1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7 
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52 #include <linux/sched/isolation.h>
53 
54 #include "internal.h"
55 
56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
57 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
58 			  enum rw_hint hint, struct writeback_control *wbc);
59 
60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
61 
touch_buffer(struct buffer_head * bh)62 inline void touch_buffer(struct buffer_head *bh)
63 {
64 	trace_block_touch_buffer(bh);
65 	folio_mark_accessed(bh->b_folio);
66 }
67 EXPORT_SYMBOL(touch_buffer);
68 
__lock_buffer(struct buffer_head * bh)69 void __lock_buffer(struct buffer_head *bh)
70 {
71 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
72 }
73 EXPORT_SYMBOL(__lock_buffer);
74 
unlock_buffer(struct buffer_head * bh)75 void unlock_buffer(struct buffer_head *bh)
76 {
77 	clear_bit_unlock(BH_Lock, &bh->b_state);
78 	smp_mb__after_atomic();
79 	wake_up_bit(&bh->b_state, BH_Lock);
80 }
81 EXPORT_SYMBOL(unlock_buffer);
82 
83 /*
84  * Returns if the folio has dirty or writeback buffers. If all the buffers
85  * are unlocked and clean then the folio_test_dirty information is stale. If
86  * any of the buffers are locked, it is assumed they are locked for IO.
87  */
buffer_check_dirty_writeback(struct folio * folio,bool * dirty,bool * writeback)88 void buffer_check_dirty_writeback(struct folio *folio,
89 				     bool *dirty, bool *writeback)
90 {
91 	struct buffer_head *head, *bh;
92 	*dirty = false;
93 	*writeback = false;
94 
95 	BUG_ON(!folio_test_locked(folio));
96 
97 	head = folio_buffers(folio);
98 	if (!head)
99 		return;
100 
101 	if (folio_test_writeback(folio))
102 		*writeback = true;
103 
104 	bh = head;
105 	do {
106 		if (buffer_locked(bh))
107 			*writeback = true;
108 
109 		if (buffer_dirty(bh))
110 			*dirty = true;
111 
112 		bh = bh->b_this_page;
113 	} while (bh != head);
114 }
115 
116 /*
117  * Block until a buffer comes unlocked.  This doesn't stop it
118  * from becoming locked again - you have to lock it yourself
119  * if you want to preserve its state.
120  */
__wait_on_buffer(struct buffer_head * bh)121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126 
buffer_io_error(struct buffer_head * bh,char * msg)127 static void buffer_io_error(struct buffer_head *bh, char *msg)
128 {
129 	if (!test_bit(BH_Quiet, &bh->b_state))
130 		printk_ratelimited(KERN_ERR
131 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
132 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
133 }
134 
135 /*
136  * End-of-IO handler helper function which does not touch the bh after
137  * unlocking it.
138  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139  * a race there is benign: unlock_buffer() only use the bh's address for
140  * hashing after unlocking the buffer, so it doesn't actually touch the bh
141  * itself.
142  */
__end_buffer_read_notouch(struct buffer_head * bh,int uptodate)143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
144 {
145 	if (uptodate) {
146 		set_buffer_uptodate(bh);
147 	} else {
148 		/* This happens, due to failed read-ahead attempts. */
149 		clear_buffer_uptodate(bh);
150 	}
151 	unlock_buffer(bh);
152 }
153 
154 /*
155  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
156  * unlock the buffer.
157  */
end_buffer_read_sync(struct buffer_head * bh,int uptodate)158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159 {
160 	put_bh(bh);
161 	__end_buffer_read_notouch(bh, uptodate);
162 }
163 EXPORT_SYMBOL(end_buffer_read_sync);
164 
end_buffer_write_sync(struct buffer_head * bh,int uptodate)165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166 {
167 	if (uptodate) {
168 		set_buffer_uptodate(bh);
169 	} else {
170 		buffer_io_error(bh, ", lost sync page write");
171 		mark_buffer_write_io_error(bh);
172 		clear_buffer_uptodate(bh);
173 	}
174 	unlock_buffer(bh);
175 	put_bh(bh);
176 }
177 EXPORT_SYMBOL(end_buffer_write_sync);
178 
179 static struct buffer_head *
__find_get_block_slow(struct block_device * bdev,sector_t block,bool atomic)180 __find_get_block_slow(struct block_device *bdev, sector_t block, bool atomic)
181 {
182 	struct address_space *bd_mapping = bdev->bd_mapping;
183 	const int blkbits = bd_mapping->host->i_blkbits;
184 	struct buffer_head *ret = NULL;
185 	pgoff_t index;
186 	struct buffer_head *bh;
187 	struct buffer_head *head;
188 	struct folio *folio;
189 	int all_mapped = 1;
190 	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
191 
192 	index = ((loff_t)block << blkbits) / PAGE_SIZE;
193 	folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
194 	if (IS_ERR(folio))
195 		goto out;
196 
197 	/*
198 	 * Folio lock protects the buffers. Callers that cannot block
199 	 * will fallback to serializing vs try_to_free_buffers() via
200 	 * the i_private_lock.
201 	 */
202 	if (atomic)
203 		spin_lock(&bd_mapping->i_private_lock);
204 	else
205 		folio_lock(folio);
206 
207 	head = folio_buffers(folio);
208 	if (!head)
209 		goto out_unlock;
210 	bh = head;
211 	do {
212 		if (!buffer_mapped(bh))
213 			all_mapped = 0;
214 		else if (bh->b_blocknr == block) {
215 			ret = bh;
216 			get_bh(bh);
217 			goto out_unlock;
218 		}
219 		bh = bh->b_this_page;
220 	} while (bh != head);
221 
222 	/* we might be here because some of the buffers on this page are
223 	 * not mapped.  This is due to various races between
224 	 * file io on the block device and getblk.  It gets dealt with
225 	 * elsewhere, don't buffer_error if we had some unmapped buffers
226 	 */
227 	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228 	if (all_mapped && __ratelimit(&last_warned)) {
229 		printk("__find_get_block_slow() failed. block=%llu, "
230 		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231 		       "device %pg blocksize: %d\n",
232 		       (unsigned long long)block,
233 		       (unsigned long long)bh->b_blocknr,
234 		       bh->b_state, bh->b_size, bdev,
235 		       1 << blkbits);
236 	}
237 out_unlock:
238 	if (atomic)
239 		spin_unlock(&bd_mapping->i_private_lock);
240 	else
241 		folio_unlock(folio);
242 	folio_put(folio);
243 out:
244 	return ret;
245 }
246 
end_buffer_async_read(struct buffer_head * bh,int uptodate)247 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
248 {
249 	unsigned long flags;
250 	struct buffer_head *first;
251 	struct buffer_head *tmp;
252 	struct folio *folio;
253 	int folio_uptodate = 1;
254 
255 	BUG_ON(!buffer_async_read(bh));
256 
257 	folio = bh->b_folio;
258 	if (uptodate) {
259 		set_buffer_uptodate(bh);
260 	} else {
261 		clear_buffer_uptodate(bh);
262 		buffer_io_error(bh, ", async page read");
263 	}
264 
265 	/*
266 	 * Be _very_ careful from here on. Bad things can happen if
267 	 * two buffer heads end IO at almost the same time and both
268 	 * decide that the page is now completely done.
269 	 */
270 	first = folio_buffers(folio);
271 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
272 	clear_buffer_async_read(bh);
273 	unlock_buffer(bh);
274 	tmp = bh;
275 	do {
276 		if (!buffer_uptodate(tmp))
277 			folio_uptodate = 0;
278 		if (buffer_async_read(tmp)) {
279 			BUG_ON(!buffer_locked(tmp));
280 			goto still_busy;
281 		}
282 		tmp = tmp->b_this_page;
283 	} while (tmp != bh);
284 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
285 
286 	folio_end_read(folio, folio_uptodate);
287 	return;
288 
289 still_busy:
290 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
291 	return;
292 }
293 
294 struct postprocess_bh_ctx {
295 	struct work_struct work;
296 	struct buffer_head *bh;
297 };
298 
verify_bh(struct work_struct * work)299 static void verify_bh(struct work_struct *work)
300 {
301 	struct postprocess_bh_ctx *ctx =
302 		container_of(work, struct postprocess_bh_ctx, work);
303 	struct buffer_head *bh = ctx->bh;
304 	bool valid;
305 
306 	valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
307 	end_buffer_async_read(bh, valid);
308 	kfree(ctx);
309 }
310 
need_fsverity(struct buffer_head * bh)311 static bool need_fsverity(struct buffer_head *bh)
312 {
313 	struct folio *folio = bh->b_folio;
314 	struct inode *inode = folio->mapping->host;
315 
316 	return fsverity_active(inode) &&
317 		/* needed by ext4 */
318 		folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
319 }
320 
decrypt_bh(struct work_struct * work)321 static void decrypt_bh(struct work_struct *work)
322 {
323 	struct postprocess_bh_ctx *ctx =
324 		container_of(work, struct postprocess_bh_ctx, work);
325 	struct buffer_head *bh = ctx->bh;
326 	int err;
327 
328 	err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
329 					       bh_offset(bh));
330 	if (err == 0 && need_fsverity(bh)) {
331 		/*
332 		 * We use different work queues for decryption and for verity
333 		 * because verity may require reading metadata pages that need
334 		 * decryption, and we shouldn't recurse to the same workqueue.
335 		 */
336 		INIT_WORK(&ctx->work, verify_bh);
337 		fsverity_enqueue_verify_work(&ctx->work);
338 		return;
339 	}
340 	end_buffer_async_read(bh, err == 0);
341 	kfree(ctx);
342 }
343 
344 /*
345  * I/O completion handler for block_read_full_folio() - pages
346  * which come unlocked at the end of I/O.
347  */
end_buffer_async_read_io(struct buffer_head * bh,int uptodate)348 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
349 {
350 	struct inode *inode = bh->b_folio->mapping->host;
351 	bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
352 	bool verify = need_fsverity(bh);
353 
354 	/* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
355 	if (uptodate && (decrypt || verify)) {
356 		struct postprocess_bh_ctx *ctx =
357 			kmalloc(sizeof(*ctx), GFP_ATOMIC);
358 
359 		if (ctx) {
360 			ctx->bh = bh;
361 			if (decrypt) {
362 				INIT_WORK(&ctx->work, decrypt_bh);
363 				fscrypt_enqueue_decrypt_work(&ctx->work);
364 			} else {
365 				INIT_WORK(&ctx->work, verify_bh);
366 				fsverity_enqueue_verify_work(&ctx->work);
367 			}
368 			return;
369 		}
370 		uptodate = 0;
371 	}
372 	end_buffer_async_read(bh, uptodate);
373 }
374 
375 /*
376  * Completion handler for block_write_full_folio() - folios which are unlocked
377  * during I/O, and which have the writeback flag cleared upon I/O completion.
378  */
end_buffer_async_write(struct buffer_head * bh,int uptodate)379 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
380 {
381 	unsigned long flags;
382 	struct buffer_head *first;
383 	struct buffer_head *tmp;
384 	struct folio *folio;
385 
386 	BUG_ON(!buffer_async_write(bh));
387 
388 	folio = bh->b_folio;
389 	if (uptodate) {
390 		set_buffer_uptodate(bh);
391 	} else {
392 		buffer_io_error(bh, ", lost async page write");
393 		mark_buffer_write_io_error(bh);
394 		clear_buffer_uptodate(bh);
395 	}
396 
397 	first = folio_buffers(folio);
398 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
399 
400 	clear_buffer_async_write(bh);
401 	unlock_buffer(bh);
402 	tmp = bh->b_this_page;
403 	while (tmp != bh) {
404 		if (buffer_async_write(tmp)) {
405 			BUG_ON(!buffer_locked(tmp));
406 			goto still_busy;
407 		}
408 		tmp = tmp->b_this_page;
409 	}
410 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
411 	folio_end_writeback(folio);
412 	return;
413 
414 still_busy:
415 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
416 	return;
417 }
418 
419 /*
420  * If a page's buffers are under async readin (end_buffer_async_read
421  * completion) then there is a possibility that another thread of
422  * control could lock one of the buffers after it has completed
423  * but while some of the other buffers have not completed.  This
424  * locked buffer would confuse end_buffer_async_read() into not unlocking
425  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
426  * that this buffer is not under async I/O.
427  *
428  * The page comes unlocked when it has no locked buffer_async buffers
429  * left.
430  *
431  * PageLocked prevents anyone starting new async I/O reads any of
432  * the buffers.
433  *
434  * PageWriteback is used to prevent simultaneous writeout of the same
435  * page.
436  *
437  * PageLocked prevents anyone from starting writeback of a page which is
438  * under read I/O (PageWriteback is only ever set against a locked page).
439  */
mark_buffer_async_read(struct buffer_head * bh)440 static void mark_buffer_async_read(struct buffer_head *bh)
441 {
442 	bh->b_end_io = end_buffer_async_read_io;
443 	set_buffer_async_read(bh);
444 }
445 
mark_buffer_async_write_endio(struct buffer_head * bh,bh_end_io_t * handler)446 static void mark_buffer_async_write_endio(struct buffer_head *bh,
447 					  bh_end_io_t *handler)
448 {
449 	bh->b_end_io = handler;
450 	set_buffer_async_write(bh);
451 }
452 
mark_buffer_async_write(struct buffer_head * bh)453 void mark_buffer_async_write(struct buffer_head *bh)
454 {
455 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
456 }
457 EXPORT_SYMBOL(mark_buffer_async_write);
458 
459 
460 /*
461  * fs/buffer.c contains helper functions for buffer-backed address space's
462  * fsync functions.  A common requirement for buffer-based filesystems is
463  * that certain data from the backing blockdev needs to be written out for
464  * a successful fsync().  For example, ext2 indirect blocks need to be
465  * written back and waited upon before fsync() returns.
466  *
467  * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(),
468  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
469  * management of a list of dependent buffers at ->i_mapping->i_private_list.
470  *
471  * Locking is a little subtle: try_to_free_buffers() will remove buffers
472  * from their controlling inode's queue when they are being freed.  But
473  * try_to_free_buffers() will be operating against the *blockdev* mapping
474  * at the time, not against the S_ISREG file which depends on those buffers.
475  * So the locking for i_private_list is via the i_private_lock in the address_space
476  * which backs the buffers.  Which is different from the address_space
477  * against which the buffers are listed.  So for a particular address_space,
478  * mapping->i_private_lock does *not* protect mapping->i_private_list!  In fact,
479  * mapping->i_private_list will always be protected by the backing blockdev's
480  * ->i_private_lock.
481  *
482  * Which introduces a requirement: all buffers on an address_space's
483  * ->i_private_list must be from the same address_space: the blockdev's.
484  *
485  * address_spaces which do not place buffers at ->i_private_list via these
486  * utility functions are free to use i_private_lock and i_private_list for
487  * whatever they want.  The only requirement is that list_empty(i_private_list)
488  * be true at clear_inode() time.
489  *
490  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
491  * filesystems should do that.  invalidate_inode_buffers() should just go
492  * BUG_ON(!list_empty).
493  *
494  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
495  * take an address_space, not an inode.  And it should be called
496  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
497  * queued up.
498  *
499  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
500  * list if it is already on a list.  Because if the buffer is on a list,
501  * it *must* already be on the right one.  If not, the filesystem is being
502  * silly.  This will save a ton of locking.  But first we have to ensure
503  * that buffers are taken *off* the old inode's list when they are freed
504  * (presumably in truncate).  That requires careful auditing of all
505  * filesystems (do it inside bforget()).  It could also be done by bringing
506  * b_inode back.
507  */
508 
509 /*
510  * The buffer's backing address_space's i_private_lock must be held
511  */
__remove_assoc_queue(struct buffer_head * bh)512 static void __remove_assoc_queue(struct buffer_head *bh)
513 {
514 	list_del_init(&bh->b_assoc_buffers);
515 	WARN_ON(!bh->b_assoc_map);
516 	bh->b_assoc_map = NULL;
517 }
518 
inode_has_buffers(struct inode * inode)519 int inode_has_buffers(struct inode *inode)
520 {
521 	return !list_empty(&inode->i_data.i_private_list);
522 }
523 
524 /*
525  * osync is designed to support O_SYNC io.  It waits synchronously for
526  * all already-submitted IO to complete, but does not queue any new
527  * writes to the disk.
528  *
529  * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
530  * as you dirty the buffers, and then use osync_inode_buffers to wait for
531  * completion.  Any other dirty buffers which are not yet queued for
532  * write will not be flushed to disk by the osync.
533  */
osync_buffers_list(spinlock_t * lock,struct list_head * list)534 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
535 {
536 	struct buffer_head *bh;
537 	struct list_head *p;
538 	int err = 0;
539 
540 	spin_lock(lock);
541 repeat:
542 	list_for_each_prev(p, list) {
543 		bh = BH_ENTRY(p);
544 		if (buffer_locked(bh)) {
545 			get_bh(bh);
546 			spin_unlock(lock);
547 			wait_on_buffer(bh);
548 			if (!buffer_uptodate(bh))
549 				err = -EIO;
550 			brelse(bh);
551 			spin_lock(lock);
552 			goto repeat;
553 		}
554 	}
555 	spin_unlock(lock);
556 	return err;
557 }
558 
559 /**
560  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
561  * @mapping: the mapping which wants those buffers written
562  *
563  * Starts I/O against the buffers at mapping->i_private_list, and waits upon
564  * that I/O.
565  *
566  * Basically, this is a convenience function for fsync().
567  * @mapping is a file or directory which needs those buffers to be written for
568  * a successful fsync().
569  */
sync_mapping_buffers(struct address_space * mapping)570 int sync_mapping_buffers(struct address_space *mapping)
571 {
572 	struct address_space *buffer_mapping = mapping->i_private_data;
573 
574 	if (buffer_mapping == NULL || list_empty(&mapping->i_private_list))
575 		return 0;
576 
577 	return fsync_buffers_list(&buffer_mapping->i_private_lock,
578 					&mapping->i_private_list);
579 }
580 EXPORT_SYMBOL(sync_mapping_buffers);
581 
582 /**
583  * generic_buffers_fsync_noflush - generic buffer fsync implementation
584  * for simple filesystems with no inode lock
585  *
586  * @file:	file to synchronize
587  * @start:	start offset in bytes
588  * @end:	end offset in bytes (inclusive)
589  * @datasync:	only synchronize essential metadata if true
590  *
591  * This is a generic implementation of the fsync method for simple
592  * filesystems which track all non-inode metadata in the buffers list
593  * hanging off the address_space structure.
594  */
generic_buffers_fsync_noflush(struct file * file,loff_t start,loff_t end,bool datasync)595 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
596 				  bool datasync)
597 {
598 	struct inode *inode = file->f_mapping->host;
599 	int err;
600 	int ret;
601 
602 	err = file_write_and_wait_range(file, start, end);
603 	if (err)
604 		return err;
605 
606 	ret = sync_mapping_buffers(inode->i_mapping);
607 	if (!(inode->i_state & I_DIRTY_ALL))
608 		goto out;
609 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
610 		goto out;
611 
612 	err = sync_inode_metadata(inode, 1);
613 	if (ret == 0)
614 		ret = err;
615 
616 out:
617 	/* check and advance again to catch errors after syncing out buffers */
618 	err = file_check_and_advance_wb_err(file);
619 	if (ret == 0)
620 		ret = err;
621 	return ret;
622 }
623 EXPORT_SYMBOL(generic_buffers_fsync_noflush);
624 
625 /**
626  * generic_buffers_fsync - generic buffer fsync implementation
627  * for simple filesystems with no inode lock
628  *
629  * @file:	file to synchronize
630  * @start:	start offset in bytes
631  * @end:	end offset in bytes (inclusive)
632  * @datasync:	only synchronize essential metadata if true
633  *
634  * This is a generic implementation of the fsync method for simple
635  * filesystems which track all non-inode metadata in the buffers list
636  * hanging off the address_space structure. This also makes sure that
637  * a device cache flush operation is called at the end.
638  */
generic_buffers_fsync(struct file * file,loff_t start,loff_t end,bool datasync)639 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
640 			  bool datasync)
641 {
642 	struct inode *inode = file->f_mapping->host;
643 	int ret;
644 
645 	ret = generic_buffers_fsync_noflush(file, start, end, datasync);
646 	if (!ret)
647 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
648 	return ret;
649 }
650 EXPORT_SYMBOL(generic_buffers_fsync);
651 
652 /*
653  * Called when we've recently written block `bblock', and it is known that
654  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
655  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
656  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
657  */
write_boundary_block(struct block_device * bdev,sector_t bblock,unsigned blocksize)658 void write_boundary_block(struct block_device *bdev,
659 			sector_t bblock, unsigned blocksize)
660 {
661 	struct buffer_head *bh;
662 
663 	bh = __find_get_block_nonatomic(bdev, bblock + 1, blocksize);
664 	if (bh) {
665 		if (buffer_dirty(bh))
666 			write_dirty_buffer(bh, 0);
667 		put_bh(bh);
668 	}
669 }
670 
mark_buffer_dirty_inode(struct buffer_head * bh,struct inode * inode)671 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
672 {
673 	struct address_space *mapping = inode->i_mapping;
674 	struct address_space *buffer_mapping = bh->b_folio->mapping;
675 
676 	mark_buffer_dirty(bh);
677 	if (!mapping->i_private_data) {
678 		mapping->i_private_data = buffer_mapping;
679 	} else {
680 		BUG_ON(mapping->i_private_data != buffer_mapping);
681 	}
682 	if (!bh->b_assoc_map) {
683 		spin_lock(&buffer_mapping->i_private_lock);
684 		list_move_tail(&bh->b_assoc_buffers,
685 				&mapping->i_private_list);
686 		bh->b_assoc_map = mapping;
687 		spin_unlock(&buffer_mapping->i_private_lock);
688 	}
689 }
690 EXPORT_SYMBOL(mark_buffer_dirty_inode);
691 
692 /**
693  * block_dirty_folio - Mark a folio as dirty.
694  * @mapping: The address space containing this folio.
695  * @folio: The folio to mark dirty.
696  *
697  * Filesystems which use buffer_heads can use this function as their
698  * ->dirty_folio implementation.  Some filesystems need to do a little
699  * work before calling this function.  Filesystems which do not use
700  * buffer_heads should call filemap_dirty_folio() instead.
701  *
702  * If the folio has buffers, the uptodate buffers are set dirty, to
703  * preserve dirty-state coherency between the folio and the buffers.
704  * Buffers added to a dirty folio are created dirty.
705  *
706  * The buffers are dirtied before the folio is dirtied.  There's a small
707  * race window in which writeback may see the folio cleanness but not the
708  * buffer dirtiness.  That's fine.  If this code were to set the folio
709  * dirty before the buffers, writeback could clear the folio dirty flag,
710  * see a bunch of clean buffers and we'd end up with dirty buffers/clean
711  * folio on the dirty folio list.
712  *
713  * We use i_private_lock to lock against try_to_free_buffers() while
714  * using the folio's buffer list.  This also prevents clean buffers
715  * being added to the folio after it was set dirty.
716  *
717  * Context: May only be called from process context.  Does not sleep.
718  * Caller must ensure that @folio cannot be truncated during this call,
719  * typically by holding the folio lock or having a page in the folio
720  * mapped and holding the page table lock.
721  *
722  * Return: True if the folio was dirtied; false if it was already dirtied.
723  */
block_dirty_folio(struct address_space * mapping,struct folio * folio)724 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
725 {
726 	struct buffer_head *head;
727 	bool newly_dirty;
728 
729 	spin_lock(&mapping->i_private_lock);
730 	head = folio_buffers(folio);
731 	if (head) {
732 		struct buffer_head *bh = head;
733 
734 		do {
735 			set_buffer_dirty(bh);
736 			bh = bh->b_this_page;
737 		} while (bh != head);
738 	}
739 	/*
740 	 * Lock out page's memcg migration to keep PageDirty
741 	 * synchronized with per-memcg dirty page counters.
742 	 */
743 	folio_memcg_lock(folio);
744 	newly_dirty = !folio_test_set_dirty(folio);
745 	spin_unlock(&mapping->i_private_lock);
746 
747 	if (newly_dirty)
748 		__folio_mark_dirty(folio, mapping, 1);
749 
750 	folio_memcg_unlock(folio);
751 
752 	if (newly_dirty)
753 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
754 
755 	return newly_dirty;
756 }
757 EXPORT_SYMBOL(block_dirty_folio);
758 
759 /*
760  * Write out and wait upon a list of buffers.
761  *
762  * We have conflicting pressures: we want to make sure that all
763  * initially dirty buffers get waited on, but that any subsequently
764  * dirtied buffers don't.  After all, we don't want fsync to last
765  * forever if somebody is actively writing to the file.
766  *
767  * Do this in two main stages: first we copy dirty buffers to a
768  * temporary inode list, queueing the writes as we go.  Then we clean
769  * up, waiting for those writes to complete.
770  *
771  * During this second stage, any subsequent updates to the file may end
772  * up refiling the buffer on the original inode's dirty list again, so
773  * there is a chance we will end up with a buffer queued for write but
774  * not yet completed on that list.  So, as a final cleanup we go through
775  * the osync code to catch these locked, dirty buffers without requeuing
776  * any newly dirty buffers for write.
777  */
fsync_buffers_list(spinlock_t * lock,struct list_head * list)778 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
779 {
780 	struct buffer_head *bh;
781 	struct address_space *mapping;
782 	int err = 0, err2;
783 	struct blk_plug plug;
784 	LIST_HEAD(tmp);
785 
786 	blk_start_plug(&plug);
787 
788 	spin_lock(lock);
789 	while (!list_empty(list)) {
790 		bh = BH_ENTRY(list->next);
791 		mapping = bh->b_assoc_map;
792 		__remove_assoc_queue(bh);
793 		/* Avoid race with mark_buffer_dirty_inode() which does
794 		 * a lockless check and we rely on seeing the dirty bit */
795 		smp_mb();
796 		if (buffer_dirty(bh) || buffer_locked(bh)) {
797 			list_add(&bh->b_assoc_buffers, &tmp);
798 			bh->b_assoc_map = mapping;
799 			if (buffer_dirty(bh)) {
800 				get_bh(bh);
801 				spin_unlock(lock);
802 				/*
803 				 * Ensure any pending I/O completes so that
804 				 * write_dirty_buffer() actually writes the
805 				 * current contents - it is a noop if I/O is
806 				 * still in flight on potentially older
807 				 * contents.
808 				 */
809 				write_dirty_buffer(bh, REQ_SYNC);
810 
811 				/*
812 				 * Kick off IO for the previous mapping. Note
813 				 * that we will not run the very last mapping,
814 				 * wait_on_buffer() will do that for us
815 				 * through sync_buffer().
816 				 */
817 				brelse(bh);
818 				spin_lock(lock);
819 			}
820 		}
821 	}
822 
823 	spin_unlock(lock);
824 	blk_finish_plug(&plug);
825 	spin_lock(lock);
826 
827 	while (!list_empty(&tmp)) {
828 		bh = BH_ENTRY(tmp.prev);
829 		get_bh(bh);
830 		mapping = bh->b_assoc_map;
831 		__remove_assoc_queue(bh);
832 		/* Avoid race with mark_buffer_dirty_inode() which does
833 		 * a lockless check and we rely on seeing the dirty bit */
834 		smp_mb();
835 		if (buffer_dirty(bh)) {
836 			list_add(&bh->b_assoc_buffers,
837 				 &mapping->i_private_list);
838 			bh->b_assoc_map = mapping;
839 		}
840 		spin_unlock(lock);
841 		wait_on_buffer(bh);
842 		if (!buffer_uptodate(bh))
843 			err = -EIO;
844 		brelse(bh);
845 		spin_lock(lock);
846 	}
847 
848 	spin_unlock(lock);
849 	err2 = osync_buffers_list(lock, list);
850 	if (err)
851 		return err;
852 	else
853 		return err2;
854 }
855 
856 /*
857  * Invalidate any and all dirty buffers on a given inode.  We are
858  * probably unmounting the fs, but that doesn't mean we have already
859  * done a sync().  Just drop the buffers from the inode list.
860  *
861  * NOTE: we take the inode's blockdev's mapping's i_private_lock.  Which
862  * assumes that all the buffers are against the blockdev.  Not true
863  * for reiserfs.
864  */
invalidate_inode_buffers(struct inode * inode)865 void invalidate_inode_buffers(struct inode *inode)
866 {
867 	if (inode_has_buffers(inode)) {
868 		struct address_space *mapping = &inode->i_data;
869 		struct list_head *list = &mapping->i_private_list;
870 		struct address_space *buffer_mapping = mapping->i_private_data;
871 
872 		spin_lock(&buffer_mapping->i_private_lock);
873 		while (!list_empty(list))
874 			__remove_assoc_queue(BH_ENTRY(list->next));
875 		spin_unlock(&buffer_mapping->i_private_lock);
876 	}
877 }
878 EXPORT_SYMBOL(invalidate_inode_buffers);
879 
880 /*
881  * Remove any clean buffers from the inode's buffer list.  This is called
882  * when we're trying to free the inode itself.  Those buffers can pin it.
883  *
884  * Returns true if all buffers were removed.
885  */
remove_inode_buffers(struct inode * inode)886 int remove_inode_buffers(struct inode *inode)
887 {
888 	int ret = 1;
889 
890 	if (inode_has_buffers(inode)) {
891 		struct address_space *mapping = &inode->i_data;
892 		struct list_head *list = &mapping->i_private_list;
893 		struct address_space *buffer_mapping = mapping->i_private_data;
894 
895 		spin_lock(&buffer_mapping->i_private_lock);
896 		while (!list_empty(list)) {
897 			struct buffer_head *bh = BH_ENTRY(list->next);
898 			if (buffer_dirty(bh)) {
899 				ret = 0;
900 				break;
901 			}
902 			__remove_assoc_queue(bh);
903 		}
904 		spin_unlock(&buffer_mapping->i_private_lock);
905 	}
906 	return ret;
907 }
908 
909 /*
910  * Create the appropriate buffers when given a folio for data area and
911  * the size of each buffer.. Use the bh->b_this_page linked list to
912  * follow the buffers created.  Return NULL if unable to create more
913  * buffers.
914  *
915  * The retry flag is used to differentiate async IO (paging, swapping)
916  * which may not fail from ordinary buffer allocations.
917  */
folio_alloc_buffers(struct folio * folio,unsigned long size,gfp_t gfp)918 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
919 					gfp_t gfp)
920 {
921 	struct buffer_head *bh, *head;
922 	long offset;
923 	struct mem_cgroup *memcg, *old_memcg;
924 
925 	/* The folio lock pins the memcg */
926 	memcg = folio_memcg(folio);
927 	old_memcg = set_active_memcg(memcg);
928 
929 	head = NULL;
930 	offset = folio_size(folio);
931 	while ((offset -= size) >= 0) {
932 		bh = alloc_buffer_head(gfp);
933 		if (!bh)
934 			goto no_grow;
935 
936 		bh->b_this_page = head;
937 		bh->b_blocknr = -1;
938 		head = bh;
939 
940 		bh->b_size = size;
941 
942 		/* Link the buffer to its folio */
943 		folio_set_bh(bh, folio, offset);
944 	}
945 out:
946 	set_active_memcg(old_memcg);
947 	return head;
948 /*
949  * In case anything failed, we just free everything we got.
950  */
951 no_grow:
952 	if (head) {
953 		do {
954 			bh = head;
955 			head = head->b_this_page;
956 			free_buffer_head(bh);
957 		} while (head);
958 	}
959 
960 	goto out;
961 }
962 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
963 
alloc_page_buffers(struct page * page,unsigned long size)964 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size)
965 {
966 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
967 
968 	return folio_alloc_buffers(page_folio(page), size, gfp);
969 }
970 EXPORT_SYMBOL_GPL(alloc_page_buffers);
971 
link_dev_buffers(struct folio * folio,struct buffer_head * head)972 static inline void link_dev_buffers(struct folio *folio,
973 		struct buffer_head *head)
974 {
975 	struct buffer_head *bh, *tail;
976 
977 	bh = head;
978 	do {
979 		tail = bh;
980 		bh = bh->b_this_page;
981 	} while (bh);
982 	tail->b_this_page = head;
983 	folio_attach_private(folio, head);
984 }
985 
blkdev_max_block(struct block_device * bdev,unsigned int size)986 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
987 {
988 	sector_t retval = ~((sector_t)0);
989 	loff_t sz = bdev_nr_bytes(bdev);
990 
991 	if (sz) {
992 		unsigned int sizebits = blksize_bits(size);
993 		retval = (sz >> sizebits);
994 	}
995 	return retval;
996 }
997 
998 /*
999  * Initialise the state of a blockdev folio's buffers.
1000  */
folio_init_buffers(struct folio * folio,struct block_device * bdev,unsigned size)1001 static sector_t folio_init_buffers(struct folio *folio,
1002 		struct block_device *bdev, unsigned size)
1003 {
1004 	struct buffer_head *head = folio_buffers(folio);
1005 	struct buffer_head *bh = head;
1006 	bool uptodate = folio_test_uptodate(folio);
1007 	sector_t block = div_u64(folio_pos(folio), size);
1008 	sector_t end_block = blkdev_max_block(bdev, size);
1009 
1010 	do {
1011 		if (!buffer_mapped(bh)) {
1012 			bh->b_end_io = NULL;
1013 			bh->b_private = NULL;
1014 			bh->b_bdev = bdev;
1015 			bh->b_blocknr = block;
1016 			if (uptodate)
1017 				set_buffer_uptodate(bh);
1018 			if (block < end_block)
1019 				set_buffer_mapped(bh);
1020 		}
1021 		block++;
1022 		bh = bh->b_this_page;
1023 	} while (bh != head);
1024 
1025 	/*
1026 	 * Caller needs to validate requested block against end of device.
1027 	 */
1028 	return end_block;
1029 }
1030 
1031 /*
1032  * Create the page-cache folio that contains the requested block.
1033  *
1034  * This is used purely for blockdev mappings.
1035  *
1036  * Returns false if we have a failure which cannot be cured by retrying
1037  * without sleeping.  Returns true if we succeeded, or the caller should retry.
1038  */
grow_dev_folio(struct block_device * bdev,sector_t block,pgoff_t index,unsigned size,gfp_t gfp)1039 static bool grow_dev_folio(struct block_device *bdev, sector_t block,
1040 		pgoff_t index, unsigned size, gfp_t gfp)
1041 {
1042 	struct address_space *mapping = bdev->bd_mapping;
1043 	struct folio *folio;
1044 	struct buffer_head *bh;
1045 	sector_t end_block = 0;
1046 
1047 	folio = __filemap_get_folio(mapping, index,
1048 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1049 	if (IS_ERR(folio))
1050 		return false;
1051 
1052 	bh = folio_buffers(folio);
1053 	if (bh) {
1054 		if (bh->b_size == size) {
1055 			end_block = folio_init_buffers(folio, bdev, size);
1056 			goto unlock;
1057 		}
1058 
1059 		/*
1060 		 * Retrying may succeed; for example the folio may finish
1061 		 * writeback, or buffers may be cleaned.  This should not
1062 		 * happen very often; maybe we have old buffers attached to
1063 		 * this blockdev's page cache and we're trying to change
1064 		 * the block size?
1065 		 */
1066 		if (!try_to_free_buffers(folio)) {
1067 			end_block = ~0ULL;
1068 			goto unlock;
1069 		}
1070 	}
1071 
1072 	bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT);
1073 	if (!bh)
1074 		goto unlock;
1075 
1076 	/*
1077 	 * Link the folio to the buffers and initialise them.  Take the
1078 	 * lock to be atomic wrt __find_get_block(), which does not
1079 	 * run under the folio lock.
1080 	 */
1081 	spin_lock(&mapping->i_private_lock);
1082 	link_dev_buffers(folio, bh);
1083 	end_block = folio_init_buffers(folio, bdev, size);
1084 	spin_unlock(&mapping->i_private_lock);
1085 unlock:
1086 	folio_unlock(folio);
1087 	folio_put(folio);
1088 	return block < end_block;
1089 }
1090 
1091 /*
1092  * Create buffers for the specified block device block's folio.  If
1093  * that folio was dirty, the buffers are set dirty also.  Returns false
1094  * if we've hit a permanent error.
1095  */
grow_buffers(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1096 static bool grow_buffers(struct block_device *bdev, sector_t block,
1097 		unsigned size, gfp_t gfp)
1098 {
1099 	loff_t pos;
1100 
1101 	/*
1102 	 * Check for a block which lies outside our maximum possible
1103 	 * pagecache index.
1104 	 */
1105 	if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) {
1106 		printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n",
1107 			__func__, (unsigned long long)block,
1108 			bdev);
1109 		return false;
1110 	}
1111 
1112 	/* Create a folio with the proper size buffers */
1113 	return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp);
1114 }
1115 
1116 static struct buffer_head *
__getblk_slow(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1117 __getblk_slow(struct block_device *bdev, sector_t block,
1118 	     unsigned size, gfp_t gfp)
1119 {
1120 	/* Size must be multiple of hard sectorsize */
1121 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1122 			(size < 512 || size > PAGE_SIZE))) {
1123 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1124 					size);
1125 		printk(KERN_ERR "logical block size: %d\n",
1126 					bdev_logical_block_size(bdev));
1127 
1128 		dump_stack();
1129 		return NULL;
1130 	}
1131 
1132 	for (;;) {
1133 		struct buffer_head *bh;
1134 
1135 		bh = __find_get_block(bdev, block, size);
1136 		if (bh)
1137 			return bh;
1138 
1139 		if (!grow_buffers(bdev, block, size, gfp))
1140 			return NULL;
1141 	}
1142 }
1143 
1144 /*
1145  * The relationship between dirty buffers and dirty pages:
1146  *
1147  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1148  * the page is tagged dirty in the page cache.
1149  *
1150  * At all times, the dirtiness of the buffers represents the dirtiness of
1151  * subsections of the page.  If the page has buffers, the page dirty bit is
1152  * merely a hint about the true dirty state.
1153  *
1154  * When a page is set dirty in its entirety, all its buffers are marked dirty
1155  * (if the page has buffers).
1156  *
1157  * When a buffer is marked dirty, its page is dirtied, but the page's other
1158  * buffers are not.
1159  *
1160  * Also.  When blockdev buffers are explicitly read with bread(), they
1161  * individually become uptodate.  But their backing page remains not
1162  * uptodate - even if all of its buffers are uptodate.  A subsequent
1163  * block_read_full_folio() against that folio will discover all the uptodate
1164  * buffers, will set the folio uptodate and will perform no I/O.
1165  */
1166 
1167 /**
1168  * mark_buffer_dirty - mark a buffer_head as needing writeout
1169  * @bh: the buffer_head to mark dirty
1170  *
1171  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1172  * its backing page dirty, then tag the page as dirty in the page cache
1173  * and then attach the address_space's inode to its superblock's dirty
1174  * inode list.
1175  *
1176  * mark_buffer_dirty() is atomic.  It takes bh->b_folio->mapping->i_private_lock,
1177  * i_pages lock and mapping->host->i_lock.
1178  */
mark_buffer_dirty(struct buffer_head * bh)1179 void mark_buffer_dirty(struct buffer_head *bh)
1180 {
1181 	WARN_ON_ONCE(!buffer_uptodate(bh));
1182 
1183 	trace_block_dirty_buffer(bh);
1184 
1185 	/*
1186 	 * Very *carefully* optimize the it-is-already-dirty case.
1187 	 *
1188 	 * Don't let the final "is it dirty" escape to before we
1189 	 * perhaps modified the buffer.
1190 	 */
1191 	if (buffer_dirty(bh)) {
1192 		smp_mb();
1193 		if (buffer_dirty(bh))
1194 			return;
1195 	}
1196 
1197 	if (!test_set_buffer_dirty(bh)) {
1198 		struct folio *folio = bh->b_folio;
1199 		struct address_space *mapping = NULL;
1200 
1201 		folio_memcg_lock(folio);
1202 		if (!folio_test_set_dirty(folio)) {
1203 			mapping = folio->mapping;
1204 			if (mapping)
1205 				__folio_mark_dirty(folio, mapping, 0);
1206 		}
1207 		folio_memcg_unlock(folio);
1208 		if (mapping)
1209 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1210 	}
1211 }
1212 EXPORT_SYMBOL(mark_buffer_dirty);
1213 
mark_buffer_write_io_error(struct buffer_head * bh)1214 void mark_buffer_write_io_error(struct buffer_head *bh)
1215 {
1216 	set_buffer_write_io_error(bh);
1217 	/* FIXME: do we need to set this in both places? */
1218 	if (bh->b_folio && bh->b_folio->mapping)
1219 		mapping_set_error(bh->b_folio->mapping, -EIO);
1220 	if (bh->b_assoc_map) {
1221 		mapping_set_error(bh->b_assoc_map, -EIO);
1222 		errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO);
1223 	}
1224 }
1225 EXPORT_SYMBOL(mark_buffer_write_io_error);
1226 
1227 /**
1228  * __brelse - Release a buffer.
1229  * @bh: The buffer to release.
1230  *
1231  * This variant of brelse() can be called if @bh is guaranteed to not be NULL.
1232  */
__brelse(struct buffer_head * bh)1233 void __brelse(struct buffer_head *bh)
1234 {
1235 	if (atomic_read(&bh->b_count)) {
1236 		put_bh(bh);
1237 		return;
1238 	}
1239 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1240 }
1241 EXPORT_SYMBOL(__brelse);
1242 
1243 /**
1244  * __bforget - Discard any dirty data in a buffer.
1245  * @bh: The buffer to forget.
1246  *
1247  * This variant of bforget() can be called if @bh is guaranteed to not
1248  * be NULL.
1249  */
__bforget(struct buffer_head * bh)1250 void __bforget(struct buffer_head *bh)
1251 {
1252 	clear_buffer_dirty(bh);
1253 	if (bh->b_assoc_map) {
1254 		struct address_space *buffer_mapping = bh->b_folio->mapping;
1255 
1256 		spin_lock(&buffer_mapping->i_private_lock);
1257 		list_del_init(&bh->b_assoc_buffers);
1258 		bh->b_assoc_map = NULL;
1259 		spin_unlock(&buffer_mapping->i_private_lock);
1260 	}
1261 	__brelse(bh);
1262 }
1263 EXPORT_SYMBOL(__bforget);
1264 
__bread_slow(struct buffer_head * bh)1265 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1266 {
1267 	lock_buffer(bh);
1268 	if (buffer_uptodate(bh)) {
1269 		unlock_buffer(bh);
1270 		return bh;
1271 	} else {
1272 		get_bh(bh);
1273 		bh->b_end_io = end_buffer_read_sync;
1274 		submit_bh(REQ_OP_READ, bh);
1275 		wait_on_buffer(bh);
1276 		if (buffer_uptodate(bh))
1277 			return bh;
1278 	}
1279 	brelse(bh);
1280 	return NULL;
1281 }
1282 
1283 /*
1284  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1285  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1286  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1287  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1288  * CPU's LRUs at the same time.
1289  *
1290  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1291  * sb_find_get_block().
1292  *
1293  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1294  * a local interrupt disable for that.
1295  */
1296 
1297 #define BH_LRU_SIZE	16
1298 
1299 struct bh_lru {
1300 	struct buffer_head *bhs[BH_LRU_SIZE];
1301 };
1302 
1303 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1304 
1305 #ifdef CONFIG_SMP
1306 #define bh_lru_lock()	local_irq_disable()
1307 #define bh_lru_unlock()	local_irq_enable()
1308 #else
1309 #define bh_lru_lock()	preempt_disable()
1310 #define bh_lru_unlock()	preempt_enable()
1311 #endif
1312 
check_irqs_on(void)1313 static inline void check_irqs_on(void)
1314 {
1315 #ifdef irqs_disabled
1316 	BUG_ON(irqs_disabled());
1317 #endif
1318 }
1319 
1320 /*
1321  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1322  * inserted at the front, and the buffer_head at the back if any is evicted.
1323  * Or, if already in the LRU it is moved to the front.
1324  */
bh_lru_install(struct buffer_head * bh)1325 static void bh_lru_install(struct buffer_head *bh)
1326 {
1327 	struct buffer_head *evictee = bh;
1328 	struct bh_lru *b;
1329 	int i;
1330 
1331 	check_irqs_on();
1332 	bh_lru_lock();
1333 
1334 	/*
1335 	 * the refcount of buffer_head in bh_lru prevents dropping the
1336 	 * attached page(i.e., try_to_free_buffers) so it could cause
1337 	 * failing page migration.
1338 	 * Skip putting upcoming bh into bh_lru until migration is done.
1339 	 */
1340 	if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
1341 		bh_lru_unlock();
1342 		return;
1343 	}
1344 
1345 	b = this_cpu_ptr(&bh_lrus);
1346 	for (i = 0; i < BH_LRU_SIZE; i++) {
1347 		swap(evictee, b->bhs[i]);
1348 		if (evictee == bh) {
1349 			bh_lru_unlock();
1350 			return;
1351 		}
1352 	}
1353 
1354 	get_bh(bh);
1355 	bh_lru_unlock();
1356 	brelse(evictee);
1357 }
1358 
1359 /*
1360  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1361  */
1362 static struct buffer_head *
lookup_bh_lru(struct block_device * bdev,sector_t block,unsigned size)1363 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1364 {
1365 	struct buffer_head *ret = NULL;
1366 	unsigned int i;
1367 
1368 	check_irqs_on();
1369 	bh_lru_lock();
1370 	if (cpu_is_isolated(smp_processor_id())) {
1371 		bh_lru_unlock();
1372 		return NULL;
1373 	}
1374 	for (i = 0; i < BH_LRU_SIZE; i++) {
1375 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1376 
1377 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1378 		    bh->b_size == size) {
1379 			if (i) {
1380 				while (i) {
1381 					__this_cpu_write(bh_lrus.bhs[i],
1382 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1383 					i--;
1384 				}
1385 				__this_cpu_write(bh_lrus.bhs[0], bh);
1386 			}
1387 			get_bh(bh);
1388 			ret = bh;
1389 			break;
1390 		}
1391 	}
1392 	bh_lru_unlock();
1393 	return ret;
1394 }
1395 
1396 /*
1397  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1398  * it in the LRU and mark it as accessed.  If it is not present then return
1399  * NULL
1400  */
1401 static struct buffer_head *
find_get_block_common(struct block_device * bdev,sector_t block,unsigned size,bool atomic)1402 find_get_block_common(struct block_device *bdev, sector_t block,
1403 			unsigned size, bool atomic)
1404 {
1405 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1406 
1407 	if (bh == NULL) {
1408 		/* __find_get_block_slow will mark the page accessed */
1409 		bh = __find_get_block_slow(bdev, block, atomic);
1410 		if (bh)
1411 			bh_lru_install(bh);
1412 	} else
1413 		touch_buffer(bh);
1414 
1415 	return bh;
1416 }
1417 
1418 struct buffer_head *
__find_get_block(struct block_device * bdev,sector_t block,unsigned size)1419 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1420 {
1421 	return find_get_block_common(bdev, block, size, true);
1422 }
1423 EXPORT_SYMBOL(__find_get_block);
1424 
1425 /* same as __find_get_block() but allows sleeping contexts */
1426 struct buffer_head *
__find_get_block_nonatomic(struct block_device * bdev,sector_t block,unsigned size)1427 __find_get_block_nonatomic(struct block_device *bdev, sector_t block,
1428 			   unsigned size)
1429 {
1430 	return find_get_block_common(bdev, block, size, false);
1431 }
1432 EXPORT_SYMBOL(__find_get_block_nonatomic);
1433 
1434 /**
1435  * bdev_getblk - Get a buffer_head in a block device's buffer cache.
1436  * @bdev: The block device.
1437  * @block: The block number.
1438  * @size: The size of buffer_heads for this @bdev.
1439  * @gfp: The memory allocation flags to use.
1440  *
1441  * The returned buffer head has its reference count incremented, but is
1442  * not locked.  The caller should call brelse() when it has finished
1443  * with the buffer.  The buffer may not be uptodate.  If needed, the
1444  * caller can bring it uptodate either by reading it or overwriting it.
1445  *
1446  * Return: The buffer head, or NULL if memory could not be allocated.
1447  */
bdev_getblk(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1448 struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block,
1449 		unsigned size, gfp_t gfp)
1450 {
1451 	struct buffer_head *bh;
1452 
1453 	if (gfpflags_allow_blocking(gfp))
1454 		bh = __find_get_block_nonatomic(bdev, block, size);
1455 	else
1456 		bh = __find_get_block(bdev, block, size);
1457 
1458 	might_alloc(gfp);
1459 	if (bh)
1460 		return bh;
1461 
1462 	return __getblk_slow(bdev, block, size, gfp);
1463 }
1464 EXPORT_SYMBOL(bdev_getblk);
1465 
1466 /*
1467  * Do async read-ahead on a buffer..
1468  */
__breadahead(struct block_device * bdev,sector_t block,unsigned size)1469 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1470 {
1471 	struct buffer_head *bh = bdev_getblk(bdev, block, size,
1472 			GFP_NOWAIT | __GFP_MOVABLE);
1473 
1474 	if (likely(bh)) {
1475 		bh_readahead(bh, REQ_RAHEAD);
1476 		brelse(bh);
1477 	}
1478 }
1479 EXPORT_SYMBOL(__breadahead);
1480 
1481 /**
1482  * __bread_gfp() - Read a block.
1483  * @bdev: The block device to read from.
1484  * @block: Block number in units of block size.
1485  * @size: The block size of this device in bytes.
1486  * @gfp: Not page allocation flags; see below.
1487  *
1488  * You are not expected to call this function.  You should use one of
1489  * sb_bread(), sb_bread_unmovable() or __bread().
1490  *
1491  * Read a specified block, and return the buffer head that refers to it.
1492  * If @gfp is 0, the memory will be allocated using the block device's
1493  * default GFP flags.  If @gfp is __GFP_MOVABLE, the memory may be
1494  * allocated from a movable area.  Do not pass in a complete set of
1495  * GFP flags.
1496  *
1497  * The returned buffer head has its refcount increased.  The caller should
1498  * call brelse() when it has finished with the buffer.
1499  *
1500  * Context: May sleep waiting for I/O.
1501  * Return: NULL if the block was unreadable.
1502  */
__bread_gfp(struct block_device * bdev,sector_t block,unsigned size,gfp_t gfp)1503 struct buffer_head *__bread_gfp(struct block_device *bdev, sector_t block,
1504 		unsigned size, gfp_t gfp)
1505 {
1506 	struct buffer_head *bh;
1507 
1508 	gfp |= mapping_gfp_constraint(bdev->bd_mapping, ~__GFP_FS);
1509 
1510 	/*
1511 	 * Prefer looping in the allocator rather than here, at least that
1512 	 * code knows what it's doing.
1513 	 */
1514 	gfp |= __GFP_NOFAIL;
1515 
1516 	bh = bdev_getblk(bdev, block, size, gfp);
1517 
1518 	if (likely(bh) && !buffer_uptodate(bh))
1519 		bh = __bread_slow(bh);
1520 	return bh;
1521 }
1522 EXPORT_SYMBOL(__bread_gfp);
1523 
__invalidate_bh_lrus(struct bh_lru * b)1524 static void __invalidate_bh_lrus(struct bh_lru *b)
1525 {
1526 	int i;
1527 
1528 	for (i = 0; i < BH_LRU_SIZE; i++) {
1529 		brelse(b->bhs[i]);
1530 		b->bhs[i] = NULL;
1531 	}
1532 }
1533 /*
1534  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1535  * This doesn't race because it runs in each cpu either in irq
1536  * or with preempt disabled.
1537  */
invalidate_bh_lru(void * arg)1538 static void invalidate_bh_lru(void *arg)
1539 {
1540 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1541 
1542 	__invalidate_bh_lrus(b);
1543 	put_cpu_var(bh_lrus);
1544 }
1545 
has_bh_in_lru(int cpu,void * dummy)1546 bool has_bh_in_lru(int cpu, void *dummy)
1547 {
1548 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1549 	int i;
1550 
1551 	for (i = 0; i < BH_LRU_SIZE; i++) {
1552 		if (b->bhs[i])
1553 			return true;
1554 	}
1555 
1556 	return false;
1557 }
1558 
invalidate_bh_lrus(void)1559 void invalidate_bh_lrus(void)
1560 {
1561 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1562 }
1563 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1564 
1565 /*
1566  * It's called from workqueue context so we need a bh_lru_lock to close
1567  * the race with preemption/irq.
1568  */
invalidate_bh_lrus_cpu(void)1569 void invalidate_bh_lrus_cpu(void)
1570 {
1571 	struct bh_lru *b;
1572 
1573 	bh_lru_lock();
1574 	b = this_cpu_ptr(&bh_lrus);
1575 	__invalidate_bh_lrus(b);
1576 	bh_lru_unlock();
1577 }
1578 
folio_set_bh(struct buffer_head * bh,struct folio * folio,unsigned long offset)1579 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1580 		  unsigned long offset)
1581 {
1582 	bh->b_folio = folio;
1583 	BUG_ON(offset >= folio_size(folio));
1584 	if (folio_test_highmem(folio))
1585 		/*
1586 		 * This catches illegal uses and preserves the offset:
1587 		 */
1588 		bh->b_data = (char *)(0 + offset);
1589 	else
1590 		bh->b_data = folio_address(folio) + offset;
1591 }
1592 EXPORT_SYMBOL(folio_set_bh);
1593 
1594 /*
1595  * Called when truncating a buffer on a page completely.
1596  */
1597 
1598 /* Bits that are cleared during an invalidate */
1599 #define BUFFER_FLAGS_DISCARD \
1600 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1601 	 1 << BH_Delay | 1 << BH_Unwritten)
1602 
discard_buffer(struct buffer_head * bh)1603 static void discard_buffer(struct buffer_head * bh)
1604 {
1605 	unsigned long b_state;
1606 
1607 	lock_buffer(bh);
1608 	clear_buffer_dirty(bh);
1609 	bh->b_bdev = NULL;
1610 	b_state = READ_ONCE(bh->b_state);
1611 	do {
1612 	} while (!try_cmpxchg(&bh->b_state, &b_state,
1613 			      b_state & ~BUFFER_FLAGS_DISCARD));
1614 	unlock_buffer(bh);
1615 }
1616 
1617 /**
1618  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1619  * @folio: The folio which is affected.
1620  * @offset: start of the range to invalidate
1621  * @length: length of the range to invalidate
1622  *
1623  * block_invalidate_folio() is called when all or part of the folio has been
1624  * invalidated by a truncate operation.
1625  *
1626  * block_invalidate_folio() does not have to release all buffers, but it must
1627  * ensure that no dirty buffer is left outside @offset and that no I/O
1628  * is underway against any of the blocks which are outside the truncation
1629  * point.  Because the caller is about to free (and possibly reuse) those
1630  * blocks on-disk.
1631  */
block_invalidate_folio(struct folio * folio,size_t offset,size_t length)1632 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1633 {
1634 	struct buffer_head *head, *bh, *next;
1635 	size_t curr_off = 0;
1636 	size_t stop = length + offset;
1637 
1638 	BUG_ON(!folio_test_locked(folio));
1639 
1640 	/*
1641 	 * Check for overflow
1642 	 */
1643 	BUG_ON(stop > folio_size(folio) || stop < length);
1644 
1645 	head = folio_buffers(folio);
1646 	if (!head)
1647 		return;
1648 
1649 	bh = head;
1650 	do {
1651 		size_t next_off = curr_off + bh->b_size;
1652 		next = bh->b_this_page;
1653 
1654 		/*
1655 		 * Are we still fully in range ?
1656 		 */
1657 		if (next_off > stop)
1658 			goto out;
1659 
1660 		/*
1661 		 * is this block fully invalidated?
1662 		 */
1663 		if (offset <= curr_off)
1664 			discard_buffer(bh);
1665 		curr_off = next_off;
1666 		bh = next;
1667 	} while (bh != head);
1668 
1669 	/*
1670 	 * We release buffers only if the entire folio is being invalidated.
1671 	 * The get_block cached value has been unconditionally invalidated,
1672 	 * so real IO is not possible anymore.
1673 	 */
1674 	if (length == folio_size(folio))
1675 		filemap_release_folio(folio, 0);
1676 out:
1677 	return;
1678 }
1679 EXPORT_SYMBOL(block_invalidate_folio);
1680 
1681 /*
1682  * We attach and possibly dirty the buffers atomically wrt
1683  * block_dirty_folio() via i_private_lock.  try_to_free_buffers
1684  * is already excluded via the folio lock.
1685  */
create_empty_buffers(struct folio * folio,unsigned long blocksize,unsigned long b_state)1686 struct buffer_head *create_empty_buffers(struct folio *folio,
1687 		unsigned long blocksize, unsigned long b_state)
1688 {
1689 	struct buffer_head *bh, *head, *tail;
1690 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL;
1691 
1692 	head = folio_alloc_buffers(folio, blocksize, gfp);
1693 	bh = head;
1694 	do {
1695 		bh->b_state |= b_state;
1696 		tail = bh;
1697 		bh = bh->b_this_page;
1698 	} while (bh);
1699 	tail->b_this_page = head;
1700 
1701 	spin_lock(&folio->mapping->i_private_lock);
1702 	if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1703 		bh = head;
1704 		do {
1705 			if (folio_test_dirty(folio))
1706 				set_buffer_dirty(bh);
1707 			if (folio_test_uptodate(folio))
1708 				set_buffer_uptodate(bh);
1709 			bh = bh->b_this_page;
1710 		} while (bh != head);
1711 	}
1712 	folio_attach_private(folio, head);
1713 	spin_unlock(&folio->mapping->i_private_lock);
1714 
1715 	return head;
1716 }
1717 EXPORT_SYMBOL(create_empty_buffers);
1718 
1719 /**
1720  * clean_bdev_aliases: clean a range of buffers in block device
1721  * @bdev: Block device to clean buffers in
1722  * @block: Start of a range of blocks to clean
1723  * @len: Number of blocks to clean
1724  *
1725  * We are taking a range of blocks for data and we don't want writeback of any
1726  * buffer-cache aliases starting from return from this function and until the
1727  * moment when something will explicitly mark the buffer dirty (hopefully that
1728  * will not happen until we will free that block ;-) We don't even need to mark
1729  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1730  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1731  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1732  * would confuse anyone who might pick it with bread() afterwards...
1733  *
1734  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1735  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1736  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1737  * need to.  That happens here.
1738  */
clean_bdev_aliases(struct block_device * bdev,sector_t block,sector_t len)1739 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1740 {
1741 	struct address_space *bd_mapping = bdev->bd_mapping;
1742 	const int blkbits = bd_mapping->host->i_blkbits;
1743 	struct folio_batch fbatch;
1744 	pgoff_t index = ((loff_t)block << blkbits) / PAGE_SIZE;
1745 	pgoff_t end;
1746 	int i, count;
1747 	struct buffer_head *bh;
1748 	struct buffer_head *head;
1749 
1750 	end = ((loff_t)(block + len - 1) << blkbits) / PAGE_SIZE;
1751 	folio_batch_init(&fbatch);
1752 	while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1753 		count = folio_batch_count(&fbatch);
1754 		for (i = 0; i < count; i++) {
1755 			struct folio *folio = fbatch.folios[i];
1756 
1757 			if (!folio_buffers(folio))
1758 				continue;
1759 			/*
1760 			 * We use folio lock instead of bd_mapping->i_private_lock
1761 			 * to pin buffers here since we can afford to sleep and
1762 			 * it scales better than a global spinlock lock.
1763 			 */
1764 			folio_lock(folio);
1765 			/* Recheck when the folio is locked which pins bhs */
1766 			head = folio_buffers(folio);
1767 			if (!head)
1768 				goto unlock_page;
1769 			bh = head;
1770 			do {
1771 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1772 					goto next;
1773 				if (bh->b_blocknr >= block + len)
1774 					break;
1775 				clear_buffer_dirty(bh);
1776 				wait_on_buffer(bh);
1777 				clear_buffer_req(bh);
1778 next:
1779 				bh = bh->b_this_page;
1780 			} while (bh != head);
1781 unlock_page:
1782 			folio_unlock(folio);
1783 		}
1784 		folio_batch_release(&fbatch);
1785 		cond_resched();
1786 		/* End of range already reached? */
1787 		if (index > end || !index)
1788 			break;
1789 	}
1790 }
1791 EXPORT_SYMBOL(clean_bdev_aliases);
1792 
folio_create_buffers(struct folio * folio,struct inode * inode,unsigned int b_state)1793 static struct buffer_head *folio_create_buffers(struct folio *folio,
1794 						struct inode *inode,
1795 						unsigned int b_state)
1796 {
1797 	struct buffer_head *bh;
1798 
1799 	BUG_ON(!folio_test_locked(folio));
1800 
1801 	bh = folio_buffers(folio);
1802 	if (!bh)
1803 		bh = create_empty_buffers(folio,
1804 				1 << READ_ONCE(inode->i_blkbits), b_state);
1805 	return bh;
1806 }
1807 
1808 /*
1809  * NOTE! All mapped/uptodate combinations are valid:
1810  *
1811  *	Mapped	Uptodate	Meaning
1812  *
1813  *	No	No		"unknown" - must do get_block()
1814  *	No	Yes		"hole" - zero-filled
1815  *	Yes	No		"allocated" - allocated on disk, not read in
1816  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1817  *
1818  * "Dirty" is valid only with the last case (mapped+uptodate).
1819  */
1820 
1821 /*
1822  * While block_write_full_folio is writing back the dirty buffers under
1823  * the page lock, whoever dirtied the buffers may decide to clean them
1824  * again at any time.  We handle that by only looking at the buffer
1825  * state inside lock_buffer().
1826  *
1827  * If block_write_full_folio() is called for regular writeback
1828  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1829  * locked buffer.   This only can happen if someone has written the buffer
1830  * directly, with submit_bh().  At the address_space level PageWriteback
1831  * prevents this contention from occurring.
1832  *
1833  * If block_write_full_folio() is called with wbc->sync_mode ==
1834  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1835  * causes the writes to be flagged as synchronous writes.
1836  */
__block_write_full_folio(struct inode * inode,struct folio * folio,get_block_t * get_block,struct writeback_control * wbc)1837 int __block_write_full_folio(struct inode *inode, struct folio *folio,
1838 			get_block_t *get_block, struct writeback_control *wbc)
1839 {
1840 	int err;
1841 	sector_t block;
1842 	sector_t last_block;
1843 	struct buffer_head *bh, *head;
1844 	size_t blocksize;
1845 	int nr_underway = 0;
1846 	blk_opf_t write_flags = wbc_to_write_flags(wbc);
1847 
1848 	head = folio_create_buffers(folio, inode,
1849 				    (1 << BH_Dirty) | (1 << BH_Uptodate));
1850 
1851 	/*
1852 	 * Be very careful.  We have no exclusion from block_dirty_folio
1853 	 * here, and the (potentially unmapped) buffers may become dirty at
1854 	 * any time.  If a buffer becomes dirty here after we've inspected it
1855 	 * then we just miss that fact, and the folio stays dirty.
1856 	 *
1857 	 * Buffers outside i_size may be dirtied by block_dirty_folio;
1858 	 * handle that here by just cleaning them.
1859 	 */
1860 
1861 	bh = head;
1862 	blocksize = bh->b_size;
1863 
1864 	block = div_u64(folio_pos(folio), blocksize);
1865 	last_block = div_u64(i_size_read(inode) - 1, blocksize);
1866 
1867 	/*
1868 	 * Get all the dirty buffers mapped to disk addresses and
1869 	 * handle any aliases from the underlying blockdev's mapping.
1870 	 */
1871 	do {
1872 		if (block > last_block) {
1873 			/*
1874 			 * mapped buffers outside i_size will occur, because
1875 			 * this folio can be outside i_size when there is a
1876 			 * truncate in progress.
1877 			 */
1878 			/*
1879 			 * The buffer was zeroed by block_write_full_folio()
1880 			 */
1881 			clear_buffer_dirty(bh);
1882 			set_buffer_uptodate(bh);
1883 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1884 			   buffer_dirty(bh)) {
1885 			WARN_ON(bh->b_size != blocksize);
1886 			err = get_block(inode, block, bh, 1);
1887 			if (err)
1888 				goto recover;
1889 			clear_buffer_delay(bh);
1890 			if (buffer_new(bh)) {
1891 				/* blockdev mappings never come here */
1892 				clear_buffer_new(bh);
1893 				clean_bdev_bh_alias(bh);
1894 			}
1895 		}
1896 		bh = bh->b_this_page;
1897 		block++;
1898 	} while (bh != head);
1899 
1900 	do {
1901 		if (!buffer_mapped(bh))
1902 			continue;
1903 		/*
1904 		 * If it's a fully non-blocking write attempt and we cannot
1905 		 * lock the buffer then redirty the folio.  Note that this can
1906 		 * potentially cause a busy-wait loop from writeback threads
1907 		 * and kswapd activity, but those code paths have their own
1908 		 * higher-level throttling.
1909 		 */
1910 		if (wbc->sync_mode != WB_SYNC_NONE) {
1911 			lock_buffer(bh);
1912 		} else if (!trylock_buffer(bh)) {
1913 			folio_redirty_for_writepage(wbc, folio);
1914 			continue;
1915 		}
1916 		if (test_clear_buffer_dirty(bh)) {
1917 			mark_buffer_async_write_endio(bh,
1918 				end_buffer_async_write);
1919 		} else {
1920 			unlock_buffer(bh);
1921 		}
1922 	} while ((bh = bh->b_this_page) != head);
1923 
1924 	/*
1925 	 * The folio and its buffers are protected by the writeback flag,
1926 	 * so we can drop the bh refcounts early.
1927 	 */
1928 	BUG_ON(folio_test_writeback(folio));
1929 	folio_start_writeback(folio);
1930 
1931 	do {
1932 		struct buffer_head *next = bh->b_this_page;
1933 		if (buffer_async_write(bh)) {
1934 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1935 				      inode->i_write_hint, wbc);
1936 			nr_underway++;
1937 		}
1938 		bh = next;
1939 	} while (bh != head);
1940 	folio_unlock(folio);
1941 
1942 	err = 0;
1943 done:
1944 	if (nr_underway == 0) {
1945 		/*
1946 		 * The folio was marked dirty, but the buffers were
1947 		 * clean.  Someone wrote them back by hand with
1948 		 * write_dirty_buffer/submit_bh.  A rare case.
1949 		 */
1950 		folio_end_writeback(folio);
1951 
1952 		/*
1953 		 * The folio and buffer_heads can be released at any time from
1954 		 * here on.
1955 		 */
1956 	}
1957 	return err;
1958 
1959 recover:
1960 	/*
1961 	 * ENOSPC, or some other error.  We may already have added some
1962 	 * blocks to the file, so we need to write these out to avoid
1963 	 * exposing stale data.
1964 	 * The folio is currently locked and not marked for writeback
1965 	 */
1966 	bh = head;
1967 	/* Recovery: lock and submit the mapped buffers */
1968 	do {
1969 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1970 		    !buffer_delay(bh)) {
1971 			lock_buffer(bh);
1972 			mark_buffer_async_write_endio(bh,
1973 				end_buffer_async_write);
1974 		} else {
1975 			/*
1976 			 * The buffer may have been set dirty during
1977 			 * attachment to a dirty folio.
1978 			 */
1979 			clear_buffer_dirty(bh);
1980 		}
1981 	} while ((bh = bh->b_this_page) != head);
1982 	BUG_ON(folio_test_writeback(folio));
1983 	mapping_set_error(folio->mapping, err);
1984 	folio_start_writeback(folio);
1985 	do {
1986 		struct buffer_head *next = bh->b_this_page;
1987 		if (buffer_async_write(bh)) {
1988 			clear_buffer_dirty(bh);
1989 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1990 				      inode->i_write_hint, wbc);
1991 			nr_underway++;
1992 		}
1993 		bh = next;
1994 	} while (bh != head);
1995 	folio_unlock(folio);
1996 	goto done;
1997 }
1998 EXPORT_SYMBOL(__block_write_full_folio);
1999 
2000 /*
2001  * If a folio has any new buffers, zero them out here, and mark them uptodate
2002  * and dirty so they'll be written out (in order to prevent uninitialised
2003  * block data from leaking). And clear the new bit.
2004  */
folio_zero_new_buffers(struct folio * folio,size_t from,size_t to)2005 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
2006 {
2007 	size_t block_start, block_end;
2008 	struct buffer_head *head, *bh;
2009 
2010 	BUG_ON(!folio_test_locked(folio));
2011 	head = folio_buffers(folio);
2012 	if (!head)
2013 		return;
2014 
2015 	bh = head;
2016 	block_start = 0;
2017 	do {
2018 		block_end = block_start + bh->b_size;
2019 
2020 		if (buffer_new(bh)) {
2021 			if (block_end > from && block_start < to) {
2022 				if (!folio_test_uptodate(folio)) {
2023 					size_t start, xend;
2024 
2025 					start = max(from, block_start);
2026 					xend = min(to, block_end);
2027 
2028 					folio_zero_segment(folio, start, xend);
2029 					set_buffer_uptodate(bh);
2030 				}
2031 
2032 				clear_buffer_new(bh);
2033 				mark_buffer_dirty(bh);
2034 			}
2035 		}
2036 
2037 		block_start = block_end;
2038 		bh = bh->b_this_page;
2039 	} while (bh != head);
2040 }
2041 EXPORT_SYMBOL(folio_zero_new_buffers);
2042 
2043 static int
iomap_to_bh(struct inode * inode,sector_t block,struct buffer_head * bh,const struct iomap * iomap)2044 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2045 		const struct iomap *iomap)
2046 {
2047 	loff_t offset = (loff_t)block << inode->i_blkbits;
2048 
2049 	bh->b_bdev = iomap->bdev;
2050 
2051 	/*
2052 	 * Block points to offset in file we need to map, iomap contains
2053 	 * the offset at which the map starts. If the map ends before the
2054 	 * current block, then do not map the buffer and let the caller
2055 	 * handle it.
2056 	 */
2057 	if (offset >= iomap->offset + iomap->length)
2058 		return -EIO;
2059 
2060 	switch (iomap->type) {
2061 	case IOMAP_HOLE:
2062 		/*
2063 		 * If the buffer is not up to date or beyond the current EOF,
2064 		 * we need to mark it as new to ensure sub-block zeroing is
2065 		 * executed if necessary.
2066 		 */
2067 		if (!buffer_uptodate(bh) ||
2068 		    (offset >= i_size_read(inode)))
2069 			set_buffer_new(bh);
2070 		return 0;
2071 	case IOMAP_DELALLOC:
2072 		if (!buffer_uptodate(bh) ||
2073 		    (offset >= i_size_read(inode)))
2074 			set_buffer_new(bh);
2075 		set_buffer_uptodate(bh);
2076 		set_buffer_mapped(bh);
2077 		set_buffer_delay(bh);
2078 		return 0;
2079 	case IOMAP_UNWRITTEN:
2080 		/*
2081 		 * For unwritten regions, we always need to ensure that regions
2082 		 * in the block we are not writing to are zeroed. Mark the
2083 		 * buffer as new to ensure this.
2084 		 */
2085 		set_buffer_new(bh);
2086 		set_buffer_unwritten(bh);
2087 		fallthrough;
2088 	case IOMAP_MAPPED:
2089 		if ((iomap->flags & IOMAP_F_NEW) ||
2090 		    offset >= i_size_read(inode)) {
2091 			/*
2092 			 * This can happen if truncating the block device races
2093 			 * with the check in the caller as i_size updates on
2094 			 * block devices aren't synchronized by i_rwsem for
2095 			 * block devices.
2096 			 */
2097 			if (S_ISBLK(inode->i_mode))
2098 				return -EIO;
2099 			set_buffer_new(bh);
2100 		}
2101 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2102 				inode->i_blkbits;
2103 		set_buffer_mapped(bh);
2104 		return 0;
2105 	default:
2106 		WARN_ON_ONCE(1);
2107 		return -EIO;
2108 	}
2109 }
2110 
__block_write_begin_int(struct folio * folio,loff_t pos,unsigned len,get_block_t * get_block,const struct iomap * iomap)2111 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2112 		get_block_t *get_block, const struct iomap *iomap)
2113 {
2114 	size_t from = offset_in_folio(folio, pos);
2115 	size_t to = from + len;
2116 	struct inode *inode = folio->mapping->host;
2117 	size_t block_start, block_end;
2118 	sector_t block;
2119 	int err = 0;
2120 	size_t blocksize;
2121 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2122 
2123 	BUG_ON(!folio_test_locked(folio));
2124 	BUG_ON(to > folio_size(folio));
2125 	BUG_ON(from > to);
2126 
2127 	head = folio_create_buffers(folio, inode, 0);
2128 	blocksize = head->b_size;
2129 	block = div_u64(folio_pos(folio), blocksize);
2130 
2131 	for (bh = head, block_start = 0; bh != head || !block_start;
2132 	    block++, block_start=block_end, bh = bh->b_this_page) {
2133 		block_end = block_start + blocksize;
2134 		if (block_end <= from || block_start >= to) {
2135 			if (folio_test_uptodate(folio)) {
2136 				if (!buffer_uptodate(bh))
2137 					set_buffer_uptodate(bh);
2138 			}
2139 			continue;
2140 		}
2141 		if (buffer_new(bh))
2142 			clear_buffer_new(bh);
2143 		if (!buffer_mapped(bh)) {
2144 			WARN_ON(bh->b_size != blocksize);
2145 			if (get_block)
2146 				err = get_block(inode, block, bh, 1);
2147 			else
2148 				err = iomap_to_bh(inode, block, bh, iomap);
2149 			if (err)
2150 				break;
2151 
2152 			if (buffer_new(bh)) {
2153 				clean_bdev_bh_alias(bh);
2154 				if (folio_test_uptodate(folio)) {
2155 					clear_buffer_new(bh);
2156 					set_buffer_uptodate(bh);
2157 					mark_buffer_dirty(bh);
2158 					continue;
2159 				}
2160 				if (block_end > to || block_start < from)
2161 					folio_zero_segments(folio,
2162 						to, block_end,
2163 						block_start, from);
2164 				continue;
2165 			}
2166 		}
2167 		if (folio_test_uptodate(folio)) {
2168 			if (!buffer_uptodate(bh))
2169 				set_buffer_uptodate(bh);
2170 			continue;
2171 		}
2172 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2173 		    !buffer_unwritten(bh) &&
2174 		     (block_start < from || block_end > to)) {
2175 			bh_read_nowait(bh, 0);
2176 			*wait_bh++=bh;
2177 		}
2178 	}
2179 	/*
2180 	 * If we issued read requests - let them complete.
2181 	 */
2182 	while(wait_bh > wait) {
2183 		wait_on_buffer(*--wait_bh);
2184 		if (!buffer_uptodate(*wait_bh))
2185 			err = -EIO;
2186 	}
2187 	if (unlikely(err))
2188 		folio_zero_new_buffers(folio, from, to);
2189 	return err;
2190 }
2191 
__block_write_begin(struct folio * folio,loff_t pos,unsigned len,get_block_t * get_block)2192 int __block_write_begin(struct folio *folio, loff_t pos, unsigned len,
2193 		get_block_t *get_block)
2194 {
2195 	return __block_write_begin_int(folio, pos, len, get_block, NULL);
2196 }
2197 EXPORT_SYMBOL(__block_write_begin);
2198 
__block_commit_write(struct folio * folio,size_t from,size_t to)2199 static void __block_commit_write(struct folio *folio, size_t from, size_t to)
2200 {
2201 	size_t block_start, block_end;
2202 	bool partial = false;
2203 	unsigned blocksize;
2204 	struct buffer_head *bh, *head;
2205 
2206 	bh = head = folio_buffers(folio);
2207 	if (!bh)
2208 		return;
2209 	blocksize = bh->b_size;
2210 
2211 	block_start = 0;
2212 	do {
2213 		block_end = block_start + blocksize;
2214 		if (block_end <= from || block_start >= to) {
2215 			if (!buffer_uptodate(bh))
2216 				partial = true;
2217 		} else {
2218 			set_buffer_uptodate(bh);
2219 			mark_buffer_dirty(bh);
2220 		}
2221 		if (buffer_new(bh))
2222 			clear_buffer_new(bh);
2223 
2224 		block_start = block_end;
2225 		bh = bh->b_this_page;
2226 	} while (bh != head);
2227 
2228 	/*
2229 	 * If this is a partial write which happened to make all buffers
2230 	 * uptodate then we can optimize away a bogus read_folio() for
2231 	 * the next read(). Here we 'discover' whether the folio went
2232 	 * uptodate as a result of this (potentially partial) write.
2233 	 */
2234 	if (!partial)
2235 		folio_mark_uptodate(folio);
2236 }
2237 
2238 /*
2239  * block_write_begin takes care of the basic task of block allocation and
2240  * bringing partial write blocks uptodate first.
2241  *
2242  * The filesystem needs to handle block truncation upon failure.
2243  */
block_write_begin(struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,get_block_t * get_block)2244 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2245 		struct folio **foliop, get_block_t *get_block)
2246 {
2247 	pgoff_t index = pos >> PAGE_SHIFT;
2248 	struct folio *folio;
2249 	int status;
2250 
2251 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2252 			mapping_gfp_mask(mapping));
2253 	if (IS_ERR(folio))
2254 		return PTR_ERR(folio);
2255 
2256 	status = __block_write_begin_int(folio, pos, len, get_block, NULL);
2257 	if (unlikely(status)) {
2258 		folio_unlock(folio);
2259 		folio_put(folio);
2260 		folio = NULL;
2261 	}
2262 
2263 	*foliop = folio;
2264 	return status;
2265 }
2266 EXPORT_SYMBOL(block_write_begin);
2267 
block_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)2268 int block_write_end(struct file *file, struct address_space *mapping,
2269 			loff_t pos, unsigned len, unsigned copied,
2270 			struct folio *folio, void *fsdata)
2271 {
2272 	size_t start = pos - folio_pos(folio);
2273 
2274 	if (unlikely(copied < len)) {
2275 		/*
2276 		 * The buffers that were written will now be uptodate, so
2277 		 * we don't have to worry about a read_folio reading them
2278 		 * and overwriting a partial write. However if we have
2279 		 * encountered a short write and only partially written
2280 		 * into a buffer, it will not be marked uptodate, so a
2281 		 * read_folio might come in and destroy our partial write.
2282 		 *
2283 		 * Do the simplest thing, and just treat any short write to a
2284 		 * non uptodate folio as a zero-length write, and force the
2285 		 * caller to redo the whole thing.
2286 		 */
2287 		if (!folio_test_uptodate(folio))
2288 			copied = 0;
2289 
2290 		folio_zero_new_buffers(folio, start+copied, start+len);
2291 	}
2292 	flush_dcache_folio(folio);
2293 
2294 	/* This could be a short (even 0-length) commit */
2295 	__block_commit_write(folio, start, start + copied);
2296 
2297 	return copied;
2298 }
2299 EXPORT_SYMBOL(block_write_end);
2300 
generic_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)2301 int generic_write_end(struct file *file, struct address_space *mapping,
2302 			loff_t pos, unsigned len, unsigned copied,
2303 			struct folio *folio, void *fsdata)
2304 {
2305 	struct inode *inode = mapping->host;
2306 	loff_t old_size = inode->i_size;
2307 	bool i_size_changed = false;
2308 
2309 	copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata);
2310 
2311 	/*
2312 	 * No need to use i_size_read() here, the i_size cannot change under us
2313 	 * because we hold i_rwsem.
2314 	 *
2315 	 * But it's important to update i_size while still holding folio lock:
2316 	 * page writeout could otherwise come in and zero beyond i_size.
2317 	 */
2318 	if (pos + copied > inode->i_size) {
2319 		i_size_write(inode, pos + copied);
2320 		i_size_changed = true;
2321 	}
2322 
2323 	folio_unlock(folio);
2324 	folio_put(folio);
2325 
2326 	if (old_size < pos)
2327 		pagecache_isize_extended(inode, old_size, pos);
2328 	/*
2329 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2330 	 * makes the holding time of page lock longer. Second, it forces lock
2331 	 * ordering of page lock and transaction start for journaling
2332 	 * filesystems.
2333 	 */
2334 	if (i_size_changed)
2335 		mark_inode_dirty(inode);
2336 	return copied;
2337 }
2338 EXPORT_SYMBOL(generic_write_end);
2339 
2340 /*
2341  * block_is_partially_uptodate checks whether buffers within a folio are
2342  * uptodate or not.
2343  *
2344  * Returns true if all buffers which correspond to the specified part
2345  * of the folio are uptodate.
2346  */
block_is_partially_uptodate(struct folio * folio,size_t from,size_t count)2347 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2348 {
2349 	unsigned block_start, block_end, blocksize;
2350 	unsigned to;
2351 	struct buffer_head *bh, *head;
2352 	bool ret = true;
2353 
2354 	head = folio_buffers(folio);
2355 	if (!head)
2356 		return false;
2357 	blocksize = head->b_size;
2358 	to = min_t(unsigned, folio_size(folio) - from, count);
2359 	to = from + to;
2360 	if (from < blocksize && to > folio_size(folio) - blocksize)
2361 		return false;
2362 
2363 	bh = head;
2364 	block_start = 0;
2365 	do {
2366 		block_end = block_start + blocksize;
2367 		if (block_end > from && block_start < to) {
2368 			if (!buffer_uptodate(bh)) {
2369 				ret = false;
2370 				break;
2371 			}
2372 			if (block_end >= to)
2373 				break;
2374 		}
2375 		block_start = block_end;
2376 		bh = bh->b_this_page;
2377 	} while (bh != head);
2378 
2379 	return ret;
2380 }
2381 EXPORT_SYMBOL(block_is_partially_uptodate);
2382 
2383 /*
2384  * Generic "read_folio" function for block devices that have the normal
2385  * get_block functionality. This is most of the block device filesystems.
2386  * Reads the folio asynchronously --- the unlock_buffer() and
2387  * set/clear_buffer_uptodate() functions propagate buffer state into the
2388  * folio once IO has completed.
2389  */
block_read_full_folio(struct folio * folio,get_block_t * get_block)2390 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2391 {
2392 	struct inode *inode = folio->mapping->host;
2393 	sector_t iblock, lblock;
2394 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2395 	size_t blocksize;
2396 	int nr, i;
2397 	int fully_mapped = 1;
2398 	bool page_error = false;
2399 	loff_t limit = i_size_read(inode);
2400 
2401 	/* This is needed for ext4. */
2402 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2403 		limit = inode->i_sb->s_maxbytes;
2404 
2405 	VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2406 
2407 	head = folio_create_buffers(folio, inode, 0);
2408 	blocksize = head->b_size;
2409 
2410 	iblock = div_u64(folio_pos(folio), blocksize);
2411 	lblock = div_u64(limit + blocksize - 1, blocksize);
2412 	bh = head;
2413 	nr = 0;
2414 	i = 0;
2415 
2416 	do {
2417 		if (buffer_uptodate(bh))
2418 			continue;
2419 
2420 		if (!buffer_mapped(bh)) {
2421 			int err = 0;
2422 
2423 			fully_mapped = 0;
2424 			if (iblock < lblock) {
2425 				WARN_ON(bh->b_size != blocksize);
2426 				err = get_block(inode, iblock, bh, 0);
2427 				if (err)
2428 					page_error = true;
2429 			}
2430 			if (!buffer_mapped(bh)) {
2431 				folio_zero_range(folio, i * blocksize,
2432 						blocksize);
2433 				if (!err)
2434 					set_buffer_uptodate(bh);
2435 				continue;
2436 			}
2437 			/*
2438 			 * get_block() might have updated the buffer
2439 			 * synchronously
2440 			 */
2441 			if (buffer_uptodate(bh))
2442 				continue;
2443 		}
2444 		arr[nr++] = bh;
2445 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2446 
2447 	if (fully_mapped)
2448 		folio_set_mappedtodisk(folio);
2449 
2450 	if (!nr) {
2451 		/*
2452 		 * All buffers are uptodate or get_block() returned an
2453 		 * error when trying to map them - we can finish the read.
2454 		 */
2455 		folio_end_read(folio, !page_error);
2456 		return 0;
2457 	}
2458 
2459 	/* Stage two: lock the buffers */
2460 	for (i = 0; i < nr; i++) {
2461 		bh = arr[i];
2462 		lock_buffer(bh);
2463 		mark_buffer_async_read(bh);
2464 	}
2465 
2466 	/*
2467 	 * Stage 3: start the IO.  Check for uptodateness
2468 	 * inside the buffer lock in case another process reading
2469 	 * the underlying blockdev brought it uptodate (the sct fix).
2470 	 */
2471 	for (i = 0; i < nr; i++) {
2472 		bh = arr[i];
2473 		if (buffer_uptodate(bh))
2474 			end_buffer_async_read(bh, 1);
2475 		else
2476 			submit_bh(REQ_OP_READ, bh);
2477 	}
2478 	return 0;
2479 }
2480 EXPORT_SYMBOL(block_read_full_folio);
2481 
2482 /* utility function for filesystems that need to do work on expanding
2483  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2484  * deal with the hole.
2485  */
generic_cont_expand_simple(struct inode * inode,loff_t size)2486 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2487 {
2488 	struct address_space *mapping = inode->i_mapping;
2489 	const struct address_space_operations *aops = mapping->a_ops;
2490 	struct folio *folio;
2491 	void *fsdata = NULL;
2492 	int err;
2493 
2494 	err = inode_newsize_ok(inode, size);
2495 	if (err)
2496 		goto out;
2497 
2498 	err = aops->write_begin(NULL, mapping, size, 0, &folio, &fsdata);
2499 	if (err)
2500 		goto out;
2501 
2502 	err = aops->write_end(NULL, mapping, size, 0, 0, folio, fsdata);
2503 	BUG_ON(err > 0);
2504 
2505 out:
2506 	return err;
2507 }
2508 EXPORT_SYMBOL(generic_cont_expand_simple);
2509 
cont_expand_zero(struct file * file,struct address_space * mapping,loff_t pos,loff_t * bytes)2510 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2511 			    loff_t pos, loff_t *bytes)
2512 {
2513 	struct inode *inode = mapping->host;
2514 	const struct address_space_operations *aops = mapping->a_ops;
2515 	unsigned int blocksize = i_blocksize(inode);
2516 	struct folio *folio;
2517 	void *fsdata = NULL;
2518 	pgoff_t index, curidx;
2519 	loff_t curpos;
2520 	unsigned zerofrom, offset, len;
2521 	int err = 0;
2522 
2523 	index = pos >> PAGE_SHIFT;
2524 	offset = pos & ~PAGE_MASK;
2525 
2526 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2527 		zerofrom = curpos & ~PAGE_MASK;
2528 		if (zerofrom & (blocksize-1)) {
2529 			*bytes |= (blocksize-1);
2530 			(*bytes)++;
2531 		}
2532 		len = PAGE_SIZE - zerofrom;
2533 
2534 		err = aops->write_begin(file, mapping, curpos, len,
2535 					    &folio, &fsdata);
2536 		if (err)
2537 			goto out;
2538 		folio_zero_range(folio, offset_in_folio(folio, curpos), len);
2539 		err = aops->write_end(file, mapping, curpos, len, len,
2540 						folio, fsdata);
2541 		if (err < 0)
2542 			goto out;
2543 		BUG_ON(err != len);
2544 		err = 0;
2545 
2546 		balance_dirty_pages_ratelimited(mapping);
2547 
2548 		if (fatal_signal_pending(current)) {
2549 			err = -EINTR;
2550 			goto out;
2551 		}
2552 	}
2553 
2554 	/* page covers the boundary, find the boundary offset */
2555 	if (index == curidx) {
2556 		zerofrom = curpos & ~PAGE_MASK;
2557 		/* if we will expand the thing last block will be filled */
2558 		if (offset <= zerofrom) {
2559 			goto out;
2560 		}
2561 		if (zerofrom & (blocksize-1)) {
2562 			*bytes |= (blocksize-1);
2563 			(*bytes)++;
2564 		}
2565 		len = offset - zerofrom;
2566 
2567 		err = aops->write_begin(file, mapping, curpos, len,
2568 					    &folio, &fsdata);
2569 		if (err)
2570 			goto out;
2571 		folio_zero_range(folio, offset_in_folio(folio, curpos), len);
2572 		err = aops->write_end(file, mapping, curpos, len, len,
2573 						folio, fsdata);
2574 		if (err < 0)
2575 			goto out;
2576 		BUG_ON(err != len);
2577 		err = 0;
2578 	}
2579 out:
2580 	return err;
2581 }
2582 
2583 /*
2584  * For moronic filesystems that do not allow holes in file.
2585  * We may have to extend the file.
2586  */
cont_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata,get_block_t * get_block,loff_t * bytes)2587 int cont_write_begin(struct file *file, struct address_space *mapping,
2588 			loff_t pos, unsigned len,
2589 			struct folio **foliop, void **fsdata,
2590 			get_block_t *get_block, loff_t *bytes)
2591 {
2592 	struct inode *inode = mapping->host;
2593 	unsigned int blocksize = i_blocksize(inode);
2594 	unsigned int zerofrom;
2595 	int err;
2596 
2597 	err = cont_expand_zero(file, mapping, pos, bytes);
2598 	if (err)
2599 		return err;
2600 
2601 	zerofrom = *bytes & ~PAGE_MASK;
2602 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2603 		*bytes |= (blocksize-1);
2604 		(*bytes)++;
2605 	}
2606 
2607 	return block_write_begin(mapping, pos, len, foliop, get_block);
2608 }
2609 EXPORT_SYMBOL(cont_write_begin);
2610 
block_commit_write(struct page * page,unsigned from,unsigned to)2611 void block_commit_write(struct page *page, unsigned from, unsigned to)
2612 {
2613 	struct folio *folio = page_folio(page);
2614 	__block_commit_write(folio, from, to);
2615 }
2616 EXPORT_SYMBOL(block_commit_write);
2617 
2618 /*
2619  * block_page_mkwrite() is not allowed to change the file size as it gets
2620  * called from a page fault handler when a page is first dirtied. Hence we must
2621  * be careful to check for EOF conditions here. We set the page up correctly
2622  * for a written page which means we get ENOSPC checking when writing into
2623  * holes and correct delalloc and unwritten extent mapping on filesystems that
2624  * support these features.
2625  *
2626  * We are not allowed to take the i_mutex here so we have to play games to
2627  * protect against truncate races as the page could now be beyond EOF.  Because
2628  * truncate writes the inode size before removing pages, once we have the
2629  * page lock we can determine safely if the page is beyond EOF. If it is not
2630  * beyond EOF, then the page is guaranteed safe against truncation until we
2631  * unlock the page.
2632  *
2633  * Direct callers of this function should protect against filesystem freezing
2634  * using sb_start_pagefault() - sb_end_pagefault() functions.
2635  */
block_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf,get_block_t get_block)2636 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2637 			 get_block_t get_block)
2638 {
2639 	struct folio *folio = page_folio(vmf->page);
2640 	struct inode *inode = file_inode(vma->vm_file);
2641 	unsigned long end;
2642 	loff_t size;
2643 	int ret;
2644 
2645 	folio_lock(folio);
2646 	size = i_size_read(inode);
2647 	if ((folio->mapping != inode->i_mapping) ||
2648 	    (folio_pos(folio) >= size)) {
2649 		/* We overload EFAULT to mean page got truncated */
2650 		ret = -EFAULT;
2651 		goto out_unlock;
2652 	}
2653 
2654 	end = folio_size(folio);
2655 	/* folio is wholly or partially inside EOF */
2656 	if (folio_pos(folio) + end > size)
2657 		end = size - folio_pos(folio);
2658 
2659 	ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2660 	if (unlikely(ret))
2661 		goto out_unlock;
2662 
2663 	__block_commit_write(folio, 0, end);
2664 
2665 	folio_mark_dirty(folio);
2666 	folio_wait_stable(folio);
2667 	return 0;
2668 out_unlock:
2669 	folio_unlock(folio);
2670 	return ret;
2671 }
2672 EXPORT_SYMBOL(block_page_mkwrite);
2673 
block_truncate_page(struct address_space * mapping,loff_t from,get_block_t * get_block)2674 int block_truncate_page(struct address_space *mapping,
2675 			loff_t from, get_block_t *get_block)
2676 {
2677 	pgoff_t index = from >> PAGE_SHIFT;
2678 	unsigned blocksize;
2679 	sector_t iblock;
2680 	size_t offset, length, pos;
2681 	struct inode *inode = mapping->host;
2682 	struct folio *folio;
2683 	struct buffer_head *bh;
2684 	int err = 0;
2685 
2686 	blocksize = i_blocksize(inode);
2687 	length = from & (blocksize - 1);
2688 
2689 	/* Block boundary? Nothing to do */
2690 	if (!length)
2691 		return 0;
2692 
2693 	length = blocksize - length;
2694 	iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits;
2695 
2696 	folio = filemap_grab_folio(mapping, index);
2697 	if (IS_ERR(folio))
2698 		return PTR_ERR(folio);
2699 
2700 	bh = folio_buffers(folio);
2701 	if (!bh)
2702 		bh = create_empty_buffers(folio, blocksize, 0);
2703 
2704 	/* Find the buffer that contains "offset" */
2705 	offset = offset_in_folio(folio, from);
2706 	pos = blocksize;
2707 	while (offset >= pos) {
2708 		bh = bh->b_this_page;
2709 		iblock++;
2710 		pos += blocksize;
2711 	}
2712 
2713 	if (!buffer_mapped(bh)) {
2714 		WARN_ON(bh->b_size != blocksize);
2715 		err = get_block(inode, iblock, bh, 0);
2716 		if (err)
2717 			goto unlock;
2718 		/* unmapped? It's a hole - nothing to do */
2719 		if (!buffer_mapped(bh))
2720 			goto unlock;
2721 	}
2722 
2723 	/* Ok, it's mapped. Make sure it's up-to-date */
2724 	if (folio_test_uptodate(folio))
2725 		set_buffer_uptodate(bh);
2726 
2727 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2728 		err = bh_read(bh, 0);
2729 		/* Uhhuh. Read error. Complain and punt. */
2730 		if (err < 0)
2731 			goto unlock;
2732 	}
2733 
2734 	folio_zero_range(folio, offset, length);
2735 	mark_buffer_dirty(bh);
2736 
2737 unlock:
2738 	folio_unlock(folio);
2739 	folio_put(folio);
2740 
2741 	return err;
2742 }
2743 EXPORT_SYMBOL(block_truncate_page);
2744 
2745 /*
2746  * The generic ->writepage function for buffer-backed address_spaces
2747  */
block_write_full_folio(struct folio * folio,struct writeback_control * wbc,void * get_block)2748 int block_write_full_folio(struct folio *folio, struct writeback_control *wbc,
2749 		void *get_block)
2750 {
2751 	struct inode * const inode = folio->mapping->host;
2752 	loff_t i_size = i_size_read(inode);
2753 
2754 	/* Is the folio fully inside i_size? */
2755 	if (folio_pos(folio) + folio_size(folio) <= i_size)
2756 		return __block_write_full_folio(inode, folio, get_block, wbc);
2757 
2758 	/* Is the folio fully outside i_size? (truncate in progress) */
2759 	if (folio_pos(folio) >= i_size) {
2760 		folio_unlock(folio);
2761 		return 0; /* don't care */
2762 	}
2763 
2764 	/*
2765 	 * The folio straddles i_size.  It must be zeroed out on each and every
2766 	 * writepage invocation because it may be mmapped.  "A file is mapped
2767 	 * in multiples of the page size.  For a file that is not a multiple of
2768 	 * the page size, the remaining memory is zeroed when mapped, and
2769 	 * writes to that region are not written out to the file."
2770 	 */
2771 	folio_zero_segment(folio, offset_in_folio(folio, i_size),
2772 			folio_size(folio));
2773 	return __block_write_full_folio(inode, folio, get_block, wbc);
2774 }
2775 
generic_block_bmap(struct address_space * mapping,sector_t block,get_block_t * get_block)2776 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2777 			    get_block_t *get_block)
2778 {
2779 	struct inode *inode = mapping->host;
2780 	struct buffer_head tmp = {
2781 		.b_size = i_blocksize(inode),
2782 	};
2783 
2784 	get_block(inode, block, &tmp, 0);
2785 	return tmp.b_blocknr;
2786 }
2787 EXPORT_SYMBOL(generic_block_bmap);
2788 
end_bio_bh_io_sync(struct bio * bio)2789 static void end_bio_bh_io_sync(struct bio *bio)
2790 {
2791 	struct buffer_head *bh = bio->bi_private;
2792 
2793 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2794 		set_bit(BH_Quiet, &bh->b_state);
2795 
2796 	bh->b_end_io(bh, !bio->bi_status);
2797 	bio_put(bio);
2798 }
2799 
submit_bh_wbc(blk_opf_t opf,struct buffer_head * bh,enum rw_hint write_hint,struct writeback_control * wbc)2800 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2801 			  enum rw_hint write_hint,
2802 			  struct writeback_control *wbc)
2803 {
2804 	const enum req_op op = opf & REQ_OP_MASK;
2805 	struct bio *bio;
2806 
2807 	BUG_ON(!buffer_locked(bh));
2808 	BUG_ON(!buffer_mapped(bh));
2809 	BUG_ON(!bh->b_end_io);
2810 	BUG_ON(buffer_delay(bh));
2811 	BUG_ON(buffer_unwritten(bh));
2812 
2813 	/*
2814 	 * Only clear out a write error when rewriting
2815 	 */
2816 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2817 		clear_buffer_write_io_error(bh);
2818 
2819 	if (buffer_meta(bh))
2820 		opf |= REQ_META;
2821 	if (buffer_prio(bh))
2822 		opf |= REQ_PRIO;
2823 
2824 	bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2825 
2826 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2827 
2828 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2829 	bio->bi_write_hint = write_hint;
2830 
2831 	bio_add_folio_nofail(bio, bh->b_folio, bh->b_size, bh_offset(bh));
2832 
2833 	bio->bi_end_io = end_bio_bh_io_sync;
2834 	bio->bi_private = bh;
2835 
2836 	/* Take care of bh's that straddle the end of the device */
2837 	guard_bio_eod(bio);
2838 
2839 	if (wbc) {
2840 		wbc_init_bio(wbc, bio);
2841 		wbc_account_cgroup_owner(wbc, bh->b_folio, bh->b_size);
2842 	}
2843 
2844 	submit_bio(bio);
2845 }
2846 
submit_bh(blk_opf_t opf,struct buffer_head * bh)2847 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2848 {
2849 	submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL);
2850 }
2851 EXPORT_SYMBOL(submit_bh);
2852 
write_dirty_buffer(struct buffer_head * bh,blk_opf_t op_flags)2853 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2854 {
2855 	lock_buffer(bh);
2856 	if (!test_clear_buffer_dirty(bh)) {
2857 		unlock_buffer(bh);
2858 		return;
2859 	}
2860 	bh->b_end_io = end_buffer_write_sync;
2861 	get_bh(bh);
2862 	submit_bh(REQ_OP_WRITE | op_flags, bh);
2863 }
2864 EXPORT_SYMBOL(write_dirty_buffer);
2865 
2866 /*
2867  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2868  * and then start new I/O and then wait upon it.  The caller must have a ref on
2869  * the buffer_head.
2870  */
__sync_dirty_buffer(struct buffer_head * bh,blk_opf_t op_flags)2871 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2872 {
2873 	WARN_ON(atomic_read(&bh->b_count) < 1);
2874 	lock_buffer(bh);
2875 	if (test_clear_buffer_dirty(bh)) {
2876 		/*
2877 		 * The bh should be mapped, but it might not be if the
2878 		 * device was hot-removed. Not much we can do but fail the I/O.
2879 		 */
2880 		if (!buffer_mapped(bh)) {
2881 			unlock_buffer(bh);
2882 			return -EIO;
2883 		}
2884 
2885 		get_bh(bh);
2886 		bh->b_end_io = end_buffer_write_sync;
2887 		submit_bh(REQ_OP_WRITE | op_flags, bh);
2888 		wait_on_buffer(bh);
2889 		if (!buffer_uptodate(bh))
2890 			return -EIO;
2891 	} else {
2892 		unlock_buffer(bh);
2893 	}
2894 	return 0;
2895 }
2896 EXPORT_SYMBOL(__sync_dirty_buffer);
2897 
sync_dirty_buffer(struct buffer_head * bh)2898 int sync_dirty_buffer(struct buffer_head *bh)
2899 {
2900 	return __sync_dirty_buffer(bh, REQ_SYNC);
2901 }
2902 EXPORT_SYMBOL(sync_dirty_buffer);
2903 
buffer_busy(struct buffer_head * bh)2904 static inline int buffer_busy(struct buffer_head *bh)
2905 {
2906 	return atomic_read(&bh->b_count) |
2907 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2908 }
2909 
2910 static bool
drop_buffers(struct folio * folio,struct buffer_head ** buffers_to_free)2911 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2912 {
2913 	struct buffer_head *head = folio_buffers(folio);
2914 	struct buffer_head *bh;
2915 
2916 	bh = head;
2917 	do {
2918 		if (buffer_busy(bh))
2919 			goto failed;
2920 		bh = bh->b_this_page;
2921 	} while (bh != head);
2922 
2923 	do {
2924 		struct buffer_head *next = bh->b_this_page;
2925 
2926 		if (bh->b_assoc_map)
2927 			__remove_assoc_queue(bh);
2928 		bh = next;
2929 	} while (bh != head);
2930 	*buffers_to_free = head;
2931 	folio_detach_private(folio);
2932 	return true;
2933 failed:
2934 	return false;
2935 }
2936 
2937 /**
2938  * try_to_free_buffers - Release buffers attached to this folio.
2939  * @folio: The folio.
2940  *
2941  * If any buffers are in use (dirty, under writeback, elevated refcount),
2942  * no buffers will be freed.
2943  *
2944  * If the folio is dirty but all the buffers are clean then we need to
2945  * be sure to mark the folio clean as well.  This is because the folio
2946  * may be against a block device, and a later reattachment of buffers
2947  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2948  * filesystem data on the same device.
2949  *
2950  * The same applies to regular filesystem folios: if all the buffers are
2951  * clean then we set the folio clean and proceed.  To do that, we require
2952  * total exclusion from block_dirty_folio().  That is obtained with
2953  * i_private_lock.
2954  *
2955  * Exclusion against try_to_free_buffers may be obtained by either
2956  * locking the folio or by holding its mapping's i_private_lock.
2957  *
2958  * Context: Process context.  @folio must be locked.  Will not sleep.
2959  * Return: true if all buffers attached to this folio were freed.
2960  */
try_to_free_buffers(struct folio * folio)2961 bool try_to_free_buffers(struct folio *folio)
2962 {
2963 	struct address_space * const mapping = folio->mapping;
2964 	struct buffer_head *buffers_to_free = NULL;
2965 	bool ret = 0;
2966 
2967 	BUG_ON(!folio_test_locked(folio));
2968 	if (folio_test_writeback(folio))
2969 		return false;
2970 
2971 	if (mapping == NULL) {		/* can this still happen? */
2972 		ret = drop_buffers(folio, &buffers_to_free);
2973 		goto out;
2974 	}
2975 
2976 	spin_lock(&mapping->i_private_lock);
2977 	ret = drop_buffers(folio, &buffers_to_free);
2978 
2979 	/*
2980 	 * If the filesystem writes its buffers by hand (eg ext3)
2981 	 * then we can have clean buffers against a dirty folio.  We
2982 	 * clean the folio here; otherwise the VM will never notice
2983 	 * that the filesystem did any IO at all.
2984 	 *
2985 	 * Also, during truncate, discard_buffer will have marked all
2986 	 * the folio's buffers clean.  We discover that here and clean
2987 	 * the folio also.
2988 	 *
2989 	 * i_private_lock must be held over this entire operation in order
2990 	 * to synchronise against block_dirty_folio and prevent the
2991 	 * dirty bit from being lost.
2992 	 */
2993 	if (ret)
2994 		folio_cancel_dirty(folio);
2995 	spin_unlock(&mapping->i_private_lock);
2996 out:
2997 	if (buffers_to_free) {
2998 		struct buffer_head *bh = buffers_to_free;
2999 
3000 		do {
3001 			struct buffer_head *next = bh->b_this_page;
3002 			free_buffer_head(bh);
3003 			bh = next;
3004 		} while (bh != buffers_to_free);
3005 	}
3006 	return ret;
3007 }
3008 EXPORT_SYMBOL(try_to_free_buffers);
3009 
3010 /*
3011  * Buffer-head allocation
3012  */
3013 static struct kmem_cache *bh_cachep __ro_after_init;
3014 
3015 /*
3016  * Once the number of bh's in the machine exceeds this level, we start
3017  * stripping them in writeback.
3018  */
3019 static unsigned long max_buffer_heads __ro_after_init;
3020 
3021 int buffer_heads_over_limit;
3022 
3023 struct bh_accounting {
3024 	int nr;			/* Number of live bh's */
3025 	int ratelimit;		/* Limit cacheline bouncing */
3026 };
3027 
3028 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3029 
recalc_bh_state(void)3030 static void recalc_bh_state(void)
3031 {
3032 	int i;
3033 	int tot = 0;
3034 
3035 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3036 		return;
3037 	__this_cpu_write(bh_accounting.ratelimit, 0);
3038 	for_each_online_cpu(i)
3039 		tot += per_cpu(bh_accounting, i).nr;
3040 	buffer_heads_over_limit = (tot > max_buffer_heads);
3041 }
3042 
alloc_buffer_head(gfp_t gfp_flags)3043 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3044 {
3045 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3046 	if (ret) {
3047 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3048 		spin_lock_init(&ret->b_uptodate_lock);
3049 		preempt_disable();
3050 		__this_cpu_inc(bh_accounting.nr);
3051 		recalc_bh_state();
3052 		preempt_enable();
3053 	}
3054 	return ret;
3055 }
3056 EXPORT_SYMBOL(alloc_buffer_head);
3057 
free_buffer_head(struct buffer_head * bh)3058 void free_buffer_head(struct buffer_head *bh)
3059 {
3060 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3061 	kmem_cache_free(bh_cachep, bh);
3062 	preempt_disable();
3063 	__this_cpu_dec(bh_accounting.nr);
3064 	recalc_bh_state();
3065 	preempt_enable();
3066 }
3067 EXPORT_SYMBOL(free_buffer_head);
3068 
buffer_exit_cpu_dead(unsigned int cpu)3069 static int buffer_exit_cpu_dead(unsigned int cpu)
3070 {
3071 	int i;
3072 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3073 
3074 	for (i = 0; i < BH_LRU_SIZE; i++) {
3075 		brelse(b->bhs[i]);
3076 		b->bhs[i] = NULL;
3077 	}
3078 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3079 	per_cpu(bh_accounting, cpu).nr = 0;
3080 	return 0;
3081 }
3082 
3083 /**
3084  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3085  * @bh: struct buffer_head
3086  *
3087  * Return true if the buffer is up-to-date and false,
3088  * with the buffer locked, if not.
3089  */
bh_uptodate_or_lock(struct buffer_head * bh)3090 int bh_uptodate_or_lock(struct buffer_head *bh)
3091 {
3092 	if (!buffer_uptodate(bh)) {
3093 		lock_buffer(bh);
3094 		if (!buffer_uptodate(bh))
3095 			return 0;
3096 		unlock_buffer(bh);
3097 	}
3098 	return 1;
3099 }
3100 EXPORT_SYMBOL(bh_uptodate_or_lock);
3101 
3102 /**
3103  * __bh_read - Submit read for a locked buffer
3104  * @bh: struct buffer_head
3105  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3106  * @wait: wait until reading finish
3107  *
3108  * Returns zero on success or don't wait, and -EIO on error.
3109  */
__bh_read(struct buffer_head * bh,blk_opf_t op_flags,bool wait)3110 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3111 {
3112 	int ret = 0;
3113 
3114 	BUG_ON(!buffer_locked(bh));
3115 
3116 	get_bh(bh);
3117 	bh->b_end_io = end_buffer_read_sync;
3118 	submit_bh(REQ_OP_READ | op_flags, bh);
3119 	if (wait) {
3120 		wait_on_buffer(bh);
3121 		if (!buffer_uptodate(bh))
3122 			ret = -EIO;
3123 	}
3124 	return ret;
3125 }
3126 EXPORT_SYMBOL(__bh_read);
3127 
3128 /**
3129  * __bh_read_batch - Submit read for a batch of unlocked buffers
3130  * @nr: entry number of the buffer batch
3131  * @bhs: a batch of struct buffer_head
3132  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3133  * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3134  *              buffer that cannot lock.
3135  *
3136  * Returns zero on success or don't wait, and -EIO on error.
3137  */
__bh_read_batch(int nr,struct buffer_head * bhs[],blk_opf_t op_flags,bool force_lock)3138 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3139 		     blk_opf_t op_flags, bool force_lock)
3140 {
3141 	int i;
3142 
3143 	for (i = 0; i < nr; i++) {
3144 		struct buffer_head *bh = bhs[i];
3145 
3146 		if (buffer_uptodate(bh))
3147 			continue;
3148 
3149 		if (force_lock)
3150 			lock_buffer(bh);
3151 		else
3152 			if (!trylock_buffer(bh))
3153 				continue;
3154 
3155 		if (buffer_uptodate(bh)) {
3156 			unlock_buffer(bh);
3157 			continue;
3158 		}
3159 
3160 		bh->b_end_io = end_buffer_read_sync;
3161 		get_bh(bh);
3162 		submit_bh(REQ_OP_READ | op_flags, bh);
3163 	}
3164 }
3165 EXPORT_SYMBOL(__bh_read_batch);
3166 
buffer_init(void)3167 void __init buffer_init(void)
3168 {
3169 	unsigned long nrpages;
3170 	int ret;
3171 
3172 	bh_cachep = KMEM_CACHE(buffer_head,
3173 				SLAB_RECLAIM_ACCOUNT|SLAB_PANIC);
3174 	/*
3175 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3176 	 */
3177 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3178 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3179 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3180 					NULL, buffer_exit_cpu_dead);
3181 	WARN_ON(ret < 0);
3182 }
3183