1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio-integrity.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/highmem.h>
19 #include <linux/blk-crypto.h>
20 #include <linux/xarray.h>
21
22 #include <trace/events/block.h>
23 #include "blk.h"
24 #include "blk-rq-qos.h"
25 #include "blk-cgroup.h"
26
27 #define ALLOC_CACHE_THRESHOLD 16
28 #define ALLOC_CACHE_MAX 256
29
30 struct bio_alloc_cache {
31 struct bio *free_list;
32 struct bio *free_list_irq;
33 unsigned int nr;
34 unsigned int nr_irq;
35 };
36
37 static struct biovec_slab {
38 int nr_vecs;
39 char *name;
40 struct kmem_cache *slab;
41 } bvec_slabs[] __read_mostly = {
42 { .nr_vecs = 16, .name = "biovec-16" },
43 { .nr_vecs = 64, .name = "biovec-64" },
44 { .nr_vecs = 128, .name = "biovec-128" },
45 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
46 };
47
biovec_slab(unsigned short nr_vecs)48 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
49 {
50 switch (nr_vecs) {
51 /* smaller bios use inline vecs */
52 case 5 ... 16:
53 return &bvec_slabs[0];
54 case 17 ... 64:
55 return &bvec_slabs[1];
56 case 65 ... 128:
57 return &bvec_slabs[2];
58 case 129 ... BIO_MAX_VECS:
59 return &bvec_slabs[3];
60 default:
61 BUG();
62 return NULL;
63 }
64 }
65
66 /*
67 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
68 * IO code that does not need private memory pools.
69 */
70 struct bio_set fs_bio_set;
71 EXPORT_SYMBOL(fs_bio_set);
72
73 /*
74 * Our slab pool management
75 */
76 struct bio_slab {
77 struct kmem_cache *slab;
78 unsigned int slab_ref;
79 unsigned int slab_size;
80 char name[12];
81 };
82 static DEFINE_MUTEX(bio_slab_lock);
83 static DEFINE_XARRAY(bio_slabs);
84
create_bio_slab(unsigned int size)85 static struct bio_slab *create_bio_slab(unsigned int size)
86 {
87 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
88
89 if (!bslab)
90 return NULL;
91
92 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
93 bslab->slab = kmem_cache_create(bslab->name, size,
94 ARCH_KMALLOC_MINALIGN,
95 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
96 if (!bslab->slab)
97 goto fail_alloc_slab;
98
99 bslab->slab_ref = 1;
100 bslab->slab_size = size;
101
102 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
103 return bslab;
104
105 kmem_cache_destroy(bslab->slab);
106
107 fail_alloc_slab:
108 kfree(bslab);
109 return NULL;
110 }
111
bs_bio_slab_size(struct bio_set * bs)112 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
113 {
114 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
115 }
116
bio_find_or_create_slab(struct bio_set * bs)117 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
118 {
119 unsigned int size = bs_bio_slab_size(bs);
120 struct bio_slab *bslab;
121
122 mutex_lock(&bio_slab_lock);
123 bslab = xa_load(&bio_slabs, size);
124 if (bslab)
125 bslab->slab_ref++;
126 else
127 bslab = create_bio_slab(size);
128 mutex_unlock(&bio_slab_lock);
129
130 if (bslab)
131 return bslab->slab;
132 return NULL;
133 }
134
bio_put_slab(struct bio_set * bs)135 static void bio_put_slab(struct bio_set *bs)
136 {
137 struct bio_slab *bslab = NULL;
138 unsigned int slab_size = bs_bio_slab_size(bs);
139
140 mutex_lock(&bio_slab_lock);
141
142 bslab = xa_load(&bio_slabs, slab_size);
143 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
144 goto out;
145
146 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
147
148 WARN_ON(!bslab->slab_ref);
149
150 if (--bslab->slab_ref)
151 goto out;
152
153 xa_erase(&bio_slabs, slab_size);
154
155 kmem_cache_destroy(bslab->slab);
156 kfree(bslab);
157
158 out:
159 mutex_unlock(&bio_slab_lock);
160 }
161
bvec_free(mempool_t * pool,struct bio_vec * bv,unsigned short nr_vecs)162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
163 {
164 BUG_ON(nr_vecs > BIO_MAX_VECS);
165
166 if (nr_vecs == BIO_MAX_VECS)
167 mempool_free(bv, pool);
168 else if (nr_vecs > BIO_INLINE_VECS)
169 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
170 }
171
172 /*
173 * Make the first allocation restricted and don't dump info on allocation
174 * failures, since we'll fall back to the mempool in case of failure.
175 */
bvec_alloc_gfp(gfp_t gfp)176 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
177 {
178 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
179 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
180 }
181
bvec_alloc(mempool_t * pool,unsigned short * nr_vecs,gfp_t gfp_mask)182 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
183 gfp_t gfp_mask)
184 {
185 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
186
187 if (WARN_ON_ONCE(!bvs))
188 return NULL;
189
190 /*
191 * Upgrade the nr_vecs request to take full advantage of the allocation.
192 * We also rely on this in the bvec_free path.
193 */
194 *nr_vecs = bvs->nr_vecs;
195
196 /*
197 * Try a slab allocation first for all smaller allocations. If that
198 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
199 * The mempool is sized to handle up to BIO_MAX_VECS entries.
200 */
201 if (*nr_vecs < BIO_MAX_VECS) {
202 struct bio_vec *bvl;
203
204 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
205 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
206 return bvl;
207 *nr_vecs = BIO_MAX_VECS;
208 }
209
210 return mempool_alloc(pool, gfp_mask);
211 }
212
bio_uninit(struct bio * bio)213 void bio_uninit(struct bio *bio)
214 {
215 #ifdef CONFIG_BLK_CGROUP
216 if (bio->bi_blkg) {
217 blkg_put(bio->bi_blkg);
218 bio->bi_blkg = NULL;
219 }
220 #endif
221 if (bio_integrity(bio))
222 bio_integrity_free(bio);
223
224 bio_crypt_free_ctx(bio);
225 }
226 EXPORT_SYMBOL(bio_uninit);
227
bio_free(struct bio * bio)228 static void bio_free(struct bio *bio)
229 {
230 struct bio_set *bs = bio->bi_pool;
231 void *p = bio;
232
233 WARN_ON_ONCE(!bs);
234
235 bio_uninit(bio);
236 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
237 mempool_free(p - bs->front_pad, &bs->bio_pool);
238 }
239
240 /*
241 * Users of this function have their own bio allocation. Subsequently,
242 * they must remember to pair any call to bio_init() with bio_uninit()
243 * when IO has completed, or when the bio is released.
244 */
bio_init(struct bio * bio,struct block_device * bdev,struct bio_vec * table,unsigned short max_vecs,blk_opf_t opf)245 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
246 unsigned short max_vecs, blk_opf_t opf)
247 {
248 bio->bi_next = NULL;
249 bio->bi_bdev = bdev;
250 bio->bi_opf = opf;
251 bio->bi_flags = 0;
252 bio->bi_ioprio = 0;
253 bio->bi_write_hint = 0;
254 bio->bi_status = 0;
255 bio->bi_iter.bi_sector = 0;
256 bio->bi_iter.bi_size = 0;
257 bio->bi_iter.bi_idx = 0;
258 bio->bi_iter.bi_bvec_done = 0;
259 bio->bi_end_io = NULL;
260 bio->bi_private = NULL;
261 #ifdef CONFIG_BLK_CGROUP
262 bio->bi_blkg = NULL;
263 bio->bi_issue.value = 0;
264 if (bdev)
265 bio_associate_blkg(bio);
266 #ifdef CONFIG_BLK_CGROUP_IOCOST
267 bio->bi_iocost_cost = 0;
268 #endif
269 #endif
270 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
271 bio->bi_crypt_context = NULL;
272 #if IS_ENABLED(CONFIG_DM_DEFAULT_KEY)
273 bio->bi_skip_dm_default_key = false;
274 #endif
275 #endif
276 #ifdef CONFIG_BLK_DEV_INTEGRITY
277 bio->bi_integrity = NULL;
278 #endif
279 bio->bi_vcnt = 0;
280
281 atomic_set(&bio->__bi_remaining, 1);
282 atomic_set(&bio->__bi_cnt, 1);
283 bio->bi_cookie = BLK_QC_T_NONE;
284
285 bio->bi_max_vecs = max_vecs;
286 bio->bi_io_vec = table;
287 bio->bi_pool = NULL;
288 }
289 EXPORT_SYMBOL(bio_init);
290
291 /**
292 * bio_reset - reinitialize a bio
293 * @bio: bio to reset
294 * @bdev: block device to use the bio for
295 * @opf: operation and flags for bio
296 *
297 * Description:
298 * After calling bio_reset(), @bio will be in the same state as a freshly
299 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
300 * preserved are the ones that are initialized by bio_alloc_bioset(). See
301 * comment in struct bio.
302 */
bio_reset(struct bio * bio,struct block_device * bdev,blk_opf_t opf)303 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
304 {
305 bio_uninit(bio);
306 memset(bio, 0, BIO_RESET_BYTES);
307 atomic_set(&bio->__bi_remaining, 1);
308 bio->bi_bdev = bdev;
309 if (bio->bi_bdev)
310 bio_associate_blkg(bio);
311 bio->bi_opf = opf;
312 }
313 EXPORT_SYMBOL(bio_reset);
314
__bio_chain_endio(struct bio * bio)315 static struct bio *__bio_chain_endio(struct bio *bio)
316 {
317 struct bio *parent = bio->bi_private;
318
319 if (bio->bi_status && !parent->bi_status)
320 parent->bi_status = bio->bi_status;
321 bio_put(bio);
322 return parent;
323 }
324
bio_chain_endio(struct bio * bio)325 static void bio_chain_endio(struct bio *bio)
326 {
327 bio_endio(__bio_chain_endio(bio));
328 }
329
330 /**
331 * bio_chain - chain bio completions
332 * @bio: the target bio
333 * @parent: the parent bio of @bio
334 *
335 * The caller won't have a bi_end_io called when @bio completes - instead,
336 * @parent's bi_end_io won't be called until both @parent and @bio have
337 * completed; the chained bio will also be freed when it completes.
338 *
339 * The caller must not set bi_private or bi_end_io in @bio.
340 */
bio_chain(struct bio * bio,struct bio * parent)341 void bio_chain(struct bio *bio, struct bio *parent)
342 {
343 BUG_ON(bio->bi_private || bio->bi_end_io);
344
345 bio->bi_private = parent;
346 bio->bi_end_io = bio_chain_endio;
347 bio_inc_remaining(parent);
348 }
349 EXPORT_SYMBOL(bio_chain);
350
351 /**
352 * bio_chain_and_submit - submit a bio after chaining it to another one
353 * @prev: bio to chain and submit
354 * @new: bio to chain to
355 *
356 * If @prev is non-NULL, chain it to @new and submit it.
357 *
358 * Return: @new.
359 */
bio_chain_and_submit(struct bio * prev,struct bio * new)360 struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new)
361 {
362 if (prev) {
363 bio_chain(prev, new);
364 submit_bio(prev);
365 }
366 return new;
367 }
368
blk_next_bio(struct bio * bio,struct block_device * bdev,unsigned int nr_pages,blk_opf_t opf,gfp_t gfp)369 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
370 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
371 {
372 return bio_chain_and_submit(bio, bio_alloc(bdev, nr_pages, opf, gfp));
373 }
374 EXPORT_SYMBOL_GPL(blk_next_bio);
375
bio_alloc_rescue(struct work_struct * work)376 static void bio_alloc_rescue(struct work_struct *work)
377 {
378 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
379 struct bio *bio;
380
381 while (1) {
382 spin_lock(&bs->rescue_lock);
383 bio = bio_list_pop(&bs->rescue_list);
384 spin_unlock(&bs->rescue_lock);
385
386 if (!bio)
387 break;
388
389 submit_bio_noacct(bio);
390 }
391 }
392
punt_bios_to_rescuer(struct bio_set * bs)393 static void punt_bios_to_rescuer(struct bio_set *bs)
394 {
395 struct bio_list punt, nopunt;
396 struct bio *bio;
397
398 if (WARN_ON_ONCE(!bs->rescue_workqueue))
399 return;
400 /*
401 * In order to guarantee forward progress we must punt only bios that
402 * were allocated from this bio_set; otherwise, if there was a bio on
403 * there for a stacking driver higher up in the stack, processing it
404 * could require allocating bios from this bio_set, and doing that from
405 * our own rescuer would be bad.
406 *
407 * Since bio lists are singly linked, pop them all instead of trying to
408 * remove from the middle of the list:
409 */
410
411 bio_list_init(&punt);
412 bio_list_init(&nopunt);
413
414 while ((bio = bio_list_pop(¤t->bio_list[0])))
415 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
416 current->bio_list[0] = nopunt;
417
418 bio_list_init(&nopunt);
419 while ((bio = bio_list_pop(¤t->bio_list[1])))
420 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
421 current->bio_list[1] = nopunt;
422
423 spin_lock(&bs->rescue_lock);
424 bio_list_merge(&bs->rescue_list, &punt);
425 spin_unlock(&bs->rescue_lock);
426
427 queue_work(bs->rescue_workqueue, &bs->rescue_work);
428 }
429
bio_alloc_irq_cache_splice(struct bio_alloc_cache * cache)430 static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
431 {
432 unsigned long flags;
433
434 /* cache->free_list must be empty */
435 if (WARN_ON_ONCE(cache->free_list))
436 return;
437
438 local_irq_save(flags);
439 cache->free_list = cache->free_list_irq;
440 cache->free_list_irq = NULL;
441 cache->nr += cache->nr_irq;
442 cache->nr_irq = 0;
443 local_irq_restore(flags);
444 }
445
bio_alloc_percpu_cache(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp,struct bio_set * bs)446 static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
447 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
448 struct bio_set *bs)
449 {
450 struct bio_alloc_cache *cache;
451 struct bio *bio;
452
453 cache = per_cpu_ptr(bs->cache, get_cpu());
454 if (!cache->free_list) {
455 if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
456 bio_alloc_irq_cache_splice(cache);
457 if (!cache->free_list) {
458 put_cpu();
459 return NULL;
460 }
461 }
462 bio = cache->free_list;
463 cache->free_list = bio->bi_next;
464 cache->nr--;
465 put_cpu();
466
467 bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
468 bio->bi_pool = bs;
469 return bio;
470 }
471
472 /**
473 * bio_alloc_bioset - allocate a bio for I/O
474 * @bdev: block device to allocate the bio for (can be %NULL)
475 * @nr_vecs: number of bvecs to pre-allocate
476 * @opf: operation and flags for bio
477 * @gfp_mask: the GFP_* mask given to the slab allocator
478 * @bs: the bio_set to allocate from.
479 *
480 * Allocate a bio from the mempools in @bs.
481 *
482 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
483 * allocate a bio. This is due to the mempool guarantees. To make this work,
484 * callers must never allocate more than 1 bio at a time from the general pool.
485 * Callers that need to allocate more than 1 bio must always submit the
486 * previously allocated bio for IO before attempting to allocate a new one.
487 * Failure to do so can cause deadlocks under memory pressure.
488 *
489 * Note that when running under submit_bio_noacct() (i.e. any block driver),
490 * bios are not submitted until after you return - see the code in
491 * submit_bio_noacct() that converts recursion into iteration, to prevent
492 * stack overflows.
493 *
494 * This would normally mean allocating multiple bios under submit_bio_noacct()
495 * would be susceptible to deadlocks, but we have
496 * deadlock avoidance code that resubmits any blocked bios from a rescuer
497 * thread.
498 *
499 * However, we do not guarantee forward progress for allocations from other
500 * mempools. Doing multiple allocations from the same mempool under
501 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
502 * for per bio allocations.
503 *
504 * Returns: Pointer to new bio on success, NULL on failure.
505 */
bio_alloc_bioset(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp_mask,struct bio_set * bs)506 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
507 blk_opf_t opf, gfp_t gfp_mask,
508 struct bio_set *bs)
509 {
510 gfp_t saved_gfp = gfp_mask;
511 struct bio *bio;
512 void *p;
513
514 /* should not use nobvec bioset for nr_vecs > 0 */
515 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
516 return NULL;
517
518 if (opf & REQ_ALLOC_CACHE) {
519 if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
520 bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
521 gfp_mask, bs);
522 if (bio)
523 return bio;
524 /*
525 * No cached bio available, bio returned below marked with
526 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
527 */
528 } else {
529 opf &= ~REQ_ALLOC_CACHE;
530 }
531 }
532
533 /*
534 * submit_bio_noacct() converts recursion to iteration; this means if
535 * we're running beneath it, any bios we allocate and submit will not be
536 * submitted (and thus freed) until after we return.
537 *
538 * This exposes us to a potential deadlock if we allocate multiple bios
539 * from the same bio_set() while running underneath submit_bio_noacct().
540 * If we were to allocate multiple bios (say a stacking block driver
541 * that was splitting bios), we would deadlock if we exhausted the
542 * mempool's reserve.
543 *
544 * We solve this, and guarantee forward progress, with a rescuer
545 * workqueue per bio_set. If we go to allocate and there are bios on
546 * current->bio_list, we first try the allocation without
547 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
548 * blocking to the rescuer workqueue before we retry with the original
549 * gfp_flags.
550 */
551 if (current->bio_list &&
552 (!bio_list_empty(¤t->bio_list[0]) ||
553 !bio_list_empty(¤t->bio_list[1])) &&
554 bs->rescue_workqueue)
555 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
556
557 p = mempool_alloc(&bs->bio_pool, gfp_mask);
558 if (!p && gfp_mask != saved_gfp) {
559 punt_bios_to_rescuer(bs);
560 gfp_mask = saved_gfp;
561 p = mempool_alloc(&bs->bio_pool, gfp_mask);
562 }
563 if (unlikely(!p))
564 return NULL;
565 if (!mempool_is_saturated(&bs->bio_pool))
566 opf &= ~REQ_ALLOC_CACHE;
567
568 bio = p + bs->front_pad;
569 if (nr_vecs > BIO_INLINE_VECS) {
570 struct bio_vec *bvl = NULL;
571
572 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
573 if (!bvl && gfp_mask != saved_gfp) {
574 punt_bios_to_rescuer(bs);
575 gfp_mask = saved_gfp;
576 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
577 }
578 if (unlikely(!bvl))
579 goto err_free;
580
581 bio_init(bio, bdev, bvl, nr_vecs, opf);
582 } else if (nr_vecs) {
583 bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
584 } else {
585 bio_init(bio, bdev, NULL, 0, opf);
586 }
587
588 bio->bi_pool = bs;
589 return bio;
590
591 err_free:
592 mempool_free(p, &bs->bio_pool);
593 return NULL;
594 }
595 EXPORT_SYMBOL(bio_alloc_bioset);
596
597 /**
598 * bio_kmalloc - kmalloc a bio
599 * @nr_vecs: number of bio_vecs to allocate
600 * @gfp_mask: the GFP_* mask given to the slab allocator
601 *
602 * Use kmalloc to allocate a bio (including bvecs). The bio must be initialized
603 * using bio_init() before use. To free a bio returned from this function use
604 * kfree() after calling bio_uninit(). A bio returned from this function can
605 * be reused by calling bio_uninit() before calling bio_init() again.
606 *
607 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
608 * function are not backed by a mempool can fail. Do not use this function
609 * for allocations in the file system I/O path.
610 *
611 * Returns: Pointer to new bio on success, NULL on failure.
612 */
bio_kmalloc(unsigned short nr_vecs,gfp_t gfp_mask)613 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
614 {
615 struct bio *bio;
616
617 if (nr_vecs > BIO_MAX_INLINE_VECS)
618 return NULL;
619 return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
620 }
621 EXPORT_SYMBOL(bio_kmalloc);
622
zero_fill_bio_iter(struct bio * bio,struct bvec_iter start)623 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
624 {
625 struct bio_vec bv;
626 struct bvec_iter iter;
627
628 __bio_for_each_segment(bv, bio, iter, start)
629 memzero_bvec(&bv);
630 }
631 EXPORT_SYMBOL(zero_fill_bio_iter);
632
633 /**
634 * bio_truncate - truncate the bio to small size of @new_size
635 * @bio: the bio to be truncated
636 * @new_size: new size for truncating the bio
637 *
638 * Description:
639 * Truncate the bio to new size of @new_size. If bio_op(bio) is
640 * REQ_OP_READ, zero the truncated part. This function should only
641 * be used for handling corner cases, such as bio eod.
642 */
bio_truncate(struct bio * bio,unsigned new_size)643 static void bio_truncate(struct bio *bio, unsigned new_size)
644 {
645 struct bio_vec bv;
646 struct bvec_iter iter;
647 unsigned int done = 0;
648 bool truncated = false;
649
650 if (new_size >= bio->bi_iter.bi_size)
651 return;
652
653 if (bio_op(bio) != REQ_OP_READ)
654 goto exit;
655
656 bio_for_each_segment(bv, bio, iter) {
657 if (done + bv.bv_len > new_size) {
658 unsigned offset;
659
660 if (!truncated)
661 offset = new_size - done;
662 else
663 offset = 0;
664 zero_user(bv.bv_page, bv.bv_offset + offset,
665 bv.bv_len - offset);
666 truncated = true;
667 }
668 done += bv.bv_len;
669 }
670
671 exit:
672 /*
673 * Don't touch bvec table here and make it really immutable, since
674 * fs bio user has to retrieve all pages via bio_for_each_segment_all
675 * in its .end_bio() callback.
676 *
677 * It is enough to truncate bio by updating .bi_size since we can make
678 * correct bvec with the updated .bi_size for drivers.
679 */
680 bio->bi_iter.bi_size = new_size;
681 }
682
683 /**
684 * guard_bio_eod - truncate a BIO to fit the block device
685 * @bio: bio to truncate
686 *
687 * This allows us to do IO even on the odd last sectors of a device, even if the
688 * block size is some multiple of the physical sector size.
689 *
690 * We'll just truncate the bio to the size of the device, and clear the end of
691 * the buffer head manually. Truly out-of-range accesses will turn into actual
692 * I/O errors, this only handles the "we need to be able to do I/O at the final
693 * sector" case.
694 */
guard_bio_eod(struct bio * bio)695 void guard_bio_eod(struct bio *bio)
696 {
697 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
698
699 if (!maxsector)
700 return;
701
702 /*
703 * If the *whole* IO is past the end of the device,
704 * let it through, and the IO layer will turn it into
705 * an EIO.
706 */
707 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
708 return;
709
710 maxsector -= bio->bi_iter.bi_sector;
711 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
712 return;
713
714 bio_truncate(bio, maxsector << 9);
715 }
716
__bio_alloc_cache_prune(struct bio_alloc_cache * cache,unsigned int nr)717 static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
718 unsigned int nr)
719 {
720 unsigned int i = 0;
721 struct bio *bio;
722
723 while ((bio = cache->free_list) != NULL) {
724 cache->free_list = bio->bi_next;
725 cache->nr--;
726 bio_free(bio);
727 if (++i == nr)
728 break;
729 }
730 return i;
731 }
732
bio_alloc_cache_prune(struct bio_alloc_cache * cache,unsigned int nr)733 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
734 unsigned int nr)
735 {
736 nr -= __bio_alloc_cache_prune(cache, nr);
737 if (!READ_ONCE(cache->free_list)) {
738 bio_alloc_irq_cache_splice(cache);
739 __bio_alloc_cache_prune(cache, nr);
740 }
741 }
742
bio_cpu_dead(unsigned int cpu,struct hlist_node * node)743 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
744 {
745 struct bio_set *bs;
746
747 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
748 if (bs->cache) {
749 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
750
751 bio_alloc_cache_prune(cache, -1U);
752 }
753 return 0;
754 }
755
bio_alloc_cache_destroy(struct bio_set * bs)756 static void bio_alloc_cache_destroy(struct bio_set *bs)
757 {
758 int cpu;
759
760 if (!bs->cache)
761 return;
762
763 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
764 for_each_possible_cpu(cpu) {
765 struct bio_alloc_cache *cache;
766
767 cache = per_cpu_ptr(bs->cache, cpu);
768 bio_alloc_cache_prune(cache, -1U);
769 }
770 free_percpu(bs->cache);
771 bs->cache = NULL;
772 }
773
bio_put_percpu_cache(struct bio * bio)774 static inline void bio_put_percpu_cache(struct bio *bio)
775 {
776 struct bio_alloc_cache *cache;
777
778 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
779 if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX)
780 goto out_free;
781
782 if (in_task()) {
783 bio_uninit(bio);
784 bio->bi_next = cache->free_list;
785 /* Not necessary but helps not to iopoll already freed bios */
786 bio->bi_bdev = NULL;
787 cache->free_list = bio;
788 cache->nr++;
789 } else if (in_hardirq()) {
790 lockdep_assert_irqs_disabled();
791
792 bio_uninit(bio);
793 bio->bi_next = cache->free_list_irq;
794 cache->free_list_irq = bio;
795 cache->nr_irq++;
796 } else {
797 goto out_free;
798 }
799 put_cpu();
800 return;
801 out_free:
802 put_cpu();
803 bio_free(bio);
804 }
805
806 /**
807 * bio_put - release a reference to a bio
808 * @bio: bio to release reference to
809 *
810 * Description:
811 * Put a reference to a &struct bio, either one you have gotten with
812 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
813 **/
bio_put(struct bio * bio)814 void bio_put(struct bio *bio)
815 {
816 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
817 BUG_ON(!atomic_read(&bio->__bi_cnt));
818 if (!atomic_dec_and_test(&bio->__bi_cnt))
819 return;
820 }
821 if (bio->bi_opf & REQ_ALLOC_CACHE)
822 bio_put_percpu_cache(bio);
823 else
824 bio_free(bio);
825 }
826 EXPORT_SYMBOL(bio_put);
827
__bio_clone(struct bio * bio,struct bio * bio_src,gfp_t gfp)828 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
829 {
830 bio_set_flag(bio, BIO_CLONED);
831 bio->bi_ioprio = bio_src->bi_ioprio;
832 bio->bi_write_hint = bio_src->bi_write_hint;
833 bio->bi_iter = bio_src->bi_iter;
834
835 if (bio->bi_bdev) {
836 if (bio->bi_bdev == bio_src->bi_bdev &&
837 bio_flagged(bio_src, BIO_REMAPPED))
838 bio_set_flag(bio, BIO_REMAPPED);
839 bio_clone_blkg_association(bio, bio_src);
840 }
841
842 if (bio_crypt_clone(bio, bio_src, gfp) < 0)
843 return -ENOMEM;
844 if (bio_integrity(bio_src) &&
845 bio_integrity_clone(bio, bio_src, gfp) < 0)
846 return -ENOMEM;
847 return 0;
848 }
849
850 /**
851 * bio_alloc_clone - clone a bio that shares the original bio's biovec
852 * @bdev: block_device to clone onto
853 * @bio_src: bio to clone from
854 * @gfp: allocation priority
855 * @bs: bio_set to allocate from
856 *
857 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
858 * bio, but not the actual data it points to.
859 *
860 * The caller must ensure that the return bio is not freed before @bio_src.
861 */
bio_alloc_clone(struct block_device * bdev,struct bio * bio_src,gfp_t gfp,struct bio_set * bs)862 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
863 gfp_t gfp, struct bio_set *bs)
864 {
865 struct bio *bio;
866
867 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
868 if (!bio)
869 return NULL;
870
871 if (__bio_clone(bio, bio_src, gfp) < 0) {
872 bio_put(bio);
873 return NULL;
874 }
875 bio->bi_io_vec = bio_src->bi_io_vec;
876
877 return bio;
878 }
879 EXPORT_SYMBOL(bio_alloc_clone);
880
881 /**
882 * bio_init_clone - clone a bio that shares the original bio's biovec
883 * @bdev: block_device to clone onto
884 * @bio: bio to clone into
885 * @bio_src: bio to clone from
886 * @gfp: allocation priority
887 *
888 * Initialize a new bio in caller provided memory that is a clone of @bio_src.
889 * The caller owns the returned bio, but not the actual data it points to.
890 *
891 * The caller must ensure that @bio_src is not freed before @bio.
892 */
bio_init_clone(struct block_device * bdev,struct bio * bio,struct bio * bio_src,gfp_t gfp)893 int bio_init_clone(struct block_device *bdev, struct bio *bio,
894 struct bio *bio_src, gfp_t gfp)
895 {
896 int ret;
897
898 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
899 ret = __bio_clone(bio, bio_src, gfp);
900 if (ret)
901 bio_uninit(bio);
902 return ret;
903 }
904 EXPORT_SYMBOL(bio_init_clone);
905
906 /**
907 * bio_full - check if the bio is full
908 * @bio: bio to check
909 * @len: length of one segment to be added
910 *
911 * Return true if @bio is full and one segment with @len bytes can't be
912 * added to the bio, otherwise return false
913 */
bio_full(struct bio * bio,unsigned len)914 static inline bool bio_full(struct bio *bio, unsigned len)
915 {
916 if (bio->bi_vcnt >= bio->bi_max_vecs)
917 return true;
918 if (bio->bi_iter.bi_size > UINT_MAX - len)
919 return true;
920 return false;
921 }
922
bvec_try_merge_page(struct bio_vec * bv,struct page * page,unsigned int len,unsigned int off,bool * same_page)923 static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page,
924 unsigned int len, unsigned int off, bool *same_page)
925 {
926 size_t bv_end = bv->bv_offset + bv->bv_len;
927 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
928 phys_addr_t page_addr = page_to_phys(page);
929
930 if (vec_end_addr + 1 != page_addr + off)
931 return false;
932 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
933 return false;
934 if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
935 return false;
936
937 *same_page = ((vec_end_addr & PAGE_MASK) == ((page_addr + off) &
938 PAGE_MASK));
939 if (!*same_page) {
940 if (IS_ENABLED(CONFIG_KMSAN))
941 return false;
942 if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE)
943 return false;
944 }
945
946 bv->bv_len += len;
947 return true;
948 }
949
950 /*
951 * Try to merge a page into a segment, while obeying the hardware segment
952 * size limit.
953 *
954 * This is kept around for the integrity metadata, which is still tries
955 * to build the initial bio to the hardware limit and doesn't have proper
956 * helpers to split. Hopefully this will go away soon.
957 */
bvec_try_merge_hw_page(struct request_queue * q,struct bio_vec * bv,struct page * page,unsigned len,unsigned offset,bool * same_page)958 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
959 struct page *page, unsigned len, unsigned offset,
960 bool *same_page)
961 {
962 unsigned long mask = queue_segment_boundary(q);
963 phys_addr_t addr1 = bvec_phys(bv);
964 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
965
966 if ((addr1 | mask) != (addr2 | mask))
967 return false;
968 if (len > queue_max_segment_size(q) - bv->bv_len)
969 return false;
970 return bvec_try_merge_page(bv, page, len, offset, same_page);
971 }
972
973 /**
974 * __bio_add_page - add page(s) to a bio in a new segment
975 * @bio: destination bio
976 * @page: start page to add
977 * @len: length of the data to add, may cross pages
978 * @off: offset of the data relative to @page, may cross pages
979 *
980 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
981 * that @bio has space for another bvec.
982 */
__bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off)983 void __bio_add_page(struct bio *bio, struct page *page,
984 unsigned int len, unsigned int off)
985 {
986 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
987 WARN_ON_ONCE(bio_full(bio, len));
988
989 bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off);
990 bio->bi_iter.bi_size += len;
991 bio->bi_vcnt++;
992 }
993 EXPORT_SYMBOL_GPL(__bio_add_page);
994
995 /**
996 * bio_add_page - attempt to add page(s) to bio
997 * @bio: destination bio
998 * @page: start page to add
999 * @len: vec entry length, may cross pages
1000 * @offset: vec entry offset relative to @page, may cross pages
1001 *
1002 * Attempt to add page(s) to the bio_vec maplist. This will only fail
1003 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1004 */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1005 int bio_add_page(struct bio *bio, struct page *page,
1006 unsigned int len, unsigned int offset)
1007 {
1008 bool same_page = false;
1009
1010 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1011 return 0;
1012 if (bio->bi_iter.bi_size > UINT_MAX - len)
1013 return 0;
1014
1015 if (bio->bi_vcnt > 0 &&
1016 bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1],
1017 page, len, offset, &same_page)) {
1018 bio->bi_iter.bi_size += len;
1019 return len;
1020 }
1021
1022 if (bio->bi_vcnt >= bio->bi_max_vecs)
1023 return 0;
1024 __bio_add_page(bio, page, len, offset);
1025 return len;
1026 }
1027 EXPORT_SYMBOL(bio_add_page);
1028
bio_add_folio_nofail(struct bio * bio,struct folio * folio,size_t len,size_t off)1029 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
1030 size_t off)
1031 {
1032 unsigned long nr = off / PAGE_SIZE;
1033
1034 WARN_ON_ONCE(len > UINT_MAX);
1035 __bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE);
1036 }
1037 EXPORT_SYMBOL_GPL(bio_add_folio_nofail);
1038
1039 /**
1040 * bio_add_folio - Attempt to add part of a folio to a bio.
1041 * @bio: BIO to add to.
1042 * @folio: Folio to add.
1043 * @len: How many bytes from the folio to add.
1044 * @off: First byte in this folio to add.
1045 *
1046 * Filesystems that use folios can call this function instead of calling
1047 * bio_add_page() for each page in the folio. If @off is bigger than
1048 * PAGE_SIZE, this function can create a bio_vec that starts in a page
1049 * after the bv_page. BIOs do not support folios that are 4GiB or larger.
1050 *
1051 * Return: Whether the addition was successful.
1052 */
bio_add_folio(struct bio * bio,struct folio * folio,size_t len,size_t off)1053 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1054 size_t off)
1055 {
1056 unsigned long nr = off / PAGE_SIZE;
1057
1058 if (len > UINT_MAX)
1059 return false;
1060 return bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE) > 0;
1061 }
1062 EXPORT_SYMBOL(bio_add_folio);
1063
__bio_release_pages(struct bio * bio,bool mark_dirty)1064 void __bio_release_pages(struct bio *bio, bool mark_dirty)
1065 {
1066 struct folio_iter fi;
1067
1068 bio_for_each_folio_all(fi, bio) {
1069 size_t nr_pages;
1070
1071 if (mark_dirty) {
1072 folio_lock(fi.folio);
1073 folio_mark_dirty(fi.folio);
1074 folio_unlock(fi.folio);
1075 }
1076 nr_pages = (fi.offset + fi.length - 1) / PAGE_SIZE -
1077 fi.offset / PAGE_SIZE + 1;
1078 unpin_user_folio(fi.folio, nr_pages);
1079 }
1080 }
1081 EXPORT_SYMBOL_GPL(__bio_release_pages);
1082
bio_iov_bvec_set(struct bio * bio,struct iov_iter * iter)1083 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1084 {
1085 WARN_ON_ONCE(bio->bi_max_vecs);
1086
1087 bio->bi_vcnt = iter->nr_segs;
1088 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1089 bio->bi_iter.bi_bvec_done = iter->iov_offset;
1090 bio->bi_iter.bi_size = iov_iter_count(iter);
1091 bio_set_flag(bio, BIO_CLONED);
1092 }
1093
bio_iov_add_folio(struct bio * bio,struct folio * folio,size_t len,size_t offset)1094 static int bio_iov_add_folio(struct bio *bio, struct folio *folio, size_t len,
1095 size_t offset)
1096 {
1097 bool same_page = false;
1098
1099 if (WARN_ON_ONCE(bio->bi_iter.bi_size > UINT_MAX - len))
1100 return -EIO;
1101
1102 if (bio->bi_vcnt > 0 &&
1103 bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1],
1104 folio_page(folio, 0), len, offset,
1105 &same_page)) {
1106 bio->bi_iter.bi_size += len;
1107 if (same_page && bio_flagged(bio, BIO_PAGE_PINNED))
1108 unpin_user_folio(folio, 1);
1109 return 0;
1110 }
1111 bio_add_folio_nofail(bio, folio, len, offset);
1112 return 0;
1113 }
1114
get_contig_folio_len(unsigned int * num_pages,struct page ** pages,unsigned int i,struct folio * folio,size_t left,size_t offset)1115 static unsigned int get_contig_folio_len(unsigned int *num_pages,
1116 struct page **pages, unsigned int i,
1117 struct folio *folio, size_t left,
1118 size_t offset)
1119 {
1120 size_t bytes = left;
1121 size_t contig_sz = min_t(size_t, PAGE_SIZE - offset, bytes);
1122 unsigned int j;
1123
1124 /*
1125 * We might COW a single page in the middle of
1126 * a large folio, so we have to check that all
1127 * pages belong to the same folio.
1128 */
1129 bytes -= contig_sz;
1130 for (j = i + 1; j < i + *num_pages; j++) {
1131 size_t next = min_t(size_t, PAGE_SIZE, bytes);
1132
1133 if (page_folio(pages[j]) != folio ||
1134 pages[j] != pages[j - 1] + 1) {
1135 break;
1136 }
1137 contig_sz += next;
1138 bytes -= next;
1139 }
1140 *num_pages = j - i;
1141
1142 return contig_sz;
1143 }
1144
1145 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1146
1147 /**
1148 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1149 * @bio: bio to add pages to
1150 * @iter: iov iterator describing the region to be mapped
1151 *
1152 * Extracts pages from *iter and appends them to @bio's bvec array. The pages
1153 * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag.
1154 * For a multi-segment *iter, this function only adds pages from the next
1155 * non-empty segment of the iov iterator.
1156 */
__bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)1157 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1158 {
1159 iov_iter_extraction_t extraction_flags = 0;
1160 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1161 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1162 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1163 struct page **pages = (struct page **)bv;
1164 ssize_t size;
1165 unsigned int num_pages, i = 0;
1166 size_t offset, folio_offset, left, len;
1167 int ret = 0;
1168
1169 /*
1170 * Move page array up in the allocated memory for the bio vecs as far as
1171 * possible so that we can start filling biovecs from the beginning
1172 * without overwriting the temporary page array.
1173 */
1174 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1175 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1176
1177 if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
1178 extraction_flags |= ITER_ALLOW_P2PDMA;
1179
1180 /*
1181 * Each segment in the iov is required to be a block size multiple.
1182 * However, we may not be able to get the entire segment if it spans
1183 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the
1184 * result to ensure the bio's total size is correct. The remainder of
1185 * the iov data will be picked up in the next bio iteration.
1186 */
1187 size = iov_iter_extract_pages(iter, &pages,
1188 UINT_MAX - bio->bi_iter.bi_size,
1189 nr_pages, extraction_flags, &offset);
1190 if (unlikely(size <= 0))
1191 return size ? size : -EFAULT;
1192
1193 nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1194
1195 if (bio->bi_bdev) {
1196 size_t trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1);
1197 iov_iter_revert(iter, trim);
1198 size -= trim;
1199 }
1200
1201 if (unlikely(!size)) {
1202 ret = -EFAULT;
1203 goto out;
1204 }
1205
1206 for (left = size, i = 0; left > 0; left -= len, i += num_pages) {
1207 struct page *page = pages[i];
1208 struct folio *folio = page_folio(page);
1209
1210 folio_offset = ((size_t)folio_page_idx(folio, page) <<
1211 PAGE_SHIFT) + offset;
1212
1213 len = min(folio_size(folio) - folio_offset, left);
1214
1215 num_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1216
1217 if (num_pages > 1)
1218 len = get_contig_folio_len(&num_pages, pages, i,
1219 folio, left, offset);
1220
1221 bio_iov_add_folio(bio, folio, len, folio_offset);
1222 offset = 0;
1223 }
1224
1225 iov_iter_revert(iter, left);
1226 out:
1227 while (i < nr_pages)
1228 bio_release_page(bio, pages[i++]);
1229
1230 return ret;
1231 }
1232
1233 /**
1234 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1235 * @bio: bio to add pages to
1236 * @iter: iov iterator describing the region to be added
1237 *
1238 * This takes either an iterator pointing to user memory, or one pointing to
1239 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1240 * map them into the kernel. On IO completion, the caller should put those
1241 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1242 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1243 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1244 * completed by a call to ->ki_complete() or returns with an error other than
1245 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1246 * on IO completion. If it isn't, then pages should be released.
1247 *
1248 * The function tries, but does not guarantee, to pin as many pages as
1249 * fit into the bio, or are requested in @iter, whatever is smaller. If
1250 * MM encounters an error pinning the requested pages, it stops. Error
1251 * is returned only if 0 pages could be pinned.
1252 */
bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)1253 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1254 {
1255 int ret = 0;
1256
1257 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1258 return -EIO;
1259
1260 if (iov_iter_is_bvec(iter)) {
1261 bio_iov_bvec_set(bio, iter);
1262 iov_iter_advance(iter, bio->bi_iter.bi_size);
1263 return 0;
1264 }
1265
1266 if (iov_iter_extract_will_pin(iter))
1267 bio_set_flag(bio, BIO_PAGE_PINNED);
1268 do {
1269 ret = __bio_iov_iter_get_pages(bio, iter);
1270 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1271
1272 return bio->bi_vcnt ? 0 : ret;
1273 }
1274 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1275
submit_bio_wait_endio(struct bio * bio)1276 static void submit_bio_wait_endio(struct bio *bio)
1277 {
1278 complete(bio->bi_private);
1279 }
1280
1281 /**
1282 * submit_bio_wait - submit a bio, and wait until it completes
1283 * @bio: The &struct bio which describes the I/O
1284 *
1285 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1286 * bio_endio() on failure.
1287 *
1288 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1289 * result in bio reference to be consumed. The caller must drop the reference
1290 * on his own.
1291 */
submit_bio_wait(struct bio * bio)1292 int submit_bio_wait(struct bio *bio)
1293 {
1294 DECLARE_COMPLETION_ONSTACK_MAP(done,
1295 bio->bi_bdev->bd_disk->lockdep_map);
1296
1297 bio->bi_private = &done;
1298 bio->bi_end_io = submit_bio_wait_endio;
1299 bio->bi_opf |= REQ_SYNC;
1300 submit_bio(bio);
1301 blk_wait_io(&done);
1302
1303 return blk_status_to_errno(bio->bi_status);
1304 }
1305 EXPORT_SYMBOL(submit_bio_wait);
1306
bio_wait_end_io(struct bio * bio)1307 static void bio_wait_end_io(struct bio *bio)
1308 {
1309 complete(bio->bi_private);
1310 bio_put(bio);
1311 }
1312
1313 /*
1314 * bio_await_chain - ends @bio and waits for every chained bio to complete
1315 */
bio_await_chain(struct bio * bio)1316 void bio_await_chain(struct bio *bio)
1317 {
1318 DECLARE_COMPLETION_ONSTACK_MAP(done,
1319 bio->bi_bdev->bd_disk->lockdep_map);
1320
1321 bio->bi_private = &done;
1322 bio->bi_end_io = bio_wait_end_io;
1323 bio_endio(bio);
1324 blk_wait_io(&done);
1325 }
1326
__bio_advance(struct bio * bio,unsigned bytes)1327 void __bio_advance(struct bio *bio, unsigned bytes)
1328 {
1329 if (bio_integrity(bio))
1330 bio_integrity_advance(bio, bytes);
1331
1332 bio_crypt_advance(bio, bytes);
1333 bio_advance_iter(bio, &bio->bi_iter, bytes);
1334 }
1335 EXPORT_SYMBOL(__bio_advance);
1336
bio_copy_data_iter(struct bio * dst,struct bvec_iter * dst_iter,struct bio * src,struct bvec_iter * src_iter)1337 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1338 struct bio *src, struct bvec_iter *src_iter)
1339 {
1340 while (src_iter->bi_size && dst_iter->bi_size) {
1341 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1342 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1343 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1344 void *src_buf = bvec_kmap_local(&src_bv);
1345 void *dst_buf = bvec_kmap_local(&dst_bv);
1346
1347 memcpy(dst_buf, src_buf, bytes);
1348
1349 kunmap_local(dst_buf);
1350 kunmap_local(src_buf);
1351
1352 bio_advance_iter_single(src, src_iter, bytes);
1353 bio_advance_iter_single(dst, dst_iter, bytes);
1354 }
1355 }
1356 EXPORT_SYMBOL(bio_copy_data_iter);
1357
1358 /**
1359 * bio_copy_data - copy contents of data buffers from one bio to another
1360 * @src: source bio
1361 * @dst: destination bio
1362 *
1363 * Stops when it reaches the end of either @src or @dst - that is, copies
1364 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1365 */
bio_copy_data(struct bio * dst,struct bio * src)1366 void bio_copy_data(struct bio *dst, struct bio *src)
1367 {
1368 struct bvec_iter src_iter = src->bi_iter;
1369 struct bvec_iter dst_iter = dst->bi_iter;
1370
1371 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1372 }
1373 EXPORT_SYMBOL(bio_copy_data);
1374
bio_free_pages(struct bio * bio)1375 void bio_free_pages(struct bio *bio)
1376 {
1377 struct bio_vec *bvec;
1378 struct bvec_iter_all iter_all;
1379
1380 bio_for_each_segment_all(bvec, bio, iter_all)
1381 __free_page(bvec->bv_page);
1382 }
1383 EXPORT_SYMBOL(bio_free_pages);
1384
1385 /*
1386 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1387 * for performing direct-IO in BIOs.
1388 *
1389 * The problem is that we cannot run folio_mark_dirty() from interrupt context
1390 * because the required locks are not interrupt-safe. So what we can do is to
1391 * mark the pages dirty _before_ performing IO. And in interrupt context,
1392 * check that the pages are still dirty. If so, fine. If not, redirty them
1393 * in process context.
1394 *
1395 * Note that this code is very hard to test under normal circumstances because
1396 * direct-io pins the pages with get_user_pages(). This makes
1397 * is_page_cache_freeable return false, and the VM will not clean the pages.
1398 * But other code (eg, flusher threads) could clean the pages if they are mapped
1399 * pagecache.
1400 *
1401 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1402 * deferred bio dirtying paths.
1403 */
1404
1405 /*
1406 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1407 */
bio_set_pages_dirty(struct bio * bio)1408 void bio_set_pages_dirty(struct bio *bio)
1409 {
1410 struct folio_iter fi;
1411
1412 bio_for_each_folio_all(fi, bio) {
1413 folio_lock(fi.folio);
1414 folio_mark_dirty(fi.folio);
1415 folio_unlock(fi.folio);
1416 }
1417 }
1418 EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1419
1420 /*
1421 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1422 * If they are, then fine. If, however, some pages are clean then they must
1423 * have been written out during the direct-IO read. So we take another ref on
1424 * the BIO and re-dirty the pages in process context.
1425 *
1426 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1427 * here on. It will unpin each page and will run one bio_put() against the
1428 * BIO.
1429 */
1430
1431 static void bio_dirty_fn(struct work_struct *work);
1432
1433 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1434 static DEFINE_SPINLOCK(bio_dirty_lock);
1435 static struct bio *bio_dirty_list;
1436
1437 /*
1438 * This runs in process context
1439 */
bio_dirty_fn(struct work_struct * work)1440 static void bio_dirty_fn(struct work_struct *work)
1441 {
1442 struct bio *bio, *next;
1443
1444 spin_lock_irq(&bio_dirty_lock);
1445 next = bio_dirty_list;
1446 bio_dirty_list = NULL;
1447 spin_unlock_irq(&bio_dirty_lock);
1448
1449 while ((bio = next) != NULL) {
1450 next = bio->bi_private;
1451
1452 bio_release_pages(bio, true);
1453 bio_put(bio);
1454 }
1455 }
1456
bio_check_pages_dirty(struct bio * bio)1457 void bio_check_pages_dirty(struct bio *bio)
1458 {
1459 struct folio_iter fi;
1460 unsigned long flags;
1461
1462 bio_for_each_folio_all(fi, bio) {
1463 if (!folio_test_dirty(fi.folio))
1464 goto defer;
1465 }
1466
1467 bio_release_pages(bio, false);
1468 bio_put(bio);
1469 return;
1470 defer:
1471 spin_lock_irqsave(&bio_dirty_lock, flags);
1472 bio->bi_private = bio_dirty_list;
1473 bio_dirty_list = bio;
1474 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1475 schedule_work(&bio_dirty_work);
1476 }
1477 EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1478
bio_remaining_done(struct bio * bio)1479 static inline bool bio_remaining_done(struct bio *bio)
1480 {
1481 /*
1482 * If we're not chaining, then ->__bi_remaining is always 1 and
1483 * we always end io on the first invocation.
1484 */
1485 if (!bio_flagged(bio, BIO_CHAIN))
1486 return true;
1487
1488 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1489
1490 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1491 bio_clear_flag(bio, BIO_CHAIN);
1492 return true;
1493 }
1494
1495 return false;
1496 }
1497
1498 /**
1499 * bio_endio - end I/O on a bio
1500 * @bio: bio
1501 *
1502 * Description:
1503 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1504 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1505 * bio unless they own it and thus know that it has an end_io function.
1506 *
1507 * bio_endio() can be called several times on a bio that has been chained
1508 * using bio_chain(). The ->bi_end_io() function will only be called the
1509 * last time.
1510 **/
bio_endio(struct bio * bio)1511 void bio_endio(struct bio *bio)
1512 {
1513 again:
1514 if (!bio_remaining_done(bio))
1515 return;
1516 if (!bio_integrity_endio(bio))
1517 return;
1518
1519 blk_zone_bio_endio(bio);
1520
1521 rq_qos_done_bio(bio);
1522
1523 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1524 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1525 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1526 }
1527
1528 /*
1529 * Need to have a real endio function for chained bios, otherwise
1530 * various corner cases will break (like stacking block devices that
1531 * save/restore bi_end_io) - however, we want to avoid unbounded
1532 * recursion and blowing the stack. Tail call optimization would
1533 * handle this, but compiling with frame pointers also disables
1534 * gcc's sibling call optimization.
1535 */
1536 if (bio->bi_end_io == bio_chain_endio) {
1537 bio = __bio_chain_endio(bio);
1538 goto again;
1539 }
1540
1541 #ifdef CONFIG_BLK_CGROUP
1542 /*
1543 * Release cgroup info. We shouldn't have to do this here, but quite
1544 * a few callers of bio_init fail to call bio_uninit, so we cover up
1545 * for that here at least for now.
1546 */
1547 if (bio->bi_blkg) {
1548 blkg_put(bio->bi_blkg);
1549 bio->bi_blkg = NULL;
1550 }
1551 #endif
1552
1553 if (bio->bi_end_io)
1554 bio->bi_end_io(bio);
1555 }
1556 EXPORT_SYMBOL(bio_endio);
1557
1558 /**
1559 * bio_split - split a bio
1560 * @bio: bio to split
1561 * @sectors: number of sectors to split from the front of @bio
1562 * @gfp: gfp mask
1563 * @bs: bio set to allocate from
1564 *
1565 * Allocates and returns a new bio which represents @sectors from the start of
1566 * @bio, and updates @bio to represent the remaining sectors.
1567 *
1568 * Unless this is a discard request the newly allocated bio will point
1569 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1570 * neither @bio nor @bs are freed before the split bio.
1571 */
bio_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)1572 struct bio *bio_split(struct bio *bio, int sectors,
1573 gfp_t gfp, struct bio_set *bs)
1574 {
1575 struct bio *split;
1576
1577 BUG_ON(sectors <= 0);
1578 BUG_ON(sectors >= bio_sectors(bio));
1579
1580 /* Zone append commands cannot be split */
1581 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1582 return NULL;
1583
1584 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1585 if (!split)
1586 return NULL;
1587
1588 split->bi_iter.bi_size = sectors << 9;
1589
1590 if (bio_integrity(split))
1591 bio_integrity_trim(split);
1592
1593 bio_advance(bio, split->bi_iter.bi_size);
1594
1595 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1596 bio_set_flag(split, BIO_TRACE_COMPLETION);
1597
1598 return split;
1599 }
1600 EXPORT_SYMBOL(bio_split);
1601
1602 /**
1603 * bio_trim - trim a bio
1604 * @bio: bio to trim
1605 * @offset: number of sectors to trim from the front of @bio
1606 * @size: size we want to trim @bio to, in sectors
1607 *
1608 * This function is typically used for bios that are cloned and submitted
1609 * to the underlying device in parts.
1610 */
bio_trim(struct bio * bio,sector_t offset,sector_t size)1611 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1612 {
1613 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1614 offset + size > bio_sectors(bio)))
1615 return;
1616
1617 size <<= 9;
1618 if (offset == 0 && size == bio->bi_iter.bi_size)
1619 return;
1620
1621 bio_advance(bio, offset << 9);
1622 bio->bi_iter.bi_size = size;
1623
1624 if (bio_integrity(bio))
1625 bio_integrity_trim(bio);
1626 }
1627 EXPORT_SYMBOL_GPL(bio_trim);
1628
1629 /*
1630 * create memory pools for biovec's in a bio_set.
1631 * use the global biovec slabs created for general use.
1632 */
biovec_init_pool(mempool_t * pool,int pool_entries)1633 int biovec_init_pool(mempool_t *pool, int pool_entries)
1634 {
1635 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1636
1637 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1638 }
1639
1640 /*
1641 * bioset_exit - exit a bioset initialized with bioset_init()
1642 *
1643 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1644 * kzalloc()).
1645 */
bioset_exit(struct bio_set * bs)1646 void bioset_exit(struct bio_set *bs)
1647 {
1648 bio_alloc_cache_destroy(bs);
1649 if (bs->rescue_workqueue)
1650 destroy_workqueue(bs->rescue_workqueue);
1651 bs->rescue_workqueue = NULL;
1652
1653 mempool_exit(&bs->bio_pool);
1654 mempool_exit(&bs->bvec_pool);
1655
1656 bioset_integrity_free(bs);
1657 if (bs->bio_slab)
1658 bio_put_slab(bs);
1659 bs->bio_slab = NULL;
1660 }
1661 EXPORT_SYMBOL(bioset_exit);
1662
1663 /**
1664 * bioset_init - Initialize a bio_set
1665 * @bs: pool to initialize
1666 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1667 * @front_pad: Number of bytes to allocate in front of the returned bio
1668 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1669 * and %BIOSET_NEED_RESCUER
1670 *
1671 * Description:
1672 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1673 * to ask for a number of bytes to be allocated in front of the bio.
1674 * Front pad allocation is useful for embedding the bio inside
1675 * another structure, to avoid allocating extra data to go with the bio.
1676 * Note that the bio must be embedded at the END of that structure always,
1677 * or things will break badly.
1678 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1679 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone().
1680 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1681 * to dispatch queued requests when the mempool runs out of space.
1682 *
1683 */
bioset_init(struct bio_set * bs,unsigned int pool_size,unsigned int front_pad,int flags)1684 int bioset_init(struct bio_set *bs,
1685 unsigned int pool_size,
1686 unsigned int front_pad,
1687 int flags)
1688 {
1689 bs->front_pad = front_pad;
1690 if (flags & BIOSET_NEED_BVECS)
1691 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1692 else
1693 bs->back_pad = 0;
1694
1695 spin_lock_init(&bs->rescue_lock);
1696 bio_list_init(&bs->rescue_list);
1697 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1698
1699 bs->bio_slab = bio_find_or_create_slab(bs);
1700 if (!bs->bio_slab)
1701 return -ENOMEM;
1702
1703 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1704 goto bad;
1705
1706 if ((flags & BIOSET_NEED_BVECS) &&
1707 biovec_init_pool(&bs->bvec_pool, pool_size))
1708 goto bad;
1709
1710 if (flags & BIOSET_NEED_RESCUER) {
1711 bs->rescue_workqueue = alloc_workqueue("bioset",
1712 WQ_MEM_RECLAIM, 0);
1713 if (!bs->rescue_workqueue)
1714 goto bad;
1715 }
1716 if (flags & BIOSET_PERCPU_CACHE) {
1717 bs->cache = alloc_percpu(struct bio_alloc_cache);
1718 if (!bs->cache)
1719 goto bad;
1720 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1721 }
1722
1723 return 0;
1724 bad:
1725 bioset_exit(bs);
1726 return -ENOMEM;
1727 }
1728 EXPORT_SYMBOL(bioset_init);
1729
init_bio(void)1730 static int __init init_bio(void)
1731 {
1732 int i;
1733
1734 BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags));
1735
1736 bio_integrity_init();
1737
1738 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1739 struct biovec_slab *bvs = bvec_slabs + i;
1740
1741 bvs->slab = kmem_cache_create(bvs->name,
1742 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1743 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1744 }
1745
1746 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1747 bio_cpu_dead);
1748
1749 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
1750 BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
1751 panic("bio: can't allocate bios\n");
1752
1753 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1754 panic("bio: can't create integrity pool\n");
1755
1756 return 0;
1757 }
1758 subsys_initcall(init_bio);
1759