1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 *
5 * Copyright IBM Corporation, 2008
6 *
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
9 * Paul E. McKenney <paulmck@linux.ibm.com>
10 *
11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13 *
14 * For detailed explanation of Read-Copy Update mechanism see -
15 * Documentation/RCU
16 */
17
18 #define pr_fmt(fmt) "rcu: " fmt
19
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/kmemleak.h>
35 #include <linux/moduleparam.h>
36 #include <linux/panic.h>
37 #include <linux/panic_notifier.h>
38 #include <linux/percpu.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/mutex.h>
42 #include <linux/time.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/wait.h>
45 #include <linux/kthread.h>
46 #include <uapi/linux/sched/types.h>
47 #include <linux/prefetch.h>
48 #include <linux/delay.h>
49 #include <linux/random.h>
50 #include <linux/trace_events.h>
51 #include <linux/suspend.h>
52 #include <linux/ftrace.h>
53 #include <linux/tick.h>
54 #include <linux/sysrq.h>
55 #include <linux/kprobes.h>
56 #include <linux/gfp.h>
57 #include <linux/oom.h>
58 #include <linux/smpboot.h>
59 #include <linux/jiffies.h>
60 #include <linux/slab.h>
61 #include <linux/sched/isolation.h>
62 #include <linux/sched/clock.h>
63 #include <linux/vmalloc.h>
64 #include <linux/mm.h>
65 #include <linux/kasan.h>
66 #include <linux/context_tracking.h>
67 #include "../time/tick-internal.h"
68
69 #include "tree.h"
70 #include "rcu.h"
71
72 #ifdef MODULE_PARAM_PREFIX
73 #undef MODULE_PARAM_PREFIX
74 #endif
75 #define MODULE_PARAM_PREFIX "rcutree."
76
77 /* Data structures. */
78 static void rcu_sr_normal_gp_cleanup_work(struct work_struct *);
79
80 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
81 .gpwrap = true,
82 };
83 static struct rcu_state rcu_state = {
84 .level = { &rcu_state.node[0] },
85 .gp_state = RCU_GP_IDLE,
86 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
87 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
88 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
89 .name = RCU_NAME,
90 .abbr = RCU_ABBR,
91 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
92 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
93 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
94 .srs_cleanup_work = __WORK_INITIALIZER(rcu_state.srs_cleanup_work,
95 rcu_sr_normal_gp_cleanup_work),
96 .srs_cleanups_pending = ATOMIC_INIT(0),
97 #ifdef CONFIG_RCU_NOCB_CPU
98 .nocb_mutex = __MUTEX_INITIALIZER(rcu_state.nocb_mutex),
99 #endif
100 };
101
102 /* Dump rcu_node combining tree at boot to verify correct setup. */
103 static bool dump_tree;
104 module_param(dump_tree, bool, 0444);
105 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
106 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
107 #ifndef CONFIG_PREEMPT_RT
108 module_param(use_softirq, bool, 0444);
109 #endif
110 /* Control rcu_node-tree auto-balancing at boot time. */
111 static bool rcu_fanout_exact;
112 module_param(rcu_fanout_exact, bool, 0444);
113 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
114 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
115 module_param(rcu_fanout_leaf, int, 0444);
116 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
117 /* Number of rcu_nodes at specified level. */
118 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
119 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
120
121 /*
122 * The rcu_scheduler_active variable is initialized to the value
123 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
124 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
125 * RCU can assume that there is but one task, allowing RCU to (for example)
126 * optimize synchronize_rcu() to a simple barrier(). When this variable
127 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
128 * to detect real grace periods. This variable is also used to suppress
129 * boot-time false positives from lockdep-RCU error checking. Finally, it
130 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
131 * is fully initialized, including all of its kthreads having been spawned.
132 */
133 int rcu_scheduler_active __read_mostly;
134 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
135
136 /*
137 * The rcu_scheduler_fully_active variable transitions from zero to one
138 * during the early_initcall() processing, which is after the scheduler
139 * is capable of creating new tasks. So RCU processing (for example,
140 * creating tasks for RCU priority boosting) must be delayed until after
141 * rcu_scheduler_fully_active transitions from zero to one. We also
142 * currently delay invocation of any RCU callbacks until after this point.
143 *
144 * It might later prove better for people registering RCU callbacks during
145 * early boot to take responsibility for these callbacks, but one step at
146 * a time.
147 */
148 static int rcu_scheduler_fully_active __read_mostly;
149
150 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
151 unsigned long gps, unsigned long flags);
152 static struct task_struct *rcu_boost_task(struct rcu_node *rnp);
153 static void invoke_rcu_core(void);
154 static void rcu_report_exp_rdp(struct rcu_data *rdp);
155 static void sync_sched_exp_online_cleanup(int cpu);
156 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
157 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
158 static bool rcu_rdp_cpu_online(struct rcu_data *rdp);
159 static bool rcu_init_invoked(void);
160 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
161 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
162
163 /*
164 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
165 * real-time priority(enabling/disabling) is controlled by
166 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
167 */
168 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
169 module_param(kthread_prio, int, 0444);
170
171 /* Delay in jiffies for grace-period initialization delays, debug only. */
172
173 static int gp_preinit_delay;
174 module_param(gp_preinit_delay, int, 0444);
175 static int gp_init_delay;
176 module_param(gp_init_delay, int, 0444);
177 static int gp_cleanup_delay;
178 module_param(gp_cleanup_delay, int, 0444);
179 static int nohz_full_patience_delay;
180 module_param(nohz_full_patience_delay, int, 0444);
181 static int nohz_full_patience_delay_jiffies;
182
183 // Add delay to rcu_read_unlock() for strict grace periods.
184 static int rcu_unlock_delay;
185 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
186 module_param(rcu_unlock_delay, int, 0444);
187 #endif
188
189 /*
190 * This rcu parameter is runtime-read-only. It reflects
191 * a minimum allowed number of objects which can be cached
192 * per-CPU. Object size is equal to one page. This value
193 * can be changed at boot time.
194 */
195 static int rcu_min_cached_objs = 5;
196 module_param(rcu_min_cached_objs, int, 0444);
197
198 // A page shrinker can ask for pages to be freed to make them
199 // available for other parts of the system. This usually happens
200 // under low memory conditions, and in that case we should also
201 // defer page-cache filling for a short time period.
202 //
203 // The default value is 5 seconds, which is long enough to reduce
204 // interference with the shrinker while it asks other systems to
205 // drain their caches.
206 static int rcu_delay_page_cache_fill_msec = 5000;
207 module_param(rcu_delay_page_cache_fill_msec, int, 0444);
208
209 /* Retrieve RCU kthreads priority for rcutorture */
rcu_get_gp_kthreads_prio(void)210 int rcu_get_gp_kthreads_prio(void)
211 {
212 return kthread_prio;
213 }
214 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
215
216 /*
217 * Number of grace periods between delays, normalized by the duration of
218 * the delay. The longer the delay, the more the grace periods between
219 * each delay. The reason for this normalization is that it means that,
220 * for non-zero delays, the overall slowdown of grace periods is constant
221 * regardless of the duration of the delay. This arrangement balances
222 * the need for long delays to increase some race probabilities with the
223 * need for fast grace periods to increase other race probabilities.
224 */
225 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */
226
227 /*
228 * Return true if an RCU grace period is in progress. The READ_ONCE()s
229 * permit this function to be invoked without holding the root rcu_node
230 * structure's ->lock, but of course results can be subject to change.
231 */
rcu_gp_in_progress(void)232 static int rcu_gp_in_progress(void)
233 {
234 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
235 }
236
237 /*
238 * Return the number of callbacks queued on the specified CPU.
239 * Handles both the nocbs and normal cases.
240 */
rcu_get_n_cbs_cpu(int cpu)241 static long rcu_get_n_cbs_cpu(int cpu)
242 {
243 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
244
245 if (rcu_segcblist_is_enabled(&rdp->cblist))
246 return rcu_segcblist_n_cbs(&rdp->cblist);
247 return 0;
248 }
249
250 /**
251 * rcu_softirq_qs - Provide a set of RCU quiescent states in softirq processing
252 *
253 * Mark a quiescent state for RCU, Tasks RCU, and Tasks Trace RCU.
254 * This is a special-purpose function to be used in the softirq
255 * infrastructure and perhaps the occasional long-running softirq
256 * handler.
257 *
258 * Note that from RCU's viewpoint, a call to rcu_softirq_qs() is
259 * equivalent to momentarily completely enabling preemption. For
260 * example, given this code::
261 *
262 * local_bh_disable();
263 * do_something();
264 * rcu_softirq_qs(); // A
265 * do_something_else();
266 * local_bh_enable(); // B
267 *
268 * A call to synchronize_rcu() that began concurrently with the
269 * call to do_something() would be guaranteed to wait only until
270 * execution reached statement A. Without that rcu_softirq_qs(),
271 * that same synchronize_rcu() would instead be guaranteed to wait
272 * until execution reached statement B.
273 */
rcu_softirq_qs(void)274 void rcu_softirq_qs(void)
275 {
276 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
277 lock_is_held(&rcu_lock_map) ||
278 lock_is_held(&rcu_sched_lock_map),
279 "Illegal rcu_softirq_qs() in RCU read-side critical section");
280 rcu_qs();
281 rcu_preempt_deferred_qs(current);
282 rcu_tasks_qs(current, false);
283 }
284
285 /*
286 * Reset the current CPU's RCU_WATCHING counter to indicate that the
287 * newly onlined CPU is no longer in an extended quiescent state.
288 * This will either leave the counter unchanged, or increment it
289 * to the next non-quiescent value.
290 *
291 * The non-atomic test/increment sequence works because the upper bits
292 * of the ->state variable are manipulated only by the corresponding CPU,
293 * or when the corresponding CPU is offline.
294 */
rcu_watching_online(void)295 static void rcu_watching_online(void)
296 {
297 if (ct_rcu_watching() & CT_RCU_WATCHING)
298 return;
299 ct_state_inc(CT_RCU_WATCHING);
300 }
301
302 /*
303 * Return true if the snapshot returned from ct_rcu_watching()
304 * indicates that RCU is in an extended quiescent state.
305 */
rcu_watching_snap_in_eqs(int snap)306 static bool rcu_watching_snap_in_eqs(int snap)
307 {
308 return !(snap & CT_RCU_WATCHING);
309 }
310
311 /**
312 * rcu_watching_snap_stopped_since() - Has RCU stopped watching a given CPU
313 * since the specified @snap?
314 *
315 * @rdp: The rcu_data corresponding to the CPU for which to check EQS.
316 * @snap: rcu_watching snapshot taken when the CPU wasn't in an EQS.
317 *
318 * Returns true if the CPU corresponding to @rdp has spent some time in an
319 * extended quiescent state since @snap. Note that this doesn't check if it
320 * /still/ is in an EQS, just that it went through one since @snap.
321 *
322 * This is meant to be used in a loop waiting for a CPU to go through an EQS.
323 */
rcu_watching_snap_stopped_since(struct rcu_data * rdp,int snap)324 static bool rcu_watching_snap_stopped_since(struct rcu_data *rdp, int snap)
325 {
326 /*
327 * The first failing snapshot is already ordered against the accesses
328 * performed by the remote CPU after it exits idle.
329 *
330 * The second snapshot therefore only needs to order against accesses
331 * performed by the remote CPU prior to entering idle and therefore can
332 * rely solely on acquire semantics.
333 */
334 if (WARN_ON_ONCE(rcu_watching_snap_in_eqs(snap)))
335 return true;
336
337 return snap != ct_rcu_watching_cpu_acquire(rdp->cpu);
338 }
339
340 /*
341 * Return true if the referenced integer is zero while the specified
342 * CPU remains within a single extended quiescent state.
343 */
rcu_watching_zero_in_eqs(int cpu,int * vp)344 bool rcu_watching_zero_in_eqs(int cpu, int *vp)
345 {
346 int snap;
347
348 // If not quiescent, force back to earlier extended quiescent state.
349 snap = ct_rcu_watching_cpu(cpu) & ~CT_RCU_WATCHING;
350 smp_rmb(); // Order CT state and *vp reads.
351 if (READ_ONCE(*vp))
352 return false; // Non-zero, so report failure;
353 smp_rmb(); // Order *vp read and CT state re-read.
354
355 // If still in the same extended quiescent state, we are good!
356 return snap == ct_rcu_watching_cpu(cpu);
357 }
358
359 /*
360 * Let the RCU core know that this CPU has gone through the scheduler,
361 * which is a quiescent state. This is called when the need for a
362 * quiescent state is urgent, so we burn an atomic operation and full
363 * memory barriers to let the RCU core know about it, regardless of what
364 * this CPU might (or might not) do in the near future.
365 *
366 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
367 *
368 * The caller must have disabled interrupts and must not be idle.
369 */
rcu_momentary_eqs(void)370 notrace void rcu_momentary_eqs(void)
371 {
372 int seq;
373
374 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
375 seq = ct_state_inc(2 * CT_RCU_WATCHING);
376 /* It is illegal to call this from idle state. */
377 WARN_ON_ONCE(!(seq & CT_RCU_WATCHING));
378 rcu_preempt_deferred_qs(current);
379 }
380 EXPORT_SYMBOL_GPL(rcu_momentary_eqs);
381
382 /**
383 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
384 *
385 * If the current CPU is idle and running at a first-level (not nested)
386 * interrupt, or directly, from idle, return true.
387 *
388 * The caller must have at least disabled IRQs.
389 */
rcu_is_cpu_rrupt_from_idle(void)390 static int rcu_is_cpu_rrupt_from_idle(void)
391 {
392 long nesting;
393
394 /*
395 * Usually called from the tick; but also used from smp_function_call()
396 * for expedited grace periods. This latter can result in running from
397 * the idle task, instead of an actual IPI.
398 */
399 lockdep_assert_irqs_disabled();
400
401 /* Check for counter underflows */
402 RCU_LOCKDEP_WARN(ct_nesting() < 0,
403 "RCU nesting counter underflow!");
404 RCU_LOCKDEP_WARN(ct_nmi_nesting() <= 0,
405 "RCU nmi_nesting counter underflow/zero!");
406
407 /* Are we at first interrupt nesting level? */
408 nesting = ct_nmi_nesting();
409 if (nesting > 1)
410 return false;
411
412 /*
413 * If we're not in an interrupt, we must be in the idle task!
414 */
415 WARN_ON_ONCE(!nesting && !is_idle_task(current));
416
417 /* Does CPU appear to be idle from an RCU standpoint? */
418 return ct_nesting() == 0;
419 }
420
421 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
422 // Maximum callbacks per rcu_do_batch ...
423 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
424 static long blimit = DEFAULT_RCU_BLIMIT;
425 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
426 static long qhimark = DEFAULT_RCU_QHIMARK;
427 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit.
428 static long qlowmark = DEFAULT_RCU_QLOMARK;
429 #define DEFAULT_RCU_QOVLD_MULT 2
430 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
431 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
432 static long qovld_calc = -1; // No pre-initialization lock acquisitions!
433
434 module_param(blimit, long, 0444);
435 module_param(qhimark, long, 0444);
436 module_param(qlowmark, long, 0444);
437 module_param(qovld, long, 0444);
438
439 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
440 static ulong jiffies_till_next_fqs = ULONG_MAX;
441 static bool rcu_kick_kthreads;
442 static int rcu_divisor = 7;
443 module_param(rcu_divisor, int, 0644);
444
445 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
446 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
447 module_param(rcu_resched_ns, long, 0644);
448
449 /*
450 * How long the grace period must be before we start recruiting
451 * quiescent-state help from rcu_note_context_switch().
452 */
453 static ulong jiffies_till_sched_qs = ULONG_MAX;
454 module_param(jiffies_till_sched_qs, ulong, 0444);
455 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
456 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
457
458 /*
459 * Make sure that we give the grace-period kthread time to detect any
460 * idle CPUs before taking active measures to force quiescent states.
461 * However, don't go below 100 milliseconds, adjusted upwards for really
462 * large systems.
463 */
adjust_jiffies_till_sched_qs(void)464 static void adjust_jiffies_till_sched_qs(void)
465 {
466 unsigned long j;
467
468 /* If jiffies_till_sched_qs was specified, respect the request. */
469 if (jiffies_till_sched_qs != ULONG_MAX) {
470 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
471 return;
472 }
473 /* Otherwise, set to third fqs scan, but bound below on large system. */
474 j = READ_ONCE(jiffies_till_first_fqs) +
475 2 * READ_ONCE(jiffies_till_next_fqs);
476 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
477 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
478 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
479 WRITE_ONCE(jiffies_to_sched_qs, j);
480 }
481
param_set_first_fqs_jiffies(const char * val,const struct kernel_param * kp)482 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
483 {
484 ulong j;
485 int ret = kstrtoul(val, 0, &j);
486
487 if (!ret) {
488 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
489 adjust_jiffies_till_sched_qs();
490 }
491 return ret;
492 }
493
param_set_next_fqs_jiffies(const char * val,const struct kernel_param * kp)494 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
495 {
496 ulong j;
497 int ret = kstrtoul(val, 0, &j);
498
499 if (!ret) {
500 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
501 adjust_jiffies_till_sched_qs();
502 }
503 return ret;
504 }
505
506 static const struct kernel_param_ops first_fqs_jiffies_ops = {
507 .set = param_set_first_fqs_jiffies,
508 .get = param_get_ulong,
509 };
510
511 static const struct kernel_param_ops next_fqs_jiffies_ops = {
512 .set = param_set_next_fqs_jiffies,
513 .get = param_get_ulong,
514 };
515
516 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
517 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
518 module_param(rcu_kick_kthreads, bool, 0644);
519
520 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
521 static int rcu_pending(int user);
522
523 /*
524 * Return the number of RCU GPs completed thus far for debug & stats.
525 */
rcu_get_gp_seq(void)526 unsigned long rcu_get_gp_seq(void)
527 {
528 return READ_ONCE(rcu_state.gp_seq);
529 }
530 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
531
532 /*
533 * Return the number of RCU expedited batches completed thus far for
534 * debug & stats. Odd numbers mean that a batch is in progress, even
535 * numbers mean idle. The value returned will thus be roughly double
536 * the cumulative batches since boot.
537 */
rcu_exp_batches_completed(void)538 unsigned long rcu_exp_batches_completed(void)
539 {
540 return rcu_state.expedited_sequence;
541 }
542 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
543
544 /*
545 * Return the root node of the rcu_state structure.
546 */
rcu_get_root(void)547 static struct rcu_node *rcu_get_root(void)
548 {
549 return &rcu_state.node[0];
550 }
551
552 /*
553 * Send along grace-period-related data for rcutorture diagnostics.
554 */
rcutorture_get_gp_data(int * flags,unsigned long * gp_seq)555 void rcutorture_get_gp_data(int *flags, unsigned long *gp_seq)
556 {
557 *flags = READ_ONCE(rcu_state.gp_flags);
558 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
559 }
560 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
561
562 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
563 /*
564 * An empty function that will trigger a reschedule on
565 * IRQ tail once IRQs get re-enabled on userspace/guest resume.
566 */
late_wakeup_func(struct irq_work * work)567 static void late_wakeup_func(struct irq_work *work)
568 {
569 }
570
571 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
572 IRQ_WORK_INIT(late_wakeup_func);
573
574 /*
575 * If either:
576 *
577 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
578 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
579 *
580 * In these cases the late RCU wake ups aren't supported in the resched loops and our
581 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
582 * get re-enabled again.
583 */
rcu_irq_work_resched(void)584 noinstr void rcu_irq_work_resched(void)
585 {
586 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
587
588 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
589 return;
590
591 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
592 return;
593
594 instrumentation_begin();
595 if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
596 irq_work_queue(this_cpu_ptr(&late_wakeup_work));
597 }
598 instrumentation_end();
599 }
600 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
601
602 #ifdef CONFIG_PROVE_RCU
603 /**
604 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
605 */
rcu_irq_exit_check_preempt(void)606 void rcu_irq_exit_check_preempt(void)
607 {
608 lockdep_assert_irqs_disabled();
609
610 RCU_LOCKDEP_WARN(ct_nesting() <= 0,
611 "RCU nesting counter underflow/zero!");
612 RCU_LOCKDEP_WARN(ct_nmi_nesting() !=
613 CT_NESTING_IRQ_NONIDLE,
614 "Bad RCU nmi_nesting counter\n");
615 RCU_LOCKDEP_WARN(!rcu_is_watching_curr_cpu(),
616 "RCU in extended quiescent state!");
617 }
618 #endif /* #ifdef CONFIG_PROVE_RCU */
619
620 #ifdef CONFIG_NO_HZ_FULL
621 /**
622 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
623 *
624 * The scheduler tick is not normally enabled when CPUs enter the kernel
625 * from nohz_full userspace execution. After all, nohz_full userspace
626 * execution is an RCU quiescent state and the time executing in the kernel
627 * is quite short. Except of course when it isn't. And it is not hard to
628 * cause a large system to spend tens of seconds or even minutes looping
629 * in the kernel, which can cause a number of problems, include RCU CPU
630 * stall warnings.
631 *
632 * Therefore, if a nohz_full CPU fails to report a quiescent state
633 * in a timely manner, the RCU grace-period kthread sets that CPU's
634 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
635 * exception will invoke this function, which will turn on the scheduler
636 * tick, which will enable RCU to detect that CPU's quiescent states,
637 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
638 * The tick will be disabled once a quiescent state is reported for
639 * this CPU.
640 *
641 * Of course, in carefully tuned systems, there might never be an
642 * interrupt or exception. In that case, the RCU grace-period kthread
643 * will eventually cause one to happen. However, in less carefully
644 * controlled environments, this function allows RCU to get what it
645 * needs without creating otherwise useless interruptions.
646 */
__rcu_irq_enter_check_tick(void)647 void __rcu_irq_enter_check_tick(void)
648 {
649 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
650
651 // If we're here from NMI there's nothing to do.
652 if (in_nmi())
653 return;
654
655 RCU_LOCKDEP_WARN(!rcu_is_watching_curr_cpu(),
656 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
657
658 if (!tick_nohz_full_cpu(rdp->cpu) ||
659 !READ_ONCE(rdp->rcu_urgent_qs) ||
660 READ_ONCE(rdp->rcu_forced_tick)) {
661 // RCU doesn't need nohz_full help from this CPU, or it is
662 // already getting that help.
663 return;
664 }
665
666 // We get here only when not in an extended quiescent state and
667 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is
668 // already watching and (2) The fact that we are in an interrupt
669 // handler and that the rcu_node lock is an irq-disabled lock
670 // prevents self-deadlock. So we can safely recheck under the lock.
671 // Note that the nohz_full state currently cannot change.
672 raw_spin_lock_rcu_node(rdp->mynode);
673 if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) {
674 // A nohz_full CPU is in the kernel and RCU needs a
675 // quiescent state. Turn on the tick!
676 WRITE_ONCE(rdp->rcu_forced_tick, true);
677 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
678 }
679 raw_spin_unlock_rcu_node(rdp->mynode);
680 }
681 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick);
682 #endif /* CONFIG_NO_HZ_FULL */
683
684 /*
685 * Check to see if any future non-offloaded RCU-related work will need
686 * to be done by the current CPU, even if none need be done immediately,
687 * returning 1 if so. This function is part of the RCU implementation;
688 * it is -not- an exported member of the RCU API. This is used by
689 * the idle-entry code to figure out whether it is safe to disable the
690 * scheduler-clock interrupt.
691 *
692 * Just check whether or not this CPU has non-offloaded RCU callbacks
693 * queued.
694 */
rcu_needs_cpu(void)695 int rcu_needs_cpu(void)
696 {
697 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
698 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
699 }
700
701 /*
702 * If any sort of urgency was applied to the current CPU (for example,
703 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
704 * to get to a quiescent state, disable it.
705 */
rcu_disable_urgency_upon_qs(struct rcu_data * rdp)706 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
707 {
708 raw_lockdep_assert_held_rcu_node(rdp->mynode);
709 WRITE_ONCE(rdp->rcu_urgent_qs, false);
710 WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
711 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
712 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
713 WRITE_ONCE(rdp->rcu_forced_tick, false);
714 }
715 }
716
717 /**
718 * rcu_is_watching - RCU read-side critical sections permitted on current CPU?
719 *
720 * Return @true if RCU is watching the running CPU and @false otherwise.
721 * An @true return means that this CPU can safely enter RCU read-side
722 * critical sections.
723 *
724 * Although calls to rcu_is_watching() from most parts of the kernel
725 * will return @true, there are important exceptions. For example, if the
726 * current CPU is deep within its idle loop, in kernel entry/exit code,
727 * or offline, rcu_is_watching() will return @false.
728 *
729 * Make notrace because it can be called by the internal functions of
730 * ftrace, and making this notrace removes unnecessary recursion calls.
731 */
rcu_is_watching(void)732 notrace bool rcu_is_watching(void)
733 {
734 bool ret;
735
736 preempt_disable_notrace();
737 ret = rcu_is_watching_curr_cpu();
738 preempt_enable_notrace();
739 return ret;
740 }
741 EXPORT_SYMBOL_GPL(rcu_is_watching);
742
743 /*
744 * If a holdout task is actually running, request an urgent quiescent
745 * state from its CPU. This is unsynchronized, so migrations can cause
746 * the request to go to the wrong CPU. Which is OK, all that will happen
747 * is that the CPU's next context switch will be a bit slower and next
748 * time around this task will generate another request.
749 */
rcu_request_urgent_qs_task(struct task_struct * t)750 void rcu_request_urgent_qs_task(struct task_struct *t)
751 {
752 int cpu;
753
754 barrier();
755 cpu = task_cpu(t);
756 if (!task_curr(t))
757 return; /* This task is not running on that CPU. */
758 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
759 }
760
761 /*
762 * When trying to report a quiescent state on behalf of some other CPU,
763 * it is our responsibility to check for and handle potential overflow
764 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
765 * After all, the CPU might be in deep idle state, and thus executing no
766 * code whatsoever.
767 */
rcu_gpnum_ovf(struct rcu_node * rnp,struct rcu_data * rdp)768 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
769 {
770 raw_lockdep_assert_held_rcu_node(rnp);
771 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
772 rnp->gp_seq))
773 WRITE_ONCE(rdp->gpwrap, true);
774 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
775 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
776 }
777
778 /*
779 * Snapshot the specified CPU's RCU_WATCHING counter so that we can later
780 * credit them with an implicit quiescent state. Return 1 if this CPU
781 * is in dynticks idle mode, which is an extended quiescent state.
782 */
rcu_watching_snap_save(struct rcu_data * rdp)783 static int rcu_watching_snap_save(struct rcu_data *rdp)
784 {
785 /*
786 * Full ordering between remote CPU's post idle accesses and updater's
787 * accesses prior to current GP (and also the started GP sequence number)
788 * is enforced by rcu_seq_start() implicit barrier and even further by
789 * smp_mb__after_unlock_lock() barriers chained all the way throughout the
790 * rnp locking tree since rcu_gp_init() and up to the current leaf rnp
791 * locking.
792 *
793 * Ordering between remote CPU's pre idle accesses and post grace period
794 * updater's accesses is enforced by the below acquire semantic.
795 */
796 rdp->watching_snap = ct_rcu_watching_cpu_acquire(rdp->cpu);
797 if (rcu_watching_snap_in_eqs(rdp->watching_snap)) {
798 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
799 rcu_gpnum_ovf(rdp->mynode, rdp);
800 return 1;
801 }
802 return 0;
803 }
804
805 #ifndef arch_irq_stat_cpu
806 #define arch_irq_stat_cpu(cpu) 0
807 #endif
808
809 /*
810 * Returns positive if the specified CPU has passed through a quiescent state
811 * by virtue of being in or having passed through an dynticks idle state since
812 * the last call to rcu_watching_snap_save() for this same CPU, or by
813 * virtue of having been offline.
814 *
815 * Returns negative if the specified CPU needs a force resched.
816 *
817 * Returns zero otherwise.
818 */
rcu_watching_snap_recheck(struct rcu_data * rdp)819 static int rcu_watching_snap_recheck(struct rcu_data *rdp)
820 {
821 unsigned long jtsq;
822 int ret = 0;
823 struct rcu_node *rnp = rdp->mynode;
824
825 /*
826 * If the CPU passed through or entered a dynticks idle phase with
827 * no active irq/NMI handlers, then we can safely pretend that the CPU
828 * already acknowledged the request to pass through a quiescent
829 * state. Either way, that CPU cannot possibly be in an RCU
830 * read-side critical section that started before the beginning
831 * of the current RCU grace period.
832 */
833 if (rcu_watching_snap_stopped_since(rdp, rdp->watching_snap)) {
834 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
835 rcu_gpnum_ovf(rnp, rdp);
836 return 1;
837 }
838
839 /*
840 * Complain if a CPU that is considered to be offline from RCU's
841 * perspective has not yet reported a quiescent state. After all,
842 * the offline CPU should have reported a quiescent state during
843 * the CPU-offline process, or, failing that, by rcu_gp_init()
844 * if it ran concurrently with either the CPU going offline or the
845 * last task on a leaf rcu_node structure exiting its RCU read-side
846 * critical section while all CPUs corresponding to that structure
847 * are offline. This added warning detects bugs in any of these
848 * code paths.
849 *
850 * The rcu_node structure's ->lock is held here, which excludes
851 * the relevant portions the CPU-hotplug code, the grace-period
852 * initialization code, and the rcu_read_unlock() code paths.
853 *
854 * For more detail, please refer to the "Hotplug CPU" section
855 * of RCU's Requirements documentation.
856 */
857 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
858 struct rcu_node *rnp1;
859
860 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
861 __func__, rnp->grplo, rnp->grphi, rnp->level,
862 (long)rnp->gp_seq, (long)rnp->completedqs);
863 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
864 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
865 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
866 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
867 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
868 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_state,
869 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_state);
870 return 1; /* Break things loose after complaining. */
871 }
872
873 /*
874 * A CPU running for an extended time within the kernel can
875 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
876 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
877 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
878 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
879 * variable are safe because the assignments are repeated if this
880 * CPU failed to pass through a quiescent state. This code
881 * also checks .jiffies_resched in case jiffies_to_sched_qs
882 * is set way high.
883 */
884 jtsq = READ_ONCE(jiffies_to_sched_qs);
885 if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
886 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
887 time_after(jiffies, rcu_state.jiffies_resched) ||
888 rcu_state.cbovld)) {
889 WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
890 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
891 smp_store_release(&rdp->rcu_urgent_qs, true);
892 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
893 WRITE_ONCE(rdp->rcu_urgent_qs, true);
894 }
895
896 /*
897 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
898 * The above code handles this, but only for straight cond_resched().
899 * And some in-kernel loops check need_resched() before calling
900 * cond_resched(), which defeats the above code for CPUs that are
901 * running in-kernel with scheduling-clock interrupts disabled.
902 * So hit them over the head with the resched_cpu() hammer!
903 */
904 if (tick_nohz_full_cpu(rdp->cpu) &&
905 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
906 rcu_state.cbovld)) {
907 WRITE_ONCE(rdp->rcu_urgent_qs, true);
908 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
909 ret = -1;
910 }
911
912 /*
913 * If more than halfway to RCU CPU stall-warning time, invoke
914 * resched_cpu() more frequently to try to loosen things up a bit.
915 * Also check to see if the CPU is getting hammered with interrupts,
916 * but only once per grace period, just to keep the IPIs down to
917 * a dull roar.
918 */
919 if (time_after(jiffies, rcu_state.jiffies_resched)) {
920 if (time_after(jiffies,
921 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
922 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
923 ret = -1;
924 }
925 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
926 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
927 (rnp->ffmask & rdp->grpmask)) {
928 rdp->rcu_iw_pending = true;
929 rdp->rcu_iw_gp_seq = rnp->gp_seq;
930 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
931 }
932
933 if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) {
934 int cpu = rdp->cpu;
935 struct rcu_snap_record *rsrp;
936 struct kernel_cpustat *kcsp;
937
938 kcsp = &kcpustat_cpu(cpu);
939
940 rsrp = &rdp->snap_record;
941 rsrp->cputime_irq = kcpustat_field(kcsp, CPUTIME_IRQ, cpu);
942 rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu);
943 rsrp->cputime_system = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu);
944 rsrp->nr_hardirqs = kstat_cpu_irqs_sum(cpu) + arch_irq_stat_cpu(cpu);
945 rsrp->nr_softirqs = kstat_cpu_softirqs_sum(cpu);
946 rsrp->nr_csw = nr_context_switches_cpu(cpu);
947 rsrp->jiffies = jiffies;
948 rsrp->gp_seq = rdp->gp_seq;
949 }
950 }
951
952 return ret;
953 }
954
955 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
trace_rcu_this_gp(struct rcu_node * rnp,struct rcu_data * rdp,unsigned long gp_seq_req,const char * s)956 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
957 unsigned long gp_seq_req, const char *s)
958 {
959 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
960 gp_seq_req, rnp->level,
961 rnp->grplo, rnp->grphi, s);
962 }
963
964 /*
965 * rcu_start_this_gp - Request the start of a particular grace period
966 * @rnp_start: The leaf node of the CPU from which to start.
967 * @rdp: The rcu_data corresponding to the CPU from which to start.
968 * @gp_seq_req: The gp_seq of the grace period to start.
969 *
970 * Start the specified grace period, as needed to handle newly arrived
971 * callbacks. The required future grace periods are recorded in each
972 * rcu_node structure's ->gp_seq_needed field. Returns true if there
973 * is reason to awaken the grace-period kthread.
974 *
975 * The caller must hold the specified rcu_node structure's ->lock, which
976 * is why the caller is responsible for waking the grace-period kthread.
977 *
978 * Returns true if the GP thread needs to be awakened else false.
979 */
rcu_start_this_gp(struct rcu_node * rnp_start,struct rcu_data * rdp,unsigned long gp_seq_req)980 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
981 unsigned long gp_seq_req)
982 {
983 bool ret = false;
984 struct rcu_node *rnp;
985
986 /*
987 * Use funnel locking to either acquire the root rcu_node
988 * structure's lock or bail out if the need for this grace period
989 * has already been recorded -- or if that grace period has in
990 * fact already started. If there is already a grace period in
991 * progress in a non-leaf node, no recording is needed because the
992 * end of the grace period will scan the leaf rcu_node structures.
993 * Note that rnp_start->lock must not be released.
994 */
995 raw_lockdep_assert_held_rcu_node(rnp_start);
996 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
997 for (rnp = rnp_start; 1; rnp = rnp->parent) {
998 if (rnp != rnp_start)
999 raw_spin_lock_rcu_node(rnp);
1000 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1001 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1002 (rnp != rnp_start &&
1003 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1004 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1005 TPS("Prestarted"));
1006 goto unlock_out;
1007 }
1008 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1009 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1010 /*
1011 * We just marked the leaf or internal node, and a
1012 * grace period is in progress, which means that
1013 * rcu_gp_cleanup() will see the marking. Bail to
1014 * reduce contention.
1015 */
1016 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1017 TPS("Startedleaf"));
1018 goto unlock_out;
1019 }
1020 if (rnp != rnp_start && rnp->parent != NULL)
1021 raw_spin_unlock_rcu_node(rnp);
1022 if (!rnp->parent)
1023 break; /* At root, and perhaps also leaf. */
1024 }
1025
1026 /* If GP already in progress, just leave, otherwise start one. */
1027 if (rcu_gp_in_progress()) {
1028 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1029 goto unlock_out;
1030 }
1031 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1032 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1033 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1034 if (!READ_ONCE(rcu_state.gp_kthread)) {
1035 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1036 goto unlock_out;
1037 }
1038 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1039 ret = true; /* Caller must wake GP kthread. */
1040 unlock_out:
1041 /* Push furthest requested GP to leaf node and rcu_data structure. */
1042 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1043 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1044 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1045 }
1046 if (rnp != rnp_start)
1047 raw_spin_unlock_rcu_node(rnp);
1048 return ret;
1049 }
1050
1051 /*
1052 * Clean up any old requests for the just-ended grace period. Also return
1053 * whether any additional grace periods have been requested.
1054 */
rcu_future_gp_cleanup(struct rcu_node * rnp)1055 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1056 {
1057 bool needmore;
1058 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1059
1060 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1061 if (!needmore)
1062 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1063 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1064 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1065 return needmore;
1066 }
1067
swake_up_one_online_ipi(void * arg)1068 static void swake_up_one_online_ipi(void *arg)
1069 {
1070 struct swait_queue_head *wqh = arg;
1071
1072 swake_up_one(wqh);
1073 }
1074
swake_up_one_online(struct swait_queue_head * wqh)1075 static void swake_up_one_online(struct swait_queue_head *wqh)
1076 {
1077 int cpu = get_cpu();
1078
1079 /*
1080 * If called from rcutree_report_cpu_starting(), wake up
1081 * is dangerous that late in the CPU-down hotplug process. The
1082 * scheduler might queue an ignored hrtimer. Defer the wake up
1083 * to an online CPU instead.
1084 */
1085 if (unlikely(cpu_is_offline(cpu))) {
1086 int target;
1087
1088 target = cpumask_any_and(housekeeping_cpumask(HK_TYPE_RCU),
1089 cpu_online_mask);
1090
1091 smp_call_function_single(target, swake_up_one_online_ipi,
1092 wqh, 0);
1093 put_cpu();
1094 } else {
1095 put_cpu();
1096 swake_up_one(wqh);
1097 }
1098 }
1099
1100 /*
1101 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an
1102 * interrupt or softirq handler, in which case we just might immediately
1103 * sleep upon return, resulting in a grace-period hang), and don't bother
1104 * awakening when there is nothing for the grace-period kthread to do
1105 * (as in several CPUs raced to awaken, we lost), and finally don't try
1106 * to awaken a kthread that has not yet been created. If all those checks
1107 * are passed, track some debug information and awaken.
1108 *
1109 * So why do the self-wakeup when in an interrupt or softirq handler
1110 * in the grace-period kthread's context? Because the kthread might have
1111 * been interrupted just as it was going to sleep, and just after the final
1112 * pre-sleep check of the awaken condition. In this case, a wakeup really
1113 * is required, and is therefore supplied.
1114 */
rcu_gp_kthread_wake(void)1115 static void rcu_gp_kthread_wake(void)
1116 {
1117 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1118
1119 if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1120 !READ_ONCE(rcu_state.gp_flags) || !t)
1121 return;
1122 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1123 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1124 swake_up_one_online(&rcu_state.gp_wq);
1125 }
1126
1127 /*
1128 * If there is room, assign a ->gp_seq number to any callbacks on this
1129 * CPU that have not already been assigned. Also accelerate any callbacks
1130 * that were previously assigned a ->gp_seq number that has since proven
1131 * to be too conservative, which can happen if callbacks get assigned a
1132 * ->gp_seq number while RCU is idle, but with reference to a non-root
1133 * rcu_node structure. This function is idempotent, so it does not hurt
1134 * to call it repeatedly. Returns an flag saying that we should awaken
1135 * the RCU grace-period kthread.
1136 *
1137 * The caller must hold rnp->lock with interrupts disabled.
1138 */
rcu_accelerate_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1139 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1140 {
1141 unsigned long gp_seq_req;
1142 bool ret = false;
1143
1144 rcu_lockdep_assert_cblist_protected(rdp);
1145 raw_lockdep_assert_held_rcu_node(rnp);
1146
1147 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1148 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1149 return false;
1150
1151 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1152
1153 /*
1154 * Callbacks are often registered with incomplete grace-period
1155 * information. Something about the fact that getting exact
1156 * information requires acquiring a global lock... RCU therefore
1157 * makes a conservative estimate of the grace period number at which
1158 * a given callback will become ready to invoke. The following
1159 * code checks this estimate and improves it when possible, thus
1160 * accelerating callback invocation to an earlier grace-period
1161 * number.
1162 */
1163 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1164 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1165 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1166
1167 /* Trace depending on how much we were able to accelerate. */
1168 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1169 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1170 else
1171 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1172
1173 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1174
1175 return ret;
1176 }
1177
1178 /*
1179 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1180 * rcu_node structure's ->lock be held. It consults the cached value
1181 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1182 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1183 * while holding the leaf rcu_node structure's ->lock.
1184 */
rcu_accelerate_cbs_unlocked(struct rcu_node * rnp,struct rcu_data * rdp)1185 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1186 struct rcu_data *rdp)
1187 {
1188 unsigned long c;
1189 bool needwake;
1190
1191 rcu_lockdep_assert_cblist_protected(rdp);
1192 c = rcu_seq_snap(&rcu_state.gp_seq);
1193 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1194 /* Old request still live, so mark recent callbacks. */
1195 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1196 return;
1197 }
1198 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1199 needwake = rcu_accelerate_cbs(rnp, rdp);
1200 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1201 if (needwake)
1202 rcu_gp_kthread_wake();
1203 }
1204
1205 /*
1206 * Move any callbacks whose grace period has completed to the
1207 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1208 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1209 * sublist. This function is idempotent, so it does not hurt to
1210 * invoke it repeatedly. As long as it is not invoked -too- often...
1211 * Returns true if the RCU grace-period kthread needs to be awakened.
1212 *
1213 * The caller must hold rnp->lock with interrupts disabled.
1214 */
rcu_advance_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1215 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1216 {
1217 rcu_lockdep_assert_cblist_protected(rdp);
1218 raw_lockdep_assert_held_rcu_node(rnp);
1219
1220 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1221 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1222 return false;
1223
1224 /*
1225 * Find all callbacks whose ->gp_seq numbers indicate that they
1226 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1227 */
1228 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1229
1230 /* Classify any remaining callbacks. */
1231 return rcu_accelerate_cbs(rnp, rdp);
1232 }
1233
1234 /*
1235 * Move and classify callbacks, but only if doing so won't require
1236 * that the RCU grace-period kthread be awakened.
1237 */
rcu_advance_cbs_nowake(struct rcu_node * rnp,struct rcu_data * rdp)1238 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1239 struct rcu_data *rdp)
1240 {
1241 rcu_lockdep_assert_cblist_protected(rdp);
1242 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1243 return;
1244 // The grace period cannot end while we hold the rcu_node lock.
1245 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1246 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1247 raw_spin_unlock_rcu_node(rnp);
1248 }
1249
1250 /*
1251 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1252 * quiescent state. This is intended to be invoked when the CPU notices
1253 * a new grace period.
1254 */
rcu_strict_gp_check_qs(void)1255 static void rcu_strict_gp_check_qs(void)
1256 {
1257 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1258 rcu_read_lock();
1259 rcu_read_unlock();
1260 }
1261 }
1262
1263 /*
1264 * Update CPU-local rcu_data state to record the beginnings and ends of
1265 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1266 * structure corresponding to the current CPU, and must have irqs disabled.
1267 * Returns true if the grace-period kthread needs to be awakened.
1268 */
__note_gp_changes(struct rcu_node * rnp,struct rcu_data * rdp)1269 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1270 {
1271 bool ret = false;
1272 bool need_qs;
1273 const bool offloaded = rcu_rdp_is_offloaded(rdp);
1274
1275 raw_lockdep_assert_held_rcu_node(rnp);
1276
1277 if (rdp->gp_seq == rnp->gp_seq)
1278 return false; /* Nothing to do. */
1279
1280 /* Handle the ends of any preceding grace periods first. */
1281 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1282 unlikely(READ_ONCE(rdp->gpwrap))) {
1283 if (!offloaded)
1284 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1285 rdp->core_needs_qs = false;
1286 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1287 } else {
1288 if (!offloaded)
1289 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1290 if (rdp->core_needs_qs)
1291 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1292 }
1293
1294 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1295 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1296 unlikely(READ_ONCE(rdp->gpwrap))) {
1297 /*
1298 * If the current grace period is waiting for this CPU,
1299 * set up to detect a quiescent state, otherwise don't
1300 * go looking for one.
1301 */
1302 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1303 need_qs = !!(rnp->qsmask & rdp->grpmask);
1304 rdp->cpu_no_qs.b.norm = need_qs;
1305 rdp->core_needs_qs = need_qs;
1306 zero_cpu_stall_ticks(rdp);
1307 }
1308 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
1309 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1310 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1311 if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1312 WRITE_ONCE(rdp->last_sched_clock, jiffies);
1313 WRITE_ONCE(rdp->gpwrap, false);
1314 rcu_gpnum_ovf(rnp, rdp);
1315 return ret;
1316 }
1317
note_gp_changes(struct rcu_data * rdp)1318 static void note_gp_changes(struct rcu_data *rdp)
1319 {
1320 unsigned long flags;
1321 bool needwake;
1322 struct rcu_node *rnp;
1323
1324 local_irq_save(flags);
1325 rnp = rdp->mynode;
1326 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1327 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1328 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1329 local_irq_restore(flags);
1330 return;
1331 }
1332 needwake = __note_gp_changes(rnp, rdp);
1333 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1334 rcu_strict_gp_check_qs();
1335 if (needwake)
1336 rcu_gp_kthread_wake();
1337 }
1338
1339 static atomic_t *rcu_gp_slow_suppress;
1340
1341 /* Register a counter to suppress debugging grace-period delays. */
rcu_gp_slow_register(atomic_t * rgssp)1342 void rcu_gp_slow_register(atomic_t *rgssp)
1343 {
1344 WARN_ON_ONCE(rcu_gp_slow_suppress);
1345
1346 WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1347 }
1348 EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1349
1350 /* Unregister a counter, with NULL for not caring which. */
rcu_gp_slow_unregister(atomic_t * rgssp)1351 void rcu_gp_slow_unregister(atomic_t *rgssp)
1352 {
1353 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL);
1354
1355 WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1356 }
1357 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1358
rcu_gp_slow_is_suppressed(void)1359 static bool rcu_gp_slow_is_suppressed(void)
1360 {
1361 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1362
1363 return rgssp && atomic_read(rgssp);
1364 }
1365
rcu_gp_slow(int delay)1366 static void rcu_gp_slow(int delay)
1367 {
1368 if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1369 !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1370 schedule_timeout_idle(delay);
1371 }
1372
1373 static unsigned long sleep_duration;
1374
1375 /* Allow rcutorture to stall the grace-period kthread. */
rcu_gp_set_torture_wait(int duration)1376 void rcu_gp_set_torture_wait(int duration)
1377 {
1378 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1379 WRITE_ONCE(sleep_duration, duration);
1380 }
1381 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1382
1383 /* Actually implement the aforementioned wait. */
rcu_gp_torture_wait(void)1384 static void rcu_gp_torture_wait(void)
1385 {
1386 unsigned long duration;
1387
1388 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1389 return;
1390 duration = xchg(&sleep_duration, 0UL);
1391 if (duration > 0) {
1392 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1393 schedule_timeout_idle(duration);
1394 pr_alert("%s: Wait complete\n", __func__);
1395 }
1396 }
1397
1398 /*
1399 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1400 * processing.
1401 */
rcu_strict_gp_boundary(void * unused)1402 static void rcu_strict_gp_boundary(void *unused)
1403 {
1404 invoke_rcu_core();
1405 }
1406
1407 // Make the polled API aware of the beginning of a grace period.
rcu_poll_gp_seq_start(unsigned long * snap)1408 static void rcu_poll_gp_seq_start(unsigned long *snap)
1409 {
1410 struct rcu_node *rnp = rcu_get_root();
1411
1412 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1413 raw_lockdep_assert_held_rcu_node(rnp);
1414
1415 // If RCU was idle, note beginning of GP.
1416 if (!rcu_seq_state(rcu_state.gp_seq_polled))
1417 rcu_seq_start(&rcu_state.gp_seq_polled);
1418
1419 // Either way, record current state.
1420 *snap = rcu_state.gp_seq_polled;
1421 }
1422
1423 // Make the polled API aware of the end of a grace period.
rcu_poll_gp_seq_end(unsigned long * snap)1424 static void rcu_poll_gp_seq_end(unsigned long *snap)
1425 {
1426 struct rcu_node *rnp = rcu_get_root();
1427
1428 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1429 raw_lockdep_assert_held_rcu_node(rnp);
1430
1431 // If the previously noted GP is still in effect, record the
1432 // end of that GP. Either way, zero counter to avoid counter-wrap
1433 // problems.
1434 if (*snap && *snap == rcu_state.gp_seq_polled) {
1435 rcu_seq_end(&rcu_state.gp_seq_polled);
1436 rcu_state.gp_seq_polled_snap = 0;
1437 rcu_state.gp_seq_polled_exp_snap = 0;
1438 } else {
1439 *snap = 0;
1440 }
1441 }
1442
1443 // Make the polled API aware of the beginning of a grace period, but
1444 // where caller does not hold the root rcu_node structure's lock.
rcu_poll_gp_seq_start_unlocked(unsigned long * snap)1445 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1446 {
1447 unsigned long flags;
1448 struct rcu_node *rnp = rcu_get_root();
1449
1450 if (rcu_init_invoked()) {
1451 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1452 lockdep_assert_irqs_enabled();
1453 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1454 }
1455 rcu_poll_gp_seq_start(snap);
1456 if (rcu_init_invoked())
1457 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1458 }
1459
1460 // Make the polled API aware of the end of a grace period, but where
1461 // caller does not hold the root rcu_node structure's lock.
rcu_poll_gp_seq_end_unlocked(unsigned long * snap)1462 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1463 {
1464 unsigned long flags;
1465 struct rcu_node *rnp = rcu_get_root();
1466
1467 if (rcu_init_invoked()) {
1468 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1469 lockdep_assert_irqs_enabled();
1470 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1471 }
1472 rcu_poll_gp_seq_end(snap);
1473 if (rcu_init_invoked())
1474 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1475 }
1476
1477 /*
1478 * There is a single llist, which is used for handling
1479 * synchronize_rcu() users' enqueued rcu_synchronize nodes.
1480 * Within this llist, there are two tail pointers:
1481 *
1482 * wait tail: Tracks the set of nodes, which need to
1483 * wait for the current GP to complete.
1484 * done tail: Tracks the set of nodes, for which grace
1485 * period has elapsed. These nodes processing
1486 * will be done as part of the cleanup work
1487 * execution by a kworker.
1488 *
1489 * At every grace period init, a new wait node is added
1490 * to the llist. This wait node is used as wait tail
1491 * for this new grace period. Given that there are a fixed
1492 * number of wait nodes, if all wait nodes are in use
1493 * (which can happen when kworker callback processing
1494 * is delayed) and additional grace period is requested.
1495 * This means, a system is slow in processing callbacks.
1496 *
1497 * TODO: If a slow processing is detected, a first node
1498 * in the llist should be used as a wait-tail for this
1499 * grace period, therefore users which should wait due
1500 * to a slow process are handled by _this_ grace period
1501 * and not next.
1502 *
1503 * Below is an illustration of how the done and wait
1504 * tail pointers move from one set of rcu_synchronize nodes
1505 * to the other, as grace periods start and finish and
1506 * nodes are processed by kworker.
1507 *
1508 *
1509 * a. Initial llist callbacks list:
1510 *
1511 * +----------+ +--------+ +-------+
1512 * | | | | | |
1513 * | head |---------> | cb2 |--------->| cb1 |
1514 * | | | | | |
1515 * +----------+ +--------+ +-------+
1516 *
1517 *
1518 *
1519 * b. New GP1 Start:
1520 *
1521 * WAIT TAIL
1522 * |
1523 * |
1524 * v
1525 * +----------+ +--------+ +--------+ +-------+
1526 * | | | | | | | |
1527 * | head ------> wait |------> cb2 |------> | cb1 |
1528 * | | | head1 | | | | |
1529 * +----------+ +--------+ +--------+ +-------+
1530 *
1531 *
1532 *
1533 * c. GP completion:
1534 *
1535 * WAIT_TAIL == DONE_TAIL
1536 *
1537 * DONE TAIL
1538 * |
1539 * |
1540 * v
1541 * +----------+ +--------+ +--------+ +-------+
1542 * | | | | | | | |
1543 * | head ------> wait |------> cb2 |------> | cb1 |
1544 * | | | head1 | | | | |
1545 * +----------+ +--------+ +--------+ +-------+
1546 *
1547 *
1548 *
1549 * d. New callbacks and GP2 start:
1550 *
1551 * WAIT TAIL DONE TAIL
1552 * | |
1553 * | |
1554 * v v
1555 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+
1556 * | | | | | | | | | | | | | |
1557 * | head ------> wait |--->| cb4 |--->| cb3 |--->|wait |--->| cb2 |--->| cb1 |
1558 * | | | head2| | | | | |head1| | | | |
1559 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+
1560 *
1561 *
1562 *
1563 * e. GP2 completion:
1564 *
1565 * WAIT_TAIL == DONE_TAIL
1566 * DONE TAIL
1567 * |
1568 * |
1569 * v
1570 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+
1571 * | | | | | | | | | | | | | |
1572 * | head ------> wait |--->| cb4 |--->| cb3 |--->|wait |--->| cb2 |--->| cb1 |
1573 * | | | head2| | | | | |head1| | | | |
1574 * +----------+ +------+ +------+ +------+ +-----+ +-----+ +-----+
1575 *
1576 *
1577 * While the llist state transitions from d to e, a kworker
1578 * can start executing rcu_sr_normal_gp_cleanup_work() and
1579 * can observe either the old done tail (@c) or the new
1580 * done tail (@e). So, done tail updates and reads need
1581 * to use the rel-acq semantics. If the concurrent kworker
1582 * observes the old done tail, the newly queued work
1583 * execution will process the updated done tail. If the
1584 * concurrent kworker observes the new done tail, then
1585 * the newly queued work will skip processing the done
1586 * tail, as workqueue semantics guarantees that the new
1587 * work is executed only after the previous one completes.
1588 *
1589 * f. kworker callbacks processing complete:
1590 *
1591 *
1592 * DONE TAIL
1593 * |
1594 * |
1595 * v
1596 * +----------+ +--------+
1597 * | | | |
1598 * | head ------> wait |
1599 * | | | head2 |
1600 * +----------+ +--------+
1601 *
1602 */
rcu_sr_is_wait_head(struct llist_node * node)1603 static bool rcu_sr_is_wait_head(struct llist_node *node)
1604 {
1605 return &(rcu_state.srs_wait_nodes)[0].node <= node &&
1606 node <= &(rcu_state.srs_wait_nodes)[SR_NORMAL_GP_WAIT_HEAD_MAX - 1].node;
1607 }
1608
rcu_sr_get_wait_head(void)1609 static struct llist_node *rcu_sr_get_wait_head(void)
1610 {
1611 struct sr_wait_node *sr_wn;
1612 int i;
1613
1614 for (i = 0; i < SR_NORMAL_GP_WAIT_HEAD_MAX; i++) {
1615 sr_wn = &(rcu_state.srs_wait_nodes)[i];
1616
1617 if (!atomic_cmpxchg_acquire(&sr_wn->inuse, 0, 1))
1618 return &sr_wn->node;
1619 }
1620
1621 return NULL;
1622 }
1623
rcu_sr_put_wait_head(struct llist_node * node)1624 static void rcu_sr_put_wait_head(struct llist_node *node)
1625 {
1626 struct sr_wait_node *sr_wn = container_of(node, struct sr_wait_node, node);
1627
1628 atomic_set_release(&sr_wn->inuse, 0);
1629 }
1630
1631 /* Disabled by default. */
1632 static int rcu_normal_wake_from_gp;
1633 module_param(rcu_normal_wake_from_gp, int, 0644);
1634 static struct workqueue_struct *sync_wq;
1635
rcu_sr_normal_complete(struct llist_node * node)1636 static void rcu_sr_normal_complete(struct llist_node *node)
1637 {
1638 struct rcu_synchronize *rs = container_of(
1639 (struct rcu_head *) node, struct rcu_synchronize, head);
1640 unsigned long oldstate = (unsigned long) rs->head.func;
1641
1642 WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) &&
1643 !poll_state_synchronize_rcu(oldstate),
1644 "A full grace period is not passed yet: %lu",
1645 rcu_seq_diff(get_state_synchronize_rcu(), oldstate));
1646
1647 /* Finally. */
1648 complete(&rs->completion);
1649 }
1650
rcu_sr_normal_gp_cleanup_work(struct work_struct * work)1651 static void rcu_sr_normal_gp_cleanup_work(struct work_struct *work)
1652 {
1653 struct llist_node *done, *rcu, *next, *head;
1654
1655 /*
1656 * This work execution can potentially execute
1657 * while a new done tail is being updated by
1658 * grace period kthread in rcu_sr_normal_gp_cleanup().
1659 * So, read and updates of done tail need to
1660 * follow acq-rel semantics.
1661 *
1662 * Given that wq semantics guarantees that a single work
1663 * cannot execute concurrently by multiple kworkers,
1664 * the done tail list manipulations are protected here.
1665 */
1666 done = smp_load_acquire(&rcu_state.srs_done_tail);
1667 if (WARN_ON_ONCE(!done))
1668 return;
1669
1670 WARN_ON_ONCE(!rcu_sr_is_wait_head(done));
1671 head = done->next;
1672 done->next = NULL;
1673
1674 /*
1675 * The dummy node, which is pointed to by the
1676 * done tail which is acq-read above is not removed
1677 * here. This allows lockless additions of new
1678 * rcu_synchronize nodes in rcu_sr_normal_add_req(),
1679 * while the cleanup work executes. The dummy
1680 * nodes is removed, in next round of cleanup
1681 * work execution.
1682 */
1683 llist_for_each_safe(rcu, next, head) {
1684 if (!rcu_sr_is_wait_head(rcu)) {
1685 rcu_sr_normal_complete(rcu);
1686 continue;
1687 }
1688
1689 rcu_sr_put_wait_head(rcu);
1690 }
1691
1692 /* Order list manipulations with atomic access. */
1693 atomic_dec_return_release(&rcu_state.srs_cleanups_pending);
1694 }
1695
1696 /*
1697 * Helper function for rcu_gp_cleanup().
1698 */
rcu_sr_normal_gp_cleanup(void)1699 static void rcu_sr_normal_gp_cleanup(void)
1700 {
1701 struct llist_node *wait_tail, *next = NULL, *rcu = NULL;
1702 int done = 0;
1703
1704 wait_tail = rcu_state.srs_wait_tail;
1705 if (wait_tail == NULL)
1706 return;
1707
1708 rcu_state.srs_wait_tail = NULL;
1709 ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail);
1710 WARN_ON_ONCE(!rcu_sr_is_wait_head(wait_tail));
1711
1712 /*
1713 * Process (a) and (d) cases. See an illustration.
1714 */
1715 llist_for_each_safe(rcu, next, wait_tail->next) {
1716 if (rcu_sr_is_wait_head(rcu))
1717 break;
1718
1719 rcu_sr_normal_complete(rcu);
1720 // It can be last, update a next on this step.
1721 wait_tail->next = next;
1722
1723 if (++done == SR_MAX_USERS_WAKE_FROM_GP)
1724 break;
1725 }
1726
1727 /*
1728 * Fast path, no more users to process except putting the second last
1729 * wait head if no inflight-workers. If there are in-flight workers,
1730 * they will remove the last wait head.
1731 *
1732 * Note that the ACQUIRE orders atomic access with list manipulation.
1733 */
1734 if (wait_tail->next && wait_tail->next->next == NULL &&
1735 rcu_sr_is_wait_head(wait_tail->next) &&
1736 !atomic_read_acquire(&rcu_state.srs_cleanups_pending)) {
1737 rcu_sr_put_wait_head(wait_tail->next);
1738 wait_tail->next = NULL;
1739 }
1740
1741 /* Concurrent sr_normal_gp_cleanup work might observe this update. */
1742 ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_done_tail);
1743 smp_store_release(&rcu_state.srs_done_tail, wait_tail);
1744
1745 /*
1746 * We schedule a work in order to perform a final processing
1747 * of outstanding users(if still left) and releasing wait-heads
1748 * added by rcu_sr_normal_gp_init() call.
1749 */
1750 if (wait_tail->next) {
1751 atomic_inc(&rcu_state.srs_cleanups_pending);
1752 if (!queue_work(sync_wq, &rcu_state.srs_cleanup_work))
1753 atomic_dec(&rcu_state.srs_cleanups_pending);
1754 }
1755 }
1756
1757 /*
1758 * Helper function for rcu_gp_init().
1759 */
rcu_sr_normal_gp_init(void)1760 static bool rcu_sr_normal_gp_init(void)
1761 {
1762 struct llist_node *first;
1763 struct llist_node *wait_head;
1764 bool start_new_poll = false;
1765
1766 first = READ_ONCE(rcu_state.srs_next.first);
1767 if (!first || rcu_sr_is_wait_head(first))
1768 return start_new_poll;
1769
1770 wait_head = rcu_sr_get_wait_head();
1771 if (!wait_head) {
1772 // Kick another GP to retry.
1773 start_new_poll = true;
1774 return start_new_poll;
1775 }
1776
1777 /* Inject a wait-dummy-node. */
1778 llist_add(wait_head, &rcu_state.srs_next);
1779
1780 /*
1781 * A waiting list of rcu_synchronize nodes should be empty on
1782 * this step, since a GP-kthread, rcu_gp_init() -> gp_cleanup(),
1783 * rolls it over. If not, it is a BUG, warn a user.
1784 */
1785 WARN_ON_ONCE(rcu_state.srs_wait_tail != NULL);
1786 rcu_state.srs_wait_tail = wait_head;
1787 ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail);
1788
1789 return start_new_poll;
1790 }
1791
rcu_sr_normal_add_req(struct rcu_synchronize * rs)1792 static void rcu_sr_normal_add_req(struct rcu_synchronize *rs)
1793 {
1794 llist_add((struct llist_node *) &rs->head, &rcu_state.srs_next);
1795 }
1796
1797 /*
1798 * Initialize a new grace period. Return false if no grace period required.
1799 */
rcu_gp_init(void)1800 static noinline_for_stack bool rcu_gp_init(void)
1801 {
1802 unsigned long flags;
1803 unsigned long oldmask;
1804 unsigned long mask;
1805 struct rcu_data *rdp;
1806 struct rcu_node *rnp = rcu_get_root();
1807 bool start_new_poll;
1808
1809 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1810 raw_spin_lock_irq_rcu_node(rnp);
1811 if (!rcu_state.gp_flags) {
1812 /* Spurious wakeup, tell caller to go back to sleep. */
1813 raw_spin_unlock_irq_rcu_node(rnp);
1814 return false;
1815 }
1816 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1817
1818 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1819 /*
1820 * Grace period already in progress, don't start another.
1821 * Not supposed to be able to happen.
1822 */
1823 raw_spin_unlock_irq_rcu_node(rnp);
1824 return false;
1825 }
1826
1827 /* Advance to a new grace period and initialize state. */
1828 record_gp_stall_check_time();
1829 /*
1830 * A new wait segment must be started before gp_seq advanced, so
1831 * that previous gp waiters won't observe the new gp_seq.
1832 */
1833 start_new_poll = rcu_sr_normal_gp_init();
1834 /* Record GP times before starting GP, hence rcu_seq_start(). */
1835 rcu_seq_start(&rcu_state.gp_seq);
1836 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1837 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1838 rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
1839 raw_spin_unlock_irq_rcu_node(rnp);
1840
1841 /*
1842 * The "start_new_poll" is set to true, only when this GP is not able
1843 * to handle anything and there are outstanding users. It happens when
1844 * the rcu_sr_normal_gp_init() function was not able to insert a dummy
1845 * separator to the llist, because there were no left any dummy-nodes.
1846 *
1847 * Number of dummy-nodes is fixed, it could be that we are run out of
1848 * them, if so we start a new pool request to repeat a try. It is rare
1849 * and it means that a system is doing a slow processing of callbacks.
1850 */
1851 if (start_new_poll)
1852 (void) start_poll_synchronize_rcu();
1853
1854 /*
1855 * Apply per-leaf buffered online and offline operations to
1856 * the rcu_node tree. Note that this new grace period need not
1857 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1858 * offlining path, when combined with checks in this function,
1859 * will handle CPUs that are currently going offline or that will
1860 * go offline later. Please also refer to "Hotplug CPU" section
1861 * of RCU's Requirements documentation.
1862 */
1863 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1864 /* Exclude CPU hotplug operations. */
1865 rcu_for_each_leaf_node(rnp) {
1866 local_irq_disable();
1867 arch_spin_lock(&rcu_state.ofl_lock);
1868 raw_spin_lock_rcu_node(rnp);
1869 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1870 !rnp->wait_blkd_tasks) {
1871 /* Nothing to do on this leaf rcu_node structure. */
1872 raw_spin_unlock_rcu_node(rnp);
1873 arch_spin_unlock(&rcu_state.ofl_lock);
1874 local_irq_enable();
1875 continue;
1876 }
1877
1878 /* Record old state, apply changes to ->qsmaskinit field. */
1879 oldmask = rnp->qsmaskinit;
1880 rnp->qsmaskinit = rnp->qsmaskinitnext;
1881
1882 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1883 if (!oldmask != !rnp->qsmaskinit) {
1884 if (!oldmask) { /* First online CPU for rcu_node. */
1885 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1886 rcu_init_new_rnp(rnp);
1887 } else if (rcu_preempt_has_tasks(rnp)) {
1888 rnp->wait_blkd_tasks = true; /* blocked tasks */
1889 } else { /* Last offline CPU and can propagate. */
1890 rcu_cleanup_dead_rnp(rnp);
1891 }
1892 }
1893
1894 /*
1895 * If all waited-on tasks from prior grace period are
1896 * done, and if all this rcu_node structure's CPUs are
1897 * still offline, propagate up the rcu_node tree and
1898 * clear ->wait_blkd_tasks. Otherwise, if one of this
1899 * rcu_node structure's CPUs has since come back online,
1900 * simply clear ->wait_blkd_tasks.
1901 */
1902 if (rnp->wait_blkd_tasks &&
1903 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1904 rnp->wait_blkd_tasks = false;
1905 if (!rnp->qsmaskinit)
1906 rcu_cleanup_dead_rnp(rnp);
1907 }
1908
1909 raw_spin_unlock_rcu_node(rnp);
1910 arch_spin_unlock(&rcu_state.ofl_lock);
1911 local_irq_enable();
1912 }
1913 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1914
1915 /*
1916 * Set the quiescent-state-needed bits in all the rcu_node
1917 * structures for all currently online CPUs in breadth-first
1918 * order, starting from the root rcu_node structure, relying on the
1919 * layout of the tree within the rcu_state.node[] array. Note that
1920 * other CPUs will access only the leaves of the hierarchy, thus
1921 * seeing that no grace period is in progress, at least until the
1922 * corresponding leaf node has been initialized.
1923 *
1924 * The grace period cannot complete until the initialization
1925 * process finishes, because this kthread handles both.
1926 */
1927 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1928 rcu_for_each_node_breadth_first(rnp) {
1929 rcu_gp_slow(gp_init_delay);
1930 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1931 rdp = this_cpu_ptr(&rcu_data);
1932 rcu_preempt_check_blocked_tasks(rnp);
1933 rnp->qsmask = rnp->qsmaskinit;
1934 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1935 if (rnp == rdp->mynode)
1936 (void)__note_gp_changes(rnp, rdp);
1937 rcu_preempt_boost_start_gp(rnp);
1938 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1939 rnp->level, rnp->grplo,
1940 rnp->grphi, rnp->qsmask);
1941 /* Quiescent states for tasks on any now-offline CPUs. */
1942 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1943 rnp->rcu_gp_init_mask = mask;
1944 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1945 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1946 else
1947 raw_spin_unlock_irq_rcu_node(rnp);
1948 cond_resched_tasks_rcu_qs();
1949 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1950 }
1951
1952 // If strict, make all CPUs aware of new grace period.
1953 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1954 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1955
1956 return true;
1957 }
1958
1959 /*
1960 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1961 * time.
1962 */
rcu_gp_fqs_check_wake(int * gfp)1963 static bool rcu_gp_fqs_check_wake(int *gfp)
1964 {
1965 struct rcu_node *rnp = rcu_get_root();
1966
1967 // If under overload conditions, force an immediate FQS scan.
1968 if (*gfp & RCU_GP_FLAG_OVLD)
1969 return true;
1970
1971 // Someone like call_rcu() requested a force-quiescent-state scan.
1972 *gfp = READ_ONCE(rcu_state.gp_flags);
1973 if (*gfp & RCU_GP_FLAG_FQS)
1974 return true;
1975
1976 // The current grace period has completed.
1977 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1978 return true;
1979
1980 return false;
1981 }
1982
1983 /*
1984 * Do one round of quiescent-state forcing.
1985 */
rcu_gp_fqs(bool first_time)1986 static void rcu_gp_fqs(bool first_time)
1987 {
1988 int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall);
1989 struct rcu_node *rnp = rcu_get_root();
1990
1991 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1992 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1993
1994 WARN_ON_ONCE(nr_fqs > 3);
1995 /* Only countdown nr_fqs for stall purposes if jiffies moves. */
1996 if (nr_fqs) {
1997 if (nr_fqs == 1) {
1998 WRITE_ONCE(rcu_state.jiffies_stall,
1999 jiffies + rcu_jiffies_till_stall_check());
2000 }
2001 WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs);
2002 }
2003
2004 if (first_time) {
2005 /* Collect dyntick-idle snapshots. */
2006 force_qs_rnp(rcu_watching_snap_save);
2007 } else {
2008 /* Handle dyntick-idle and offline CPUs. */
2009 force_qs_rnp(rcu_watching_snap_recheck);
2010 }
2011 /* Clear flag to prevent immediate re-entry. */
2012 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2013 raw_spin_lock_irq_rcu_node(rnp);
2014 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & ~RCU_GP_FLAG_FQS);
2015 raw_spin_unlock_irq_rcu_node(rnp);
2016 }
2017 }
2018
2019 /*
2020 * Loop doing repeated quiescent-state forcing until the grace period ends.
2021 */
rcu_gp_fqs_loop(void)2022 static noinline_for_stack void rcu_gp_fqs_loop(void)
2023 {
2024 bool first_gp_fqs = true;
2025 int gf = 0;
2026 unsigned long j;
2027 int ret;
2028 struct rcu_node *rnp = rcu_get_root();
2029
2030 j = READ_ONCE(jiffies_till_first_fqs);
2031 if (rcu_state.cbovld)
2032 gf = RCU_GP_FLAG_OVLD;
2033 ret = 0;
2034 for (;;) {
2035 if (rcu_state.cbovld) {
2036 j = (j + 2) / 3;
2037 if (j <= 0)
2038 j = 1;
2039 }
2040 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
2041 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
2042 /*
2043 * jiffies_force_qs before RCU_GP_WAIT_FQS state
2044 * update; required for stall checks.
2045 */
2046 smp_wmb();
2047 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
2048 jiffies + (j ? 3 * j : 2));
2049 }
2050 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2051 TPS("fqswait"));
2052 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
2053 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
2054 rcu_gp_fqs_check_wake(&gf), j);
2055 rcu_gp_torture_wait();
2056 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
2057 /* Locking provides needed memory barriers. */
2058 /*
2059 * Exit the loop if the root rcu_node structure indicates that the grace period
2060 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check
2061 * is required only for single-node rcu_node trees because readers blocking
2062 * the current grace period are queued only on leaf rcu_node structures.
2063 * For multi-node trees, checking the root node's ->qsmask suffices, because a
2064 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
2065 * the corresponding leaf nodes have passed through their quiescent state.
2066 */
2067 if (!READ_ONCE(rnp->qsmask) &&
2068 !rcu_preempt_blocked_readers_cgp(rnp))
2069 break;
2070 /* If time for quiescent-state forcing, do it. */
2071 if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
2072 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
2073 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2074 TPS("fqsstart"));
2075 rcu_gp_fqs(first_gp_fqs);
2076 gf = 0;
2077 if (first_gp_fqs) {
2078 first_gp_fqs = false;
2079 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
2080 }
2081 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2082 TPS("fqsend"));
2083 cond_resched_tasks_rcu_qs();
2084 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2085 ret = 0; /* Force full wait till next FQS. */
2086 j = READ_ONCE(jiffies_till_next_fqs);
2087 } else {
2088 /* Deal with stray signal. */
2089 cond_resched_tasks_rcu_qs();
2090 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2091 WARN_ON(signal_pending(current));
2092 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2093 TPS("fqswaitsig"));
2094 ret = 1; /* Keep old FQS timing. */
2095 j = jiffies;
2096 if (time_after(jiffies, rcu_state.jiffies_force_qs))
2097 j = 1;
2098 else
2099 j = rcu_state.jiffies_force_qs - j;
2100 gf = 0;
2101 }
2102 }
2103 }
2104
2105 /*
2106 * Clean up after the old grace period.
2107 */
rcu_gp_cleanup(void)2108 static noinline void rcu_gp_cleanup(void)
2109 {
2110 int cpu;
2111 bool needgp = false;
2112 unsigned long gp_duration;
2113 unsigned long new_gp_seq;
2114 bool offloaded;
2115 struct rcu_data *rdp;
2116 struct rcu_node *rnp = rcu_get_root();
2117 struct swait_queue_head *sq;
2118
2119 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2120 raw_spin_lock_irq_rcu_node(rnp);
2121 rcu_state.gp_end = jiffies;
2122 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
2123 if (gp_duration > rcu_state.gp_max)
2124 rcu_state.gp_max = gp_duration;
2125
2126 /*
2127 * We know the grace period is complete, but to everyone else
2128 * it appears to still be ongoing. But it is also the case
2129 * that to everyone else it looks like there is nothing that
2130 * they can do to advance the grace period. It is therefore
2131 * safe for us to drop the lock in order to mark the grace
2132 * period as completed in all of the rcu_node structures.
2133 */
2134 rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
2135 raw_spin_unlock_irq_rcu_node(rnp);
2136
2137 /*
2138 * Propagate new ->gp_seq value to rcu_node structures so that
2139 * other CPUs don't have to wait until the start of the next grace
2140 * period to process their callbacks. This also avoids some nasty
2141 * RCU grace-period initialization races by forcing the end of
2142 * the current grace period to be completely recorded in all of
2143 * the rcu_node structures before the beginning of the next grace
2144 * period is recorded in any of the rcu_node structures.
2145 */
2146 new_gp_seq = rcu_state.gp_seq;
2147 rcu_seq_end(&new_gp_seq);
2148 rcu_for_each_node_breadth_first(rnp) {
2149 raw_spin_lock_irq_rcu_node(rnp);
2150 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2151 dump_blkd_tasks(rnp, 10);
2152 WARN_ON_ONCE(rnp->qsmask);
2153 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2154 if (!rnp->parent)
2155 smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
2156 rdp = this_cpu_ptr(&rcu_data);
2157 if (rnp == rdp->mynode)
2158 needgp = __note_gp_changes(rnp, rdp) || needgp;
2159 /* smp_mb() provided by prior unlock-lock pair. */
2160 needgp = rcu_future_gp_cleanup(rnp) || needgp;
2161 // Reset overload indication for CPUs no longer overloaded
2162 if (rcu_is_leaf_node(rnp))
2163 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
2164 rdp = per_cpu_ptr(&rcu_data, cpu);
2165 check_cb_ovld_locked(rdp, rnp);
2166 }
2167 sq = rcu_nocb_gp_get(rnp);
2168 raw_spin_unlock_irq_rcu_node(rnp);
2169 rcu_nocb_gp_cleanup(sq);
2170 cond_resched_tasks_rcu_qs();
2171 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2172 rcu_gp_slow(gp_cleanup_delay);
2173 }
2174 rnp = rcu_get_root();
2175 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2176
2177 /* Declare grace period done, trace first to use old GP number. */
2178 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2179 rcu_seq_end(&rcu_state.gp_seq);
2180 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2181 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
2182 /* Check for GP requests since above loop. */
2183 rdp = this_cpu_ptr(&rcu_data);
2184 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2185 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2186 TPS("CleanupMore"));
2187 needgp = true;
2188 }
2189 /* Advance CBs to reduce false positives below. */
2190 offloaded = rcu_rdp_is_offloaded(rdp);
2191 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2192
2193 // We get here if a grace period was needed (“needgp”)
2194 // and the above call to rcu_accelerate_cbs() did not set
2195 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records
2196 // the need for another grace period). The purpose
2197 // of the “offloaded” check is to avoid invoking
2198 // rcu_accelerate_cbs() on an offloaded CPU because we do not
2199 // hold the ->nocb_lock needed to safely access an offloaded
2200 // ->cblist. We do not want to acquire that lock because
2201 // it can be heavily contended during callback floods.
2202
2203 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2204 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2205 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
2206 } else {
2207
2208 // We get here either if there is no need for an
2209 // additional grace period or if rcu_accelerate_cbs() has
2210 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags.
2211 // So all we need to do is to clear all of the other
2212 // ->gp_flags bits.
2213
2214 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2215 }
2216 raw_spin_unlock_irq_rcu_node(rnp);
2217
2218 // Make synchronize_rcu() users aware of the end of old grace period.
2219 rcu_sr_normal_gp_cleanup();
2220
2221 // If strict, make all CPUs aware of the end of the old grace period.
2222 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2223 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
2224 }
2225
2226 /*
2227 * Body of kthread that handles grace periods.
2228 */
rcu_gp_kthread(void * unused)2229 static int __noreturn rcu_gp_kthread(void *unused)
2230 {
2231 rcu_bind_gp_kthread();
2232 for (;;) {
2233
2234 /* Handle grace-period start. */
2235 for (;;) {
2236 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2237 TPS("reqwait"));
2238 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
2239 swait_event_idle_exclusive(rcu_state.gp_wq,
2240 READ_ONCE(rcu_state.gp_flags) &
2241 RCU_GP_FLAG_INIT);
2242 rcu_gp_torture_wait();
2243 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
2244 /* Locking provides needed memory barrier. */
2245 if (rcu_gp_init())
2246 break;
2247 cond_resched_tasks_rcu_qs();
2248 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2249 WARN_ON(signal_pending(current));
2250 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2251 TPS("reqwaitsig"));
2252 }
2253
2254 /* Handle quiescent-state forcing. */
2255 rcu_gp_fqs_loop();
2256
2257 /* Handle grace-period end. */
2258 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
2259 rcu_gp_cleanup();
2260 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
2261 }
2262 }
2263
2264 /*
2265 * Report a full set of quiescent states to the rcu_state data structure.
2266 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2267 * another grace period is required. Whether we wake the grace-period
2268 * kthread or it awakens itself for the next round of quiescent-state
2269 * forcing, that kthread will clean up after the just-completed grace
2270 * period. Note that the caller must hold rnp->lock, which is released
2271 * before return.
2272 */
rcu_report_qs_rsp(unsigned long flags)2273 static void rcu_report_qs_rsp(unsigned long flags)
2274 __releases(rcu_get_root()->lock)
2275 {
2276 raw_lockdep_assert_held_rcu_node(rcu_get_root());
2277 WARN_ON_ONCE(!rcu_gp_in_progress());
2278 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS);
2279 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2280 rcu_gp_kthread_wake();
2281 }
2282
2283 /*
2284 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2285 * Allows quiescent states for a group of CPUs to be reported at one go
2286 * to the specified rcu_node structure, though all the CPUs in the group
2287 * must be represented by the same rcu_node structure (which need not be a
2288 * leaf rcu_node structure, though it often will be). The gps parameter
2289 * is the grace-period snapshot, which means that the quiescent states
2290 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
2291 * must be held upon entry, and it is released before return.
2292 *
2293 * As a special case, if mask is zero, the bit-already-cleared check is
2294 * disabled. This allows propagating quiescent state due to resumed tasks
2295 * during grace-period initialization.
2296 */
rcu_report_qs_rnp(unsigned long mask,struct rcu_node * rnp,unsigned long gps,unsigned long flags)2297 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2298 unsigned long gps, unsigned long flags)
2299 __releases(rnp->lock)
2300 {
2301 unsigned long oldmask = 0;
2302 struct rcu_node *rnp_c;
2303
2304 raw_lockdep_assert_held_rcu_node(rnp);
2305
2306 /* Walk up the rcu_node hierarchy. */
2307 for (;;) {
2308 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2309
2310 /*
2311 * Our bit has already been cleared, or the
2312 * relevant grace period is already over, so done.
2313 */
2314 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2315 return;
2316 }
2317 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2318 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2319 rcu_preempt_blocked_readers_cgp(rnp));
2320 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2321 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2322 mask, rnp->qsmask, rnp->level,
2323 rnp->grplo, rnp->grphi,
2324 !!rnp->gp_tasks);
2325 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2326
2327 /* Other bits still set at this level, so done. */
2328 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2329 return;
2330 }
2331 rnp->completedqs = rnp->gp_seq;
2332 mask = rnp->grpmask;
2333 if (rnp->parent == NULL) {
2334
2335 /* No more levels. Exit loop holding root lock. */
2336
2337 break;
2338 }
2339 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2340 rnp_c = rnp;
2341 rnp = rnp->parent;
2342 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2343 oldmask = READ_ONCE(rnp_c->qsmask);
2344 }
2345
2346 /*
2347 * Get here if we are the last CPU to pass through a quiescent
2348 * state for this grace period. Invoke rcu_report_qs_rsp()
2349 * to clean up and start the next grace period if one is needed.
2350 */
2351 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2352 }
2353
2354 /*
2355 * Record a quiescent state for all tasks that were previously queued
2356 * on the specified rcu_node structure and that were blocking the current
2357 * RCU grace period. The caller must hold the corresponding rnp->lock with
2358 * irqs disabled, and this lock is released upon return, but irqs remain
2359 * disabled.
2360 */
2361 static void __maybe_unused
rcu_report_unblock_qs_rnp(struct rcu_node * rnp,unsigned long flags)2362 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2363 __releases(rnp->lock)
2364 {
2365 unsigned long gps;
2366 unsigned long mask;
2367 struct rcu_node *rnp_p;
2368
2369 raw_lockdep_assert_held_rcu_node(rnp);
2370 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2371 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2372 rnp->qsmask != 0) {
2373 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2374 return; /* Still need more quiescent states! */
2375 }
2376
2377 rnp->completedqs = rnp->gp_seq;
2378 rnp_p = rnp->parent;
2379 if (rnp_p == NULL) {
2380 /*
2381 * Only one rcu_node structure in the tree, so don't
2382 * try to report up to its nonexistent parent!
2383 */
2384 rcu_report_qs_rsp(flags);
2385 return;
2386 }
2387
2388 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2389 gps = rnp->gp_seq;
2390 mask = rnp->grpmask;
2391 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2392 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2393 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2394 }
2395
2396 /*
2397 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2398 * structure. This must be called from the specified CPU.
2399 */
2400 static void
rcu_report_qs_rdp(struct rcu_data * rdp)2401 rcu_report_qs_rdp(struct rcu_data *rdp)
2402 {
2403 unsigned long flags;
2404 unsigned long mask;
2405 struct rcu_node *rnp;
2406
2407 WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2408 rnp = rdp->mynode;
2409 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2410 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2411 rdp->gpwrap) {
2412
2413 /*
2414 * The grace period in which this quiescent state was
2415 * recorded has ended, so don't report it upwards.
2416 * We will instead need a new quiescent state that lies
2417 * within the current grace period.
2418 */
2419 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2420 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2421 return;
2422 }
2423 mask = rdp->grpmask;
2424 rdp->core_needs_qs = false;
2425 if ((rnp->qsmask & mask) == 0) {
2426 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2427 } else {
2428 /*
2429 * This GP can't end until cpu checks in, so all of our
2430 * callbacks can be processed during the next GP.
2431 *
2432 * NOCB kthreads have their own way to deal with that...
2433 */
2434 if (!rcu_rdp_is_offloaded(rdp)) {
2435 /*
2436 * The current GP has not yet ended, so it
2437 * should not be possible for rcu_accelerate_cbs()
2438 * to return true. So complain, but don't awaken.
2439 */
2440 WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp));
2441 }
2442
2443 rcu_disable_urgency_upon_qs(rdp);
2444 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2445 /* ^^^ Released rnp->lock */
2446 }
2447 }
2448
2449 /*
2450 * Check to see if there is a new grace period of which this CPU
2451 * is not yet aware, and if so, set up local rcu_data state for it.
2452 * Otherwise, see if this CPU has just passed through its first
2453 * quiescent state for this grace period, and record that fact if so.
2454 */
2455 static void
rcu_check_quiescent_state(struct rcu_data * rdp)2456 rcu_check_quiescent_state(struct rcu_data *rdp)
2457 {
2458 /* Check for grace-period ends and beginnings. */
2459 note_gp_changes(rdp);
2460
2461 /*
2462 * Does this CPU still need to do its part for current grace period?
2463 * If no, return and let the other CPUs do their part as well.
2464 */
2465 if (!rdp->core_needs_qs)
2466 return;
2467
2468 /*
2469 * Was there a quiescent state since the beginning of the grace
2470 * period? If no, then exit and wait for the next call.
2471 */
2472 if (rdp->cpu_no_qs.b.norm)
2473 return;
2474
2475 /*
2476 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2477 * judge of that).
2478 */
2479 rcu_report_qs_rdp(rdp);
2480 }
2481
2482 /* Return true if callback-invocation time limit exceeded. */
rcu_do_batch_check_time(long count,long tlimit,bool jlimit_check,unsigned long jlimit)2483 static bool rcu_do_batch_check_time(long count, long tlimit,
2484 bool jlimit_check, unsigned long jlimit)
2485 {
2486 // Invoke local_clock() only once per 32 consecutive callbacks.
2487 return unlikely(tlimit) &&
2488 (!likely(count & 31) ||
2489 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) &&
2490 jlimit_check && time_after(jiffies, jlimit))) &&
2491 local_clock() >= tlimit;
2492 }
2493
2494 /*
2495 * Invoke any RCU callbacks that have made it to the end of their grace
2496 * period. Throttle as specified by rdp->blimit.
2497 */
rcu_do_batch(struct rcu_data * rdp)2498 static void rcu_do_batch(struct rcu_data *rdp)
2499 {
2500 long bl;
2501 long count = 0;
2502 int div;
2503 bool __maybe_unused empty;
2504 unsigned long flags;
2505 unsigned long jlimit;
2506 bool jlimit_check = false;
2507 long pending;
2508 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2509 struct rcu_head *rhp;
2510 long tlimit = 0;
2511
2512 /* If no callbacks are ready, just return. */
2513 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2514 trace_rcu_batch_start(rcu_state.name,
2515 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2516 trace_rcu_batch_end(rcu_state.name, 0,
2517 !rcu_segcblist_empty(&rdp->cblist),
2518 need_resched(), is_idle_task(current),
2519 rcu_is_callbacks_kthread(rdp));
2520 return;
2521 }
2522
2523 /*
2524 * Extract the list of ready callbacks, disabling IRQs to prevent
2525 * races with call_rcu() from interrupt handlers. Leave the
2526 * callback counts, as rcu_barrier() needs to be conservative.
2527 *
2528 * Callbacks execution is fully ordered against preceding grace period
2529 * completion (materialized by rnp->gp_seq update) thanks to the
2530 * smp_mb__after_unlock_lock() upon node locking required for callbacks
2531 * advancing. In NOCB mode this ordering is then further relayed through
2532 * the nocb locking that protects both callbacks advancing and extraction.
2533 */
2534 rcu_nocb_lock_irqsave(rdp, flags);
2535 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2536 pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL);
2537 div = READ_ONCE(rcu_divisor);
2538 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2539 bl = max(rdp->blimit, pending >> div);
2540 if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) &&
2541 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) {
2542 const long npj = NSEC_PER_SEC / HZ;
2543 long rrn = READ_ONCE(rcu_resched_ns);
2544
2545 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2546 tlimit = local_clock() + rrn;
2547 jlimit = jiffies + (rrn + npj + 1) / npj;
2548 jlimit_check = true;
2549 }
2550 trace_rcu_batch_start(rcu_state.name,
2551 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2552 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2553 if (rcu_rdp_is_offloaded(rdp))
2554 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2555
2556 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2557 rcu_nocb_unlock_irqrestore(rdp, flags);
2558
2559 /* Invoke callbacks. */
2560 tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2561 rhp = rcu_cblist_dequeue(&rcl);
2562
2563 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2564 rcu_callback_t f;
2565
2566 count++;
2567 debug_rcu_head_unqueue(rhp);
2568
2569 rcu_lock_acquire(&rcu_callback_map);
2570 trace_rcu_invoke_callback(rcu_state.name, rhp);
2571
2572 f = rhp->func;
2573 debug_rcu_head_callback(rhp);
2574 WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2575 f(rhp);
2576
2577 rcu_lock_release(&rcu_callback_map);
2578
2579 /*
2580 * Stop only if limit reached and CPU has something to do.
2581 */
2582 if (in_serving_softirq()) {
2583 if (count >= bl && (need_resched() || !is_idle_task(current)))
2584 break;
2585 /*
2586 * Make sure we don't spend too much time here and deprive other
2587 * softirq vectors of CPU cycles.
2588 */
2589 if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit))
2590 break;
2591 } else {
2592 // In rcuc/rcuoc context, so no worries about
2593 // depriving other softirq vectors of CPU cycles.
2594 local_bh_enable();
2595 lockdep_assert_irqs_enabled();
2596 cond_resched_tasks_rcu_qs();
2597 lockdep_assert_irqs_enabled();
2598 local_bh_disable();
2599 // But rcuc kthreads can delay quiescent-state
2600 // reporting, so check time limits for them.
2601 if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING &&
2602 rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) {
2603 rdp->rcu_cpu_has_work = 1;
2604 break;
2605 }
2606 }
2607 }
2608
2609 rcu_nocb_lock_irqsave(rdp, flags);
2610 rdp->n_cbs_invoked += count;
2611 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2612 is_idle_task(current), rcu_is_callbacks_kthread(rdp));
2613
2614 /* Update counts and requeue any remaining callbacks. */
2615 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2616 rcu_segcblist_add_len(&rdp->cblist, -count);
2617
2618 /* Reinstate batch limit if we have worked down the excess. */
2619 count = rcu_segcblist_n_cbs(&rdp->cblist);
2620 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2621 rdp->blimit = blimit;
2622
2623 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2624 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2625 rdp->qlen_last_fqs_check = 0;
2626 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2627 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2628 rdp->qlen_last_fqs_check = count;
2629
2630 /*
2631 * The following usually indicates a double call_rcu(). To track
2632 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2633 */
2634 empty = rcu_segcblist_empty(&rdp->cblist);
2635 WARN_ON_ONCE(count == 0 && !empty);
2636 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2637 count != 0 && empty);
2638 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2639 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2640
2641 rcu_nocb_unlock_irqrestore(rdp, flags);
2642
2643 tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2644 }
2645
2646 /*
2647 * This function is invoked from each scheduling-clock interrupt,
2648 * and checks to see if this CPU is in a non-context-switch quiescent
2649 * state, for example, user mode or idle loop. It also schedules RCU
2650 * core processing. If the current grace period has gone on too long,
2651 * it will ask the scheduler to manufacture a context switch for the sole
2652 * purpose of providing the needed quiescent state.
2653 */
rcu_sched_clock_irq(int user)2654 void rcu_sched_clock_irq(int user)
2655 {
2656 unsigned long j;
2657
2658 if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2659 j = jiffies;
2660 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2661 __this_cpu_write(rcu_data.last_sched_clock, j);
2662 }
2663 trace_rcu_utilization(TPS("Start scheduler-tick"));
2664 lockdep_assert_irqs_disabled();
2665 raw_cpu_inc(rcu_data.ticks_this_gp);
2666 /* The load-acquire pairs with the store-release setting to true. */
2667 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2668 /* Idle and userspace execution already are quiescent states. */
2669 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2670 set_tsk_need_resched(current);
2671 set_preempt_need_resched();
2672 }
2673 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2674 }
2675 rcu_flavor_sched_clock_irq(user);
2676 if (rcu_pending(user))
2677 invoke_rcu_core();
2678 if (user || rcu_is_cpu_rrupt_from_idle())
2679 rcu_note_voluntary_context_switch(current);
2680 lockdep_assert_irqs_disabled();
2681
2682 trace_rcu_utilization(TPS("End scheduler-tick"));
2683 }
2684
2685 /*
2686 * Scan the leaf rcu_node structures. For each structure on which all
2687 * CPUs have reported a quiescent state and on which there are tasks
2688 * blocking the current grace period, initiate RCU priority boosting.
2689 * Otherwise, invoke the specified function to check dyntick state for
2690 * each CPU that has not yet reported a quiescent state.
2691 */
force_qs_rnp(int (* f)(struct rcu_data * rdp))2692 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2693 {
2694 int cpu;
2695 unsigned long flags;
2696 struct rcu_node *rnp;
2697
2698 rcu_state.cbovld = rcu_state.cbovldnext;
2699 rcu_state.cbovldnext = false;
2700 rcu_for_each_leaf_node(rnp) {
2701 unsigned long mask = 0;
2702 unsigned long rsmask = 0;
2703
2704 cond_resched_tasks_rcu_qs();
2705 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2706 rcu_state.cbovldnext |= !!rnp->cbovldmask;
2707 if (rnp->qsmask == 0) {
2708 if (rcu_preempt_blocked_readers_cgp(rnp)) {
2709 /*
2710 * No point in scanning bits because they
2711 * are all zero. But we might need to
2712 * priority-boost blocked readers.
2713 */
2714 rcu_initiate_boost(rnp, flags);
2715 /* rcu_initiate_boost() releases rnp->lock */
2716 continue;
2717 }
2718 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2719 continue;
2720 }
2721 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2722 struct rcu_data *rdp;
2723 int ret;
2724
2725 rdp = per_cpu_ptr(&rcu_data, cpu);
2726 ret = f(rdp);
2727 if (ret > 0) {
2728 mask |= rdp->grpmask;
2729 rcu_disable_urgency_upon_qs(rdp);
2730 }
2731 if (ret < 0)
2732 rsmask |= rdp->grpmask;
2733 }
2734 if (mask != 0) {
2735 /* Idle/offline CPUs, report (releases rnp->lock). */
2736 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2737 } else {
2738 /* Nothing to do here, so just drop the lock. */
2739 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2740 }
2741
2742 for_each_leaf_node_cpu_mask(rnp, cpu, rsmask)
2743 resched_cpu(cpu);
2744 }
2745 }
2746
2747 /*
2748 * Force quiescent states on reluctant CPUs, and also detect which
2749 * CPUs are in dyntick-idle mode.
2750 */
rcu_force_quiescent_state(void)2751 void rcu_force_quiescent_state(void)
2752 {
2753 unsigned long flags;
2754 bool ret;
2755 struct rcu_node *rnp;
2756 struct rcu_node *rnp_old = NULL;
2757
2758 if (!rcu_gp_in_progress())
2759 return;
2760 /* Funnel through hierarchy to reduce memory contention. */
2761 rnp = raw_cpu_read(rcu_data.mynode);
2762 for (; rnp != NULL; rnp = rnp->parent) {
2763 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2764 !raw_spin_trylock(&rnp->fqslock);
2765 if (rnp_old != NULL)
2766 raw_spin_unlock(&rnp_old->fqslock);
2767 if (ret)
2768 return;
2769 rnp_old = rnp;
2770 }
2771 /* rnp_old == rcu_get_root(), rnp == NULL. */
2772
2773 /* Reached the root of the rcu_node tree, acquire lock. */
2774 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2775 raw_spin_unlock(&rnp_old->fqslock);
2776 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2777 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2778 return; /* Someone beat us to it. */
2779 }
2780 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS);
2781 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2782 rcu_gp_kthread_wake();
2783 }
2784 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2785
2786 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2787 // grace periods.
strict_work_handler(struct work_struct * work)2788 static void strict_work_handler(struct work_struct *work)
2789 {
2790 rcu_read_lock();
2791 rcu_read_unlock();
2792 }
2793
2794 /* Perform RCU core processing work for the current CPU. */
rcu_core(void)2795 static __latent_entropy void rcu_core(void)
2796 {
2797 unsigned long flags;
2798 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2799 struct rcu_node *rnp = rdp->mynode;
2800
2801 if (cpu_is_offline(smp_processor_id()))
2802 return;
2803 trace_rcu_utilization(TPS("Start RCU core"));
2804 WARN_ON_ONCE(!rdp->beenonline);
2805
2806 /* Report any deferred quiescent states if preemption enabled. */
2807 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2808 rcu_preempt_deferred_qs(current);
2809 } else if (rcu_preempt_need_deferred_qs(current)) {
2810 set_tsk_need_resched(current);
2811 set_preempt_need_resched();
2812 }
2813
2814 /* Update RCU state based on any recent quiescent states. */
2815 rcu_check_quiescent_state(rdp);
2816
2817 /* No grace period and unregistered callbacks? */
2818 if (!rcu_gp_in_progress() &&
2819 rcu_segcblist_is_enabled(&rdp->cblist) && !rcu_rdp_is_offloaded(rdp)) {
2820 local_irq_save(flags);
2821 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2822 rcu_accelerate_cbs_unlocked(rnp, rdp);
2823 local_irq_restore(flags);
2824 }
2825
2826 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2827
2828 /* If there are callbacks ready, invoke them. */
2829 if (!rcu_rdp_is_offloaded(rdp) && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2830 likely(READ_ONCE(rcu_scheduler_fully_active))) {
2831 rcu_do_batch(rdp);
2832 /* Re-invoke RCU core processing if there are callbacks remaining. */
2833 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2834 invoke_rcu_core();
2835 }
2836
2837 /* Do any needed deferred wakeups of rcuo kthreads. */
2838 do_nocb_deferred_wakeup(rdp);
2839 trace_rcu_utilization(TPS("End RCU core"));
2840
2841 // If strict GPs, schedule an RCU reader in a clean environment.
2842 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2843 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2844 }
2845
rcu_core_si(void)2846 static void rcu_core_si(void)
2847 {
2848 rcu_core();
2849 }
2850
rcu_wake_cond(struct task_struct * t,int status)2851 static void rcu_wake_cond(struct task_struct *t, int status)
2852 {
2853 /*
2854 * If the thread is yielding, only wake it when this
2855 * is invoked from idle
2856 */
2857 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2858 wake_up_process(t);
2859 }
2860
invoke_rcu_core_kthread(void)2861 static void invoke_rcu_core_kthread(void)
2862 {
2863 struct task_struct *t;
2864 unsigned long flags;
2865
2866 local_irq_save(flags);
2867 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2868 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2869 if (t != NULL && t != current)
2870 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2871 local_irq_restore(flags);
2872 }
2873
2874 /*
2875 * Wake up this CPU's rcuc kthread to do RCU core processing.
2876 */
invoke_rcu_core(void)2877 static void invoke_rcu_core(void)
2878 {
2879 if (!cpu_online(smp_processor_id()))
2880 return;
2881 if (use_softirq)
2882 raise_softirq(RCU_SOFTIRQ);
2883 else
2884 invoke_rcu_core_kthread();
2885 }
2886
rcu_cpu_kthread_park(unsigned int cpu)2887 static void rcu_cpu_kthread_park(unsigned int cpu)
2888 {
2889 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2890 }
2891
rcu_cpu_kthread_should_run(unsigned int cpu)2892 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2893 {
2894 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2895 }
2896
2897 /*
2898 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2899 * the RCU softirq used in configurations of RCU that do not support RCU
2900 * priority boosting.
2901 */
rcu_cpu_kthread(unsigned int cpu)2902 static void rcu_cpu_kthread(unsigned int cpu)
2903 {
2904 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2905 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2906 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2907 int spincnt;
2908
2909 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2910 for (spincnt = 0; spincnt < 10; spincnt++) {
2911 WRITE_ONCE(*j, jiffies);
2912 local_bh_disable();
2913 *statusp = RCU_KTHREAD_RUNNING;
2914 local_irq_disable();
2915 work = *workp;
2916 WRITE_ONCE(*workp, 0);
2917 local_irq_enable();
2918 if (work)
2919 rcu_core();
2920 local_bh_enable();
2921 if (!READ_ONCE(*workp)) {
2922 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2923 *statusp = RCU_KTHREAD_WAITING;
2924 return;
2925 }
2926 }
2927 *statusp = RCU_KTHREAD_YIELDING;
2928 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2929 schedule_timeout_idle(2);
2930 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2931 *statusp = RCU_KTHREAD_WAITING;
2932 WRITE_ONCE(*j, jiffies);
2933 }
2934
2935 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2936 .store = &rcu_data.rcu_cpu_kthread_task,
2937 .thread_should_run = rcu_cpu_kthread_should_run,
2938 .thread_fn = rcu_cpu_kthread,
2939 .thread_comm = "rcuc/%u",
2940 .setup = rcu_cpu_kthread_setup,
2941 .park = rcu_cpu_kthread_park,
2942 };
2943
2944 /*
2945 * Spawn per-CPU RCU core processing kthreads.
2946 */
rcu_spawn_core_kthreads(void)2947 static int __init rcu_spawn_core_kthreads(void)
2948 {
2949 int cpu;
2950
2951 for_each_possible_cpu(cpu)
2952 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2953 if (use_softirq)
2954 return 0;
2955 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2956 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2957 return 0;
2958 }
2959
rcutree_enqueue(struct rcu_data * rdp,struct rcu_head * head,rcu_callback_t func)2960 static void rcutree_enqueue(struct rcu_data *rdp, struct rcu_head *head, rcu_callback_t func)
2961 {
2962 rcu_segcblist_enqueue(&rdp->cblist, head);
2963 if (__is_kvfree_rcu_offset((unsigned long)func))
2964 trace_rcu_kvfree_callback(rcu_state.name, head,
2965 (unsigned long)func,
2966 rcu_segcblist_n_cbs(&rdp->cblist));
2967 else
2968 trace_rcu_callback(rcu_state.name, head,
2969 rcu_segcblist_n_cbs(&rdp->cblist));
2970 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2971 }
2972
2973 /*
2974 * Handle any core-RCU processing required by a call_rcu() invocation.
2975 */
call_rcu_core(struct rcu_data * rdp,struct rcu_head * head,rcu_callback_t func,unsigned long flags)2976 static void call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2977 rcu_callback_t func, unsigned long flags)
2978 {
2979 rcutree_enqueue(rdp, head, func);
2980 /*
2981 * If called from an extended quiescent state, invoke the RCU
2982 * core in order to force a re-evaluation of RCU's idleness.
2983 */
2984 if (!rcu_is_watching())
2985 invoke_rcu_core();
2986
2987 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2988 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2989 return;
2990
2991 /*
2992 * Force the grace period if too many callbacks or too long waiting.
2993 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2994 * if some other CPU has recently done so. Also, don't bother
2995 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2996 * is the only one waiting for a grace period to complete.
2997 */
2998 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2999 rdp->qlen_last_fqs_check + qhimark)) {
3000
3001 /* Are we ignoring a completed grace period? */
3002 note_gp_changes(rdp);
3003
3004 /* Start a new grace period if one not already started. */
3005 if (!rcu_gp_in_progress()) {
3006 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
3007 } else {
3008 /* Give the grace period a kick. */
3009 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
3010 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
3011 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
3012 rcu_force_quiescent_state();
3013 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
3014 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
3015 }
3016 }
3017 }
3018
3019 /*
3020 * RCU callback function to leak a callback.
3021 */
rcu_leak_callback(struct rcu_head * rhp)3022 static void rcu_leak_callback(struct rcu_head *rhp)
3023 {
3024 }
3025
3026 /*
3027 * Check and if necessary update the leaf rcu_node structure's
3028 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
3029 * number of queued RCU callbacks. The caller must hold the leaf rcu_node
3030 * structure's ->lock.
3031 */
check_cb_ovld_locked(struct rcu_data * rdp,struct rcu_node * rnp)3032 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
3033 {
3034 raw_lockdep_assert_held_rcu_node(rnp);
3035 if (qovld_calc <= 0)
3036 return; // Early boot and wildcard value set.
3037 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
3038 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
3039 else
3040 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
3041 }
3042
3043 /*
3044 * Check and if necessary update the leaf rcu_node structure's
3045 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
3046 * number of queued RCU callbacks. No locks need be held, but the
3047 * caller must have disabled interrupts.
3048 *
3049 * Note that this function ignores the possibility that there are a lot
3050 * of callbacks all of which have already seen the end of their respective
3051 * grace periods. This omission is due to the need for no-CBs CPUs to
3052 * be holding ->nocb_lock to do this check, which is too heavy for a
3053 * common-case operation.
3054 */
check_cb_ovld(struct rcu_data * rdp)3055 static void check_cb_ovld(struct rcu_data *rdp)
3056 {
3057 struct rcu_node *const rnp = rdp->mynode;
3058
3059 if (qovld_calc <= 0 ||
3060 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
3061 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
3062 return; // Early boot wildcard value or already set correctly.
3063 raw_spin_lock_rcu_node(rnp);
3064 check_cb_ovld_locked(rdp, rnp);
3065 raw_spin_unlock_rcu_node(rnp);
3066 }
3067
3068 static void
__call_rcu_common(struct rcu_head * head,rcu_callback_t func,bool lazy_in)3069 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in)
3070 {
3071 static atomic_t doublefrees;
3072 unsigned long flags;
3073 bool lazy;
3074 struct rcu_data *rdp;
3075
3076 /* Misaligned rcu_head! */
3077 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3078
3079 /* Avoid NULL dereference if callback is NULL. */
3080 if (WARN_ON_ONCE(!func))
3081 return;
3082
3083 if (debug_rcu_head_queue(head)) {
3084 /*
3085 * Probable double call_rcu(), so leak the callback.
3086 * Use rcu:rcu_callback trace event to find the previous
3087 * time callback was passed to call_rcu().
3088 */
3089 if (atomic_inc_return(&doublefrees) < 4) {
3090 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func);
3091 mem_dump_obj(head);
3092 }
3093 WRITE_ONCE(head->func, rcu_leak_callback);
3094 return;
3095 }
3096 head->func = func;
3097 head->next = NULL;
3098 kasan_record_aux_stack_noalloc(head);
3099 local_irq_save(flags);
3100 rdp = this_cpu_ptr(&rcu_data);
3101 lazy = lazy_in && !rcu_async_should_hurry();
3102
3103 /* Add the callback to our list. */
3104 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
3105 // This can trigger due to call_rcu() from offline CPU:
3106 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
3107 WARN_ON_ONCE(!rcu_is_watching());
3108 // Very early boot, before rcu_init(). Initialize if needed
3109 // and then drop through to queue the callback.
3110 if (rcu_segcblist_empty(&rdp->cblist))
3111 rcu_segcblist_init(&rdp->cblist);
3112 }
3113
3114 check_cb_ovld(rdp);
3115
3116 if (unlikely(rcu_rdp_is_offloaded(rdp)))
3117 call_rcu_nocb(rdp, head, func, flags, lazy);
3118 else
3119 call_rcu_core(rdp, head, func, flags);
3120 local_irq_restore(flags);
3121 }
3122
3123 #ifdef CONFIG_RCU_LAZY
3124 static bool enable_rcu_lazy __read_mostly = !IS_ENABLED(CONFIG_RCU_LAZY_DEFAULT_OFF);
3125 module_param(enable_rcu_lazy, bool, 0444);
3126
3127 /**
3128 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
3129 * flush all lazy callbacks (including the new one) to the main ->cblist while
3130 * doing so.
3131 *
3132 * @head: structure to be used for queueing the RCU updates.
3133 * @func: actual callback function to be invoked after the grace period
3134 *
3135 * The callback function will be invoked some time after a full grace
3136 * period elapses, in other words after all pre-existing RCU read-side
3137 * critical sections have completed.
3138 *
3139 * Use this API instead of call_rcu() if you don't want the callback to be
3140 * invoked after very long periods of time, which can happen on systems without
3141 * memory pressure and on systems which are lightly loaded or mostly idle.
3142 * This function will cause callbacks to be invoked sooner than later at the
3143 * expense of extra power. Other than that, this function is identical to, and
3144 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
3145 * ordering and other functionality.
3146 */
call_rcu_hurry(struct rcu_head * head,rcu_callback_t func)3147 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
3148 {
3149 __call_rcu_common(head, func, false);
3150 }
3151 EXPORT_SYMBOL_GPL(call_rcu_hurry);
3152 #else
3153 #define enable_rcu_lazy false
3154 #endif
3155
3156 /**
3157 * call_rcu() - Queue an RCU callback for invocation after a grace period.
3158 * By default the callbacks are 'lazy' and are kept hidden from the main
3159 * ->cblist to prevent starting of grace periods too soon.
3160 * If you desire grace periods to start very soon, use call_rcu_hurry().
3161 *
3162 * @head: structure to be used for queueing the RCU updates.
3163 * @func: actual callback function to be invoked after the grace period
3164 *
3165 * The callback function will be invoked some time after a full grace
3166 * period elapses, in other words after all pre-existing RCU read-side
3167 * critical sections have completed. However, the callback function
3168 * might well execute concurrently with RCU read-side critical sections
3169 * that started after call_rcu() was invoked.
3170 *
3171 * RCU read-side critical sections are delimited by rcu_read_lock()
3172 * and rcu_read_unlock(), and may be nested. In addition, but only in
3173 * v5.0 and later, regions of code across which interrupts, preemption,
3174 * or softirqs have been disabled also serve as RCU read-side critical
3175 * sections. This includes hardware interrupt handlers, softirq handlers,
3176 * and NMI handlers.
3177 *
3178 * Note that all CPUs must agree that the grace period extended beyond
3179 * all pre-existing RCU read-side critical section. On systems with more
3180 * than one CPU, this means that when "func()" is invoked, each CPU is
3181 * guaranteed to have executed a full memory barrier since the end of its
3182 * last RCU read-side critical section whose beginning preceded the call
3183 * to call_rcu(). It also means that each CPU executing an RCU read-side
3184 * critical section that continues beyond the start of "func()" must have
3185 * executed a memory barrier after the call_rcu() but before the beginning
3186 * of that RCU read-side critical section. Note that these guarantees
3187 * include CPUs that are offline, idle, or executing in user mode, as
3188 * well as CPUs that are executing in the kernel.
3189 *
3190 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
3191 * resulting RCU callback function "func()", then both CPU A and CPU B are
3192 * guaranteed to execute a full memory barrier during the time interval
3193 * between the call to call_rcu() and the invocation of "func()" -- even
3194 * if CPU A and CPU B are the same CPU (but again only if the system has
3195 * more than one CPU).
3196 *
3197 * Implementation of these memory-ordering guarantees is described here:
3198 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3199 */
call_rcu(struct rcu_head * head,rcu_callback_t func)3200 void call_rcu(struct rcu_head *head, rcu_callback_t func)
3201 {
3202 __call_rcu_common(head, func, enable_rcu_lazy);
3203 }
3204 EXPORT_SYMBOL_GPL(call_rcu);
3205
3206 static struct workqueue_struct *rcu_reclaim_wq;
3207
3208 /* Maximum number of jiffies to wait before draining a batch. */
3209 #define KFREE_DRAIN_JIFFIES (5 * HZ)
3210 #define KFREE_N_BATCHES 2
3211 #define FREE_N_CHANNELS 2
3212
3213 /**
3214 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
3215 * @list: List node. All blocks are linked between each other
3216 * @gp_snap: Snapshot of RCU state for objects placed to this bulk
3217 * @nr_records: Number of active pointers in the array
3218 * @records: Array of the kvfree_rcu() pointers
3219 */
3220 struct kvfree_rcu_bulk_data {
3221 struct list_head list;
3222 struct rcu_gp_oldstate gp_snap;
3223 unsigned long nr_records;
3224 void *records[] __counted_by(nr_records);
3225 };
3226
3227 /*
3228 * This macro defines how many entries the "records" array
3229 * will contain. It is based on the fact that the size of
3230 * kvfree_rcu_bulk_data structure becomes exactly one page.
3231 */
3232 #define KVFREE_BULK_MAX_ENTR \
3233 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
3234
3235 /**
3236 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
3237 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
3238 * @head_free: List of kfree_rcu() objects waiting for a grace period
3239 * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees.
3240 * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
3241 * @krcp: Pointer to @kfree_rcu_cpu structure
3242 */
3243
3244 struct kfree_rcu_cpu_work {
3245 struct rcu_work rcu_work;
3246 struct rcu_head *head_free;
3247 struct rcu_gp_oldstate head_free_gp_snap;
3248 struct list_head bulk_head_free[FREE_N_CHANNELS];
3249 struct kfree_rcu_cpu *krcp;
3250 };
3251
3252 /**
3253 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
3254 * @head: List of kfree_rcu() objects not yet waiting for a grace period
3255 * @head_gp_snap: Snapshot of RCU state for objects placed to "@head"
3256 * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
3257 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
3258 * @lock: Synchronize access to this structure
3259 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
3260 * @initialized: The @rcu_work fields have been initialized
3261 * @head_count: Number of objects in rcu_head singular list
3262 * @bulk_count: Number of objects in bulk-list
3263 * @bkvcache:
3264 * A simple cache list that contains objects for reuse purpose.
3265 * In order to save some per-cpu space the list is singular.
3266 * Even though it is lockless an access has to be protected by the
3267 * per-cpu lock.
3268 * @page_cache_work: A work to refill the cache when it is empty
3269 * @backoff_page_cache_fill: Delay cache refills
3270 * @work_in_progress: Indicates that page_cache_work is running
3271 * @hrtimer: A hrtimer for scheduling a page_cache_work
3272 * @nr_bkv_objs: number of allocated objects at @bkvcache.
3273 *
3274 * This is a per-CPU structure. The reason that it is not included in
3275 * the rcu_data structure is to permit this code to be extracted from
3276 * the RCU files. Such extraction could allow further optimization of
3277 * the interactions with the slab allocators.
3278 */
3279 struct kfree_rcu_cpu {
3280 // Objects queued on a linked list
3281 // through their rcu_head structures.
3282 struct rcu_head *head;
3283 unsigned long head_gp_snap;
3284 atomic_t head_count;
3285
3286 // Objects queued on a bulk-list.
3287 struct list_head bulk_head[FREE_N_CHANNELS];
3288 atomic_t bulk_count[FREE_N_CHANNELS];
3289
3290 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
3291 raw_spinlock_t lock;
3292 struct delayed_work monitor_work;
3293 bool initialized;
3294
3295 struct delayed_work page_cache_work;
3296 atomic_t backoff_page_cache_fill;
3297 atomic_t work_in_progress;
3298 struct hrtimer hrtimer;
3299
3300 struct llist_head bkvcache;
3301 int nr_bkv_objs;
3302 };
3303
3304 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
3305 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
3306 };
3307
3308 static __always_inline void
debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data * bhead)3309 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
3310 {
3311 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3312 int i;
3313
3314 for (i = 0; i < bhead->nr_records; i++)
3315 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
3316 #endif
3317 }
3318
3319 static inline struct kfree_rcu_cpu *
krc_this_cpu_lock(unsigned long * flags)3320 krc_this_cpu_lock(unsigned long *flags)
3321 {
3322 struct kfree_rcu_cpu *krcp;
3323
3324 local_irq_save(*flags); // For safely calling this_cpu_ptr().
3325 krcp = this_cpu_ptr(&krc);
3326 raw_spin_lock(&krcp->lock);
3327
3328 return krcp;
3329 }
3330
3331 static inline void
krc_this_cpu_unlock(struct kfree_rcu_cpu * krcp,unsigned long flags)3332 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
3333 {
3334 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3335 }
3336
3337 static inline struct kvfree_rcu_bulk_data *
get_cached_bnode(struct kfree_rcu_cpu * krcp)3338 get_cached_bnode(struct kfree_rcu_cpu *krcp)
3339 {
3340 if (!krcp->nr_bkv_objs)
3341 return NULL;
3342
3343 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
3344 return (struct kvfree_rcu_bulk_data *)
3345 llist_del_first(&krcp->bkvcache);
3346 }
3347
3348 static inline bool
put_cached_bnode(struct kfree_rcu_cpu * krcp,struct kvfree_rcu_bulk_data * bnode)3349 put_cached_bnode(struct kfree_rcu_cpu *krcp,
3350 struct kvfree_rcu_bulk_data *bnode)
3351 {
3352 // Check the limit.
3353 if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3354 return false;
3355
3356 llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3357 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
3358 return true;
3359 }
3360
3361 static int
drain_page_cache(struct kfree_rcu_cpu * krcp)3362 drain_page_cache(struct kfree_rcu_cpu *krcp)
3363 {
3364 unsigned long flags;
3365 struct llist_node *page_list, *pos, *n;
3366 int freed = 0;
3367
3368 if (!rcu_min_cached_objs)
3369 return 0;
3370
3371 raw_spin_lock_irqsave(&krcp->lock, flags);
3372 page_list = llist_del_all(&krcp->bkvcache);
3373 WRITE_ONCE(krcp->nr_bkv_objs, 0);
3374 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3375
3376 llist_for_each_safe(pos, n, page_list) {
3377 free_page((unsigned long)pos);
3378 freed++;
3379 }
3380
3381 return freed;
3382 }
3383
3384 static void
kvfree_rcu_bulk(struct kfree_rcu_cpu * krcp,struct kvfree_rcu_bulk_data * bnode,int idx)3385 kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp,
3386 struct kvfree_rcu_bulk_data *bnode, int idx)
3387 {
3388 unsigned long flags;
3389 int i;
3390
3391 if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) {
3392 debug_rcu_bhead_unqueue(bnode);
3393 rcu_lock_acquire(&rcu_callback_map);
3394 if (idx == 0) { // kmalloc() / kfree().
3395 trace_rcu_invoke_kfree_bulk_callback(
3396 rcu_state.name, bnode->nr_records,
3397 bnode->records);
3398
3399 kfree_bulk(bnode->nr_records, bnode->records);
3400 } else { // vmalloc() / vfree().
3401 for (i = 0; i < bnode->nr_records; i++) {
3402 trace_rcu_invoke_kvfree_callback(
3403 rcu_state.name, bnode->records[i], 0);
3404
3405 vfree(bnode->records[i]);
3406 }
3407 }
3408 rcu_lock_release(&rcu_callback_map);
3409 }
3410
3411 raw_spin_lock_irqsave(&krcp->lock, flags);
3412 if (put_cached_bnode(krcp, bnode))
3413 bnode = NULL;
3414 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3415
3416 if (bnode)
3417 free_page((unsigned long) bnode);
3418
3419 cond_resched_tasks_rcu_qs();
3420 }
3421
3422 static void
kvfree_rcu_list(struct rcu_head * head)3423 kvfree_rcu_list(struct rcu_head *head)
3424 {
3425 struct rcu_head *next;
3426
3427 for (; head; head = next) {
3428 void *ptr = (void *) head->func;
3429 unsigned long offset = (void *) head - ptr;
3430
3431 next = head->next;
3432 debug_rcu_head_unqueue((struct rcu_head *)ptr);
3433 rcu_lock_acquire(&rcu_callback_map);
3434 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3435
3436 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3437 kvfree(ptr);
3438
3439 rcu_lock_release(&rcu_callback_map);
3440 cond_resched_tasks_rcu_qs();
3441 }
3442 }
3443
3444 /*
3445 * This function is invoked in workqueue context after a grace period.
3446 * It frees all the objects queued on ->bulk_head_free or ->head_free.
3447 */
kfree_rcu_work(struct work_struct * work)3448 static void kfree_rcu_work(struct work_struct *work)
3449 {
3450 unsigned long flags;
3451 struct kvfree_rcu_bulk_data *bnode, *n;
3452 struct list_head bulk_head[FREE_N_CHANNELS];
3453 struct rcu_head *head;
3454 struct kfree_rcu_cpu *krcp;
3455 struct kfree_rcu_cpu_work *krwp;
3456 struct rcu_gp_oldstate head_gp_snap;
3457 int i;
3458
3459 krwp = container_of(to_rcu_work(work),
3460 struct kfree_rcu_cpu_work, rcu_work);
3461 krcp = krwp->krcp;
3462
3463 raw_spin_lock_irqsave(&krcp->lock, flags);
3464 // Channels 1 and 2.
3465 for (i = 0; i < FREE_N_CHANNELS; i++)
3466 list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]);
3467
3468 // Channel 3.
3469 head = krwp->head_free;
3470 krwp->head_free = NULL;
3471 head_gp_snap = krwp->head_free_gp_snap;
3472 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3473
3474 // Handle the first two channels.
3475 for (i = 0; i < FREE_N_CHANNELS; i++) {
3476 // Start from the tail page, so a GP is likely passed for it.
3477 list_for_each_entry_safe(bnode, n, &bulk_head[i], list)
3478 kvfree_rcu_bulk(krcp, bnode, i);
3479 }
3480
3481 /*
3482 * This is used when the "bulk" path can not be used for the
3483 * double-argument of kvfree_rcu(). This happens when the
3484 * page-cache is empty, which means that objects are instead
3485 * queued on a linked list through their rcu_head structures.
3486 * This list is named "Channel 3".
3487 */
3488 if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap)))
3489 kvfree_rcu_list(head);
3490 }
3491
3492 static bool
need_offload_krc(struct kfree_rcu_cpu * krcp)3493 need_offload_krc(struct kfree_rcu_cpu *krcp)
3494 {
3495 int i;
3496
3497 for (i = 0; i < FREE_N_CHANNELS; i++)
3498 if (!list_empty(&krcp->bulk_head[i]))
3499 return true;
3500
3501 return !!READ_ONCE(krcp->head);
3502 }
3503
3504 static bool
need_wait_for_krwp_work(struct kfree_rcu_cpu_work * krwp)3505 need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp)
3506 {
3507 int i;
3508
3509 for (i = 0; i < FREE_N_CHANNELS; i++)
3510 if (!list_empty(&krwp->bulk_head_free[i]))
3511 return true;
3512
3513 return !!krwp->head_free;
3514 }
3515
krc_count(struct kfree_rcu_cpu * krcp)3516 static int krc_count(struct kfree_rcu_cpu *krcp)
3517 {
3518 int sum = atomic_read(&krcp->head_count);
3519 int i;
3520
3521 for (i = 0; i < FREE_N_CHANNELS; i++)
3522 sum += atomic_read(&krcp->bulk_count[i]);
3523
3524 return sum;
3525 }
3526
3527 static void
__schedule_delayed_monitor_work(struct kfree_rcu_cpu * krcp)3528 __schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3529 {
3530 long delay, delay_left;
3531
3532 delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
3533 if (delayed_work_pending(&krcp->monitor_work)) {
3534 delay_left = krcp->monitor_work.timer.expires - jiffies;
3535 if (delay < delay_left)
3536 mod_delayed_work(rcu_reclaim_wq, &krcp->monitor_work, delay);
3537 return;
3538 }
3539 queue_delayed_work(rcu_reclaim_wq, &krcp->monitor_work, delay);
3540 }
3541
3542 static void
schedule_delayed_monitor_work(struct kfree_rcu_cpu * krcp)3543 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3544 {
3545 unsigned long flags;
3546
3547 raw_spin_lock_irqsave(&krcp->lock, flags);
3548 __schedule_delayed_monitor_work(krcp);
3549 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3550 }
3551
3552 static void
kvfree_rcu_drain_ready(struct kfree_rcu_cpu * krcp)3553 kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp)
3554 {
3555 struct list_head bulk_ready[FREE_N_CHANNELS];
3556 struct kvfree_rcu_bulk_data *bnode, *n;
3557 struct rcu_head *head_ready = NULL;
3558 unsigned long flags;
3559 int i;
3560
3561 raw_spin_lock_irqsave(&krcp->lock, flags);
3562 for (i = 0; i < FREE_N_CHANNELS; i++) {
3563 INIT_LIST_HEAD(&bulk_ready[i]);
3564
3565 list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) {
3566 if (!poll_state_synchronize_rcu_full(&bnode->gp_snap))
3567 break;
3568
3569 atomic_sub(bnode->nr_records, &krcp->bulk_count[i]);
3570 list_move(&bnode->list, &bulk_ready[i]);
3571 }
3572 }
3573
3574 if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) {
3575 head_ready = krcp->head;
3576 atomic_set(&krcp->head_count, 0);
3577 WRITE_ONCE(krcp->head, NULL);
3578 }
3579 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3580
3581 for (i = 0; i < FREE_N_CHANNELS; i++) {
3582 list_for_each_entry_safe(bnode, n, &bulk_ready[i], list)
3583 kvfree_rcu_bulk(krcp, bnode, i);
3584 }
3585
3586 if (head_ready)
3587 kvfree_rcu_list(head_ready);
3588 }
3589
3590 /*
3591 * Return: %true if a work is queued, %false otherwise.
3592 */
3593 static bool
kvfree_rcu_queue_batch(struct kfree_rcu_cpu * krcp)3594 kvfree_rcu_queue_batch(struct kfree_rcu_cpu *krcp)
3595 {
3596 unsigned long flags;
3597 bool queued = false;
3598 int i, j;
3599
3600 raw_spin_lock_irqsave(&krcp->lock, flags);
3601
3602 // Attempt to start a new batch.
3603 for (i = 0; i < KFREE_N_BATCHES; i++) {
3604 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3605
3606 // Try to detach bulk_head or head and attach it, only when
3607 // all channels are free. Any channel is not free means at krwp
3608 // there is on-going rcu work to handle krwp's free business.
3609 if (need_wait_for_krwp_work(krwp))
3610 continue;
3611
3612 // kvfree_rcu_drain_ready() might handle this krcp, if so give up.
3613 if (need_offload_krc(krcp)) {
3614 // Channel 1 corresponds to the SLAB-pointer bulk path.
3615 // Channel 2 corresponds to vmalloc-pointer bulk path.
3616 for (j = 0; j < FREE_N_CHANNELS; j++) {
3617 if (list_empty(&krwp->bulk_head_free[j])) {
3618 atomic_set(&krcp->bulk_count[j], 0);
3619 list_replace_init(&krcp->bulk_head[j],
3620 &krwp->bulk_head_free[j]);
3621 }
3622 }
3623
3624 // Channel 3 corresponds to both SLAB and vmalloc
3625 // objects queued on the linked list.
3626 if (!krwp->head_free) {
3627 krwp->head_free = krcp->head;
3628 get_state_synchronize_rcu_full(&krwp->head_free_gp_snap);
3629 atomic_set(&krcp->head_count, 0);
3630 WRITE_ONCE(krcp->head, NULL);
3631 }
3632
3633 // One work is per one batch, so there are three
3634 // "free channels", the batch can handle. Break
3635 // the loop since it is done with this CPU thus
3636 // queuing an RCU work is _always_ success here.
3637 queued = queue_rcu_work(rcu_reclaim_wq, &krwp->rcu_work);
3638 WARN_ON_ONCE(!queued);
3639 break;
3640 }
3641 }
3642
3643 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3644 return queued;
3645 }
3646
3647 /*
3648 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3649 */
kfree_rcu_monitor(struct work_struct * work)3650 static void kfree_rcu_monitor(struct work_struct *work)
3651 {
3652 struct kfree_rcu_cpu *krcp = container_of(work,
3653 struct kfree_rcu_cpu, monitor_work.work);
3654
3655 // Drain ready for reclaim.
3656 kvfree_rcu_drain_ready(krcp);
3657
3658 // Queue a batch for a rest.
3659 kvfree_rcu_queue_batch(krcp);
3660
3661 // If there is nothing to detach, it means that our job is
3662 // successfully done here. In case of having at least one
3663 // of the channels that is still busy we should rearm the
3664 // work to repeat an attempt. Because previous batches are
3665 // still in progress.
3666 if (need_offload_krc(krcp))
3667 schedule_delayed_monitor_work(krcp);
3668 }
3669
3670 static enum hrtimer_restart
schedule_page_work_fn(struct hrtimer * t)3671 schedule_page_work_fn(struct hrtimer *t)
3672 {
3673 struct kfree_rcu_cpu *krcp =
3674 container_of(t, struct kfree_rcu_cpu, hrtimer);
3675
3676 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3677 return HRTIMER_NORESTART;
3678 }
3679
fill_page_cache_func(struct work_struct * work)3680 static void fill_page_cache_func(struct work_struct *work)
3681 {
3682 struct kvfree_rcu_bulk_data *bnode;
3683 struct kfree_rcu_cpu *krcp =
3684 container_of(work, struct kfree_rcu_cpu,
3685 page_cache_work.work);
3686 unsigned long flags;
3687 int nr_pages;
3688 bool pushed;
3689 int i;
3690
3691 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3692 1 : rcu_min_cached_objs;
3693
3694 for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) {
3695 bnode = (struct kvfree_rcu_bulk_data *)
3696 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3697
3698 if (!bnode)
3699 break;
3700
3701 raw_spin_lock_irqsave(&krcp->lock, flags);
3702 pushed = put_cached_bnode(krcp, bnode);
3703 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3704
3705 if (!pushed) {
3706 free_page((unsigned long) bnode);
3707 break;
3708 }
3709 }
3710
3711 atomic_set(&krcp->work_in_progress, 0);
3712 atomic_set(&krcp->backoff_page_cache_fill, 0);
3713 }
3714
3715 static void
run_page_cache_worker(struct kfree_rcu_cpu * krcp)3716 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3717 {
3718 // If cache disabled, bail out.
3719 if (!rcu_min_cached_objs)
3720 return;
3721
3722 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3723 !atomic_xchg(&krcp->work_in_progress, 1)) {
3724 if (atomic_read(&krcp->backoff_page_cache_fill)) {
3725 queue_delayed_work(rcu_reclaim_wq,
3726 &krcp->page_cache_work,
3727 msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3728 } else {
3729 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3730 krcp->hrtimer.function = schedule_page_work_fn;
3731 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3732 }
3733 }
3734 }
3735
3736 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3737 // state specified by flags. If can_alloc is true, the caller must
3738 // be schedulable and not be holding any locks or mutexes that might be
3739 // acquired by the memory allocator or anything that it might invoke.
3740 // Returns true if ptr was successfully recorded, else the caller must
3741 // use a fallback.
3742 static inline bool
add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu ** krcp,unsigned long * flags,void * ptr,bool can_alloc)3743 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3744 unsigned long *flags, void *ptr, bool can_alloc)
3745 {
3746 struct kvfree_rcu_bulk_data *bnode;
3747 int idx;
3748
3749 *krcp = krc_this_cpu_lock(flags);
3750 if (unlikely(!(*krcp)->initialized))
3751 return false;
3752
3753 idx = !!is_vmalloc_addr(ptr);
3754 bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx],
3755 struct kvfree_rcu_bulk_data, list);
3756
3757 /* Check if a new block is required. */
3758 if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) {
3759 bnode = get_cached_bnode(*krcp);
3760 if (!bnode && can_alloc) {
3761 krc_this_cpu_unlock(*krcp, *flags);
3762
3763 // __GFP_NORETRY - allows a light-weight direct reclaim
3764 // what is OK from minimizing of fallback hitting point of
3765 // view. Apart of that it forbids any OOM invoking what is
3766 // also beneficial since we are about to release memory soon.
3767 //
3768 // __GFP_NOMEMALLOC - prevents from consuming of all the
3769 // memory reserves. Please note we have a fallback path.
3770 //
3771 // __GFP_NOWARN - it is supposed that an allocation can
3772 // be failed under low memory or high memory pressure
3773 // scenarios.
3774 bnode = (struct kvfree_rcu_bulk_data *)
3775 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3776 raw_spin_lock_irqsave(&(*krcp)->lock, *flags);
3777 }
3778
3779 if (!bnode)
3780 return false;
3781
3782 // Initialize the new block and attach it.
3783 bnode->nr_records = 0;
3784 list_add(&bnode->list, &(*krcp)->bulk_head[idx]);
3785 }
3786
3787 // Finally insert and update the GP for this page.
3788 bnode->nr_records++;
3789 bnode->records[bnode->nr_records - 1] = ptr;
3790 get_state_synchronize_rcu_full(&bnode->gp_snap);
3791 atomic_inc(&(*krcp)->bulk_count[idx]);
3792
3793 return true;
3794 }
3795
3796 /*
3797 * Queue a request for lazy invocation of the appropriate free routine
3798 * after a grace period. Please note that three paths are maintained,
3799 * two for the common case using arrays of pointers and a third one that
3800 * is used only when the main paths cannot be used, for example, due to
3801 * memory pressure.
3802 *
3803 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3804 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3805 * be free'd in workqueue context. This allows us to: batch requests together to
3806 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3807 */
kvfree_call_rcu(struct rcu_head * head,void * ptr)3808 void kvfree_call_rcu(struct rcu_head *head, void *ptr)
3809 {
3810 unsigned long flags;
3811 struct kfree_rcu_cpu *krcp;
3812 bool success;
3813
3814 /*
3815 * Please note there is a limitation for the head-less
3816 * variant, that is why there is a clear rule for such
3817 * objects: it can be used from might_sleep() context
3818 * only. For other places please embed an rcu_head to
3819 * your data.
3820 */
3821 if (!head)
3822 might_sleep();
3823
3824 // Queue the object but don't yet schedule the batch.
3825 if (debug_rcu_head_queue(ptr)) {
3826 // Probable double kfree_rcu(), just leak.
3827 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3828 __func__, head);
3829
3830 // Mark as success and leave.
3831 return;
3832 }
3833
3834 kasan_record_aux_stack_noalloc(ptr);
3835 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3836 if (!success) {
3837 run_page_cache_worker(krcp);
3838
3839 if (head == NULL)
3840 // Inline if kvfree_rcu(one_arg) call.
3841 goto unlock_return;
3842
3843 head->func = ptr;
3844 head->next = krcp->head;
3845 WRITE_ONCE(krcp->head, head);
3846 atomic_inc(&krcp->head_count);
3847
3848 // Take a snapshot for this krcp.
3849 krcp->head_gp_snap = get_state_synchronize_rcu();
3850 success = true;
3851 }
3852
3853 /*
3854 * The kvfree_rcu() caller considers the pointer freed at this point
3855 * and likely removes any references to it. Since the actual slab
3856 * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore
3857 * this object (no scanning or false positives reporting).
3858 */
3859 kmemleak_ignore(ptr);
3860
3861 // Set timer to drain after KFREE_DRAIN_JIFFIES.
3862 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
3863 __schedule_delayed_monitor_work(krcp);
3864
3865 unlock_return:
3866 krc_this_cpu_unlock(krcp, flags);
3867
3868 /*
3869 * Inline kvfree() after synchronize_rcu(). We can do
3870 * it from might_sleep() context only, so the current
3871 * CPU can pass the QS state.
3872 */
3873 if (!success) {
3874 debug_rcu_head_unqueue((struct rcu_head *) ptr);
3875 synchronize_rcu();
3876 kvfree(ptr);
3877 }
3878 }
3879 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3880
3881 /**
3882 * kvfree_rcu_barrier - Wait until all in-flight kvfree_rcu() complete.
3883 *
3884 * Note that a single argument of kvfree_rcu() call has a slow path that
3885 * triggers synchronize_rcu() following by freeing a pointer. It is done
3886 * before the return from the function. Therefore for any single-argument
3887 * call that will result in a kfree() to a cache that is to be destroyed
3888 * during module exit, it is developer's responsibility to ensure that all
3889 * such calls have returned before the call to kmem_cache_destroy().
3890 */
kvfree_rcu_barrier(void)3891 void kvfree_rcu_barrier(void)
3892 {
3893 struct kfree_rcu_cpu_work *krwp;
3894 struct kfree_rcu_cpu *krcp;
3895 bool queued;
3896 int i, cpu;
3897
3898 /*
3899 * Firstly we detach objects and queue them over an RCU-batch
3900 * for all CPUs. Finally queued works are flushed for each CPU.
3901 *
3902 * Please note. If there are outstanding batches for a particular
3903 * CPU, those have to be finished first following by queuing a new.
3904 */
3905 for_each_possible_cpu(cpu) {
3906 krcp = per_cpu_ptr(&krc, cpu);
3907
3908 /*
3909 * Check if this CPU has any objects which have been queued for a
3910 * new GP completion. If not(means nothing to detach), we are done
3911 * with it. If any batch is pending/running for this "krcp", below
3912 * per-cpu flush_rcu_work() waits its completion(see last step).
3913 */
3914 if (!need_offload_krc(krcp))
3915 continue;
3916
3917 while (1) {
3918 /*
3919 * If we are not able to queue a new RCU work it means:
3920 * - batches for this CPU are still in flight which should
3921 * be flushed first and then repeat;
3922 * - no objects to detach, because of concurrency.
3923 */
3924 queued = kvfree_rcu_queue_batch(krcp);
3925
3926 /*
3927 * Bail out, if there is no need to offload this "krcp"
3928 * anymore. As noted earlier it can run concurrently.
3929 */
3930 if (queued || !need_offload_krc(krcp))
3931 break;
3932
3933 /* There are ongoing batches. */
3934 for (i = 0; i < KFREE_N_BATCHES; i++) {
3935 krwp = &(krcp->krw_arr[i]);
3936 flush_rcu_work(&krwp->rcu_work);
3937 }
3938 }
3939 }
3940
3941 /*
3942 * Now we guarantee that all objects are flushed.
3943 */
3944 for_each_possible_cpu(cpu) {
3945 krcp = per_cpu_ptr(&krc, cpu);
3946
3947 /*
3948 * A monitor work can drain ready to reclaim objects
3949 * directly. Wait its completion if running or pending.
3950 */
3951 cancel_delayed_work_sync(&krcp->monitor_work);
3952
3953 for (i = 0; i < KFREE_N_BATCHES; i++) {
3954 krwp = &(krcp->krw_arr[i]);
3955 flush_rcu_work(&krwp->rcu_work);
3956 }
3957 }
3958 }
3959 EXPORT_SYMBOL_GPL(kvfree_rcu_barrier);
3960
3961 static unsigned long
kfree_rcu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)3962 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3963 {
3964 int cpu;
3965 unsigned long count = 0;
3966
3967 /* Snapshot count of all CPUs */
3968 for_each_possible_cpu(cpu) {
3969 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3970
3971 count += krc_count(krcp);
3972 count += READ_ONCE(krcp->nr_bkv_objs);
3973 atomic_set(&krcp->backoff_page_cache_fill, 1);
3974 }
3975
3976 return count == 0 ? SHRINK_EMPTY : count;
3977 }
3978
3979 static unsigned long
kfree_rcu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)3980 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3981 {
3982 int cpu, freed = 0;
3983
3984 for_each_possible_cpu(cpu) {
3985 int count;
3986 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3987
3988 count = krc_count(krcp);
3989 count += drain_page_cache(krcp);
3990 kfree_rcu_monitor(&krcp->monitor_work.work);
3991
3992 sc->nr_to_scan -= count;
3993 freed += count;
3994
3995 if (sc->nr_to_scan <= 0)
3996 break;
3997 }
3998
3999 return freed == 0 ? SHRINK_STOP : freed;
4000 }
4001
kfree_rcu_scheduler_running(void)4002 void __init kfree_rcu_scheduler_running(void)
4003 {
4004 int cpu;
4005
4006 for_each_possible_cpu(cpu) {
4007 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4008
4009 if (need_offload_krc(krcp))
4010 schedule_delayed_monitor_work(krcp);
4011 }
4012 }
4013
4014 /*
4015 * During early boot, any blocking grace-period wait automatically
4016 * implies a grace period.
4017 *
4018 * Later on, this could in theory be the case for kernels built with
4019 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
4020 * is not a common case. Furthermore, this optimization would cause
4021 * the rcu_gp_oldstate structure to expand by 50%, so this potential
4022 * grace-period optimization is ignored once the scheduler is running.
4023 */
rcu_blocking_is_gp(void)4024 static int rcu_blocking_is_gp(void)
4025 {
4026 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) {
4027 might_sleep();
4028 return false;
4029 }
4030 return true;
4031 }
4032
4033 /*
4034 * Helper function for the synchronize_rcu() API.
4035 */
synchronize_rcu_normal(void)4036 static void synchronize_rcu_normal(void)
4037 {
4038 struct rcu_synchronize rs;
4039
4040 trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("request"));
4041
4042 if (!READ_ONCE(rcu_normal_wake_from_gp)) {
4043 wait_rcu_gp(call_rcu_hurry);
4044 goto trace_complete_out;
4045 }
4046
4047 init_rcu_head_on_stack(&rs.head);
4048 init_completion(&rs.completion);
4049
4050 /*
4051 * This code might be preempted, therefore take a GP
4052 * snapshot before adding a request.
4053 */
4054 if (IS_ENABLED(CONFIG_PROVE_RCU))
4055 rs.head.func = (void *) get_state_synchronize_rcu();
4056
4057 rcu_sr_normal_add_req(&rs);
4058
4059 /* Kick a GP and start waiting. */
4060 (void) start_poll_synchronize_rcu();
4061
4062 /* Now we can wait. */
4063 wait_for_completion(&rs.completion);
4064 destroy_rcu_head_on_stack(&rs.head);
4065
4066 trace_complete_out:
4067 trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("complete"));
4068 }
4069
4070 /**
4071 * synchronize_rcu - wait until a grace period has elapsed.
4072 *
4073 * Control will return to the caller some time after a full grace
4074 * period has elapsed, in other words after all currently executing RCU
4075 * read-side critical sections have completed. Note, however, that
4076 * upon return from synchronize_rcu(), the caller might well be executing
4077 * concurrently with new RCU read-side critical sections that began while
4078 * synchronize_rcu() was waiting.
4079 *
4080 * RCU read-side critical sections are delimited by rcu_read_lock()
4081 * and rcu_read_unlock(), and may be nested. In addition, but only in
4082 * v5.0 and later, regions of code across which interrupts, preemption,
4083 * or softirqs have been disabled also serve as RCU read-side critical
4084 * sections. This includes hardware interrupt handlers, softirq handlers,
4085 * and NMI handlers.
4086 *
4087 * Note that this guarantee implies further memory-ordering guarantees.
4088 * On systems with more than one CPU, when synchronize_rcu() returns,
4089 * each CPU is guaranteed to have executed a full memory barrier since
4090 * the end of its last RCU read-side critical section whose beginning
4091 * preceded the call to synchronize_rcu(). In addition, each CPU having
4092 * an RCU read-side critical section that extends beyond the return from
4093 * synchronize_rcu() is guaranteed to have executed a full memory barrier
4094 * after the beginning of synchronize_rcu() and before the beginning of
4095 * that RCU read-side critical section. Note that these guarantees include
4096 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
4097 * that are executing in the kernel.
4098 *
4099 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
4100 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
4101 * to have executed a full memory barrier during the execution of
4102 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
4103 * again only if the system has more than one CPU).
4104 *
4105 * Implementation of these memory-ordering guarantees is described here:
4106 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
4107 */
synchronize_rcu(void)4108 void synchronize_rcu(void)
4109 {
4110 unsigned long flags;
4111 struct rcu_node *rnp;
4112
4113 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
4114 lock_is_held(&rcu_lock_map) ||
4115 lock_is_held(&rcu_sched_lock_map),
4116 "Illegal synchronize_rcu() in RCU read-side critical section");
4117 if (!rcu_blocking_is_gp()) {
4118 if (rcu_gp_is_expedited())
4119 synchronize_rcu_expedited();
4120 else
4121 synchronize_rcu_normal();
4122 return;
4123 }
4124
4125 // Context allows vacuous grace periods.
4126 // Note well that this code runs with !PREEMPT && !SMP.
4127 // In addition, all code that advances grace periods runs at
4128 // process level. Therefore, this normal GP overlaps with other
4129 // normal GPs only by being fully nested within them, which allows
4130 // reuse of ->gp_seq_polled_snap.
4131 rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
4132 rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
4133
4134 // Update the normal grace-period counters to record
4135 // this grace period, but only those used by the boot CPU.
4136 // The rcu_scheduler_starting() will take care of the rest of
4137 // these counters.
4138 local_irq_save(flags);
4139 WARN_ON_ONCE(num_online_cpus() > 1);
4140 rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
4141 for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
4142 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4143 local_irq_restore(flags);
4144 }
4145 EXPORT_SYMBOL_GPL(synchronize_rcu);
4146
4147 /**
4148 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
4149 * @rgosp: Place to put state cookie
4150 *
4151 * Stores into @rgosp a value that will always be treated by functions
4152 * like poll_state_synchronize_rcu_full() as a cookie whose grace period
4153 * has already completed.
4154 */
get_completed_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)4155 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
4156 {
4157 rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
4158 rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
4159 }
4160 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
4161
4162 /**
4163 * get_state_synchronize_rcu - Snapshot current RCU state
4164 *
4165 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
4166 * or poll_state_synchronize_rcu() to determine whether or not a full
4167 * grace period has elapsed in the meantime.
4168 */
get_state_synchronize_rcu(void)4169 unsigned long get_state_synchronize_rcu(void)
4170 {
4171 /*
4172 * Any prior manipulation of RCU-protected data must happen
4173 * before the load from ->gp_seq.
4174 */
4175 smp_mb(); /* ^^^ */
4176 return rcu_seq_snap(&rcu_state.gp_seq_polled);
4177 }
4178 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
4179
4180 /**
4181 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
4182 * @rgosp: location to place combined normal/expedited grace-period state
4183 *
4184 * Places the normal and expedited grace-period states in @rgosp. This
4185 * state value can be passed to a later call to cond_synchronize_rcu_full()
4186 * or poll_state_synchronize_rcu_full() to determine whether or not a
4187 * grace period (whether normal or expedited) has elapsed in the meantime.
4188 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
4189 * long, but is guaranteed to see all grace periods. In contrast, the
4190 * combined state occupies less memory, but can sometimes fail to take
4191 * grace periods into account.
4192 *
4193 * This does not guarantee that the needed grace period will actually
4194 * start.
4195 */
get_state_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)4196 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
4197 {
4198 /*
4199 * Any prior manipulation of RCU-protected data must happen
4200 * before the loads from ->gp_seq and ->expedited_sequence.
4201 */
4202 smp_mb(); /* ^^^ */
4203
4204 // Yes, rcu_state.gp_seq, not rnp_root->gp_seq, the latter's use
4205 // in poll_state_synchronize_rcu_full() notwithstanding. Use of
4206 // the latter here would result in too-short grace periods due to
4207 // interactions with newly onlined CPUs.
4208 rgosp->rgos_norm = rcu_seq_snap(&rcu_state.gp_seq);
4209 rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
4210 }
4211 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
4212
4213 /*
4214 * Helper function for start_poll_synchronize_rcu() and
4215 * start_poll_synchronize_rcu_full().
4216 */
start_poll_synchronize_rcu_common(void)4217 static void start_poll_synchronize_rcu_common(void)
4218 {
4219 unsigned long flags;
4220 bool needwake;
4221 struct rcu_data *rdp;
4222 struct rcu_node *rnp;
4223
4224 lockdep_assert_irqs_enabled();
4225 local_irq_save(flags);
4226 rdp = this_cpu_ptr(&rcu_data);
4227 rnp = rdp->mynode;
4228 raw_spin_lock_rcu_node(rnp); // irqs already disabled.
4229 // Note it is possible for a grace period to have elapsed between
4230 // the above call to get_state_synchronize_rcu() and the below call
4231 // to rcu_seq_snap. This is OK, the worst that happens is that we
4232 // get a grace period that no one needed. These accesses are ordered
4233 // by smp_mb(), and we are accessing them in the opposite order
4234 // from which they are updated at grace-period start, as required.
4235 needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
4236 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4237 if (needwake)
4238 rcu_gp_kthread_wake();
4239 }
4240
4241 /**
4242 * start_poll_synchronize_rcu - Snapshot and start RCU grace period
4243 *
4244 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
4245 * or poll_state_synchronize_rcu() to determine whether or not a full
4246 * grace period has elapsed in the meantime. If the needed grace period
4247 * is not already slated to start, notifies RCU core of the need for that
4248 * grace period.
4249 *
4250 * Interrupts must be enabled for the case where it is necessary to awaken
4251 * the grace-period kthread.
4252 */
start_poll_synchronize_rcu(void)4253 unsigned long start_poll_synchronize_rcu(void)
4254 {
4255 unsigned long gp_seq = get_state_synchronize_rcu();
4256
4257 start_poll_synchronize_rcu_common();
4258 return gp_seq;
4259 }
4260 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
4261
4262 /**
4263 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
4264 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
4265 *
4266 * Places the normal and expedited grace-period states in *@rgos. This
4267 * state value can be passed to a later call to cond_synchronize_rcu_full()
4268 * or poll_state_synchronize_rcu_full() to determine whether or not a
4269 * grace period (whether normal or expedited) has elapsed in the meantime.
4270 * If the needed grace period is not already slated to start, notifies
4271 * RCU core of the need for that grace period.
4272 *
4273 * Interrupts must be enabled for the case where it is necessary to awaken
4274 * the grace-period kthread.
4275 */
start_poll_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)4276 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
4277 {
4278 get_state_synchronize_rcu_full(rgosp);
4279
4280 start_poll_synchronize_rcu_common();
4281 }
4282 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
4283
4284 /**
4285 * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
4286 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
4287 *
4288 * If a full RCU grace period has elapsed since the earlier call from
4289 * which @oldstate was obtained, return @true, otherwise return @false.
4290 * If @false is returned, it is the caller's responsibility to invoke this
4291 * function later on until it does return @true. Alternatively, the caller
4292 * can explicitly wait for a grace period, for example, by passing @oldstate
4293 * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited()
4294 * on the one hand or by directly invoking either synchronize_rcu() or
4295 * synchronize_rcu_expedited() on the other.
4296 *
4297 * Yes, this function does not take counter wrap into account.
4298 * But counter wrap is harmless. If the counter wraps, we have waited for
4299 * more than a billion grace periods (and way more on a 64-bit system!).
4300 * Those needing to keep old state values for very long time periods
4301 * (many hours even on 32-bit systems) should check them occasionally and
4302 * either refresh them or set a flag indicating that the grace period has
4303 * completed. Alternatively, they can use get_completed_synchronize_rcu()
4304 * to get a guaranteed-completed grace-period state.
4305 *
4306 * In addition, because oldstate compresses the grace-period state for
4307 * both normal and expedited grace periods into a single unsigned long,
4308 * it can miss a grace period when synchronize_rcu() runs concurrently
4309 * with synchronize_rcu_expedited(). If this is unacceptable, please
4310 * instead use the _full() variant of these polling APIs.
4311 *
4312 * This function provides the same memory-ordering guarantees that
4313 * would be provided by a synchronize_rcu() that was invoked at the call
4314 * to the function that provided @oldstate, and that returned at the end
4315 * of this function.
4316 */
poll_state_synchronize_rcu(unsigned long oldstate)4317 bool poll_state_synchronize_rcu(unsigned long oldstate)
4318 {
4319 if (oldstate == RCU_GET_STATE_COMPLETED ||
4320 rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
4321 smp_mb(); /* Ensure GP ends before subsequent accesses. */
4322 return true;
4323 }
4324 return false;
4325 }
4326 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
4327
4328 /**
4329 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
4330 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
4331 *
4332 * If a full RCU grace period has elapsed since the earlier call from
4333 * which *rgosp was obtained, return @true, otherwise return @false.
4334 * If @false is returned, it is the caller's responsibility to invoke this
4335 * function later on until it does return @true. Alternatively, the caller
4336 * can explicitly wait for a grace period, for example, by passing @rgosp
4337 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
4338 *
4339 * Yes, this function does not take counter wrap into account.
4340 * But counter wrap is harmless. If the counter wraps, we have waited
4341 * for more than a billion grace periods (and way more on a 64-bit
4342 * system!). Those needing to keep rcu_gp_oldstate values for very
4343 * long time periods (many hours even on 32-bit systems) should check
4344 * them occasionally and either refresh them or set a flag indicating
4345 * that the grace period has completed. Alternatively, they can use
4346 * get_completed_synchronize_rcu_full() to get a guaranteed-completed
4347 * grace-period state.
4348 *
4349 * This function provides the same memory-ordering guarantees that would
4350 * be provided by a synchronize_rcu() that was invoked at the call to
4351 * the function that provided @rgosp, and that returned at the end of this
4352 * function. And this guarantee requires that the root rcu_node structure's
4353 * ->gp_seq field be checked instead of that of the rcu_state structure.
4354 * The problem is that the just-ending grace-period's callbacks can be
4355 * invoked between the time that the root rcu_node structure's ->gp_seq
4356 * field is updated and the time that the rcu_state structure's ->gp_seq
4357 * field is updated. Therefore, if a single synchronize_rcu() is to
4358 * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
4359 * then the root rcu_node structure is the one that needs to be polled.
4360 */
poll_state_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)4361 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
4362 {
4363 struct rcu_node *rnp = rcu_get_root();
4364
4365 smp_mb(); // Order against root rcu_node structure grace-period cleanup.
4366 if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
4367 rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
4368 rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
4369 rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
4370 smp_mb(); /* Ensure GP ends before subsequent accesses. */
4371 return true;
4372 }
4373 return false;
4374 }
4375 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
4376
4377 /**
4378 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
4379 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
4380 *
4381 * If a full RCU grace period has elapsed since the earlier call to
4382 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
4383 * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
4384 *
4385 * Yes, this function does not take counter wrap into account.
4386 * But counter wrap is harmless. If the counter wraps, we have waited for
4387 * more than 2 billion grace periods (and way more on a 64-bit system!),
4388 * so waiting for a couple of additional grace periods should be just fine.
4389 *
4390 * This function provides the same memory-ordering guarantees that
4391 * would be provided by a synchronize_rcu() that was invoked at the call
4392 * to the function that provided @oldstate and that returned at the end
4393 * of this function.
4394 */
cond_synchronize_rcu(unsigned long oldstate)4395 void cond_synchronize_rcu(unsigned long oldstate)
4396 {
4397 if (!poll_state_synchronize_rcu(oldstate))
4398 synchronize_rcu();
4399 }
4400 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
4401
4402 /**
4403 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
4404 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
4405 *
4406 * If a full RCU grace period has elapsed since the call to
4407 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
4408 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
4409 * obtained, just return. Otherwise, invoke synchronize_rcu() to wait
4410 * for a full grace period.
4411 *
4412 * Yes, this function does not take counter wrap into account.
4413 * But counter wrap is harmless. If the counter wraps, we have waited for
4414 * more than 2 billion grace periods (and way more on a 64-bit system!),
4415 * so waiting for a couple of additional grace periods should be just fine.
4416 *
4417 * This function provides the same memory-ordering guarantees that
4418 * would be provided by a synchronize_rcu() that was invoked at the call
4419 * to the function that provided @rgosp and that returned at the end of
4420 * this function.
4421 */
cond_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)4422 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
4423 {
4424 if (!poll_state_synchronize_rcu_full(rgosp))
4425 synchronize_rcu();
4426 }
4427 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
4428
4429 /*
4430 * Check to see if there is any immediate RCU-related work to be done by
4431 * the current CPU, returning 1 if so and zero otherwise. The checks are
4432 * in order of increasing expense: checks that can be carried out against
4433 * CPU-local state are performed first. However, we must check for CPU
4434 * stalls first, else we might not get a chance.
4435 */
rcu_pending(int user)4436 static int rcu_pending(int user)
4437 {
4438 bool gp_in_progress;
4439 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4440 struct rcu_node *rnp = rdp->mynode;
4441
4442 lockdep_assert_irqs_disabled();
4443
4444 /* Check for CPU stalls, if enabled. */
4445 check_cpu_stall(rdp);
4446
4447 /* Does this CPU need a deferred NOCB wakeup? */
4448 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
4449 return 1;
4450
4451 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */
4452 gp_in_progress = rcu_gp_in_progress();
4453 if ((user || rcu_is_cpu_rrupt_from_idle() ||
4454 (gp_in_progress &&
4455 time_before(jiffies, READ_ONCE(rcu_state.gp_start) +
4456 nohz_full_patience_delay_jiffies))) &&
4457 rcu_nohz_full_cpu())
4458 return 0;
4459
4460 /* Is the RCU core waiting for a quiescent state from this CPU? */
4461 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
4462 return 1;
4463
4464 /* Does this CPU have callbacks ready to invoke? */
4465 if (!rcu_rdp_is_offloaded(rdp) &&
4466 rcu_segcblist_ready_cbs(&rdp->cblist))
4467 return 1;
4468
4469 /* Has RCU gone idle with this CPU needing another grace period? */
4470 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
4471 !rcu_rdp_is_offloaded(rdp) &&
4472 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
4473 return 1;
4474
4475 /* Have RCU grace period completed or started? */
4476 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
4477 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
4478 return 1;
4479
4480 /* nothing to do */
4481 return 0;
4482 }
4483
4484 /*
4485 * Helper function for rcu_barrier() tracing. If tracing is disabled,
4486 * the compiler is expected to optimize this away.
4487 */
rcu_barrier_trace(const char * s,int cpu,unsigned long done)4488 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
4489 {
4490 trace_rcu_barrier(rcu_state.name, s, cpu,
4491 atomic_read(&rcu_state.barrier_cpu_count), done);
4492 }
4493
4494 /*
4495 * RCU callback function for rcu_barrier(). If we are last, wake
4496 * up the task executing rcu_barrier().
4497 *
4498 * Note that the value of rcu_state.barrier_sequence must be captured
4499 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last,
4500 * other CPUs might count the value down to zero before this CPU gets
4501 * around to invoking rcu_barrier_trace(), which might result in bogus
4502 * data from the next instance of rcu_barrier().
4503 */
rcu_barrier_callback(struct rcu_head * rhp)4504 static void rcu_barrier_callback(struct rcu_head *rhp)
4505 {
4506 unsigned long __maybe_unused s = rcu_state.barrier_sequence;
4507
4508 rhp->next = rhp; // Mark the callback as having been invoked.
4509 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
4510 rcu_barrier_trace(TPS("LastCB"), -1, s);
4511 complete(&rcu_state.barrier_completion);
4512 } else {
4513 rcu_barrier_trace(TPS("CB"), -1, s);
4514 }
4515 }
4516
4517 /*
4518 * If needed, entrain an rcu_barrier() callback on rdp->cblist.
4519 */
rcu_barrier_entrain(struct rcu_data * rdp)4520 static void rcu_barrier_entrain(struct rcu_data *rdp)
4521 {
4522 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
4523 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
4524 bool wake_nocb = false;
4525 bool was_alldone = false;
4526
4527 lockdep_assert_held(&rcu_state.barrier_lock);
4528 if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
4529 return;
4530 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
4531 rdp->barrier_head.func = rcu_barrier_callback;
4532 debug_rcu_head_queue(&rdp->barrier_head);
4533 rcu_nocb_lock(rdp);
4534 /*
4535 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular
4536 * queue. This way we don't wait for bypass timer that can reach seconds
4537 * if it's fully lazy.
4538 */
4539 was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist);
4540 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
4541 wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist);
4542 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
4543 atomic_inc(&rcu_state.barrier_cpu_count);
4544 } else {
4545 debug_rcu_head_unqueue(&rdp->barrier_head);
4546 rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
4547 }
4548 rcu_nocb_unlock(rdp);
4549 if (wake_nocb)
4550 wake_nocb_gp(rdp, false);
4551 smp_store_release(&rdp->barrier_seq_snap, gseq);
4552 }
4553
4554 /*
4555 * Called with preemption disabled, and from cross-cpu IRQ context.
4556 */
rcu_barrier_handler(void * cpu_in)4557 static void rcu_barrier_handler(void *cpu_in)
4558 {
4559 uintptr_t cpu = (uintptr_t)cpu_in;
4560 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4561
4562 lockdep_assert_irqs_disabled();
4563 WARN_ON_ONCE(cpu != rdp->cpu);
4564 WARN_ON_ONCE(cpu != smp_processor_id());
4565 raw_spin_lock(&rcu_state.barrier_lock);
4566 rcu_barrier_entrain(rdp);
4567 raw_spin_unlock(&rcu_state.barrier_lock);
4568 }
4569
4570 /**
4571 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
4572 *
4573 * Note that this primitive does not necessarily wait for an RCU grace period
4574 * to complete. For example, if there are no RCU callbacks queued anywhere
4575 * in the system, then rcu_barrier() is within its rights to return
4576 * immediately, without waiting for anything, much less an RCU grace period.
4577 */
rcu_barrier(void)4578 void rcu_barrier(void)
4579 {
4580 uintptr_t cpu;
4581 unsigned long flags;
4582 unsigned long gseq;
4583 struct rcu_data *rdp;
4584 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4585
4586 rcu_barrier_trace(TPS("Begin"), -1, s);
4587
4588 /* Take mutex to serialize concurrent rcu_barrier() requests. */
4589 mutex_lock(&rcu_state.barrier_mutex);
4590
4591 /* Did someone else do our work for us? */
4592 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4593 rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
4594 smp_mb(); /* caller's subsequent code after above check. */
4595 mutex_unlock(&rcu_state.barrier_mutex);
4596 return;
4597 }
4598
4599 /* Mark the start of the barrier operation. */
4600 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4601 rcu_seq_start(&rcu_state.barrier_sequence);
4602 gseq = rcu_state.barrier_sequence;
4603 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4604
4605 /*
4606 * Initialize the count to two rather than to zero in order
4607 * to avoid a too-soon return to zero in case of an immediate
4608 * invocation of the just-enqueued callback (or preemption of
4609 * this task). Exclude CPU-hotplug operations to ensure that no
4610 * offline non-offloaded CPU has callbacks queued.
4611 */
4612 init_completion(&rcu_state.barrier_completion);
4613 atomic_set(&rcu_state.barrier_cpu_count, 2);
4614 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4615
4616 /*
4617 * Force each CPU with callbacks to register a new callback.
4618 * When that callback is invoked, we will know that all of the
4619 * corresponding CPU's preceding callbacks have been invoked.
4620 */
4621 for_each_possible_cpu(cpu) {
4622 rdp = per_cpu_ptr(&rcu_data, cpu);
4623 retry:
4624 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
4625 continue;
4626 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4627 if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
4628 WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4629 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4630 rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
4631 continue;
4632 }
4633 if (!rcu_rdp_cpu_online(rdp)) {
4634 rcu_barrier_entrain(rdp);
4635 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4636 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4637 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
4638 continue;
4639 }
4640 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4641 if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
4642 schedule_timeout_uninterruptible(1);
4643 goto retry;
4644 }
4645 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4646 rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
4647 }
4648
4649 /*
4650 * Now that we have an rcu_barrier_callback() callback on each
4651 * CPU, and thus each counted, remove the initial count.
4652 */
4653 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4654 complete(&rcu_state.barrier_completion);
4655
4656 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4657 wait_for_completion(&rcu_state.barrier_completion);
4658
4659 /* Mark the end of the barrier operation. */
4660 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4661 rcu_seq_end(&rcu_state.barrier_sequence);
4662 gseq = rcu_state.barrier_sequence;
4663 for_each_possible_cpu(cpu) {
4664 rdp = per_cpu_ptr(&rcu_data, cpu);
4665
4666 WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4667 }
4668
4669 /* Other rcu_barrier() invocations can now safely proceed. */
4670 mutex_unlock(&rcu_state.barrier_mutex);
4671 }
4672 EXPORT_SYMBOL_GPL(rcu_barrier);
4673
4674 static unsigned long rcu_barrier_last_throttle;
4675
4676 /**
4677 * rcu_barrier_throttled - Do rcu_barrier(), but limit to one per second
4678 *
4679 * This can be thought of as guard rails around rcu_barrier() that
4680 * permits unrestricted userspace use, at least assuming the hardware's
4681 * try_cmpxchg() is robust. There will be at most one call per second to
4682 * rcu_barrier() system-wide from use of this function, which means that
4683 * callers might needlessly wait a second or three.
4684 *
4685 * This is intended for use by test suites to avoid OOM by flushing RCU
4686 * callbacks from the previous test before starting the next. See the
4687 * rcutree.do_rcu_barrier module parameter for more information.
4688 *
4689 * Why not simply make rcu_barrier() more scalable? That might be
4690 * the eventual endpoint, but let's keep it simple for the time being.
4691 * Note that the module parameter infrastructure serializes calls to a
4692 * given .set() function, but should concurrent .set() invocation ever be
4693 * possible, we are ready!
4694 */
rcu_barrier_throttled(void)4695 static void rcu_barrier_throttled(void)
4696 {
4697 unsigned long j = jiffies;
4698 unsigned long old = READ_ONCE(rcu_barrier_last_throttle);
4699 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4700
4701 while (time_in_range(j, old, old + HZ / 16) ||
4702 !try_cmpxchg(&rcu_barrier_last_throttle, &old, j)) {
4703 schedule_timeout_idle(HZ / 16);
4704 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4705 smp_mb(); /* caller's subsequent code after above check. */
4706 return;
4707 }
4708 j = jiffies;
4709 old = READ_ONCE(rcu_barrier_last_throttle);
4710 }
4711 rcu_barrier();
4712 }
4713
4714 /*
4715 * Invoke rcu_barrier_throttled() when a rcutree.do_rcu_barrier
4716 * request arrives. We insist on a true value to allow for possible
4717 * future expansion.
4718 */
param_set_do_rcu_barrier(const char * val,const struct kernel_param * kp)4719 static int param_set_do_rcu_barrier(const char *val, const struct kernel_param *kp)
4720 {
4721 bool b;
4722 int ret;
4723
4724 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING)
4725 return -EAGAIN;
4726 ret = kstrtobool(val, &b);
4727 if (!ret && b) {
4728 atomic_inc((atomic_t *)kp->arg);
4729 rcu_barrier_throttled();
4730 atomic_dec((atomic_t *)kp->arg);
4731 }
4732 return ret;
4733 }
4734
4735 /*
4736 * Output the number of outstanding rcutree.do_rcu_barrier requests.
4737 */
param_get_do_rcu_barrier(char * buffer,const struct kernel_param * kp)4738 static int param_get_do_rcu_barrier(char *buffer, const struct kernel_param *kp)
4739 {
4740 return sprintf(buffer, "%d\n", atomic_read((atomic_t *)kp->arg));
4741 }
4742
4743 static const struct kernel_param_ops do_rcu_barrier_ops = {
4744 .set = param_set_do_rcu_barrier,
4745 .get = param_get_do_rcu_barrier,
4746 };
4747 static atomic_t do_rcu_barrier;
4748 module_param_cb(do_rcu_barrier, &do_rcu_barrier_ops, &do_rcu_barrier, 0644);
4749
4750 /*
4751 * Compute the mask of online CPUs for the specified rcu_node structure.
4752 * This will not be stable unless the rcu_node structure's ->lock is
4753 * held, but the bit corresponding to the current CPU will be stable
4754 * in most contexts.
4755 */
rcu_rnp_online_cpus(struct rcu_node * rnp)4756 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
4757 {
4758 return READ_ONCE(rnp->qsmaskinitnext);
4759 }
4760
4761 /*
4762 * Is the CPU corresponding to the specified rcu_data structure online
4763 * from RCU's perspective? This perspective is given by that structure's
4764 * ->qsmaskinitnext field rather than by the global cpu_online_mask.
4765 */
rcu_rdp_cpu_online(struct rcu_data * rdp)4766 static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
4767 {
4768 return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
4769 }
4770
rcu_cpu_online(int cpu)4771 bool rcu_cpu_online(int cpu)
4772 {
4773 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4774
4775 return rcu_rdp_cpu_online(rdp);
4776 }
4777
4778 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
4779
4780 /*
4781 * Is the current CPU online as far as RCU is concerned?
4782 *
4783 * Disable preemption to avoid false positives that could otherwise
4784 * happen due to the current CPU number being sampled, this task being
4785 * preempted, its old CPU being taken offline, resuming on some other CPU,
4786 * then determining that its old CPU is now offline.
4787 *
4788 * Disable checking if in an NMI handler because we cannot safely
4789 * report errors from NMI handlers anyway. In addition, it is OK to use
4790 * RCU on an offline processor during initial boot, hence the check for
4791 * rcu_scheduler_fully_active.
4792 */
rcu_lockdep_current_cpu_online(void)4793 bool rcu_lockdep_current_cpu_online(void)
4794 {
4795 struct rcu_data *rdp;
4796 bool ret = false;
4797
4798 if (in_nmi() || !rcu_scheduler_fully_active)
4799 return true;
4800 preempt_disable_notrace();
4801 rdp = this_cpu_ptr(&rcu_data);
4802 /*
4803 * Strictly, we care here about the case where the current CPU is
4804 * in rcutree_report_cpu_starting() and thus has an excuse for rdp->grpmask
4805 * not being up to date. So arch_spin_is_locked() might have a
4806 * false positive if it's held by some *other* CPU, but that's
4807 * OK because that just means a false *negative* on the warning.
4808 */
4809 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
4810 ret = true;
4811 preempt_enable_notrace();
4812 return ret;
4813 }
4814 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
4815
4816 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
4817
4818 // Has rcu_init() been invoked? This is used (for example) to determine
4819 // whether spinlocks may be acquired safely.
rcu_init_invoked(void)4820 static bool rcu_init_invoked(void)
4821 {
4822 return !!READ_ONCE(rcu_state.n_online_cpus);
4823 }
4824
4825 /*
4826 * All CPUs for the specified rcu_node structure have gone offline,
4827 * and all tasks that were preempted within an RCU read-side critical
4828 * section while running on one of those CPUs have since exited their RCU
4829 * read-side critical section. Some other CPU is reporting this fact with
4830 * the specified rcu_node structure's ->lock held and interrupts disabled.
4831 * This function therefore goes up the tree of rcu_node structures,
4832 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
4833 * the leaf rcu_node structure's ->qsmaskinit field has already been
4834 * updated.
4835 *
4836 * This function does check that the specified rcu_node structure has
4837 * all CPUs offline and no blocked tasks, so it is OK to invoke it
4838 * prematurely. That said, invoking it after the fact will cost you
4839 * a needless lock acquisition. So once it has done its work, don't
4840 * invoke it again.
4841 */
rcu_cleanup_dead_rnp(struct rcu_node * rnp_leaf)4842 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
4843 {
4844 long mask;
4845 struct rcu_node *rnp = rnp_leaf;
4846
4847 raw_lockdep_assert_held_rcu_node(rnp_leaf);
4848 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
4849 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
4850 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
4851 return;
4852 for (;;) {
4853 mask = rnp->grpmask;
4854 rnp = rnp->parent;
4855 if (!rnp)
4856 break;
4857 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4858 rnp->qsmaskinit &= ~mask;
4859 /* Between grace periods, so better already be zero! */
4860 WARN_ON_ONCE(rnp->qsmask);
4861 if (rnp->qsmaskinit) {
4862 raw_spin_unlock_rcu_node(rnp);
4863 /* irqs remain disabled. */
4864 return;
4865 }
4866 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4867 }
4868 }
4869
4870 /*
4871 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4872 * first CPU in a given leaf rcu_node structure coming online. The caller
4873 * must hold the corresponding leaf rcu_node ->lock with interrupts
4874 * disabled.
4875 */
rcu_init_new_rnp(struct rcu_node * rnp_leaf)4876 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4877 {
4878 long mask;
4879 long oldmask;
4880 struct rcu_node *rnp = rnp_leaf;
4881
4882 raw_lockdep_assert_held_rcu_node(rnp_leaf);
4883 WARN_ON_ONCE(rnp->wait_blkd_tasks);
4884 for (;;) {
4885 mask = rnp->grpmask;
4886 rnp = rnp->parent;
4887 if (rnp == NULL)
4888 return;
4889 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4890 oldmask = rnp->qsmaskinit;
4891 rnp->qsmaskinit |= mask;
4892 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4893 if (oldmask)
4894 return;
4895 }
4896 }
4897
4898 /*
4899 * Do boot-time initialization of a CPU's per-CPU RCU data.
4900 */
4901 static void __init
rcu_boot_init_percpu_data(int cpu)4902 rcu_boot_init_percpu_data(int cpu)
4903 {
4904 struct context_tracking *ct = this_cpu_ptr(&context_tracking);
4905 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4906
4907 /* Set up local state, ensuring consistent view of global state. */
4908 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4909 INIT_WORK(&rdp->strict_work, strict_work_handler);
4910 WARN_ON_ONCE(ct->nesting != 1);
4911 WARN_ON_ONCE(rcu_watching_snap_in_eqs(ct_rcu_watching_cpu(cpu)));
4912 rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4913 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4914 rdp->rcu_ofl_gp_state = RCU_GP_CLEANED;
4915 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4916 rdp->rcu_onl_gp_state = RCU_GP_CLEANED;
4917 rdp->last_sched_clock = jiffies;
4918 rdp->cpu = cpu;
4919 rcu_boot_init_nocb_percpu_data(rdp);
4920 }
4921
4922 struct kthread_worker *rcu_exp_gp_kworker;
4923
rcu_spawn_exp_par_gp_kworker(struct rcu_node * rnp)4924 static void rcu_spawn_exp_par_gp_kworker(struct rcu_node *rnp)
4925 {
4926 struct kthread_worker *kworker;
4927 const char *name = "rcu_exp_par_gp_kthread_worker/%d";
4928 struct sched_param param = { .sched_priority = kthread_prio };
4929 int rnp_index = rnp - rcu_get_root();
4930
4931 if (rnp->exp_kworker)
4932 return;
4933
4934 kworker = kthread_create_worker(0, name, rnp_index);
4935 if (IS_ERR_OR_NULL(kworker)) {
4936 pr_err("Failed to create par gp kworker on %d/%d\n",
4937 rnp->grplo, rnp->grphi);
4938 return;
4939 }
4940 WRITE_ONCE(rnp->exp_kworker, kworker);
4941
4942 if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD))
4943 sched_setscheduler_nocheck(kworker->task, SCHED_FIFO, ¶m);
4944 }
4945
rcu_exp_par_gp_task(struct rcu_node * rnp)4946 static struct task_struct *rcu_exp_par_gp_task(struct rcu_node *rnp)
4947 {
4948 struct kthread_worker *kworker = READ_ONCE(rnp->exp_kworker);
4949
4950 if (!kworker)
4951 return NULL;
4952
4953 return kworker->task;
4954 }
4955
rcu_start_exp_gp_kworker(void)4956 static void __init rcu_start_exp_gp_kworker(void)
4957 {
4958 const char *name = "rcu_exp_gp_kthread_worker";
4959 struct sched_param param = { .sched_priority = kthread_prio };
4960
4961 rcu_exp_gp_kworker = kthread_create_worker(0, name);
4962 if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4963 pr_err("Failed to create %s!\n", name);
4964 rcu_exp_gp_kworker = NULL;
4965 return;
4966 }
4967
4968 if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD))
4969 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m);
4970 }
4971
rcu_spawn_rnp_kthreads(struct rcu_node * rnp)4972 static void rcu_spawn_rnp_kthreads(struct rcu_node *rnp)
4973 {
4974 if (rcu_scheduler_fully_active) {
4975 mutex_lock(&rnp->kthread_mutex);
4976 rcu_spawn_one_boost_kthread(rnp);
4977 rcu_spawn_exp_par_gp_kworker(rnp);
4978 mutex_unlock(&rnp->kthread_mutex);
4979 }
4980 }
4981
4982 /*
4983 * Invoked early in the CPU-online process, when pretty much all services
4984 * are available. The incoming CPU is not present.
4985 *
4986 * Initializes a CPU's per-CPU RCU data. Note that only one online or
4987 * offline event can be happening at a given time. Note also that we can
4988 * accept some slop in the rsp->gp_seq access due to the fact that this
4989 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4990 * And any offloaded callbacks are being numbered elsewhere.
4991 */
rcutree_prepare_cpu(unsigned int cpu)4992 int rcutree_prepare_cpu(unsigned int cpu)
4993 {
4994 unsigned long flags;
4995 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
4996 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4997 struct rcu_node *rnp = rcu_get_root();
4998
4999 /* Set up local state, ensuring consistent view of global state. */
5000 raw_spin_lock_irqsave_rcu_node(rnp, flags);
5001 rdp->qlen_last_fqs_check = 0;
5002 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
5003 rdp->blimit = blimit;
5004 ct->nesting = 1; /* CPU not up, no tearing. */
5005 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
5006
5007 /*
5008 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
5009 * (re-)initialized.
5010 */
5011 if (!rcu_segcblist_is_enabled(&rdp->cblist))
5012 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
5013
5014 /*
5015 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
5016 * propagation up the rcu_node tree will happen at the beginning
5017 * of the next grace period.
5018 */
5019 rnp = rdp->mynode;
5020 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
5021 rdp->gp_seq = READ_ONCE(rnp->gp_seq);
5022 rdp->gp_seq_needed = rdp->gp_seq;
5023 rdp->cpu_no_qs.b.norm = true;
5024 rdp->core_needs_qs = false;
5025 rdp->rcu_iw_pending = false;
5026 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
5027 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
5028 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
5029 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
5030
5031 rcu_preempt_deferred_qs_init(rdp);
5032 rcu_spawn_rnp_kthreads(rnp);
5033 rcu_spawn_cpu_nocb_kthread(cpu);
5034 ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus);
5035 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
5036
5037 return 0;
5038 }
5039
5040 /*
5041 * Update kthreads affinity during CPU-hotplug changes.
5042 *
5043 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
5044 * served by the rcu_node in question. The CPU hotplug lock is still
5045 * held, so the value of rnp->qsmaskinit will be stable.
5046 *
5047 * We don't include outgoingcpu in the affinity set, use -1 if there is
5048 * no outgoing CPU. If there are no CPUs left in the affinity set,
5049 * this function allows the kthread to execute on any CPU.
5050 *
5051 * Any future concurrent calls are serialized via ->kthread_mutex.
5052 */
rcutree_affinity_setting(unsigned int cpu,int outgoingcpu)5053 static void rcutree_affinity_setting(unsigned int cpu, int outgoingcpu)
5054 {
5055 cpumask_var_t cm;
5056 unsigned long mask;
5057 struct rcu_data *rdp;
5058 struct rcu_node *rnp;
5059 struct task_struct *task_boost, *task_exp;
5060
5061 rdp = per_cpu_ptr(&rcu_data, cpu);
5062 rnp = rdp->mynode;
5063
5064 task_boost = rcu_boost_task(rnp);
5065 task_exp = rcu_exp_par_gp_task(rnp);
5066
5067 /*
5068 * If CPU is the boot one, those tasks are created later from early
5069 * initcall since kthreadd must be created first.
5070 */
5071 if (!task_boost && !task_exp)
5072 return;
5073
5074 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
5075 return;
5076
5077 mutex_lock(&rnp->kthread_mutex);
5078 mask = rcu_rnp_online_cpus(rnp);
5079 for_each_leaf_node_possible_cpu(rnp, cpu)
5080 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
5081 cpu != outgoingcpu)
5082 cpumask_set_cpu(cpu, cm);
5083 cpumask_and(cm, cm, housekeeping_cpumask(HK_TYPE_RCU));
5084 if (cpumask_empty(cm)) {
5085 cpumask_copy(cm, housekeeping_cpumask(HK_TYPE_RCU));
5086 if (outgoingcpu >= 0)
5087 cpumask_clear_cpu(outgoingcpu, cm);
5088 }
5089
5090 if (task_exp)
5091 set_cpus_allowed_ptr(task_exp, cm);
5092
5093 if (task_boost)
5094 set_cpus_allowed_ptr(task_boost, cm);
5095
5096 mutex_unlock(&rnp->kthread_mutex);
5097
5098 free_cpumask_var(cm);
5099 }
5100
5101 /*
5102 * Has the specified (known valid) CPU ever been fully online?
5103 */
rcu_cpu_beenfullyonline(int cpu)5104 bool rcu_cpu_beenfullyonline(int cpu)
5105 {
5106 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
5107
5108 return smp_load_acquire(&rdp->beenonline);
5109 }
5110
5111 /*
5112 * Near the end of the CPU-online process. Pretty much all services
5113 * enabled, and the CPU is now very much alive.
5114 */
rcutree_online_cpu(unsigned int cpu)5115 int rcutree_online_cpu(unsigned int cpu)
5116 {
5117 unsigned long flags;
5118 struct rcu_data *rdp;
5119 struct rcu_node *rnp;
5120
5121 rdp = per_cpu_ptr(&rcu_data, cpu);
5122 rnp = rdp->mynode;
5123 raw_spin_lock_irqsave_rcu_node(rnp, flags);
5124 rnp->ffmask |= rdp->grpmask;
5125 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
5126 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
5127 return 0; /* Too early in boot for scheduler work. */
5128 sync_sched_exp_online_cleanup(cpu);
5129 rcutree_affinity_setting(cpu, -1);
5130
5131 // Stop-machine done, so allow nohz_full to disable tick.
5132 tick_dep_clear(TICK_DEP_BIT_RCU);
5133 return 0;
5134 }
5135
5136 /*
5137 * Mark the specified CPU as being online so that subsequent grace periods
5138 * (both expedited and normal) will wait on it. Note that this means that
5139 * incoming CPUs are not allowed to use RCU read-side critical sections
5140 * until this function is called. Failing to observe this restriction
5141 * will result in lockdep splats.
5142 *
5143 * Note that this function is special in that it is invoked directly
5144 * from the incoming CPU rather than from the cpuhp_step mechanism.
5145 * This is because this function must be invoked at a precise location.
5146 * This incoming CPU must not have enabled interrupts yet.
5147 *
5148 * This mirrors the effects of rcutree_report_cpu_dead().
5149 */
rcutree_report_cpu_starting(unsigned int cpu)5150 void rcutree_report_cpu_starting(unsigned int cpu)
5151 {
5152 unsigned long mask;
5153 struct rcu_data *rdp;
5154 struct rcu_node *rnp;
5155 bool newcpu;
5156
5157 lockdep_assert_irqs_disabled();
5158 rdp = per_cpu_ptr(&rcu_data, cpu);
5159 if (rdp->cpu_started)
5160 return;
5161 rdp->cpu_started = true;
5162
5163 rnp = rdp->mynode;
5164 mask = rdp->grpmask;
5165 arch_spin_lock(&rcu_state.ofl_lock);
5166 rcu_watching_online();
5167 raw_spin_lock(&rcu_state.barrier_lock);
5168 raw_spin_lock_rcu_node(rnp);
5169 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
5170 raw_spin_unlock(&rcu_state.barrier_lock);
5171 newcpu = !(rnp->expmaskinitnext & mask);
5172 rnp->expmaskinitnext |= mask;
5173 /* Allow lockless access for expedited grace periods. */
5174 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
5175 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
5176 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
5177 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
5178 rdp->rcu_onl_gp_state = READ_ONCE(rcu_state.gp_state);
5179
5180 /* An incoming CPU should never be blocking a grace period. */
5181 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
5182 /* rcu_report_qs_rnp() *really* wants some flags to restore */
5183 unsigned long flags;
5184
5185 local_irq_save(flags);
5186 rcu_disable_urgency_upon_qs(rdp);
5187 /* Report QS -after- changing ->qsmaskinitnext! */
5188 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
5189 } else {
5190 raw_spin_unlock_rcu_node(rnp);
5191 }
5192 arch_spin_unlock(&rcu_state.ofl_lock);
5193 smp_store_release(&rdp->beenonline, true);
5194 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
5195 }
5196
5197 /*
5198 * The outgoing function has no further need of RCU, so remove it from
5199 * the rcu_node tree's ->qsmaskinitnext bit masks.
5200 *
5201 * Note that this function is special in that it is invoked directly
5202 * from the outgoing CPU rather than from the cpuhp_step mechanism.
5203 * This is because this function must be invoked at a precise location.
5204 *
5205 * This mirrors the effect of rcutree_report_cpu_starting().
5206 */
rcutree_report_cpu_dead(void)5207 void rcutree_report_cpu_dead(void)
5208 {
5209 unsigned long flags;
5210 unsigned long mask;
5211 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
5212 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
5213
5214 /*
5215 * IRQS must be disabled from now on and until the CPU dies, or an interrupt
5216 * may introduce a new READ-side while it is actually off the QS masks.
5217 */
5218 lockdep_assert_irqs_disabled();
5219 // Do any dangling deferred wakeups.
5220 do_nocb_deferred_wakeup(rdp);
5221
5222 rcu_preempt_deferred_qs(current);
5223
5224 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
5225 mask = rdp->grpmask;
5226 arch_spin_lock(&rcu_state.ofl_lock);
5227 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
5228 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
5229 rdp->rcu_ofl_gp_state = READ_ONCE(rcu_state.gp_state);
5230 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
5231 /* Report quiescent state -before- changing ->qsmaskinitnext! */
5232 rcu_disable_urgency_upon_qs(rdp);
5233 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
5234 raw_spin_lock_irqsave_rcu_node(rnp, flags);
5235 }
5236 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
5237 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
5238 arch_spin_unlock(&rcu_state.ofl_lock);
5239 rdp->cpu_started = false;
5240 }
5241
5242 #ifdef CONFIG_HOTPLUG_CPU
5243 /*
5244 * The outgoing CPU has just passed through the dying-idle state, and we
5245 * are being invoked from the CPU that was IPIed to continue the offline
5246 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
5247 */
rcutree_migrate_callbacks(int cpu)5248 void rcutree_migrate_callbacks(int cpu)
5249 {
5250 unsigned long flags;
5251 struct rcu_data *my_rdp;
5252 struct rcu_node *my_rnp;
5253 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
5254 bool needwake;
5255
5256 if (rcu_rdp_is_offloaded(rdp))
5257 return;
5258
5259 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
5260 if (rcu_segcblist_empty(&rdp->cblist)) {
5261 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
5262 return; /* No callbacks to migrate. */
5263 }
5264
5265 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
5266 rcu_barrier_entrain(rdp);
5267 my_rdp = this_cpu_ptr(&rcu_data);
5268 my_rnp = my_rdp->mynode;
5269 rcu_nocb_lock(my_rdp); /* irqs already disabled. */
5270 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
5271 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
5272 /* Leverage recent GPs and set GP for new callbacks. */
5273 needwake = rcu_advance_cbs(my_rnp, rdp) ||
5274 rcu_advance_cbs(my_rnp, my_rdp);
5275 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
5276 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
5277 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
5278 rcu_segcblist_disable(&rdp->cblist);
5279 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
5280 check_cb_ovld_locked(my_rdp, my_rnp);
5281 if (rcu_rdp_is_offloaded(my_rdp)) {
5282 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
5283 __call_rcu_nocb_wake(my_rdp, true, flags);
5284 } else {
5285 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
5286 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
5287 }
5288 local_irq_restore(flags);
5289 if (needwake)
5290 rcu_gp_kthread_wake();
5291 lockdep_assert_irqs_enabled();
5292 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
5293 !rcu_segcblist_empty(&rdp->cblist),
5294 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
5295 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
5296 rcu_segcblist_first_cb(&rdp->cblist));
5297 }
5298
5299 /*
5300 * The CPU has been completely removed, and some other CPU is reporting
5301 * this fact from process context. Do the remainder of the cleanup.
5302 * There can only be one CPU hotplug operation at a time, so no need for
5303 * explicit locking.
5304 */
rcutree_dead_cpu(unsigned int cpu)5305 int rcutree_dead_cpu(unsigned int cpu)
5306 {
5307 ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus);
5308 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
5309 // Stop-machine done, so allow nohz_full to disable tick.
5310 tick_dep_clear(TICK_DEP_BIT_RCU);
5311 return 0;
5312 }
5313
5314 /*
5315 * Near the end of the offline process. Trace the fact that this CPU
5316 * is going offline.
5317 */
rcutree_dying_cpu(unsigned int cpu)5318 int rcutree_dying_cpu(unsigned int cpu)
5319 {
5320 bool blkd;
5321 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
5322 struct rcu_node *rnp = rdp->mynode;
5323
5324 blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask);
5325 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
5326 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
5327 return 0;
5328 }
5329
5330 /*
5331 * Near the beginning of the process. The CPU is still very much alive
5332 * with pretty much all services enabled.
5333 */
rcutree_offline_cpu(unsigned int cpu)5334 int rcutree_offline_cpu(unsigned int cpu)
5335 {
5336 unsigned long flags;
5337 struct rcu_data *rdp;
5338 struct rcu_node *rnp;
5339
5340 rdp = per_cpu_ptr(&rcu_data, cpu);
5341 rnp = rdp->mynode;
5342 raw_spin_lock_irqsave_rcu_node(rnp, flags);
5343 rnp->ffmask &= ~rdp->grpmask;
5344 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
5345
5346 rcutree_affinity_setting(cpu, cpu);
5347
5348 // nohz_full CPUs need the tick for stop-machine to work quickly
5349 tick_dep_set(TICK_DEP_BIT_RCU);
5350 return 0;
5351 }
5352 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
5353
5354 /*
5355 * On non-huge systems, use expedited RCU grace periods to make suspend
5356 * and hibernation run faster.
5357 */
rcu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)5358 static int rcu_pm_notify(struct notifier_block *self,
5359 unsigned long action, void *hcpu)
5360 {
5361 switch (action) {
5362 case PM_HIBERNATION_PREPARE:
5363 case PM_SUSPEND_PREPARE:
5364 rcu_async_hurry();
5365 rcu_expedite_gp();
5366 break;
5367 case PM_POST_HIBERNATION:
5368 case PM_POST_SUSPEND:
5369 rcu_unexpedite_gp();
5370 rcu_async_relax();
5371 break;
5372 default:
5373 break;
5374 }
5375 return NOTIFY_OK;
5376 }
5377
5378 /*
5379 * Spawn the kthreads that handle RCU's grace periods.
5380 */
rcu_spawn_gp_kthread(void)5381 static int __init rcu_spawn_gp_kthread(void)
5382 {
5383 unsigned long flags;
5384 struct rcu_node *rnp;
5385 struct sched_param sp;
5386 struct task_struct *t;
5387 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
5388
5389 rcu_scheduler_fully_active = 1;
5390 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
5391 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
5392 return 0;
5393 if (kthread_prio) {
5394 sp.sched_priority = kthread_prio;
5395 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
5396 }
5397 rnp = rcu_get_root();
5398 raw_spin_lock_irqsave_rcu_node(rnp, flags);
5399 WRITE_ONCE(rcu_state.gp_activity, jiffies);
5400 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
5401 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
5402 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */
5403 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
5404 wake_up_process(t);
5405 /* This is a pre-SMP initcall, we expect a single CPU */
5406 WARN_ON(num_online_cpus() > 1);
5407 /*
5408 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
5409 * due to rcu_scheduler_fully_active.
5410 */
5411 rcu_spawn_cpu_nocb_kthread(smp_processor_id());
5412 rcu_spawn_rnp_kthreads(rdp->mynode);
5413 rcu_spawn_core_kthreads();
5414 /* Create kthread worker for expedited GPs */
5415 rcu_start_exp_gp_kworker();
5416 return 0;
5417 }
5418 early_initcall(rcu_spawn_gp_kthread);
5419
5420 /*
5421 * This function is invoked towards the end of the scheduler's
5422 * initialization process. Before this is called, the idle task might
5423 * contain synchronous grace-period primitives (during which time, this idle
5424 * task is booting the system, and such primitives are no-ops). After this
5425 * function is called, any synchronous grace-period primitives are run as
5426 * expedited, with the requesting task driving the grace period forward.
5427 * A later core_initcall() rcu_set_runtime_mode() will switch to full
5428 * runtime RCU functionality.
5429 */
rcu_scheduler_starting(void)5430 void rcu_scheduler_starting(void)
5431 {
5432 unsigned long flags;
5433 struct rcu_node *rnp;
5434
5435 WARN_ON(num_online_cpus() != 1);
5436 WARN_ON(nr_context_switches() > 0);
5437 rcu_test_sync_prims();
5438
5439 // Fix up the ->gp_seq counters.
5440 local_irq_save(flags);
5441 rcu_for_each_node_breadth_first(rnp)
5442 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
5443 local_irq_restore(flags);
5444
5445 // Switch out of early boot mode.
5446 rcu_scheduler_active = RCU_SCHEDULER_INIT;
5447 rcu_test_sync_prims();
5448 }
5449
5450 /*
5451 * Helper function for rcu_init() that initializes the rcu_state structure.
5452 */
rcu_init_one(void)5453 static void __init rcu_init_one(void)
5454 {
5455 static const char * const buf[] = RCU_NODE_NAME_INIT;
5456 static const char * const fqs[] = RCU_FQS_NAME_INIT;
5457 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
5458 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
5459
5460 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
5461 int cpustride = 1;
5462 int i;
5463 int j;
5464 struct rcu_node *rnp;
5465
5466 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
5467
5468 /* Silence gcc 4.8 false positive about array index out of range. */
5469 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
5470 panic("rcu_init_one: rcu_num_lvls out of range");
5471
5472 /* Initialize the level-tracking arrays. */
5473
5474 for (i = 1; i < rcu_num_lvls; i++)
5475 rcu_state.level[i] =
5476 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
5477 rcu_init_levelspread(levelspread, num_rcu_lvl);
5478
5479 /* Initialize the elements themselves, starting from the leaves. */
5480
5481 for (i = rcu_num_lvls - 1; i >= 0; i--) {
5482 cpustride *= levelspread[i];
5483 rnp = rcu_state.level[i];
5484 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
5485 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
5486 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
5487 &rcu_node_class[i], buf[i]);
5488 raw_spin_lock_init(&rnp->fqslock);
5489 lockdep_set_class_and_name(&rnp->fqslock,
5490 &rcu_fqs_class[i], fqs[i]);
5491 rnp->gp_seq = rcu_state.gp_seq;
5492 rnp->gp_seq_needed = rcu_state.gp_seq;
5493 rnp->completedqs = rcu_state.gp_seq;
5494 rnp->qsmask = 0;
5495 rnp->qsmaskinit = 0;
5496 rnp->grplo = j * cpustride;
5497 rnp->grphi = (j + 1) * cpustride - 1;
5498 if (rnp->grphi >= nr_cpu_ids)
5499 rnp->grphi = nr_cpu_ids - 1;
5500 if (i == 0) {
5501 rnp->grpnum = 0;
5502 rnp->grpmask = 0;
5503 rnp->parent = NULL;
5504 } else {
5505 rnp->grpnum = j % levelspread[i - 1];
5506 rnp->grpmask = BIT(rnp->grpnum);
5507 rnp->parent = rcu_state.level[i - 1] +
5508 j / levelspread[i - 1];
5509 }
5510 rnp->level = i;
5511 INIT_LIST_HEAD(&rnp->blkd_tasks);
5512 rcu_init_one_nocb(rnp);
5513 init_waitqueue_head(&rnp->exp_wq[0]);
5514 init_waitqueue_head(&rnp->exp_wq[1]);
5515 init_waitqueue_head(&rnp->exp_wq[2]);
5516 init_waitqueue_head(&rnp->exp_wq[3]);
5517 spin_lock_init(&rnp->exp_lock);
5518 mutex_init(&rnp->kthread_mutex);
5519 raw_spin_lock_init(&rnp->exp_poll_lock);
5520 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
5521 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
5522 }
5523 }
5524
5525 init_swait_queue_head(&rcu_state.gp_wq);
5526 init_swait_queue_head(&rcu_state.expedited_wq);
5527 rnp = rcu_first_leaf_node();
5528 for_each_possible_cpu(i) {
5529 while (i > rnp->grphi)
5530 rnp++;
5531 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
5532 per_cpu_ptr(&rcu_data, i)->barrier_head.next =
5533 &per_cpu_ptr(&rcu_data, i)->barrier_head;
5534 rcu_boot_init_percpu_data(i);
5535 }
5536 }
5537
5538 /*
5539 * Force priority from the kernel command-line into range.
5540 */
sanitize_kthread_prio(void)5541 static void __init sanitize_kthread_prio(void)
5542 {
5543 int kthread_prio_in = kthread_prio;
5544
5545 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
5546 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
5547 kthread_prio = 2;
5548 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
5549 kthread_prio = 1;
5550 else if (kthread_prio < 0)
5551 kthread_prio = 0;
5552 else if (kthread_prio > 99)
5553 kthread_prio = 99;
5554
5555 if (kthread_prio != kthread_prio_in)
5556 pr_alert("%s: Limited prio to %d from %d\n",
5557 __func__, kthread_prio, kthread_prio_in);
5558 }
5559
5560 /*
5561 * Compute the rcu_node tree geometry from kernel parameters. This cannot
5562 * replace the definitions in tree.h because those are needed to size
5563 * the ->node array in the rcu_state structure.
5564 */
rcu_init_geometry(void)5565 void rcu_init_geometry(void)
5566 {
5567 ulong d;
5568 int i;
5569 static unsigned long old_nr_cpu_ids;
5570 int rcu_capacity[RCU_NUM_LVLS];
5571 static bool initialized;
5572
5573 if (initialized) {
5574 /*
5575 * Warn if setup_nr_cpu_ids() had not yet been invoked,
5576 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
5577 */
5578 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
5579 return;
5580 }
5581
5582 old_nr_cpu_ids = nr_cpu_ids;
5583 initialized = true;
5584
5585 /*
5586 * Initialize any unspecified boot parameters.
5587 * The default values of jiffies_till_first_fqs and
5588 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
5589 * value, which is a function of HZ, then adding one for each
5590 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
5591 */
5592 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
5593 if (jiffies_till_first_fqs == ULONG_MAX)
5594 jiffies_till_first_fqs = d;
5595 if (jiffies_till_next_fqs == ULONG_MAX)
5596 jiffies_till_next_fqs = d;
5597 adjust_jiffies_till_sched_qs();
5598
5599 /* If the compile-time values are accurate, just leave. */
5600 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
5601 nr_cpu_ids == NR_CPUS)
5602 return;
5603 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
5604 rcu_fanout_leaf, nr_cpu_ids);
5605
5606 /*
5607 * The boot-time rcu_fanout_leaf parameter must be at least two
5608 * and cannot exceed the number of bits in the rcu_node masks.
5609 * Complain and fall back to the compile-time values if this
5610 * limit is exceeded.
5611 */
5612 if (rcu_fanout_leaf < 2 ||
5613 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
5614 rcu_fanout_leaf = RCU_FANOUT_LEAF;
5615 WARN_ON(1);
5616 return;
5617 }
5618
5619 /*
5620 * Compute number of nodes that can be handled an rcu_node tree
5621 * with the given number of levels.
5622 */
5623 rcu_capacity[0] = rcu_fanout_leaf;
5624 for (i = 1; i < RCU_NUM_LVLS; i++)
5625 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
5626
5627 /*
5628 * The tree must be able to accommodate the configured number of CPUs.
5629 * If this limit is exceeded, fall back to the compile-time values.
5630 */
5631 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
5632 rcu_fanout_leaf = RCU_FANOUT_LEAF;
5633 WARN_ON(1);
5634 return;
5635 }
5636
5637 /* Calculate the number of levels in the tree. */
5638 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
5639 }
5640 rcu_num_lvls = i + 1;
5641
5642 /* Calculate the number of rcu_nodes at each level of the tree. */
5643 for (i = 0; i < rcu_num_lvls; i++) {
5644 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
5645 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
5646 }
5647
5648 /* Calculate the total number of rcu_node structures. */
5649 rcu_num_nodes = 0;
5650 for (i = 0; i < rcu_num_lvls; i++)
5651 rcu_num_nodes += num_rcu_lvl[i];
5652 }
5653
5654 /*
5655 * Dump out the structure of the rcu_node combining tree associated
5656 * with the rcu_state structure.
5657 */
rcu_dump_rcu_node_tree(void)5658 static void __init rcu_dump_rcu_node_tree(void)
5659 {
5660 int level = 0;
5661 struct rcu_node *rnp;
5662
5663 pr_info("rcu_node tree layout dump\n");
5664 pr_info(" ");
5665 rcu_for_each_node_breadth_first(rnp) {
5666 if (rnp->level != level) {
5667 pr_cont("\n");
5668 pr_info(" ");
5669 level = rnp->level;
5670 }
5671 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
5672 }
5673 pr_cont("\n");
5674 }
5675
5676 struct workqueue_struct *rcu_gp_wq;
5677
kfree_rcu_batch_init(void)5678 static void __init kfree_rcu_batch_init(void)
5679 {
5680 int cpu;
5681 int i, j;
5682 struct shrinker *kfree_rcu_shrinker;
5683
5684 rcu_reclaim_wq = alloc_workqueue("kvfree_rcu_reclaim",
5685 WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
5686 WARN_ON(!rcu_reclaim_wq);
5687
5688 /* Clamp it to [0:100] seconds interval. */
5689 if (rcu_delay_page_cache_fill_msec < 0 ||
5690 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
5691
5692 rcu_delay_page_cache_fill_msec =
5693 clamp(rcu_delay_page_cache_fill_msec, 0,
5694 (int) (100 * MSEC_PER_SEC));
5695
5696 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
5697 rcu_delay_page_cache_fill_msec);
5698 }
5699
5700 for_each_possible_cpu(cpu) {
5701 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
5702
5703 for (i = 0; i < KFREE_N_BATCHES; i++) {
5704 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
5705 krcp->krw_arr[i].krcp = krcp;
5706
5707 for (j = 0; j < FREE_N_CHANNELS; j++)
5708 INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]);
5709 }
5710
5711 for (i = 0; i < FREE_N_CHANNELS; i++)
5712 INIT_LIST_HEAD(&krcp->bulk_head[i]);
5713
5714 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
5715 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
5716 krcp->initialized = true;
5717 }
5718
5719 kfree_rcu_shrinker = shrinker_alloc(0, "rcu-kfree");
5720 if (!kfree_rcu_shrinker) {
5721 pr_err("Failed to allocate kfree_rcu() shrinker!\n");
5722 return;
5723 }
5724
5725 kfree_rcu_shrinker->count_objects = kfree_rcu_shrink_count;
5726 kfree_rcu_shrinker->scan_objects = kfree_rcu_shrink_scan;
5727
5728 shrinker_register(kfree_rcu_shrinker);
5729 }
5730
rcu_init(void)5731 void __init rcu_init(void)
5732 {
5733 int cpu = smp_processor_id();
5734
5735 rcu_early_boot_tests();
5736
5737 kfree_rcu_batch_init();
5738 rcu_bootup_announce();
5739 sanitize_kthread_prio();
5740 rcu_init_geometry();
5741 rcu_init_one();
5742 if (dump_tree)
5743 rcu_dump_rcu_node_tree();
5744 if (use_softirq)
5745 open_softirq(RCU_SOFTIRQ, rcu_core_si);
5746
5747 /*
5748 * We don't need protection against CPU-hotplug here because
5749 * this is called early in boot, before either interrupts
5750 * or the scheduler are operational.
5751 */
5752 pm_notifier(rcu_pm_notify, 0);
5753 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
5754 rcutree_prepare_cpu(cpu);
5755 rcutree_report_cpu_starting(cpu);
5756 rcutree_online_cpu(cpu);
5757
5758 /* Create workqueue for Tree SRCU and for expedited GPs. */
5759 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
5760 WARN_ON(!rcu_gp_wq);
5761
5762 sync_wq = alloc_workqueue("sync_wq", WQ_MEM_RECLAIM, 0);
5763 WARN_ON(!sync_wq);
5764
5765 /* Fill in default value for rcutree.qovld boot parameter. */
5766 /* -After- the rcu_node ->lock fields are initialized! */
5767 if (qovld < 0)
5768 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
5769 else
5770 qovld_calc = qovld;
5771
5772 // Kick-start in case any polled grace periods started early.
5773 (void)start_poll_synchronize_rcu_expedited();
5774
5775 rcu_test_sync_prims();
5776
5777 tasks_cblist_init_generic();
5778 }
5779
5780 #include "tree_stall.h"
5781 #include "tree_exp.h"
5782 #include "tree_nocb.h"
5783 #include "tree_plugin.h"
5784