1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 * Leo Duran <leo.duran@amd.com>
6 */
7
8 #define pr_fmt(fmt) "AMD-Vi: " fmt
9 #define dev_fmt(fmt) pr_fmt(fmt)
10
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/pci-ats.h>
15 #include <linux/bitmap.h>
16 #include <linux/slab.h>
17 #include <linux/debugfs.h>
18 #include <linux/scatterlist.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/dma-direct.h>
21 #include <linux/iommu-helper.h>
22 #include <linux/delay.h>
23 #include <linux/amd-iommu.h>
24 #include <linux/notifier.h>
25 #include <linux/export.h>
26 #include <linux/irq.h>
27 #include <linux/msi.h>
28 #include <linux/irqdomain.h>
29 #include <linux/percpu.h>
30 #include <linux/io-pgtable.h>
31 #include <linux/cc_platform.h>
32 #include <asm/irq_remapping.h>
33 #include <asm/io_apic.h>
34 #include <asm/apic.h>
35 #include <asm/hw_irq.h>
36 #include <asm/proto.h>
37 #include <asm/iommu.h>
38 #include <asm/gart.h>
39 #include <asm/dma.h>
40 #include <uapi/linux/iommufd.h>
41
42 #include "amd_iommu.h"
43 #include "../dma-iommu.h"
44 #include "../irq_remapping.h"
45 #include "../iommu-pages.h"
46
47 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
48
49 /* Reserved IOVA ranges */
50 #define MSI_RANGE_START (0xfee00000)
51 #define MSI_RANGE_END (0xfeefffff)
52 #define HT_RANGE_START (0xfd00000000ULL)
53 #define HT_RANGE_END (0xffffffffffULL)
54
55 static DEFINE_SPINLOCK(pd_bitmap_lock);
56
57 LIST_HEAD(ioapic_map);
58 LIST_HEAD(hpet_map);
59 LIST_HEAD(acpihid_map);
60
61 const struct iommu_ops amd_iommu_ops;
62 static const struct iommu_dirty_ops amd_dirty_ops;
63
64 int amd_iommu_max_glx_val = -1;
65
66 /*
67 * general struct to manage commands send to an IOMMU
68 */
69 struct iommu_cmd {
70 u32 data[4];
71 };
72
73 struct kmem_cache *amd_iommu_irq_cache;
74
75 static void detach_device(struct device *dev);
76
77 static void set_dte_entry(struct amd_iommu *iommu,
78 struct iommu_dev_data *dev_data);
79
80 /****************************************************************************
81 *
82 * Helper functions
83 *
84 ****************************************************************************/
85
pdom_is_v2_pgtbl_mode(struct protection_domain * pdom)86 static inline bool pdom_is_v2_pgtbl_mode(struct protection_domain *pdom)
87 {
88 return (pdom && (pdom->pd_mode == PD_MODE_V2));
89 }
90
pdom_is_in_pt_mode(struct protection_domain * pdom)91 static inline bool pdom_is_in_pt_mode(struct protection_domain *pdom)
92 {
93 return (pdom->domain.type == IOMMU_DOMAIN_IDENTITY);
94 }
95
96 /*
97 * We cannot support PASID w/ existing v1 page table in the same domain
98 * since it will be nested. However, existing domain w/ v2 page table
99 * or passthrough mode can be used for PASID.
100 */
pdom_is_sva_capable(struct protection_domain * pdom)101 static inline bool pdom_is_sva_capable(struct protection_domain *pdom)
102 {
103 return pdom_is_v2_pgtbl_mode(pdom) || pdom_is_in_pt_mode(pdom);
104 }
105
get_acpihid_device_id(struct device * dev,struct acpihid_map_entry ** entry)106 static inline int get_acpihid_device_id(struct device *dev,
107 struct acpihid_map_entry **entry)
108 {
109 struct acpi_device *adev = ACPI_COMPANION(dev);
110 struct acpihid_map_entry *p, *p1 = NULL;
111 int hid_count = 0;
112 bool fw_bug;
113
114 if (!adev)
115 return -ENODEV;
116
117 list_for_each_entry(p, &acpihid_map, list) {
118 if (acpi_dev_hid_uid_match(adev, p->hid,
119 p->uid[0] ? p->uid : NULL)) {
120 p1 = p;
121 fw_bug = false;
122 hid_count = 1;
123 break;
124 }
125
126 /*
127 * Count HID matches w/o UID, raise FW_BUG but allow exactly one match
128 */
129 if (acpi_dev_hid_match(adev, p->hid)) {
130 p1 = p;
131 hid_count++;
132 fw_bug = true;
133 }
134 }
135
136 if (!p1)
137 return -EINVAL;
138 if (fw_bug)
139 dev_err_once(dev, FW_BUG "No ACPI device matched UID, but %d device%s matched HID.\n",
140 hid_count, hid_count > 1 ? "s" : "");
141 if (hid_count > 1)
142 return -EINVAL;
143 if (entry)
144 *entry = p1;
145
146 return p1->devid;
147 }
148
get_device_sbdf_id(struct device * dev)149 static inline int get_device_sbdf_id(struct device *dev)
150 {
151 int sbdf;
152
153 if (dev_is_pci(dev))
154 sbdf = get_pci_sbdf_id(to_pci_dev(dev));
155 else
156 sbdf = get_acpihid_device_id(dev, NULL);
157
158 return sbdf;
159 }
160
get_dev_table(struct amd_iommu * iommu)161 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu)
162 {
163 struct dev_table_entry *dev_table;
164 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
165
166 BUG_ON(pci_seg == NULL);
167 dev_table = pci_seg->dev_table;
168 BUG_ON(dev_table == NULL);
169
170 return dev_table;
171 }
172
get_device_segment(struct device * dev)173 static inline u16 get_device_segment(struct device *dev)
174 {
175 u16 seg;
176
177 if (dev_is_pci(dev)) {
178 struct pci_dev *pdev = to_pci_dev(dev);
179
180 seg = pci_domain_nr(pdev->bus);
181 } else {
182 u32 devid = get_acpihid_device_id(dev, NULL);
183
184 seg = PCI_SBDF_TO_SEGID(devid);
185 }
186
187 return seg;
188 }
189
190 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */
amd_iommu_set_rlookup_table(struct amd_iommu * iommu,u16 devid)191 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid)
192 {
193 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
194
195 pci_seg->rlookup_table[devid] = iommu;
196 }
197
__rlookup_amd_iommu(u16 seg,u16 devid)198 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid)
199 {
200 struct amd_iommu_pci_seg *pci_seg;
201
202 for_each_pci_segment(pci_seg) {
203 if (pci_seg->id == seg)
204 return pci_seg->rlookup_table[devid];
205 }
206 return NULL;
207 }
208
rlookup_amd_iommu(struct device * dev)209 static struct amd_iommu *rlookup_amd_iommu(struct device *dev)
210 {
211 u16 seg = get_device_segment(dev);
212 int devid = get_device_sbdf_id(dev);
213
214 if (devid < 0)
215 return NULL;
216 return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid));
217 }
218
alloc_dev_data(struct amd_iommu * iommu,u16 devid)219 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid)
220 {
221 struct iommu_dev_data *dev_data;
222 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
223
224 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
225 if (!dev_data)
226 return NULL;
227
228 spin_lock_init(&dev_data->lock);
229 dev_data->devid = devid;
230 ratelimit_default_init(&dev_data->rs);
231
232 llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list);
233 return dev_data;
234 }
235
search_dev_data(struct amd_iommu * iommu,u16 devid)236 static struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid)
237 {
238 struct iommu_dev_data *dev_data;
239 struct llist_node *node;
240 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
241
242 if (llist_empty(&pci_seg->dev_data_list))
243 return NULL;
244
245 node = pci_seg->dev_data_list.first;
246 llist_for_each_entry(dev_data, node, dev_data_list) {
247 if (dev_data->devid == devid)
248 return dev_data;
249 }
250
251 return NULL;
252 }
253
clone_alias(struct pci_dev * pdev,u16 alias,void * data)254 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
255 {
256 struct amd_iommu *iommu;
257 struct dev_table_entry *dev_table;
258 u16 devid = pci_dev_id(pdev);
259
260 if (devid == alias)
261 return 0;
262
263 iommu = rlookup_amd_iommu(&pdev->dev);
264 if (!iommu)
265 return 0;
266
267 amd_iommu_set_rlookup_table(iommu, alias);
268 dev_table = get_dev_table(iommu);
269 memcpy(dev_table[alias].data,
270 dev_table[devid].data,
271 sizeof(dev_table[alias].data));
272
273 return 0;
274 }
275
clone_aliases(struct amd_iommu * iommu,struct device * dev)276 static void clone_aliases(struct amd_iommu *iommu, struct device *dev)
277 {
278 struct pci_dev *pdev;
279
280 if (!dev_is_pci(dev))
281 return;
282 pdev = to_pci_dev(dev);
283
284 /*
285 * The IVRS alias stored in the alias table may not be
286 * part of the PCI DMA aliases if it's bus differs
287 * from the original device.
288 */
289 clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL);
290
291 pci_for_each_dma_alias(pdev, clone_alias, NULL);
292 }
293
setup_aliases(struct amd_iommu * iommu,struct device * dev)294 static void setup_aliases(struct amd_iommu *iommu, struct device *dev)
295 {
296 struct pci_dev *pdev = to_pci_dev(dev);
297 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
298 u16 ivrs_alias;
299
300 /* For ACPI HID devices, there are no aliases */
301 if (!dev_is_pci(dev))
302 return;
303
304 /*
305 * Add the IVRS alias to the pci aliases if it is on the same
306 * bus. The IVRS table may know about a quirk that we don't.
307 */
308 ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)];
309 if (ivrs_alias != pci_dev_id(pdev) &&
310 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
311 pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
312
313 clone_aliases(iommu, dev);
314 }
315
find_dev_data(struct amd_iommu * iommu,u16 devid)316 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid)
317 {
318 struct iommu_dev_data *dev_data;
319
320 dev_data = search_dev_data(iommu, devid);
321
322 if (dev_data == NULL) {
323 dev_data = alloc_dev_data(iommu, devid);
324 if (!dev_data)
325 return NULL;
326
327 if (translation_pre_enabled(iommu))
328 dev_data->defer_attach = true;
329 }
330
331 return dev_data;
332 }
333
334 /*
335 * Find or create an IOMMU group for a acpihid device.
336 */
acpihid_device_group(struct device * dev)337 static struct iommu_group *acpihid_device_group(struct device *dev)
338 {
339 struct acpihid_map_entry *p, *entry = NULL;
340 int devid;
341
342 devid = get_acpihid_device_id(dev, &entry);
343 if (devid < 0)
344 return ERR_PTR(devid);
345
346 list_for_each_entry(p, &acpihid_map, list) {
347 if ((devid == p->devid) && p->group)
348 entry->group = p->group;
349 }
350
351 if (!entry->group)
352 entry->group = generic_device_group(dev);
353 else
354 iommu_group_ref_get(entry->group);
355
356 return entry->group;
357 }
358
pdev_pasid_supported(struct iommu_dev_data * dev_data)359 static inline bool pdev_pasid_supported(struct iommu_dev_data *dev_data)
360 {
361 return (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP);
362 }
363
pdev_get_caps(struct pci_dev * pdev)364 static u32 pdev_get_caps(struct pci_dev *pdev)
365 {
366 int features;
367 u32 flags = 0;
368
369 if (pci_ats_supported(pdev))
370 flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
371
372 if (pci_pri_supported(pdev))
373 flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
374
375 features = pci_pasid_features(pdev);
376 if (features >= 0) {
377 flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
378
379 if (features & PCI_PASID_CAP_EXEC)
380 flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
381
382 if (features & PCI_PASID_CAP_PRIV)
383 flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
384 }
385
386 return flags;
387 }
388
pdev_enable_cap_ats(struct pci_dev * pdev)389 static inline int pdev_enable_cap_ats(struct pci_dev *pdev)
390 {
391 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
392 int ret = -EINVAL;
393
394 if (dev_data->ats_enabled)
395 return 0;
396
397 if (amd_iommu_iotlb_sup &&
398 (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP)) {
399 ret = pci_enable_ats(pdev, PAGE_SHIFT);
400 if (!ret) {
401 dev_data->ats_enabled = 1;
402 dev_data->ats_qdep = pci_ats_queue_depth(pdev);
403 }
404 }
405
406 return ret;
407 }
408
pdev_disable_cap_ats(struct pci_dev * pdev)409 static inline void pdev_disable_cap_ats(struct pci_dev *pdev)
410 {
411 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
412
413 if (dev_data->ats_enabled) {
414 pci_disable_ats(pdev);
415 dev_data->ats_enabled = 0;
416 }
417 }
418
pdev_enable_cap_pri(struct pci_dev * pdev)419 static inline int pdev_enable_cap_pri(struct pci_dev *pdev)
420 {
421 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
422 int ret = -EINVAL;
423
424 if (dev_data->pri_enabled)
425 return 0;
426
427 if (!dev_data->ats_enabled)
428 return 0;
429
430 if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) {
431 /*
432 * First reset the PRI state of the device.
433 * FIXME: Hardcode number of outstanding requests for now
434 */
435 if (!pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32)) {
436 dev_data->pri_enabled = 1;
437 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev);
438
439 ret = 0;
440 }
441 }
442
443 return ret;
444 }
445
pdev_disable_cap_pri(struct pci_dev * pdev)446 static inline void pdev_disable_cap_pri(struct pci_dev *pdev)
447 {
448 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
449
450 if (dev_data->pri_enabled) {
451 pci_disable_pri(pdev);
452 dev_data->pri_enabled = 0;
453 }
454 }
455
pdev_enable_cap_pasid(struct pci_dev * pdev)456 static inline int pdev_enable_cap_pasid(struct pci_dev *pdev)
457 {
458 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
459 int ret = -EINVAL;
460
461 if (dev_data->pasid_enabled)
462 return 0;
463
464 if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) {
465 /* Only allow access to user-accessible pages */
466 ret = pci_enable_pasid(pdev, 0);
467 if (!ret)
468 dev_data->pasid_enabled = 1;
469 }
470
471 return ret;
472 }
473
pdev_disable_cap_pasid(struct pci_dev * pdev)474 static inline void pdev_disable_cap_pasid(struct pci_dev *pdev)
475 {
476 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
477
478 if (dev_data->pasid_enabled) {
479 pci_disable_pasid(pdev);
480 dev_data->pasid_enabled = 0;
481 }
482 }
483
pdev_enable_caps(struct pci_dev * pdev)484 static void pdev_enable_caps(struct pci_dev *pdev)
485 {
486 pdev_enable_cap_pasid(pdev);
487 pdev_enable_cap_ats(pdev);
488 pdev_enable_cap_pri(pdev);
489 }
490
pdev_disable_caps(struct pci_dev * pdev)491 static void pdev_disable_caps(struct pci_dev *pdev)
492 {
493 pdev_disable_cap_ats(pdev);
494 pdev_disable_cap_pasid(pdev);
495 pdev_disable_cap_pri(pdev);
496 }
497
498 /*
499 * This function checks if the driver got a valid device from the caller to
500 * avoid dereferencing invalid pointers.
501 */
check_device(struct device * dev)502 static bool check_device(struct device *dev)
503 {
504 struct amd_iommu_pci_seg *pci_seg;
505 struct amd_iommu *iommu;
506 int devid, sbdf;
507
508 if (!dev)
509 return false;
510
511 sbdf = get_device_sbdf_id(dev);
512 if (sbdf < 0)
513 return false;
514 devid = PCI_SBDF_TO_DEVID(sbdf);
515
516 iommu = rlookup_amd_iommu(dev);
517 if (!iommu)
518 return false;
519
520 /* Out of our scope? */
521 pci_seg = iommu->pci_seg;
522 if (devid > pci_seg->last_bdf)
523 return false;
524
525 return true;
526 }
527
iommu_init_device(struct amd_iommu * iommu,struct device * dev)528 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev)
529 {
530 struct iommu_dev_data *dev_data;
531 int devid, sbdf;
532
533 if (dev_iommu_priv_get(dev))
534 return 0;
535
536 sbdf = get_device_sbdf_id(dev);
537 if (sbdf < 0)
538 return sbdf;
539
540 devid = PCI_SBDF_TO_DEVID(sbdf);
541 dev_data = find_dev_data(iommu, devid);
542 if (!dev_data)
543 return -ENOMEM;
544
545 dev_data->dev = dev;
546 setup_aliases(iommu, dev);
547
548 /*
549 * By default we use passthrough mode for IOMMUv2 capable device.
550 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
551 * invalid address), we ignore the capability for the device so
552 * it'll be forced to go into translation mode.
553 */
554 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
555 dev_is_pci(dev) && amd_iommu_gt_ppr_supported()) {
556 dev_data->flags = pdev_get_caps(to_pci_dev(dev));
557 }
558
559 dev_iommu_priv_set(dev, dev_data);
560
561 return 0;
562 }
563
iommu_ignore_device(struct amd_iommu * iommu,struct device * dev)564 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev)
565 {
566 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
567 struct dev_table_entry *dev_table = get_dev_table(iommu);
568 int devid, sbdf;
569
570 sbdf = get_device_sbdf_id(dev);
571 if (sbdf < 0)
572 return;
573
574 devid = PCI_SBDF_TO_DEVID(sbdf);
575 pci_seg->rlookup_table[devid] = NULL;
576 memset(&dev_table[devid], 0, sizeof(struct dev_table_entry));
577
578 setup_aliases(iommu, dev);
579 }
580
amd_iommu_uninit_device(struct device * dev)581 static void amd_iommu_uninit_device(struct device *dev)
582 {
583 struct iommu_dev_data *dev_data;
584
585 dev_data = dev_iommu_priv_get(dev);
586 if (!dev_data)
587 return;
588
589 if (dev_data->domain)
590 detach_device(dev);
591
592 /*
593 * We keep dev_data around for unplugged devices and reuse it when the
594 * device is re-plugged - not doing so would introduce a ton of races.
595 */
596 }
597
598 /****************************************************************************
599 *
600 * Interrupt handling functions
601 *
602 ****************************************************************************/
603
dump_dte_entry(struct amd_iommu * iommu,u16 devid)604 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid)
605 {
606 int i;
607 struct dev_table_entry *dev_table = get_dev_table(iommu);
608
609 for (i = 0; i < 4; ++i)
610 pr_err("DTE[%d]: %016llx\n", i, dev_table[devid].data[i]);
611 }
612
dump_command(unsigned long phys_addr)613 static void dump_command(unsigned long phys_addr)
614 {
615 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
616 int i;
617
618 for (i = 0; i < 4; ++i)
619 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
620 }
621
amd_iommu_report_rmp_hw_error(struct amd_iommu * iommu,volatile u32 * event)622 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event)
623 {
624 struct iommu_dev_data *dev_data = NULL;
625 int devid, vmg_tag, flags;
626 struct pci_dev *pdev;
627 u64 spa;
628
629 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
630 vmg_tag = (event[1]) & 0xFFFF;
631 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
632 spa = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
633
634 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
635 devid & 0xff);
636 if (pdev)
637 dev_data = dev_iommu_priv_get(&pdev->dev);
638
639 if (dev_data) {
640 if (__ratelimit(&dev_data->rs)) {
641 pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
642 vmg_tag, spa, flags);
643 }
644 } else {
645 pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
646 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
647 vmg_tag, spa, flags);
648 }
649
650 if (pdev)
651 pci_dev_put(pdev);
652 }
653
amd_iommu_report_rmp_fault(struct amd_iommu * iommu,volatile u32 * event)654 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event)
655 {
656 struct iommu_dev_data *dev_data = NULL;
657 int devid, flags_rmp, vmg_tag, flags;
658 struct pci_dev *pdev;
659 u64 gpa;
660
661 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
662 flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
663 vmg_tag = (event[1]) & 0xFFFF;
664 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
665 gpa = ((u64)event[3] << 32) | event[2];
666
667 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
668 devid & 0xff);
669 if (pdev)
670 dev_data = dev_iommu_priv_get(&pdev->dev);
671
672 if (dev_data) {
673 if (__ratelimit(&dev_data->rs)) {
674 pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
675 vmg_tag, gpa, flags_rmp, flags);
676 }
677 } else {
678 pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
679 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
680 vmg_tag, gpa, flags_rmp, flags);
681 }
682
683 if (pdev)
684 pci_dev_put(pdev);
685 }
686
687 #define IS_IOMMU_MEM_TRANSACTION(flags) \
688 (((flags) & EVENT_FLAG_I) == 0)
689
690 #define IS_WRITE_REQUEST(flags) \
691 ((flags) & EVENT_FLAG_RW)
692
amd_iommu_report_page_fault(struct amd_iommu * iommu,u16 devid,u16 domain_id,u64 address,int flags)693 static void amd_iommu_report_page_fault(struct amd_iommu *iommu,
694 u16 devid, u16 domain_id,
695 u64 address, int flags)
696 {
697 struct iommu_dev_data *dev_data = NULL;
698 struct pci_dev *pdev;
699
700 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
701 devid & 0xff);
702 if (pdev)
703 dev_data = dev_iommu_priv_get(&pdev->dev);
704
705 if (dev_data) {
706 /*
707 * If this is a DMA fault (for which the I(nterrupt)
708 * bit will be unset), allow report_iommu_fault() to
709 * prevent logging it.
710 */
711 if (IS_IOMMU_MEM_TRANSACTION(flags)) {
712 /* Device not attached to domain properly */
713 if (dev_data->domain == NULL) {
714 pr_err_ratelimited("Event logged [Device not attached to domain properly]\n");
715 pr_err_ratelimited(" device=%04x:%02x:%02x.%x domain=0x%04x\n",
716 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid),
717 PCI_FUNC(devid), domain_id);
718 goto out;
719 }
720
721 if (!report_iommu_fault(&dev_data->domain->domain,
722 &pdev->dev, address,
723 IS_WRITE_REQUEST(flags) ?
724 IOMMU_FAULT_WRITE :
725 IOMMU_FAULT_READ))
726 goto out;
727 }
728
729 if (__ratelimit(&dev_data->rs)) {
730 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
731 domain_id, address, flags);
732 }
733 } else {
734 pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
735 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
736 domain_id, address, flags);
737 }
738
739 out:
740 if (pdev)
741 pci_dev_put(pdev);
742 }
743
iommu_print_event(struct amd_iommu * iommu,void * __evt)744 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
745 {
746 struct device *dev = iommu->iommu.dev;
747 int type, devid, flags, tag;
748 volatile u32 *event = __evt;
749 int count = 0;
750 u64 address;
751 u32 pasid;
752
753 retry:
754 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
755 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
756 pasid = (event[0] & EVENT_DOMID_MASK_HI) |
757 (event[1] & EVENT_DOMID_MASK_LO);
758 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
759 address = (u64)(((u64)event[3]) << 32) | event[2];
760
761 if (type == 0) {
762 /* Did we hit the erratum? */
763 if (++count == LOOP_TIMEOUT) {
764 pr_err("No event written to event log\n");
765 return;
766 }
767 udelay(1);
768 goto retry;
769 }
770
771 if (type == EVENT_TYPE_IO_FAULT) {
772 amd_iommu_report_page_fault(iommu, devid, pasid, address, flags);
773 return;
774 }
775
776 switch (type) {
777 case EVENT_TYPE_ILL_DEV:
778 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
779 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
780 pasid, address, flags);
781 dump_dte_entry(iommu, devid);
782 break;
783 case EVENT_TYPE_DEV_TAB_ERR:
784 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x "
785 "address=0x%llx flags=0x%04x]\n",
786 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
787 address, flags);
788 break;
789 case EVENT_TYPE_PAGE_TAB_ERR:
790 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
791 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
792 pasid, address, flags);
793 break;
794 case EVENT_TYPE_ILL_CMD:
795 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
796 dump_command(address);
797 break;
798 case EVENT_TYPE_CMD_HARD_ERR:
799 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
800 address, flags);
801 break;
802 case EVENT_TYPE_IOTLB_INV_TO:
803 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n",
804 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
805 address);
806 break;
807 case EVENT_TYPE_INV_DEV_REQ:
808 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
809 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
810 pasid, address, flags);
811 break;
812 case EVENT_TYPE_RMP_FAULT:
813 amd_iommu_report_rmp_fault(iommu, event);
814 break;
815 case EVENT_TYPE_RMP_HW_ERR:
816 amd_iommu_report_rmp_hw_error(iommu, event);
817 break;
818 case EVENT_TYPE_INV_PPR_REQ:
819 pasid = PPR_PASID(*((u64 *)__evt));
820 tag = event[1] & 0x03FF;
821 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
822 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
823 pasid, address, flags, tag);
824 break;
825 default:
826 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
827 event[0], event[1], event[2], event[3]);
828 }
829
830 /*
831 * To detect the hardware errata 732 we need to clear the
832 * entry back to zero. This issue does not exist on SNP
833 * enabled system. Also this buffer is not writeable on
834 * SNP enabled system.
835 */
836 if (!amd_iommu_snp_en)
837 memset(__evt, 0, 4 * sizeof(u32));
838 }
839
iommu_poll_events(struct amd_iommu * iommu)840 static void iommu_poll_events(struct amd_iommu *iommu)
841 {
842 u32 head, tail;
843
844 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
845 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
846
847 while (head != tail) {
848 iommu_print_event(iommu, iommu->evt_buf + head);
849
850 /* Update head pointer of hardware ring-buffer */
851 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
852 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
853 }
854
855 }
856
857 #ifdef CONFIG_IRQ_REMAP
858 static int (*iommu_ga_log_notifier)(u32);
859
amd_iommu_register_ga_log_notifier(int (* notifier)(u32))860 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
861 {
862 iommu_ga_log_notifier = notifier;
863
864 /*
865 * Ensure all in-flight IRQ handlers run to completion before returning
866 * to the caller, e.g. to ensure module code isn't unloaded while it's
867 * being executed in the IRQ handler.
868 */
869 if (!notifier)
870 synchronize_rcu();
871
872 return 0;
873 }
874 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
875
iommu_poll_ga_log(struct amd_iommu * iommu)876 static void iommu_poll_ga_log(struct amd_iommu *iommu)
877 {
878 u32 head, tail;
879
880 if (iommu->ga_log == NULL)
881 return;
882
883 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
884 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
885
886 while (head != tail) {
887 volatile u64 *raw;
888 u64 log_entry;
889
890 raw = (u64 *)(iommu->ga_log + head);
891
892 /* Avoid memcpy function-call overhead */
893 log_entry = *raw;
894
895 /* Update head pointer of hardware ring-buffer */
896 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
897 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
898
899 /* Handle GA entry */
900 switch (GA_REQ_TYPE(log_entry)) {
901 case GA_GUEST_NR:
902 if (!iommu_ga_log_notifier)
903 break;
904
905 pr_debug("%s: devid=%#x, ga_tag=%#x\n",
906 __func__, GA_DEVID(log_entry),
907 GA_TAG(log_entry));
908
909 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
910 pr_err("GA log notifier failed.\n");
911 break;
912 default:
913 break;
914 }
915 }
916 }
917
918 static void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)919 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
920 {
921 if (!irq_remapping_enabled || !dev_is_pci(dev) ||
922 !pci_dev_has_default_msi_parent_domain(to_pci_dev(dev)))
923 return;
924
925 dev_set_msi_domain(dev, iommu->ir_domain);
926 }
927
928 #else /* CONFIG_IRQ_REMAP */
929 static inline void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)930 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
931 #endif /* !CONFIG_IRQ_REMAP */
932
amd_iommu_handle_irq(void * data,const char * evt_type,u32 int_mask,u32 overflow_mask,void (* int_handler)(struct amd_iommu *),void (* overflow_handler)(struct amd_iommu *))933 static void amd_iommu_handle_irq(void *data, const char *evt_type,
934 u32 int_mask, u32 overflow_mask,
935 void (*int_handler)(struct amd_iommu *),
936 void (*overflow_handler)(struct amd_iommu *))
937 {
938 struct amd_iommu *iommu = (struct amd_iommu *) data;
939 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
940 u32 mask = int_mask | overflow_mask;
941
942 while (status & mask) {
943 /* Enable interrupt sources again */
944 writel(mask, iommu->mmio_base + MMIO_STATUS_OFFSET);
945
946 if (int_handler) {
947 pr_devel("Processing IOMMU (ivhd%d) %s Log\n",
948 iommu->index, evt_type);
949 int_handler(iommu);
950 }
951
952 if ((status & overflow_mask) && overflow_handler)
953 overflow_handler(iommu);
954
955 /*
956 * Hardware bug: ERBT1312
957 * When re-enabling interrupt (by writing 1
958 * to clear the bit), the hardware might also try to set
959 * the interrupt bit in the event status register.
960 * In this scenario, the bit will be set, and disable
961 * subsequent interrupts.
962 *
963 * Workaround: The IOMMU driver should read back the
964 * status register and check if the interrupt bits are cleared.
965 * If not, driver will need to go through the interrupt handler
966 * again and re-clear the bits
967 */
968 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
969 }
970 }
971
amd_iommu_int_thread_evtlog(int irq,void * data)972 irqreturn_t amd_iommu_int_thread_evtlog(int irq, void *data)
973 {
974 amd_iommu_handle_irq(data, "Evt", MMIO_STATUS_EVT_INT_MASK,
975 MMIO_STATUS_EVT_OVERFLOW_MASK,
976 iommu_poll_events, amd_iommu_restart_event_logging);
977
978 return IRQ_HANDLED;
979 }
980
amd_iommu_int_thread_pprlog(int irq,void * data)981 irqreturn_t amd_iommu_int_thread_pprlog(int irq, void *data)
982 {
983 amd_iommu_handle_irq(data, "PPR", MMIO_STATUS_PPR_INT_MASK,
984 MMIO_STATUS_PPR_OVERFLOW_MASK,
985 amd_iommu_poll_ppr_log, amd_iommu_restart_ppr_log);
986
987 return IRQ_HANDLED;
988 }
989
amd_iommu_int_thread_galog(int irq,void * data)990 irqreturn_t amd_iommu_int_thread_galog(int irq, void *data)
991 {
992 #ifdef CONFIG_IRQ_REMAP
993 amd_iommu_handle_irq(data, "GA", MMIO_STATUS_GALOG_INT_MASK,
994 MMIO_STATUS_GALOG_OVERFLOW_MASK,
995 iommu_poll_ga_log, amd_iommu_restart_ga_log);
996 #endif
997
998 return IRQ_HANDLED;
999 }
1000
amd_iommu_int_thread(int irq,void * data)1001 irqreturn_t amd_iommu_int_thread(int irq, void *data)
1002 {
1003 amd_iommu_int_thread_evtlog(irq, data);
1004 amd_iommu_int_thread_pprlog(irq, data);
1005 amd_iommu_int_thread_galog(irq, data);
1006
1007 return IRQ_HANDLED;
1008 }
1009
amd_iommu_int_handler(int irq,void * data)1010 irqreturn_t amd_iommu_int_handler(int irq, void *data)
1011 {
1012 return IRQ_WAKE_THREAD;
1013 }
1014
1015 /****************************************************************************
1016 *
1017 * IOMMU command queuing functions
1018 *
1019 ****************************************************************************/
1020
wait_on_sem(struct amd_iommu * iommu,u64 data)1021 static int wait_on_sem(struct amd_iommu *iommu, u64 data)
1022 {
1023 int i = 0;
1024
1025 while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
1026 udelay(1);
1027 i += 1;
1028 }
1029
1030 if (i == LOOP_TIMEOUT) {
1031 pr_alert("Completion-Wait loop timed out\n");
1032 return -EIO;
1033 }
1034
1035 return 0;
1036 }
1037
copy_cmd_to_buffer(struct amd_iommu * iommu,struct iommu_cmd * cmd)1038 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
1039 struct iommu_cmd *cmd)
1040 {
1041 u8 *target;
1042 u32 tail;
1043
1044 /* Copy command to buffer */
1045 tail = iommu->cmd_buf_tail;
1046 target = iommu->cmd_buf + tail;
1047 memcpy(target, cmd, sizeof(*cmd));
1048
1049 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1050 iommu->cmd_buf_tail = tail;
1051
1052 /* Tell the IOMMU about it */
1053 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1054 }
1055
build_completion_wait(struct iommu_cmd * cmd,struct amd_iommu * iommu,u64 data)1056 static void build_completion_wait(struct iommu_cmd *cmd,
1057 struct amd_iommu *iommu,
1058 u64 data)
1059 {
1060 u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
1061
1062 memset(cmd, 0, sizeof(*cmd));
1063 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
1064 cmd->data[1] = upper_32_bits(paddr);
1065 cmd->data[2] = lower_32_bits(data);
1066 cmd->data[3] = upper_32_bits(data);
1067 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
1068 }
1069
build_inv_dte(struct iommu_cmd * cmd,u16 devid)1070 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
1071 {
1072 memset(cmd, 0, sizeof(*cmd));
1073 cmd->data[0] = devid;
1074 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
1075 }
1076
1077 /*
1078 * Builds an invalidation address which is suitable for one page or multiple
1079 * pages. Sets the size bit (S) as needed is more than one page is flushed.
1080 */
build_inv_address(u64 address,size_t size)1081 static inline u64 build_inv_address(u64 address, size_t size)
1082 {
1083 u64 pages, end, msb_diff;
1084
1085 pages = iommu_num_pages(address, size, PAGE_SIZE);
1086
1087 if (pages == 1)
1088 return address & PAGE_MASK;
1089
1090 end = address + size - 1;
1091
1092 /*
1093 * msb_diff would hold the index of the most significant bit that
1094 * flipped between the start and end.
1095 */
1096 msb_diff = fls64(end ^ address) - 1;
1097
1098 /*
1099 * Bits 63:52 are sign extended. If for some reason bit 51 is different
1100 * between the start and the end, invalidate everything.
1101 */
1102 if (unlikely(msb_diff > 51)) {
1103 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
1104 } else {
1105 /*
1106 * The msb-bit must be clear on the address. Just set all the
1107 * lower bits.
1108 */
1109 address |= (1ull << msb_diff) - 1;
1110 }
1111
1112 /* Clear bits 11:0 */
1113 address &= PAGE_MASK;
1114
1115 /* Set the size bit - we flush more than one 4kb page */
1116 return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
1117 }
1118
build_inv_iommu_pages(struct iommu_cmd * cmd,u64 address,size_t size,u16 domid,ioasid_t pasid,bool gn)1119 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
1120 size_t size, u16 domid,
1121 ioasid_t pasid, bool gn)
1122 {
1123 u64 inv_address = build_inv_address(address, size);
1124
1125 memset(cmd, 0, sizeof(*cmd));
1126
1127 cmd->data[1] |= domid;
1128 cmd->data[2] = lower_32_bits(inv_address);
1129 cmd->data[3] = upper_32_bits(inv_address);
1130 /* PDE bit - we want to flush everything, not only the PTEs */
1131 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1132 if (gn) {
1133 cmd->data[0] |= pasid;
1134 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1135 }
1136 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1137 }
1138
build_inv_iotlb_pages(struct iommu_cmd * cmd,u16 devid,int qdep,u64 address,size_t size,ioasid_t pasid,bool gn)1139 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
1140 u64 address, size_t size,
1141 ioasid_t pasid, bool gn)
1142 {
1143 u64 inv_address = build_inv_address(address, size);
1144
1145 memset(cmd, 0, sizeof(*cmd));
1146
1147 cmd->data[0] = devid;
1148 cmd->data[0] |= (qdep & 0xff) << 24;
1149 cmd->data[1] = devid;
1150 cmd->data[2] = lower_32_bits(inv_address);
1151 cmd->data[3] = upper_32_bits(inv_address);
1152 if (gn) {
1153 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1154 cmd->data[1] |= (pasid & 0xff) << 16;
1155 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1156 }
1157
1158 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1159 }
1160
build_complete_ppr(struct iommu_cmd * cmd,u16 devid,u32 pasid,int status,int tag,u8 gn)1161 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1162 int status, int tag, u8 gn)
1163 {
1164 memset(cmd, 0, sizeof(*cmd));
1165
1166 cmd->data[0] = devid;
1167 if (gn) {
1168 cmd->data[1] = pasid;
1169 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
1170 }
1171 cmd->data[3] = tag & 0x1ff;
1172 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1173
1174 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1175 }
1176
build_inv_all(struct iommu_cmd * cmd)1177 static void build_inv_all(struct iommu_cmd *cmd)
1178 {
1179 memset(cmd, 0, sizeof(*cmd));
1180 CMD_SET_TYPE(cmd, CMD_INV_ALL);
1181 }
1182
build_inv_irt(struct iommu_cmd * cmd,u16 devid)1183 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1184 {
1185 memset(cmd, 0, sizeof(*cmd));
1186 cmd->data[0] = devid;
1187 CMD_SET_TYPE(cmd, CMD_INV_IRT);
1188 }
1189
1190 /*
1191 * Writes the command to the IOMMUs command buffer and informs the
1192 * hardware about the new command.
1193 */
__iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1194 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1195 struct iommu_cmd *cmd,
1196 bool sync)
1197 {
1198 unsigned int count = 0;
1199 u32 left, next_tail;
1200
1201 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1202 again:
1203 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1204
1205 if (left <= 0x20) {
1206 /* Skip udelay() the first time around */
1207 if (count++) {
1208 if (count == LOOP_TIMEOUT) {
1209 pr_err("Command buffer timeout\n");
1210 return -EIO;
1211 }
1212
1213 udelay(1);
1214 }
1215
1216 /* Update head and recheck remaining space */
1217 iommu->cmd_buf_head = readl(iommu->mmio_base +
1218 MMIO_CMD_HEAD_OFFSET);
1219
1220 goto again;
1221 }
1222
1223 copy_cmd_to_buffer(iommu, cmd);
1224
1225 /* Do we need to make sure all commands are processed? */
1226 iommu->need_sync = sync;
1227
1228 return 0;
1229 }
1230
iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1231 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1232 struct iommu_cmd *cmd,
1233 bool sync)
1234 {
1235 unsigned long flags;
1236 int ret;
1237
1238 raw_spin_lock_irqsave(&iommu->lock, flags);
1239 ret = __iommu_queue_command_sync(iommu, cmd, sync);
1240 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1241
1242 return ret;
1243 }
1244
iommu_queue_command(struct amd_iommu * iommu,struct iommu_cmd * cmd)1245 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1246 {
1247 return iommu_queue_command_sync(iommu, cmd, true);
1248 }
1249
1250 /*
1251 * This function queues a completion wait command into the command
1252 * buffer of an IOMMU
1253 */
iommu_completion_wait(struct amd_iommu * iommu)1254 static int iommu_completion_wait(struct amd_iommu *iommu)
1255 {
1256 struct iommu_cmd cmd;
1257 unsigned long flags;
1258 int ret;
1259 u64 data;
1260
1261 if (!iommu->need_sync)
1262 return 0;
1263
1264 data = atomic64_add_return(1, &iommu->cmd_sem_val);
1265 build_completion_wait(&cmd, iommu, data);
1266
1267 raw_spin_lock_irqsave(&iommu->lock, flags);
1268
1269 ret = __iommu_queue_command_sync(iommu, &cmd, false);
1270 if (ret)
1271 goto out_unlock;
1272
1273 ret = wait_on_sem(iommu, data);
1274
1275 out_unlock:
1276 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1277
1278 return ret;
1279 }
1280
domain_flush_complete(struct protection_domain * domain)1281 static void domain_flush_complete(struct protection_domain *domain)
1282 {
1283 int i;
1284
1285 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1286 if (domain && !domain->dev_iommu[i])
1287 continue;
1288
1289 /*
1290 * Devices of this domain are behind this IOMMU
1291 * We need to wait for completion of all commands.
1292 */
1293 iommu_completion_wait(amd_iommus[i]);
1294 }
1295 }
1296
iommu_flush_dte(struct amd_iommu * iommu,u16 devid)1297 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1298 {
1299 struct iommu_cmd cmd;
1300
1301 build_inv_dte(&cmd, devid);
1302
1303 return iommu_queue_command(iommu, &cmd);
1304 }
1305
amd_iommu_flush_dte_all(struct amd_iommu * iommu)1306 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1307 {
1308 u32 devid;
1309 u16 last_bdf = iommu->pci_seg->last_bdf;
1310
1311 for (devid = 0; devid <= last_bdf; ++devid)
1312 iommu_flush_dte(iommu, devid);
1313
1314 iommu_completion_wait(iommu);
1315 }
1316
1317 /*
1318 * This function uses heavy locking and may disable irqs for some time. But
1319 * this is no issue because it is only called during resume.
1320 */
amd_iommu_flush_tlb_all(struct amd_iommu * iommu)1321 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1322 {
1323 u32 dom_id;
1324 u16 last_bdf = iommu->pci_seg->last_bdf;
1325
1326 for (dom_id = 0; dom_id <= last_bdf; ++dom_id) {
1327 struct iommu_cmd cmd;
1328 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1329 dom_id, IOMMU_NO_PASID, false);
1330 iommu_queue_command(iommu, &cmd);
1331 }
1332
1333 iommu_completion_wait(iommu);
1334 }
1335
amd_iommu_flush_tlb_domid(struct amd_iommu * iommu,u32 dom_id)1336 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1337 {
1338 struct iommu_cmd cmd;
1339
1340 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1341 dom_id, IOMMU_NO_PASID, false);
1342 iommu_queue_command(iommu, &cmd);
1343
1344 iommu_completion_wait(iommu);
1345 }
1346
amd_iommu_flush_all(struct amd_iommu * iommu)1347 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1348 {
1349 struct iommu_cmd cmd;
1350
1351 build_inv_all(&cmd);
1352
1353 iommu_queue_command(iommu, &cmd);
1354 iommu_completion_wait(iommu);
1355 }
1356
iommu_flush_irt(struct amd_iommu * iommu,u16 devid)1357 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1358 {
1359 struct iommu_cmd cmd;
1360
1361 build_inv_irt(&cmd, devid);
1362
1363 iommu_queue_command(iommu, &cmd);
1364 }
1365
amd_iommu_flush_irt_all(struct amd_iommu * iommu)1366 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1367 {
1368 u32 devid;
1369 u16 last_bdf = iommu->pci_seg->last_bdf;
1370
1371 if (iommu->irtcachedis_enabled)
1372 return;
1373
1374 for (devid = 0; devid <= last_bdf; devid++)
1375 iommu_flush_irt(iommu, devid);
1376
1377 iommu_completion_wait(iommu);
1378 }
1379
amd_iommu_flush_all_caches(struct amd_iommu * iommu)1380 void amd_iommu_flush_all_caches(struct amd_iommu *iommu)
1381 {
1382 if (check_feature(FEATURE_IA)) {
1383 amd_iommu_flush_all(iommu);
1384 } else {
1385 amd_iommu_flush_dte_all(iommu);
1386 amd_iommu_flush_irt_all(iommu);
1387 amd_iommu_flush_tlb_all(iommu);
1388 }
1389 }
1390
1391 /*
1392 * Command send function for flushing on-device TLB
1393 */
device_flush_iotlb(struct iommu_dev_data * dev_data,u64 address,size_t size,ioasid_t pasid,bool gn)1394 static int device_flush_iotlb(struct iommu_dev_data *dev_data, u64 address,
1395 size_t size, ioasid_t pasid, bool gn)
1396 {
1397 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
1398 struct iommu_cmd cmd;
1399 int qdep = dev_data->ats_qdep;
1400
1401 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address,
1402 size, pasid, gn);
1403
1404 return iommu_queue_command(iommu, &cmd);
1405 }
1406
device_flush_dte_alias(struct pci_dev * pdev,u16 alias,void * data)1407 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1408 {
1409 struct amd_iommu *iommu = data;
1410
1411 return iommu_flush_dte(iommu, alias);
1412 }
1413
1414 /*
1415 * Command send function for invalidating a device table entry
1416 */
device_flush_dte(struct iommu_dev_data * dev_data)1417 static int device_flush_dte(struct iommu_dev_data *dev_data)
1418 {
1419 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
1420 struct pci_dev *pdev = NULL;
1421 struct amd_iommu_pci_seg *pci_seg;
1422 u16 alias;
1423 int ret;
1424
1425 if (dev_is_pci(dev_data->dev))
1426 pdev = to_pci_dev(dev_data->dev);
1427
1428 if (pdev)
1429 ret = pci_for_each_dma_alias(pdev,
1430 device_flush_dte_alias, iommu);
1431 else
1432 ret = iommu_flush_dte(iommu, dev_data->devid);
1433 if (ret)
1434 return ret;
1435
1436 pci_seg = iommu->pci_seg;
1437 alias = pci_seg->alias_table[dev_data->devid];
1438 if (alias != dev_data->devid) {
1439 ret = iommu_flush_dte(iommu, alias);
1440 if (ret)
1441 return ret;
1442 }
1443
1444 if (dev_data->ats_enabled) {
1445 /* Invalidate the entire contents of an IOTLB */
1446 ret = device_flush_iotlb(dev_data, 0, ~0UL,
1447 IOMMU_NO_PASID, false);
1448 }
1449
1450 return ret;
1451 }
1452
domain_flush_pages_v2(struct protection_domain * pdom,u64 address,size_t size)1453 static int domain_flush_pages_v2(struct protection_domain *pdom,
1454 u64 address, size_t size)
1455 {
1456 struct iommu_dev_data *dev_data;
1457 struct iommu_cmd cmd;
1458 int ret = 0;
1459
1460 list_for_each_entry(dev_data, &pdom->dev_list, list) {
1461 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
1462 u16 domid = dev_data->gcr3_info.domid;
1463
1464 build_inv_iommu_pages(&cmd, address, size,
1465 domid, IOMMU_NO_PASID, true);
1466
1467 ret |= iommu_queue_command(iommu, &cmd);
1468 }
1469
1470 return ret;
1471 }
1472
domain_flush_pages_v1(struct protection_domain * pdom,u64 address,size_t size)1473 static int domain_flush_pages_v1(struct protection_domain *pdom,
1474 u64 address, size_t size)
1475 {
1476 struct iommu_cmd cmd;
1477 int ret = 0, i;
1478
1479 build_inv_iommu_pages(&cmd, address, size,
1480 pdom->id, IOMMU_NO_PASID, false);
1481
1482 for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1483 if (!pdom->dev_iommu[i])
1484 continue;
1485
1486 /*
1487 * Devices of this domain are behind this IOMMU
1488 * We need a TLB flush
1489 */
1490 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1491 }
1492
1493 return ret;
1494 }
1495
1496 /*
1497 * TLB invalidation function which is called from the mapping functions.
1498 * It flushes range of PTEs of the domain.
1499 */
__domain_flush_pages(struct protection_domain * domain,u64 address,size_t size)1500 static void __domain_flush_pages(struct protection_domain *domain,
1501 u64 address, size_t size)
1502 {
1503 struct iommu_dev_data *dev_data;
1504 int ret = 0;
1505 ioasid_t pasid = IOMMU_NO_PASID;
1506 bool gn = false;
1507
1508 if (pdom_is_v2_pgtbl_mode(domain)) {
1509 gn = true;
1510 ret = domain_flush_pages_v2(domain, address, size);
1511 } else {
1512 ret = domain_flush_pages_v1(domain, address, size);
1513 }
1514
1515 list_for_each_entry(dev_data, &domain->dev_list, list) {
1516
1517 if (!dev_data->ats_enabled)
1518 continue;
1519
1520 ret |= device_flush_iotlb(dev_data, address, size, pasid, gn);
1521 }
1522
1523 WARN_ON(ret);
1524 }
1525
amd_iommu_domain_flush_pages(struct protection_domain * domain,u64 address,size_t size)1526 void amd_iommu_domain_flush_pages(struct protection_domain *domain,
1527 u64 address, size_t size)
1528 {
1529 if (likely(!amd_iommu_np_cache)) {
1530 __domain_flush_pages(domain, address, size);
1531
1532 /* Wait until IOMMU TLB and all device IOTLB flushes are complete */
1533 domain_flush_complete(domain);
1534
1535 return;
1536 }
1537
1538 /*
1539 * When NpCache is on, we infer that we run in a VM and use a vIOMMU.
1540 * In such setups it is best to avoid flushes of ranges which are not
1541 * naturally aligned, since it would lead to flushes of unmodified
1542 * PTEs. Such flushes would require the hypervisor to do more work than
1543 * necessary. Therefore, perform repeated flushes of aligned ranges
1544 * until you cover the range. Each iteration flushes the smaller
1545 * between the natural alignment of the address that we flush and the
1546 * greatest naturally aligned region that fits in the range.
1547 */
1548 while (size != 0) {
1549 int addr_alignment = __ffs(address);
1550 int size_alignment = __fls(size);
1551 int min_alignment;
1552 size_t flush_size;
1553
1554 /*
1555 * size is always non-zero, but address might be zero, causing
1556 * addr_alignment to be negative. As the casting of the
1557 * argument in __ffs(address) to long might trim the high bits
1558 * of the address on x86-32, cast to long when doing the check.
1559 */
1560 if (likely((unsigned long)address != 0))
1561 min_alignment = min(addr_alignment, size_alignment);
1562 else
1563 min_alignment = size_alignment;
1564
1565 flush_size = 1ul << min_alignment;
1566
1567 __domain_flush_pages(domain, address, flush_size);
1568 address += flush_size;
1569 size -= flush_size;
1570 }
1571
1572 /* Wait until IOMMU TLB and all device IOTLB flushes are complete */
1573 domain_flush_complete(domain);
1574 }
1575
1576 /* Flush the whole IO/TLB for a given protection domain - including PDE */
amd_iommu_domain_flush_all(struct protection_domain * domain)1577 static void amd_iommu_domain_flush_all(struct protection_domain *domain)
1578 {
1579 amd_iommu_domain_flush_pages(domain, 0,
1580 CMD_INV_IOMMU_ALL_PAGES_ADDRESS);
1581 }
1582
amd_iommu_dev_flush_pasid_pages(struct iommu_dev_data * dev_data,ioasid_t pasid,u64 address,size_t size)1583 void amd_iommu_dev_flush_pasid_pages(struct iommu_dev_data *dev_data,
1584 ioasid_t pasid, u64 address, size_t size)
1585 {
1586 struct iommu_cmd cmd;
1587 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
1588
1589 build_inv_iommu_pages(&cmd, address, size,
1590 dev_data->gcr3_info.domid, pasid, true);
1591 iommu_queue_command(iommu, &cmd);
1592
1593 if (dev_data->ats_enabled)
1594 device_flush_iotlb(dev_data, address, size, pasid, true);
1595
1596 iommu_completion_wait(iommu);
1597 }
1598
dev_flush_pasid_all(struct iommu_dev_data * dev_data,ioasid_t pasid)1599 static void dev_flush_pasid_all(struct iommu_dev_data *dev_data,
1600 ioasid_t pasid)
1601 {
1602 amd_iommu_dev_flush_pasid_pages(dev_data, pasid, 0,
1603 CMD_INV_IOMMU_ALL_PAGES_ADDRESS);
1604 }
1605
1606 /* Flush the not present cache if it exists */
domain_flush_np_cache(struct protection_domain * domain,dma_addr_t iova,size_t size)1607 static void domain_flush_np_cache(struct protection_domain *domain,
1608 dma_addr_t iova, size_t size)
1609 {
1610 if (unlikely(amd_iommu_np_cache)) {
1611 unsigned long flags;
1612
1613 spin_lock_irqsave(&domain->lock, flags);
1614 amd_iommu_domain_flush_pages(domain, iova, size);
1615 spin_unlock_irqrestore(&domain->lock, flags);
1616 }
1617 }
1618
1619
1620 /*
1621 * This function flushes the DTEs for all devices in domain
1622 */
amd_iommu_update_and_flush_device_table(struct protection_domain * domain)1623 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain)
1624 {
1625 struct iommu_dev_data *dev_data;
1626
1627 list_for_each_entry(dev_data, &domain->dev_list, list) {
1628 struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev);
1629
1630 set_dte_entry(iommu, dev_data);
1631 clone_aliases(iommu, dev_data->dev);
1632 }
1633
1634 list_for_each_entry(dev_data, &domain->dev_list, list)
1635 device_flush_dte(dev_data);
1636
1637 domain_flush_complete(domain);
1638 }
1639
amd_iommu_complete_ppr(struct device * dev,u32 pasid,int status,int tag)1640 int amd_iommu_complete_ppr(struct device *dev, u32 pasid, int status, int tag)
1641 {
1642 struct iommu_dev_data *dev_data;
1643 struct amd_iommu *iommu;
1644 struct iommu_cmd cmd;
1645
1646 dev_data = dev_iommu_priv_get(dev);
1647 iommu = get_amd_iommu_from_dev(dev);
1648
1649 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
1650 tag, dev_data->pri_tlp);
1651
1652 return iommu_queue_command(iommu, &cmd);
1653 }
1654
1655 /****************************************************************************
1656 *
1657 * The next functions belong to the domain allocation. A domain is
1658 * allocated for every IOMMU as the default domain. If device isolation
1659 * is enabled, every device get its own domain. The most important thing
1660 * about domains is the page table mapping the DMA address space they
1661 * contain.
1662 *
1663 ****************************************************************************/
1664
domain_id_alloc(void)1665 static u16 domain_id_alloc(void)
1666 {
1667 unsigned long flags;
1668 int id;
1669
1670 spin_lock_irqsave(&pd_bitmap_lock, flags);
1671 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1672 BUG_ON(id == 0);
1673 if (id > 0 && id < MAX_DOMAIN_ID)
1674 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1675 else
1676 id = 0;
1677 spin_unlock_irqrestore(&pd_bitmap_lock, flags);
1678
1679 return id;
1680 }
1681
domain_id_free(int id)1682 static void domain_id_free(int id)
1683 {
1684 unsigned long flags;
1685
1686 spin_lock_irqsave(&pd_bitmap_lock, flags);
1687 if (id > 0 && id < MAX_DOMAIN_ID)
1688 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1689 spin_unlock_irqrestore(&pd_bitmap_lock, flags);
1690 }
1691
free_gcr3_tbl_level1(u64 * tbl)1692 static void free_gcr3_tbl_level1(u64 *tbl)
1693 {
1694 u64 *ptr;
1695 int i;
1696
1697 for (i = 0; i < 512; ++i) {
1698 if (!(tbl[i] & GCR3_VALID))
1699 continue;
1700
1701 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1702
1703 iommu_free_page(ptr);
1704 }
1705 }
1706
free_gcr3_tbl_level2(u64 * tbl)1707 static void free_gcr3_tbl_level2(u64 *tbl)
1708 {
1709 u64 *ptr;
1710 int i;
1711
1712 for (i = 0; i < 512; ++i) {
1713 if (!(tbl[i] & GCR3_VALID))
1714 continue;
1715
1716 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1717
1718 free_gcr3_tbl_level1(ptr);
1719 }
1720 }
1721
free_gcr3_table(struct gcr3_tbl_info * gcr3_info)1722 static void free_gcr3_table(struct gcr3_tbl_info *gcr3_info)
1723 {
1724 if (gcr3_info->glx == 2)
1725 free_gcr3_tbl_level2(gcr3_info->gcr3_tbl);
1726 else if (gcr3_info->glx == 1)
1727 free_gcr3_tbl_level1(gcr3_info->gcr3_tbl);
1728 else
1729 WARN_ON_ONCE(gcr3_info->glx != 0);
1730
1731 gcr3_info->glx = 0;
1732
1733 /* Free per device domain ID */
1734 domain_id_free(gcr3_info->domid);
1735
1736 iommu_free_page(gcr3_info->gcr3_tbl);
1737 gcr3_info->gcr3_tbl = NULL;
1738 }
1739
1740 /*
1741 * Number of GCR3 table levels required. Level must be 4-Kbyte
1742 * page and can contain up to 512 entries.
1743 */
get_gcr3_levels(int pasids)1744 static int get_gcr3_levels(int pasids)
1745 {
1746 int levels;
1747
1748 if (pasids == -1)
1749 return amd_iommu_max_glx_val;
1750
1751 levels = get_count_order(pasids);
1752
1753 return levels ? (DIV_ROUND_UP(levels, 9) - 1) : levels;
1754 }
1755
setup_gcr3_table(struct gcr3_tbl_info * gcr3_info,struct amd_iommu * iommu,int pasids)1756 static int setup_gcr3_table(struct gcr3_tbl_info *gcr3_info,
1757 struct amd_iommu *iommu, int pasids)
1758 {
1759 int levels = get_gcr3_levels(pasids);
1760 int nid = iommu ? dev_to_node(&iommu->dev->dev) : NUMA_NO_NODE;
1761
1762 if (levels > amd_iommu_max_glx_val)
1763 return -EINVAL;
1764
1765 if (gcr3_info->gcr3_tbl)
1766 return -EBUSY;
1767
1768 /* Allocate per device domain ID */
1769 gcr3_info->domid = domain_id_alloc();
1770
1771 gcr3_info->gcr3_tbl = iommu_alloc_page_node(nid, GFP_ATOMIC);
1772 if (gcr3_info->gcr3_tbl == NULL) {
1773 domain_id_free(gcr3_info->domid);
1774 return -ENOMEM;
1775 }
1776
1777 gcr3_info->glx = levels;
1778
1779 return 0;
1780 }
1781
__get_gcr3_pte(struct gcr3_tbl_info * gcr3_info,ioasid_t pasid,bool alloc)1782 static u64 *__get_gcr3_pte(struct gcr3_tbl_info *gcr3_info,
1783 ioasid_t pasid, bool alloc)
1784 {
1785 int index;
1786 u64 *pte;
1787 u64 *root = gcr3_info->gcr3_tbl;
1788 int level = gcr3_info->glx;
1789
1790 while (true) {
1791
1792 index = (pasid >> (9 * level)) & 0x1ff;
1793 pte = &root[index];
1794
1795 if (level == 0)
1796 break;
1797
1798 if (!(*pte & GCR3_VALID)) {
1799 if (!alloc)
1800 return NULL;
1801
1802 root = (void *)get_zeroed_page(GFP_ATOMIC);
1803 if (root == NULL)
1804 return NULL;
1805
1806 *pte = iommu_virt_to_phys(root) | GCR3_VALID;
1807 }
1808
1809 root = iommu_phys_to_virt(*pte & PAGE_MASK);
1810
1811 level -= 1;
1812 }
1813
1814 return pte;
1815 }
1816
update_gcr3(struct iommu_dev_data * dev_data,ioasid_t pasid,unsigned long gcr3,bool set)1817 static int update_gcr3(struct iommu_dev_data *dev_data,
1818 ioasid_t pasid, unsigned long gcr3, bool set)
1819 {
1820 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1821 u64 *pte;
1822
1823 pte = __get_gcr3_pte(gcr3_info, pasid, true);
1824 if (pte == NULL)
1825 return -ENOMEM;
1826
1827 if (set)
1828 *pte = (gcr3 & PAGE_MASK) | GCR3_VALID;
1829 else
1830 *pte = 0;
1831
1832 dev_flush_pasid_all(dev_data, pasid);
1833 return 0;
1834 }
1835
amd_iommu_set_gcr3(struct iommu_dev_data * dev_data,ioasid_t pasid,unsigned long gcr3)1836 int amd_iommu_set_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid,
1837 unsigned long gcr3)
1838 {
1839 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1840 int ret;
1841
1842 iommu_group_mutex_assert(dev_data->dev);
1843
1844 ret = update_gcr3(dev_data, pasid, gcr3, true);
1845 if (ret)
1846 return ret;
1847
1848 gcr3_info->pasid_cnt++;
1849 return ret;
1850 }
1851
amd_iommu_clear_gcr3(struct iommu_dev_data * dev_data,ioasid_t pasid)1852 int amd_iommu_clear_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid)
1853 {
1854 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1855 int ret;
1856
1857 iommu_group_mutex_assert(dev_data->dev);
1858
1859 ret = update_gcr3(dev_data, pasid, 0, false);
1860 if (ret)
1861 return ret;
1862
1863 gcr3_info->pasid_cnt--;
1864 return ret;
1865 }
1866
set_dte_entry(struct amd_iommu * iommu,struct iommu_dev_data * dev_data)1867 static void set_dte_entry(struct amd_iommu *iommu,
1868 struct iommu_dev_data *dev_data)
1869 {
1870 u64 pte_root = 0;
1871 u64 flags = 0;
1872 u32 old_domid;
1873 u16 devid = dev_data->devid;
1874 u16 domid;
1875 struct protection_domain *domain = dev_data->domain;
1876 struct dev_table_entry *dev_table = get_dev_table(iommu);
1877 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1878
1879 if (gcr3_info && gcr3_info->gcr3_tbl)
1880 domid = dev_data->gcr3_info.domid;
1881 else
1882 domid = domain->id;
1883
1884 if (domain->iop.mode != PAGE_MODE_NONE)
1885 pte_root = iommu_virt_to_phys(domain->iop.root);
1886
1887 pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK)
1888 << DEV_ENTRY_MODE_SHIFT;
1889
1890 pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V;
1891
1892 /*
1893 * When SNP is enabled, Only set TV bit when IOMMU
1894 * page translation is in use.
1895 */
1896 if (!amd_iommu_snp_en || (domid != 0))
1897 pte_root |= DTE_FLAG_TV;
1898
1899 flags = dev_table[devid].data[1];
1900
1901 if (dev_data->ats_enabled)
1902 flags |= DTE_FLAG_IOTLB;
1903
1904 if (dev_data->ppr)
1905 pte_root |= 1ULL << DEV_ENTRY_PPR;
1906
1907 if (domain->dirty_tracking)
1908 pte_root |= DTE_FLAG_HAD;
1909
1910 if (gcr3_info && gcr3_info->gcr3_tbl) {
1911 u64 gcr3 = iommu_virt_to_phys(gcr3_info->gcr3_tbl);
1912 u64 glx = gcr3_info->glx;
1913 u64 tmp;
1914
1915 pte_root |= DTE_FLAG_GV;
1916 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1917
1918 /* First mask out possible old values for GCR3 table */
1919 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1920 flags &= ~tmp;
1921
1922 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1923 flags &= ~tmp;
1924
1925 /* Encode GCR3 table into DTE */
1926 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1927 pte_root |= tmp;
1928
1929 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1930 flags |= tmp;
1931
1932 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1933 flags |= tmp;
1934
1935 if (amd_iommu_gpt_level == PAGE_MODE_5_LEVEL) {
1936 dev_table[devid].data[2] |=
1937 ((u64)GUEST_PGTABLE_5_LEVEL << DTE_GPT_LEVEL_SHIFT);
1938 }
1939
1940 /* GIOV is supported with V2 page table mode only */
1941 if (pdom_is_v2_pgtbl_mode(domain))
1942 pte_root |= DTE_FLAG_GIOV;
1943 }
1944
1945 flags &= ~DEV_DOMID_MASK;
1946 flags |= domid;
1947
1948 old_domid = dev_table[devid].data[1] & DEV_DOMID_MASK;
1949 dev_table[devid].data[1] = flags;
1950 dev_table[devid].data[0] = pte_root;
1951
1952 /*
1953 * A kdump kernel might be replacing a domain ID that was copied from
1954 * the previous kernel--if so, it needs to flush the translation cache
1955 * entries for the old domain ID that is being overwritten
1956 */
1957 if (old_domid) {
1958 amd_iommu_flush_tlb_domid(iommu, old_domid);
1959 }
1960 }
1961
clear_dte_entry(struct amd_iommu * iommu,u16 devid)1962 static void clear_dte_entry(struct amd_iommu *iommu, u16 devid)
1963 {
1964 struct dev_table_entry *dev_table = get_dev_table(iommu);
1965
1966 /* remove entry from the device table seen by the hardware */
1967 dev_table[devid].data[0] = DTE_FLAG_V;
1968
1969 if (!amd_iommu_snp_en)
1970 dev_table[devid].data[0] |= DTE_FLAG_TV;
1971
1972 dev_table[devid].data[1] &= DTE_FLAG_MASK;
1973
1974 amd_iommu_apply_erratum_63(iommu, devid);
1975 }
1976
1977 /* Update and flush DTE for the given device */
dev_update_dte(struct iommu_dev_data * dev_data,bool set)1978 static void dev_update_dte(struct iommu_dev_data *dev_data, bool set)
1979 {
1980 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
1981
1982 if (set)
1983 set_dte_entry(iommu, dev_data);
1984 else
1985 clear_dte_entry(iommu, dev_data->devid);
1986
1987 clone_aliases(iommu, dev_data->dev);
1988 device_flush_dte(dev_data);
1989 iommu_completion_wait(iommu);
1990 }
1991
1992 /*
1993 * If domain is SVA capable then initialize GCR3 table. Also if domain is
1994 * in v2 page table mode then update GCR3[0].
1995 */
init_gcr3_table(struct iommu_dev_data * dev_data,struct protection_domain * pdom)1996 static int init_gcr3_table(struct iommu_dev_data *dev_data,
1997 struct protection_domain *pdom)
1998 {
1999 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2000 int max_pasids = dev_data->max_pasids;
2001 int ret = 0;
2002
2003 /*
2004 * If domain is in pt mode then setup GCR3 table only if device
2005 * is PASID capable
2006 */
2007 if (pdom_is_in_pt_mode(pdom) && !pdev_pasid_supported(dev_data))
2008 return ret;
2009
2010 /*
2011 * By default, setup GCR3 table to support MAX PASIDs
2012 * supported by the device/IOMMU.
2013 */
2014 ret = setup_gcr3_table(&dev_data->gcr3_info, iommu,
2015 max_pasids > 0 ? max_pasids : 1);
2016 if (ret)
2017 return ret;
2018
2019 /* Setup GCR3[0] only if domain is setup with v2 page table mode */
2020 if (!pdom_is_v2_pgtbl_mode(pdom))
2021 return ret;
2022
2023 ret = update_gcr3(dev_data, 0, iommu_virt_to_phys(pdom->iop.pgd), true);
2024 if (ret)
2025 free_gcr3_table(&dev_data->gcr3_info);
2026
2027 return ret;
2028 }
2029
destroy_gcr3_table(struct iommu_dev_data * dev_data,struct protection_domain * pdom)2030 static void destroy_gcr3_table(struct iommu_dev_data *dev_data,
2031 struct protection_domain *pdom)
2032 {
2033 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
2034
2035 if (pdom_is_v2_pgtbl_mode(pdom))
2036 update_gcr3(dev_data, 0, 0, false);
2037
2038 if (gcr3_info->gcr3_tbl == NULL)
2039 return;
2040
2041 free_gcr3_table(gcr3_info);
2042 }
2043
do_attach(struct iommu_dev_data * dev_data,struct protection_domain * domain)2044 static int do_attach(struct iommu_dev_data *dev_data,
2045 struct protection_domain *domain)
2046 {
2047 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2048 struct io_pgtable_cfg *cfg = &domain->iop.pgtbl.cfg;
2049 int ret = 0;
2050
2051 /* Update data structures */
2052 dev_data->domain = domain;
2053 list_add(&dev_data->list, &domain->dev_list);
2054
2055 /* Update NUMA Node ID */
2056 if (cfg->amd.nid == NUMA_NO_NODE)
2057 cfg->amd.nid = dev_to_node(dev_data->dev);
2058
2059 /* Do reference counting */
2060 domain->dev_iommu[iommu->index] += 1;
2061 domain->dev_cnt += 1;
2062
2063 /* Setup GCR3 table */
2064 if (pdom_is_sva_capable(domain)) {
2065 ret = init_gcr3_table(dev_data, domain);
2066 if (ret)
2067 return ret;
2068 }
2069
2070 return ret;
2071 }
2072
do_detach(struct iommu_dev_data * dev_data)2073 static void do_detach(struct iommu_dev_data *dev_data)
2074 {
2075 struct protection_domain *domain = dev_data->domain;
2076 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2077
2078 /* Clear DTE and flush the entry */
2079 dev_update_dte(dev_data, false);
2080
2081 /* Flush IOTLB and wait for the flushes to finish */
2082 amd_iommu_domain_flush_all(domain);
2083
2084 /* Clear GCR3 table */
2085 if (pdom_is_sva_capable(domain))
2086 destroy_gcr3_table(dev_data, domain);
2087
2088 /* Update data structures */
2089 dev_data->domain = NULL;
2090 list_del(&dev_data->list);
2091
2092 /* decrease reference counters - needs to happen after the flushes */
2093 domain->dev_iommu[iommu->index] -= 1;
2094 domain->dev_cnt -= 1;
2095 }
2096
2097 /*
2098 * If a device is not yet associated with a domain, this function makes the
2099 * device visible in the domain
2100 */
attach_device(struct device * dev,struct protection_domain * domain)2101 static int attach_device(struct device *dev,
2102 struct protection_domain *domain)
2103 {
2104 struct iommu_dev_data *dev_data;
2105 unsigned long flags;
2106 int ret = 0;
2107
2108 spin_lock_irqsave(&domain->lock, flags);
2109
2110 dev_data = dev_iommu_priv_get(dev);
2111
2112 spin_lock(&dev_data->lock);
2113
2114 if (dev_data->domain != NULL) {
2115 ret = -EBUSY;
2116 goto out;
2117 }
2118
2119 ret = do_attach(dev_data, domain);
2120
2121 out:
2122 spin_unlock(&dev_data->lock);
2123
2124 spin_unlock_irqrestore(&domain->lock, flags);
2125
2126 return ret;
2127 }
2128
2129 /*
2130 * Removes a device from a protection domain (with devtable_lock held)
2131 */
detach_device(struct device * dev)2132 static void detach_device(struct device *dev)
2133 {
2134 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2135 struct protection_domain *domain = dev_data->domain;
2136 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2137 unsigned long flags;
2138 bool ppr = dev_data->ppr;
2139
2140 spin_lock_irqsave(&domain->lock, flags);
2141
2142 spin_lock(&dev_data->lock);
2143
2144 /*
2145 * First check if the device is still attached. It might already
2146 * be detached from its domain because the generic
2147 * iommu_detach_group code detached it and we try again here in
2148 * our alias handling.
2149 */
2150 if (WARN_ON(!dev_data->domain))
2151 goto out;
2152
2153 if (ppr) {
2154 iopf_queue_flush_dev(dev);
2155
2156 /* Updated here so that it gets reflected in DTE */
2157 dev_data->ppr = false;
2158 }
2159
2160 do_detach(dev_data);
2161
2162 out:
2163 spin_unlock(&dev_data->lock);
2164
2165 spin_unlock_irqrestore(&domain->lock, flags);
2166
2167 /* Remove IOPF handler */
2168 if (ppr)
2169 amd_iommu_iopf_remove_device(iommu, dev_data);
2170
2171 if (dev_is_pci(dev))
2172 pdev_disable_caps(to_pci_dev(dev));
2173
2174 }
2175
amd_iommu_probe_device(struct device * dev)2176 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
2177 {
2178 struct iommu_device *iommu_dev;
2179 struct amd_iommu *iommu;
2180 struct iommu_dev_data *dev_data;
2181 int ret;
2182
2183 if (!check_device(dev))
2184 return ERR_PTR(-ENODEV);
2185
2186 iommu = rlookup_amd_iommu(dev);
2187 if (!iommu)
2188 return ERR_PTR(-ENODEV);
2189
2190 /* Not registered yet? */
2191 if (!iommu->iommu.ops)
2192 return ERR_PTR(-ENODEV);
2193
2194 if (dev_iommu_priv_get(dev))
2195 return &iommu->iommu;
2196
2197 ret = iommu_init_device(iommu, dev);
2198 if (ret) {
2199 dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
2200 iommu_dev = ERR_PTR(ret);
2201 iommu_ignore_device(iommu, dev);
2202 goto out_err;
2203 }
2204
2205 amd_iommu_set_pci_msi_domain(dev, iommu);
2206 iommu_dev = &iommu->iommu;
2207
2208 /*
2209 * If IOMMU and device supports PASID then it will contain max
2210 * supported PASIDs, else it will be zero.
2211 */
2212 dev_data = dev_iommu_priv_get(dev);
2213 if (amd_iommu_pasid_supported() && dev_is_pci(dev) &&
2214 pdev_pasid_supported(dev_data)) {
2215 dev_data->max_pasids = min_t(u32, iommu->iommu.max_pasids,
2216 pci_max_pasids(to_pci_dev(dev)));
2217 }
2218
2219 out_err:
2220 iommu_completion_wait(iommu);
2221
2222 if (dev_is_pci(dev))
2223 pci_prepare_ats(to_pci_dev(dev), PAGE_SHIFT);
2224
2225 return iommu_dev;
2226 }
2227
amd_iommu_release_device(struct device * dev)2228 static void amd_iommu_release_device(struct device *dev)
2229 {
2230 struct amd_iommu *iommu;
2231
2232 if (!check_device(dev))
2233 return;
2234
2235 iommu = rlookup_amd_iommu(dev);
2236 if (!iommu)
2237 return;
2238
2239 amd_iommu_uninit_device(dev);
2240 iommu_completion_wait(iommu);
2241 }
2242
amd_iommu_device_group(struct device * dev)2243 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2244 {
2245 if (dev_is_pci(dev))
2246 return pci_device_group(dev);
2247
2248 return acpihid_device_group(dev);
2249 }
2250
2251 /*****************************************************************************
2252 *
2253 * The following functions belong to the exported interface of AMD IOMMU
2254 *
2255 * This interface allows access to lower level functions of the IOMMU
2256 * like protection domain handling and assignement of devices to domains
2257 * which is not possible with the dma_ops interface.
2258 *
2259 *****************************************************************************/
2260
cleanup_domain(struct protection_domain * domain)2261 static void cleanup_domain(struct protection_domain *domain)
2262 {
2263 struct iommu_dev_data *entry;
2264
2265 lockdep_assert_held(&domain->lock);
2266
2267 if (!domain->dev_cnt)
2268 return;
2269
2270 while (!list_empty(&domain->dev_list)) {
2271 entry = list_first_entry(&domain->dev_list,
2272 struct iommu_dev_data, list);
2273 BUG_ON(!entry->domain);
2274 do_detach(entry);
2275 }
2276 WARN_ON(domain->dev_cnt != 0);
2277 }
2278
protection_domain_free(struct protection_domain * domain)2279 void protection_domain_free(struct protection_domain *domain)
2280 {
2281 WARN_ON(!list_empty(&domain->dev_list));
2282 if (domain->domain.type & __IOMMU_DOMAIN_PAGING)
2283 free_io_pgtable_ops(&domain->iop.pgtbl.ops);
2284 domain_id_free(domain->id);
2285 kfree(domain);
2286 }
2287
protection_domain_alloc(unsigned int type,int nid)2288 struct protection_domain *protection_domain_alloc(unsigned int type, int nid)
2289 {
2290 struct io_pgtable_ops *pgtbl_ops;
2291 struct protection_domain *domain;
2292 int pgtable;
2293
2294 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2295 if (!domain)
2296 return NULL;
2297
2298 domain->id = domain_id_alloc();
2299 if (!domain->id)
2300 goto err_free;
2301
2302 spin_lock_init(&domain->lock);
2303 INIT_LIST_HEAD(&domain->dev_list);
2304 INIT_LIST_HEAD(&domain->dev_data_list);
2305 domain->iop.pgtbl.cfg.amd.nid = nid;
2306
2307 switch (type) {
2308 /* No need to allocate io pgtable ops in passthrough mode */
2309 case IOMMU_DOMAIN_IDENTITY:
2310 case IOMMU_DOMAIN_SVA:
2311 return domain;
2312 case IOMMU_DOMAIN_DMA:
2313 pgtable = amd_iommu_pgtable;
2314 break;
2315 /*
2316 * Force IOMMU v1 page table when allocating
2317 * domain for pass-through devices.
2318 */
2319 case IOMMU_DOMAIN_UNMANAGED:
2320 pgtable = AMD_IOMMU_V1;
2321 break;
2322 default:
2323 goto err_id;
2324 }
2325
2326 switch (pgtable) {
2327 case AMD_IOMMU_V1:
2328 domain->pd_mode = PD_MODE_V1;
2329 break;
2330 case AMD_IOMMU_V2:
2331 domain->pd_mode = PD_MODE_V2;
2332 break;
2333 default:
2334 goto err_id;
2335 }
2336
2337 pgtbl_ops =
2338 alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl.cfg, domain);
2339 if (!pgtbl_ops)
2340 goto err_id;
2341
2342 return domain;
2343 err_id:
2344 domain_id_free(domain->id);
2345 err_free:
2346 kfree(domain);
2347 return NULL;
2348 }
2349
dma_max_address(void)2350 static inline u64 dma_max_address(void)
2351 {
2352 if (amd_iommu_pgtable == AMD_IOMMU_V1)
2353 return ~0ULL;
2354
2355 /*
2356 * V2 with 4/5 level page table. Note that "2.2.6.5 AMD64 4-Kbyte Page
2357 * Translation" shows that the V2 table sign extends the top of the
2358 * address space creating a reserved region in the middle of the
2359 * translation, just like the CPU does. Further Vasant says the docs are
2360 * incomplete and this only applies to non-zero PASIDs. If the AMDv2
2361 * page table is assigned to the 0 PASID then there is no sign extension
2362 * check.
2363 *
2364 * Since the IOMMU must have a fixed geometry, and the core code does
2365 * not understand sign extended addressing, we have to chop off the high
2366 * bit to get consistent behavior with attachments of the domain to any
2367 * PASID.
2368 */
2369 return ((1ULL << (PM_LEVEL_SHIFT(amd_iommu_gpt_level) - 1)) - 1);
2370 }
2371
amd_iommu_hd_support(struct amd_iommu * iommu)2372 static bool amd_iommu_hd_support(struct amd_iommu *iommu)
2373 {
2374 return iommu && (iommu->features & FEATURE_HDSUP);
2375 }
2376
do_iommu_domain_alloc(unsigned int type,struct device * dev,u32 flags)2377 static struct iommu_domain *do_iommu_domain_alloc(unsigned int type,
2378 struct device *dev, u32 flags)
2379 {
2380 bool dirty_tracking = flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING;
2381 struct protection_domain *domain;
2382 struct amd_iommu *iommu = NULL;
2383
2384 if (dev)
2385 iommu = get_amd_iommu_from_dev(dev);
2386
2387 /*
2388 * Since DTE[Mode]=0 is prohibited on SNP-enabled system,
2389 * default to use IOMMU_DOMAIN_DMA[_FQ].
2390 */
2391 if (amd_iommu_snp_en && (type == IOMMU_DOMAIN_IDENTITY))
2392 return ERR_PTR(-EINVAL);
2393
2394 if (dirty_tracking && !amd_iommu_hd_support(iommu))
2395 return ERR_PTR(-EOPNOTSUPP);
2396
2397 domain = protection_domain_alloc(type,
2398 dev ? dev_to_node(dev) : NUMA_NO_NODE);
2399 if (!domain)
2400 return ERR_PTR(-ENOMEM);
2401
2402 domain->domain.geometry.aperture_start = 0;
2403 domain->domain.geometry.aperture_end = dma_max_address();
2404 domain->domain.geometry.force_aperture = true;
2405 domain->domain.pgsize_bitmap = domain->iop.pgtbl.cfg.pgsize_bitmap;
2406
2407 if (iommu) {
2408 domain->domain.type = type;
2409 domain->domain.ops = iommu->iommu.ops->default_domain_ops;
2410
2411 if (dirty_tracking)
2412 domain->domain.dirty_ops = &amd_dirty_ops;
2413 }
2414
2415 return &domain->domain;
2416 }
2417
amd_iommu_domain_alloc(unsigned int type)2418 static struct iommu_domain *amd_iommu_domain_alloc(unsigned int type)
2419 {
2420 struct iommu_domain *domain;
2421
2422 domain = do_iommu_domain_alloc(type, NULL, 0);
2423 if (IS_ERR(domain))
2424 return NULL;
2425
2426 return domain;
2427 }
2428
2429 static struct iommu_domain *
amd_iommu_domain_alloc_user(struct device * dev,u32 flags,struct iommu_domain * parent,const struct iommu_user_data * user_data)2430 amd_iommu_domain_alloc_user(struct device *dev, u32 flags,
2431 struct iommu_domain *parent,
2432 const struct iommu_user_data *user_data)
2433
2434 {
2435 unsigned int type = IOMMU_DOMAIN_UNMANAGED;
2436
2437 if ((flags & ~IOMMU_HWPT_ALLOC_DIRTY_TRACKING) || parent || user_data)
2438 return ERR_PTR(-EOPNOTSUPP);
2439
2440 return do_iommu_domain_alloc(type, dev, flags);
2441 }
2442
amd_iommu_domain_free(struct iommu_domain * dom)2443 void amd_iommu_domain_free(struct iommu_domain *dom)
2444 {
2445 struct protection_domain *domain;
2446 unsigned long flags;
2447
2448 domain = to_pdomain(dom);
2449
2450 spin_lock_irqsave(&domain->lock, flags);
2451
2452 cleanup_domain(domain);
2453
2454 spin_unlock_irqrestore(&domain->lock, flags);
2455
2456 protection_domain_free(domain);
2457 }
2458
blocked_domain_attach_device(struct iommu_domain * domain,struct device * dev)2459 static int blocked_domain_attach_device(struct iommu_domain *domain,
2460 struct device *dev)
2461 {
2462 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2463
2464 if (dev_data->domain)
2465 detach_device(dev);
2466
2467 /* Clear DTE and flush the entry */
2468 spin_lock(&dev_data->lock);
2469 dev_update_dte(dev_data, false);
2470 spin_unlock(&dev_data->lock);
2471
2472 return 0;
2473 }
2474
2475 static struct iommu_domain blocked_domain = {
2476 .type = IOMMU_DOMAIN_BLOCKED,
2477 .ops = &(const struct iommu_domain_ops) {
2478 .attach_dev = blocked_domain_attach_device,
2479 }
2480 };
2481
amd_iommu_attach_device(struct iommu_domain * dom,struct device * dev)2482 static int amd_iommu_attach_device(struct iommu_domain *dom,
2483 struct device *dev)
2484 {
2485 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2486 struct protection_domain *domain = to_pdomain(dom);
2487 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2488 struct pci_dev *pdev;
2489 int ret;
2490
2491 /*
2492 * Skip attach device to domain if new domain is same as
2493 * devices current domain
2494 */
2495 if (dev_data->domain == domain)
2496 return 0;
2497
2498 dev_data->defer_attach = false;
2499
2500 /*
2501 * Restrict to devices with compatible IOMMU hardware support
2502 * when enforcement of dirty tracking is enabled.
2503 */
2504 if (dom->dirty_ops && !amd_iommu_hd_support(iommu))
2505 return -EINVAL;
2506
2507 if (dev_data->domain)
2508 detach_device(dev);
2509
2510 ret = attach_device(dev, domain);
2511
2512 #ifdef CONFIG_IRQ_REMAP
2513 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2514 if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2515 dev_data->use_vapic = 1;
2516 else
2517 dev_data->use_vapic = 0;
2518 }
2519 #endif
2520
2521 pdev = dev_is_pci(dev_data->dev) ? to_pci_dev(dev_data->dev) : NULL;
2522 if (pdev && pdom_is_sva_capable(domain)) {
2523 pdev_enable_caps(pdev);
2524
2525 /*
2526 * Device can continue to function even if IOPF
2527 * enablement failed. Hence in error path just
2528 * disable device PRI support.
2529 */
2530 if (amd_iommu_iopf_add_device(iommu, dev_data))
2531 pdev_disable_cap_pri(pdev);
2532 } else if (pdev) {
2533 pdev_enable_cap_ats(pdev);
2534 }
2535
2536 /* Update device table */
2537 dev_update_dte(dev_data, true);
2538
2539 return ret;
2540 }
2541
amd_iommu_iotlb_sync_map(struct iommu_domain * dom,unsigned long iova,size_t size)2542 static int amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
2543 unsigned long iova, size_t size)
2544 {
2545 struct protection_domain *domain = to_pdomain(dom);
2546 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
2547
2548 if (ops->map_pages)
2549 domain_flush_np_cache(domain, iova, size);
2550 return 0;
2551 }
2552
amd_iommu_map_pages(struct iommu_domain * dom,unsigned long iova,phys_addr_t paddr,size_t pgsize,size_t pgcount,int iommu_prot,gfp_t gfp,size_t * mapped)2553 static int amd_iommu_map_pages(struct iommu_domain *dom, unsigned long iova,
2554 phys_addr_t paddr, size_t pgsize, size_t pgcount,
2555 int iommu_prot, gfp_t gfp, size_t *mapped)
2556 {
2557 struct protection_domain *domain = to_pdomain(dom);
2558 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
2559 int prot = 0;
2560 int ret = -EINVAL;
2561
2562 if ((domain->pd_mode == PD_MODE_V1) &&
2563 (domain->iop.mode == PAGE_MODE_NONE))
2564 return -EINVAL;
2565
2566 if (iommu_prot & IOMMU_READ)
2567 prot |= IOMMU_PROT_IR;
2568 if (iommu_prot & IOMMU_WRITE)
2569 prot |= IOMMU_PROT_IW;
2570
2571 if (ops->map_pages) {
2572 ret = ops->map_pages(ops, iova, paddr, pgsize,
2573 pgcount, prot, gfp, mapped);
2574 }
2575
2576 return ret;
2577 }
2578
amd_iommu_iotlb_gather_add_page(struct iommu_domain * domain,struct iommu_iotlb_gather * gather,unsigned long iova,size_t size)2579 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain,
2580 struct iommu_iotlb_gather *gather,
2581 unsigned long iova, size_t size)
2582 {
2583 /*
2584 * AMD's IOMMU can flush as many pages as necessary in a single flush.
2585 * Unless we run in a virtual machine, which can be inferred according
2586 * to whether "non-present cache" is on, it is probably best to prefer
2587 * (potentially) too extensive TLB flushing (i.e., more misses) over
2588 * mutliple TLB flushes (i.e., more flushes). For virtual machines the
2589 * hypervisor needs to synchronize the host IOMMU PTEs with those of
2590 * the guest, and the trade-off is different: unnecessary TLB flushes
2591 * should be avoided.
2592 */
2593 if (amd_iommu_np_cache &&
2594 iommu_iotlb_gather_is_disjoint(gather, iova, size))
2595 iommu_iotlb_sync(domain, gather);
2596
2597 iommu_iotlb_gather_add_range(gather, iova, size);
2598 }
2599
amd_iommu_unmap_pages(struct iommu_domain * dom,unsigned long iova,size_t pgsize,size_t pgcount,struct iommu_iotlb_gather * gather)2600 static size_t amd_iommu_unmap_pages(struct iommu_domain *dom, unsigned long iova,
2601 size_t pgsize, size_t pgcount,
2602 struct iommu_iotlb_gather *gather)
2603 {
2604 struct protection_domain *domain = to_pdomain(dom);
2605 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
2606 size_t r;
2607
2608 if ((domain->pd_mode == PD_MODE_V1) &&
2609 (domain->iop.mode == PAGE_MODE_NONE))
2610 return 0;
2611
2612 r = (ops->unmap_pages) ? ops->unmap_pages(ops, iova, pgsize, pgcount, NULL) : 0;
2613
2614 if (r)
2615 amd_iommu_iotlb_gather_add_page(dom, gather, iova, r);
2616
2617 return r;
2618 }
2619
amd_iommu_iova_to_phys(struct iommu_domain * dom,dma_addr_t iova)2620 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2621 dma_addr_t iova)
2622 {
2623 struct protection_domain *domain = to_pdomain(dom);
2624 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
2625
2626 return ops->iova_to_phys(ops, iova);
2627 }
2628
amd_iommu_capable(struct device * dev,enum iommu_cap cap)2629 static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap)
2630 {
2631 switch (cap) {
2632 case IOMMU_CAP_CACHE_COHERENCY:
2633 return true;
2634 case IOMMU_CAP_NOEXEC:
2635 return false;
2636 case IOMMU_CAP_PRE_BOOT_PROTECTION:
2637 return amdr_ivrs_remap_support;
2638 case IOMMU_CAP_ENFORCE_CACHE_COHERENCY:
2639 return true;
2640 case IOMMU_CAP_DEFERRED_FLUSH:
2641 return true;
2642 case IOMMU_CAP_DIRTY_TRACKING: {
2643 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2644
2645 return amd_iommu_hd_support(iommu);
2646 }
2647 default:
2648 break;
2649 }
2650
2651 return false;
2652 }
2653
amd_iommu_set_dirty_tracking(struct iommu_domain * domain,bool enable)2654 static int amd_iommu_set_dirty_tracking(struct iommu_domain *domain,
2655 bool enable)
2656 {
2657 struct protection_domain *pdomain = to_pdomain(domain);
2658 struct dev_table_entry *dev_table;
2659 struct iommu_dev_data *dev_data;
2660 bool domain_flush = false;
2661 struct amd_iommu *iommu;
2662 unsigned long flags;
2663 u64 pte_root;
2664
2665 spin_lock_irqsave(&pdomain->lock, flags);
2666 if (!(pdomain->dirty_tracking ^ enable)) {
2667 spin_unlock_irqrestore(&pdomain->lock, flags);
2668 return 0;
2669 }
2670
2671 list_for_each_entry(dev_data, &pdomain->dev_list, list) {
2672 iommu = get_amd_iommu_from_dev_data(dev_data);
2673
2674 dev_table = get_dev_table(iommu);
2675 pte_root = dev_table[dev_data->devid].data[0];
2676
2677 pte_root = (enable ? pte_root | DTE_FLAG_HAD :
2678 pte_root & ~DTE_FLAG_HAD);
2679
2680 /* Flush device DTE */
2681 dev_table[dev_data->devid].data[0] = pte_root;
2682 device_flush_dte(dev_data);
2683 domain_flush = true;
2684 }
2685
2686 /* Flush IOTLB to mark IOPTE dirty on the next translation(s) */
2687 if (domain_flush)
2688 amd_iommu_domain_flush_all(pdomain);
2689
2690 pdomain->dirty_tracking = enable;
2691 spin_unlock_irqrestore(&pdomain->lock, flags);
2692
2693 return 0;
2694 }
2695
amd_iommu_read_and_clear_dirty(struct iommu_domain * domain,unsigned long iova,size_t size,unsigned long flags,struct iommu_dirty_bitmap * dirty)2696 static int amd_iommu_read_and_clear_dirty(struct iommu_domain *domain,
2697 unsigned long iova, size_t size,
2698 unsigned long flags,
2699 struct iommu_dirty_bitmap *dirty)
2700 {
2701 struct protection_domain *pdomain = to_pdomain(domain);
2702 struct io_pgtable_ops *ops = &pdomain->iop.pgtbl.ops;
2703 unsigned long lflags;
2704
2705 if (!ops || !ops->read_and_clear_dirty)
2706 return -EOPNOTSUPP;
2707
2708 spin_lock_irqsave(&pdomain->lock, lflags);
2709 if (!pdomain->dirty_tracking && dirty->bitmap) {
2710 spin_unlock_irqrestore(&pdomain->lock, lflags);
2711 return -EINVAL;
2712 }
2713 spin_unlock_irqrestore(&pdomain->lock, lflags);
2714
2715 return ops->read_and_clear_dirty(ops, iova, size, flags, dirty);
2716 }
2717
amd_iommu_get_resv_regions(struct device * dev,struct list_head * head)2718 static void amd_iommu_get_resv_regions(struct device *dev,
2719 struct list_head *head)
2720 {
2721 struct iommu_resv_region *region;
2722 struct unity_map_entry *entry;
2723 struct amd_iommu *iommu;
2724 struct amd_iommu_pci_seg *pci_seg;
2725 int devid, sbdf;
2726
2727 sbdf = get_device_sbdf_id(dev);
2728 if (sbdf < 0)
2729 return;
2730
2731 devid = PCI_SBDF_TO_DEVID(sbdf);
2732 iommu = get_amd_iommu_from_dev(dev);
2733 pci_seg = iommu->pci_seg;
2734
2735 list_for_each_entry(entry, &pci_seg->unity_map, list) {
2736 int type, prot = 0;
2737 size_t length;
2738
2739 if (devid < entry->devid_start || devid > entry->devid_end)
2740 continue;
2741
2742 type = IOMMU_RESV_DIRECT;
2743 length = entry->address_end - entry->address_start;
2744 if (entry->prot & IOMMU_PROT_IR)
2745 prot |= IOMMU_READ;
2746 if (entry->prot & IOMMU_PROT_IW)
2747 prot |= IOMMU_WRITE;
2748 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2749 /* Exclusion range */
2750 type = IOMMU_RESV_RESERVED;
2751
2752 region = iommu_alloc_resv_region(entry->address_start,
2753 length, prot, type,
2754 GFP_KERNEL);
2755 if (!region) {
2756 dev_err(dev, "Out of memory allocating dm-regions\n");
2757 return;
2758 }
2759 list_add_tail(®ion->list, head);
2760 }
2761
2762 region = iommu_alloc_resv_region(MSI_RANGE_START,
2763 MSI_RANGE_END - MSI_RANGE_START + 1,
2764 0, IOMMU_RESV_MSI, GFP_KERNEL);
2765 if (!region)
2766 return;
2767 list_add_tail(®ion->list, head);
2768
2769 region = iommu_alloc_resv_region(HT_RANGE_START,
2770 HT_RANGE_END - HT_RANGE_START + 1,
2771 0, IOMMU_RESV_RESERVED, GFP_KERNEL);
2772 if (!region)
2773 return;
2774 list_add_tail(®ion->list, head);
2775 }
2776
amd_iommu_is_attach_deferred(struct device * dev)2777 static bool amd_iommu_is_attach_deferred(struct device *dev)
2778 {
2779 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2780
2781 return dev_data->defer_attach;
2782 }
2783
amd_iommu_flush_iotlb_all(struct iommu_domain * domain)2784 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2785 {
2786 struct protection_domain *dom = to_pdomain(domain);
2787 unsigned long flags;
2788
2789 spin_lock_irqsave(&dom->lock, flags);
2790 amd_iommu_domain_flush_all(dom);
2791 spin_unlock_irqrestore(&dom->lock, flags);
2792 }
2793
amd_iommu_iotlb_sync(struct iommu_domain * domain,struct iommu_iotlb_gather * gather)2794 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2795 struct iommu_iotlb_gather *gather)
2796 {
2797 struct protection_domain *dom = to_pdomain(domain);
2798 unsigned long flags;
2799
2800 spin_lock_irqsave(&dom->lock, flags);
2801 amd_iommu_domain_flush_pages(dom, gather->start,
2802 gather->end - gather->start + 1);
2803 spin_unlock_irqrestore(&dom->lock, flags);
2804 }
2805
amd_iommu_def_domain_type(struct device * dev)2806 static int amd_iommu_def_domain_type(struct device *dev)
2807 {
2808 struct iommu_dev_data *dev_data;
2809
2810 dev_data = dev_iommu_priv_get(dev);
2811 if (!dev_data)
2812 return 0;
2813
2814 if (dev_is_pci(dev) && to_pci_dev(dev)->requires_dma_protection)
2815 return IOMMU_DOMAIN_DMA;
2816
2817 /*
2818 * Do not identity map IOMMUv2 capable devices when:
2819 * - memory encryption is active, because some of those devices
2820 * (AMD GPUs) don't have the encryption bit in their DMA-mask
2821 * and require remapping.
2822 * - SNP is enabled, because it prohibits DTE[Mode]=0.
2823 */
2824 if (pdev_pasid_supported(dev_data) &&
2825 !cc_platform_has(CC_ATTR_MEM_ENCRYPT) &&
2826 !amd_iommu_snp_en) {
2827 return IOMMU_DOMAIN_IDENTITY;
2828 }
2829
2830 return 0;
2831 }
2832
amd_iommu_enforce_cache_coherency(struct iommu_domain * domain)2833 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain)
2834 {
2835 /* IOMMU_PTE_FC is always set */
2836 return true;
2837 }
2838
2839 static const struct iommu_dirty_ops amd_dirty_ops = {
2840 .set_dirty_tracking = amd_iommu_set_dirty_tracking,
2841 .read_and_clear_dirty = amd_iommu_read_and_clear_dirty,
2842 };
2843
amd_iommu_dev_enable_feature(struct device * dev,enum iommu_dev_features feat)2844 static int amd_iommu_dev_enable_feature(struct device *dev,
2845 enum iommu_dev_features feat)
2846 {
2847 int ret = 0;
2848
2849 switch (feat) {
2850 case IOMMU_DEV_FEAT_IOPF:
2851 case IOMMU_DEV_FEAT_SVA:
2852 break;
2853 default:
2854 ret = -EINVAL;
2855 break;
2856 }
2857 return ret;
2858 }
2859
amd_iommu_dev_disable_feature(struct device * dev,enum iommu_dev_features feat)2860 static int amd_iommu_dev_disable_feature(struct device *dev,
2861 enum iommu_dev_features feat)
2862 {
2863 int ret = 0;
2864
2865 switch (feat) {
2866 case IOMMU_DEV_FEAT_IOPF:
2867 case IOMMU_DEV_FEAT_SVA:
2868 break;
2869 default:
2870 ret = -EINVAL;
2871 break;
2872 }
2873 return ret;
2874 }
2875
2876 const struct iommu_ops amd_iommu_ops = {
2877 .capable = amd_iommu_capable,
2878 .blocked_domain = &blocked_domain,
2879 .domain_alloc = amd_iommu_domain_alloc,
2880 .domain_alloc_user = amd_iommu_domain_alloc_user,
2881 .domain_alloc_sva = amd_iommu_domain_alloc_sva,
2882 .probe_device = amd_iommu_probe_device,
2883 .release_device = amd_iommu_release_device,
2884 .device_group = amd_iommu_device_group,
2885 .get_resv_regions = amd_iommu_get_resv_regions,
2886 .is_attach_deferred = amd_iommu_is_attach_deferred,
2887 .def_domain_type = amd_iommu_def_domain_type,
2888 .dev_enable_feat = amd_iommu_dev_enable_feature,
2889 .dev_disable_feat = amd_iommu_dev_disable_feature,
2890 .remove_dev_pasid = amd_iommu_remove_dev_pasid,
2891 .page_response = amd_iommu_page_response,
2892 .default_domain_ops = &(const struct iommu_domain_ops) {
2893 .attach_dev = amd_iommu_attach_device,
2894 .map_pages = amd_iommu_map_pages,
2895 .unmap_pages = amd_iommu_unmap_pages,
2896 .iotlb_sync_map = amd_iommu_iotlb_sync_map,
2897 .iova_to_phys = amd_iommu_iova_to_phys,
2898 .flush_iotlb_all = amd_iommu_flush_iotlb_all,
2899 .iotlb_sync = amd_iommu_iotlb_sync,
2900 .free = amd_iommu_domain_free,
2901 .enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
2902 }
2903 };
2904
2905 #ifdef CONFIG_IRQ_REMAP
2906
2907 /*****************************************************************************
2908 *
2909 * Interrupt Remapping Implementation
2910 *
2911 *****************************************************************************/
2912
2913 static struct irq_chip amd_ir_chip;
2914 static DEFINE_SPINLOCK(iommu_table_lock);
2915
iommu_flush_irt_and_complete(struct amd_iommu * iommu,u16 devid)2916 static void iommu_flush_irt_and_complete(struct amd_iommu *iommu, u16 devid)
2917 {
2918 int ret;
2919 u64 data;
2920 unsigned long flags;
2921 struct iommu_cmd cmd, cmd2;
2922
2923 if (iommu->irtcachedis_enabled)
2924 return;
2925
2926 build_inv_irt(&cmd, devid);
2927 data = atomic64_add_return(1, &iommu->cmd_sem_val);
2928 build_completion_wait(&cmd2, iommu, data);
2929
2930 raw_spin_lock_irqsave(&iommu->lock, flags);
2931 ret = __iommu_queue_command_sync(iommu, &cmd, true);
2932 if (ret)
2933 goto out;
2934 ret = __iommu_queue_command_sync(iommu, &cmd2, false);
2935 if (ret)
2936 goto out;
2937 wait_on_sem(iommu, data);
2938 out:
2939 raw_spin_unlock_irqrestore(&iommu->lock, flags);
2940 }
2941
set_dte_irq_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)2942 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid,
2943 struct irq_remap_table *table)
2944 {
2945 u64 dte;
2946 struct dev_table_entry *dev_table = get_dev_table(iommu);
2947
2948 dte = dev_table[devid].data[2];
2949 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
2950 dte |= iommu_virt_to_phys(table->table);
2951 dte |= DTE_IRQ_REMAP_INTCTL;
2952 dte |= DTE_INTTABLEN;
2953 dte |= DTE_IRQ_REMAP_ENABLE;
2954
2955 dev_table[devid].data[2] = dte;
2956 }
2957
get_irq_table(struct amd_iommu * iommu,u16 devid)2958 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid)
2959 {
2960 struct irq_remap_table *table;
2961 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2962
2963 if (WARN_ONCE(!pci_seg->rlookup_table[devid],
2964 "%s: no iommu for devid %x:%x\n",
2965 __func__, pci_seg->id, devid))
2966 return NULL;
2967
2968 table = pci_seg->irq_lookup_table[devid];
2969 if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n",
2970 __func__, pci_seg->id, devid))
2971 return NULL;
2972
2973 return table;
2974 }
2975
__alloc_irq_table(void)2976 static struct irq_remap_table *__alloc_irq_table(void)
2977 {
2978 struct irq_remap_table *table;
2979
2980 table = kzalloc(sizeof(*table), GFP_KERNEL);
2981 if (!table)
2982 return NULL;
2983
2984 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
2985 if (!table->table) {
2986 kfree(table);
2987 return NULL;
2988 }
2989 raw_spin_lock_init(&table->lock);
2990
2991 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
2992 memset(table->table, 0,
2993 MAX_IRQS_PER_TABLE * sizeof(u32));
2994 else
2995 memset(table->table, 0,
2996 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
2997 return table;
2998 }
2999
set_remap_table_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)3000 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3001 struct irq_remap_table *table)
3002 {
3003 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
3004
3005 pci_seg->irq_lookup_table[devid] = table;
3006 set_dte_irq_entry(iommu, devid, table);
3007 iommu_flush_dte(iommu, devid);
3008 }
3009
set_remap_table_entry_alias(struct pci_dev * pdev,u16 alias,void * data)3010 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
3011 void *data)
3012 {
3013 struct irq_remap_table *table = data;
3014 struct amd_iommu_pci_seg *pci_seg;
3015 struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev);
3016
3017 if (!iommu)
3018 return -EINVAL;
3019
3020 pci_seg = iommu->pci_seg;
3021 pci_seg->irq_lookup_table[alias] = table;
3022 set_dte_irq_entry(iommu, alias, table);
3023 iommu_flush_dte(pci_seg->rlookup_table[alias], alias);
3024
3025 return 0;
3026 }
3027
alloc_irq_table(struct amd_iommu * iommu,u16 devid,struct pci_dev * pdev)3028 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu,
3029 u16 devid, struct pci_dev *pdev)
3030 {
3031 struct irq_remap_table *table = NULL;
3032 struct irq_remap_table *new_table = NULL;
3033 struct amd_iommu_pci_seg *pci_seg;
3034 unsigned long flags;
3035 u16 alias;
3036
3037 spin_lock_irqsave(&iommu_table_lock, flags);
3038
3039 pci_seg = iommu->pci_seg;
3040 table = pci_seg->irq_lookup_table[devid];
3041 if (table)
3042 goto out_unlock;
3043
3044 alias = pci_seg->alias_table[devid];
3045 table = pci_seg->irq_lookup_table[alias];
3046 if (table) {
3047 set_remap_table_entry(iommu, devid, table);
3048 goto out_wait;
3049 }
3050 spin_unlock_irqrestore(&iommu_table_lock, flags);
3051
3052 /* Nothing there yet, allocate new irq remapping table */
3053 new_table = __alloc_irq_table();
3054 if (!new_table)
3055 return NULL;
3056
3057 spin_lock_irqsave(&iommu_table_lock, flags);
3058
3059 table = pci_seg->irq_lookup_table[devid];
3060 if (table)
3061 goto out_unlock;
3062
3063 table = pci_seg->irq_lookup_table[alias];
3064 if (table) {
3065 set_remap_table_entry(iommu, devid, table);
3066 goto out_wait;
3067 }
3068
3069 table = new_table;
3070 new_table = NULL;
3071
3072 if (pdev)
3073 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
3074 table);
3075 else
3076 set_remap_table_entry(iommu, devid, table);
3077
3078 if (devid != alias)
3079 set_remap_table_entry(iommu, alias, table);
3080
3081 out_wait:
3082 iommu_completion_wait(iommu);
3083
3084 out_unlock:
3085 spin_unlock_irqrestore(&iommu_table_lock, flags);
3086
3087 if (new_table) {
3088 kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3089 kfree(new_table);
3090 }
3091 return table;
3092 }
3093
alloc_irq_index(struct amd_iommu * iommu,u16 devid,int count,bool align,struct pci_dev * pdev)3094 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count,
3095 bool align, struct pci_dev *pdev)
3096 {
3097 struct irq_remap_table *table;
3098 int index, c, alignment = 1;
3099 unsigned long flags;
3100
3101 table = alloc_irq_table(iommu, devid, pdev);
3102 if (!table)
3103 return -ENODEV;
3104
3105 if (align)
3106 alignment = roundup_pow_of_two(count);
3107
3108 raw_spin_lock_irqsave(&table->lock, flags);
3109
3110 /* Scan table for free entries */
3111 for (index = ALIGN(table->min_index, alignment), c = 0;
3112 index < MAX_IRQS_PER_TABLE;) {
3113 if (!iommu->irte_ops->is_allocated(table, index)) {
3114 c += 1;
3115 } else {
3116 c = 0;
3117 index = ALIGN(index + 1, alignment);
3118 continue;
3119 }
3120
3121 if (c == count) {
3122 for (; c != 0; --c)
3123 iommu->irte_ops->set_allocated(table, index - c + 1);
3124
3125 index -= count - 1;
3126 goto out;
3127 }
3128
3129 index++;
3130 }
3131
3132 index = -ENOSPC;
3133
3134 out:
3135 raw_spin_unlock_irqrestore(&table->lock, flags);
3136
3137 return index;
3138 }
3139
__modify_irte_ga(struct amd_iommu * iommu,u16 devid,int index,struct irte_ga * irte)3140 static int __modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3141 struct irte_ga *irte)
3142 {
3143 struct irq_remap_table *table;
3144 struct irte_ga *entry;
3145 unsigned long flags;
3146 u128 old;
3147
3148 table = get_irq_table(iommu, devid);
3149 if (!table)
3150 return -ENOMEM;
3151
3152 raw_spin_lock_irqsave(&table->lock, flags);
3153
3154 entry = (struct irte_ga *)table->table;
3155 entry = &entry[index];
3156
3157 /*
3158 * We use cmpxchg16 to atomically update the 128-bit IRTE,
3159 * and it cannot be updated by the hardware or other processors
3160 * behind us, so the return value of cmpxchg16 should be the
3161 * same as the old value.
3162 */
3163 old = entry->irte;
3164 WARN_ON(!try_cmpxchg128(&entry->irte, &old, irte->irte));
3165
3166 raw_spin_unlock_irqrestore(&table->lock, flags);
3167
3168 return 0;
3169 }
3170
modify_irte_ga(struct amd_iommu * iommu,u16 devid,int index,struct irte_ga * irte)3171 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3172 struct irte_ga *irte)
3173 {
3174 bool ret;
3175
3176 ret = __modify_irte_ga(iommu, devid, index, irte);
3177 if (ret)
3178 return ret;
3179
3180 iommu_flush_irt_and_complete(iommu, devid);
3181
3182 return 0;
3183 }
3184
modify_irte(struct amd_iommu * iommu,u16 devid,int index,union irte * irte)3185 static int modify_irte(struct amd_iommu *iommu,
3186 u16 devid, int index, union irte *irte)
3187 {
3188 struct irq_remap_table *table;
3189 unsigned long flags;
3190
3191 table = get_irq_table(iommu, devid);
3192 if (!table)
3193 return -ENOMEM;
3194
3195 raw_spin_lock_irqsave(&table->lock, flags);
3196 table->table[index] = irte->val;
3197 raw_spin_unlock_irqrestore(&table->lock, flags);
3198
3199 iommu_flush_irt_and_complete(iommu, devid);
3200
3201 return 0;
3202 }
3203
free_irte(struct amd_iommu * iommu,u16 devid,int index)3204 static void free_irte(struct amd_iommu *iommu, u16 devid, int index)
3205 {
3206 struct irq_remap_table *table;
3207 unsigned long flags;
3208
3209 table = get_irq_table(iommu, devid);
3210 if (!table)
3211 return;
3212
3213 raw_spin_lock_irqsave(&table->lock, flags);
3214 iommu->irte_ops->clear_allocated(table, index);
3215 raw_spin_unlock_irqrestore(&table->lock, flags);
3216
3217 iommu_flush_irt_and_complete(iommu, devid);
3218 }
3219
irte_prepare(void * entry,u32 delivery_mode,bool dest_mode,u8 vector,u32 dest_apicid,int devid)3220 static void irte_prepare(void *entry,
3221 u32 delivery_mode, bool dest_mode,
3222 u8 vector, u32 dest_apicid, int devid)
3223 {
3224 union irte *irte = (union irte *) entry;
3225
3226 irte->val = 0;
3227 irte->fields.vector = vector;
3228 irte->fields.int_type = delivery_mode;
3229 irte->fields.destination = dest_apicid;
3230 irte->fields.dm = dest_mode;
3231 irte->fields.valid = 1;
3232 }
3233
irte_ga_prepare(void * entry,u32 delivery_mode,bool dest_mode,u8 vector,u32 dest_apicid,int devid)3234 static void irte_ga_prepare(void *entry,
3235 u32 delivery_mode, bool dest_mode,
3236 u8 vector, u32 dest_apicid, int devid)
3237 {
3238 struct irte_ga *irte = (struct irte_ga *) entry;
3239
3240 irte->lo.val = 0;
3241 irte->hi.val = 0;
3242 irte->lo.fields_remap.int_type = delivery_mode;
3243 irte->lo.fields_remap.dm = dest_mode;
3244 irte->hi.fields.vector = vector;
3245 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3246 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid);
3247 irte->lo.fields_remap.valid = 1;
3248 }
3249
irte_activate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3250 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3251 {
3252 union irte *irte = (union irte *) entry;
3253
3254 irte->fields.valid = 1;
3255 modify_irte(iommu, devid, index, irte);
3256 }
3257
irte_ga_activate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3258 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3259 {
3260 struct irte_ga *irte = (struct irte_ga *) entry;
3261
3262 irte->lo.fields_remap.valid = 1;
3263 modify_irte_ga(iommu, devid, index, irte);
3264 }
3265
irte_deactivate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3266 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3267 {
3268 union irte *irte = (union irte *) entry;
3269
3270 irte->fields.valid = 0;
3271 modify_irte(iommu, devid, index, irte);
3272 }
3273
irte_ga_deactivate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3274 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3275 {
3276 struct irte_ga *irte = (struct irte_ga *) entry;
3277
3278 irte->lo.fields_remap.valid = 0;
3279 modify_irte_ga(iommu, devid, index, irte);
3280 }
3281
irte_set_affinity(struct amd_iommu * iommu,void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3282 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3283 u8 vector, u32 dest_apicid)
3284 {
3285 union irte *irte = (union irte *) entry;
3286
3287 irte->fields.vector = vector;
3288 irte->fields.destination = dest_apicid;
3289 modify_irte(iommu, devid, index, irte);
3290 }
3291
irte_ga_set_affinity(struct amd_iommu * iommu,void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3292 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3293 u8 vector, u32 dest_apicid)
3294 {
3295 struct irte_ga *irte = (struct irte_ga *) entry;
3296
3297 if (!irte->lo.fields_remap.guest_mode) {
3298 irte->hi.fields.vector = vector;
3299 irte->lo.fields_remap.destination =
3300 APICID_TO_IRTE_DEST_LO(dest_apicid);
3301 irte->hi.fields.destination =
3302 APICID_TO_IRTE_DEST_HI(dest_apicid);
3303 modify_irte_ga(iommu, devid, index, irte);
3304 }
3305 }
3306
3307 #define IRTE_ALLOCATED (~1U)
irte_set_allocated(struct irq_remap_table * table,int index)3308 static void irte_set_allocated(struct irq_remap_table *table, int index)
3309 {
3310 table->table[index] = IRTE_ALLOCATED;
3311 }
3312
irte_ga_set_allocated(struct irq_remap_table * table,int index)3313 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3314 {
3315 struct irte_ga *ptr = (struct irte_ga *)table->table;
3316 struct irte_ga *irte = &ptr[index];
3317
3318 memset(&irte->lo.val, 0, sizeof(u64));
3319 memset(&irte->hi.val, 0, sizeof(u64));
3320 irte->hi.fields.vector = 0xff;
3321 }
3322
irte_is_allocated(struct irq_remap_table * table,int index)3323 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3324 {
3325 union irte *ptr = (union irte *)table->table;
3326 union irte *irte = &ptr[index];
3327
3328 return irte->val != 0;
3329 }
3330
irte_ga_is_allocated(struct irq_remap_table * table,int index)3331 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3332 {
3333 struct irte_ga *ptr = (struct irte_ga *)table->table;
3334 struct irte_ga *irte = &ptr[index];
3335
3336 return irte->hi.fields.vector != 0;
3337 }
3338
irte_clear_allocated(struct irq_remap_table * table,int index)3339 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3340 {
3341 table->table[index] = 0;
3342 }
3343
irte_ga_clear_allocated(struct irq_remap_table * table,int index)3344 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3345 {
3346 struct irte_ga *ptr = (struct irte_ga *)table->table;
3347 struct irte_ga *irte = &ptr[index];
3348
3349 memset(&irte->lo.val, 0, sizeof(u64));
3350 memset(&irte->hi.val, 0, sizeof(u64));
3351 }
3352
get_devid(struct irq_alloc_info * info)3353 static int get_devid(struct irq_alloc_info *info)
3354 {
3355 switch (info->type) {
3356 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3357 return get_ioapic_devid(info->devid);
3358 case X86_IRQ_ALLOC_TYPE_HPET:
3359 return get_hpet_devid(info->devid);
3360 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3361 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3362 return get_device_sbdf_id(msi_desc_to_dev(info->desc));
3363 default:
3364 WARN_ON_ONCE(1);
3365 return -1;
3366 }
3367 }
3368
3369 struct irq_remap_ops amd_iommu_irq_ops = {
3370 .prepare = amd_iommu_prepare,
3371 .enable = amd_iommu_enable,
3372 .disable = amd_iommu_disable,
3373 .reenable = amd_iommu_reenable,
3374 .enable_faulting = amd_iommu_enable_faulting,
3375 };
3376
fill_msi_msg(struct msi_msg * msg,u32 index)3377 static void fill_msi_msg(struct msi_msg *msg, u32 index)
3378 {
3379 msg->data = index;
3380 msg->address_lo = 0;
3381 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
3382 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
3383 }
3384
irq_remapping_prepare_irte(struct amd_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int devid,int index,int sub_handle)3385 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3386 struct irq_cfg *irq_cfg,
3387 struct irq_alloc_info *info,
3388 int devid, int index, int sub_handle)
3389 {
3390 struct irq_2_irte *irte_info = &data->irq_2_irte;
3391 struct amd_iommu *iommu = data->iommu;
3392
3393 if (!iommu)
3394 return;
3395
3396 data->irq_2_irte.devid = devid;
3397 data->irq_2_irte.index = index + sub_handle;
3398 iommu->irte_ops->prepare(data->entry, APIC_DELIVERY_MODE_FIXED,
3399 apic->dest_mode_logical, irq_cfg->vector,
3400 irq_cfg->dest_apicid, devid);
3401
3402 switch (info->type) {
3403 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3404 case X86_IRQ_ALLOC_TYPE_HPET:
3405 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3406 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3407 fill_msi_msg(&data->msi_entry, irte_info->index);
3408 break;
3409
3410 default:
3411 BUG_ON(1);
3412 break;
3413 }
3414 }
3415
3416 struct amd_irte_ops irte_32_ops = {
3417 .prepare = irte_prepare,
3418 .activate = irte_activate,
3419 .deactivate = irte_deactivate,
3420 .set_affinity = irte_set_affinity,
3421 .set_allocated = irte_set_allocated,
3422 .is_allocated = irte_is_allocated,
3423 .clear_allocated = irte_clear_allocated,
3424 };
3425
3426 struct amd_irte_ops irte_128_ops = {
3427 .prepare = irte_ga_prepare,
3428 .activate = irte_ga_activate,
3429 .deactivate = irte_ga_deactivate,
3430 .set_affinity = irte_ga_set_affinity,
3431 .set_allocated = irte_ga_set_allocated,
3432 .is_allocated = irte_ga_is_allocated,
3433 .clear_allocated = irte_ga_clear_allocated,
3434 };
3435
irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)3436 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3437 unsigned int nr_irqs, void *arg)
3438 {
3439 struct irq_alloc_info *info = arg;
3440 struct irq_data *irq_data;
3441 struct amd_ir_data *data = NULL;
3442 struct amd_iommu *iommu;
3443 struct irq_cfg *cfg;
3444 int i, ret, devid, seg, sbdf;
3445 int index;
3446
3447 if (!info)
3448 return -EINVAL;
3449 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
3450 return -EINVAL;
3451
3452 sbdf = get_devid(info);
3453 if (sbdf < 0)
3454 return -EINVAL;
3455
3456 seg = PCI_SBDF_TO_SEGID(sbdf);
3457 devid = PCI_SBDF_TO_DEVID(sbdf);
3458 iommu = __rlookup_amd_iommu(seg, devid);
3459 if (!iommu)
3460 return -EINVAL;
3461
3462 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3463 if (ret < 0)
3464 return ret;
3465
3466 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3467 struct irq_remap_table *table;
3468
3469 table = alloc_irq_table(iommu, devid, NULL);
3470 if (table) {
3471 if (!table->min_index) {
3472 /*
3473 * Keep the first 32 indexes free for IOAPIC
3474 * interrupts.
3475 */
3476 table->min_index = 32;
3477 for (i = 0; i < 32; ++i)
3478 iommu->irte_ops->set_allocated(table, i);
3479 }
3480 WARN_ON(table->min_index != 32);
3481 index = info->ioapic.pin;
3482 } else {
3483 index = -ENOMEM;
3484 }
3485 } else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3486 info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3487 bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3488
3489 index = alloc_irq_index(iommu, devid, nr_irqs, align,
3490 msi_desc_to_pci_dev(info->desc));
3491 } else {
3492 index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL);
3493 }
3494
3495 if (index < 0) {
3496 pr_warn("Failed to allocate IRTE\n");
3497 ret = index;
3498 goto out_free_parent;
3499 }
3500
3501 for (i = 0; i < nr_irqs; i++) {
3502 irq_data = irq_domain_get_irq_data(domain, virq + i);
3503 cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3504 if (!cfg) {
3505 ret = -EINVAL;
3506 goto out_free_data;
3507 }
3508
3509 ret = -ENOMEM;
3510 data = kzalloc(sizeof(*data), GFP_KERNEL);
3511 if (!data)
3512 goto out_free_data;
3513
3514 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3515 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3516 else
3517 data->entry = kzalloc(sizeof(struct irte_ga),
3518 GFP_KERNEL);
3519 if (!data->entry) {
3520 kfree(data);
3521 goto out_free_data;
3522 }
3523
3524 data->iommu = iommu;
3525 irq_data->hwirq = (devid << 16) + i;
3526 irq_data->chip_data = data;
3527 irq_data->chip = &amd_ir_chip;
3528 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3529 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3530 }
3531
3532 return 0;
3533
3534 out_free_data:
3535 for (i--; i >= 0; i--) {
3536 irq_data = irq_domain_get_irq_data(domain, virq + i);
3537 if (irq_data)
3538 kfree(irq_data->chip_data);
3539 }
3540 for (i = 0; i < nr_irqs; i++)
3541 free_irte(iommu, devid, index + i);
3542 out_free_parent:
3543 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3544 return ret;
3545 }
3546
irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3547 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3548 unsigned int nr_irqs)
3549 {
3550 struct irq_2_irte *irte_info;
3551 struct irq_data *irq_data;
3552 struct amd_ir_data *data;
3553 int i;
3554
3555 for (i = 0; i < nr_irqs; i++) {
3556 irq_data = irq_domain_get_irq_data(domain, virq + i);
3557 if (irq_data && irq_data->chip_data) {
3558 data = irq_data->chip_data;
3559 irte_info = &data->irq_2_irte;
3560 free_irte(data->iommu, irte_info->devid, irte_info->index);
3561 kfree(data->entry);
3562 kfree(data);
3563 }
3564 }
3565 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3566 }
3567
3568 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3569 struct amd_ir_data *ir_data,
3570 struct irq_2_irte *irte_info,
3571 struct irq_cfg *cfg);
3572
irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)3573 static int irq_remapping_activate(struct irq_domain *domain,
3574 struct irq_data *irq_data, bool reserve)
3575 {
3576 struct amd_ir_data *data = irq_data->chip_data;
3577 struct irq_2_irte *irte_info = &data->irq_2_irte;
3578 struct amd_iommu *iommu = data->iommu;
3579 struct irq_cfg *cfg = irqd_cfg(irq_data);
3580
3581 if (!iommu)
3582 return 0;
3583
3584 iommu->irte_ops->activate(iommu, data->entry, irte_info->devid,
3585 irte_info->index);
3586 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3587 return 0;
3588 }
3589
irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)3590 static void irq_remapping_deactivate(struct irq_domain *domain,
3591 struct irq_data *irq_data)
3592 {
3593 struct amd_ir_data *data = irq_data->chip_data;
3594 struct irq_2_irte *irte_info = &data->irq_2_irte;
3595 struct amd_iommu *iommu = data->iommu;
3596
3597 if (iommu)
3598 iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid,
3599 irte_info->index);
3600 }
3601
irq_remapping_select(struct irq_domain * d,struct irq_fwspec * fwspec,enum irq_domain_bus_token bus_token)3602 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
3603 enum irq_domain_bus_token bus_token)
3604 {
3605 struct amd_iommu *iommu;
3606 int devid = -1;
3607
3608 if (!amd_iommu_irq_remap)
3609 return 0;
3610
3611 if (x86_fwspec_is_ioapic(fwspec))
3612 devid = get_ioapic_devid(fwspec->param[0]);
3613 else if (x86_fwspec_is_hpet(fwspec))
3614 devid = get_hpet_devid(fwspec->param[0]);
3615
3616 if (devid < 0)
3617 return 0;
3618 iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff));
3619
3620 return iommu && iommu->ir_domain == d;
3621 }
3622
3623 static const struct irq_domain_ops amd_ir_domain_ops = {
3624 .select = irq_remapping_select,
3625 .alloc = irq_remapping_alloc,
3626 .free = irq_remapping_free,
3627 .activate = irq_remapping_activate,
3628 .deactivate = irq_remapping_deactivate,
3629 };
3630
amd_iommu_activate_guest_mode(void * data)3631 int amd_iommu_activate_guest_mode(void *data)
3632 {
3633 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3634 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3635 u64 valid;
3636
3637 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || !entry)
3638 return 0;
3639
3640 valid = entry->lo.fields_vapic.valid;
3641
3642 entry->lo.val = 0;
3643 entry->hi.val = 0;
3644
3645 entry->lo.fields_vapic.valid = valid;
3646 entry->lo.fields_vapic.guest_mode = 1;
3647 entry->lo.fields_vapic.ga_log_intr = 1;
3648 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr;
3649 entry->hi.fields.vector = ir_data->ga_vector;
3650 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag;
3651
3652 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3653 ir_data->irq_2_irte.index, entry);
3654 }
3655 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3656
amd_iommu_deactivate_guest_mode(void * data)3657 int amd_iommu_deactivate_guest_mode(void *data)
3658 {
3659 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3660 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3661 struct irq_cfg *cfg = ir_data->cfg;
3662 u64 valid;
3663
3664 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3665 !entry || !entry->lo.fields_vapic.guest_mode)
3666 return 0;
3667
3668 valid = entry->lo.fields_remap.valid;
3669
3670 entry->lo.val = 0;
3671 entry->hi.val = 0;
3672
3673 entry->lo.fields_remap.valid = valid;
3674 entry->lo.fields_remap.dm = apic->dest_mode_logical;
3675 entry->lo.fields_remap.int_type = APIC_DELIVERY_MODE_FIXED;
3676 entry->hi.fields.vector = cfg->vector;
3677 entry->lo.fields_remap.destination =
3678 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3679 entry->hi.fields.destination =
3680 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3681
3682 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3683 ir_data->irq_2_irte.index, entry);
3684 }
3685 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3686
amd_ir_set_vcpu_affinity(struct irq_data * data,void * vcpu_info)3687 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
3688 {
3689 int ret;
3690 struct amd_iommu_pi_data *pi_data = vcpu_info;
3691 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
3692 struct amd_ir_data *ir_data = data->chip_data;
3693 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3694 struct iommu_dev_data *dev_data;
3695
3696 if (ir_data->iommu == NULL)
3697 return -EINVAL;
3698
3699 dev_data = search_dev_data(ir_data->iommu, irte_info->devid);
3700
3701 /* Note:
3702 * This device has never been set up for guest mode.
3703 * we should not modify the IRTE
3704 */
3705 if (!dev_data || !dev_data->use_vapic)
3706 return -EINVAL;
3707
3708 ir_data->cfg = irqd_cfg(data);
3709 pi_data->ir_data = ir_data;
3710
3711 /* Note:
3712 * SVM tries to set up for VAPIC mode, but we are in
3713 * legacy mode. So, we force legacy mode instead.
3714 */
3715 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3716 pr_debug("%s: Fall back to using intr legacy remap\n",
3717 __func__);
3718 pi_data->is_guest_mode = false;
3719 }
3720
3721 pi_data->prev_ga_tag = ir_data->cached_ga_tag;
3722 if (pi_data->is_guest_mode) {
3723 ir_data->ga_root_ptr = (pi_data->base >> 12);
3724 ir_data->ga_vector = vcpu_pi_info->vector;
3725 ir_data->ga_tag = pi_data->ga_tag;
3726 ret = amd_iommu_activate_guest_mode(ir_data);
3727 if (!ret)
3728 ir_data->cached_ga_tag = pi_data->ga_tag;
3729 } else {
3730 ret = amd_iommu_deactivate_guest_mode(ir_data);
3731
3732 /*
3733 * This communicates the ga_tag back to the caller
3734 * so that it can do all the necessary clean up.
3735 */
3736 if (!ret)
3737 ir_data->cached_ga_tag = 0;
3738 }
3739
3740 return ret;
3741 }
3742
3743
amd_ir_update_irte(struct irq_data * irqd,struct amd_iommu * iommu,struct amd_ir_data * ir_data,struct irq_2_irte * irte_info,struct irq_cfg * cfg)3744 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3745 struct amd_ir_data *ir_data,
3746 struct irq_2_irte *irte_info,
3747 struct irq_cfg *cfg)
3748 {
3749
3750 /*
3751 * Atomically updates the IRTE with the new destination, vector
3752 * and flushes the interrupt entry cache.
3753 */
3754 iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid,
3755 irte_info->index, cfg->vector,
3756 cfg->dest_apicid);
3757 }
3758
amd_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)3759 static int amd_ir_set_affinity(struct irq_data *data,
3760 const struct cpumask *mask, bool force)
3761 {
3762 struct amd_ir_data *ir_data = data->chip_data;
3763 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3764 struct irq_cfg *cfg = irqd_cfg(data);
3765 struct irq_data *parent = data->parent_data;
3766 struct amd_iommu *iommu = ir_data->iommu;
3767 int ret;
3768
3769 if (!iommu)
3770 return -ENODEV;
3771
3772 ret = parent->chip->irq_set_affinity(parent, mask, force);
3773 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
3774 return ret;
3775
3776 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
3777 /*
3778 * After this point, all the interrupts will start arriving
3779 * at the new destination. So, time to cleanup the previous
3780 * vector allocation.
3781 */
3782 vector_schedule_cleanup(cfg);
3783
3784 return IRQ_SET_MASK_OK_DONE;
3785 }
3786
ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)3787 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3788 {
3789 struct amd_ir_data *ir_data = irq_data->chip_data;
3790
3791 *msg = ir_data->msi_entry;
3792 }
3793
3794 static struct irq_chip amd_ir_chip = {
3795 .name = "AMD-IR",
3796 .irq_ack = apic_ack_irq,
3797 .irq_set_affinity = amd_ir_set_affinity,
3798 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
3799 .irq_compose_msi_msg = ir_compose_msi_msg,
3800 };
3801
3802 static const struct msi_parent_ops amdvi_msi_parent_ops = {
3803 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED | MSI_FLAG_MULTI_PCI_MSI,
3804 .prefix = "IR-",
3805 .init_dev_msi_info = msi_parent_init_dev_msi_info,
3806 };
3807
amd_iommu_create_irq_domain(struct amd_iommu * iommu)3808 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
3809 {
3810 struct fwnode_handle *fn;
3811
3812 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
3813 if (!fn)
3814 return -ENOMEM;
3815 iommu->ir_domain = irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 0, 0,
3816 fn, &amd_ir_domain_ops, iommu);
3817 if (!iommu->ir_domain) {
3818 irq_domain_free_fwnode(fn);
3819 return -ENOMEM;
3820 }
3821
3822 irq_domain_update_bus_token(iommu->ir_domain, DOMAIN_BUS_AMDVI);
3823 iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT |
3824 IRQ_DOMAIN_FLAG_ISOLATED_MSI;
3825 iommu->ir_domain->msi_parent_ops = &amdvi_msi_parent_ops;
3826
3827 return 0;
3828 }
3829
amd_iommu_update_ga(int cpu,bool is_run,void * data)3830 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
3831 {
3832 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3833 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3834
3835 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3836 !entry || !entry->lo.fields_vapic.guest_mode)
3837 return 0;
3838
3839 if (!ir_data->iommu)
3840 return -ENODEV;
3841
3842 if (cpu >= 0) {
3843 entry->lo.fields_vapic.destination =
3844 APICID_TO_IRTE_DEST_LO(cpu);
3845 entry->hi.fields.destination =
3846 APICID_TO_IRTE_DEST_HI(cpu);
3847 }
3848 entry->lo.fields_vapic.is_run = is_run;
3849
3850 return __modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3851 ir_data->irq_2_irte.index, entry);
3852 }
3853 EXPORT_SYMBOL(amd_iommu_update_ga);
3854 #endif
3855