• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/locking/mutex.c
4  *
5  * Mutexes: blocking mutual exclusion locks
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *
11  * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
12  * David Howells for suggestions and improvements.
13  *
14  *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
15  *    from the -rt tree, where it was originally implemented for rtmutexes
16  *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
17  *    and Sven Dietrich.
18  *
19  * Also see Documentation/locking/mutex-design.rst.
20  */
21 #include <linux/mutex.h>
22 #include <linux/ww_mutex.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/wake_q.h>
26 #include <linux/sched/debug.h>
27 #include <linux/export.h>
28 #include <linux/spinlock.h>
29 #include <linux/interrupt.h>
30 #include <linux/debug_locks.h>
31 #include <linux/osq_lock.h>
32 
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/lock.h>
35 
36 #undef CREATE_TRACE_POINTS
37 #include <trace/hooks/dtask.h>
38 
39 #ifndef CONFIG_PREEMPT_RT
40 #include "mutex.h"
41 
42 #ifdef CONFIG_DEBUG_MUTEXES
43 # define MUTEX_WARN_ON(cond) DEBUG_LOCKS_WARN_ON(cond)
44 #else
45 # define MUTEX_WARN_ON(cond)
46 #endif
47 
48 void
__mutex_init(struct mutex * lock,const char * name,struct lock_class_key * key)49 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
50 {
51 	atomic_long_set(&lock->owner, 0);
52 	raw_spin_lock_init(&lock->wait_lock);
53 	INIT_LIST_HEAD(&lock->wait_list);
54 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
55 	osq_lock_init(&lock->osq);
56 #endif
57 
58 	trace_android_vh_mutex_init(lock);
59 	debug_mutex_init(lock, name, key);
60 }
61 EXPORT_SYMBOL(__mutex_init);
62 
__owner_task(unsigned long owner)63 static inline struct task_struct *__owner_task(unsigned long owner)
64 {
65 	return (struct task_struct *)(owner & ~MUTEX_FLAGS);
66 }
67 
mutex_is_locked(struct mutex * lock)68 bool mutex_is_locked(struct mutex *lock)
69 {
70 	return __mutex_owner(lock) != NULL;
71 }
72 EXPORT_SYMBOL(mutex_is_locked);
73 
__owner_flags(unsigned long owner)74 static inline unsigned long __owner_flags(unsigned long owner)
75 {
76 	return owner & MUTEX_FLAGS;
77 }
78 
79 /* Do not use the return value as a pointer directly. */
mutex_get_owner(struct mutex * lock)80 unsigned long mutex_get_owner(struct mutex *lock)
81 {
82 	unsigned long owner = atomic_long_read(&lock->owner);
83 
84 	return (unsigned long)__owner_task(owner);
85 }
86 
87 /*
88  * Returns: __mutex_owner(lock) on failure or NULL on success.
89  */
__mutex_trylock_common(struct mutex * lock,bool handoff)90 static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff)
91 {
92 	unsigned long owner, curr = (unsigned long)current;
93 
94 	owner = atomic_long_read(&lock->owner);
95 	for (;;) { /* must loop, can race against a flag */
96 		unsigned long flags = __owner_flags(owner);
97 		unsigned long task = owner & ~MUTEX_FLAGS;
98 
99 		if (task) {
100 			if (flags & MUTEX_FLAG_PICKUP) {
101 				if (task != curr)
102 					break;
103 				flags &= ~MUTEX_FLAG_PICKUP;
104 			} else if (handoff) {
105 				if (flags & MUTEX_FLAG_HANDOFF)
106 					break;
107 				flags |= MUTEX_FLAG_HANDOFF;
108 			} else {
109 				break;
110 			}
111 		} else {
112 			MUTEX_WARN_ON(flags & (MUTEX_FLAG_HANDOFF | MUTEX_FLAG_PICKUP));
113 			task = curr;
114 		}
115 
116 		if (atomic_long_try_cmpxchg_acquire(&lock->owner, &owner, task | flags)) {
117 			if (task == curr)
118 				return NULL;
119 			break;
120 		}
121 	}
122 
123 	return __owner_task(owner);
124 }
125 
126 /*
127  * Trylock or set HANDOFF
128  */
__mutex_trylock_or_handoff(struct mutex * lock,bool handoff)129 static inline bool __mutex_trylock_or_handoff(struct mutex *lock, bool handoff)
130 {
131 	return !__mutex_trylock_common(lock, handoff);
132 }
133 
134 /*
135  * Actual trylock that will work on any unlocked state.
136  */
__mutex_trylock(struct mutex * lock)137 static inline bool __mutex_trylock(struct mutex *lock)
138 {
139 	return !__mutex_trylock_common(lock, false);
140 }
141 
142 #ifndef CONFIG_DEBUG_LOCK_ALLOC
143 /*
144  * Lockdep annotations are contained to the slow paths for simplicity.
145  * There is nothing that would stop spreading the lockdep annotations outwards
146  * except more code.
147  */
148 
149 /*
150  * Optimistic trylock that only works in the uncontended case. Make sure to
151  * follow with a __mutex_trylock() before failing.
152  */
__mutex_trylock_fast(struct mutex * lock)153 static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
154 {
155 	unsigned long curr = (unsigned long)current;
156 	unsigned long zero = 0UL;
157 
158 	if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr)) {
159 		trace_android_vh_record_mutex_lock_starttime(lock, jiffies);
160 		return true;
161 	}
162 
163 	return false;
164 }
165 
__mutex_unlock_fast(struct mutex * lock)166 static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
167 {
168 	unsigned long curr = (unsigned long)current;
169 
170 	return atomic_long_try_cmpxchg_release(&lock->owner, &curr, 0UL);
171 }
172 #endif
173 
__mutex_set_flag(struct mutex * lock,unsigned long flag)174 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
175 {
176 	atomic_long_or(flag, &lock->owner);
177 }
178 
__mutex_clear_flag(struct mutex * lock,unsigned long flag)179 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
180 {
181 	atomic_long_andnot(flag, &lock->owner);
182 }
183 
__mutex_waiter_is_first(struct mutex * lock,struct mutex_waiter * waiter)184 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
185 {
186 	return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
187 }
188 
189 /*
190  * Add @waiter to a given location in the lock wait_list and set the
191  * FLAG_WAITERS flag if it's the first waiter.
192  */
193 static void
__mutex_add_waiter(struct mutex * lock,struct mutex_waiter * waiter,struct list_head * list)194 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
195 		   struct list_head *list)
196 {
197 	bool already_on_list = false;
198 
199 #ifdef CONFIG_DETECT_HUNG_TASK_BLOCKER
200 	WRITE_ONCE(current->blocker_mutex, lock);
201 #endif
202 	debug_mutex_add_waiter(lock, waiter, current);
203 
204 	trace_android_vh_alter_mutex_list_add(lock, waiter, list, &already_on_list);
205 	if (!already_on_list)
206 		list_add_tail(&waiter->list, list);
207 	if (__mutex_waiter_is_first(lock, waiter))
208 		__mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
209 }
210 
211 static void
__mutex_remove_waiter(struct mutex * lock,struct mutex_waiter * waiter)212 __mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter)
213 {
214 	list_del(&waiter->list);
215 	if (likely(list_empty(&lock->wait_list)))
216 		__mutex_clear_flag(lock, MUTEX_FLAGS);
217 
218 	debug_mutex_remove_waiter(lock, waiter, current);
219 #ifdef CONFIG_DETECT_HUNG_TASK_BLOCKER
220 	WRITE_ONCE(current->blocker_mutex, NULL);
221 #endif
222 }
223 
224 /*
225  * Give up ownership to a specific task, when @task = NULL, this is equivalent
226  * to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves
227  * WAITERS. Provides RELEASE semantics like a regular unlock, the
228  * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
229  */
__mutex_handoff(struct mutex * lock,struct task_struct * task)230 static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
231 {
232 	unsigned long owner = atomic_long_read(&lock->owner);
233 
234 	for (;;) {
235 		unsigned long new;
236 
237 		MUTEX_WARN_ON(__owner_task(owner) != current);
238 		MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
239 
240 		new = (owner & MUTEX_FLAG_WAITERS);
241 		new |= (unsigned long)task;
242 		if (task)
243 			new |= MUTEX_FLAG_PICKUP;
244 
245 		if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, new))
246 			break;
247 	}
248 }
249 
250 #ifndef CONFIG_DEBUG_LOCK_ALLOC
251 /*
252  * We split the mutex lock/unlock logic into separate fastpath and
253  * slowpath functions, to reduce the register pressure on the fastpath.
254  * We also put the fastpath first in the kernel image, to make sure the
255  * branch is predicted by the CPU as default-untaken.
256  */
257 static void __sched __mutex_lock_slowpath(struct mutex *lock);
258 
259 /**
260  * mutex_lock - acquire the mutex
261  * @lock: the mutex to be acquired
262  *
263  * Lock the mutex exclusively for this task. If the mutex is not
264  * available right now, it will sleep until it can get it.
265  *
266  * The mutex must later on be released by the same task that
267  * acquired it. Recursive locking is not allowed. The task
268  * may not exit without first unlocking the mutex. Also, kernel
269  * memory where the mutex resides must not be freed with
270  * the mutex still locked. The mutex must first be initialized
271  * (or statically defined) before it can be locked. memset()-ing
272  * the mutex to 0 is not allowed.
273  *
274  * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
275  * checks that will enforce the restrictions and will also do
276  * deadlock debugging)
277  *
278  * This function is similar to (but not equivalent to) down().
279  */
mutex_lock(struct mutex * lock)280 void __sched mutex_lock(struct mutex *lock)
281 {
282 	might_sleep();
283 
284 	if (!__mutex_trylock_fast(lock))
285 		__mutex_lock_slowpath(lock);
286 }
287 EXPORT_SYMBOL(mutex_lock);
288 #endif
289 
290 #include "ww_mutex.h"
291 
292 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
293 
294 /*
295  * Trylock variant that returns the owning task on failure.
296  */
__mutex_trylock_or_owner(struct mutex * lock)297 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
298 {
299 	return __mutex_trylock_common(lock, false);
300 }
301 
302 static inline
ww_mutex_spin_on_owner(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)303 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
304 			    struct mutex_waiter *waiter)
305 {
306 	struct ww_mutex *ww;
307 
308 	ww = container_of(lock, struct ww_mutex, base);
309 
310 	/*
311 	 * If ww->ctx is set the contents are undefined, only
312 	 * by acquiring wait_lock there is a guarantee that
313 	 * they are not invalid when reading.
314 	 *
315 	 * As such, when deadlock detection needs to be
316 	 * performed the optimistic spinning cannot be done.
317 	 *
318 	 * Check this in every inner iteration because we may
319 	 * be racing against another thread's ww_mutex_lock.
320 	 */
321 	if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
322 		return false;
323 
324 	/*
325 	 * If we aren't on the wait list yet, cancel the spin
326 	 * if there are waiters. We want  to avoid stealing the
327 	 * lock from a waiter with an earlier stamp, since the
328 	 * other thread may already own a lock that we also
329 	 * need.
330 	 */
331 	if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
332 		return false;
333 
334 	/*
335 	 * Similarly, stop spinning if we are no longer the
336 	 * first waiter.
337 	 */
338 	if (waiter && !__mutex_waiter_is_first(lock, waiter))
339 		return false;
340 
341 	return true;
342 }
343 
344 /*
345  * Look out! "owner" is an entirely speculative pointer access and not
346  * reliable.
347  *
348  * "noinline" so that this function shows up on perf profiles.
349  */
350 static noinline
mutex_spin_on_owner(struct mutex * lock,struct task_struct * owner,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)351 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
352 			 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
353 {
354 	bool ret = true;
355 	int cnt = 0;
356 	bool time_out = false;
357 
358 	lockdep_assert_preemption_disabled();
359 
360 	while (__mutex_owner(lock) == owner) {
361 		trace_android_vh_mutex_opt_spin_start(lock, &time_out, &cnt);
362 		if (time_out) {
363 			ret = false;
364 			break;
365 		}
366 		/*
367 		 * Ensure we emit the owner->on_cpu, dereference _after_
368 		 * checking lock->owner still matches owner. And we already
369 		 * disabled preemption which is equal to the RCU read-side
370 		 * crital section in optimistic spinning code. Thus the
371 		 * task_strcut structure won't go away during the spinning
372 		 * period
373 		 */
374 		barrier();
375 
376 		/*
377 		 * Use vcpu_is_preempted to detect lock holder preemption issue.
378 		 */
379 		if (!owner_on_cpu(owner) || need_resched()) {
380 			ret = false;
381 			break;
382 		}
383 
384 		if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
385 			ret = false;
386 			break;
387 		}
388 
389 		cpu_relax();
390 	}
391 
392 	return ret;
393 }
394 
395 /*
396  * Initial check for entering the mutex spinning loop
397  */
mutex_can_spin_on_owner(struct mutex * lock)398 static inline int mutex_can_spin_on_owner(struct mutex *lock)
399 {
400 	struct task_struct *owner;
401 	int retval = 1;
402 
403 	lockdep_assert_preemption_disabled();
404 
405 	if (need_resched())
406 		return 0;
407 
408 	/*
409 	 * We already disabled preemption which is equal to the RCU read-side
410 	 * crital section in optimistic spinning code. Thus the task_strcut
411 	 * structure won't go away during the spinning period.
412 	 */
413 	owner = __mutex_owner(lock);
414 	if (owner)
415 		retval = owner_on_cpu(owner);
416 	trace_android_vh_mutex_can_spin_on_owner(lock, &retval);
417 
418 	/*
419 	 * If lock->owner is not set, the mutex has been released. Return true
420 	 * such that we'll trylock in the spin path, which is a faster option
421 	 * than the blocking slow path.
422 	 */
423 	return retval;
424 }
425 
426 /*
427  * Optimistic spinning.
428  *
429  * We try to spin for acquisition when we find that the lock owner
430  * is currently running on a (different) CPU and while we don't
431  * need to reschedule. The rationale is that if the lock owner is
432  * running, it is likely to release the lock soon.
433  *
434  * The mutex spinners are queued up using MCS lock so that only one
435  * spinner can compete for the mutex. However, if mutex spinning isn't
436  * going to happen, there is no point in going through the lock/unlock
437  * overhead.
438  *
439  * Returns true when the lock was taken, otherwise false, indicating
440  * that we need to jump to the slowpath and sleep.
441  *
442  * The waiter flag is set to true if the spinner is a waiter in the wait
443  * queue. The waiter-spinner will spin on the lock directly and concurrently
444  * with the spinner at the head of the OSQ, if present, until the owner is
445  * changed to itself.
446  */
447 static __always_inline bool
mutex_optimistic_spin(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)448 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
449 		      struct mutex_waiter *waiter)
450 {
451 	if (!waiter) {
452 		/*
453 		 * The purpose of the mutex_can_spin_on_owner() function is
454 		 * to eliminate the overhead of osq_lock() and osq_unlock()
455 		 * in case spinning isn't possible. As a waiter-spinner
456 		 * is not going to take OSQ lock anyway, there is no need
457 		 * to call mutex_can_spin_on_owner().
458 		 */
459 		if (!mutex_can_spin_on_owner(lock))
460 			goto fail;
461 
462 		/*
463 		 * In order to avoid a stampede of mutex spinners trying to
464 		 * acquire the mutex all at once, the spinners need to take a
465 		 * MCS (queued) lock first before spinning on the owner field.
466 		 */
467 		if (!osq_lock(&lock->osq))
468 			goto fail;
469 	}
470 
471 	for (;;) {
472 		struct task_struct *owner;
473 
474 		/* Try to acquire the mutex... */
475 		owner = __mutex_trylock_or_owner(lock);
476 		if (!owner)
477 			break;
478 
479 		/*
480 		 * There's an owner, wait for it to either
481 		 * release the lock or go to sleep.
482 		 */
483 		if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
484 			goto fail_unlock;
485 
486 		/*
487 		 * The cpu_relax() call is a compiler barrier which forces
488 		 * everything in this loop to be re-loaded. We don't need
489 		 * memory barriers as we'll eventually observe the right
490 		 * values at the cost of a few extra spins.
491 		 */
492 		cpu_relax();
493 	}
494 
495 	if (!waiter)
496 		osq_unlock(&lock->osq);
497 
498 	trace_android_vh_mutex_opt_spin_finish(lock, true);
499 	return true;
500 
501 
502 fail_unlock:
503 	if (!waiter)
504 		osq_unlock(&lock->osq);
505 
506 fail:
507 	trace_android_vh_mutex_opt_spin_finish(lock, false);
508 	/*
509 	 * If we fell out of the spin path because of need_resched(),
510 	 * reschedule now, before we try-lock the mutex. This avoids getting
511 	 * scheduled out right after we obtained the mutex.
512 	 */
513 	if (need_resched()) {
514 		/*
515 		 * We _should_ have TASK_RUNNING here, but just in case
516 		 * we do not, make it so, otherwise we might get stuck.
517 		 */
518 		__set_current_state(TASK_RUNNING);
519 		schedule_preempt_disabled();
520 	}
521 
522 	return false;
523 }
524 #else
525 static __always_inline bool
mutex_optimistic_spin(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)526 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
527 		      struct mutex_waiter *waiter)
528 {
529 	return false;
530 }
531 #endif
532 
533 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
534 
535 /**
536  * mutex_unlock - release the mutex
537  * @lock: the mutex to be released
538  *
539  * Unlock a mutex that has been locked by this task previously.
540  *
541  * This function must not be used in interrupt context. Unlocking
542  * of a not locked mutex is not allowed.
543  *
544  * The caller must ensure that the mutex stays alive until this function has
545  * returned - mutex_unlock() can NOT directly be used to release an object such
546  * that another concurrent task can free it.
547  * Mutexes are different from spinlocks & refcounts in this aspect.
548  *
549  * This function is similar to (but not equivalent to) up().
550  */
mutex_unlock(struct mutex * lock)551 void __sched mutex_unlock(struct mutex *lock)
552 {
553 #ifndef CONFIG_DEBUG_LOCK_ALLOC
554 	if (__mutex_unlock_fast(lock)) {
555 		trace_android_vh_record_mutex_lock_starttime(lock, 0);
556 		return;
557 	}
558 #endif
559 	__mutex_unlock_slowpath(lock, _RET_IP_);
560 	trace_android_vh_record_mutex_lock_starttime(lock, 0);
561 }
562 EXPORT_SYMBOL(mutex_unlock);
563 
564 /**
565  * ww_mutex_unlock - release the w/w mutex
566  * @lock: the mutex to be released
567  *
568  * Unlock a mutex that has been locked by this task previously with any of the
569  * ww_mutex_lock* functions (with or without an acquire context). It is
570  * forbidden to release the locks after releasing the acquire context.
571  *
572  * This function must not be used in interrupt context. Unlocking
573  * of a unlocked mutex is not allowed.
574  */
ww_mutex_unlock(struct ww_mutex * lock)575 void __sched ww_mutex_unlock(struct ww_mutex *lock)
576 {
577 	__ww_mutex_unlock(lock);
578 	mutex_unlock(&lock->base);
579 }
580 EXPORT_SYMBOL(ww_mutex_unlock);
581 
582 /*
583  * Lock a mutex (possibly interruptible), slowpath:
584  */
585 static __always_inline int __sched
__mutex_lock_common(struct mutex * lock,unsigned int state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip,struct ww_acquire_ctx * ww_ctx,const bool use_ww_ctx)586 __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclass,
587 		    struct lockdep_map *nest_lock, unsigned long ip,
588 		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
589 {
590 	DEFINE_WAKE_Q(wake_q);
591 	struct mutex_waiter waiter;
592 	struct ww_mutex *ww;
593 	unsigned long flags;
594 	int ret;
595 
596 	if (!use_ww_ctx)
597 		ww_ctx = NULL;
598 
599 	might_sleep();
600 
601 	MUTEX_WARN_ON(lock->magic != lock);
602 
603 	ww = container_of(lock, struct ww_mutex, base);
604 	if (ww_ctx) {
605 		if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
606 			return -EALREADY;
607 
608 		/*
609 		 * Reset the wounded flag after a kill. No other process can
610 		 * race and wound us here since they can't have a valid owner
611 		 * pointer if we don't have any locks held.
612 		 */
613 		if (ww_ctx->acquired == 0)
614 			ww_ctx->wounded = 0;
615 
616 #ifdef CONFIG_DEBUG_LOCK_ALLOC
617 		nest_lock = &ww_ctx->dep_map;
618 #endif
619 	}
620 
621 	preempt_disable();
622 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
623 
624 	trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN);
625 	if (__mutex_trylock(lock) ||
626 	    mutex_optimistic_spin(lock, ww_ctx, NULL)) {
627 		/* got the lock, yay! */
628 		lock_acquired(&lock->dep_map, ip);
629 		if (ww_ctx)
630 			ww_mutex_set_context_fastpath(ww, ww_ctx);
631 		trace_contention_end(lock, 0);
632 		trace_android_vh_record_mutex_lock_starttime(lock, jiffies);
633 		preempt_enable();
634 		return 0;
635 	}
636 
637 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
638 	raw_spin_lock(&current->blocked_lock);
639 	/*
640 	 * After waiting to acquire the wait_lock, try again.
641 	 */
642 	if (__mutex_trylock(lock)) {
643 		if (ww_ctx)
644 			__ww_mutex_check_waiters(lock, ww_ctx, &wake_q);
645 
646 		goto skip_wait;
647 	}
648 
649 	debug_mutex_lock_common(lock, &waiter);
650 	waiter.task = current;
651 	if (use_ww_ctx)
652 		waiter.ww_ctx = ww_ctx;
653 
654 	lock_contended(&lock->dep_map, ip);
655 
656 	if (!use_ww_ctx) {
657 		/* add waiting tasks to the end of the waitqueue (FIFO): */
658 		__mutex_add_waiter(lock, &waiter, &lock->wait_list);
659 	} else {
660 		/*
661 		 * Add in stamp order, waking up waiters that must kill
662 		 * themselves.
663 		 */
664 		ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx, &wake_q);
665 		if (ret)
666 			goto err_early_kill;
667 	}
668 
669 	trace_android_vh_mutex_wait_start(lock);
670 	__set_task_blocked_on(current, lock);
671 	set_current_state(state);
672 	trace_contention_begin(lock, LCB_F_MUTEX);
673 	for (;;) {
674 		bool first;
675 
676 		/*
677 		 * Once we hold wait_lock, we're serialized against
678 		 * mutex_unlock() handing the lock off to us, do a trylock
679 		 * before testing the error conditions to make sure we pick up
680 		 * the handoff.
681 		 */
682 		if (__mutex_trylock(lock))
683 			break; /* acquired */;
684 
685 		/*
686 		 * Check for signals and kill conditions while holding
687 		 * wait_lock. This ensures the lock cancellation is ordered
688 		 * against mutex_unlock() and wake-ups do not go missing.
689 		 */
690 		if (signal_pending_state(state, current)) {
691 			ret = -EINTR;
692 			goto err;
693 		}
694 
695 		if (ww_ctx) {
696 			ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
697 			if (ret)
698 				goto err;
699 		}
700 
701 		raw_spin_unlock(&current->blocked_lock);
702 		raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
703 		/* Make sure we do wakeups before calling schedule */
704 		wake_up_q(&wake_q);
705 		wake_q_init(&wake_q);
706 
707 		schedule_preempt_disabled();
708 
709 		first = __mutex_waiter_is_first(lock, &waiter);
710 
711 		raw_spin_lock_irqsave(&lock->wait_lock, flags);
712 		raw_spin_lock(&current->blocked_lock);
713 
714 		/*
715 		 * Re-set blocked_on_state as unlock path set it to WAKING/RUNNABLE
716 		 */
717 		current->blocked_on_state = BO_BLOCKED;
718 		set_current_state(state);
719 		/*
720 		 * Here we order against unlock; we must either see it change
721 		 * state back to RUNNING and fall through the next schedule(),
722 		 * or we must see its unlock and acquire.
723 		 */
724 		if (__mutex_trylock_or_handoff(lock, first))
725 			break;
726 
727 		if (first) {
728 			bool opt_acquired;
729 
730 			/*
731 			 * mutex_optimistic_spin() can call schedule(), so
732 			 * we need to release these locks before calling it,
733 			 * and clear blocked on so we don't become unselectable
734 			 * to run.
735 			 */
736 			current->blocked_on_state = BO_RUNNABLE;
737 			raw_spin_unlock(&current->blocked_lock);
738 			raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
739 			trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN);
740 			opt_acquired = mutex_optimistic_spin(lock, ww_ctx, &waiter);
741 			raw_spin_lock_irqsave(&lock->wait_lock, flags);
742 			raw_spin_lock(&current->blocked_lock);
743 			current->blocked_on_state = BO_BLOCKED;
744 			if (opt_acquired)
745 				break;
746 			trace_contention_begin(lock, LCB_F_MUTEX);
747 		}
748 	}
749 	__clear_task_blocked_on(current, lock);
750 	__set_current_state(TASK_RUNNING);
751 	trace_android_vh_mutex_wait_finish(lock);
752 
753 	if (ww_ctx) {
754 		/*
755 		 * Wound-Wait; we stole the lock (!first_waiter), check the
756 		 * waiters as anyone might want to wound us.
757 		 */
758 		if (!ww_ctx->is_wait_die &&
759 		    !__mutex_waiter_is_first(lock, &waiter))
760 			__ww_mutex_check_waiters(lock, ww_ctx, &wake_q);
761 	}
762 
763 	__mutex_remove_waiter(lock, &waiter);
764 
765 	debug_mutex_free_waiter(&waiter);
766 
767 skip_wait:
768 	/* got the lock - cleanup and rejoice! */
769 	lock_acquired(&lock->dep_map, ip);
770 	trace_contention_end(lock, 0);
771 
772 	if (ww_ctx)
773 		ww_mutex_lock_acquired(ww, ww_ctx);
774 
775 	raw_spin_unlock(&current->blocked_lock);
776 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
777 	wake_up_q(&wake_q);
778 	trace_android_vh_record_mutex_lock_starttime(lock, jiffies);
779 	preempt_enable();
780 	return 0;
781 
782 err:
783 	__clear_task_blocked_on(current, lock);
784 	__set_current_state(TASK_RUNNING);
785 	trace_android_vh_mutex_wait_finish(lock);
786 	__mutex_remove_waiter(lock, &waiter);
787 err_early_kill:
788 	WARN_ON(__get_task_blocked_on(current));
789 	trace_contention_end(lock, ret);
790 	raw_spin_unlock(&current->blocked_lock);
791 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
792 	debug_mutex_free_waiter(&waiter);
793 	mutex_release(&lock->dep_map, ip);
794 	wake_up_q(&wake_q);
795 	preempt_enable();
796 	return ret;
797 }
798 
799 static int __sched
__mutex_lock(struct mutex * lock,unsigned int state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip)800 __mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
801 	     struct lockdep_map *nest_lock, unsigned long ip)
802 {
803 	return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
804 }
805 
806 static int __sched
__ww_mutex_lock(struct mutex * lock,unsigned int state,unsigned int subclass,unsigned long ip,struct ww_acquire_ctx * ww_ctx)807 __ww_mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
808 		unsigned long ip, struct ww_acquire_ctx *ww_ctx)
809 {
810 	return __mutex_lock_common(lock, state, subclass, NULL, ip, ww_ctx, true);
811 }
812 
813 /**
814  * ww_mutex_trylock - tries to acquire the w/w mutex with optional acquire context
815  * @ww: mutex to lock
816  * @ww_ctx: optional w/w acquire context
817  *
818  * Trylocks a mutex with the optional acquire context; no deadlock detection is
819  * possible. Returns 1 if the mutex has been acquired successfully, 0 otherwise.
820  *
821  * Unlike ww_mutex_lock, no deadlock handling is performed. However, if a @ctx is
822  * specified, -EALREADY handling may happen in calls to ww_mutex_trylock.
823  *
824  * A mutex acquired with this function must be released with ww_mutex_unlock.
825  */
ww_mutex_trylock(struct ww_mutex * ww,struct ww_acquire_ctx * ww_ctx)826 int ww_mutex_trylock(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
827 {
828 	if (!ww_ctx)
829 		return mutex_trylock(&ww->base);
830 
831 	MUTEX_WARN_ON(ww->base.magic != &ww->base);
832 
833 	/*
834 	 * Reset the wounded flag after a kill. No other process can
835 	 * race and wound us here, since they can't have a valid owner
836 	 * pointer if we don't have any locks held.
837 	 */
838 	if (ww_ctx->acquired == 0)
839 		ww_ctx->wounded = 0;
840 
841 	if (__mutex_trylock(&ww->base)) {
842 		ww_mutex_set_context_fastpath(ww, ww_ctx);
843 		mutex_acquire_nest(&ww->base.dep_map, 0, 1, &ww_ctx->dep_map, _RET_IP_);
844 		return 1;
845 	}
846 
847 	return 0;
848 }
849 EXPORT_SYMBOL(ww_mutex_trylock);
850 
851 #ifdef CONFIG_DEBUG_LOCK_ALLOC
852 void __sched
mutex_lock_nested(struct mutex * lock,unsigned int subclass)853 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
854 {
855 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
856 }
857 
858 EXPORT_SYMBOL_GPL(mutex_lock_nested);
859 
860 void __sched
_mutex_lock_nest_lock(struct mutex * lock,struct lockdep_map * nest)861 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
862 {
863 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
864 }
865 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
866 
867 int __sched
mutex_lock_killable_nested(struct mutex * lock,unsigned int subclass)868 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
869 {
870 	return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
871 }
872 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
873 
874 int __sched
mutex_lock_interruptible_nested(struct mutex * lock,unsigned int subclass)875 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
876 {
877 	return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
878 }
879 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
880 
881 void __sched
mutex_lock_io_nested(struct mutex * lock,unsigned int subclass)882 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
883 {
884 	int token;
885 
886 	might_sleep();
887 
888 	token = io_schedule_prepare();
889 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
890 			    subclass, NULL, _RET_IP_, NULL, 0);
891 	io_schedule_finish(token);
892 }
893 EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
894 
895 static inline int
ww_mutex_deadlock_injection(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)896 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
897 {
898 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
899 	unsigned tmp;
900 
901 	if (ctx->deadlock_inject_countdown-- == 0) {
902 		tmp = ctx->deadlock_inject_interval;
903 		if (tmp > UINT_MAX/4)
904 			tmp = UINT_MAX;
905 		else
906 			tmp = tmp*2 + tmp + tmp/2;
907 
908 		ctx->deadlock_inject_interval = tmp;
909 		ctx->deadlock_inject_countdown = tmp;
910 		ctx->contending_lock = lock;
911 
912 		ww_mutex_unlock(lock);
913 
914 		return -EDEADLK;
915 	}
916 #endif
917 
918 	return 0;
919 }
920 
921 int __sched
ww_mutex_lock(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)922 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
923 {
924 	int ret;
925 
926 	might_sleep();
927 	ret =  __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
928 			       0, _RET_IP_, ctx);
929 	if (!ret && ctx && ctx->acquired > 1)
930 		return ww_mutex_deadlock_injection(lock, ctx);
931 
932 	return ret;
933 }
934 EXPORT_SYMBOL_GPL(ww_mutex_lock);
935 
936 int __sched
ww_mutex_lock_interruptible(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)937 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
938 {
939 	int ret;
940 
941 	might_sleep();
942 	ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
943 			      0, _RET_IP_, ctx);
944 
945 	if (!ret && ctx && ctx->acquired > 1)
946 		return ww_mutex_deadlock_injection(lock, ctx);
947 
948 	return ret;
949 }
950 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
951 
952 #endif
953 
954 /*
955  * Release the lock, slowpath:
956  */
__mutex_unlock_slowpath(struct mutex * lock,unsigned long ip)957 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
958 {
959 	struct task_struct *donor, *next = NULL;
960 	DEFINE_WAKE_Q(wake_q);
961 	unsigned long owner;
962 	unsigned long flags;
963 
964 	mutex_release(&lock->dep_map, ip);
965 
966 	/*
967 	 * Release the lock before (potentially) taking the spinlock such that
968 	 * other contenders can get on with things ASAP.
969 	 *
970 	 * Except when HANDOFF, in that case we must not clear the owner field,
971 	 * but instead set it to the top waiter.
972 	 */
973 	owner = atomic_long_read(&lock->owner);
974 	for (;;) {
975 		MUTEX_WARN_ON(__owner_task(owner) != current);
976 		MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
977 
978 		if (sched_proxy_exec() && current->blocked_donor) {
979 			/* force handoff if we have a blocked_donor */
980 			owner = MUTEX_FLAG_HANDOFF;
981 			break;
982 		}
983 
984 		if (owner & MUTEX_FLAG_HANDOFF)
985 			break;
986 
987 		if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, __owner_flags(owner))) {
988 			if (owner & MUTEX_FLAG_WAITERS)
989 				break;
990 
991 			return;
992 		}
993 	}
994 
995 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
996 	debug_mutex_unlock(lock);
997 
998 	if (sched_proxy_exec()) {
999 		raw_spin_lock(&current->blocked_lock);
1000 		/*
1001 		 * If we have a task boosting current, and that task was boosting
1002 		 * current through this lock, hand the lock to that task, as that
1003 		 * is the highest waiter, as selected by the scheduling function.
1004 		 */
1005 		donor = current->blocked_donor;
1006 		if (donor) {
1007 			struct mutex *next_lock;
1008 
1009 			raw_spin_lock_nested(&donor->blocked_lock, SINGLE_DEPTH_NESTING);
1010 			next_lock = __get_task_blocked_on(donor);
1011 			if (next_lock == lock) {
1012 				next = donor;
1013 				__set_blocked_on_waking(donor);
1014 				wake_q_add(&wake_q, donor);
1015 				current->blocked_donor = NULL;
1016 			}
1017 			raw_spin_unlock(&donor->blocked_lock);
1018 		}
1019 	}
1020 
1021 	/*
1022 	 * Failing that, pick any on the wait list.
1023 	 */
1024 	if (!next && !list_empty(&lock->wait_list)) {
1025 		/* get the first entry from the wait-list: */
1026 		struct mutex_waiter *waiter =
1027 			list_first_entry(&lock->wait_list,
1028 					 struct mutex_waiter, list);
1029 
1030 		next = waiter->task;
1031 
1032 		raw_spin_lock_nested(&next->blocked_lock, SINGLE_DEPTH_NESTING);
1033 		debug_mutex_wake_waiter(lock, waiter);
1034 		WARN_ON_ONCE(__get_task_blocked_on(next) != lock);
1035 		__set_blocked_on_waking(next);
1036 		raw_spin_unlock(&next->blocked_lock);
1037 		wake_q_add(&wake_q, next);
1038 	}
1039 
1040 	if (owner & MUTEX_FLAG_HANDOFF)
1041 		__mutex_handoff(lock, next);
1042 
1043 	if (sched_proxy_exec())
1044 		raw_spin_unlock(&current->blocked_lock);
1045 	trace_android_vh_mutex_unlock_slowpath_before_wakeq(lock);
1046 	preempt_disable();
1047 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1048 	wake_up_q(&wake_q);
1049 	preempt_enable();
1050 	trace_android_vh_mutex_unlock_slowpath(lock);
1051 }
1052 
1053 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1054 /*
1055  * Here come the less common (and hence less performance-critical) APIs:
1056  * mutex_lock_interruptible() and mutex_trylock().
1057  */
1058 static noinline int __sched
1059 __mutex_lock_killable_slowpath(struct mutex *lock);
1060 
1061 static noinline int __sched
1062 __mutex_lock_interruptible_slowpath(struct mutex *lock);
1063 
1064 /**
1065  * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
1066  * @lock: The mutex to be acquired.
1067  *
1068  * Lock the mutex like mutex_lock().  If a signal is delivered while the
1069  * process is sleeping, this function will return without acquiring the
1070  * mutex.
1071  *
1072  * Context: Process context.
1073  * Return: 0 if the lock was successfully acquired or %-EINTR if a
1074  * signal arrived.
1075  */
mutex_lock_interruptible(struct mutex * lock)1076 int __sched mutex_lock_interruptible(struct mutex *lock)
1077 {
1078 	might_sleep();
1079 
1080 	if (__mutex_trylock_fast(lock))
1081 		return 0;
1082 
1083 	return __mutex_lock_interruptible_slowpath(lock);
1084 }
1085 
1086 EXPORT_SYMBOL(mutex_lock_interruptible);
1087 
1088 /**
1089  * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
1090  * @lock: The mutex to be acquired.
1091  *
1092  * Lock the mutex like mutex_lock().  If a signal which will be fatal to
1093  * the current process is delivered while the process is sleeping, this
1094  * function will return without acquiring the mutex.
1095  *
1096  * Context: Process context.
1097  * Return: 0 if the lock was successfully acquired or %-EINTR if a
1098  * fatal signal arrived.
1099  */
mutex_lock_killable(struct mutex * lock)1100 int __sched mutex_lock_killable(struct mutex *lock)
1101 {
1102 	might_sleep();
1103 
1104 	if (__mutex_trylock_fast(lock))
1105 		return 0;
1106 
1107 	return __mutex_lock_killable_slowpath(lock);
1108 }
1109 EXPORT_SYMBOL(mutex_lock_killable);
1110 
1111 /**
1112  * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1113  * @lock: The mutex to be acquired.
1114  *
1115  * Lock the mutex like mutex_lock().  While the task is waiting for this
1116  * mutex, it will be accounted as being in the IO wait state by the
1117  * scheduler.
1118  *
1119  * Context: Process context.
1120  */
mutex_lock_io(struct mutex * lock)1121 void __sched mutex_lock_io(struct mutex *lock)
1122 {
1123 	int token;
1124 
1125 	token = io_schedule_prepare();
1126 	mutex_lock(lock);
1127 	io_schedule_finish(token);
1128 }
1129 EXPORT_SYMBOL_GPL(mutex_lock_io);
1130 
1131 static noinline void __sched
__mutex_lock_slowpath(struct mutex * lock)1132 __mutex_lock_slowpath(struct mutex *lock)
1133 {
1134 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1135 }
1136 
1137 static noinline int __sched
__mutex_lock_killable_slowpath(struct mutex * lock)1138 __mutex_lock_killable_slowpath(struct mutex *lock)
1139 {
1140 	return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1141 }
1142 
1143 static noinline int __sched
__mutex_lock_interruptible_slowpath(struct mutex * lock)1144 __mutex_lock_interruptible_slowpath(struct mutex *lock)
1145 {
1146 	return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1147 }
1148 
1149 static noinline int __sched
__ww_mutex_lock_slowpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1150 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1151 {
1152 	return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0,
1153 			       _RET_IP_, ctx);
1154 }
1155 
1156 static noinline int __sched
__ww_mutex_lock_interruptible_slowpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1157 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1158 					    struct ww_acquire_ctx *ctx)
1159 {
1160 	return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0,
1161 			       _RET_IP_, ctx);
1162 }
1163 
1164 #endif
1165 
1166 /**
1167  * mutex_trylock - try to acquire the mutex, without waiting
1168  * @lock: the mutex to be acquired
1169  *
1170  * Try to acquire the mutex atomically. Returns 1 if the mutex
1171  * has been acquired successfully, and 0 on contention.
1172  *
1173  * NOTE: this function follows the spin_trylock() convention, so
1174  * it is negated from the down_trylock() return values! Be careful
1175  * about this when converting semaphore users to mutexes.
1176  *
1177  * This function must not be used in interrupt context. The
1178  * mutex must be released by the same task that acquired it.
1179  */
mutex_trylock(struct mutex * lock)1180 int __sched mutex_trylock(struct mutex *lock)
1181 {
1182 	bool locked;
1183 
1184 	MUTEX_WARN_ON(lock->magic != lock);
1185 
1186 	locked = __mutex_trylock(lock);
1187 	if (locked) {
1188 		trace_android_vh_record_mutex_lock_starttime(lock, jiffies);
1189 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1190 	}
1191 
1192 	return locked;
1193 }
1194 EXPORT_SYMBOL(mutex_trylock);
1195 
1196 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1197 int __sched
ww_mutex_lock(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1198 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1199 {
1200 	might_sleep();
1201 
1202 	if (__mutex_trylock_fast(&lock->base)) {
1203 		if (ctx)
1204 			ww_mutex_set_context_fastpath(lock, ctx);
1205 		return 0;
1206 	}
1207 
1208 	return __ww_mutex_lock_slowpath(lock, ctx);
1209 }
1210 EXPORT_SYMBOL(ww_mutex_lock);
1211 
1212 int __sched
ww_mutex_lock_interruptible(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1213 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1214 {
1215 	might_sleep();
1216 
1217 	if (__mutex_trylock_fast(&lock->base)) {
1218 		if (ctx)
1219 			ww_mutex_set_context_fastpath(lock, ctx);
1220 		return 0;
1221 	}
1222 
1223 	return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1224 }
1225 EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1226 
1227 #endif /* !CONFIG_DEBUG_LOCK_ALLOC */
1228 #endif /* !CONFIG_PREEMPT_RT */
1229 
1230 EXPORT_TRACEPOINT_SYMBOL_GPL(contention_begin);
1231 EXPORT_TRACEPOINT_SYMBOL_GPL(contention_end);
1232 
1233 /**
1234  * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1235  * @cnt: the atomic which we are to dec
1236  * @lock: the mutex to return holding if we dec to 0
1237  *
1238  * return true and hold lock if we dec to 0, return false otherwise
1239  */
atomic_dec_and_mutex_lock(atomic_t * cnt,struct mutex * lock)1240 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1241 {
1242 	/* dec if we can't possibly hit 0 */
1243 	if (atomic_add_unless(cnt, -1, 1))
1244 		return 0;
1245 	/* we might hit 0, so take the lock */
1246 	mutex_lock(lock);
1247 	if (!atomic_dec_and_test(cnt)) {
1248 		/* when we actually did the dec, we didn't hit 0 */
1249 		mutex_unlock(lock);
1250 		return 0;
1251 	}
1252 	/* we hit 0, and we hold the lock */
1253 	return 1;
1254 }
1255 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1256