• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Implementation of [`Vec`].
4 
5 // May not be needed in Rust 1.87.0 (pending beta backport).
6 #![allow(clippy::ptr_eq)]
7 
8 use super::{
9     allocator::{KVmalloc, Kmalloc, Vmalloc},
10     layout::ArrayLayout,
11     AllocError, Allocator, Box, Flags,
12 };
13 use core::{
14     fmt,
15     marker::PhantomData,
16     mem::{ManuallyDrop, MaybeUninit},
17     ops::Deref,
18     ops::DerefMut,
19     ops::Index,
20     ops::IndexMut,
21     ptr,
22     ptr::NonNull,
23     slice,
24     slice::SliceIndex,
25 };
26 
27 mod errors;
28 pub use self::errors::{InsertError, PushError, RemoveError};
29 
30 /// Create a [`KVec`] containing the arguments.
31 ///
32 /// New memory is allocated with `GFP_KERNEL`.
33 ///
34 /// # Examples
35 ///
36 /// ```
37 /// let mut v = kernel::kvec![];
38 /// v.push(1, GFP_KERNEL)?;
39 /// assert_eq!(v, [1]);
40 ///
41 /// let mut v = kernel::kvec![1; 3]?;
42 /// v.push(4, GFP_KERNEL)?;
43 /// assert_eq!(v, [1, 1, 1, 4]);
44 ///
45 /// let mut v = kernel::kvec![1, 2, 3]?;
46 /// v.push(4, GFP_KERNEL)?;
47 /// assert_eq!(v, [1, 2, 3, 4]);
48 ///
49 /// # Ok::<(), Error>(())
50 /// ```
51 #[macro_export]
52 macro_rules! kvec {
53     () => (
54         $crate::alloc::KVec::new()
55     );
56     ($elem:expr; $n:expr) => (
57         $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL)
58     );
59     ($($x:expr),+ $(,)?) => (
60         match $crate::alloc::KBox::new_uninit(GFP_KERNEL) {
61             Ok(b) => Ok($crate::alloc::KVec::from($crate::alloc::KBox::write(b, [$($x),+]))),
62             Err(e) => Err(e),
63         }
64     );
65 }
66 
67 /// The kernel's [`Vec`] type.
68 ///
69 /// A contiguous growable array type with contents allocated with the kernel's allocators (e.g.
70 /// [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]), written `Vec<T, A>`.
71 ///
72 /// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For
73 /// the most common allocators the type aliases [`KVec`], [`VVec`] and [`KVVec`] exist.
74 ///
75 /// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated.
76 ///
77 /// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the
78 /// capacity of the vector (the number of elements that currently fit into the vector), its length
79 /// (the number of elements that are currently stored in the vector) and the `Allocator` type used
80 /// to allocate (and free) the backing buffer.
81 ///
82 /// A [`Vec`] can be deconstructed into and (re-)constructed from its previously named raw parts
83 /// and manually modified.
84 ///
85 /// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements
86 /// are added to the vector.
87 ///
88 /// # Invariants
89 ///
90 /// - `self.ptr` is always properly aligned and either points to memory allocated with `A` or, for
91 ///   zero-sized types, is a dangling, well aligned pointer.
92 ///
93 /// - `self.len` always represents the exact number of elements stored in the vector.
94 ///
95 /// - `self.layout` represents the absolute number of elements that can be stored within the vector
96 ///   without re-allocation. For ZSTs `self.layout`'s capacity is zero. However, it is legal for the
97 ///   backing buffer to be larger than `layout`.
98 ///
99 /// - `self.len()` is always less than or equal to `self.capacity()`.
100 ///
101 /// - The `Allocator` type `A` of the vector is the exact same `Allocator` type the backing buffer
102 ///   was allocated with (and must be freed with).
103 pub struct Vec<T, A: Allocator> {
104     ptr: NonNull<T>,
105     /// Represents the actual buffer size as `cap` times `size_of::<T>` bytes.
106     ///
107     /// Note: This isn't quite the same as `Self::capacity`, which in contrast returns the number of
108     /// elements we can still store without reallocating.
109     layout: ArrayLayout<T>,
110     len: usize,
111     _p: PhantomData<A>,
112 }
113 
114 /// Type alias for [`Vec`] with a [`Kmalloc`] allocator.
115 ///
116 /// # Examples
117 ///
118 /// ```
119 /// let mut v = KVec::new();
120 /// v.push(1, GFP_KERNEL)?;
121 /// assert_eq!(&v, &[1]);
122 ///
123 /// # Ok::<(), Error>(())
124 /// ```
125 pub type KVec<T> = Vec<T, Kmalloc>;
126 
127 /// Type alias for [`Vec`] with a [`Vmalloc`] allocator.
128 ///
129 /// # Examples
130 ///
131 /// ```
132 /// let mut v = VVec::new();
133 /// v.push(1, GFP_KERNEL)?;
134 /// assert_eq!(&v, &[1]);
135 ///
136 /// # Ok::<(), Error>(())
137 /// ```
138 pub type VVec<T> = Vec<T, Vmalloc>;
139 
140 /// Type alias for [`Vec`] with a [`KVmalloc`] allocator.
141 ///
142 /// # Examples
143 ///
144 /// ```
145 /// let mut v = KVVec::new();
146 /// v.push(1, GFP_KERNEL)?;
147 /// assert_eq!(&v, &[1]);
148 ///
149 /// # Ok::<(), Error>(())
150 /// ```
151 pub type KVVec<T> = Vec<T, KVmalloc>;
152 
153 // SAFETY: `Vec` is `Send` if `T` is `Send` because `Vec` owns its elements.
154 unsafe impl<T, A> Send for Vec<T, A>
155 where
156     T: Send,
157     A: Allocator,
158 {
159 }
160 
161 // SAFETY: `Vec` is `Sync` if `T` is `Sync` because `Vec` owns its elements.
162 unsafe impl<T, A> Sync for Vec<T, A>
163 where
164     T: Sync,
165     A: Allocator,
166 {
167 }
168 
169 impl<T, A> Vec<T, A>
170 where
171     A: Allocator,
172 {
173     #[inline]
is_zst() -> bool174     const fn is_zst() -> bool {
175         core::mem::size_of::<T>() == 0
176     }
177 
178     /// Returns the number of elements that can be stored within the vector without allocating
179     /// additional memory.
capacity(&self) -> usize180     pub fn capacity(&self) -> usize {
181         if const { Self::is_zst() } {
182             usize::MAX
183         } else {
184             self.layout.len()
185         }
186     }
187 
188     /// Returns the number of elements stored within the vector.
189     #[inline]
len(&self) -> usize190     pub fn len(&self) -> usize {
191         self.len
192     }
193 
194     /// Increments `self.len` by `additional`.
195     ///
196     /// # Safety
197     ///
198     /// - `additional` must be less than or equal to `self.capacity - self.len`.
199     /// - All elements within the interval [`self.len`,`self.len + additional`) must be initialized.
200     #[inline]
inc_len(&mut self, additional: usize)201     pub unsafe fn inc_len(&mut self, additional: usize) {
202         // Guaranteed by the type invariant to never underflow.
203         debug_assert!(additional <= self.capacity() - self.len());
204         // INVARIANT: By the safety requirements of this method this represents the exact number of
205         // elements stored within `self`.
206         self.len += additional;
207     }
208 
209     /// Decreases `self.len` by `count`.
210     ///
211     /// Returns a mutable slice to the elements forgotten by the vector. It is the caller's
212     /// responsibility to drop these elements if necessary.
213     ///
214     /// # Safety
215     ///
216     /// - `count` must be less than or equal to `self.len`.
dec_len(&mut self, count: usize) -> &mut [T]217     unsafe fn dec_len(&mut self, count: usize) -> &mut [T] {
218         debug_assert!(count <= self.len());
219         // INVARIANT: We relinquish ownership of the elements within the range `[self.len - count,
220         // self.len)`, hence the updated value of `set.len` represents the exact number of elements
221         // stored within `self`.
222         self.len -= count;
223         // SAFETY: The memory after `self.len()` is guaranteed to contain `count` initialized
224         // elements of type `T`.
225         unsafe { slice::from_raw_parts_mut(self.as_mut_ptr().add(self.len), count) }
226     }
227 
228     /// Returns a slice of the entire vector.
229     #[inline]
as_slice(&self) -> &[T]230     pub fn as_slice(&self) -> &[T] {
231         self
232     }
233 
234     /// Returns a mutable slice of the entire vector.
235     #[inline]
as_mut_slice(&mut self) -> &mut [T]236     pub fn as_mut_slice(&mut self) -> &mut [T] {
237         self
238     }
239 
240     /// Returns a mutable raw pointer to the vector's backing buffer, or, if `T` is a ZST, a
241     /// dangling raw pointer.
242     #[inline]
as_mut_ptr(&mut self) -> *mut T243     pub fn as_mut_ptr(&mut self) -> *mut T {
244         self.ptr.as_ptr()
245     }
246 
247     /// Returns a raw pointer to the vector's backing buffer, or, if `T` is a ZST, a dangling raw
248     /// pointer.
249     #[inline]
as_ptr(&self) -> *const T250     pub fn as_ptr(&self) -> *const T {
251         self.ptr.as_ptr()
252     }
253 
254     /// Returns `true` if the vector contains no elements, `false` otherwise.
255     ///
256     /// # Examples
257     ///
258     /// ```
259     /// let mut v = KVec::new();
260     /// assert!(v.is_empty());
261     ///
262     /// v.push(1, GFP_KERNEL);
263     /// assert!(!v.is_empty());
264     /// ```
265     #[inline]
is_empty(&self) -> bool266     pub fn is_empty(&self) -> bool {
267         self.len() == 0
268     }
269 
270     /// Creates a new, empty `Vec<T, A>`.
271     ///
272     /// This method does not allocate by itself.
273     #[inline]
new() -> Self274     pub const fn new() -> Self {
275         // INVARIANT: Since this is a new, empty `Vec` with no backing memory yet,
276         // - `ptr` is a properly aligned dangling pointer for type `T`,
277         // - `layout` is an empty `ArrayLayout` (zero capacity)
278         // - `len` is zero, since no elements can be or have been stored,
279         // - `A` is always valid.
280         Self {
281             ptr: NonNull::dangling(),
282             layout: ArrayLayout::empty(),
283             len: 0,
284             _p: PhantomData::<A>,
285         }
286     }
287 
288     /// Returns a slice of `MaybeUninit<T>` for the remaining spare capacity of the vector.
spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>]289     pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
290         // SAFETY:
291         // - `self.len` is smaller than `self.capacity` by the type invariant and hence, the
292         //   resulting pointer is guaranteed to be part of the same allocated object.
293         // - `self.len` can not overflow `isize`.
294         let ptr = unsafe { self.as_mut_ptr().add(self.len) } as *mut MaybeUninit<T>;
295 
296         // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated
297         // and valid, but uninitialized.
298         unsafe { slice::from_raw_parts_mut(ptr, self.capacity() - self.len) }
299     }
300 
301     /// Appends an element to the back of the [`Vec`] instance.
302     ///
303     /// # Examples
304     ///
305     /// ```
306     /// let mut v = KVec::new();
307     /// v.push(1, GFP_KERNEL)?;
308     /// assert_eq!(&v, &[1]);
309     ///
310     /// v.push(2, GFP_KERNEL)?;
311     /// assert_eq!(&v, &[1, 2]);
312     /// # Ok::<(), Error>(())
313     /// ```
push(&mut self, v: T, flags: Flags) -> Result<(), AllocError>314     pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
315         self.reserve(1, flags)?;
316         // SAFETY: The call to `reserve` was successful, so the capacity is at least one greater
317         // than the length.
318         unsafe { self.push_within_capacity_unchecked(v) };
319         Ok(())
320     }
321 
322     /// Appends an element to the back of the [`Vec`] instance without reallocating.
323     ///
324     /// Fails if the vector does not have capacity for the new element.
325     ///
326     /// # Examples
327     ///
328     /// ```
329     /// let mut v = KVec::with_capacity(10, GFP_KERNEL)?;
330     /// for i in 0..10 {
331     ///     v.push_within_capacity(i)?;
332     /// }
333     ///
334     /// assert!(v.push_within_capacity(10).is_err());
335     /// # Ok::<(), Error>(())
336     /// ```
push_within_capacity(&mut self, v: T) -> Result<(), PushError<T>>337     pub fn push_within_capacity(&mut self, v: T) -> Result<(), PushError<T>> {
338         if self.len() < self.capacity() {
339             // SAFETY: The length is less than the capacity.
340             unsafe { self.push_within_capacity_unchecked(v) };
341             Ok(())
342         } else {
343             Err(PushError(v))
344         }
345     }
346 
347     /// Appends an element to the back of the [`Vec`] instance without reallocating.
348     ///
349     /// # Safety
350     ///
351     /// The length must be less than the capacity.
push_within_capacity_unchecked(&mut self, v: T)352     unsafe fn push_within_capacity_unchecked(&mut self, v: T) {
353         let spare = self.spare_capacity_mut();
354 
355         // SAFETY: By the safety requirements, `spare` is non-empty.
356         unsafe { spare.get_unchecked_mut(0) }.write(v);
357 
358         // SAFETY: We just initialised the first spare entry, so it is safe to increase the length
359         // by 1. We also know that the new length is <= capacity because the caller guarantees that
360         // the length is less than the capacity at the beginning of this function.
361         unsafe { self.inc_len(1) };
362     }
363 
364     /// Inserts an element at the given index in the [`Vec`] instance.
365     ///
366     /// Fails if the vector does not have capacity for the new element. Panics if the index is out
367     /// of bounds.
368     ///
369     /// # Examples
370     ///
371     /// ```
372     /// use kernel::alloc::kvec::InsertError;
373     ///
374     /// let mut v = KVec::with_capacity(5, GFP_KERNEL)?;
375     /// for i in 0..5 {
376     ///     v.insert_within_capacity(0, i)?;
377     /// }
378     ///
379     /// assert!(matches!(v.insert_within_capacity(0, 5), Err(InsertError::OutOfCapacity(_))));
380     /// assert!(matches!(v.insert_within_capacity(1000, 5), Err(InsertError::IndexOutOfBounds(_))));
381     /// assert_eq!(v, [4, 3, 2, 1, 0]);
382     /// # Ok::<(), Error>(())
383     /// ```
insert_within_capacity( &mut self, index: usize, element: T, ) -> Result<(), InsertError<T>>384     pub fn insert_within_capacity(
385         &mut self,
386         index: usize,
387         element: T,
388     ) -> Result<(), InsertError<T>> {
389         let len = self.len();
390         if index > len {
391             return Err(InsertError::IndexOutOfBounds(element));
392         }
393 
394         if len >= self.capacity() {
395             return Err(InsertError::OutOfCapacity(element));
396         }
397 
398         // SAFETY: This is in bounds since `index <= len < capacity`.
399         let p = unsafe { self.as_mut_ptr().add(index) };
400         // INVARIANT: This breaks the Vec invariants by making `index` contain an invalid element,
401         // but we restore the invariants below.
402         // SAFETY: Both the src and dst ranges end no later than one element after the length.
403         // Since the length is less than the capacity, both ranges are in bounds of the allocation.
404         unsafe { ptr::copy(p, p.add(1), len - index) };
405         // INVARIANT: This restores the Vec invariants.
406         // SAFETY: The pointer is in-bounds of the allocation.
407         unsafe { ptr::write(p, element) };
408         // SAFETY: Index `len` contains a valid element due to the above copy and write.
409         unsafe { self.inc_len(1) };
410         Ok(())
411     }
412 
413     /// Removes the last element from a vector and returns it, or `None` if it is empty.
414     ///
415     /// # Examples
416     ///
417     /// ```
418     /// let mut v = KVec::new();
419     /// v.push(1, GFP_KERNEL)?;
420     /// v.push(2, GFP_KERNEL)?;
421     /// assert_eq!(&v, &[1, 2]);
422     ///
423     /// assert_eq!(v.pop(), Some(2));
424     /// assert_eq!(v.pop(), Some(1));
425     /// assert_eq!(v.pop(), None);
426     /// # Ok::<(), Error>(())
427     /// ```
pop(&mut self) -> Option<T>428     pub fn pop(&mut self) -> Option<T> {
429         if self.is_empty() {
430             return None;
431         }
432 
433         let removed: *mut T = {
434             // SAFETY: We just checked that the length is at least one.
435             let slice = unsafe { self.dec_len(1) };
436             // SAFETY: The argument to `dec_len` was 1 so this returns a slice of length 1.
437             unsafe { slice.get_unchecked_mut(0) }
438         };
439 
440         // SAFETY: The guarantees of `dec_len` allow us to take ownership of this value.
441         Some(unsafe { removed.read() })
442     }
443 
444     /// Removes the element at the given index.
445     ///
446     /// # Examples
447     ///
448     /// ```
449     /// let mut v = kernel::kvec![1, 2, 3]?;
450     /// assert_eq!(v.remove(1)?, 2);
451     /// assert_eq!(v, [1, 3]);
452     /// # Ok::<(), Error>(())
453     /// ```
remove(&mut self, i: usize) -> Result<T, RemoveError>454     pub fn remove(&mut self, i: usize) -> Result<T, RemoveError> {
455         let value = {
456             let value_ref = self.get(i).ok_or(RemoveError)?;
457             // INVARIANT: This breaks the invariants by invalidating the value at index `i`, but we
458             // restore the invariants below.
459             // SAFETY: The value at index `i` is valid, because otherwise we would have already
460             // failed with `RemoveError`.
461             unsafe { ptr::read(value_ref) }
462         };
463 
464         // SAFETY: We checked that `i` is in-bounds.
465         let p = unsafe { self.as_mut_ptr().add(i) };
466 
467         // INVARIANT: After this call, the invalid value is at the last slot, so the Vec invariants
468         // are restored after the below call to `dec_len(1)`.
469         // SAFETY: `p.add(1).add(self.len - i - 1)` is `i+1+len-i-1 == len` elements after the
470         // beginning of the vector, so this is in-bounds of the vector's allocation.
471         unsafe { ptr::copy(p.add(1), p, self.len - i - 1) };
472 
473         // SAFETY: Since the check at the beginning of this call did not fail with `RemoveError`,
474         // the length is at least one.
475         unsafe { self.dec_len(1) };
476 
477         Ok(value)
478     }
479 
480     /// Creates a new [`Vec`] instance with at least the given capacity.
481     ///
482     /// # Examples
483     ///
484     /// ```
485     /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?;
486     ///
487     /// assert!(v.capacity() >= 20);
488     /// # Ok::<(), Error>(())
489     /// ```
with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError>490     pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
491         let mut v = Vec::new();
492 
493         v.reserve(capacity, flags)?;
494 
495         Ok(v)
496     }
497 
498     /// Creates a `Vec<T, A>` from a pointer, a length and a capacity using the allocator `A`.
499     ///
500     /// # Examples
501     ///
502     /// ```
503     /// let mut v = kernel::kvec![1, 2, 3]?;
504     /// v.reserve(1, GFP_KERNEL)?;
505     ///
506     /// let (mut ptr, mut len, cap) = v.into_raw_parts();
507     ///
508     /// // SAFETY: We've just reserved memory for another element.
509     /// unsafe { ptr.add(len).write(4) };
510     /// len += 1;
511     ///
512     /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and
513     /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it
514     /// // from the exact same raw parts.
515     /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) };
516     ///
517     /// assert_eq!(v, [1, 2, 3, 4]);
518     ///
519     /// # Ok::<(), Error>(())
520     /// ```
521     ///
522     /// # Safety
523     ///
524     /// If `T` is a ZST:
525     ///
526     /// - `ptr` must be a dangling, well aligned pointer.
527     ///
528     /// Otherwise:
529     ///
530     /// - `ptr` must have been allocated with the allocator `A`.
531     /// - `ptr` must satisfy or exceed the alignment requirements of `T`.
532     /// - `ptr` must point to memory with a size of at least `size_of::<T>() * capacity` bytes.
533     /// - The allocated size in bytes must not be larger than `isize::MAX`.
534     /// - `length` must be less than or equal to `capacity`.
535     /// - The first `length` elements must be initialized values of type `T`.
536     ///
537     /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for
538     /// `cap` and `len`.
from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self539     pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
540         let layout = if Self::is_zst() {
541             ArrayLayout::empty()
542         } else {
543             // SAFETY: By the safety requirements of this function, `capacity * size_of::<T>()` is
544             // smaller than `isize::MAX`.
545             unsafe { ArrayLayout::new_unchecked(capacity) }
546         };
547 
548         // INVARIANT: For ZSTs, we store an empty `ArrayLayout`, all other type invariants are
549         // covered by the safety requirements of this function.
550         Self {
551             // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid
552             // memory allocation, allocated with `A`.
553             ptr: unsafe { NonNull::new_unchecked(ptr) },
554             layout,
555             len: length,
556             _p: PhantomData::<A>,
557         }
558     }
559 
560     /// Consumes the `Vec<T, A>` and returns its raw components `pointer`, `length` and `capacity`.
561     ///
562     /// This will not run the destructor of the contained elements and for non-ZSTs the allocation
563     /// will stay alive indefinitely. Use [`Vec::from_raw_parts`] to recover the [`Vec`], drop the
564     /// elements and free the allocation, if any.
into_raw_parts(self) -> (*mut T, usize, usize)565     pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
566         let mut me = ManuallyDrop::new(self);
567         let len = me.len();
568         let capacity = me.capacity();
569         let ptr = me.as_mut_ptr();
570         (ptr, len, capacity)
571     }
572 
573     /// Clears the vector, removing all values.
574     ///
575     /// Note that this method has no effect on the allocated capacity
576     /// of the vector.
577     ///
578     /// # Examples
579     ///
580     /// ```
581     /// let mut v = kernel::kvec![1, 2, 3]?;
582     ///
583     /// v.clear();
584     ///
585     /// assert!(v.is_empty());
586     /// # Ok::<(), Error>(())
587     /// ```
588     #[inline]
clear(&mut self)589     pub fn clear(&mut self) {
590         self.truncate(0);
591     }
592 
593     /// Ensures that the capacity exceeds the length by at least `additional` elements.
594     ///
595     /// # Examples
596     ///
597     /// ```
598     /// let mut v = KVec::new();
599     /// v.push(1, GFP_KERNEL)?;
600     ///
601     /// v.reserve(10, GFP_KERNEL)?;
602     /// let cap = v.capacity();
603     /// assert!(cap >= 10);
604     ///
605     /// v.reserve(10, GFP_KERNEL)?;
606     /// let new_cap = v.capacity();
607     /// assert_eq!(new_cap, cap);
608     ///
609     /// # Ok::<(), Error>(())
610     /// ```
reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError>611     pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
612         let len = self.len();
613         let cap = self.capacity();
614 
615         if cap - len >= additional {
616             return Ok(());
617         }
618 
619         if Self::is_zst() {
620             // The capacity is already `usize::MAX` for ZSTs, we can't go higher.
621             return Err(AllocError);
622         }
623 
624         // We know that `cap <= isize::MAX` because of the type invariants of `Self`. So the
625         // multiplication by two won't overflow.
626         let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
627         let layout = ArrayLayout::new(new_cap).map_err(|_| AllocError)?;
628 
629         // SAFETY:
630         // - `ptr` is valid because it's either `None` or comes from a previous call to
631         //   `A::realloc`.
632         // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
633         let ptr = unsafe {
634             A::realloc(
635                 Some(self.ptr.cast()),
636                 layout.into(),
637                 self.layout.into(),
638                 flags,
639             )?
640         };
641 
642         // INVARIANT:
643         // - `layout` is some `ArrayLayout::<T>`,
644         // - `ptr` has been created by `A::realloc` from `layout`.
645         self.ptr = ptr.cast();
646         self.layout = layout;
647 
648         Ok(())
649     }
650 
651     /// Shortens the vector, setting the length to `len` and drops the removed values.
652     /// If `len` is greater than or equal to the current length, this does nothing.
653     ///
654     /// This has no effect on the capacity and will not allocate.
655     ///
656     /// # Examples
657     ///
658     /// ```
659     /// let mut v = kernel::kvec![1, 2, 3]?;
660     /// v.truncate(1);
661     /// assert_eq!(v.len(), 1);
662     /// assert_eq!(&v, &[1]);
663     ///
664     /// # Ok::<(), Error>(())
665     /// ```
truncate(&mut self, len: usize)666     pub fn truncate(&mut self, len: usize) {
667         if let Some(count) = self.len().checked_sub(len) {
668             // SAFETY: `count` is `self.len() - len` so it is guaranteed to be less than or
669             // equal to `self.len()`.
670             let ptr: *mut [T] = unsafe { self.dec_len(count) };
671 
672             // SAFETY: the contract of `dec_len` guarantees that the elements in `ptr` are
673             // valid elements whose ownership has been transferred to the caller.
674             unsafe { ptr::drop_in_place(ptr) };
675         }
676     }
677 
678     /// Takes ownership of all items in this vector without consuming the allocation.
679     ///
680     /// # Examples
681     ///
682     /// ```
683     /// let mut v = kernel::kvec![0, 1, 2, 3]?;
684     ///
685     /// for (i, j) in v.drain_all().enumerate() {
686     ///     assert_eq!(i, j);
687     /// }
688     ///
689     /// assert!(v.capacity() >= 4);
690     /// # Ok::<(), Error>(())
691     /// ```
drain_all(&mut self) -> DrainAll<'_, T>692     pub fn drain_all(&mut self) -> DrainAll<'_, T> {
693         // SAFETY: This does not underflow the length.
694         let elems = unsafe { self.dec_len(self.len()) };
695         // INVARIANT: The first `len` elements of the spare capacity are valid values, and as we
696         // just set the length to zero, we may transfer ownership to the `DrainAll` object.
697         DrainAll {
698             elements: elems.iter_mut(),
699         }
700     }
701 
702     /// Removes all elements that don't match the provided closure.
703     ///
704     /// # Examples
705     ///
706     /// ```
707     /// let mut v = kernel::kvec![1, 2, 3, 4]?;
708     /// v.retain(|i| *i % 2 == 0);
709     /// assert_eq!(v, [2, 4]);
710     /// # Ok::<(), Error>(())
711     /// ```
retain(&mut self, mut f: impl FnMut(&mut T) -> bool)712     pub fn retain(&mut self, mut f: impl FnMut(&mut T) -> bool) {
713         let mut num_kept = 0;
714         let mut next_to_check = 0;
715         while let Some(to_check) = self.get_mut(next_to_check) {
716             if f(to_check) {
717                 self.swap(num_kept, next_to_check);
718                 num_kept += 1;
719             }
720             next_to_check += 1;
721         }
722         self.truncate(num_kept);
723     }
724 }
725 
726 impl<T: Clone, A: Allocator> Vec<T, A> {
727     /// Extend the vector by `n` clones of `value`.
extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError>728     pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> {
729         if n == 0 {
730             return Ok(());
731         }
732 
733         self.reserve(n, flags)?;
734 
735         let spare = self.spare_capacity_mut();
736 
737         for item in spare.iter_mut().take(n - 1) {
738             item.write(value.clone());
739         }
740 
741         // We can write the last element directly without cloning needlessly.
742         spare[n - 1].write(value);
743 
744         // SAFETY:
745         // - `self.len() + n < self.capacity()` due to the call to reserve above,
746         // - the loop and the line above initialized the next `n` elements.
747         unsafe { self.inc_len(n) };
748 
749         Ok(())
750     }
751 
752     /// Pushes clones of the elements of slice into the [`Vec`] instance.
753     ///
754     /// # Examples
755     ///
756     /// ```
757     /// let mut v = KVec::new();
758     /// v.push(1, GFP_KERNEL)?;
759     ///
760     /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
761     /// assert_eq!(&v, &[1, 20, 30, 40]);
762     ///
763     /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
764     /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
765     /// # Ok::<(), Error>(())
766     /// ```
extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError>767     pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError> {
768         self.reserve(other.len(), flags)?;
769         for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) {
770             slot.write(item.clone());
771         }
772 
773         // SAFETY:
774         // - `other.len()` spare entries have just been initialized, so it is safe to increase
775         //   the length by the same number.
776         // - `self.len() + other.len() <= self.capacity()` is guaranteed by the preceding `reserve`
777         //   call.
778         unsafe { self.inc_len(other.len()) };
779         Ok(())
780     }
781 
782     /// Create a new `Vec<T, A>` and extend it by `n` clones of `value`.
from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError>783     pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> {
784         let mut v = Self::with_capacity(n, flags)?;
785 
786         v.extend_with(n, value, flags)?;
787 
788         Ok(v)
789     }
790 
791     /// Resizes the [`Vec`] so that `len` is equal to `new_len`.
792     ///
793     /// If `new_len` is smaller than `len`, the `Vec` is [`Vec::truncate`]d.
794     /// If `new_len` is larger, each new slot is filled with clones of `value`.
795     ///
796     /// # Examples
797     ///
798     /// ```
799     /// let mut v = kernel::kvec![1, 2, 3]?;
800     /// v.resize(1, 42, GFP_KERNEL)?;
801     /// assert_eq!(&v, &[1]);
802     ///
803     /// v.resize(3, 42, GFP_KERNEL)?;
804     /// assert_eq!(&v, &[1, 42, 42]);
805     ///
806     /// # Ok::<(), Error>(())
807     /// ```
resize(&mut self, new_len: usize, value: T, flags: Flags) -> Result<(), AllocError>808     pub fn resize(&mut self, new_len: usize, value: T, flags: Flags) -> Result<(), AllocError> {
809         match new_len.checked_sub(self.len()) {
810             Some(n) => self.extend_with(n, value, flags),
811             None => {
812                 self.truncate(new_len);
813                 Ok(())
814             }
815         }
816     }
817 }
818 
819 impl<T, A> Drop for Vec<T, A>
820 where
821     A: Allocator,
822 {
drop(&mut self)823     fn drop(&mut self) {
824         // SAFETY: `self.as_mut_ptr` is guaranteed to be valid by the type invariant.
825         unsafe {
826             ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut(
827                 self.as_mut_ptr(),
828                 self.len,
829             ))
830         };
831 
832         // SAFETY:
833         // - `self.ptr` was previously allocated with `A`.
834         // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
835         unsafe { A::free(self.ptr.cast(), self.layout.into()) };
836     }
837 }
838 
839 impl<T, A, const N: usize> From<Box<[T; N], A>> for Vec<T, A>
840 where
841     A: Allocator,
842 {
from(b: Box<[T; N], A>) -> Vec<T, A>843     fn from(b: Box<[T; N], A>) -> Vec<T, A> {
844         let len = b.len();
845         let ptr = Box::into_raw(b);
846 
847         // SAFETY:
848         // - `b` has been allocated with `A`,
849         // - `ptr` fulfills the alignment requirements for `T`,
850         // - `ptr` points to memory with at least a size of `size_of::<T>() * len`,
851         // - all elements within `b` are initialized values of `T`,
852         // - `len` does not exceed `isize::MAX`.
853         unsafe { Vec::from_raw_parts(ptr as _, len, len) }
854     }
855 }
856 
857 impl<T> Default for KVec<T> {
858     #[inline]
default() -> Self859     fn default() -> Self {
860         Self::new()
861     }
862 }
863 
864 impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result865     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
866         fmt::Debug::fmt(&**self, f)
867     }
868 }
869 
870 impl<T, A> Deref for Vec<T, A>
871 where
872     A: Allocator,
873 {
874     type Target = [T];
875 
876     #[inline]
deref(&self) -> &[T]877     fn deref(&self) -> &[T] {
878         // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
879         // initialized elements of type `T`.
880         unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
881     }
882 }
883 
884 impl<T, A> DerefMut for Vec<T, A>
885 where
886     A: Allocator,
887 {
888     #[inline]
deref_mut(&mut self) -> &mut [T]889     fn deref_mut(&mut self) -> &mut [T] {
890         // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
891         // initialized elements of type `T`.
892         unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
893     }
894 }
895 
896 impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {}
897 
898 impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A>
899 where
900     A: Allocator,
901 {
902     type Output = I::Output;
903 
904     #[inline]
index(&self, index: I) -> &Self::Output905     fn index(&self, index: I) -> &Self::Output {
906         Index::index(&**self, index)
907     }
908 }
909 
910 impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A>
911 where
912     A: Allocator,
913 {
914     #[inline]
index_mut(&mut self, index: I) -> &mut Self::Output915     fn index_mut(&mut self, index: I) -> &mut Self::Output {
916         IndexMut::index_mut(&mut **self, index)
917     }
918 }
919 
920 macro_rules! impl_slice_eq {
921     ($([$($vars:tt)*] $lhs:ty, $rhs:ty,)*) => {
922         $(
923             impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs
924             where
925                 T: PartialEq<U>,
926             {
927                 #[inline]
928                 fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
929             }
930         )*
931     }
932 }
933 
934 impl_slice_eq! {
935     [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2>,
936     [A: Allocator] Vec<T, A>, &[U],
937     [A: Allocator] Vec<T, A>, &mut [U],
938     [A: Allocator] &[T], Vec<U, A>,
939     [A: Allocator] &mut [T], Vec<U, A>,
940     [A: Allocator] Vec<T, A>, [U],
941     [A: Allocator] [T], Vec<U, A>,
942     [A: Allocator, const N: usize] Vec<T, A>, [U; N],
943     [A: Allocator, const N: usize] Vec<T, A>, &[U; N],
944 }
945 
946 impl<'a, T, A> IntoIterator for &'a Vec<T, A>
947 where
948     A: Allocator,
949 {
950     type Item = &'a T;
951     type IntoIter = slice::Iter<'a, T>;
952 
into_iter(self) -> Self::IntoIter953     fn into_iter(self) -> Self::IntoIter {
954         self.iter()
955     }
956 }
957 
958 impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A>
959 where
960     A: Allocator,
961 {
962     type Item = &'a mut T;
963     type IntoIter = slice::IterMut<'a, T>;
964 
into_iter(self) -> Self::IntoIter965     fn into_iter(self) -> Self::IntoIter {
966         self.iter_mut()
967     }
968 }
969 
970 /// An [`Iterator`] implementation for [`Vec`] that moves elements out of a vector.
971 ///
972 /// This structure is created by the [`Vec::into_iter`] method on [`Vec`] (provided by the
973 /// [`IntoIterator`] trait).
974 ///
975 /// # Examples
976 ///
977 /// ```
978 /// let v = kernel::kvec![0, 1, 2]?;
979 /// let iter = v.into_iter();
980 ///
981 /// # Ok::<(), Error>(())
982 /// ```
983 pub struct IntoIter<T, A: Allocator> {
984     ptr: *mut T,
985     buf: NonNull<T>,
986     len: usize,
987     layout: ArrayLayout<T>,
988     _p: PhantomData<A>,
989 }
990 
991 impl<T, A> IntoIter<T, A>
992 where
993     A: Allocator,
994 {
into_raw_parts(self) -> (*mut T, NonNull<T>, usize, usize)995     fn into_raw_parts(self) -> (*mut T, NonNull<T>, usize, usize) {
996         let me = ManuallyDrop::new(self);
997         let ptr = me.ptr;
998         let buf = me.buf;
999         let len = me.len;
1000         let cap = me.layout.len();
1001         (ptr, buf, len, cap)
1002     }
1003 
1004     /// Same as `Iterator::collect` but specialized for `Vec`'s `IntoIter`.
1005     ///
1006     /// # Examples
1007     ///
1008     /// ```
1009     /// let v = kernel::kvec![1, 2, 3]?;
1010     /// let mut it = v.into_iter();
1011     ///
1012     /// assert_eq!(it.next(), Some(1));
1013     ///
1014     /// let v = it.collect(GFP_KERNEL);
1015     /// assert_eq!(v, [2, 3]);
1016     ///
1017     /// # Ok::<(), Error>(())
1018     /// ```
1019     ///
1020     /// # Implementation details
1021     ///
1022     /// Currently, we can't implement `FromIterator`. There are a couple of issues with this trait
1023     /// in the kernel, namely:
1024     ///
1025     /// - Rust's specialization feature is unstable. This prevents us to optimize for the special
1026     ///   case where `I::IntoIter` equals `Vec`'s `IntoIter` type.
1027     /// - We also can't use `I::IntoIter`'s type ID either to work around this, since `FromIterator`
1028     ///   doesn't require this type to be `'static`.
1029     /// - `FromIterator::from_iter` does return `Self` instead of `Result<Self, AllocError>`, hence
1030     ///   we can't properly handle allocation failures.
1031     /// - Neither `Iterator::collect` nor `FromIterator::from_iter` can handle additional allocation
1032     ///   flags.
1033     ///
1034     /// Instead, provide `IntoIter::collect`, such that we can at least convert a `IntoIter` into a
1035     /// `Vec` again.
1036     ///
1037     /// Note that `IntoIter::collect` doesn't require `Flags`, since it re-uses the existing backing
1038     /// buffer. However, this backing buffer may be shrunk to the actual count of elements.
collect(self, flags: Flags) -> Vec<T, A>1039     pub fn collect(self, flags: Flags) -> Vec<T, A> {
1040         let old_layout = self.layout;
1041         let (mut ptr, buf, len, mut cap) = self.into_raw_parts();
1042         let has_advanced = ptr != buf.as_ptr();
1043 
1044         if has_advanced {
1045             // Copy the contents we have advanced to at the beginning of the buffer.
1046             //
1047             // SAFETY:
1048             // - `ptr` is valid for reads of `len * size_of::<T>()` bytes,
1049             // - `buf.as_ptr()` is valid for writes of `len * size_of::<T>()` bytes,
1050             // - `ptr` and `buf.as_ptr()` are not be subject to aliasing restrictions relative to
1051             //   each other,
1052             // - both `ptr` and `buf.ptr()` are properly aligned.
1053             unsafe { ptr::copy(ptr, buf.as_ptr(), len) };
1054             ptr = buf.as_ptr();
1055 
1056             // SAFETY: `len` is guaranteed to be smaller than `self.layout.len()` by the type
1057             // invariant.
1058             let layout = unsafe { ArrayLayout::<T>::new_unchecked(len) };
1059 
1060             // SAFETY: `buf` points to the start of the backing buffer and `len` is guaranteed by
1061             // the type invariant to be smaller than `cap`. Depending on `realloc` this operation
1062             // may shrink the buffer or leave it as it is.
1063             ptr = match unsafe {
1064                 A::realloc(Some(buf.cast()), layout.into(), old_layout.into(), flags)
1065             } {
1066                 // If we fail to shrink, which likely can't even happen, continue with the existing
1067                 // buffer.
1068                 Err(_) => ptr,
1069                 Ok(ptr) => {
1070                     cap = len;
1071                     ptr.as_ptr().cast()
1072                 }
1073             };
1074         }
1075 
1076         // SAFETY: If the iterator has been advanced, the advanced elements have been copied to
1077         // the beginning of the buffer and `len` has been adjusted accordingly.
1078         //
1079         // - `ptr` is guaranteed to point to the start of the backing buffer.
1080         // - `cap` is either the original capacity or, after shrinking the buffer, equal to `len`.
1081         // - `alloc` is guaranteed to be unchanged since `into_iter` has been called on the original
1082         //   `Vec`.
1083         unsafe { Vec::from_raw_parts(ptr, len, cap) }
1084     }
1085 }
1086 
1087 impl<T, A> Iterator for IntoIter<T, A>
1088 where
1089     A: Allocator,
1090 {
1091     type Item = T;
1092 
1093     /// # Examples
1094     ///
1095     /// ```
1096     /// let v = kernel::kvec![1, 2, 3]?;
1097     /// let mut it = v.into_iter();
1098     ///
1099     /// assert_eq!(it.next(), Some(1));
1100     /// assert_eq!(it.next(), Some(2));
1101     /// assert_eq!(it.next(), Some(3));
1102     /// assert_eq!(it.next(), None);
1103     ///
1104     /// # Ok::<(), Error>(())
1105     /// ```
next(&mut self) -> Option<T>1106     fn next(&mut self) -> Option<T> {
1107         if self.len == 0 {
1108             return None;
1109         }
1110 
1111         let current = self.ptr;
1112 
1113         // SAFETY: We can't overflow; decreasing `self.len` by one every time we advance `self.ptr`
1114         // by one guarantees that.
1115         unsafe { self.ptr = self.ptr.add(1) };
1116 
1117         self.len -= 1;
1118 
1119         // SAFETY: `current` is guaranteed to point at a valid element within the buffer.
1120         Some(unsafe { current.read() })
1121     }
1122 
1123     /// # Examples
1124     ///
1125     /// ```
1126     /// let v: KVec<u32> = kernel::kvec![1, 2, 3]?;
1127     /// let mut iter = v.into_iter();
1128     /// let size = iter.size_hint().0;
1129     ///
1130     /// iter.next();
1131     /// assert_eq!(iter.size_hint().0, size - 1);
1132     ///
1133     /// iter.next();
1134     /// assert_eq!(iter.size_hint().0, size - 2);
1135     ///
1136     /// iter.next();
1137     /// assert_eq!(iter.size_hint().0, size - 3);
1138     ///
1139     /// # Ok::<(), Error>(())
1140     /// ```
size_hint(&self) -> (usize, Option<usize>)1141     fn size_hint(&self) -> (usize, Option<usize>) {
1142         (self.len, Some(self.len))
1143     }
1144 }
1145 
1146 impl<T, A> Drop for IntoIter<T, A>
1147 where
1148     A: Allocator,
1149 {
drop(&mut self)1150     fn drop(&mut self) {
1151         // SAFETY: `self.ptr` is guaranteed to be valid by the type invariant.
1152         unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.ptr, self.len)) };
1153 
1154         // SAFETY:
1155         // - `self.buf` was previously allocated with `A`.
1156         // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
1157         unsafe { A::free(self.buf.cast(), self.layout.into()) };
1158     }
1159 }
1160 
1161 impl<T, A> IntoIterator for Vec<T, A>
1162 where
1163     A: Allocator,
1164 {
1165     type Item = T;
1166     type IntoIter = IntoIter<T, A>;
1167 
1168     /// Consumes the `Vec<T, A>` and creates an `Iterator`, which moves each value out of the
1169     /// vector (from start to end).
1170     ///
1171     /// # Examples
1172     ///
1173     /// ```
1174     /// let v = kernel::kvec![1, 2]?;
1175     /// let mut v_iter = v.into_iter();
1176     ///
1177     /// let first_element: Option<u32> = v_iter.next();
1178     ///
1179     /// assert_eq!(first_element, Some(1));
1180     /// assert_eq!(v_iter.next(), Some(2));
1181     /// assert_eq!(v_iter.next(), None);
1182     ///
1183     /// # Ok::<(), Error>(())
1184     /// ```
1185     ///
1186     /// ```
1187     /// let v = kernel::kvec![];
1188     /// let mut v_iter = v.into_iter();
1189     ///
1190     /// let first_element: Option<u32> = v_iter.next();
1191     ///
1192     /// assert_eq!(first_element, None);
1193     ///
1194     /// # Ok::<(), Error>(())
1195     /// ```
1196     #[inline]
into_iter(self) -> Self::IntoIter1197     fn into_iter(self) -> Self::IntoIter {
1198         let buf = self.ptr;
1199         let layout = self.layout;
1200         let (ptr, len, _) = self.into_raw_parts();
1201 
1202         IntoIter {
1203             ptr,
1204             buf,
1205             len,
1206             layout,
1207             _p: PhantomData::<A>,
1208         }
1209     }
1210 }
1211 
1212 /// An iterator that owns all items in a vector, but does not own its allocation.
1213 ///
1214 /// # Invariants
1215 ///
1216 /// Every `&mut T` returned by the iterator references a `T` that the iterator may take ownership
1217 /// of.
1218 pub struct DrainAll<'vec, T> {
1219     elements: slice::IterMut<'vec, T>,
1220 }
1221 
1222 impl<'vec, T> Iterator for DrainAll<'vec, T> {
1223     type Item = T;
1224 
next(&mut self) -> Option<T>1225     fn next(&mut self) -> Option<T> {
1226         let elem: *mut T = self.elements.next()?;
1227         // SAFETY: By the type invariants, we may take ownership of this value.
1228         Some(unsafe { elem.read() })
1229     }
1230 
size_hint(&self) -> (usize, Option<usize>)1231     fn size_hint(&self) -> (usize, Option<usize>) {
1232         self.elements.size_hint()
1233     }
1234 }
1235 
1236 impl<'vec, T> Drop for DrainAll<'vec, T> {
drop(&mut self)1237     fn drop(&mut self) {
1238         if core::mem::needs_drop::<T>() {
1239             let iter = core::mem::take(&mut self.elements);
1240             let ptr: *mut [T] = iter.into_slice();
1241             // SAFETY: By the type invariants, we own these values so we may destroy them.
1242             unsafe { ptr::drop_in_place(ptr) };
1243         }
1244     }
1245 }
1246 
1247 #[macros::kunit_tests(rust_kvec_kunit)]
1248 mod tests {
1249     use super::*;
1250     use crate::prelude::*;
1251 
1252     #[test]
test_kvec_retain()1253     fn test_kvec_retain() {
1254         /// Verify correctness for one specific function.
1255         #[expect(clippy::needless_range_loop)]
1256         fn verify(c: &[bool]) {
1257             let mut vec1: KVec<usize> = KVec::with_capacity(c.len(), GFP_KERNEL).unwrap();
1258             let mut vec2: KVec<usize> = KVec::with_capacity(c.len(), GFP_KERNEL).unwrap();
1259 
1260             for i in 0..c.len() {
1261                 vec1.push_within_capacity(i).unwrap();
1262                 if c[i] {
1263                     vec2.push_within_capacity(i).unwrap();
1264                 }
1265             }
1266 
1267             vec1.retain(|i| c[*i]);
1268 
1269             assert_eq!(vec1, vec2);
1270         }
1271 
1272         /// Add one to a binary integer represented as a boolean array.
1273         fn add(value: &mut [bool]) {
1274             let mut carry = true;
1275             for v in value {
1276                 let new_v = carry != *v;
1277                 carry = carry && *v;
1278                 *v = new_v;
1279             }
1280         }
1281 
1282         // This boolean array represents a function from index to boolean. We check that `retain`
1283         // behaves correctly for all possible boolean arrays of every possible length less than
1284         // ten.
1285         let mut func = KVec::with_capacity(10, GFP_KERNEL).unwrap();
1286         for len in 0..10 {
1287             for _ in 0u32..1u32 << len {
1288                 verify(&func);
1289                 add(&mut func);
1290             }
1291             func.push_within_capacity(false).unwrap();
1292         }
1293     }
1294 }
1295