1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Exception handling code
4 *
5 * Copyright (C) 2019 ARM Ltd.
6 */
7
8 #include <linux/context_tracking.h>
9 #include <linux/kasan.h>
10 #include <linux/linkage.h>
11 #include <linux/lockdep.h>
12 #include <linux/ptrace.h>
13 #include <linux/resume_user_mode.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/thread_info.h>
17
18 #include <asm/cpufeature.h>
19 #include <asm/daifflags.h>
20 #include <asm/esr.h>
21 #include <asm/exception.h>
22 #include <asm/irq_regs.h>
23 #include <asm/kprobes.h>
24 #include <asm/mmu.h>
25 #include <asm/processor.h>
26 #include <asm/sdei.h>
27 #include <asm/stacktrace.h>
28 #include <asm/sysreg.h>
29 #include <asm/system_misc.h>
30
31 #include <trace/hooks/traps.h>
32 #include <trace/hooks/gic.h>
33
34 /*
35 * Handle IRQ/context state management when entering from kernel mode.
36 * Before this function is called it is not safe to call regular kernel code,
37 * instrumentable code, or any code which may trigger an exception.
38 *
39 * This is intended to match the logic in irqentry_enter(), handling the kernel
40 * mode transitions only.
41 */
__enter_from_kernel_mode(struct pt_regs * regs)42 static __always_inline void __enter_from_kernel_mode(struct pt_regs *regs)
43 {
44 regs->exit_rcu = false;
45
46 if (!IS_ENABLED(CONFIG_TINY_RCU) && is_idle_task(current)) {
47 lockdep_hardirqs_off(CALLER_ADDR0);
48 ct_irq_enter();
49 trace_hardirqs_off_finish();
50
51 regs->exit_rcu = true;
52 return;
53 }
54
55 lockdep_hardirqs_off(CALLER_ADDR0);
56 rcu_irq_enter_check_tick();
57 trace_hardirqs_off_finish();
58 }
59
enter_from_kernel_mode(struct pt_regs * regs)60 static void noinstr enter_from_kernel_mode(struct pt_regs *regs)
61 {
62 __enter_from_kernel_mode(regs);
63 mte_check_tfsr_entry();
64 mte_disable_tco_entry(current);
65 }
66
67 /*
68 * Handle IRQ/context state management when exiting to kernel mode.
69 * After this function returns it is not safe to call regular kernel code,
70 * instrumentable code, or any code which may trigger an exception.
71 *
72 * This is intended to match the logic in irqentry_exit(), handling the kernel
73 * mode transitions only, and with preemption handled elsewhere.
74 */
__exit_to_kernel_mode(struct pt_regs * regs)75 static __always_inline void __exit_to_kernel_mode(struct pt_regs *regs)
76 {
77 lockdep_assert_irqs_disabled();
78
79 if (interrupts_enabled(regs)) {
80 if (regs->exit_rcu) {
81 trace_hardirqs_on_prepare();
82 lockdep_hardirqs_on_prepare();
83 ct_irq_exit();
84 lockdep_hardirqs_on(CALLER_ADDR0);
85 return;
86 }
87
88 trace_hardirqs_on();
89 } else {
90 if (regs->exit_rcu)
91 ct_irq_exit();
92 }
93 }
94
exit_to_kernel_mode(struct pt_regs * regs)95 static void noinstr exit_to_kernel_mode(struct pt_regs *regs)
96 {
97 mte_check_tfsr_exit();
98 __exit_to_kernel_mode(regs);
99 }
100
101 /*
102 * Handle IRQ/context state management when entering from user mode.
103 * Before this function is called it is not safe to call regular kernel code,
104 * instrumentable code, or any code which may trigger an exception.
105 */
__enter_from_user_mode(void)106 static __always_inline void __enter_from_user_mode(void)
107 {
108 lockdep_hardirqs_off(CALLER_ADDR0);
109 CT_WARN_ON(ct_state() != CT_STATE_USER);
110 user_exit_irqoff();
111 trace_hardirqs_off_finish();
112 mte_disable_tco_entry(current);
113 }
114
enter_from_user_mode(struct pt_regs * regs)115 static __always_inline void enter_from_user_mode(struct pt_regs *regs)
116 {
117 __enter_from_user_mode();
118 }
119
120 /*
121 * Handle IRQ/context state management when exiting to user mode.
122 * After this function returns it is not safe to call regular kernel code,
123 * instrumentable code, or any code which may trigger an exception.
124 */
__exit_to_user_mode(void)125 static __always_inline void __exit_to_user_mode(void)
126 {
127 trace_hardirqs_on_prepare();
128 lockdep_hardirqs_on_prepare();
129 user_enter_irqoff();
130 lockdep_hardirqs_on(CALLER_ADDR0);
131 }
132
do_notify_resume(struct pt_regs * regs,unsigned long thread_flags)133 static void do_notify_resume(struct pt_regs *regs, unsigned long thread_flags)
134 {
135 do {
136 local_irq_enable();
137
138 if (thread_flags & _TIF_NEED_RESCHED)
139 schedule();
140
141 if (thread_flags & _TIF_UPROBE)
142 uprobe_notify_resume(regs);
143
144 if (thread_flags & _TIF_MTE_ASYNC_FAULT) {
145 clear_thread_flag(TIF_MTE_ASYNC_FAULT);
146 send_sig_fault(SIGSEGV, SEGV_MTEAERR,
147 (void __user *)NULL, current);
148 }
149
150 if (thread_flags & (_TIF_SIGPENDING | _TIF_NOTIFY_SIGNAL))
151 do_signal(regs);
152
153 if (thread_flags & _TIF_NOTIFY_RESUME)
154 resume_user_mode_work(regs);
155
156 if (thread_flags & _TIF_FOREIGN_FPSTATE)
157 fpsimd_restore_current_state();
158
159 local_irq_disable();
160 thread_flags = read_thread_flags();
161 } while (thread_flags & _TIF_WORK_MASK);
162 }
163
exit_to_user_mode_prepare(struct pt_regs * regs)164 static __always_inline void exit_to_user_mode_prepare(struct pt_regs *regs)
165 {
166 unsigned long flags;
167
168 local_irq_disable();
169
170 flags = read_thread_flags();
171 if (unlikely(flags & _TIF_WORK_MASK))
172 do_notify_resume(regs, flags);
173
174 local_daif_mask();
175
176 lockdep_sys_exit();
177 }
178
exit_to_user_mode(struct pt_regs * regs)179 static __always_inline void exit_to_user_mode(struct pt_regs *regs)
180 {
181 exit_to_user_mode_prepare(regs);
182 mte_check_tfsr_exit();
183 __exit_to_user_mode();
184 }
185
asm_exit_to_user_mode(struct pt_regs * regs)186 asmlinkage void noinstr asm_exit_to_user_mode(struct pt_regs *regs)
187 {
188 exit_to_user_mode(regs);
189 }
190
191 /*
192 * Handle IRQ/context state management when entering an NMI from user/kernel
193 * mode. Before this function is called it is not safe to call regular kernel
194 * code, instrumentable code, or any code which may trigger an exception.
195 */
arm64_enter_nmi(struct pt_regs * regs)196 static void noinstr arm64_enter_nmi(struct pt_regs *regs)
197 {
198 regs->lockdep_hardirqs = lockdep_hardirqs_enabled();
199
200 __nmi_enter();
201 lockdep_hardirqs_off(CALLER_ADDR0);
202 lockdep_hardirq_enter();
203 ct_nmi_enter();
204
205 trace_hardirqs_off_finish();
206 ftrace_nmi_enter();
207 }
208
209 /*
210 * Handle IRQ/context state management when exiting an NMI from user/kernel
211 * mode. After this function returns it is not safe to call regular kernel
212 * code, instrumentable code, or any code which may trigger an exception.
213 */
arm64_exit_nmi(struct pt_regs * regs)214 static void noinstr arm64_exit_nmi(struct pt_regs *regs)
215 {
216 bool restore = regs->lockdep_hardirqs;
217
218 ftrace_nmi_exit();
219 if (restore) {
220 trace_hardirqs_on_prepare();
221 lockdep_hardirqs_on_prepare();
222 }
223
224 ct_nmi_exit();
225 lockdep_hardirq_exit();
226 if (restore)
227 lockdep_hardirqs_on(CALLER_ADDR0);
228 __nmi_exit();
229 }
230
231 /*
232 * Handle IRQ/context state management when entering a debug exception from
233 * kernel mode. Before this function is called it is not safe to call regular
234 * kernel code, instrumentable code, or any code which may trigger an exception.
235 */
arm64_enter_el1_dbg(struct pt_regs * regs)236 static void noinstr arm64_enter_el1_dbg(struct pt_regs *regs)
237 {
238 regs->lockdep_hardirqs = lockdep_hardirqs_enabled();
239
240 lockdep_hardirqs_off(CALLER_ADDR0);
241 ct_nmi_enter();
242
243 trace_hardirqs_off_finish();
244 }
245
246 /*
247 * Handle IRQ/context state management when exiting a debug exception from
248 * kernel mode. After this function returns it is not safe to call regular
249 * kernel code, instrumentable code, or any code which may trigger an exception.
250 */
arm64_exit_el1_dbg(struct pt_regs * regs)251 static void noinstr arm64_exit_el1_dbg(struct pt_regs *regs)
252 {
253 bool restore = regs->lockdep_hardirqs;
254
255 if (restore) {
256 trace_hardirqs_on_prepare();
257 lockdep_hardirqs_on_prepare();
258 }
259
260 ct_nmi_exit();
261 if (restore)
262 lockdep_hardirqs_on(CALLER_ADDR0);
263 }
264
265 #ifdef CONFIG_PREEMPT_DYNAMIC
266 DEFINE_STATIC_KEY_TRUE(sk_dynamic_irqentry_exit_cond_resched);
267 #define need_irq_preemption() \
268 (static_branch_unlikely(&sk_dynamic_irqentry_exit_cond_resched))
269 #else
270 #define need_irq_preemption() (IS_ENABLED(CONFIG_PREEMPTION))
271 #endif
272
arm64_preempt_schedule_irq(void)273 static void __sched arm64_preempt_schedule_irq(void)
274 {
275 if (!need_irq_preemption())
276 return;
277
278 /*
279 * Note: thread_info::preempt_count includes both thread_info::count
280 * and thread_info::need_resched, and is not equivalent to
281 * preempt_count().
282 */
283 if (READ_ONCE(current_thread_info()->preempt_count) != 0)
284 return;
285
286 /*
287 * DAIF.DA are cleared at the start of IRQ/FIQ handling, and when GIC
288 * priority masking is used the GIC irqchip driver will clear DAIF.IF
289 * using gic_arch_enable_irqs() for normal IRQs. If anything is set in
290 * DAIF we must have handled an NMI, so skip preemption.
291 */
292 if (system_uses_irq_prio_masking() && read_sysreg(daif))
293 return;
294
295 /*
296 * Preempting a task from an IRQ means we leave copies of PSTATE
297 * on the stack. cpufeature's enable calls may modify PSTATE, but
298 * resuming one of these preempted tasks would undo those changes.
299 *
300 * Only allow a task to be preempted once cpufeatures have been
301 * enabled.
302 */
303 if (system_capabilities_finalized())
304 preempt_schedule_irq();
305 }
306
do_interrupt_handler(struct pt_regs * regs,void (* handler)(struct pt_regs *))307 static void do_interrupt_handler(struct pt_regs *regs,
308 void (*handler)(struct pt_regs *))
309 {
310 struct pt_regs *old_regs = set_irq_regs(regs);
311
312 if (on_thread_stack())
313 call_on_irq_stack(regs, handler);
314 else
315 handler(regs);
316
317 set_irq_regs(old_regs);
318 }
319
320 extern void (*handle_arch_irq)(struct pt_regs *);
321 extern void (*handle_arch_fiq)(struct pt_regs *);
322
__panic_unhandled(struct pt_regs * regs,const char * vector,unsigned long esr)323 static void noinstr __panic_unhandled(struct pt_regs *regs, const char *vector,
324 unsigned long esr)
325 {
326 arm64_enter_nmi(regs);
327
328 console_verbose();
329
330 pr_crit("Unhandled %s exception on CPU%d, ESR 0x%016lx -- %s\n",
331 vector, smp_processor_id(), esr,
332 esr_get_class_string(esr));
333
334 trace_android_rvh_panic_unhandled(regs, vector, esr);
335 __show_regs(regs);
336 panic("Unhandled exception");
337 }
338
339 #define UNHANDLED(el, regsize, vector) \
340 asmlinkage void noinstr el##_##regsize##_##vector##_handler(struct pt_regs *regs) \
341 { \
342 const char *desc = #regsize "-bit " #el " " #vector; \
343 __panic_unhandled(regs, desc, read_sysreg(esr_el1)); \
344 }
345
346 #ifdef CONFIG_ARM64_ERRATUM_1463225
347 static DEFINE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
348
cortex_a76_erratum_1463225_svc_handler(void)349 static void cortex_a76_erratum_1463225_svc_handler(void)
350 {
351 u32 reg, val;
352
353 if (!unlikely(test_thread_flag(TIF_SINGLESTEP)))
354 return;
355
356 if (!unlikely(this_cpu_has_cap(ARM64_WORKAROUND_1463225)))
357 return;
358
359 __this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 1);
360 reg = read_sysreg(mdscr_el1);
361 val = reg | DBG_MDSCR_SS | DBG_MDSCR_KDE;
362 write_sysreg(val, mdscr_el1);
363 asm volatile("msr daifclr, #8");
364 isb();
365
366 /* We will have taken a single-step exception by this point */
367
368 write_sysreg(reg, mdscr_el1);
369 __this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 0);
370 }
371
372 static __always_inline bool
cortex_a76_erratum_1463225_debug_handler(struct pt_regs * regs)373 cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
374 {
375 if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
376 return false;
377
378 /*
379 * We've taken a dummy step exception from the kernel to ensure
380 * that interrupts are re-enabled on the syscall path. Return back
381 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
382 * masked so that we can safely restore the mdscr and get on with
383 * handling the syscall.
384 */
385 regs->pstate |= PSR_D_BIT;
386 return true;
387 }
388 #else /* CONFIG_ARM64_ERRATUM_1463225 */
cortex_a76_erratum_1463225_svc_handler(void)389 static void cortex_a76_erratum_1463225_svc_handler(void) { }
cortex_a76_erratum_1463225_debug_handler(struct pt_regs * regs)390 static bool cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
391 {
392 return false;
393 }
394 #endif /* CONFIG_ARM64_ERRATUM_1463225 */
395
396 /*
397 * As per the ABI exit SME streaming mode and clear the SVE state not
398 * shared with FPSIMD on syscall entry.
399 */
fpsimd_syscall_enter(void)400 static inline void fpsimd_syscall_enter(void)
401 {
402 /* Ensure PSTATE.SM is clear, but leave PSTATE.ZA as-is. */
403 if (system_supports_sme())
404 sme_smstop_sm();
405
406 /*
407 * The CPU is not in streaming mode. If non-streaming SVE is not
408 * supported, there is no SVE state that needs to be discarded.
409 */
410 if (!system_supports_sve())
411 return;
412
413 if (test_thread_flag(TIF_SVE)) {
414 unsigned int sve_vq_minus_one;
415
416 sve_vq_minus_one = sve_vq_from_vl(task_get_sve_vl(current)) - 1;
417 sve_flush_live(true, sve_vq_minus_one);
418 }
419
420 /*
421 * Any live non-FPSIMD SVE state has been zeroed. Allow
422 * fpsimd_save_user_state() to lazily discard SVE state until either
423 * the live state is unbound or fpsimd_syscall_exit() is called.
424 */
425 __this_cpu_write(fpsimd_last_state.to_save, FP_STATE_FPSIMD);
426 }
427
fpsimd_syscall_exit(void)428 static __always_inline void fpsimd_syscall_exit(void)
429 {
430 if (!system_supports_sve())
431 return;
432
433 /*
434 * The current task's user FPSIMD/SVE/SME state is now bound to this
435 * CPU. The fpsimd_last_state.to_save value is either:
436 *
437 * - FP_STATE_FPSIMD, if the state has not been reloaded on this CPU
438 * since fpsimd_syscall_enter().
439 *
440 * - FP_STATE_CURRENT, if the state has been reloaded on this CPU at
441 * any point.
442 *
443 * Reset this to FP_STATE_CURRENT to stop lazy discarding.
444 */
445 __this_cpu_write(fpsimd_last_state.to_save, FP_STATE_CURRENT);
446 }
447
448 UNHANDLED(el1t, 64, sync)
449 UNHANDLED(el1t, 64, irq)
450 UNHANDLED(el1t, 64, fiq)
451 UNHANDLED(el1t, 64, error)
452
el1_abort(struct pt_regs * regs,unsigned long esr)453 static void noinstr el1_abort(struct pt_regs *regs, unsigned long esr)
454 {
455 unsigned long far = read_sysreg(far_el1);
456
457 enter_from_kernel_mode(regs);
458 local_daif_inherit(regs);
459 do_mem_abort(far, esr, regs);
460 local_daif_mask();
461 exit_to_kernel_mode(regs);
462 }
463
el1_pc(struct pt_regs * regs,unsigned long esr)464 static void noinstr el1_pc(struct pt_regs *regs, unsigned long esr)
465 {
466 unsigned long far = read_sysreg(far_el1);
467
468 enter_from_kernel_mode(regs);
469 local_daif_inherit(regs);
470 do_sp_pc_abort(far, esr, regs);
471 local_daif_mask();
472 exit_to_kernel_mode(regs);
473 }
474
el1_undef(struct pt_regs * regs,unsigned long esr)475 static void noinstr el1_undef(struct pt_regs *regs, unsigned long esr)
476 {
477 enter_from_kernel_mode(regs);
478 local_daif_inherit(regs);
479 do_el1_undef(regs, esr);
480 local_daif_mask();
481 exit_to_kernel_mode(regs);
482 }
483
el1_bti(struct pt_regs * regs,unsigned long esr)484 static void noinstr el1_bti(struct pt_regs *regs, unsigned long esr)
485 {
486 enter_from_kernel_mode(regs);
487 local_daif_inherit(regs);
488 do_el1_bti(regs, esr);
489 local_daif_mask();
490 exit_to_kernel_mode(regs);
491 }
492
el1_dbg(struct pt_regs * regs,unsigned long esr)493 static void noinstr el1_dbg(struct pt_regs *regs, unsigned long esr)
494 {
495 unsigned long far = read_sysreg(far_el1);
496
497 arm64_enter_el1_dbg(regs);
498 if (!cortex_a76_erratum_1463225_debug_handler(regs))
499 do_debug_exception(far, esr, regs);
500 arm64_exit_el1_dbg(regs);
501 }
502
el1_fpac(struct pt_regs * regs,unsigned long esr)503 static void noinstr el1_fpac(struct pt_regs *regs, unsigned long esr)
504 {
505 enter_from_kernel_mode(regs);
506 local_daif_inherit(regs);
507 do_el1_fpac(regs, esr);
508 local_daif_mask();
509 exit_to_kernel_mode(regs);
510 }
511
el1h_64_sync_handler(struct pt_regs * regs)512 asmlinkage void noinstr el1h_64_sync_handler(struct pt_regs *regs)
513 {
514 unsigned long esr = read_sysreg(esr_el1);
515
516 switch (ESR_ELx_EC(esr)) {
517 case ESR_ELx_EC_DABT_CUR:
518 case ESR_ELx_EC_IABT_CUR:
519 el1_abort(regs, esr);
520 break;
521 /*
522 * We don't handle ESR_ELx_EC_SP_ALIGN, since we will have hit a
523 * recursive exception when trying to push the initial pt_regs.
524 */
525 case ESR_ELx_EC_PC_ALIGN:
526 el1_pc(regs, esr);
527 break;
528 case ESR_ELx_EC_SYS64:
529 case ESR_ELx_EC_UNKNOWN:
530 el1_undef(regs, esr);
531 break;
532 case ESR_ELx_EC_BTI:
533 el1_bti(regs, esr);
534 break;
535 case ESR_ELx_EC_BREAKPT_CUR:
536 case ESR_ELx_EC_SOFTSTP_CUR:
537 case ESR_ELx_EC_WATCHPT_CUR:
538 case ESR_ELx_EC_BRK64:
539 el1_dbg(regs, esr);
540 break;
541 case ESR_ELx_EC_FPAC:
542 el1_fpac(regs, esr);
543 break;
544 default:
545 __panic_unhandled(regs, "64-bit el1h sync", esr);
546 }
547 }
548
__el1_pnmi(struct pt_regs * regs,void (* handler)(struct pt_regs *))549 static __always_inline void __el1_pnmi(struct pt_regs *regs,
550 void (*handler)(struct pt_regs *))
551 {
552 arm64_enter_nmi(regs);
553 do_interrupt_handler(regs, handler);
554 arm64_exit_nmi(regs);
555 }
556
__el1_irq(struct pt_regs * regs,void (* handler)(struct pt_regs *))557 static __always_inline void __el1_irq(struct pt_regs *regs,
558 void (*handler)(struct pt_regs *))
559 {
560 enter_from_kernel_mode(regs);
561
562 irq_enter_rcu();
563 do_interrupt_handler(regs, handler);
564 irq_exit_rcu();
565
566 arm64_preempt_schedule_irq();
567
568 exit_to_kernel_mode(regs);
569 }
el1_interrupt(struct pt_regs * regs,void (* handler)(struct pt_regs *))570 static void noinstr el1_interrupt(struct pt_regs *regs,
571 void (*handler)(struct pt_regs *))
572 {
573 write_sysreg(DAIF_PROCCTX_NOIRQ, daif);
574
575 if (IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && !interrupts_enabled(regs))
576 __el1_pnmi(regs, handler);
577 else
578 __el1_irq(regs, handler);
579 }
580
el1h_64_irq_handler(struct pt_regs * regs)581 asmlinkage void noinstr el1h_64_irq_handler(struct pt_regs *regs)
582 {
583 el1_interrupt(regs, handle_arch_irq);
584 }
585
el1h_64_fiq_handler(struct pt_regs * regs)586 asmlinkage void noinstr el1h_64_fiq_handler(struct pt_regs *regs)
587 {
588 trace_android_rvh_fiq_dump(regs);
589 el1_interrupt(regs, handle_arch_fiq);
590 }
591
el1h_64_error_handler(struct pt_regs * regs)592 asmlinkage void noinstr el1h_64_error_handler(struct pt_regs *regs)
593 {
594 unsigned long esr = read_sysreg(esr_el1);
595
596 local_daif_restore(DAIF_ERRCTX);
597 arm64_enter_nmi(regs);
598 do_serror(regs, esr);
599 arm64_exit_nmi(regs);
600 }
601
el0_da(struct pt_regs * regs,unsigned long esr)602 static void noinstr el0_da(struct pt_regs *regs, unsigned long esr)
603 {
604 unsigned long far = read_sysreg(far_el1);
605
606 enter_from_user_mode(regs);
607 local_daif_restore(DAIF_PROCCTX);
608 do_mem_abort(far, esr, regs);
609 exit_to_user_mode(regs);
610 }
611
el0_ia(struct pt_regs * regs,unsigned long esr)612 static void noinstr el0_ia(struct pt_regs *regs, unsigned long esr)
613 {
614 unsigned long far = read_sysreg(far_el1);
615
616 /*
617 * We've taken an instruction abort from userspace and not yet
618 * re-enabled IRQs. If the address is a kernel address, apply
619 * BP hardening prior to enabling IRQs and pre-emption.
620 */
621 if (!is_ttbr0_addr(far))
622 arm64_apply_bp_hardening();
623
624 enter_from_user_mode(regs);
625 local_daif_restore(DAIF_PROCCTX);
626 do_mem_abort(far, esr, regs);
627 exit_to_user_mode(regs);
628 }
629
el0_fpsimd_acc(struct pt_regs * regs,unsigned long esr)630 static void noinstr el0_fpsimd_acc(struct pt_regs *regs, unsigned long esr)
631 {
632 enter_from_user_mode(regs);
633 local_daif_restore(DAIF_PROCCTX);
634 do_fpsimd_acc(esr, regs);
635 exit_to_user_mode(regs);
636 }
637
el0_sve_acc(struct pt_regs * regs,unsigned long esr)638 static void noinstr el0_sve_acc(struct pt_regs *regs, unsigned long esr)
639 {
640 enter_from_user_mode(regs);
641 local_daif_restore(DAIF_PROCCTX);
642 do_sve_acc(esr, regs);
643 exit_to_user_mode(regs);
644 }
645
el0_sme_acc(struct pt_regs * regs,unsigned long esr)646 static void noinstr el0_sme_acc(struct pt_regs *regs, unsigned long esr)
647 {
648 enter_from_user_mode(regs);
649 local_daif_restore(DAIF_PROCCTX);
650 do_sme_acc(esr, regs);
651 exit_to_user_mode(regs);
652 }
653
el0_fpsimd_exc(struct pt_regs * regs,unsigned long esr)654 static void noinstr el0_fpsimd_exc(struct pt_regs *regs, unsigned long esr)
655 {
656 enter_from_user_mode(regs);
657 local_daif_restore(DAIF_PROCCTX);
658 do_fpsimd_exc(esr, regs);
659 exit_to_user_mode(regs);
660 }
661
el0_sys(struct pt_regs * regs,unsigned long esr)662 static void noinstr el0_sys(struct pt_regs *regs, unsigned long esr)
663 {
664 enter_from_user_mode(regs);
665 local_daif_restore(DAIF_PROCCTX);
666 do_el0_sys(esr, regs);
667 exit_to_user_mode(regs);
668 }
669
el0_pc(struct pt_regs * regs,unsigned long esr)670 static void noinstr el0_pc(struct pt_regs *regs, unsigned long esr)
671 {
672 unsigned long far = read_sysreg(far_el1);
673
674 if (!is_ttbr0_addr(instruction_pointer(regs)))
675 arm64_apply_bp_hardening();
676
677 enter_from_user_mode(regs);
678 local_daif_restore(DAIF_PROCCTX);
679 do_sp_pc_abort(far, esr, regs);
680 exit_to_user_mode(regs);
681 }
682
el0_sp(struct pt_regs * regs,unsigned long esr)683 static void noinstr el0_sp(struct pt_regs *regs, unsigned long esr)
684 {
685 enter_from_user_mode(regs);
686 local_daif_restore(DAIF_PROCCTX);
687 do_sp_pc_abort(regs->sp, esr, regs);
688 exit_to_user_mode(regs);
689 }
690
el0_undef(struct pt_regs * regs,unsigned long esr)691 static void noinstr el0_undef(struct pt_regs *regs, unsigned long esr)
692 {
693 enter_from_user_mode(regs);
694 local_daif_restore(DAIF_PROCCTX);
695 do_el0_undef(regs, esr);
696 exit_to_user_mode(regs);
697 }
698
el0_bti(struct pt_regs * regs)699 static void noinstr el0_bti(struct pt_regs *regs)
700 {
701 enter_from_user_mode(regs);
702 local_daif_restore(DAIF_PROCCTX);
703 do_el0_bti(regs);
704 exit_to_user_mode(regs);
705 }
706
el0_mops(struct pt_regs * regs,unsigned long esr)707 static void noinstr el0_mops(struct pt_regs *regs, unsigned long esr)
708 {
709 enter_from_user_mode(regs);
710 local_daif_restore(DAIF_PROCCTX);
711 do_el0_mops(regs, esr);
712 exit_to_user_mode(regs);
713 }
714
el0_inv(struct pt_regs * regs,unsigned long esr)715 static void noinstr el0_inv(struct pt_regs *regs, unsigned long esr)
716 {
717 enter_from_user_mode(regs);
718 local_daif_restore(DAIF_PROCCTX);
719 bad_el0_sync(regs, 0, esr);
720 exit_to_user_mode(regs);
721 }
722
el0_dbg(struct pt_regs * regs,unsigned long esr)723 static void noinstr el0_dbg(struct pt_regs *regs, unsigned long esr)
724 {
725 /* Only watchpoints write FAR_EL1, otherwise its UNKNOWN */
726 unsigned long far = read_sysreg(far_el1);
727
728 enter_from_user_mode(regs);
729 do_debug_exception(far, esr, regs);
730 local_daif_restore(DAIF_PROCCTX);
731 exit_to_user_mode(regs);
732 }
733
el0_svc(struct pt_regs * regs)734 static void noinstr el0_svc(struct pt_regs *regs)
735 {
736 enter_from_user_mode(regs);
737 cortex_a76_erratum_1463225_svc_handler();
738 fpsimd_syscall_enter();
739 local_daif_restore(DAIF_PROCCTX);
740 do_el0_svc(regs);
741 exit_to_user_mode(regs);
742 fpsimd_syscall_exit();
743 }
744
el0_fpac(struct pt_regs * regs,unsigned long esr)745 static void noinstr el0_fpac(struct pt_regs *regs, unsigned long esr)
746 {
747 enter_from_user_mode(regs);
748 local_daif_restore(DAIF_PROCCTX);
749 do_el0_fpac(regs, esr);
750 exit_to_user_mode(regs);
751 }
752
el0t_64_sync_handler(struct pt_regs * regs)753 asmlinkage void noinstr el0t_64_sync_handler(struct pt_regs *regs)
754 {
755 unsigned long esr = read_sysreg(esr_el1);
756
757 switch (ESR_ELx_EC(esr)) {
758 case ESR_ELx_EC_SVC64:
759 el0_svc(regs);
760 break;
761 case ESR_ELx_EC_DABT_LOW:
762 el0_da(regs, esr);
763 break;
764 case ESR_ELx_EC_IABT_LOW:
765 el0_ia(regs, esr);
766 break;
767 case ESR_ELx_EC_FP_ASIMD:
768 el0_fpsimd_acc(regs, esr);
769 break;
770 case ESR_ELx_EC_SVE:
771 el0_sve_acc(regs, esr);
772 break;
773 case ESR_ELx_EC_SME:
774 el0_sme_acc(regs, esr);
775 break;
776 case ESR_ELx_EC_FP_EXC64:
777 el0_fpsimd_exc(regs, esr);
778 break;
779 case ESR_ELx_EC_SYS64:
780 case ESR_ELx_EC_WFx:
781 el0_sys(regs, esr);
782 break;
783 case ESR_ELx_EC_SP_ALIGN:
784 el0_sp(regs, esr);
785 break;
786 case ESR_ELx_EC_PC_ALIGN:
787 el0_pc(regs, esr);
788 break;
789 case ESR_ELx_EC_UNKNOWN:
790 el0_undef(regs, esr);
791 break;
792 case ESR_ELx_EC_BTI:
793 el0_bti(regs);
794 break;
795 case ESR_ELx_EC_MOPS:
796 el0_mops(regs, esr);
797 break;
798 case ESR_ELx_EC_BREAKPT_LOW:
799 case ESR_ELx_EC_SOFTSTP_LOW:
800 case ESR_ELx_EC_WATCHPT_LOW:
801 case ESR_ELx_EC_BRK64:
802 el0_dbg(regs, esr);
803 break;
804 case ESR_ELx_EC_FPAC:
805 el0_fpac(regs, esr);
806 break;
807 default:
808 el0_inv(regs, esr);
809 }
810 }
811
el0_interrupt(struct pt_regs * regs,void (* handler)(struct pt_regs *))812 static void noinstr el0_interrupt(struct pt_regs *regs,
813 void (*handler)(struct pt_regs *))
814 {
815 enter_from_user_mode(regs);
816
817 write_sysreg(DAIF_PROCCTX_NOIRQ, daif);
818
819 if (regs->pc & BIT(55))
820 arm64_apply_bp_hardening();
821
822 irq_enter_rcu();
823 do_interrupt_handler(regs, handler);
824 irq_exit_rcu();
825
826 exit_to_user_mode(regs);
827 }
828
__el0_irq_handler_common(struct pt_regs * regs)829 static void noinstr __el0_irq_handler_common(struct pt_regs *regs)
830 {
831 el0_interrupt(regs, handle_arch_irq);
832 }
833
el0t_64_irq_handler(struct pt_regs * regs)834 asmlinkage void noinstr el0t_64_irq_handler(struct pt_regs *regs)
835 {
836 __el0_irq_handler_common(regs);
837 }
838
__el0_fiq_handler_common(struct pt_regs * regs)839 static void noinstr __el0_fiq_handler_common(struct pt_regs *regs)
840 {
841 el0_interrupt(regs, handle_arch_fiq);
842 }
843
el0t_64_fiq_handler(struct pt_regs * regs)844 asmlinkage void noinstr el0t_64_fiq_handler(struct pt_regs *regs)
845 {
846 trace_android_rvh_fiq_dump(regs);
847 __el0_fiq_handler_common(regs);
848 }
849
__el0_error_handler_common(struct pt_regs * regs)850 static void noinstr __el0_error_handler_common(struct pt_regs *regs)
851 {
852 unsigned long esr = read_sysreg(esr_el1);
853
854 enter_from_user_mode(regs);
855 local_daif_restore(DAIF_ERRCTX);
856 arm64_enter_nmi(regs);
857 do_serror(regs, esr);
858 arm64_exit_nmi(regs);
859 local_daif_restore(DAIF_PROCCTX);
860 exit_to_user_mode(regs);
861 }
862
el0t_64_error_handler(struct pt_regs * regs)863 asmlinkage void noinstr el0t_64_error_handler(struct pt_regs *regs)
864 {
865 __el0_error_handler_common(regs);
866 }
867
868 #ifdef CONFIG_COMPAT
el0_cp15(struct pt_regs * regs,unsigned long esr)869 static void noinstr el0_cp15(struct pt_regs *regs, unsigned long esr)
870 {
871 enter_from_user_mode(regs);
872 local_daif_restore(DAIF_PROCCTX);
873 do_el0_cp15(esr, regs);
874 exit_to_user_mode(regs);
875 }
876
el0_svc_compat(struct pt_regs * regs)877 static void noinstr el0_svc_compat(struct pt_regs *regs)
878 {
879 enter_from_user_mode(regs);
880 cortex_a76_erratum_1463225_svc_handler();
881 local_daif_restore(DAIF_PROCCTX);
882 do_el0_svc_compat(regs);
883 exit_to_user_mode(regs);
884 }
885
el0t_32_sync_handler(struct pt_regs * regs)886 asmlinkage void noinstr el0t_32_sync_handler(struct pt_regs *regs)
887 {
888 unsigned long esr = read_sysreg(esr_el1);
889
890 switch (ESR_ELx_EC(esr)) {
891 case ESR_ELx_EC_SVC32:
892 el0_svc_compat(regs);
893 break;
894 case ESR_ELx_EC_DABT_LOW:
895 el0_da(regs, esr);
896 break;
897 case ESR_ELx_EC_IABT_LOW:
898 el0_ia(regs, esr);
899 break;
900 case ESR_ELx_EC_FP_ASIMD:
901 el0_fpsimd_acc(regs, esr);
902 break;
903 case ESR_ELx_EC_FP_EXC32:
904 el0_fpsimd_exc(regs, esr);
905 break;
906 case ESR_ELx_EC_PC_ALIGN:
907 el0_pc(regs, esr);
908 break;
909 case ESR_ELx_EC_UNKNOWN:
910 case ESR_ELx_EC_CP14_MR:
911 case ESR_ELx_EC_CP14_LS:
912 case ESR_ELx_EC_CP14_64:
913 el0_undef(regs, esr);
914 break;
915 case ESR_ELx_EC_CP15_32:
916 case ESR_ELx_EC_CP15_64:
917 el0_cp15(regs, esr);
918 break;
919 case ESR_ELx_EC_BREAKPT_LOW:
920 case ESR_ELx_EC_SOFTSTP_LOW:
921 case ESR_ELx_EC_WATCHPT_LOW:
922 case ESR_ELx_EC_BKPT32:
923 el0_dbg(regs, esr);
924 break;
925 default:
926 el0_inv(regs, esr);
927 }
928 }
929
el0t_32_irq_handler(struct pt_regs * regs)930 asmlinkage void noinstr el0t_32_irq_handler(struct pt_regs *regs)
931 {
932 __el0_irq_handler_common(regs);
933 }
934
el0t_32_fiq_handler(struct pt_regs * regs)935 asmlinkage void noinstr el0t_32_fiq_handler(struct pt_regs *regs)
936 {
937 __el0_fiq_handler_common(regs);
938 }
939
el0t_32_error_handler(struct pt_regs * regs)940 asmlinkage void noinstr el0t_32_error_handler(struct pt_regs *regs)
941 {
942 __el0_error_handler_common(regs);
943 }
944 #else /* CONFIG_COMPAT */
945 UNHANDLED(el0t, 32, sync)
946 UNHANDLED(el0t, 32, irq)
947 UNHANDLED(el0t, 32, fiq)
948 UNHANDLED(el0t, 32, error)
949 #endif /* CONFIG_COMPAT */
950
951 #ifdef CONFIG_VMAP_STACK
handle_bad_stack(struct pt_regs * regs)952 asmlinkage void noinstr __noreturn handle_bad_stack(struct pt_regs *regs)
953 {
954 unsigned long esr = read_sysreg(esr_el1);
955 unsigned long far = read_sysreg(far_el1);
956
957 arm64_enter_nmi(regs);
958 trace_android_rvh_handle_bad_stack(regs, esr, far);
959 panic_bad_stack(regs, esr, far);
960 }
961 #endif /* CONFIG_VMAP_STACK */
962
963 #ifdef CONFIG_ARM_SDE_INTERFACE
964 asmlinkage noinstr unsigned long
__sdei_handler(struct pt_regs * regs,struct sdei_registered_event * arg)965 __sdei_handler(struct pt_regs *regs, struct sdei_registered_event *arg)
966 {
967 unsigned long ret;
968
969 /*
970 * We didn't take an exception to get here, so the HW hasn't
971 * set/cleared bits in PSTATE that we may rely on.
972 *
973 * The original SDEI spec (ARM DEN 0054A) can be read ambiguously as to
974 * whether PSTATE bits are inherited unchanged or generated from
975 * scratch, and the TF-A implementation always clears PAN and always
976 * clears UAO. There are no other known implementations.
977 *
978 * Subsequent revisions (ARM DEN 0054B) follow the usual rules for how
979 * PSTATE is modified upon architectural exceptions, and so PAN is
980 * either inherited or set per SCTLR_ELx.SPAN, and UAO is always
981 * cleared.
982 *
983 * We must explicitly reset PAN to the expected state, including
984 * clearing it when the host isn't using it, in case a VM had it set.
985 */
986 if (system_uses_hw_pan())
987 set_pstate_pan(1);
988 else if (cpu_has_pan())
989 set_pstate_pan(0);
990
991 arm64_enter_nmi(regs);
992 ret = do_sdei_event(regs, arg);
993 arm64_exit_nmi(regs);
994
995 return ret;
996 }
997 #endif /* CONFIG_ARM_SDE_INTERFACE */
998