
7319 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7320 			       al->name);
7321 		kfree(al);
7322 	}
7323 
7324 	mutex_unlock(&slab_mutex);
7325 	return 0;
7326 }
7327 late_initcall(slab_sysfs_init);
7328 #endif /* SLAB_SUPPORTS_SYSFS */
7329 
7330 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
slab_debugfs_show(struct seq_file * seq,void * v)7331 static int slab_debugfs_show(struct seq_file *seq, void *v)
7332 {
7333 	struct loc_track *t = seq->private;
7334 	struct location *l;
7335 	unsigned long idx;
7336 
7337 	idx = (unsigned long) t->idx;
7338 	if (idx < t->count) {
7339 		l = &t->loc[idx];
7340 
7341 		seq_printf(seq, "%7ld ", l->count);
7342 
7343 		if (l->addr)
7344 			seq_printf(seq, "%pS", (void *)l->addr);
7345 		else
7346 			seq_puts(seq, "<not-available>");
7347 
7348 		if (l->waste)
7349 			seq_printf(seq, " waste=%lu/%lu",
7350 				l->count * l->waste, l->waste);
7351 
7352 		if (l->sum_time != l->min_time) {
7353 			seq_printf(seq, " age=%ld/%llu/%ld",
7354 				l->min_time, div_u64(l->sum_time, l->count),
7355 				l->max_time);
7356 		} else
7357 			seq_printf(seq, " age=%ld", l->min_time);
7358 
7359 		if (l->min_pid != l->max_pid)
7360 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7361 		else
7362 			seq_printf(seq, " pid=%ld",
7363 				l->min_pid);
7364 
7365 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7366 			seq_printf(seq, " cpus=%*pbl",
7367 				 cpumask_pr_args(to_cpumask(l->cpus)));
7368 
7369 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7370 			seq_printf(seq, " nodes=%*pbl",
7371 				 nodemask_pr_args(&l->nodes));
7372 
7373 #ifdef CONFIG_STACKDEPOT
7374 		{
7375 			depot_stack_handle_t handle;
7376 			unsigned long *entries;
7377 			unsigned int nr_entries, j;
7378 
7379 			handle = READ_ONCE(l->handle);
7380 			if (handle) {
7381 				nr_entries = stack_depot_fetch(handle, &entries);
7382 				seq_puts(seq, "\n");
7383 				for (j = 0; j < nr_entries; j++)
7384 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
7385 			}
7386 		}
7387 #endif
7388 		seq_puts(seq, "\n");
7389 	}
7390 
7391 	if (!idx && !t->count)
7392 		seq_puts(seq, "No data\n");
7393 
7394 	return 0;
7395 }
7396 
slab_debugfs_stop(struct seq_file * seq,void * v)7397 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7398 {
7399 }
7400 
slab_debugfs_next(struct seq_file * seq,void * v,loff_t * ppos)7401 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7402 {
7403 	struct loc_track *t = seq->private;
7404 
7405 	t->idx = ++(*ppos);
7406 	if (*ppos <= t->count)
7407 		return ppos;
7408 
7409 	return NULL;
7410 }
7411 
cmp_loc_by_count(const void * a,const void * b,const void * data)7412 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7413 {
7414 	struct location *loc1 = (struct location *)a;
7415 	struct location *loc2 = (struct location *)b;
7416 
7417 	if (loc1->count > loc2->count)
7418 		return -1;
7419 	else
7420 		return 1;
7421 }
7422 
slab_debugfs_start(struct seq_file * seq,loff_t * ppos)7423 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7424 {
7425 	struct loc_track *t = seq->private;
7426 
7427 	t->idx = *ppos;
7428 	return ppos;
7429 }
7430 
7431 static const struct seq_operations slab_debugfs_sops = {
7432 	.start  = slab_debugfs_start,
7433 	.next   = slab_debugfs_next,
7434 	.stop   = slab_debugfs_stop,
7435 	.show   = slab_debugfs_show,
7436 };
7437 
slab_debug_trace_open(struct inode * inode,struct file * filep)7438 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7439 {
7440 
7441 	struct kmem_cache_node *n;
7442 	enum track_item alloc;
7443 	int node;
7444 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7445 						sizeof(struct loc_track));
7446 	struct kmem_cache *s = file_inode(filep)->i_private;
7447 	unsigned long *obj_map;
7448 
7449 	if (!t)
7450 		return -ENOMEM;
7451 
7452 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7453 	if (!obj_map) {
7454 		seq_release_private(inode, filep);
7455 		return -ENOMEM;
7456 	}
7457 
7458 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
7459 		alloc = TRACK_ALLOC;
7460 	else
7461 		alloc = TRACK_FREE;
7462 
7463 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7464 		bitmap_free(obj_map);
7465 		seq_release_private(inode, filep);
7466 		return -ENOMEM;
7467 	}
7468 
7469 	for_each_kmem_cache_node(s, node, n) {
7470 		unsigned long flags;
7471 		struct slab *slab;
7472 
7473 		if (!node_nr_slabs(n))
7474 			continue;
7475 
7476 		spin_lock_irqsave(&n->list_lock, flags);
7477 		list_for_each_entry(slab, &n->partial, slab_list)
7478 			process_slab(t, s, slab, alloc, obj_map);
7479 		list_for_each_entry(slab, &n->full, slab_list)
7480 			process_slab(t, s, slab, alloc, obj_map);
7481 		spin_unlock_irqrestore(&n->list_lock, flags);
7482 	}
7483 
7484 	/* Sort locations by count */
7485 	sort_r(t->loc, t->count, sizeof(struct location),
7486 		cmp_loc_by_count, NULL, NULL);
7487 
7488 	bitmap_free(obj_map);
7489 	return 0;
7490 }
7491 
slab_debug_trace_release(struct inode * inode,struct file * file)7492 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7493 {
7494 	struct seq_file *seq = file->private_data;
7495 	struct loc_track *t = seq->private;
7496 
7497 	free_loc_track(t);
7498 	return seq_release_private(inode, file);
7499 }
7500 
7501 static const struct file_operations slab_debugfs_fops = {
7502 	.open    = slab_debug_trace_open,
7503 	.read    = seq_read,
7504 	.llseek  = seq_lseek,
7505 	.release = slab_debug_trace_release,
7506 };
7507 
debugfs_slab_add(struct kmem_cache * s)7508 static void debugfs_slab_add(struct kmem_cache *s)
7509 {
7510 	struct dentry *slab_cache_dir;
7511 
7512 	if (unlikely(!slab_debugfs_root))
7513 		return;
7514 
7515 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7516 
7517 	debugfs_create_file("alloc_traces", 0400,
7518 		slab_cache_dir, s, &slab_debugfs_fops);
7519 
7520 	debugfs_create_file("free_traces", 0400,
7521 		slab_cache_dir, s, &slab_debugfs_fops);
7522 }
7523 
debugfs_slab_release(struct kmem_cache * s)7524 void debugfs_slab_release(struct kmem_cache *s)
7525 {
7526 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7527 }
7528 
slab_debugfs_init(void)7529 static int __init slab_debugfs_init(void)
7530 {
7531 	struct kmem_cache *s;
7532 
7533 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
7534 
7535 	list_for_each_entry(s, &slab_caches, list)
7536 		if (s->flags & SLAB_STORE_USER)
7537 			debugfs_slab_add(s);
7538 
7539 	return 0;
7540 
7541 }
7542 __initcall(slab_debugfs_init);
7543 #endif
7544 /*
7545  * The /proc/slabinfo ABI
7546  */
7547 #ifdef CONFIG_SLUB_DEBUG
get_slabinfo(struct kmem_cache * s,struct slabinfo * sinfo)7548 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7549 {
7550 	unsigned long nr_slabs = 0;
7551 	unsigned long nr_objs = 0;
7552 	unsigned long nr_free = 0;
7553 	int node;
7554 	struct kmem_cache_node *n;
7555 
7556 	for_each_kmem_cache_node(s, node, n) {
7557 		nr_slabs += node_nr_slabs(n);
7558 		nr_objs += node_nr_objs(n);
7559 		nr_free += count_partial_free_approx(n);
7560 	}
7561 
7562 	sinfo->active_objs = nr_objs - nr_free;
7563 	sinfo->num_objs = nr_objs;
7564 	sinfo->active_slabs = nr_slabs;
7565 	sinfo->num_slabs = nr_slabs;
7566 	sinfo->objects_per_slab = oo_objects(s->oo);
7567 	sinfo->cache_order = oo_order(s->oo);
7568 }
7569 EXPORT_SYMBOL_NS_GPL(get_slabinfo, MINIDUMP);
7570 
7571 #endif /* CONFIG_SLUB_DEBUG */
7572