• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 Google LLC
4  * Author: Quentin Perret <qperret@google.com>
5  */
6 
7 #include <linux/kvm_host.h>
8 #include <asm/kvm_hyp.h>
9 #include <asm/kvm_mmu.h>
10 #include <asm/kvm_pgtable.h>
11 #include <asm/kvm_pkvm.h>
12 #include <asm/spectre.h>
13 
14 #include <nvhe/early_alloc.h>
15 #include <nvhe/gfp.h>
16 #include <nvhe/memory.h>
17 #include <nvhe/mem_protect.h>
18 #include <nvhe/mm.h>
19 #include <nvhe/modules.h>
20 #include <nvhe/spinlock.h>
21 
22 struct kvm_pgtable pkvm_pgtable;
23 hyp_spinlock_t pkvm_pgd_lock;
24 
25 struct memblock_region hyp_memory[HYP_MEMBLOCK_REGIONS];
26 unsigned int hyp_memblock_nr;
27 
28 static u64 __io_map_base;
29 
30 struct hyp_fixmap_slot {
31 	u64 addr;
32 	kvm_pte_t *ptep;
33 };
34 static DEFINE_PER_CPU(struct hyp_fixmap_slot, fixmap_slots);
35 
__pkvm_create_mappings(unsigned long start,unsigned long size,unsigned long phys,enum kvm_pgtable_prot prot)36 static int __pkvm_create_mappings(unsigned long start, unsigned long size,
37 				  unsigned long phys, enum kvm_pgtable_prot prot)
38 {
39 	int err;
40 
41 	hyp_spin_lock(&pkvm_pgd_lock);
42 	err = kvm_pgtable_hyp_map(&pkvm_pgtable, start, size, phys, prot);
43 	hyp_spin_unlock(&pkvm_pgd_lock);
44 
45 	return err;
46 }
47 
__pkvm_alloc_private_va_range(unsigned long start,size_t size)48 static int __pkvm_alloc_private_va_range(unsigned long start, size_t size)
49 {
50 	unsigned long cur;
51 
52 	hyp_assert_lock_held(&pkvm_pgd_lock);
53 
54 	if (!start || start < __io_map_base)
55 		return -EINVAL;
56 
57 	/* The allocated size is always a multiple of PAGE_SIZE */
58 	cur = start + PAGE_ALIGN(size);
59 
60 	/* Are we overflowing on the vmemmap ? */
61 	if (cur > __hyp_vmemmap)
62 		return -ENOMEM;
63 
64 	__io_map_base = cur;
65 
66 	return 0;
67 }
68 
69 /**
70  * pkvm_alloc_private_va_range - Allocates a private VA range.
71  * @size:	The size of the VA range to reserve.
72  * @haddr:	The hypervisor virtual start address of the allocation.
73  *
74  * The private virtual address (VA) range is allocated above __io_map_base
75  * and aligned based on the order of @size.
76  *
77  * Return: 0 on success or negative error code on failure.
78  */
pkvm_alloc_private_va_range(size_t size,unsigned long * haddr)79 int pkvm_alloc_private_va_range(size_t size, unsigned long *haddr)
80 {
81 	unsigned long addr;
82 	int ret;
83 
84 	hyp_spin_lock(&pkvm_pgd_lock);
85 	addr = __io_map_base;
86 	ret = __pkvm_alloc_private_va_range(addr, size);
87 	hyp_spin_unlock(&pkvm_pgd_lock);
88 
89 	*haddr = addr;
90 
91 	return ret;
92 }
93 
__pkvm_create_private_mapping(phys_addr_t phys,size_t size,enum kvm_pgtable_prot prot,unsigned long * haddr)94 int __pkvm_create_private_mapping(phys_addr_t phys, size_t size,
95 				  enum kvm_pgtable_prot prot,
96 				  unsigned long *haddr)
97 {
98 	unsigned long addr;
99 	int err;
100 
101 	size = PAGE_ALIGN(size + offset_in_page(phys));
102 	err = pkvm_alloc_private_va_range(size, &addr);
103 	if (err)
104 		return err;
105 
106 	err = __pkvm_create_mappings(addr, size, phys, prot);
107 	if (err)
108 		return err;
109 
110 	*haddr = addr + offset_in_page(phys);
111 	return err;
112 }
113 
114 #ifdef CONFIG_PKVM_STRICT_CHECKS
115 static unsigned long mod_range_start = ULONG_MAX;
116 static unsigned long mod_range_end;
117 static DEFINE_HYP_SPINLOCK(mod_range_lock);
118 
update_mod_range(unsigned long addr,size_t size)119 static void update_mod_range(unsigned long addr, size_t size)
120 {
121 	hyp_spin_lock(&mod_range_lock);
122 	mod_range_start = min(mod_range_start, addr);
123 	mod_range_end = max(mod_range_end, addr + size);
124 	hyp_spin_unlock(&mod_range_lock);
125 }
126 
assert_in_mod_range(unsigned long addr)127 void assert_in_mod_range(unsigned long addr)
128 {
129 	/*
130 	 * This is not entirely watertight if there are private range
131 	 * allocations between modules being loaded, but in practice that is
132 	 * probably going to be allocation initiated by the modules themselves.
133 	 */
134 	hyp_spin_lock(&mod_range_lock);
135 	WARN_ON(addr < mod_range_start || mod_range_end <= addr);
136 	hyp_spin_unlock(&mod_range_lock);
137 }
138 #else
update_mod_range(unsigned long addr,size_t size)139 static inline void update_mod_range(unsigned long addr, size_t size) { }
140 #endif
141 
__pkvm_alloc_module_va(u64 nr_pages)142 void *__pkvm_alloc_module_va(u64 nr_pages)
143 {
144 	size_t size = nr_pages << PAGE_SHIFT;
145 	unsigned long addr = 0;
146 
147 	if (!pkvm_alloc_private_va_range(size, &addr))
148 		update_mod_range(addr, size);
149 
150 	return (void *)addr;
151 }
152 
__pkvm_map_module_page(u64 pfn,void * va,enum kvm_pgtable_prot prot,bool is_protected)153 int __pkvm_map_module_page(u64 pfn, void *va, enum kvm_pgtable_prot prot, bool is_protected)
154 {
155 	unsigned long addr = (unsigned long)va;
156 	int ret;
157 
158 	assert_in_mod_range(addr);
159 
160 	if (!is_protected) {
161 		ret = __pkvm_host_donate_hyp(pfn, 1);
162 		if (ret)
163 			return ret;
164 	}
165 
166 	ret = __pkvm_create_mappings(addr, PAGE_SIZE, hyp_pfn_to_phys(pfn), prot);
167 	if (ret && !is_protected)
168 		WARN_ON(__pkvm_hyp_donate_host(pfn, 1));
169 
170 	return ret;
171 }
172 
__pkvm_unmap_module_page(u64 pfn,void * va)173 void __pkvm_unmap_module_page(u64 pfn, void *va)
174 {
175 	WARN_ON(__pkvm_hyp_donate_host(pfn, 1));
176 	pkvm_remove_mappings(va, va + PAGE_SIZE);
177 }
178 
__hyp_allocator_map(unsigned long va,phys_addr_t phys)179 int __hyp_allocator_map(unsigned long va, phys_addr_t phys)
180 {
181 	int ret = __pkvm_create_mappings(va, PAGE_SIZE, phys, PAGE_HYP);
182 
183 	/* Let's not confuse the hyp_alloc callers who will try to top-up pointlessly on -ENOMEM */
184 	if (ret == -ENOMEM)
185 		ret = -EBUSY;
186 
187 	return ret;
188 }
189 
pkvm_create_mappings_locked(void * from,void * to,enum kvm_pgtable_prot prot)190 int pkvm_create_mappings_locked(void *from, void *to, enum kvm_pgtable_prot prot)
191 {
192 	unsigned long start = (unsigned long)from;
193 	unsigned long end = (unsigned long)to;
194 	unsigned long virt_addr;
195 	phys_addr_t phys;
196 
197 	hyp_assert_lock_held(&pkvm_pgd_lock);
198 
199 	start = start & PAGE_MASK;
200 	end = PAGE_ALIGN(end);
201 
202 	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
203 		int err;
204 
205 		phys = hyp_virt_to_phys((void *)virt_addr);
206 		err = kvm_pgtable_hyp_map(&pkvm_pgtable, virt_addr, PAGE_SIZE,
207 					  phys, prot);
208 		if (err)
209 			return err;
210 	}
211 
212 	return 0;
213 }
214 
pkvm_create_mappings(void * from,void * to,enum kvm_pgtable_prot prot)215 int pkvm_create_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
216 {
217 	int ret;
218 
219 	hyp_spin_lock(&pkvm_pgd_lock);
220 	ret = pkvm_create_mappings_locked(from, to, prot);
221 	hyp_spin_unlock(&pkvm_pgd_lock);
222 
223 	return ret;
224 }
225 
pkvm_remove_mappings_locked(void * from,void * to)226 unsigned long pkvm_remove_mappings_locked(void *from, void *to)
227 {
228 	unsigned long size = (unsigned long)to - (unsigned long)from;
229 
230 	return kvm_pgtable_hyp_unmap(&pkvm_pgtable, (u64)from, size);
231 }
232 
pkvm_remove_mappings(void * from,void * to)233 void pkvm_remove_mappings(void *from, void *to)
234 {
235 	unsigned long size = (unsigned long)to - (unsigned long)from;
236 
237 	hyp_spin_lock(&pkvm_pgd_lock);
238 	WARN_ON(pkvm_remove_mappings_locked(from, to) != size);
239 	hyp_spin_unlock(&pkvm_pgd_lock);
240 }
241 
hyp_back_vmemmap(phys_addr_t back)242 int hyp_back_vmemmap(phys_addr_t back)
243 {
244 	unsigned long i, start, size, end = 0;
245 	int ret;
246 
247 	for (i = 0; i < hyp_memblock_nr; i++) {
248 		start = hyp_memory[i].base;
249 		start = ALIGN_DOWN((u64)hyp_phys_to_page(start), PAGE_SIZE);
250 		/*
251 		 * The beginning of the hyp_vmemmap region for the current
252 		 * memblock may already be backed by the page backing the end
253 		 * the previous region, so avoid mapping it twice.
254 		 */
255 		start = max(start, end);
256 
257 		end = hyp_memory[i].base + hyp_memory[i].size;
258 		end = PAGE_ALIGN((u64)hyp_phys_to_page(end));
259 		if (start >= end)
260 			continue;
261 
262 		size = end - start;
263 		ret = __pkvm_create_mappings(start, size, back, PAGE_HYP);
264 		if (ret)
265 			return ret;
266 
267 		memset(hyp_phys_to_virt(back), 0, size);
268 		back += size;
269 	}
270 
271 	return 0;
272 }
273 
274 static void *__hyp_bp_vect_base;
pkvm_cpu_set_vector(enum arm64_hyp_spectre_vector slot)275 int pkvm_cpu_set_vector(enum arm64_hyp_spectre_vector slot)
276 {
277 	void *vector;
278 
279 	switch (slot) {
280 	case HYP_VECTOR_DIRECT: {
281 		vector = __kvm_hyp_vector;
282 		break;
283 	}
284 	case HYP_VECTOR_SPECTRE_DIRECT: {
285 		vector = __bp_harden_hyp_vecs;
286 		break;
287 	}
288 	case HYP_VECTOR_INDIRECT:
289 	case HYP_VECTOR_SPECTRE_INDIRECT: {
290 		vector = (void *)__hyp_bp_vect_base;
291 		break;
292 	}
293 	default:
294 		return -EINVAL;
295 	}
296 
297 	vector = __kvm_vector_slot2addr(vector, slot);
298 	*this_cpu_ptr(&kvm_hyp_vector) = (unsigned long)vector;
299 
300 	return 0;
301 }
302 
hyp_map_vectors(void)303 int hyp_map_vectors(void)
304 {
305 	phys_addr_t phys;
306 	unsigned long bp_base;
307 	int ret;
308 
309 	if (!kvm_system_needs_idmapped_vectors()) {
310 		__hyp_bp_vect_base = __bp_harden_hyp_vecs;
311 		return 0;
312 	}
313 
314 	phys = __hyp_pa(__bp_harden_hyp_vecs);
315 	ret = __pkvm_create_private_mapping(phys, __BP_HARDEN_HYP_VECS_SZ,
316 					    PAGE_HYP_EXEC, &bp_base);
317 	if (ret)
318 		return ret;
319 
320 	__hyp_bp_vect_base = (void *)bp_base;
321 
322 	return 0;
323 }
324 
fixmap_map_slot(struct hyp_fixmap_slot * slot,phys_addr_t phys)325 static void *fixmap_map_slot(struct hyp_fixmap_slot *slot, phys_addr_t phys)
326 {
327 	kvm_pte_t pte, *ptep = slot->ptep;
328 
329 	pte = *ptep;
330 	pte &= ~kvm_phys_to_pte(KVM_PHYS_INVALID);
331 	pte |= kvm_phys_to_pte(phys) | KVM_PTE_VALID;
332 	WRITE_ONCE(*ptep, pte);
333 	dsb(ishst);
334 
335 	return (void *)slot->addr + offset_in_page(phys);
336 }
337 
hyp_fixmap_map(phys_addr_t phys)338 void *hyp_fixmap_map(phys_addr_t phys)
339 {
340 	return fixmap_map_slot(this_cpu_ptr(&fixmap_slots), phys);
341 }
342 
fixmap_clear_slot(struct hyp_fixmap_slot * slot)343 static void fixmap_clear_slot(struct hyp_fixmap_slot *slot)
344 {
345 	kvm_pte_t *ptep = slot->ptep;
346 	u64 addr = slot->addr;
347 	u32 level;
348 
349 	if (FIELD_GET(KVM_PTE_TYPE, *ptep) == KVM_PTE_TYPE_PAGE)
350 		level = KVM_PGTABLE_LAST_LEVEL;
351 	else
352 		level = KVM_PGTABLE_LAST_LEVEL - 1; /* create_fixblock() guarantees PMD level */
353 
354 	WRITE_ONCE(*ptep, *ptep & ~KVM_PTE_VALID);
355 
356 	/*
357 	 * Irritatingly, the architecture requires that we use inner-shareable
358 	 * broadcast TLB invalidation here in case another CPU speculates
359 	 * through our fixmap and decides to create an "amalagamation of the
360 	 * values held in the TLB" due to the apparent lack of a
361 	 * break-before-make sequence.
362 	 *
363 	 * https://lore.kernel.org/kvm/20221017115209.2099-1-will@kernel.org/T/#mf10dfbaf1eaef9274c581b81c53758918c1d0f03
364 	 */
365 	dsb(ishst);
366 	__tlbi_level(vale2is, __TLBI_VADDR(addr, 0), level);
367 	dsb(ish);
368 	isb();
369 }
370 
hyp_fixmap_unmap(void)371 void hyp_fixmap_unmap(void)
372 {
373 	fixmap_clear_slot(this_cpu_ptr(&fixmap_slots));
374 }
375 
__create_fixmap_slot_cb(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)376 static int __create_fixmap_slot_cb(const struct kvm_pgtable_visit_ctx *ctx,
377 				   enum kvm_pgtable_walk_flags visit)
378 {
379 	struct hyp_fixmap_slot *slot = (struct hyp_fixmap_slot *)ctx->arg;
380 
381 	if (!kvm_pte_valid(ctx->old) || (ctx->end - ctx->start) != kvm_granule_size(ctx->level))
382 		return -EINVAL;
383 
384 	slot->addr = ctx->addr;
385 	slot->ptep = ctx->ptep;
386 
387 	/*
388 	 * Clear the PTE, but keep the page-table page refcount elevated to
389 	 * prevent it from ever being freed. This lets us manipulate the PTEs
390 	 * by hand safely without ever needing to allocate memory.
391 	 */
392 	fixmap_clear_slot(slot);
393 
394 	return 0;
395 }
396 
create_fixmap_slot(u64 addr,u64 cpu)397 static int create_fixmap_slot(u64 addr, u64 cpu)
398 {
399 	struct kvm_pgtable_walker walker = {
400 		.cb	= __create_fixmap_slot_cb,
401 		.flags	= KVM_PGTABLE_WALK_LEAF,
402 		.arg = (void *)per_cpu_ptr(&fixmap_slots, cpu),
403 	};
404 
405 	return kvm_pgtable_walk(&pkvm_pgtable, addr, PAGE_SIZE, &walker);
406 }
407 
408 #ifndef CONFIG_ARM64_64K_PAGES
409 static struct hyp_fixmap_slot hyp_fixblock_slot;
410 static DEFINE_HYP_SPINLOCK(hyp_fixblock_lock);
411 
hyp_fixblock_map(phys_addr_t phys)412 void *hyp_fixblock_map(phys_addr_t phys)
413 {
414 	WARN_ON(!IS_ALIGNED(phys, PMD_SIZE));
415 
416 	hyp_spin_lock(&hyp_fixblock_lock);
417 	return fixmap_map_slot(&hyp_fixblock_slot, phys);
418 }
419 
hyp_fixblock_unmap(void)420 void hyp_fixblock_unmap(void)
421 {
422 	fixmap_clear_slot(&hyp_fixblock_slot);
423 	hyp_spin_unlock(&hyp_fixblock_lock);
424 }
425 
create_fixblock(void)426 static int create_fixblock(void)
427 {
428 	struct kvm_pgtable_walker walker = {
429 		.cb	= __create_fixmap_slot_cb,
430 		.flags	= KVM_PGTABLE_WALK_LEAF,
431 		.arg = (void *)&hyp_fixblock_slot,
432 	};
433 	unsigned long addr;
434 	phys_addr_t phys;
435 	int ret, i;
436 
437 	/* Find a RAM phys address, PMD aligned */
438 	for (i = 0; i < hyp_memblock_nr; i++) {
439 		phys = ALIGN(hyp_memory[i].base, PMD_SIZE);
440 		if (phys + PMD_SIZE < (hyp_memory[i].base + hyp_memory[i].size))
441 			break;
442 	}
443 
444 	/* Really? Your RAM isn't larger than a couple of times PMD_SIZE? */
445 	if (i >= hyp_memblock_nr)
446 		return -EINVAL;
447 
448 	hyp_spin_lock(&pkvm_pgd_lock);
449 	addr = ALIGN(__io_map_base, PMD_SIZE);
450 	ret = __pkvm_alloc_private_va_range(addr, PMD_SIZE);
451 	if (ret)
452 		goto unlock;
453 
454 	ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr, PMD_SIZE, phys, PAGE_HYP);
455 	if (ret)
456 		goto unlock;
457 
458 	ret = kvm_pgtable_walk(&pkvm_pgtable, addr, PMD_SIZE, &walker);
459 unlock:
460 	hyp_spin_unlock(&pkvm_pgd_lock);
461 
462 	return ret;
463 }
464 #else
hyp_fixblock_unmap(void)465 void hyp_fixblock_unmap(void) { WARN_ON(1); }
hyp_fixblock_map(phys_addr_t phys)466 void *hyp_fixblock_map(phys_addr_t phys) { return NULL; }
create_fixblock(void)467 static int create_fixblock(void) { return 0; }
468 #endif
469 
hyp_create_fixmap(void)470 int hyp_create_fixmap(void)
471 {
472 	unsigned long addr, i;
473 	int ret;
474 
475 	for (i = 0; i < hyp_nr_cpus; i++) {
476 		ret = pkvm_alloc_private_va_range(PAGE_SIZE, &addr);
477 		if (ret)
478 			return ret;
479 
480 		ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr, PAGE_SIZE,
481 					  __hyp_pa(__hyp_bss_start), PAGE_HYP);
482 		if (ret)
483 			return ret;
484 
485 		ret = create_fixmap_slot(addr, i);
486 		if (ret)
487 			return ret;
488 	}
489 
490 	return create_fixblock();
491 }
492 
hyp_create_idmap(u32 hyp_va_bits)493 int hyp_create_idmap(u32 hyp_va_bits)
494 {
495 	unsigned long start, end;
496 
497 	start = hyp_virt_to_phys((void *)__hyp_idmap_text_start);
498 	start = ALIGN_DOWN(start, PAGE_SIZE);
499 
500 	end = hyp_virt_to_phys((void *)__hyp_idmap_text_end);
501 	end = ALIGN(end, PAGE_SIZE);
502 
503 	/*
504 	 * One half of the VA space is reserved to linearly map portions of
505 	 * memory -- see va_layout.c for more details. The other half of the VA
506 	 * space contains the trampoline page, and needs some care. Split that
507 	 * second half in two and find the quarter of VA space not conflicting
508 	 * with the idmap to place the IOs and the vmemmap. IOs use the lower
509 	 * half of the quarter and the vmemmap the upper half.
510 	 */
511 	__io_map_base = start & BIT(hyp_va_bits - 2);
512 	__io_map_base ^= BIT(hyp_va_bits - 2);
513 	__hyp_vmemmap = __io_map_base | BIT(hyp_va_bits - 3);
514 
515 	return __pkvm_create_mappings(start, end - start, start, PAGE_HYP_EXEC);
516 }
517 
pkvm_create_stack(phys_addr_t phys,unsigned long * haddr)518 int pkvm_create_stack(phys_addr_t phys, unsigned long *haddr)
519 {
520 	unsigned long addr, prev_base;
521 	size_t size;
522 	int ret;
523 
524 	hyp_spin_lock(&pkvm_pgd_lock);
525 
526 	prev_base = __io_map_base;
527 	/*
528 	 * Efficient stack verification using the NVHE_STACK_SHIFT bit implies
529 	 * an alignment of our allocation on the order of the size.
530 	 */
531 	size = NVHE_STACK_SIZE * 2;
532 	addr = ALIGN(__io_map_base, size);
533 
534 	ret = __pkvm_alloc_private_va_range(addr, size);
535 	if (!ret) {
536 		/*
537 		 * Since the stack grows downwards, map the stack to the page
538 		 * at the higher address and leave the lower guard page
539 		 * unbacked.
540 		 *
541 		 * Any valid stack address now has the NVHE_STACK_SHIFT bit as 1
542 		 * and addresses corresponding to the guard page have the
543 		 * NVHE_STACK_SHIFT bit as 0 - this is used for overflow detection.
544 		 */
545 		ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr + NVHE_STACK_SIZE,
546 					  NVHE_STACK_SIZE, phys, PAGE_HYP);
547 		if (ret)
548 			__io_map_base = prev_base;
549 	}
550 	hyp_spin_unlock(&pkvm_pgd_lock);
551 
552 	*haddr = addr + size;
553 
554 	return ret;
555 }
556 
557 /* Note: The caller has to use a local copy of the arg */
admit_host_page(void * arg,unsigned long order)558 void *admit_host_page(void *arg, unsigned long order)
559 {
560 	phys_addr_t p;
561 	struct kvm_hyp_memcache *host_mc = arg;
562 	unsigned long mc_order;
563 
564 	if (!host_mc->nr_pages)
565 		return NULL;
566 
567 	mc_order = FIELD_GET(~PAGE_MASK, host_mc->head);
568 	BUG_ON(order != mc_order);
569 
570 	p = host_mc->head & PAGE_MASK;
571 	/*
572 	 * The host still owns the pages in its memcache, so we need to go
573 	 * through a full host-to-hyp donation cycle to change it. Fortunately,
574 	 * __pkvm_host_donate_hyp() takes care of races for us, so if it
575 	 * succeeds we're good to go.
576 	 */
577 	if (__pkvm_host_donate_hyp(hyp_phys_to_pfn(p), 1 << order))
578 		return NULL;
579 
580 	return pop_hyp_memcache(host_mc, hyp_phys_to_virt, &order);
581 }
582 
583 /* Refill our local memcache by popping pages from the one provided by the host. */
refill_memcache(struct kvm_hyp_memcache * mc,unsigned long min_pages,struct kvm_hyp_memcache * host_mc)584 int refill_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages,
585 		    struct kvm_hyp_memcache *host_mc)
586 {
587 	struct kvm_hyp_memcache tmp = *host_mc;
588 	int ret;
589 
590 	ret =  __topup_hyp_memcache(mc, min_pages, admit_host_page,
591 				    hyp_virt_to_phys, &tmp, 0);
592 	*host_mc = tmp;
593 
594 	return ret;
595 }
596 
__pkvm_private_range_pa(void * va)597 phys_addr_t __pkvm_private_range_pa(void *va)
598 {
599 	kvm_pte_t pte;
600 	s8 level;
601 
602 	hyp_spin_lock(&pkvm_pgd_lock);
603 	WARN_ON(kvm_pgtable_get_leaf(&pkvm_pgtable, (u64)va, &pte, &level));
604 	hyp_spin_unlock(&pkvm_pgd_lock);
605 
606 	BUG_ON(!kvm_pte_valid(pte));
607 
608 	return kvm_pte_to_phys(pte) + offset_in_page(va);
609 }
610 
611 /* The host passed a mc, fill a pool with the pages in it. */
refill_hyp_pool(struct hyp_pool * pool,struct kvm_hyp_memcache * host_mc)612 int refill_hyp_pool(struct hyp_pool *pool, struct kvm_hyp_memcache *host_mc)
613 {
614 	unsigned long order;
615 	u64 nr_pages;
616 	void *p;
617 	struct kvm_hyp_memcache tmp = *host_mc;
618 
619 	while (tmp.nr_pages) {
620 		order = FIELD_GET(~PAGE_MASK, tmp.head);
621 		if (check_shl_overflow(1UL, order, &nr_pages))
622 			return -EINVAL;
623 
624 		p = admit_host_page(&tmp, order);
625 		if (!p)
626 			return -EINVAL;
627 		*host_mc = tmp;
628 
629 		hyp_virt_to_page(p)->order = order;
630 		hyp_set_page_refcounted(hyp_virt_to_page(p));
631 		hyp_put_page(pool, p);
632 	}
633 
634 	return 0;
635 }
636 
637 /*
638  * Remove target pages from the pool and put them in a memcache,
639  * so the host can reclaim them.
640  */
reclaim_hyp_pool(struct hyp_pool * pool,struct kvm_hyp_memcache * host_mc,int nr_pages)641 int reclaim_hyp_pool(struct hyp_pool *pool, struct kvm_hyp_memcache *host_mc,
642 		     int nr_pages)
643 {
644 	struct hyp_page *page;
645 	u8 order;
646 	void *p;
647 
648 	while (nr_pages > 0) {
649 		p = hyp_alloc_pages(pool, 0);
650 		if (!p)
651 			return -ENOMEM;
652 		page = hyp_virt_to_page(p);
653 		order = page->order;
654 		nr_pages -= (1 << order);
655 
656 		/*
657 		 * For a compound page all the tail pages should normally
658 		 * have page->order == HYP_NO_ORDER which would need to be
659 		 * cleared one by one. But in this instance, the order 0
660 		 * allocation above can only return an _external_ compound
661 		 * page which is in fact ignored by the buddy logic, and the
662 		 * tail pages are never touched.
663 		 */
664 		page->order = 0;
665 		hyp_page_ref_dec(page);
666 
667 		push_hyp_memcache(host_mc, p, hyp_virt_to_phys, order);
668 		WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(p), 1 << order));
669 	}
670 
671 	return 0;
672 }
673 
674 /* Remap hyp memory with different cacheability */
pkvm_remap_range(void * va,int nr_pages,bool nc)675 int pkvm_remap_range(void *va, int nr_pages, bool nc)
676 {
677 	size_t size = nr_pages << PAGE_SHIFT;
678 	phys_addr_t phys = hyp_virt_to_phys(va);
679 	enum kvm_pgtable_prot prot = PAGE_HYP;
680 	int ret;
681 
682 	if (nc)
683 		prot |= KVM_PGTABLE_PROT_NORMAL_NC;
684 	hyp_spin_lock(&pkvm_pgd_lock);
685 	WARN_ON(kvm_pgtable_hyp_unmap(&pkvm_pgtable, (u64)va, size) != size);
686 	ret = kvm_pgtable_hyp_map(&pkvm_pgtable, (u64)va, size, phys, prot);
687 	hyp_spin_unlock(&pkvm_pgd_lock);
688 	return ret;
689 }
690