• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 #include <linux/part_stat.h>
31 #include <linux/sched/isolation.h>
32 
33 #include <trace/events/block.h>
34 
35 #include <trace/hooks/blk.h>
36 
37 #include <linux/t10-pi.h>
38 #include "blk.h"
39 #include "blk-mq.h"
40 #include "blk-mq-debugfs.h"
41 #include "blk-pm.h"
42 #include "blk-stat.h"
43 #include "blk-mq-sched.h"
44 #include "blk-rq-qos.h"
45 
46 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
47 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
48 static DEFINE_MUTEX(blk_mq_cpuhp_lock);
49 
50 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
51 static void blk_mq_request_bypass_insert(struct request *rq,
52 		blk_insert_t flags);
53 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
54 		struct list_head *list);
55 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
56 			 struct io_comp_batch *iob, unsigned int flags);
57 
58 /*
59  * Check if any of the ctx, dispatch list or elevator
60  * have pending work in this hardware queue.
61  */
blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)62 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
63 {
64 	return !list_empty_careful(&hctx->dispatch) ||
65 		sbitmap_any_bit_set(&hctx->ctx_map) ||
66 			blk_mq_sched_has_work(hctx);
67 }
68 
69 /*
70  * Mark this ctx as having pending work in this hardware queue
71  */
blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)72 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
73 				     struct blk_mq_ctx *ctx)
74 {
75 	const int bit = ctx->index_hw[hctx->type];
76 
77 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
78 		sbitmap_set_bit(&hctx->ctx_map, bit);
79 }
80 
blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 				      struct blk_mq_ctx *ctx)
83 {
84 	const int bit = ctx->index_hw[hctx->type];
85 
86 	sbitmap_clear_bit(&hctx->ctx_map, bit);
87 }
88 
89 struct mq_inflight {
90 	struct block_device *part;
91 	unsigned int inflight[2];
92 };
93 
blk_mq_check_inflight(struct request * rq,void * priv)94 static bool blk_mq_check_inflight(struct request *rq, void *priv)
95 {
96 	struct mq_inflight *mi = priv;
97 
98 	if (rq->part && blk_do_io_stat(rq) &&
99 	    (!bdev_is_partition(mi->part) || rq->part == mi->part) &&
100 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
101 		mi->inflight[rq_data_dir(rq)]++;
102 
103 	return true;
104 }
105 
blk_mq_in_flight(struct request_queue * q,struct block_device * part)106 unsigned int blk_mq_in_flight(struct request_queue *q,
107 		struct block_device *part)
108 {
109 	struct mq_inflight mi = { .part = part };
110 
111 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
112 
113 	return mi.inflight[0] + mi.inflight[1];
114 }
115 
blk_mq_in_flight_rw(struct request_queue * q,struct block_device * part,unsigned int inflight[2])116 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
117 		unsigned int inflight[2])
118 {
119 	struct mq_inflight mi = { .part = part };
120 
121 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
122 	inflight[0] = mi.inflight[0];
123 	inflight[1] = mi.inflight[1];
124 }
125 
126 #ifdef CONFIG_LOCKDEP
blk_freeze_set_owner(struct request_queue * q,struct task_struct * owner)127 static bool blk_freeze_set_owner(struct request_queue *q,
128 				 struct task_struct *owner)
129 {
130 	if (!owner)
131 		return false;
132 
133 	if (!q->mq_freeze_depth) {
134 		q->mq_freeze_owner = owner;
135 		q->mq_freeze_owner_depth = 1;
136 		q->mq_freeze_disk_dead = !q->disk ||
137 			test_bit(GD_DEAD, &q->disk->state) ||
138 			!blk_queue_registered(q);
139 		q->mq_freeze_queue_dying = blk_queue_dying(q);
140 		return true;
141 	}
142 
143 	if (owner == q->mq_freeze_owner)
144 		q->mq_freeze_owner_depth += 1;
145 	return false;
146 }
147 
148 /* verify the last unfreeze in owner context */
blk_unfreeze_check_owner(struct request_queue * q)149 static bool blk_unfreeze_check_owner(struct request_queue *q)
150 {
151 	if (!q->mq_freeze_owner)
152 		return false;
153 	if (q->mq_freeze_owner != current)
154 		return false;
155 	if (--q->mq_freeze_owner_depth == 0) {
156 		q->mq_freeze_owner = NULL;
157 		return true;
158 	}
159 	return false;
160 }
161 
162 #else
163 
blk_freeze_set_owner(struct request_queue * q,struct task_struct * owner)164 static bool blk_freeze_set_owner(struct request_queue *q,
165 				 struct task_struct *owner)
166 {
167 	return false;
168 }
169 
blk_unfreeze_check_owner(struct request_queue * q)170 static bool blk_unfreeze_check_owner(struct request_queue *q)
171 {
172 	return false;
173 }
174 #endif
175 
__blk_freeze_queue_start(struct request_queue * q,struct task_struct * owner)176 bool __blk_freeze_queue_start(struct request_queue *q,
177 			      struct task_struct *owner)
178 {
179 	bool freeze;
180 
181 	mutex_lock(&q->mq_freeze_lock);
182 	freeze = blk_freeze_set_owner(q, owner);
183 	if (++q->mq_freeze_depth == 1) {
184 		percpu_ref_kill(&q->q_usage_counter);
185 		mutex_unlock(&q->mq_freeze_lock);
186 		if (queue_is_mq(q))
187 			blk_mq_run_hw_queues(q, false);
188 	} else {
189 		mutex_unlock(&q->mq_freeze_lock);
190 	}
191 
192 	return freeze;
193 }
194 
blk_freeze_queue_start(struct request_queue * q)195 void blk_freeze_queue_start(struct request_queue *q)
196 {
197 	if (__blk_freeze_queue_start(q, current))
198 		blk_freeze_acquire_lock(q);
199 }
200 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
201 
blk_mq_freeze_queue_wait(struct request_queue * q)202 void blk_mq_freeze_queue_wait(struct request_queue *q)
203 {
204 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
205 }
206 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
207 
blk_mq_freeze_queue_wait_timeout(struct request_queue * q,unsigned long timeout)208 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
209 				     unsigned long timeout)
210 {
211 	return wait_event_timeout(q->mq_freeze_wq,
212 					percpu_ref_is_zero(&q->q_usage_counter),
213 					timeout);
214 }
215 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
216 
217 /*
218  * Guarantee no request is in use, so we can change any data structure of
219  * the queue afterward.
220  */
blk_freeze_queue(struct request_queue * q)221 void blk_freeze_queue(struct request_queue *q)
222 {
223 	/*
224 	 * In the !blk_mq case we are only calling this to kill the
225 	 * q_usage_counter, otherwise this increases the freeze depth
226 	 * and waits for it to return to zero.  For this reason there is
227 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
228 	 * exported to drivers as the only user for unfreeze is blk_mq.
229 	 */
230 	blk_freeze_queue_start(q);
231 	blk_mq_freeze_queue_wait(q);
232 }
233 
blk_mq_freeze_queue(struct request_queue * q)234 void blk_mq_freeze_queue(struct request_queue *q)
235 {
236 	/*
237 	 * ...just an alias to keep freeze and unfreeze actions balanced
238 	 * in the blk_mq_* namespace
239 	 */
240 	blk_freeze_queue(q);
241 }
242 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
243 
__blk_mq_unfreeze_queue(struct request_queue * q,bool force_atomic)244 bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
245 {
246 	bool unfreeze;
247 
248 	mutex_lock(&q->mq_freeze_lock);
249 	if (force_atomic)
250 		q->q_usage_counter.data->force_atomic = true;
251 	q->mq_freeze_depth--;
252 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
253 	if (!q->mq_freeze_depth) {
254 		percpu_ref_resurrect(&q->q_usage_counter);
255 		wake_up_all(&q->mq_freeze_wq);
256 	}
257 	unfreeze = blk_unfreeze_check_owner(q);
258 	mutex_unlock(&q->mq_freeze_lock);
259 
260 	return unfreeze;
261 }
262 
blk_mq_unfreeze_queue(struct request_queue * q)263 void blk_mq_unfreeze_queue(struct request_queue *q)
264 {
265 	if (__blk_mq_unfreeze_queue(q, false))
266 		blk_unfreeze_release_lock(q);
267 }
268 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
269 
270 /*
271  * non_owner variant of blk_freeze_queue_start
272  *
273  * Unlike blk_freeze_queue_start, the queue doesn't need to be unfrozen
274  * by the same task.  This is fragile and should not be used if at all
275  * possible.
276  */
blk_freeze_queue_start_non_owner(struct request_queue * q)277 void blk_freeze_queue_start_non_owner(struct request_queue *q)
278 {
279 	__blk_freeze_queue_start(q, NULL);
280 }
281 EXPORT_SYMBOL_GPL(blk_freeze_queue_start_non_owner);
282 
283 /* non_owner variant of blk_mq_unfreeze_queue */
blk_mq_unfreeze_queue_non_owner(struct request_queue * q)284 void blk_mq_unfreeze_queue_non_owner(struct request_queue *q)
285 {
286 	__blk_mq_unfreeze_queue(q, false);
287 }
288 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_non_owner);
289 
290 /*
291  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
292  * mpt3sas driver such that this function can be removed.
293  */
blk_mq_quiesce_queue_nowait(struct request_queue * q)294 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
295 {
296 	unsigned long flags;
297 
298 	spin_lock_irqsave(&q->queue_lock, flags);
299 	if (!q->quiesce_depth++)
300 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
301 	spin_unlock_irqrestore(&q->queue_lock, flags);
302 }
303 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
304 
305 /**
306  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
307  * @set: tag_set to wait on
308  *
309  * Note: it is driver's responsibility for making sure that quiesce has
310  * been started on or more of the request_queues of the tag_set.  This
311  * function only waits for the quiesce on those request_queues that had
312  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
313  */
blk_mq_wait_quiesce_done(struct blk_mq_tag_set * set)314 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
315 {
316 	if (set->flags & BLK_MQ_F_BLOCKING)
317 		synchronize_srcu(set->srcu);
318 	else
319 		synchronize_rcu();
320 }
321 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
322 
323 /**
324  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
325  * @q: request queue.
326  *
327  * Note: this function does not prevent that the struct request end_io()
328  * callback function is invoked. Once this function is returned, we make
329  * sure no dispatch can happen until the queue is unquiesced via
330  * blk_mq_unquiesce_queue().
331  */
blk_mq_quiesce_queue(struct request_queue * q)332 void blk_mq_quiesce_queue(struct request_queue *q)
333 {
334 	blk_mq_quiesce_queue_nowait(q);
335 	/* nothing to wait for non-mq queues */
336 	if (queue_is_mq(q))
337 		blk_mq_wait_quiesce_done(q->tag_set);
338 }
339 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
340 
341 /*
342  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
343  * @q: request queue.
344  *
345  * This function recovers queue into the state before quiescing
346  * which is done by blk_mq_quiesce_queue.
347  */
blk_mq_unquiesce_queue(struct request_queue * q)348 void blk_mq_unquiesce_queue(struct request_queue *q)
349 {
350 	unsigned long flags;
351 	bool run_queue = false;
352 
353 	spin_lock_irqsave(&q->queue_lock, flags);
354 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
355 		;
356 	} else if (!--q->quiesce_depth) {
357 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
358 		run_queue = true;
359 	}
360 	spin_unlock_irqrestore(&q->queue_lock, flags);
361 
362 	/* dispatch requests which are inserted during quiescing */
363 	if (run_queue)
364 		blk_mq_run_hw_queues(q, true);
365 }
366 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
367 
blk_mq_quiesce_tagset(struct blk_mq_tag_set * set)368 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
369 {
370 	struct request_queue *q;
371 
372 	mutex_lock(&set->tag_list_lock);
373 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
374 		if (!blk_queue_skip_tagset_quiesce(q))
375 			blk_mq_quiesce_queue_nowait(q);
376 	}
377 	mutex_unlock(&set->tag_list_lock);
378 
379 	blk_mq_wait_quiesce_done(set);
380 }
381 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
382 
blk_mq_unquiesce_tagset(struct blk_mq_tag_set * set)383 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
384 {
385 	struct request_queue *q;
386 
387 	mutex_lock(&set->tag_list_lock);
388 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
389 		if (!blk_queue_skip_tagset_quiesce(q))
390 			blk_mq_unquiesce_queue(q);
391 	}
392 	mutex_unlock(&set->tag_list_lock);
393 }
394 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
395 
blk_mq_wake_waiters(struct request_queue * q)396 void blk_mq_wake_waiters(struct request_queue *q)
397 {
398 	struct blk_mq_hw_ctx *hctx;
399 	unsigned long i;
400 
401 	queue_for_each_hw_ctx(q, hctx, i)
402 		if (blk_mq_hw_queue_mapped(hctx))
403 			blk_mq_tag_wakeup_all(hctx->tags, true);
404 }
405 
blk_rq_init(struct request_queue * q,struct request * rq)406 void blk_rq_init(struct request_queue *q, struct request *rq)
407 {
408 	memset(rq, 0, sizeof(*rq));
409 
410 	INIT_LIST_HEAD(&rq->queuelist);
411 	rq->q = q;
412 	rq->__sector = (sector_t) -1;
413 	INIT_HLIST_NODE(&rq->hash);
414 	RB_CLEAR_NODE(&rq->rb_node);
415 	rq->tag = BLK_MQ_NO_TAG;
416 	rq->internal_tag = BLK_MQ_NO_TAG;
417 	rq->start_time_ns = blk_time_get_ns();
418 	rq->part = NULL;
419 	blk_crypto_rq_set_defaults(rq);
420 }
421 EXPORT_SYMBOL(blk_rq_init);
422 
423 /* Set start and alloc time when the allocated request is actually used */
blk_mq_rq_time_init(struct request * rq,u64 alloc_time_ns)424 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
425 {
426 	if (blk_mq_need_time_stamp(rq))
427 		rq->start_time_ns = blk_time_get_ns();
428 	else
429 		rq->start_time_ns = 0;
430 
431 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
432 	if (blk_queue_rq_alloc_time(rq->q))
433 		rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
434 	else
435 		rq->alloc_time_ns = 0;
436 #endif
437 }
438 
blk_mq_rq_ctx_init(struct blk_mq_alloc_data * data,struct blk_mq_tags * tags,unsigned int tag)439 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
440 		struct blk_mq_tags *tags, unsigned int tag)
441 {
442 	struct blk_mq_ctx *ctx = data->ctx;
443 	struct blk_mq_hw_ctx *hctx = data->hctx;
444 	struct request_queue *q = data->q;
445 	struct request *rq = tags->static_rqs[tag];
446 
447 	rq->q = q;
448 	rq->mq_ctx = ctx;
449 	rq->mq_hctx = hctx;
450 	rq->cmd_flags = data->cmd_flags;
451 
452 	if (data->flags & BLK_MQ_REQ_PM)
453 		data->rq_flags |= RQF_PM;
454 	if (blk_queue_io_stat(q))
455 		data->rq_flags |= RQF_IO_STAT;
456 	rq->rq_flags = data->rq_flags;
457 
458 	if (data->rq_flags & RQF_SCHED_TAGS) {
459 		rq->tag = BLK_MQ_NO_TAG;
460 		rq->internal_tag = tag;
461 	} else {
462 		rq->tag = tag;
463 		rq->internal_tag = BLK_MQ_NO_TAG;
464 	}
465 	rq->timeout = 0;
466 
467 	rq->part = NULL;
468 	rq->io_start_time_ns = 0;
469 	rq->stats_sectors = 0;
470 	rq->nr_phys_segments = 0;
471 	rq->nr_integrity_segments = 0;
472 	rq->end_io = NULL;
473 	rq->end_io_data = NULL;
474 
475 	blk_crypto_rq_set_defaults(rq);
476 	INIT_LIST_HEAD(&rq->queuelist);
477 	/* tag was already set */
478 	WRITE_ONCE(rq->deadline, 0);
479 	req_ref_set(rq, 1);
480 
481 	if (rq->rq_flags & RQF_USE_SCHED) {
482 		struct elevator_queue *e = data->q->elevator;
483 
484 		INIT_HLIST_NODE(&rq->hash);
485 		RB_CLEAR_NODE(&rq->rb_node);
486 
487 		if (e->type->ops.prepare_request)
488 			e->type->ops.prepare_request(rq);
489 	}
490 
491 	return rq;
492 }
493 
494 static inline struct request *
__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data * data)495 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
496 {
497 	unsigned int tag, tag_offset;
498 	struct blk_mq_tags *tags;
499 	struct request *rq;
500 	unsigned long tag_mask;
501 	int i, nr = 0;
502 
503 	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
504 	if (unlikely(!tag_mask))
505 		return NULL;
506 
507 	tags = blk_mq_tags_from_data(data);
508 	for (i = 0; tag_mask; i++) {
509 		if (!(tag_mask & (1UL << i)))
510 			continue;
511 		tag = tag_offset + i;
512 		prefetch(tags->static_rqs[tag]);
513 		tag_mask &= ~(1UL << i);
514 		rq = blk_mq_rq_ctx_init(data, tags, tag);
515 		rq_list_add_head(data->cached_rqs, rq);
516 		nr++;
517 	}
518 	if (!(data->rq_flags & RQF_SCHED_TAGS))
519 		blk_mq_add_active_requests(data->hctx, nr);
520 	/* caller already holds a reference, add for remainder */
521 	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
522 	data->nr_tags -= nr;
523 
524 	return rq_list_pop(data->cached_rqs);
525 }
526 
__blk_mq_alloc_requests(struct blk_mq_alloc_data * data)527 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
528 {
529 	struct request_queue *q = data->q;
530 	u64 alloc_time_ns = 0;
531 	struct request *rq;
532 	unsigned int tag;
533 
534 	/* alloc_time includes depth and tag waits */
535 	if (blk_queue_rq_alloc_time(q))
536 		alloc_time_ns = blk_time_get_ns();
537 
538 	if (data->cmd_flags & REQ_NOWAIT)
539 		data->flags |= BLK_MQ_REQ_NOWAIT;
540 
541 retry:
542 	data->ctx = blk_mq_get_ctx(q);
543 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
544 
545 	if (q->elevator) {
546 		/*
547 		 * All requests use scheduler tags when an I/O scheduler is
548 		 * enabled for the queue.
549 		 */
550 		data->rq_flags |= RQF_SCHED_TAGS;
551 
552 		/*
553 		 * Flush/passthrough requests are special and go directly to the
554 		 * dispatch list.
555 		 */
556 		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
557 		    !blk_op_is_passthrough(data->cmd_flags)) {
558 			struct elevator_mq_ops *ops = &q->elevator->type->ops;
559 
560 			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
561 
562 			data->rq_flags |= RQF_USE_SCHED;
563 			if (ops->limit_depth)
564 				ops->limit_depth(data->cmd_flags, data);
565 		}
566 	} else {
567 		blk_mq_tag_busy(data->hctx);
568 	}
569 
570 	if (data->flags & BLK_MQ_REQ_RESERVED)
571 		data->rq_flags |= RQF_RESV;
572 
573 	/*
574 	 * Try batched alloc if we want more than 1 tag.
575 	 */
576 	if (data->nr_tags > 1) {
577 		rq = __blk_mq_alloc_requests_batch(data);
578 		if (rq) {
579 			blk_mq_rq_time_init(rq, alloc_time_ns);
580 			return rq;
581 		}
582 		data->nr_tags = 1;
583 	}
584 
585 	/*
586 	 * Waiting allocations only fail because of an inactive hctx.  In that
587 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
588 	 * should have migrated us to an online CPU by now.
589 	 */
590 	tag = blk_mq_get_tag(data);
591 	if (tag == BLK_MQ_NO_TAG) {
592 		if (data->flags & BLK_MQ_REQ_NOWAIT)
593 			return NULL;
594 		/*
595 		 * Give up the CPU and sleep for a random short time to
596 		 * ensure that thread using a realtime scheduling class
597 		 * are migrated off the CPU, and thus off the hctx that
598 		 * is going away.
599 		 */
600 		msleep(3);
601 		goto retry;
602 	}
603 
604 	if (!(data->rq_flags & RQF_SCHED_TAGS))
605 		blk_mq_inc_active_requests(data->hctx);
606 	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
607 	blk_mq_rq_time_init(rq, alloc_time_ns);
608 	return rq;
609 }
610 
blk_mq_rq_cache_fill(struct request_queue * q,struct blk_plug * plug,blk_opf_t opf,blk_mq_req_flags_t flags)611 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
612 					    struct blk_plug *plug,
613 					    blk_opf_t opf,
614 					    blk_mq_req_flags_t flags)
615 {
616 	struct blk_mq_alloc_data data = {
617 		.q		= q,
618 		.flags		= flags,
619 		.cmd_flags	= opf,
620 		.nr_tags	= plug->nr_ios,
621 		.cached_rqs	= &plug->cached_rqs,
622 	};
623 	struct request *rq;
624 
625 	if (blk_queue_enter(q, flags))
626 		return NULL;
627 
628 	plug->nr_ios = 1;
629 
630 	rq = __blk_mq_alloc_requests(&data);
631 	if (unlikely(!rq))
632 		blk_queue_exit(q);
633 	return rq;
634 }
635 
blk_mq_alloc_cached_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)636 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
637 						   blk_opf_t opf,
638 						   blk_mq_req_flags_t flags)
639 {
640 	struct blk_plug *plug = current->plug;
641 	struct request *rq;
642 
643 	if (!plug)
644 		return NULL;
645 
646 	if (rq_list_empty(&plug->cached_rqs)) {
647 		if (plug->nr_ios == 1)
648 			return NULL;
649 		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
650 		if (!rq)
651 			return NULL;
652 	} else {
653 		rq = rq_list_peek(&plug->cached_rqs);
654 		if (!rq || rq->q != q)
655 			return NULL;
656 
657 		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
658 			return NULL;
659 		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
660 			return NULL;
661 
662 		rq_list_pop(&plug->cached_rqs);
663 		blk_mq_rq_time_init(rq, 0);
664 	}
665 
666 	rq->cmd_flags = opf;
667 	INIT_LIST_HEAD(&rq->queuelist);
668 	return rq;
669 }
670 
blk_mq_alloc_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)671 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
672 		blk_mq_req_flags_t flags)
673 {
674 	struct request *rq;
675 
676 	rq = blk_mq_alloc_cached_request(q, opf, flags);
677 	if (!rq) {
678 		struct blk_mq_alloc_data data = {
679 			.q		= q,
680 			.flags		= flags,
681 			.cmd_flags	= opf,
682 			.nr_tags	= 1,
683 		};
684 		int ret;
685 
686 		ret = blk_queue_enter(q, flags);
687 		if (ret)
688 			return ERR_PTR(ret);
689 
690 		rq = __blk_mq_alloc_requests(&data);
691 		if (!rq)
692 			goto out_queue_exit;
693 	}
694 	rq->__data_len = 0;
695 	rq->__sector = (sector_t) -1;
696 	rq->bio = rq->biotail = NULL;
697 	return rq;
698 out_queue_exit:
699 	blk_queue_exit(q);
700 	return ERR_PTR(-EWOULDBLOCK);
701 }
702 EXPORT_SYMBOL(blk_mq_alloc_request);
703 
blk_mq_alloc_request_hctx(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags,unsigned int hctx_idx)704 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
705 	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
706 {
707 	struct blk_mq_alloc_data data = {
708 		.q		= q,
709 		.flags		= flags,
710 		.cmd_flags	= opf,
711 		.nr_tags	= 1,
712 	};
713 	u64 alloc_time_ns = 0;
714 	struct request *rq;
715 	unsigned int cpu;
716 	unsigned int tag;
717 	int ret;
718 
719 	/* alloc_time includes depth and tag waits */
720 	if (blk_queue_rq_alloc_time(q))
721 		alloc_time_ns = blk_time_get_ns();
722 
723 	/*
724 	 * If the tag allocator sleeps we could get an allocation for a
725 	 * different hardware context.  No need to complicate the low level
726 	 * allocator for this for the rare use case of a command tied to
727 	 * a specific queue.
728 	 */
729 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
730 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
731 		return ERR_PTR(-EINVAL);
732 
733 	if (hctx_idx >= q->nr_hw_queues)
734 		return ERR_PTR(-EIO);
735 
736 	ret = blk_queue_enter(q, flags);
737 	if (ret)
738 		return ERR_PTR(ret);
739 
740 	/*
741 	 * Check if the hardware context is actually mapped to anything.
742 	 * If not tell the caller that it should skip this queue.
743 	 */
744 	ret = -EXDEV;
745 	data.hctx = xa_load(&q->hctx_table, hctx_idx);
746 	if (!blk_mq_hw_queue_mapped(data.hctx))
747 		goto out_queue_exit;
748 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
749 	if (cpu >= nr_cpu_ids)
750 		goto out_queue_exit;
751 	data.ctx = __blk_mq_get_ctx(q, cpu);
752 
753 	if (q->elevator)
754 		data.rq_flags |= RQF_SCHED_TAGS;
755 	else
756 		blk_mq_tag_busy(data.hctx);
757 
758 	if (flags & BLK_MQ_REQ_RESERVED)
759 		data.rq_flags |= RQF_RESV;
760 
761 	ret = -EWOULDBLOCK;
762 	tag = blk_mq_get_tag(&data);
763 	if (tag == BLK_MQ_NO_TAG)
764 		goto out_queue_exit;
765 	if (!(data.rq_flags & RQF_SCHED_TAGS))
766 		blk_mq_inc_active_requests(data.hctx);
767 	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
768 	blk_mq_rq_time_init(rq, alloc_time_ns);
769 	rq->__data_len = 0;
770 	rq->__sector = (sector_t) -1;
771 	rq->bio = rq->biotail = NULL;
772 	return rq;
773 
774 out_queue_exit:
775 	blk_queue_exit(q);
776 	return ERR_PTR(ret);
777 }
778 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
779 
blk_mq_finish_request(struct request * rq)780 static void blk_mq_finish_request(struct request *rq)
781 {
782 	struct request_queue *q = rq->q;
783 
784 	blk_zone_finish_request(rq);
785 
786 	if (rq->rq_flags & RQF_USE_SCHED) {
787 		q->elevator->type->ops.finish_request(rq);
788 		/*
789 		 * For postflush request that may need to be
790 		 * completed twice, we should clear this flag
791 		 * to avoid double finish_request() on the rq.
792 		 */
793 		rq->rq_flags &= ~RQF_USE_SCHED;
794 	}
795 }
796 
__blk_mq_free_request(struct request * rq)797 static void __blk_mq_free_request(struct request *rq)
798 {
799 	struct request_queue *q = rq->q;
800 	struct blk_mq_ctx *ctx = rq->mq_ctx;
801 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
802 	const int sched_tag = rq->internal_tag;
803 
804 	blk_crypto_free_request(rq);
805 	blk_pm_mark_last_busy(rq);
806 	rq->mq_hctx = NULL;
807 
808 	if (rq->tag != BLK_MQ_NO_TAG) {
809 		blk_mq_dec_active_requests(hctx);
810 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
811 	}
812 	if (sched_tag != BLK_MQ_NO_TAG)
813 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
814 	blk_mq_sched_restart(hctx);
815 	blk_queue_exit(q);
816 }
817 
blk_mq_free_request(struct request * rq)818 void blk_mq_free_request(struct request *rq)
819 {
820 	struct request_queue *q = rq->q;
821 
822 	blk_mq_finish_request(rq);
823 
824 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
825 		laptop_io_completion(q->disk->bdi);
826 
827 	rq_qos_done(q, rq);
828 
829 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
830 	if (req_ref_put_and_test(rq))
831 		__blk_mq_free_request(rq);
832 }
833 EXPORT_SYMBOL_GPL(blk_mq_free_request);
834 
blk_mq_free_plug_rqs(struct blk_plug * plug)835 void blk_mq_free_plug_rqs(struct blk_plug *plug)
836 {
837 	struct request *rq;
838 
839 	while ((rq = rq_list_pop(&plug->cached_rqs)) != NULL)
840 		blk_mq_free_request(rq);
841 }
842 
blk_dump_rq_flags(struct request * rq,char * msg)843 void blk_dump_rq_flags(struct request *rq, char *msg)
844 {
845 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
846 		rq->q->disk ? rq->q->disk->disk_name : "?",
847 		(__force unsigned long long) rq->cmd_flags);
848 
849 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
850 	       (unsigned long long)blk_rq_pos(rq),
851 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
852 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
853 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
854 }
855 EXPORT_SYMBOL(blk_dump_rq_flags);
856 
blk_account_io_completion(struct request * req,unsigned int bytes)857 static void blk_account_io_completion(struct request *req, unsigned int bytes)
858 {
859 	if (req->part && blk_do_io_stat(req)) {
860 		const int sgrp = op_stat_group(req_op(req));
861 
862 		part_stat_lock();
863 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
864 		part_stat_unlock();
865 	}
866 }
867 
blk_print_req_error(struct request * req,blk_status_t status)868 static void blk_print_req_error(struct request *req, blk_status_t status)
869 {
870 	printk_ratelimited(KERN_ERR
871 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
872 		"phys_seg %u prio class %u\n",
873 		blk_status_to_str(status),
874 		req->q->disk ? req->q->disk->disk_name : "?",
875 		blk_rq_pos(req), (__force u32)req_op(req),
876 		blk_op_str(req_op(req)),
877 		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
878 		req->nr_phys_segments,
879 		IOPRIO_PRIO_CLASS(req->ioprio));
880 }
881 
882 /*
883  * Fully end IO on a request. Does not support partial completions, or
884  * errors.
885  */
blk_complete_request(struct request * req)886 static void blk_complete_request(struct request *req)
887 {
888 	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
889 	int total_bytes = blk_rq_bytes(req);
890 	struct bio *bio = req->bio;
891 
892 	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
893 
894 	if (!bio)
895 		return;
896 
897 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
898 		blk_integrity_complete(req, total_bytes);
899 
900 	/*
901 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
902 	 * bio_endio().  Therefore, the keyslot must be released before that.
903 	 */
904 	blk_crypto_rq_put_keyslot(req);
905 
906 	blk_account_io_completion(req, total_bytes);
907 
908 	do {
909 		struct bio *next = bio->bi_next;
910 
911 		/* Completion has already been traced */
912 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
913 
914 		if (blk_req_bio_is_zone_append(req, bio))
915 			blk_zone_append_update_request_bio(req, bio);
916 
917 		if (!is_flush)
918 			bio_endio(bio);
919 		bio = next;
920 	} while (bio);
921 
922 	/*
923 	 * Reset counters so that the request stacking driver
924 	 * can find how many bytes remain in the request
925 	 * later.
926 	 */
927 	if (!req->end_io) {
928 		req->bio = NULL;
929 		req->__data_len = 0;
930 	}
931 }
932 
933 /**
934  * blk_update_request - Complete multiple bytes without completing the request
935  * @req:      the request being processed
936  * @error:    block status code
937  * @nr_bytes: number of bytes to complete for @req
938  *
939  * Description:
940  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
941  *     the request structure even if @req doesn't have leftover.
942  *     If @req has leftover, sets it up for the next range of segments.
943  *
944  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
945  *     %false return from this function.
946  *
947  * Note:
948  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
949  *      except in the consistency check at the end of this function.
950  *
951  * Return:
952  *     %false - this request doesn't have any more data
953  *     %true  - this request has more data
954  **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)955 bool blk_update_request(struct request *req, blk_status_t error,
956 		unsigned int nr_bytes)
957 {
958 	bool is_flush = req->rq_flags & RQF_FLUSH_SEQ;
959 	bool quiet = req->rq_flags & RQF_QUIET;
960 	int total_bytes;
961 
962 	trace_block_rq_complete(req, error, nr_bytes);
963 
964 	if (!req->bio)
965 		return false;
966 
967 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
968 	    error == BLK_STS_OK)
969 		blk_integrity_complete(req, nr_bytes);
970 
971 	/*
972 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
973 	 * bio_endio().  Therefore, the keyslot must be released before that.
974 	 */
975 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
976 		__blk_crypto_rq_put_keyslot(req);
977 
978 	if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) &&
979 	    !test_bit(GD_DEAD, &req->q->disk->state)) {
980 		blk_print_req_error(req, error);
981 		trace_block_rq_error(req, error, nr_bytes);
982 	}
983 
984 	blk_account_io_completion(req, nr_bytes);
985 
986 	total_bytes = 0;
987 	while (req->bio) {
988 		struct bio *bio = req->bio;
989 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
990 
991 		if (unlikely(error))
992 			bio->bi_status = error;
993 
994 		if (bio_bytes == bio->bi_iter.bi_size) {
995 			req->bio = bio->bi_next;
996 		} else if (bio_is_zone_append(bio) && error == BLK_STS_OK) {
997 			/*
998 			 * Partial zone append completions cannot be supported
999 			 * as the BIO fragments may end up not being written
1000 			 * sequentially.
1001 			 */
1002 			bio->bi_status = BLK_STS_IOERR;
1003 		}
1004 
1005 		/* Completion has already been traced */
1006 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1007 		if (unlikely(quiet))
1008 			bio_set_flag(bio, BIO_QUIET);
1009 
1010 		bio_advance(bio, bio_bytes);
1011 
1012 		/* Don't actually finish bio if it's part of flush sequence */
1013 		if (!bio->bi_iter.bi_size) {
1014 			if (blk_req_bio_is_zone_append(req, bio))
1015 				blk_zone_append_update_request_bio(req, bio);
1016 			if (!is_flush)
1017 				bio_endio(bio);
1018 		}
1019 
1020 		total_bytes += bio_bytes;
1021 		nr_bytes -= bio_bytes;
1022 
1023 		if (!nr_bytes)
1024 			break;
1025 	}
1026 
1027 	/*
1028 	 * completely done
1029 	 */
1030 	if (!req->bio) {
1031 		/*
1032 		 * Reset counters so that the request stacking driver
1033 		 * can find how many bytes remain in the request
1034 		 * later.
1035 		 */
1036 		req->__data_len = 0;
1037 		return false;
1038 	}
1039 
1040 	req->__data_len -= total_bytes;
1041 
1042 	/* update sector only for requests with clear definition of sector */
1043 	if (!blk_rq_is_passthrough(req))
1044 		req->__sector += total_bytes >> 9;
1045 
1046 	/* mixed attributes always follow the first bio */
1047 	if (req->rq_flags & RQF_MIXED_MERGE) {
1048 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1049 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1050 	}
1051 
1052 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1053 		/*
1054 		 * If total number of sectors is less than the first segment
1055 		 * size, something has gone terribly wrong.
1056 		 */
1057 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1058 			blk_dump_rq_flags(req, "request botched");
1059 			req->__data_len = blk_rq_cur_bytes(req);
1060 		}
1061 
1062 		/* recalculate the number of segments */
1063 		req->nr_phys_segments = blk_recalc_rq_segments(req);
1064 	}
1065 
1066 	return true;
1067 }
1068 EXPORT_SYMBOL_GPL(blk_update_request);
1069 
blk_account_io_done(struct request * req,u64 now)1070 static inline void blk_account_io_done(struct request *req, u64 now)
1071 {
1072 	trace_block_io_done(req);
1073 
1074 	/*
1075 	 * Account IO completion.  flush_rq isn't accounted as a
1076 	 * normal IO on queueing nor completion.  Accounting the
1077 	 * containing request is enough.
1078 	 */
1079 	if (blk_do_io_stat(req) && req->part &&
1080 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
1081 		const int sgrp = op_stat_group(req_op(req));
1082 
1083 		part_stat_lock();
1084 		update_io_ticks(req->part, jiffies, true);
1085 		part_stat_inc(req->part, ios[sgrp]);
1086 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1087 		part_stat_local_dec(req->part,
1088 				    in_flight[op_is_write(req_op(req))]);
1089 		part_stat_unlock();
1090 	}
1091 }
1092 
blk_account_io_start(struct request * req)1093 static inline void blk_account_io_start(struct request *req)
1094 {
1095 	trace_block_io_start(req);
1096 
1097 	if (blk_do_io_stat(req)) {
1098 		/*
1099 		 * All non-passthrough requests are created from a bio with one
1100 		 * exception: when a flush command that is part of a flush sequence
1101 		 * generated by the state machine in blk-flush.c is cloned onto the
1102 		 * lower device by dm-multipath we can get here without a bio.
1103 		 */
1104 		if (req->bio)
1105 			req->part = req->bio->bi_bdev;
1106 		else
1107 			req->part = req->q->disk->part0;
1108 
1109 		part_stat_lock();
1110 		update_io_ticks(req->part, jiffies, false);
1111 		part_stat_local_inc(req->part,
1112 				    in_flight[op_is_write(req_op(req))]);
1113 		part_stat_unlock();
1114 	}
1115 }
1116 
__blk_mq_end_request_acct(struct request * rq,u64 now)1117 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1118 {
1119 	if (rq->rq_flags & RQF_STATS)
1120 		blk_stat_add(rq, now);
1121 
1122 	blk_mq_sched_completed_request(rq, now);
1123 	blk_account_io_done(rq, now);
1124 }
1125 
__blk_mq_end_request(struct request * rq,blk_status_t error)1126 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1127 {
1128 	if (blk_mq_need_time_stamp(rq))
1129 		__blk_mq_end_request_acct(rq, blk_time_get_ns());
1130 
1131 	blk_mq_finish_request(rq);
1132 
1133 	if (rq->end_io) {
1134 		rq_qos_done(rq->q, rq);
1135 		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1136 			blk_mq_free_request(rq);
1137 	} else {
1138 		blk_mq_free_request(rq);
1139 	}
1140 }
1141 EXPORT_SYMBOL(__blk_mq_end_request);
1142 
blk_mq_end_request(struct request * rq,blk_status_t error)1143 void blk_mq_end_request(struct request *rq, blk_status_t error)
1144 {
1145 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1146 		BUG();
1147 	__blk_mq_end_request(rq, error);
1148 }
1149 EXPORT_SYMBOL(blk_mq_end_request);
1150 
1151 #define TAG_COMP_BATCH		32
1152 
blk_mq_flush_tag_batch(struct blk_mq_hw_ctx * hctx,int * tag_array,int nr_tags)1153 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1154 					  int *tag_array, int nr_tags)
1155 {
1156 	struct request_queue *q = hctx->queue;
1157 
1158 	blk_mq_sub_active_requests(hctx, nr_tags);
1159 
1160 	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1161 	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1162 }
1163 
blk_mq_end_request_batch(struct io_comp_batch * iob)1164 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1165 {
1166 	int tags[TAG_COMP_BATCH], nr_tags = 0;
1167 	struct blk_mq_hw_ctx *cur_hctx = NULL;
1168 	struct request *rq;
1169 	u64 now = 0;
1170 
1171 	if (iob->need_ts)
1172 		now = blk_time_get_ns();
1173 
1174 	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1175 		prefetch(rq->bio);
1176 		prefetch(rq->rq_next);
1177 
1178 		blk_complete_request(rq);
1179 		if (iob->need_ts)
1180 			__blk_mq_end_request_acct(rq, now);
1181 
1182 		blk_mq_finish_request(rq);
1183 
1184 		rq_qos_done(rq->q, rq);
1185 
1186 		/*
1187 		 * If end_io handler returns NONE, then it still has
1188 		 * ownership of the request.
1189 		 */
1190 		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1191 			continue;
1192 
1193 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1194 		if (!req_ref_put_and_test(rq))
1195 			continue;
1196 
1197 		blk_crypto_free_request(rq);
1198 		blk_pm_mark_last_busy(rq);
1199 
1200 		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1201 			if (cur_hctx)
1202 				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1203 			nr_tags = 0;
1204 			cur_hctx = rq->mq_hctx;
1205 		}
1206 		tags[nr_tags++] = rq->tag;
1207 	}
1208 
1209 	if (nr_tags)
1210 		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1211 }
1212 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1213 
blk_complete_reqs(struct llist_head * list)1214 static void blk_complete_reqs(struct llist_head *list)
1215 {
1216 	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1217 	struct request *rq, *next;
1218 
1219 	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1220 		rq->q->mq_ops->complete(rq);
1221 }
1222 
blk_done_softirq(void)1223 static __latent_entropy void blk_done_softirq(void)
1224 {
1225 	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1226 }
1227 
blk_softirq_cpu_dead(unsigned int cpu)1228 static int blk_softirq_cpu_dead(unsigned int cpu)
1229 {
1230 	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1231 	return 0;
1232 }
1233 
__blk_mq_complete_request_remote(void * data)1234 static void __blk_mq_complete_request_remote(void *data)
1235 {
1236 	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1237 }
1238 
blk_mq_complete_need_ipi(struct request * rq)1239 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1240 {
1241 	int cpu = raw_smp_processor_id();
1242 
1243 	if (!IS_ENABLED(CONFIG_SMP) ||
1244 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1245 		return false;
1246 	/*
1247 	 * With force threaded interrupts enabled, raising softirq from an SMP
1248 	 * function call will always result in waking the ksoftirqd thread.
1249 	 * This is probably worse than completing the request on a different
1250 	 * cache domain.
1251 	 */
1252 	if (force_irqthreads())
1253 		return false;
1254 
1255 	/* same CPU or cache domain and capacity?  Complete locally */
1256 	if (cpu == rq->mq_ctx->cpu ||
1257 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1258 	     cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1259 	     cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1260 		return false;
1261 
1262 	/* don't try to IPI to an offline CPU */
1263 	return cpu_online(rq->mq_ctx->cpu);
1264 }
1265 
blk_mq_complete_send_ipi(struct request * rq)1266 static void blk_mq_complete_send_ipi(struct request *rq)
1267 {
1268 	unsigned int cpu;
1269 
1270 	cpu = rq->mq_ctx->cpu;
1271 	if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1272 		smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1273 }
1274 
blk_mq_raise_softirq(struct request * rq)1275 static void blk_mq_raise_softirq(struct request *rq)
1276 {
1277 	struct llist_head *list;
1278 
1279 	preempt_disable();
1280 	list = this_cpu_ptr(&blk_cpu_done);
1281 	if (llist_add(&rq->ipi_list, list))
1282 		raise_softirq(BLOCK_SOFTIRQ);
1283 	preempt_enable();
1284 }
1285 
blk_mq_complete_request_remote(struct request * rq)1286 bool blk_mq_complete_request_remote(struct request *rq)
1287 {
1288 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1289 
1290 	/*
1291 	 * For request which hctx has only one ctx mapping,
1292 	 * or a polled request, always complete locally,
1293 	 * it's pointless to redirect the completion.
1294 	 */
1295 	if ((rq->mq_hctx->nr_ctx == 1 &&
1296 	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1297 	     rq->cmd_flags & REQ_POLLED)
1298 		return false;
1299 
1300 	if (blk_mq_complete_need_ipi(rq)) {
1301 		blk_mq_complete_send_ipi(rq);
1302 		return true;
1303 	}
1304 
1305 	if (rq->q->nr_hw_queues == 1) {
1306 		blk_mq_raise_softirq(rq);
1307 		return true;
1308 	}
1309 	return false;
1310 }
1311 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1312 
1313 /**
1314  * blk_mq_complete_request - end I/O on a request
1315  * @rq:		the request being processed
1316  *
1317  * Description:
1318  *	Complete a request by scheduling the ->complete_rq operation.
1319  **/
blk_mq_complete_request(struct request * rq)1320 void blk_mq_complete_request(struct request *rq)
1321 {
1322 	if (!blk_mq_complete_request_remote(rq))
1323 		rq->q->mq_ops->complete(rq);
1324 }
1325 EXPORT_SYMBOL(blk_mq_complete_request);
1326 
1327 /**
1328  * blk_mq_start_request - Start processing a request
1329  * @rq: Pointer to request to be started
1330  *
1331  * Function used by device drivers to notify the block layer that a request
1332  * is going to be processed now, so blk layer can do proper initializations
1333  * such as starting the timeout timer.
1334  */
blk_mq_start_request(struct request * rq)1335 void blk_mq_start_request(struct request *rq)
1336 {
1337 	struct request_queue *q = rq->q;
1338 
1339 	trace_block_rq_issue(rq);
1340 
1341 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1342 	    !blk_rq_is_passthrough(rq)) {
1343 		rq->io_start_time_ns = blk_time_get_ns();
1344 		rq->stats_sectors = blk_rq_sectors(rq);
1345 		rq->rq_flags |= RQF_STATS;
1346 		rq_qos_issue(q, rq);
1347 	}
1348 
1349 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1350 
1351 	blk_add_timer(rq);
1352 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1353 	rq->mq_hctx->tags->rqs[rq->tag] = rq;
1354 
1355 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1356 		blk_integrity_prepare(rq);
1357 
1358 	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1359 	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1360 }
1361 EXPORT_SYMBOL(blk_mq_start_request);
1362 
1363 /*
1364  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1365  * queues. This is important for md arrays to benefit from merging
1366  * requests.
1367  */
blk_plug_max_rq_count(struct blk_plug * plug)1368 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1369 {
1370 	if (plug->multiple_queues)
1371 		return BLK_MAX_REQUEST_COUNT * 2;
1372 	return BLK_MAX_REQUEST_COUNT;
1373 }
1374 
blk_add_rq_to_plug(struct blk_plug * plug,struct request * rq)1375 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1376 {
1377 	struct request *last = rq_list_peek(&plug->mq_list);
1378 
1379 	if (!plug->rq_count) {
1380 		trace_block_plug(rq->q);
1381 	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1382 		   (!blk_queue_nomerges(rq->q) &&
1383 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1384 		blk_mq_flush_plug_list(plug, false);
1385 		last = NULL;
1386 		trace_block_plug(rq->q);
1387 	}
1388 
1389 	if (!plug->multiple_queues && last && last->q != rq->q)
1390 		plug->multiple_queues = true;
1391 	/*
1392 	 * Any request allocated from sched tags can't be issued to
1393 	 * ->queue_rqs() directly
1394 	 */
1395 	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1396 		plug->has_elevator = true;
1397 	rq_list_add_tail(&plug->mq_list, rq);
1398 	plug->rq_count++;
1399 }
1400 
1401 /**
1402  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1403  * @rq:		request to insert
1404  * @at_head:    insert request at head or tail of queue
1405  *
1406  * Description:
1407  *    Insert a fully prepared request at the back of the I/O scheduler queue
1408  *    for execution.  Don't wait for completion.
1409  *
1410  * Note:
1411  *    This function will invoke @done directly if the queue is dead.
1412  */
blk_execute_rq_nowait(struct request * rq,bool at_head)1413 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1414 {
1415 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1416 
1417 	WARN_ON(irqs_disabled());
1418 	WARN_ON(!blk_rq_is_passthrough(rq));
1419 
1420 	blk_account_io_start(rq);
1421 
1422 	if (current->plug && !at_head) {
1423 		blk_add_rq_to_plug(current->plug, rq);
1424 		return;
1425 	}
1426 
1427 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1428 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1429 }
1430 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1431 
1432 struct blk_rq_wait {
1433 	struct completion done;
1434 	blk_status_t ret;
1435 };
1436 
blk_end_sync_rq(struct request * rq,blk_status_t ret)1437 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1438 {
1439 	struct blk_rq_wait *wait = rq->end_io_data;
1440 
1441 	wait->ret = ret;
1442 	complete(&wait->done);
1443 	return RQ_END_IO_NONE;
1444 }
1445 
blk_rq_is_poll(struct request * rq)1446 bool blk_rq_is_poll(struct request *rq)
1447 {
1448 	if (!rq->mq_hctx)
1449 		return false;
1450 	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1451 		return false;
1452 	return true;
1453 }
1454 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1455 
blk_rq_poll_completion(struct request * rq,struct completion * wait)1456 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1457 {
1458 	do {
1459 		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1460 		cond_resched();
1461 	} while (!completion_done(wait));
1462 }
1463 
1464 /**
1465  * blk_execute_rq - insert a request into queue for execution
1466  * @rq:		request to insert
1467  * @at_head:    insert request at head or tail of queue
1468  *
1469  * Description:
1470  *    Insert a fully prepared request at the back of the I/O scheduler queue
1471  *    for execution and wait for completion.
1472  * Return: The blk_status_t result provided to blk_mq_end_request().
1473  */
blk_execute_rq(struct request * rq,bool at_head)1474 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1475 {
1476 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1477 	struct blk_rq_wait wait = {
1478 		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1479 	};
1480 
1481 	WARN_ON(irqs_disabled());
1482 	WARN_ON(!blk_rq_is_passthrough(rq));
1483 
1484 	rq->end_io_data = &wait;
1485 	rq->end_io = blk_end_sync_rq;
1486 
1487 	blk_account_io_start(rq);
1488 	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1489 	blk_mq_run_hw_queue(hctx, false);
1490 
1491 	if (blk_rq_is_poll(rq))
1492 		blk_rq_poll_completion(rq, &wait.done);
1493 	else
1494 		blk_wait_io(&wait.done);
1495 
1496 	return wait.ret;
1497 }
1498 EXPORT_SYMBOL(blk_execute_rq);
1499 
__blk_mq_requeue_request(struct request * rq)1500 static void __blk_mq_requeue_request(struct request *rq)
1501 {
1502 	struct request_queue *q = rq->q;
1503 
1504 	blk_mq_put_driver_tag(rq);
1505 
1506 	trace_block_rq_requeue(rq);
1507 	rq_qos_requeue(q, rq);
1508 
1509 	if (blk_mq_request_started(rq)) {
1510 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1511 		rq->rq_flags &= ~RQF_TIMED_OUT;
1512 	}
1513 }
1514 
blk_mq_requeue_request(struct request * rq,bool kick_requeue_list)1515 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1516 {
1517 	struct request_queue *q = rq->q;
1518 	unsigned long flags;
1519 
1520 	__blk_mq_requeue_request(rq);
1521 
1522 	/* this request will be re-inserted to io scheduler queue */
1523 	blk_mq_sched_requeue_request(rq);
1524 
1525 	spin_lock_irqsave(&q->requeue_lock, flags);
1526 	list_add_tail(&rq->queuelist, &q->requeue_list);
1527 	spin_unlock_irqrestore(&q->requeue_lock, flags);
1528 
1529 	if (kick_requeue_list)
1530 		blk_mq_kick_requeue_list(q);
1531 }
1532 EXPORT_SYMBOL(blk_mq_requeue_request);
1533 
blk_mq_requeue_work(struct work_struct * work)1534 static void blk_mq_requeue_work(struct work_struct *work)
1535 {
1536 	struct request_queue *q =
1537 		container_of(work, struct request_queue, requeue_work.work);
1538 	LIST_HEAD(rq_list);
1539 	LIST_HEAD(flush_list);
1540 	struct request *rq;
1541 
1542 	spin_lock_irq(&q->requeue_lock);
1543 	list_splice_init(&q->requeue_list, &rq_list);
1544 	list_splice_init(&q->flush_list, &flush_list);
1545 	spin_unlock_irq(&q->requeue_lock);
1546 
1547 	while (!list_empty(&rq_list)) {
1548 		rq = list_entry(rq_list.next, struct request, queuelist);
1549 		list_del_init(&rq->queuelist);
1550 		/*
1551 		 * If RQF_DONTPREP is set, the request has been started by the
1552 		 * driver already and might have driver-specific data allocated
1553 		 * already.  Insert it into the hctx dispatch list to avoid
1554 		 * block layer merges for the request.
1555 		 */
1556 		if (rq->rq_flags & RQF_DONTPREP)
1557 			blk_mq_request_bypass_insert(rq, 0);
1558 		else
1559 			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1560 	}
1561 
1562 	while (!list_empty(&flush_list)) {
1563 		rq = list_entry(flush_list.next, struct request, queuelist);
1564 		list_del_init(&rq->queuelist);
1565 		blk_mq_insert_request(rq, 0);
1566 	}
1567 
1568 	blk_mq_run_hw_queues(q, false);
1569 }
1570 
blk_mq_kick_requeue_list(struct request_queue * q)1571 void blk_mq_kick_requeue_list(struct request_queue *q)
1572 {
1573 	bool skip = false;
1574 
1575 	trace_android_vh_blk_mq_kick_requeue_list(q, 0, &skip);
1576 	if (skip)
1577 		return;
1578 
1579 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1580 }
1581 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1582 
blk_mq_delay_kick_requeue_list(struct request_queue * q,unsigned long msecs)1583 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1584 				    unsigned long msecs)
1585 {
1586 	bool skip = false;
1587 
1588 	trace_android_vh_blk_mq_kick_requeue_list(q,
1589 			msecs_to_jiffies(msecs), &skip);
1590 	if (skip)
1591 		return;
1592 
1593 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1594 				    msecs_to_jiffies(msecs));
1595 }
1596 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1597 
blk_is_flush_data_rq(struct request * rq)1598 static bool blk_is_flush_data_rq(struct request *rq)
1599 {
1600 	return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1601 }
1602 
blk_mq_rq_inflight(struct request * rq,void * priv)1603 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1604 {
1605 	/*
1606 	 * If we find a request that isn't idle we know the queue is busy
1607 	 * as it's checked in the iter.
1608 	 * Return false to stop the iteration.
1609 	 *
1610 	 * In case of queue quiesce, if one flush data request is completed,
1611 	 * don't count it as inflight given the flush sequence is suspended,
1612 	 * and the original flush data request is invisible to driver, just
1613 	 * like other pending requests because of quiesce
1614 	 */
1615 	if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1616 				blk_is_flush_data_rq(rq) &&
1617 				blk_mq_request_completed(rq))) {
1618 		bool *busy = priv;
1619 
1620 		*busy = true;
1621 		return false;
1622 	}
1623 
1624 	return true;
1625 }
1626 
blk_mq_queue_inflight(struct request_queue * q)1627 bool blk_mq_queue_inflight(struct request_queue *q)
1628 {
1629 	bool busy = false;
1630 
1631 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1632 	return busy;
1633 }
1634 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1635 
blk_mq_rq_timed_out(struct request * req)1636 static void blk_mq_rq_timed_out(struct request *req)
1637 {
1638 	req->rq_flags |= RQF_TIMED_OUT;
1639 	if (req->q->mq_ops->timeout) {
1640 		enum blk_eh_timer_return ret;
1641 
1642 		ret = req->q->mq_ops->timeout(req);
1643 		if (ret == BLK_EH_DONE)
1644 			return;
1645 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1646 	}
1647 
1648 	blk_add_timer(req);
1649 }
1650 
1651 struct blk_expired_data {
1652 	bool has_timedout_rq;
1653 	unsigned long next;
1654 	unsigned long timeout_start;
1655 };
1656 
blk_mq_req_expired(struct request * rq,struct blk_expired_data * expired)1657 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1658 {
1659 	unsigned long deadline;
1660 
1661 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1662 		return false;
1663 	if (rq->rq_flags & RQF_TIMED_OUT)
1664 		return false;
1665 
1666 	deadline = READ_ONCE(rq->deadline);
1667 	if (time_after_eq(expired->timeout_start, deadline))
1668 		return true;
1669 
1670 	if (expired->next == 0)
1671 		expired->next = deadline;
1672 	else if (time_after(expired->next, deadline))
1673 		expired->next = deadline;
1674 	return false;
1675 }
1676 
blk_mq_put_rq_ref(struct request * rq)1677 void blk_mq_put_rq_ref(struct request *rq)
1678 {
1679 	if (is_flush_rq(rq)) {
1680 		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1681 			blk_mq_free_request(rq);
1682 	} else if (req_ref_put_and_test(rq)) {
1683 		__blk_mq_free_request(rq);
1684 	}
1685 }
1686 
blk_mq_check_expired(struct request * rq,void * priv)1687 static bool blk_mq_check_expired(struct request *rq, void *priv)
1688 {
1689 	struct blk_expired_data *expired = priv;
1690 
1691 	/*
1692 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1693 	 * be reallocated underneath the timeout handler's processing, then
1694 	 * the expire check is reliable. If the request is not expired, then
1695 	 * it was completed and reallocated as a new request after returning
1696 	 * from blk_mq_check_expired().
1697 	 */
1698 	if (blk_mq_req_expired(rq, expired)) {
1699 		expired->has_timedout_rq = true;
1700 		return false;
1701 	}
1702 	return true;
1703 }
1704 
blk_mq_handle_expired(struct request * rq,void * priv)1705 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1706 {
1707 	struct blk_expired_data *expired = priv;
1708 
1709 	if (blk_mq_req_expired(rq, expired))
1710 		blk_mq_rq_timed_out(rq);
1711 	return true;
1712 }
1713 
blk_mq_timeout_work(struct work_struct * work)1714 static void blk_mq_timeout_work(struct work_struct *work)
1715 {
1716 	struct request_queue *q =
1717 		container_of(work, struct request_queue, timeout_work);
1718 	struct blk_expired_data expired = {
1719 		.timeout_start = jiffies,
1720 	};
1721 	struct blk_mq_hw_ctx *hctx;
1722 	unsigned long i;
1723 
1724 	/* A deadlock might occur if a request is stuck requiring a
1725 	 * timeout at the same time a queue freeze is waiting
1726 	 * completion, since the timeout code would not be able to
1727 	 * acquire the queue reference here.
1728 	 *
1729 	 * That's why we don't use blk_queue_enter here; instead, we use
1730 	 * percpu_ref_tryget directly, because we need to be able to
1731 	 * obtain a reference even in the short window between the queue
1732 	 * starting to freeze, by dropping the first reference in
1733 	 * blk_freeze_queue_start, and the moment the last request is
1734 	 * consumed, marked by the instant q_usage_counter reaches
1735 	 * zero.
1736 	 */
1737 	if (!percpu_ref_tryget(&q->q_usage_counter))
1738 		return;
1739 
1740 	/* check if there is any timed-out request */
1741 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1742 	if (expired.has_timedout_rq) {
1743 		/*
1744 		 * Before walking tags, we must ensure any submit started
1745 		 * before the current time has finished. Since the submit
1746 		 * uses srcu or rcu, wait for a synchronization point to
1747 		 * ensure all running submits have finished
1748 		 */
1749 		blk_mq_wait_quiesce_done(q->tag_set);
1750 
1751 		expired.next = 0;
1752 		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1753 	}
1754 
1755 	if (expired.next != 0) {
1756 		mod_timer(&q->timeout, expired.next);
1757 	} else {
1758 		/*
1759 		 * Request timeouts are handled as a forward rolling timer. If
1760 		 * we end up here it means that no requests are pending and
1761 		 * also that no request has been pending for a while. Mark
1762 		 * each hctx as idle.
1763 		 */
1764 		queue_for_each_hw_ctx(q, hctx, i) {
1765 			/* the hctx may be unmapped, so check it here */
1766 			if (blk_mq_hw_queue_mapped(hctx))
1767 				blk_mq_tag_idle(hctx);
1768 		}
1769 	}
1770 	blk_queue_exit(q);
1771 }
1772 
1773 struct flush_busy_ctx_data {
1774 	struct blk_mq_hw_ctx *hctx;
1775 	struct list_head *list;
1776 };
1777 
flush_busy_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1778 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1779 {
1780 	struct flush_busy_ctx_data *flush_data = data;
1781 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1782 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1783 	enum hctx_type type = hctx->type;
1784 
1785 	spin_lock(&ctx->lock);
1786 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1787 	sbitmap_clear_bit(sb, bitnr);
1788 	spin_unlock(&ctx->lock);
1789 	return true;
1790 }
1791 
1792 /*
1793  * Process software queues that have been marked busy, splicing them
1794  * to the for-dispatch
1795  */
blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)1796 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1797 {
1798 	struct flush_busy_ctx_data data = {
1799 		.hctx = hctx,
1800 		.list = list,
1801 	};
1802 
1803 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1804 }
1805 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1806 
1807 struct dispatch_rq_data {
1808 	struct blk_mq_hw_ctx *hctx;
1809 	struct request *rq;
1810 };
1811 
dispatch_rq_from_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1812 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1813 		void *data)
1814 {
1815 	struct dispatch_rq_data *dispatch_data = data;
1816 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1817 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1818 	enum hctx_type type = hctx->type;
1819 
1820 	spin_lock(&ctx->lock);
1821 	if (!list_empty(&ctx->rq_lists[type])) {
1822 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1823 		list_del_init(&dispatch_data->rq->queuelist);
1824 		if (list_empty(&ctx->rq_lists[type]))
1825 			sbitmap_clear_bit(sb, bitnr);
1826 	}
1827 	spin_unlock(&ctx->lock);
1828 
1829 	return !dispatch_data->rq;
1830 }
1831 
blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * start)1832 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1833 					struct blk_mq_ctx *start)
1834 {
1835 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1836 	struct dispatch_rq_data data = {
1837 		.hctx = hctx,
1838 		.rq   = NULL,
1839 	};
1840 
1841 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1842 			       dispatch_rq_from_ctx, &data);
1843 
1844 	return data.rq;
1845 }
1846 
__blk_mq_alloc_driver_tag(struct request * rq)1847 bool __blk_mq_alloc_driver_tag(struct request *rq)
1848 {
1849 	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1850 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1851 	int tag;
1852 
1853 	blk_mq_tag_busy(rq->mq_hctx);
1854 
1855 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1856 		bt = &rq->mq_hctx->tags->breserved_tags;
1857 		tag_offset = 0;
1858 	}
1859 
1860 	tag = __sbitmap_queue_get(bt);
1861 	if (tag == BLK_MQ_NO_TAG)
1862 		return false;
1863 
1864 	rq->tag = tag + tag_offset;
1865 	blk_mq_inc_active_requests(rq->mq_hctx);
1866 	return true;
1867 }
1868 
blk_mq_dispatch_wake(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)1869 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1870 				int flags, void *key)
1871 {
1872 	struct blk_mq_hw_ctx *hctx;
1873 
1874 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1875 
1876 	spin_lock(&hctx->dispatch_wait_lock);
1877 	if (!list_empty(&wait->entry)) {
1878 		struct sbitmap_queue *sbq;
1879 
1880 		list_del_init(&wait->entry);
1881 		sbq = &hctx->tags->bitmap_tags;
1882 		atomic_dec(&sbq->ws_active);
1883 	}
1884 	spin_unlock(&hctx->dispatch_wait_lock);
1885 
1886 	blk_mq_run_hw_queue(hctx, true);
1887 	return 1;
1888 }
1889 
1890 /*
1891  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1892  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1893  * restart. For both cases, take care to check the condition again after
1894  * marking us as waiting.
1895  */
blk_mq_mark_tag_wait(struct blk_mq_hw_ctx * hctx,struct request * rq)1896 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1897 				 struct request *rq)
1898 {
1899 	struct sbitmap_queue *sbq;
1900 	struct wait_queue_head *wq;
1901 	wait_queue_entry_t *wait;
1902 	bool ret;
1903 
1904 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1905 	    !(blk_mq_is_shared_tags(hctx->flags))) {
1906 		blk_mq_sched_mark_restart_hctx(hctx);
1907 
1908 		/*
1909 		 * It's possible that a tag was freed in the window between the
1910 		 * allocation failure and adding the hardware queue to the wait
1911 		 * queue.
1912 		 *
1913 		 * Don't clear RESTART here, someone else could have set it.
1914 		 * At most this will cost an extra queue run.
1915 		 */
1916 		return blk_mq_get_driver_tag(rq);
1917 	}
1918 
1919 	wait = &hctx->dispatch_wait;
1920 	if (!list_empty_careful(&wait->entry))
1921 		return false;
1922 
1923 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1924 		sbq = &hctx->tags->breserved_tags;
1925 	else
1926 		sbq = &hctx->tags->bitmap_tags;
1927 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1928 
1929 	spin_lock_irq(&wq->lock);
1930 	spin_lock(&hctx->dispatch_wait_lock);
1931 	if (!list_empty(&wait->entry)) {
1932 		spin_unlock(&hctx->dispatch_wait_lock);
1933 		spin_unlock_irq(&wq->lock);
1934 		return false;
1935 	}
1936 
1937 	atomic_inc(&sbq->ws_active);
1938 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1939 	__add_wait_queue(wq, wait);
1940 
1941 	/*
1942 	 * Add one explicit barrier since blk_mq_get_driver_tag() may
1943 	 * not imply barrier in case of failure.
1944 	 *
1945 	 * Order adding us to wait queue and allocating driver tag.
1946 	 *
1947 	 * The pair is the one implied in sbitmap_queue_wake_up() which
1948 	 * orders clearing sbitmap tag bits and waitqueue_active() in
1949 	 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1950 	 *
1951 	 * Otherwise, re-order of adding wait queue and getting driver tag
1952 	 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1953 	 * the waitqueue_active() may not observe us in wait queue.
1954 	 */
1955 	smp_mb();
1956 
1957 	/*
1958 	 * It's possible that a tag was freed in the window between the
1959 	 * allocation failure and adding the hardware queue to the wait
1960 	 * queue.
1961 	 */
1962 	ret = blk_mq_get_driver_tag(rq);
1963 	if (!ret) {
1964 		spin_unlock(&hctx->dispatch_wait_lock);
1965 		spin_unlock_irq(&wq->lock);
1966 		return false;
1967 	}
1968 
1969 	/*
1970 	 * We got a tag, remove ourselves from the wait queue to ensure
1971 	 * someone else gets the wakeup.
1972 	 */
1973 	list_del_init(&wait->entry);
1974 	atomic_dec(&sbq->ws_active);
1975 	spin_unlock(&hctx->dispatch_wait_lock);
1976 	spin_unlock_irq(&wq->lock);
1977 
1978 	return true;
1979 }
1980 
1981 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1982 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1983 /*
1984  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1985  * - EWMA is one simple way to compute running average value
1986  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1987  * - take 4 as factor for avoiding to get too small(0) result, and this
1988  *   factor doesn't matter because EWMA decreases exponentially
1989  */
blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx * hctx,bool busy)1990 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1991 {
1992 	unsigned int ewma;
1993 
1994 	ewma = hctx->dispatch_busy;
1995 
1996 	if (!ewma && !busy)
1997 		return;
1998 
1999 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
2000 	if (busy)
2001 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
2002 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
2003 
2004 	hctx->dispatch_busy = ewma;
2005 }
2006 
2007 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
2008 
blk_mq_handle_dev_resource(struct request * rq,struct list_head * list)2009 static void blk_mq_handle_dev_resource(struct request *rq,
2010 				       struct list_head *list)
2011 {
2012 	list_add(&rq->queuelist, list);
2013 	__blk_mq_requeue_request(rq);
2014 }
2015 
2016 enum prep_dispatch {
2017 	PREP_DISPATCH_OK,
2018 	PREP_DISPATCH_NO_TAG,
2019 	PREP_DISPATCH_NO_BUDGET,
2020 };
2021 
blk_mq_prep_dispatch_rq(struct request * rq,bool need_budget)2022 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
2023 						  bool need_budget)
2024 {
2025 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2026 	int budget_token = -1;
2027 
2028 	if (need_budget) {
2029 		budget_token = blk_mq_get_dispatch_budget(rq->q);
2030 		if (budget_token < 0) {
2031 			blk_mq_put_driver_tag(rq);
2032 			return PREP_DISPATCH_NO_BUDGET;
2033 		}
2034 		blk_mq_set_rq_budget_token(rq, budget_token);
2035 	}
2036 
2037 	if (!blk_mq_get_driver_tag(rq)) {
2038 		/*
2039 		 * The initial allocation attempt failed, so we need to
2040 		 * rerun the hardware queue when a tag is freed. The
2041 		 * waitqueue takes care of that. If the queue is run
2042 		 * before we add this entry back on the dispatch list,
2043 		 * we'll re-run it below.
2044 		 */
2045 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
2046 			/*
2047 			 * All budgets not got from this function will be put
2048 			 * together during handling partial dispatch
2049 			 */
2050 			if (need_budget)
2051 				blk_mq_put_dispatch_budget(rq->q, budget_token);
2052 			return PREP_DISPATCH_NO_TAG;
2053 		}
2054 	}
2055 
2056 	return PREP_DISPATCH_OK;
2057 }
2058 
2059 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
blk_mq_release_budgets(struct request_queue * q,struct list_head * list)2060 static void blk_mq_release_budgets(struct request_queue *q,
2061 		struct list_head *list)
2062 {
2063 	struct request *rq;
2064 
2065 	list_for_each_entry(rq, list, queuelist) {
2066 		int budget_token = blk_mq_get_rq_budget_token(rq);
2067 
2068 		if (budget_token >= 0)
2069 			blk_mq_put_dispatch_budget(q, budget_token);
2070 	}
2071 }
2072 
2073 /*
2074  * blk_mq_commit_rqs will notify driver using bd->last that there is no
2075  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2076  * details)
2077  * Attention, we should explicitly call this in unusual cases:
2078  *  1) did not queue everything initially scheduled to queue
2079  *  2) the last attempt to queue a request failed
2080  */
blk_mq_commit_rqs(struct blk_mq_hw_ctx * hctx,int queued,bool from_schedule)2081 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2082 			      bool from_schedule)
2083 {
2084 	if (hctx->queue->mq_ops->commit_rqs && queued) {
2085 		trace_block_unplug(hctx->queue, queued, !from_schedule);
2086 		hctx->queue->mq_ops->commit_rqs(hctx);
2087 	}
2088 }
2089 
2090 /*
2091  * Returns true if we did some work AND can potentially do more.
2092  */
blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx * hctx,struct list_head * list,unsigned int nr_budgets)2093 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2094 			     unsigned int nr_budgets)
2095 {
2096 	enum prep_dispatch prep;
2097 	struct request_queue *q = hctx->queue;
2098 	struct request *rq;
2099 	int queued;
2100 	blk_status_t ret = BLK_STS_OK;
2101 	bool needs_resource = false;
2102 
2103 	if (list_empty(list))
2104 		return false;
2105 
2106 	/*
2107 	 * Now process all the entries, sending them to the driver.
2108 	 */
2109 	queued = 0;
2110 	do {
2111 		struct blk_mq_queue_data bd;
2112 
2113 		rq = list_first_entry(list, struct request, queuelist);
2114 
2115 		WARN_ON_ONCE(hctx != rq->mq_hctx);
2116 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2117 		if (prep != PREP_DISPATCH_OK)
2118 			break;
2119 
2120 		list_del_init(&rq->queuelist);
2121 
2122 		bd.rq = rq;
2123 		bd.last = list_empty(list);
2124 
2125 		/*
2126 		 * once the request is queued to lld, no need to cover the
2127 		 * budget any more
2128 		 */
2129 		if (nr_budgets)
2130 			nr_budgets--;
2131 		ret = q->mq_ops->queue_rq(hctx, &bd);
2132 		switch (ret) {
2133 		case BLK_STS_OK:
2134 			queued++;
2135 			break;
2136 		case BLK_STS_RESOURCE:
2137 			needs_resource = true;
2138 			fallthrough;
2139 		case BLK_STS_DEV_RESOURCE:
2140 			blk_mq_handle_dev_resource(rq, list);
2141 			goto out;
2142 		default:
2143 			blk_mq_end_request(rq, ret);
2144 		}
2145 	} while (!list_empty(list));
2146 out:
2147 	/* If we didn't flush the entire list, we could have told the driver
2148 	 * there was more coming, but that turned out to be a lie.
2149 	 */
2150 	if (!list_empty(list) || ret != BLK_STS_OK)
2151 		blk_mq_commit_rqs(hctx, queued, false);
2152 
2153 	/*
2154 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2155 	 * that is where we will continue on next queue run.
2156 	 */
2157 	if (!list_empty(list)) {
2158 		bool needs_restart;
2159 		/* For non-shared tags, the RESTART check will suffice */
2160 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2161 			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2162 			blk_mq_is_shared_tags(hctx->flags));
2163 
2164 		if (nr_budgets)
2165 			blk_mq_release_budgets(q, list);
2166 
2167 		spin_lock(&hctx->lock);
2168 		list_splice_tail_init(list, &hctx->dispatch);
2169 		spin_unlock(&hctx->lock);
2170 
2171 		/*
2172 		 * Order adding requests to hctx->dispatch and checking
2173 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2174 		 * in blk_mq_sched_restart(). Avoid restart code path to
2175 		 * miss the new added requests to hctx->dispatch, meantime
2176 		 * SCHED_RESTART is observed here.
2177 		 */
2178 		smp_mb();
2179 
2180 		/*
2181 		 * If SCHED_RESTART was set by the caller of this function and
2182 		 * it is no longer set that means that it was cleared by another
2183 		 * thread and hence that a queue rerun is needed.
2184 		 *
2185 		 * If 'no_tag' is set, that means that we failed getting
2186 		 * a driver tag with an I/O scheduler attached. If our dispatch
2187 		 * waitqueue is no longer active, ensure that we run the queue
2188 		 * AFTER adding our entries back to the list.
2189 		 *
2190 		 * If no I/O scheduler has been configured it is possible that
2191 		 * the hardware queue got stopped and restarted before requests
2192 		 * were pushed back onto the dispatch list. Rerun the queue to
2193 		 * avoid starvation. Notes:
2194 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2195 		 *   been stopped before rerunning a queue.
2196 		 * - Some but not all block drivers stop a queue before
2197 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2198 		 *   and dm-rq.
2199 		 *
2200 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2201 		 * bit is set, run queue after a delay to avoid IO stalls
2202 		 * that could otherwise occur if the queue is idle.  We'll do
2203 		 * similar if we couldn't get budget or couldn't lock a zone
2204 		 * and SCHED_RESTART is set.
2205 		 */
2206 		needs_restart = blk_mq_sched_needs_restart(hctx);
2207 		if (prep == PREP_DISPATCH_NO_BUDGET)
2208 			needs_resource = true;
2209 		if (!needs_restart ||
2210 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2211 			blk_mq_run_hw_queue(hctx, true);
2212 		else if (needs_resource)
2213 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2214 
2215 		blk_mq_update_dispatch_busy(hctx, true);
2216 		return false;
2217 	}
2218 
2219 	blk_mq_update_dispatch_busy(hctx, false);
2220 	return true;
2221 }
2222 
blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx * hctx)2223 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2224 {
2225 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2226 
2227 	if (cpu >= nr_cpu_ids)
2228 		cpu = cpumask_first(hctx->cpumask);
2229 	return cpu;
2230 }
2231 
2232 /*
2233  * ->next_cpu is always calculated from hctx->cpumask, so simply use
2234  * it for speeding up the check
2235  */
blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx * hctx)2236 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx)
2237 {
2238         return hctx->next_cpu >= nr_cpu_ids;
2239 }
2240 
2241 /*
2242  * It'd be great if the workqueue API had a way to pass
2243  * in a mask and had some smarts for more clever placement.
2244  * For now we just round-robin here, switching for every
2245  * BLK_MQ_CPU_WORK_BATCH queued items.
2246  */
blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)2247 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2248 {
2249 	bool tried = false;
2250 	int next_cpu = hctx->next_cpu;
2251 
2252 	/* Switch to unbound if no allowable CPUs in this hctx */
2253 	if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx))
2254 		return WORK_CPU_UNBOUND;
2255 
2256 	if (--hctx->next_cpu_batch <= 0) {
2257 select_cpu:
2258 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2259 				cpu_online_mask);
2260 		if (next_cpu >= nr_cpu_ids)
2261 			next_cpu = blk_mq_first_mapped_cpu(hctx);
2262 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2263 	}
2264 
2265 	/*
2266 	 * Do unbound schedule if we can't find a online CPU for this hctx,
2267 	 * and it should only happen in the path of handling CPU DEAD.
2268 	 */
2269 	if (!cpu_online(next_cpu)) {
2270 		if (!tried) {
2271 			tried = true;
2272 			goto select_cpu;
2273 		}
2274 
2275 		/*
2276 		 * Make sure to re-select CPU next time once after CPUs
2277 		 * in hctx->cpumask become online again.
2278 		 */
2279 		hctx->next_cpu = next_cpu;
2280 		hctx->next_cpu_batch = 1;
2281 		return WORK_CPU_UNBOUND;
2282 	}
2283 
2284 	hctx->next_cpu = next_cpu;
2285 	return next_cpu;
2286 }
2287 
2288 /**
2289  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2290  * @hctx: Pointer to the hardware queue to run.
2291  * @msecs: Milliseconds of delay to wait before running the queue.
2292  *
2293  * Run a hardware queue asynchronously with a delay of @msecs.
2294  */
blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)2295 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2296 {
2297 	bool skip = false;
2298 
2299 	if (unlikely(blk_mq_hctx_stopped(hctx)))
2300 		return;
2301 
2302 	trace_android_vh_blk_mq_delay_run_hw_queue(blk_mq_hctx_next_cpu(hctx),
2303 			hctx, msecs_to_jiffies(msecs), &skip);
2304 	if (skip)
2305 		return;
2306 
2307 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2308 				    msecs_to_jiffies(msecs));
2309 }
2310 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2311 
blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx * hctx)2312 static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx *hctx)
2313 {
2314 	bool need_run;
2315 
2316 	/*
2317 	 * When queue is quiesced, we may be switching io scheduler, or
2318 	 * updating nr_hw_queues, or other things, and we can't run queue
2319 	 * any more, even blk_mq_hctx_has_pending() can't be called safely.
2320 	 *
2321 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2322 	 * quiesced.
2323 	 */
2324 	__blk_mq_run_dispatch_ops(hctx->queue, false,
2325 		need_run = !blk_queue_quiesced(hctx->queue) &&
2326 		blk_mq_hctx_has_pending(hctx));
2327 	return need_run;
2328 }
2329 
2330 /**
2331  * blk_mq_run_hw_queue - Start to run a hardware queue.
2332  * @hctx: Pointer to the hardware queue to run.
2333  * @async: If we want to run the queue asynchronously.
2334  *
2335  * Check if the request queue is not in a quiesced state and if there are
2336  * pending requests to be sent. If this is true, run the queue to send requests
2337  * to hardware.
2338  */
blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)2339 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2340 {
2341 	bool need_run;
2342 
2343 	/*
2344 	 * We can't run the queue inline with interrupts disabled.
2345 	 */
2346 	WARN_ON_ONCE(!async && in_interrupt());
2347 
2348 	might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2349 
2350 	need_run = blk_mq_hw_queue_need_run(hctx);
2351 	if (!need_run) {
2352 		unsigned long flags;
2353 
2354 		/*
2355 		 * Synchronize with blk_mq_unquiesce_queue(), because we check
2356 		 * if hw queue is quiesced locklessly above, we need the use
2357 		 * ->queue_lock to make sure we see the up-to-date status to
2358 		 * not miss rerunning the hw queue.
2359 		 */
2360 		spin_lock_irqsave(&hctx->queue->queue_lock, flags);
2361 		need_run = blk_mq_hw_queue_need_run(hctx);
2362 		spin_unlock_irqrestore(&hctx->queue->queue_lock, flags);
2363 
2364 		if (!need_run)
2365 			return;
2366 	}
2367 
2368 	if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2369 		blk_mq_delay_run_hw_queue(hctx, 0);
2370 		return;
2371 	}
2372 
2373 	blk_mq_run_dispatch_ops(hctx->queue,
2374 				blk_mq_sched_dispatch_requests(hctx));
2375 }
2376 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2377 
2378 /*
2379  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2380  * scheduler.
2381  */
blk_mq_get_sq_hctx(struct request_queue * q)2382 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2383 {
2384 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2385 	/*
2386 	 * If the IO scheduler does not respect hardware queues when
2387 	 * dispatching, we just don't bother with multiple HW queues and
2388 	 * dispatch from hctx for the current CPU since running multiple queues
2389 	 * just causes lock contention inside the scheduler and pointless cache
2390 	 * bouncing.
2391 	 */
2392 	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2393 
2394 	if (!blk_mq_hctx_stopped(hctx))
2395 		return hctx;
2396 	return NULL;
2397 }
2398 
2399 /**
2400  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2401  * @q: Pointer to the request queue to run.
2402  * @async: If we want to run the queue asynchronously.
2403  */
blk_mq_run_hw_queues(struct request_queue * q,bool async)2404 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2405 {
2406 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2407 	unsigned long i;
2408 
2409 	sq_hctx = NULL;
2410 	if (blk_queue_sq_sched(q))
2411 		sq_hctx = blk_mq_get_sq_hctx(q);
2412 	queue_for_each_hw_ctx(q, hctx, i) {
2413 		if (blk_mq_hctx_stopped(hctx))
2414 			continue;
2415 		/*
2416 		 * Dispatch from this hctx either if there's no hctx preferred
2417 		 * by IO scheduler or if it has requests that bypass the
2418 		 * scheduler.
2419 		 */
2420 		if (!sq_hctx || sq_hctx == hctx ||
2421 		    !list_empty_careful(&hctx->dispatch))
2422 			blk_mq_run_hw_queue(hctx, async);
2423 	}
2424 }
2425 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2426 
2427 /**
2428  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2429  * @q: Pointer to the request queue to run.
2430  * @msecs: Milliseconds of delay to wait before running the queues.
2431  */
blk_mq_delay_run_hw_queues(struct request_queue * q,unsigned long msecs)2432 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2433 {
2434 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2435 	unsigned long i;
2436 
2437 	sq_hctx = NULL;
2438 	if (blk_queue_sq_sched(q))
2439 		sq_hctx = blk_mq_get_sq_hctx(q);
2440 	queue_for_each_hw_ctx(q, hctx, i) {
2441 		if (blk_mq_hctx_stopped(hctx))
2442 			continue;
2443 		/*
2444 		 * If there is already a run_work pending, leave the
2445 		 * pending delay untouched. Otherwise, a hctx can stall
2446 		 * if another hctx is re-delaying the other's work
2447 		 * before the work executes.
2448 		 */
2449 		if (delayed_work_pending(&hctx->run_work))
2450 			continue;
2451 		/*
2452 		 * Dispatch from this hctx either if there's no hctx preferred
2453 		 * by IO scheduler or if it has requests that bypass the
2454 		 * scheduler.
2455 		 */
2456 		if (!sq_hctx || sq_hctx == hctx ||
2457 		    !list_empty_careful(&hctx->dispatch))
2458 			blk_mq_delay_run_hw_queue(hctx, msecs);
2459 	}
2460 }
2461 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2462 
2463 /*
2464  * This function is often used for pausing .queue_rq() by driver when
2465  * there isn't enough resource or some conditions aren't satisfied, and
2466  * BLK_STS_RESOURCE is usually returned.
2467  *
2468  * We do not guarantee that dispatch can be drained or blocked
2469  * after blk_mq_stop_hw_queue() returns. Please use
2470  * blk_mq_quiesce_queue() for that requirement.
2471  */
blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)2472 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2473 {
2474 	cancel_delayed_work(&hctx->run_work);
2475 
2476 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2477 }
2478 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2479 
2480 /*
2481  * This function is often used for pausing .queue_rq() by driver when
2482  * there isn't enough resource or some conditions aren't satisfied, and
2483  * BLK_STS_RESOURCE is usually returned.
2484  *
2485  * We do not guarantee that dispatch can be drained or blocked
2486  * after blk_mq_stop_hw_queues() returns. Please use
2487  * blk_mq_quiesce_queue() for that requirement.
2488  */
blk_mq_stop_hw_queues(struct request_queue * q)2489 void blk_mq_stop_hw_queues(struct request_queue *q)
2490 {
2491 	struct blk_mq_hw_ctx *hctx;
2492 	unsigned long i;
2493 
2494 	queue_for_each_hw_ctx(q, hctx, i)
2495 		blk_mq_stop_hw_queue(hctx);
2496 }
2497 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2498 
blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)2499 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2500 {
2501 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2502 
2503 	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2504 }
2505 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2506 
blk_mq_start_hw_queues(struct request_queue * q)2507 void blk_mq_start_hw_queues(struct request_queue *q)
2508 {
2509 	struct blk_mq_hw_ctx *hctx;
2510 	unsigned long i;
2511 
2512 	queue_for_each_hw_ctx(q, hctx, i)
2513 		blk_mq_start_hw_queue(hctx);
2514 }
2515 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2516 
blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)2517 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2518 {
2519 	if (!blk_mq_hctx_stopped(hctx))
2520 		return;
2521 
2522 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2523 	/*
2524 	 * Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the
2525 	 * clearing of BLK_MQ_S_STOPPED above and the checking of dispatch
2526 	 * list in the subsequent routine.
2527 	 */
2528 	smp_mb__after_atomic();
2529 	blk_mq_run_hw_queue(hctx, async);
2530 }
2531 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2532 
blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)2533 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2534 {
2535 	struct blk_mq_hw_ctx *hctx;
2536 	unsigned long i;
2537 
2538 	queue_for_each_hw_ctx(q, hctx, i)
2539 		blk_mq_start_stopped_hw_queue(hctx, async ||
2540 					(hctx->flags & BLK_MQ_F_BLOCKING));
2541 }
2542 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2543 
blk_mq_run_work_fn(struct work_struct * work)2544 static void blk_mq_run_work_fn(struct work_struct *work)
2545 {
2546 	struct blk_mq_hw_ctx *hctx =
2547 		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2548 
2549 	blk_mq_run_dispatch_ops(hctx->queue,
2550 				blk_mq_sched_dispatch_requests(hctx));
2551 }
2552 
2553 /**
2554  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2555  * @rq: Pointer to request to be inserted.
2556  * @flags: BLK_MQ_INSERT_*
2557  *
2558  * Should only be used carefully, when the caller knows we want to
2559  * bypass a potential IO scheduler on the target device.
2560  */
blk_mq_request_bypass_insert(struct request * rq,blk_insert_t flags)2561 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2562 {
2563 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2564 
2565 	spin_lock(&hctx->lock);
2566 	if (flags & BLK_MQ_INSERT_AT_HEAD)
2567 		list_add(&rq->queuelist, &hctx->dispatch);
2568 	else
2569 		list_add_tail(&rq->queuelist, &hctx->dispatch);
2570 	spin_unlock(&hctx->lock);
2571 }
2572 
blk_mq_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list,bool run_queue_async)2573 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2574 		struct blk_mq_ctx *ctx, struct list_head *list,
2575 		bool run_queue_async)
2576 {
2577 	struct request *rq;
2578 	enum hctx_type type = hctx->type;
2579 
2580 	/*
2581 	 * Try to issue requests directly if the hw queue isn't busy to save an
2582 	 * extra enqueue & dequeue to the sw queue.
2583 	 */
2584 	if (!hctx->dispatch_busy && !run_queue_async) {
2585 		blk_mq_run_dispatch_ops(hctx->queue,
2586 			blk_mq_try_issue_list_directly(hctx, list));
2587 		if (list_empty(list))
2588 			goto out;
2589 	}
2590 
2591 	/*
2592 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2593 	 * offline now
2594 	 */
2595 	list_for_each_entry(rq, list, queuelist) {
2596 		BUG_ON(rq->mq_ctx != ctx);
2597 		trace_block_rq_insert(rq);
2598 		if (rq->cmd_flags & REQ_NOWAIT)
2599 			run_queue_async = true;
2600 	}
2601 
2602 	spin_lock(&ctx->lock);
2603 	list_splice_tail_init(list, &ctx->rq_lists[type]);
2604 	blk_mq_hctx_mark_pending(hctx, ctx);
2605 	spin_unlock(&ctx->lock);
2606 out:
2607 	blk_mq_run_hw_queue(hctx, run_queue_async);
2608 }
2609 
blk_mq_insert_request(struct request * rq,blk_insert_t flags)2610 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2611 {
2612 	struct request_queue *q = rq->q;
2613 	struct blk_mq_ctx *ctx = rq->mq_ctx;
2614 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2615 
2616 	if (blk_rq_is_passthrough(rq)) {
2617 		/*
2618 		 * Passthrough request have to be added to hctx->dispatch
2619 		 * directly.  The device may be in a situation where it can't
2620 		 * handle FS request, and always returns BLK_STS_RESOURCE for
2621 		 * them, which gets them added to hctx->dispatch.
2622 		 *
2623 		 * If a passthrough request is required to unblock the queues,
2624 		 * and it is added to the scheduler queue, there is no chance to
2625 		 * dispatch it given we prioritize requests in hctx->dispatch.
2626 		 */
2627 		blk_mq_request_bypass_insert(rq, flags);
2628 	} else if (req_op(rq) == REQ_OP_FLUSH) {
2629 		/*
2630 		 * Firstly normal IO request is inserted to scheduler queue or
2631 		 * sw queue, meantime we add flush request to dispatch queue(
2632 		 * hctx->dispatch) directly and there is at most one in-flight
2633 		 * flush request for each hw queue, so it doesn't matter to add
2634 		 * flush request to tail or front of the dispatch queue.
2635 		 *
2636 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2637 		 * command, and queueing it will fail when there is any
2638 		 * in-flight normal IO request(NCQ command). When adding flush
2639 		 * rq to the front of hctx->dispatch, it is easier to introduce
2640 		 * extra time to flush rq's latency because of S_SCHED_RESTART
2641 		 * compared with adding to the tail of dispatch queue, then
2642 		 * chance of flush merge is increased, and less flush requests
2643 		 * will be issued to controller. It is observed that ~10% time
2644 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2645 		 * drive when adding flush rq to the front of hctx->dispatch.
2646 		 *
2647 		 * Simply queue flush rq to the front of hctx->dispatch so that
2648 		 * intensive flush workloads can benefit in case of NCQ HW.
2649 		 */
2650 		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2651 	} else if (q->elevator) {
2652 		LIST_HEAD(list);
2653 
2654 		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2655 
2656 		list_add(&rq->queuelist, &list);
2657 		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2658 	} else {
2659 		trace_block_rq_insert(rq);
2660 
2661 		spin_lock(&ctx->lock);
2662 		if (flags & BLK_MQ_INSERT_AT_HEAD)
2663 			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2664 		else
2665 			list_add_tail(&rq->queuelist,
2666 				      &ctx->rq_lists[hctx->type]);
2667 		blk_mq_hctx_mark_pending(hctx, ctx);
2668 		spin_unlock(&ctx->lock);
2669 	}
2670 }
2671 
blk_mq_bio_to_request(struct request * rq,struct bio * bio,unsigned int nr_segs)2672 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2673 		unsigned int nr_segs)
2674 {
2675 	int err;
2676 
2677 	if (bio->bi_opf & REQ_RAHEAD)
2678 		rq->cmd_flags |= REQ_FAILFAST_MASK;
2679 
2680 	rq->__sector = bio->bi_iter.bi_sector;
2681 	rq->write_hint = bio->bi_write_hint;
2682 	blk_rq_bio_prep(rq, bio, nr_segs);
2683 	if (bio_integrity(bio))
2684 		rq->nr_integrity_segments = blk_rq_count_integrity_sg(rq->q,
2685 								      bio);
2686 
2687 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2688 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2689 	WARN_ON_ONCE(err);
2690 
2691 	blk_account_io_start(rq);
2692 }
2693 
__blk_mq_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,bool last)2694 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2695 					    struct request *rq, bool last)
2696 {
2697 	struct request_queue *q = rq->q;
2698 	struct blk_mq_queue_data bd = {
2699 		.rq = rq,
2700 		.last = last,
2701 	};
2702 	blk_status_t ret;
2703 
2704 	/*
2705 	 * For OK queue, we are done. For error, caller may kill it.
2706 	 * Any other error (busy), just add it to our list as we
2707 	 * previously would have done.
2708 	 */
2709 	ret = q->mq_ops->queue_rq(hctx, &bd);
2710 	switch (ret) {
2711 	case BLK_STS_OK:
2712 		blk_mq_update_dispatch_busy(hctx, false);
2713 		break;
2714 	case BLK_STS_RESOURCE:
2715 	case BLK_STS_DEV_RESOURCE:
2716 		blk_mq_update_dispatch_busy(hctx, true);
2717 		__blk_mq_requeue_request(rq);
2718 		break;
2719 	default:
2720 		blk_mq_update_dispatch_busy(hctx, false);
2721 		break;
2722 	}
2723 
2724 	return ret;
2725 }
2726 
blk_mq_get_budget_and_tag(struct request * rq)2727 static bool blk_mq_get_budget_and_tag(struct request *rq)
2728 {
2729 	int budget_token;
2730 
2731 	budget_token = blk_mq_get_dispatch_budget(rq->q);
2732 	if (budget_token < 0)
2733 		return false;
2734 	blk_mq_set_rq_budget_token(rq, budget_token);
2735 	if (!blk_mq_get_driver_tag(rq)) {
2736 		blk_mq_put_dispatch_budget(rq->q, budget_token);
2737 		return false;
2738 	}
2739 	return true;
2740 }
2741 
2742 /**
2743  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2744  * @hctx: Pointer of the associated hardware queue.
2745  * @rq: Pointer to request to be sent.
2746  *
2747  * If the device has enough resources to accept a new request now, send the
2748  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2749  * we can try send it another time in the future. Requests inserted at this
2750  * queue have higher priority.
2751  */
blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq)2752 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2753 		struct request *rq)
2754 {
2755 	blk_status_t ret;
2756 
2757 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2758 		blk_mq_insert_request(rq, 0);
2759 		blk_mq_run_hw_queue(hctx, false);
2760 		return;
2761 	}
2762 
2763 	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2764 		blk_mq_insert_request(rq, 0);
2765 		blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2766 		return;
2767 	}
2768 
2769 	ret = __blk_mq_issue_directly(hctx, rq, true);
2770 	switch (ret) {
2771 	case BLK_STS_OK:
2772 		break;
2773 	case BLK_STS_RESOURCE:
2774 	case BLK_STS_DEV_RESOURCE:
2775 		blk_mq_request_bypass_insert(rq, 0);
2776 		blk_mq_run_hw_queue(hctx, false);
2777 		break;
2778 	default:
2779 		blk_mq_end_request(rq, ret);
2780 		break;
2781 	}
2782 }
2783 
blk_mq_request_issue_directly(struct request * rq,bool last)2784 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2785 {
2786 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2787 
2788 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2789 		blk_mq_insert_request(rq, 0);
2790 		blk_mq_run_hw_queue(hctx, false);
2791 		return BLK_STS_OK;
2792 	}
2793 
2794 	if (!blk_mq_get_budget_and_tag(rq))
2795 		return BLK_STS_RESOURCE;
2796 	return __blk_mq_issue_directly(hctx, rq, last);
2797 }
2798 
blk_mq_plug_issue_direct(struct blk_plug * plug)2799 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2800 {
2801 	struct blk_mq_hw_ctx *hctx = NULL;
2802 	struct request *rq;
2803 	int queued = 0;
2804 	blk_status_t ret = BLK_STS_OK;
2805 
2806 	while ((rq = rq_list_pop(&plug->mq_list))) {
2807 		bool last = rq_list_empty(&plug->mq_list);
2808 
2809 		if (hctx != rq->mq_hctx) {
2810 			if (hctx) {
2811 				blk_mq_commit_rqs(hctx, queued, false);
2812 				queued = 0;
2813 			}
2814 			hctx = rq->mq_hctx;
2815 		}
2816 
2817 		ret = blk_mq_request_issue_directly(rq, last);
2818 		switch (ret) {
2819 		case BLK_STS_OK:
2820 			queued++;
2821 			break;
2822 		case BLK_STS_RESOURCE:
2823 		case BLK_STS_DEV_RESOURCE:
2824 			blk_mq_request_bypass_insert(rq, 0);
2825 			blk_mq_run_hw_queue(hctx, false);
2826 			goto out;
2827 		default:
2828 			blk_mq_end_request(rq, ret);
2829 			break;
2830 		}
2831 	}
2832 
2833 out:
2834 	if (ret != BLK_STS_OK)
2835 		blk_mq_commit_rqs(hctx, queued, false);
2836 }
2837 
__blk_mq_flush_plug_list(struct request_queue * q,struct blk_plug * plug)2838 static void __blk_mq_flush_plug_list(struct request_queue *q,
2839 				     struct blk_plug *plug)
2840 {
2841 	if (blk_queue_quiesced(q))
2842 		return;
2843 	q->mq_ops->queue_rqs(&plug->mq_list);
2844 }
2845 
blk_mq_dispatch_plug_list(struct blk_plug * plug,bool from_sched)2846 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2847 {
2848 	struct blk_mq_hw_ctx *this_hctx = NULL;
2849 	struct blk_mq_ctx *this_ctx = NULL;
2850 	struct rq_list requeue_list = {};
2851 	unsigned int depth = 0;
2852 	bool is_passthrough = false;
2853 	LIST_HEAD(list);
2854 
2855 	do {
2856 		struct request *rq = rq_list_pop(&plug->mq_list);
2857 
2858 		if (!this_hctx) {
2859 			this_hctx = rq->mq_hctx;
2860 			this_ctx = rq->mq_ctx;
2861 			is_passthrough = blk_rq_is_passthrough(rq);
2862 		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2863 			   is_passthrough != blk_rq_is_passthrough(rq)) {
2864 			rq_list_add_tail(&requeue_list, rq);
2865 			continue;
2866 		}
2867 		list_add_tail(&rq->queuelist, &list);
2868 		depth++;
2869 	} while (!rq_list_empty(&plug->mq_list));
2870 
2871 	plug->mq_list = requeue_list;
2872 	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2873 
2874 	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2875 	/* passthrough requests should never be issued to the I/O scheduler */
2876 	if (is_passthrough) {
2877 		spin_lock(&this_hctx->lock);
2878 		list_splice_tail_init(&list, &this_hctx->dispatch);
2879 		spin_unlock(&this_hctx->lock);
2880 		blk_mq_run_hw_queue(this_hctx, from_sched);
2881 	} else if (this_hctx->queue->elevator) {
2882 		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2883 				&list, 0);
2884 		blk_mq_run_hw_queue(this_hctx, from_sched);
2885 	} else {
2886 		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2887 	}
2888 	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2889 }
2890 
blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)2891 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2892 {
2893 	struct request *rq;
2894 	unsigned int depth;
2895 
2896 	/*
2897 	 * We may have been called recursively midway through handling
2898 	 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2899 	 * To avoid mq_list changing under our feet, clear rq_count early and
2900 	 * bail out specifically if rq_count is 0 rather than checking
2901 	 * whether the mq_list is empty.
2902 	 */
2903 	if (plug->rq_count == 0)
2904 		return;
2905 	depth = plug->rq_count;
2906 	plug->rq_count = 0;
2907 
2908 	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2909 		struct request_queue *q;
2910 
2911 		rq = rq_list_peek(&plug->mq_list);
2912 		q = rq->q;
2913 		trace_block_unplug(q, depth, true);
2914 
2915 		/*
2916 		 * Peek first request and see if we have a ->queue_rqs() hook.
2917 		 * If we do, we can dispatch the whole plug list in one go. We
2918 		 * already know at this point that all requests belong to the
2919 		 * same queue, caller must ensure that's the case.
2920 		 */
2921 		if (q->mq_ops->queue_rqs) {
2922 			blk_mq_run_dispatch_ops(q,
2923 				__blk_mq_flush_plug_list(q, plug));
2924 			if (rq_list_empty(&plug->mq_list))
2925 				return;
2926 		}
2927 
2928 		blk_mq_run_dispatch_ops(q,
2929 				blk_mq_plug_issue_direct(plug));
2930 		if (rq_list_empty(&plug->mq_list))
2931 			return;
2932 	}
2933 
2934 	do {
2935 		blk_mq_dispatch_plug_list(plug, from_schedule);
2936 	} while (!rq_list_empty(&plug->mq_list));
2937 }
2938 
blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx * hctx,struct list_head * list)2939 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2940 		struct list_head *list)
2941 {
2942 	int queued = 0;
2943 	blk_status_t ret = BLK_STS_OK;
2944 
2945 	while (!list_empty(list)) {
2946 		struct request *rq = list_first_entry(list, struct request,
2947 				queuelist);
2948 
2949 		list_del_init(&rq->queuelist);
2950 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2951 		switch (ret) {
2952 		case BLK_STS_OK:
2953 			queued++;
2954 			break;
2955 		case BLK_STS_RESOURCE:
2956 		case BLK_STS_DEV_RESOURCE:
2957 			blk_mq_request_bypass_insert(rq, 0);
2958 			if (list_empty(list))
2959 				blk_mq_run_hw_queue(hctx, false);
2960 			goto out;
2961 		default:
2962 			blk_mq_end_request(rq, ret);
2963 			break;
2964 		}
2965 	}
2966 
2967 out:
2968 	if (ret != BLK_STS_OK)
2969 		blk_mq_commit_rqs(hctx, queued, false);
2970 }
2971 
blk_mq_attempt_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)2972 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2973 				     struct bio *bio, unsigned int nr_segs)
2974 {
2975 	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2976 		if (blk_attempt_plug_merge(q, bio, nr_segs))
2977 			return true;
2978 		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2979 			return true;
2980 	}
2981 	return false;
2982 }
2983 
blk_mq_get_new_requests(struct request_queue * q,struct blk_plug * plug,struct bio * bio,unsigned int nsegs)2984 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2985 					       struct blk_plug *plug,
2986 					       struct bio *bio,
2987 					       unsigned int nsegs)
2988 {
2989 	struct blk_mq_alloc_data data = {
2990 		.q		= q,
2991 		.nr_tags	= 1,
2992 		.cmd_flags	= bio->bi_opf,
2993 	};
2994 	struct request *rq;
2995 
2996 	rq_qos_throttle(q, bio);
2997 
2998 	if (plug) {
2999 		data.nr_tags = plug->nr_ios;
3000 		plug->nr_ios = 1;
3001 		data.cached_rqs = &plug->cached_rqs;
3002 	}
3003 
3004 	rq = __blk_mq_alloc_requests(&data);
3005 	if (rq)
3006 		return rq;
3007 	rq_qos_cleanup(q, bio);
3008 	if (bio->bi_opf & REQ_NOWAIT)
3009 		bio_wouldblock_error(bio);
3010 	return NULL;
3011 }
3012 
3013 /*
3014  * Check if there is a suitable cached request and return it.
3015  */
blk_mq_peek_cached_request(struct blk_plug * plug,struct request_queue * q,blk_opf_t opf)3016 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
3017 		struct request_queue *q, blk_opf_t opf)
3018 {
3019 	enum hctx_type type = blk_mq_get_hctx_type(opf);
3020 	struct request *rq;
3021 
3022 	if (!plug)
3023 		return NULL;
3024 	rq = rq_list_peek(&plug->cached_rqs);
3025 	if (!rq || rq->q != q)
3026 		return NULL;
3027 	if (type != rq->mq_hctx->type &&
3028 	    (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
3029 		return NULL;
3030 	if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
3031 		return NULL;
3032 	return rq;
3033 }
3034 
blk_mq_use_cached_rq(struct request * rq,struct blk_plug * plug,struct bio * bio)3035 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
3036 		struct bio *bio)
3037 {
3038 	if (rq_list_pop(&plug->cached_rqs) != rq)
3039 		WARN_ON_ONCE(1);
3040 
3041 	/*
3042 	 * If any qos ->throttle() end up blocking, we will have flushed the
3043 	 * plug and hence killed the cached_rq list as well. Pop this entry
3044 	 * before we throttle.
3045 	 */
3046 	rq_qos_throttle(rq->q, bio);
3047 
3048 	blk_mq_rq_time_init(rq, 0);
3049 	rq->cmd_flags = bio->bi_opf;
3050 	INIT_LIST_HEAD(&rq->queuelist);
3051 }
3052 
bio_unaligned(const struct bio * bio,struct request_queue * q)3053 static bool bio_unaligned(const struct bio *bio, struct request_queue *q)
3054 {
3055 	unsigned int bs_mask = queue_logical_block_size(q) - 1;
3056 
3057 	/* .bi_sector of any zero sized bio need to be initialized */
3058 	if ((bio->bi_iter.bi_size & bs_mask) ||
3059 	    ((bio->bi_iter.bi_sector << SECTOR_SHIFT) & bs_mask))
3060 		return true;
3061 	return false;
3062 }
3063 
3064 /**
3065  * blk_mq_submit_bio - Create and send a request to block device.
3066  * @bio: Bio pointer.
3067  *
3068  * Builds up a request structure from @q and @bio and send to the device. The
3069  * request may not be queued directly to hardware if:
3070  * * This request can be merged with another one
3071  * * We want to place request at plug queue for possible future merging
3072  * * There is an IO scheduler active at this queue
3073  *
3074  * It will not queue the request if there is an error with the bio, or at the
3075  * request creation.
3076  */
blk_mq_submit_bio(struct bio * bio)3077 void blk_mq_submit_bio(struct bio *bio)
3078 {
3079 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
3080 	struct blk_plug *plug = current->plug;
3081 	const int is_sync = op_is_sync(bio->bi_opf);
3082 	struct blk_mq_hw_ctx *hctx;
3083 	unsigned int nr_segs;
3084 	struct request *rq;
3085 	blk_status_t ret;
3086 
3087 	/*
3088 	 * If the plug has a cached request for this queue, try to use it.
3089 	 */
3090 	rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
3091 
3092 	/*
3093 	 * A BIO that was released from a zone write plug has already been
3094 	 * through the preparation in this function, already holds a reference
3095 	 * on the queue usage counter, and is the only write BIO in-flight for
3096 	 * the target zone. Go straight to preparing a request for it.
3097 	 */
3098 	if (bio_zone_write_plugging(bio)) {
3099 		nr_segs = bio->__bi_nr_segments;
3100 		if (rq)
3101 			blk_queue_exit(q);
3102 		goto new_request;
3103 	}
3104 
3105 	bio = blk_queue_bounce(bio, q);
3106 
3107 	/*
3108 	 * The cached request already holds a q_usage_counter reference and we
3109 	 * don't have to acquire a new one if we use it.
3110 	 */
3111 	if (!rq) {
3112 		if (unlikely(bio_queue_enter(bio)))
3113 			return;
3114 	}
3115 
3116 	/*
3117 	 * Device reconfiguration may change logical block size or reduce the
3118 	 * number of poll queues, so the checks for alignment and poll support
3119 	 * have to be done with queue usage counter held.
3120 	 */
3121 	if (unlikely(bio_unaligned(bio, q))) {
3122 		bio_io_error(bio);
3123 		goto queue_exit;
3124 	}
3125 
3126 	if ((bio->bi_opf & REQ_POLLED) && !blk_mq_can_poll(q)) {
3127 		bio->bi_status = BLK_STS_NOTSUPP;
3128 		bio_endio(bio);
3129 		goto queue_exit;
3130 	}
3131 
3132 	bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3133 	if (!bio)
3134 		goto queue_exit;
3135 
3136 	if (!bio_integrity_prep(bio))
3137 		goto queue_exit;
3138 
3139 	if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
3140 		goto queue_exit;
3141 
3142 	if (bio_needs_zone_write_plugging(bio)) {
3143 		if (blk_zone_plug_bio(bio, nr_segs))
3144 			goto queue_exit;
3145 	}
3146 
3147 new_request:
3148 	if (!rq) {
3149 		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
3150 		if (unlikely(!rq))
3151 			goto queue_exit;
3152 	} else {
3153 		blk_mq_use_cached_rq(rq, plug, bio);
3154 	}
3155 
3156 	trace_block_getrq(bio);
3157 
3158 	rq_qos_track(q, rq, bio);
3159 
3160 	blk_mq_bio_to_request(rq, bio, nr_segs);
3161 
3162 	ret = blk_crypto_rq_get_keyslot(rq);
3163 	if (ret != BLK_STS_OK) {
3164 		bio->bi_status = ret;
3165 		bio_endio(bio);
3166 		blk_mq_free_request(rq);
3167 		return;
3168 	}
3169 
3170 	if (bio_zone_write_plugging(bio))
3171 		blk_zone_write_plug_init_request(rq);
3172 
3173 	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3174 		return;
3175 
3176 	if (plug) {
3177 		blk_add_rq_to_plug(plug, rq);
3178 		return;
3179 	}
3180 
3181 	hctx = rq->mq_hctx;
3182 	if ((rq->rq_flags & RQF_USE_SCHED) ||
3183 	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3184 		blk_mq_insert_request(rq, 0);
3185 		blk_mq_run_hw_queue(hctx, true);
3186 	} else {
3187 		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3188 	}
3189 	return;
3190 
3191 queue_exit:
3192 	/*
3193 	 * Don't drop the queue reference if we were trying to use a cached
3194 	 * request and thus didn't acquire one.
3195 	 */
3196 	if (!rq)
3197 		blk_queue_exit(q);
3198 }
3199 
3200 #ifdef CONFIG_BLK_MQ_STACKING
3201 /**
3202  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3203  * @rq: the request being queued
3204  */
blk_insert_cloned_request(struct request * rq)3205 blk_status_t blk_insert_cloned_request(struct request *rq)
3206 {
3207 	struct request_queue *q = rq->q;
3208 	unsigned int max_sectors = blk_queue_get_max_sectors(rq);
3209 	unsigned int max_segments = blk_rq_get_max_segments(rq);
3210 	blk_status_t ret;
3211 
3212 	if (blk_rq_sectors(rq) > max_sectors) {
3213 		/*
3214 		 * SCSI device does not have a good way to return if
3215 		 * Write Same/Zero is actually supported. If a device rejects
3216 		 * a non-read/write command (discard, write same,etc.) the
3217 		 * low-level device driver will set the relevant queue limit to
3218 		 * 0 to prevent blk-lib from issuing more of the offending
3219 		 * operations. Commands queued prior to the queue limit being
3220 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3221 		 * errors being propagated to upper layers.
3222 		 */
3223 		if (max_sectors == 0)
3224 			return BLK_STS_NOTSUPP;
3225 
3226 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3227 			__func__, blk_rq_sectors(rq), max_sectors);
3228 		return BLK_STS_IOERR;
3229 	}
3230 
3231 	/*
3232 	 * The queue settings related to segment counting may differ from the
3233 	 * original queue.
3234 	 */
3235 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3236 	if (rq->nr_phys_segments > max_segments) {
3237 		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3238 			__func__, rq->nr_phys_segments, max_segments);
3239 		return BLK_STS_IOERR;
3240 	}
3241 
3242 	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3243 		return BLK_STS_IOERR;
3244 
3245 	ret = blk_crypto_rq_get_keyslot(rq);
3246 	if (ret != BLK_STS_OK)
3247 		return ret;
3248 
3249 	blk_account_io_start(rq);
3250 
3251 	/*
3252 	 * Since we have a scheduler attached on the top device,
3253 	 * bypass a potential scheduler on the bottom device for
3254 	 * insert.
3255 	 */
3256 	blk_mq_run_dispatch_ops(q,
3257 			ret = blk_mq_request_issue_directly(rq, true));
3258 	if (ret)
3259 		blk_account_io_done(rq, blk_time_get_ns());
3260 	return ret;
3261 }
3262 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3263 
3264 /**
3265  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3266  * @rq: the clone request to be cleaned up
3267  *
3268  * Description:
3269  *     Free all bios in @rq for a cloned request.
3270  */
blk_rq_unprep_clone(struct request * rq)3271 void blk_rq_unprep_clone(struct request *rq)
3272 {
3273 	struct bio *bio;
3274 
3275 	while ((bio = rq->bio) != NULL) {
3276 		rq->bio = bio->bi_next;
3277 
3278 		bio_put(bio);
3279 	}
3280 }
3281 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3282 
3283 /**
3284  * blk_rq_prep_clone - Helper function to setup clone request
3285  * @rq: the request to be setup
3286  * @rq_src: original request to be cloned
3287  * @bs: bio_set that bios for clone are allocated from
3288  * @gfp_mask: memory allocation mask for bio
3289  * @bio_ctr: setup function to be called for each clone bio.
3290  *           Returns %0 for success, non %0 for failure.
3291  * @data: private data to be passed to @bio_ctr
3292  *
3293  * Description:
3294  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3295  *     Also, pages which the original bios are pointing to are not copied
3296  *     and the cloned bios just point same pages.
3297  *     So cloned bios must be completed before original bios, which means
3298  *     the caller must complete @rq before @rq_src.
3299  */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)3300 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3301 		      struct bio_set *bs, gfp_t gfp_mask,
3302 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3303 		      void *data)
3304 {
3305 	struct bio *bio, *bio_src;
3306 
3307 	if (!bs)
3308 		bs = &fs_bio_set;
3309 
3310 	__rq_for_each_bio(bio_src, rq_src) {
3311 		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3312 				      bs);
3313 		if (!bio)
3314 			goto free_and_out;
3315 
3316 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3317 			goto free_and_out;
3318 
3319 		if (rq->bio) {
3320 			rq->biotail->bi_next = bio;
3321 			rq->biotail = bio;
3322 		} else {
3323 			rq->bio = rq->biotail = bio;
3324 		}
3325 		bio = NULL;
3326 	}
3327 
3328 	/* Copy attributes of the original request to the clone request. */
3329 	rq->__sector = blk_rq_pos(rq_src);
3330 	rq->__data_len = blk_rq_bytes(rq_src);
3331 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3332 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3333 		rq->special_vec = rq_src->special_vec;
3334 	}
3335 	rq->nr_phys_segments = rq_src->nr_phys_segments;
3336 	rq->ioprio = rq_src->ioprio;
3337 	rq->write_hint = rq_src->write_hint;
3338 
3339 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3340 		goto free_and_out;
3341 
3342 	return 0;
3343 
3344 free_and_out:
3345 	if (bio)
3346 		bio_put(bio);
3347 	blk_rq_unprep_clone(rq);
3348 
3349 	return -ENOMEM;
3350 }
3351 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3352 #endif /* CONFIG_BLK_MQ_STACKING */
3353 
3354 /*
3355  * Steal bios from a request and add them to a bio list.
3356  * The request must not have been partially completed before.
3357  */
blk_steal_bios(struct bio_list * list,struct request * rq)3358 void blk_steal_bios(struct bio_list *list, struct request *rq)
3359 {
3360 	if (rq->bio) {
3361 		if (list->tail)
3362 			list->tail->bi_next = rq->bio;
3363 		else
3364 			list->head = rq->bio;
3365 		list->tail = rq->biotail;
3366 
3367 		rq->bio = NULL;
3368 		rq->biotail = NULL;
3369 	}
3370 
3371 	rq->__data_len = 0;
3372 }
3373 EXPORT_SYMBOL_GPL(blk_steal_bios);
3374 
order_to_size(unsigned int order)3375 static size_t order_to_size(unsigned int order)
3376 {
3377 	return (size_t)PAGE_SIZE << order;
3378 }
3379 
3380 /* called before freeing request pool in @tags */
blk_mq_clear_rq_mapping(struct blk_mq_tags * drv_tags,struct blk_mq_tags * tags)3381 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3382 				    struct blk_mq_tags *tags)
3383 {
3384 	struct page *page;
3385 	unsigned long flags;
3386 
3387 	/*
3388 	 * There is no need to clear mapping if driver tags is not initialized
3389 	 * or the mapping belongs to the driver tags.
3390 	 */
3391 	if (!drv_tags || drv_tags == tags)
3392 		return;
3393 
3394 	list_for_each_entry(page, &tags->page_list, lru) {
3395 		unsigned long start = (unsigned long)page_address(page);
3396 		unsigned long end = start + order_to_size(page->private);
3397 		int i;
3398 
3399 		for (i = 0; i < drv_tags->nr_tags; i++) {
3400 			struct request *rq = drv_tags->rqs[i];
3401 			unsigned long rq_addr = (unsigned long)rq;
3402 
3403 			if (rq_addr >= start && rq_addr < end) {
3404 				WARN_ON_ONCE(req_ref_read(rq) != 0);
3405 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3406 			}
3407 		}
3408 	}
3409 
3410 	/*
3411 	 * Wait until all pending iteration is done.
3412 	 *
3413 	 * Request reference is cleared and it is guaranteed to be observed
3414 	 * after the ->lock is released.
3415 	 */
3416 	spin_lock_irqsave(&drv_tags->lock, flags);
3417 	spin_unlock_irqrestore(&drv_tags->lock, flags);
3418 }
3419 
blk_mq_free_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)3420 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3421 		     unsigned int hctx_idx)
3422 {
3423 	struct blk_mq_tags *drv_tags;
3424 	struct page *page;
3425 
3426 	if (list_empty(&tags->page_list))
3427 		return;
3428 
3429 	if (blk_mq_is_shared_tags(set->flags))
3430 		drv_tags = set->shared_tags;
3431 	else
3432 		drv_tags = set->tags[hctx_idx];
3433 
3434 	if (tags->static_rqs && set->ops->exit_request) {
3435 		int i;
3436 
3437 		for (i = 0; i < tags->nr_tags; i++) {
3438 			struct request *rq = tags->static_rqs[i];
3439 
3440 			if (!rq)
3441 				continue;
3442 			set->ops->exit_request(set, rq, hctx_idx);
3443 			tags->static_rqs[i] = NULL;
3444 		}
3445 	}
3446 
3447 	blk_mq_clear_rq_mapping(drv_tags, tags);
3448 
3449 	while (!list_empty(&tags->page_list)) {
3450 		page = list_first_entry(&tags->page_list, struct page, lru);
3451 		list_del_init(&page->lru);
3452 		/*
3453 		 * Remove kmemleak object previously allocated in
3454 		 * blk_mq_alloc_rqs().
3455 		 */
3456 		kmemleak_free(page_address(page));
3457 		__free_pages(page, page->private);
3458 	}
3459 }
3460 
blk_mq_free_rq_map(struct blk_mq_tags * tags)3461 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3462 {
3463 	kfree(tags->rqs);
3464 	tags->rqs = NULL;
3465 	kfree(tags->static_rqs);
3466 	tags->static_rqs = NULL;
3467 
3468 	blk_mq_free_tags(tags);
3469 }
3470 
hctx_idx_to_type(struct blk_mq_tag_set * set,unsigned int hctx_idx)3471 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3472 		unsigned int hctx_idx)
3473 {
3474 	int i;
3475 
3476 	for (i = 0; i < set->nr_maps; i++) {
3477 		unsigned int start = set->map[i].queue_offset;
3478 		unsigned int end = start + set->map[i].nr_queues;
3479 
3480 		if (hctx_idx >= start && hctx_idx < end)
3481 			break;
3482 	}
3483 
3484 	if (i >= set->nr_maps)
3485 		i = HCTX_TYPE_DEFAULT;
3486 
3487 	return i;
3488 }
3489 
blk_mq_get_hctx_node(struct blk_mq_tag_set * set,unsigned int hctx_idx)3490 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3491 		unsigned int hctx_idx)
3492 {
3493 	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3494 
3495 	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3496 }
3497 
blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int nr_tags,unsigned int reserved_tags)3498 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3499 					       unsigned int hctx_idx,
3500 					       unsigned int nr_tags,
3501 					       unsigned int reserved_tags)
3502 {
3503 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3504 	struct blk_mq_tags *tags;
3505 
3506 	if (node == NUMA_NO_NODE)
3507 		node = set->numa_node;
3508 
3509 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3510 				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3511 	if (!tags)
3512 		return NULL;
3513 
3514 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3515 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3516 				 node);
3517 	if (!tags->rqs)
3518 		goto err_free_tags;
3519 
3520 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3521 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3522 					node);
3523 	if (!tags->static_rqs)
3524 		goto err_free_rqs;
3525 
3526 	return tags;
3527 
3528 err_free_rqs:
3529 	kfree(tags->rqs);
3530 err_free_tags:
3531 	blk_mq_free_tags(tags);
3532 	return NULL;
3533 }
3534 
blk_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,int node)3535 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3536 			       unsigned int hctx_idx, int node)
3537 {
3538 	int ret;
3539 
3540 	if (set->ops->init_request) {
3541 		ret = set->ops->init_request(set, rq, hctx_idx, node);
3542 		if (ret)
3543 			return ret;
3544 	}
3545 
3546 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3547 	return 0;
3548 }
3549 
blk_mq_alloc_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx,unsigned int depth)3550 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3551 			    struct blk_mq_tags *tags,
3552 			    unsigned int hctx_idx, unsigned int depth)
3553 {
3554 	unsigned int i, j, entries_per_page, max_order = 4;
3555 	int node = blk_mq_get_hctx_node(set, hctx_idx);
3556 	size_t rq_size, left;
3557 
3558 	if (node == NUMA_NO_NODE)
3559 		node = set->numa_node;
3560 
3561 	INIT_LIST_HEAD(&tags->page_list);
3562 
3563 	/*
3564 	 * rq_size is the size of the request plus driver payload, rounded
3565 	 * to the cacheline size
3566 	 */
3567 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3568 				cache_line_size());
3569 	left = rq_size * depth;
3570 
3571 	for (i = 0; i < depth; ) {
3572 		int this_order = max_order;
3573 		struct page *page;
3574 		int to_do;
3575 		void *p;
3576 
3577 		while (this_order && left < order_to_size(this_order - 1))
3578 			this_order--;
3579 
3580 		do {
3581 			page = alloc_pages_node(node,
3582 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3583 				this_order);
3584 			if (page)
3585 				break;
3586 			if (!this_order--)
3587 				break;
3588 			if (order_to_size(this_order) < rq_size)
3589 				break;
3590 		} while (1);
3591 
3592 		if (!page)
3593 			goto fail;
3594 
3595 		page->private = this_order;
3596 		list_add_tail(&page->lru, &tags->page_list);
3597 
3598 		p = page_address(page);
3599 		/*
3600 		 * Allow kmemleak to scan these pages as they contain pointers
3601 		 * to additional allocations like via ops->init_request().
3602 		 */
3603 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3604 		entries_per_page = order_to_size(this_order) / rq_size;
3605 		to_do = min(entries_per_page, depth - i);
3606 		left -= to_do * rq_size;
3607 		for (j = 0; j < to_do; j++) {
3608 			struct request *rq = p;
3609 
3610 			tags->static_rqs[i] = rq;
3611 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3612 				tags->static_rqs[i] = NULL;
3613 				goto fail;
3614 			}
3615 
3616 			p += rq_size;
3617 			i++;
3618 		}
3619 	}
3620 	return 0;
3621 
3622 fail:
3623 	blk_mq_free_rqs(set, tags, hctx_idx);
3624 	return -ENOMEM;
3625 }
3626 
3627 struct rq_iter_data {
3628 	struct blk_mq_hw_ctx *hctx;
3629 	bool has_rq;
3630 };
3631 
blk_mq_has_request(struct request * rq,void * data)3632 static bool blk_mq_has_request(struct request *rq, void *data)
3633 {
3634 	struct rq_iter_data *iter_data = data;
3635 
3636 	if (rq->mq_hctx != iter_data->hctx)
3637 		return true;
3638 	iter_data->has_rq = true;
3639 	return false;
3640 }
3641 
blk_mq_hctx_has_requests(struct blk_mq_hw_ctx * hctx)3642 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3643 {
3644 	struct blk_mq_tags *tags = hctx->sched_tags ?
3645 			hctx->sched_tags : hctx->tags;
3646 	struct rq_iter_data data = {
3647 		.hctx	= hctx,
3648 	};
3649 
3650 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3651 	return data.has_rq;
3652 }
3653 
blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx * hctx,unsigned int this_cpu)3654 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx,
3655 		unsigned int this_cpu)
3656 {
3657 	enum hctx_type type = hctx->type;
3658 	int cpu;
3659 
3660 	/*
3661 	 * hctx->cpumask has to rule out isolated CPUs, but userspace still
3662 	 * might submit IOs on these isolated CPUs, so use the queue map to
3663 	 * check if all CPUs mapped to this hctx are offline
3664 	 */
3665 	for_each_online_cpu(cpu) {
3666 		struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue,
3667 				type, cpu);
3668 
3669 		if (h != hctx)
3670 			continue;
3671 
3672 		/* this hctx has at least one online CPU */
3673 		if (this_cpu != cpu)
3674 			return true;
3675 	}
3676 
3677 	return false;
3678 }
3679 
blk_mq_hctx_notify_offline(unsigned int cpu,struct hlist_node * node)3680 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3681 {
3682 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3683 			struct blk_mq_hw_ctx, cpuhp_online);
3684 
3685 	if (blk_mq_hctx_has_online_cpu(hctx, cpu))
3686 		return 0;
3687 
3688 	/*
3689 	 * Prevent new request from being allocated on the current hctx.
3690 	 *
3691 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3692 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3693 	 * seen once we return from the tag allocator.
3694 	 */
3695 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3696 	smp_mb__after_atomic();
3697 
3698 	/*
3699 	 * Try to grab a reference to the queue and wait for any outstanding
3700 	 * requests.  If we could not grab a reference the queue has been
3701 	 * frozen and there are no requests.
3702 	 */
3703 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3704 		while (blk_mq_hctx_has_requests(hctx))
3705 			msleep(5);
3706 		percpu_ref_put(&hctx->queue->q_usage_counter);
3707 	}
3708 
3709 	return 0;
3710 }
3711 
3712 /*
3713  * Check if one CPU is mapped to the specified hctx
3714  *
3715  * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed
3716  * to be used for scheduling kworker only. For other usage, please call this
3717  * helper for checking if one CPU belongs to the specified hctx
3718  */
blk_mq_cpu_mapped_to_hctx(unsigned int cpu,const struct blk_mq_hw_ctx * hctx)3719 static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu,
3720 		const struct blk_mq_hw_ctx *hctx)
3721 {
3722 	struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue,
3723 			hctx->type, cpu);
3724 
3725 	return mapped_hctx == hctx;
3726 }
3727 
blk_mq_hctx_notify_online(unsigned int cpu,struct hlist_node * node)3728 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3729 {
3730 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3731 			struct blk_mq_hw_ctx, cpuhp_online);
3732 
3733 	if (blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3734 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3735 	return 0;
3736 }
3737 
3738 /*
3739  * 'cpu' is going away. splice any existing rq_list entries from this
3740  * software queue to the hw queue dispatch list, and ensure that it
3741  * gets run.
3742  */
blk_mq_hctx_notify_dead(unsigned int cpu,struct hlist_node * node)3743 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3744 {
3745 	struct blk_mq_hw_ctx *hctx;
3746 	struct blk_mq_ctx *ctx;
3747 	LIST_HEAD(tmp);
3748 	enum hctx_type type;
3749 
3750 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3751 	if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3752 		return 0;
3753 
3754 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3755 	type = hctx->type;
3756 
3757 	spin_lock(&ctx->lock);
3758 	if (!list_empty(&ctx->rq_lists[type])) {
3759 		list_splice_init(&ctx->rq_lists[type], &tmp);
3760 		blk_mq_hctx_clear_pending(hctx, ctx);
3761 	}
3762 	spin_unlock(&ctx->lock);
3763 
3764 	if (list_empty(&tmp))
3765 		return 0;
3766 
3767 	spin_lock(&hctx->lock);
3768 	list_splice_tail_init(&tmp, &hctx->dispatch);
3769 	spin_unlock(&hctx->lock);
3770 
3771 	blk_mq_run_hw_queue(hctx, true);
3772 	return 0;
3773 }
3774 
__blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)3775 static void __blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3776 {
3777 	lockdep_assert_held(&blk_mq_cpuhp_lock);
3778 
3779 	if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3780 	    !hlist_unhashed(&hctx->cpuhp_online)) {
3781 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3782 						    &hctx->cpuhp_online);
3783 		INIT_HLIST_NODE(&hctx->cpuhp_online);
3784 	}
3785 
3786 	if (!hlist_unhashed(&hctx->cpuhp_dead)) {
3787 		cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3788 						    &hctx->cpuhp_dead);
3789 		INIT_HLIST_NODE(&hctx->cpuhp_dead);
3790 	}
3791 }
3792 
blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)3793 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3794 {
3795 	mutex_lock(&blk_mq_cpuhp_lock);
3796 	__blk_mq_remove_cpuhp(hctx);
3797 	mutex_unlock(&blk_mq_cpuhp_lock);
3798 }
3799 
__blk_mq_add_cpuhp(struct blk_mq_hw_ctx * hctx)3800 static void __blk_mq_add_cpuhp(struct blk_mq_hw_ctx *hctx)
3801 {
3802 	lockdep_assert_held(&blk_mq_cpuhp_lock);
3803 
3804 	if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3805 	    hlist_unhashed(&hctx->cpuhp_online))
3806 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3807 				&hctx->cpuhp_online);
3808 
3809 	if (hlist_unhashed(&hctx->cpuhp_dead))
3810 		cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3811 				&hctx->cpuhp_dead);
3812 }
3813 
__blk_mq_remove_cpuhp_list(struct list_head * head)3814 static void __blk_mq_remove_cpuhp_list(struct list_head *head)
3815 {
3816 	struct blk_mq_hw_ctx *hctx;
3817 
3818 	lockdep_assert_held(&blk_mq_cpuhp_lock);
3819 
3820 	list_for_each_entry(hctx, head, hctx_list)
3821 		__blk_mq_remove_cpuhp(hctx);
3822 }
3823 
3824 /*
3825  * Unregister cpuhp callbacks from exited hw queues
3826  *
3827  * Safe to call if this `request_queue` is live
3828  */
blk_mq_remove_hw_queues_cpuhp(struct request_queue * q)3829 static void blk_mq_remove_hw_queues_cpuhp(struct request_queue *q)
3830 {
3831 	LIST_HEAD(hctx_list);
3832 
3833 	spin_lock(&q->unused_hctx_lock);
3834 	list_splice_init(&q->unused_hctx_list, &hctx_list);
3835 	spin_unlock(&q->unused_hctx_lock);
3836 
3837 	mutex_lock(&blk_mq_cpuhp_lock);
3838 	__blk_mq_remove_cpuhp_list(&hctx_list);
3839 	mutex_unlock(&blk_mq_cpuhp_lock);
3840 
3841 	spin_lock(&q->unused_hctx_lock);
3842 	list_splice(&hctx_list, &q->unused_hctx_list);
3843 	spin_unlock(&q->unused_hctx_lock);
3844 }
3845 
3846 /*
3847  * Register cpuhp callbacks from all hw queues
3848  *
3849  * Safe to call if this `request_queue` is live
3850  */
blk_mq_add_hw_queues_cpuhp(struct request_queue * q)3851 static void blk_mq_add_hw_queues_cpuhp(struct request_queue *q)
3852 {
3853 	struct blk_mq_hw_ctx *hctx;
3854 	unsigned long i;
3855 
3856 	mutex_lock(&blk_mq_cpuhp_lock);
3857 	queue_for_each_hw_ctx(q, hctx, i)
3858 		__blk_mq_add_cpuhp(hctx);
3859 	mutex_unlock(&blk_mq_cpuhp_lock);
3860 }
3861 
3862 /*
3863  * Before freeing hw queue, clearing the flush request reference in
3864  * tags->rqs[] for avoiding potential UAF.
3865  */
blk_mq_clear_flush_rq_mapping(struct blk_mq_tags * tags,unsigned int queue_depth,struct request * flush_rq)3866 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3867 		unsigned int queue_depth, struct request *flush_rq)
3868 {
3869 	int i;
3870 	unsigned long flags;
3871 
3872 	/* The hw queue may not be mapped yet */
3873 	if (!tags)
3874 		return;
3875 
3876 	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3877 
3878 	for (i = 0; i < queue_depth; i++)
3879 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3880 
3881 	/*
3882 	 * Wait until all pending iteration is done.
3883 	 *
3884 	 * Request reference is cleared and it is guaranteed to be observed
3885 	 * after the ->lock is released.
3886 	 */
3887 	spin_lock_irqsave(&tags->lock, flags);
3888 	spin_unlock_irqrestore(&tags->lock, flags);
3889 }
3890 
3891 /* hctx->ctxs will be freed in queue's release handler */
blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)3892 static void blk_mq_exit_hctx(struct request_queue *q,
3893 		struct blk_mq_tag_set *set,
3894 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3895 {
3896 	struct request *flush_rq = hctx->fq->flush_rq;
3897 
3898 	if (blk_mq_hw_queue_mapped(hctx))
3899 		blk_mq_tag_idle(hctx);
3900 
3901 	if (blk_queue_init_done(q))
3902 		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3903 				set->queue_depth, flush_rq);
3904 	if (set->ops->exit_request)
3905 		set->ops->exit_request(set, flush_rq, hctx_idx);
3906 
3907 	if (set->ops->exit_hctx)
3908 		set->ops->exit_hctx(hctx, hctx_idx);
3909 
3910 	xa_erase(&q->hctx_table, hctx_idx);
3911 
3912 	spin_lock(&q->unused_hctx_lock);
3913 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3914 	spin_unlock(&q->unused_hctx_lock);
3915 }
3916 
blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)3917 static void blk_mq_exit_hw_queues(struct request_queue *q,
3918 		struct blk_mq_tag_set *set, int nr_queue)
3919 {
3920 	struct blk_mq_hw_ctx *hctx;
3921 	unsigned long i;
3922 
3923 	queue_for_each_hw_ctx(q, hctx, i) {
3924 		if (i == nr_queue)
3925 			break;
3926 		blk_mq_remove_cpuhp(hctx);
3927 		blk_mq_exit_hctx(q, set, hctx, i);
3928 	}
3929 }
3930 
blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)3931 static int blk_mq_init_hctx(struct request_queue *q,
3932 		struct blk_mq_tag_set *set,
3933 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3934 {
3935 	hctx->queue_num = hctx_idx;
3936 
3937 	hctx->tags = set->tags[hctx_idx];
3938 
3939 	if (set->ops->init_hctx &&
3940 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3941 		goto fail;
3942 
3943 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3944 				hctx->numa_node))
3945 		goto exit_hctx;
3946 
3947 	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3948 		goto exit_flush_rq;
3949 
3950 	if (!(hctx->flags & BLK_MQ_F_STACKING))
3951 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3952 				&hctx->cpuhp_online);
3953 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3954 
3955 	return 0;
3956 
3957  exit_flush_rq:
3958 	if (set->ops->exit_request)
3959 		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3960  exit_hctx:
3961 	if (set->ops->exit_hctx)
3962 		set->ops->exit_hctx(hctx, hctx_idx);
3963  fail:
3964 	return -1;
3965 }
3966 
3967 static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue * q,struct blk_mq_tag_set * set,int node)3968 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3969 		int node)
3970 {
3971 	struct blk_mq_hw_ctx *hctx;
3972 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3973 
3974 	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3975 	if (!hctx)
3976 		goto fail_alloc_hctx;
3977 
3978 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3979 		goto free_hctx;
3980 
3981 	atomic_set(&hctx->nr_active, 0);
3982 	if (node == NUMA_NO_NODE)
3983 		node = set->numa_node;
3984 	hctx->numa_node = node;
3985 
3986 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3987 	spin_lock_init(&hctx->lock);
3988 	INIT_LIST_HEAD(&hctx->dispatch);
3989 	INIT_HLIST_NODE(&hctx->cpuhp_dead);
3990 	INIT_HLIST_NODE(&hctx->cpuhp_online);
3991 	hctx->queue = q;
3992 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3993 
3994 	INIT_LIST_HEAD(&hctx->hctx_list);
3995 
3996 	/*
3997 	 * Allocate space for all possible cpus to avoid allocation at
3998 	 * runtime
3999 	 */
4000 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
4001 			gfp, node);
4002 	if (!hctx->ctxs)
4003 		goto free_cpumask;
4004 
4005 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
4006 				gfp, node, false, false))
4007 		goto free_ctxs;
4008 	hctx->nr_ctx = 0;
4009 
4010 	spin_lock_init(&hctx->dispatch_wait_lock);
4011 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
4012 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
4013 
4014 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
4015 	if (!hctx->fq)
4016 		goto free_bitmap;
4017 
4018 	blk_mq_hctx_kobj_init(hctx);
4019 
4020 	return hctx;
4021 
4022  free_bitmap:
4023 	sbitmap_free(&hctx->ctx_map);
4024  free_ctxs:
4025 	kfree(hctx->ctxs);
4026  free_cpumask:
4027 	free_cpumask_var(hctx->cpumask);
4028  free_hctx:
4029 	kfree(hctx);
4030  fail_alloc_hctx:
4031 	return NULL;
4032 }
4033 
blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)4034 static void blk_mq_init_cpu_queues(struct request_queue *q,
4035 				   unsigned int nr_hw_queues)
4036 {
4037 	struct blk_mq_tag_set *set = q->tag_set;
4038 	unsigned int i, j;
4039 
4040 	for_each_possible_cpu(i) {
4041 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
4042 		struct blk_mq_hw_ctx *hctx;
4043 		int k;
4044 
4045 		__ctx->cpu = i;
4046 		spin_lock_init(&__ctx->lock);
4047 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
4048 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
4049 
4050 		__ctx->queue = q;
4051 
4052 		/*
4053 		 * Set local node, IFF we have more than one hw queue. If
4054 		 * not, we remain on the home node of the device
4055 		 */
4056 		for (j = 0; j < set->nr_maps; j++) {
4057 			hctx = blk_mq_map_queue_type(q, j, i);
4058 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
4059 				hctx->numa_node = cpu_to_node(i);
4060 		}
4061 	}
4062 }
4063 
blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int depth)4064 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4065 					     unsigned int hctx_idx,
4066 					     unsigned int depth)
4067 {
4068 	struct blk_mq_tags *tags;
4069 	int ret;
4070 
4071 	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
4072 	if (!tags)
4073 		return NULL;
4074 
4075 	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
4076 	if (ret) {
4077 		blk_mq_free_rq_map(tags);
4078 		return NULL;
4079 	}
4080 
4081 	return tags;
4082 }
4083 
__blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set * set,int hctx_idx)4084 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4085 				       int hctx_idx)
4086 {
4087 	if (blk_mq_is_shared_tags(set->flags)) {
4088 		set->tags[hctx_idx] = set->shared_tags;
4089 
4090 		return true;
4091 	}
4092 
4093 	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
4094 						       set->queue_depth);
4095 
4096 	return set->tags[hctx_idx];
4097 }
4098 
blk_mq_free_map_and_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)4099 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4100 			     struct blk_mq_tags *tags,
4101 			     unsigned int hctx_idx)
4102 {
4103 	if (tags) {
4104 		blk_mq_free_rqs(set, tags, hctx_idx);
4105 		blk_mq_free_rq_map(tags);
4106 	}
4107 }
4108 
__blk_mq_free_map_and_rqs(struct blk_mq_tag_set * set,unsigned int hctx_idx)4109 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4110 				      unsigned int hctx_idx)
4111 {
4112 	if (!blk_mq_is_shared_tags(set->flags))
4113 		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
4114 
4115 	set->tags[hctx_idx] = NULL;
4116 }
4117 
blk_mq_map_swqueue(struct request_queue * q)4118 static void blk_mq_map_swqueue(struct request_queue *q)
4119 {
4120 	unsigned int j, hctx_idx;
4121 	unsigned long i;
4122 	struct blk_mq_hw_ctx *hctx;
4123 	struct blk_mq_ctx *ctx;
4124 	struct blk_mq_tag_set *set = q->tag_set;
4125 
4126 	queue_for_each_hw_ctx(q, hctx, i) {
4127 		cpumask_clear(hctx->cpumask);
4128 		hctx->nr_ctx = 0;
4129 		hctx->dispatch_from = NULL;
4130 	}
4131 
4132 	/*
4133 	 * Map software to hardware queues.
4134 	 *
4135 	 * If the cpu isn't present, the cpu is mapped to first hctx.
4136 	 */
4137 	for_each_possible_cpu(i) {
4138 
4139 		ctx = per_cpu_ptr(q->queue_ctx, i);
4140 		for (j = 0; j < set->nr_maps; j++) {
4141 			if (!set->map[j].nr_queues) {
4142 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
4143 						HCTX_TYPE_DEFAULT, i);
4144 				continue;
4145 			}
4146 			hctx_idx = set->map[j].mq_map[i];
4147 			/* unmapped hw queue can be remapped after CPU topo changed */
4148 			if (!set->tags[hctx_idx] &&
4149 			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
4150 				/*
4151 				 * If tags initialization fail for some hctx,
4152 				 * that hctx won't be brought online.  In this
4153 				 * case, remap the current ctx to hctx[0] which
4154 				 * is guaranteed to always have tags allocated
4155 				 */
4156 				set->map[j].mq_map[i] = 0;
4157 			}
4158 
4159 			hctx = blk_mq_map_queue_type(q, j, i);
4160 			ctx->hctxs[j] = hctx;
4161 			/*
4162 			 * If the CPU is already set in the mask, then we've
4163 			 * mapped this one already. This can happen if
4164 			 * devices share queues across queue maps.
4165 			 */
4166 			if (cpumask_test_cpu(i, hctx->cpumask))
4167 				continue;
4168 
4169 			cpumask_set_cpu(i, hctx->cpumask);
4170 			hctx->type = j;
4171 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
4172 			hctx->ctxs[hctx->nr_ctx++] = ctx;
4173 
4174 			/*
4175 			 * If the nr_ctx type overflows, we have exceeded the
4176 			 * amount of sw queues we can support.
4177 			 */
4178 			BUG_ON(!hctx->nr_ctx);
4179 		}
4180 
4181 		for (; j < HCTX_MAX_TYPES; j++)
4182 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
4183 					HCTX_TYPE_DEFAULT, i);
4184 	}
4185 
4186 	queue_for_each_hw_ctx(q, hctx, i) {
4187 		int cpu;
4188 
4189 		/*
4190 		 * If no software queues are mapped to this hardware queue,
4191 		 * disable it and free the request entries.
4192 		 */
4193 		if (!hctx->nr_ctx) {
4194 			/* Never unmap queue 0.  We need it as a
4195 			 * fallback in case of a new remap fails
4196 			 * allocation
4197 			 */
4198 			if (i)
4199 				__blk_mq_free_map_and_rqs(set, i);
4200 
4201 			hctx->tags = NULL;
4202 			continue;
4203 		}
4204 
4205 		hctx->tags = set->tags[i];
4206 		WARN_ON(!hctx->tags);
4207 
4208 		/*
4209 		 * Set the map size to the number of mapped software queues.
4210 		 * This is more accurate and more efficient than looping
4211 		 * over all possibly mapped software queues.
4212 		 */
4213 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
4214 
4215 		/*
4216 		 * Rule out isolated CPUs from hctx->cpumask to avoid
4217 		 * running block kworker on isolated CPUs
4218 		 */
4219 		for_each_cpu(cpu, hctx->cpumask) {
4220 			if (cpu_is_isolated(cpu))
4221 				cpumask_clear_cpu(cpu, hctx->cpumask);
4222 		}
4223 
4224 		/*
4225 		 * Initialize batch roundrobin counts
4226 		 */
4227 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
4228 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
4229 	}
4230 }
4231 
4232 /*
4233  * Caller needs to ensure that we're either frozen/quiesced, or that
4234  * the queue isn't live yet.
4235  */
queue_set_hctx_shared(struct request_queue * q,bool shared)4236 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
4237 {
4238 	struct blk_mq_hw_ctx *hctx;
4239 	unsigned long i;
4240 
4241 	queue_for_each_hw_ctx(q, hctx, i) {
4242 		if (shared) {
4243 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4244 		} else {
4245 			blk_mq_tag_idle(hctx);
4246 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4247 		}
4248 	}
4249 }
4250 
blk_mq_update_tag_set_shared(struct blk_mq_tag_set * set,bool shared)4251 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
4252 					 bool shared)
4253 {
4254 	struct request_queue *q;
4255 
4256 	lockdep_assert_held(&set->tag_list_lock);
4257 
4258 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4259 		blk_mq_freeze_queue(q);
4260 		queue_set_hctx_shared(q, shared);
4261 		blk_mq_unfreeze_queue(q);
4262 	}
4263 }
4264 
blk_mq_del_queue_tag_set(struct request_queue * q)4265 static void blk_mq_del_queue_tag_set(struct request_queue *q)
4266 {
4267 	struct blk_mq_tag_set *set = q->tag_set;
4268 
4269 	mutex_lock(&set->tag_list_lock);
4270 	list_del(&q->tag_set_list);
4271 	if (list_is_singular(&set->tag_list)) {
4272 		/* just transitioned to unshared */
4273 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4274 		/* update existing queue */
4275 		blk_mq_update_tag_set_shared(set, false);
4276 	}
4277 	mutex_unlock(&set->tag_list_lock);
4278 	INIT_LIST_HEAD(&q->tag_set_list);
4279 }
4280 
blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)4281 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4282 				     struct request_queue *q)
4283 {
4284 	mutex_lock(&set->tag_list_lock);
4285 
4286 	/*
4287 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4288 	 */
4289 	if (!list_empty(&set->tag_list) &&
4290 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4291 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4292 		/* update existing queue */
4293 		blk_mq_update_tag_set_shared(set, true);
4294 	}
4295 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4296 		queue_set_hctx_shared(q, true);
4297 	list_add_tail(&q->tag_set_list, &set->tag_list);
4298 
4299 	mutex_unlock(&set->tag_list_lock);
4300 }
4301 
4302 /* All allocations will be freed in release handler of q->mq_kobj */
blk_mq_alloc_ctxs(struct request_queue * q)4303 static int blk_mq_alloc_ctxs(struct request_queue *q)
4304 {
4305 	struct blk_mq_ctxs *ctxs;
4306 	int cpu;
4307 
4308 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4309 	if (!ctxs)
4310 		return -ENOMEM;
4311 
4312 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4313 	if (!ctxs->queue_ctx)
4314 		goto fail;
4315 
4316 	for_each_possible_cpu(cpu) {
4317 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4318 		ctx->ctxs = ctxs;
4319 	}
4320 
4321 	q->mq_kobj = &ctxs->kobj;
4322 	q->queue_ctx = ctxs->queue_ctx;
4323 
4324 	return 0;
4325  fail:
4326 	kfree(ctxs);
4327 	return -ENOMEM;
4328 }
4329 
4330 /*
4331  * It is the actual release handler for mq, but we do it from
4332  * request queue's release handler for avoiding use-after-free
4333  * and headache because q->mq_kobj shouldn't have been introduced,
4334  * but we can't group ctx/kctx kobj without it.
4335  */
blk_mq_release(struct request_queue * q)4336 void blk_mq_release(struct request_queue *q)
4337 {
4338 	struct blk_mq_hw_ctx *hctx, *next;
4339 	unsigned long i;
4340 
4341 	queue_for_each_hw_ctx(q, hctx, i)
4342 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4343 
4344 	/* all hctx are in .unused_hctx_list now */
4345 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4346 		list_del_init(&hctx->hctx_list);
4347 		kobject_put(&hctx->kobj);
4348 	}
4349 
4350 	xa_destroy(&q->hctx_table);
4351 
4352 	/*
4353 	 * release .mq_kobj and sw queue's kobject now because
4354 	 * both share lifetime with request queue.
4355 	 */
4356 	blk_mq_sysfs_deinit(q);
4357 }
4358 
blk_mq_alloc_queue(struct blk_mq_tag_set * set,struct queue_limits * lim,void * queuedata)4359 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4360 		struct queue_limits *lim, void *queuedata)
4361 {
4362 	struct queue_limits default_lim = { };
4363 	struct request_queue *q;
4364 	int ret;
4365 
4366 	if (!lim)
4367 		lim = &default_lim;
4368 	lim->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT;
4369 	if (set->nr_maps > HCTX_TYPE_POLL)
4370 		lim->features |= BLK_FEAT_POLL;
4371 
4372 	q = blk_alloc_queue(lim, set->numa_node);
4373 	if (IS_ERR(q))
4374 		return q;
4375 	q->queuedata = queuedata;
4376 	ret = blk_mq_init_allocated_queue(set, q);
4377 	if (ret) {
4378 		blk_put_queue(q);
4379 		return ERR_PTR(ret);
4380 	}
4381 	return q;
4382 }
4383 EXPORT_SYMBOL(blk_mq_alloc_queue);
4384 
4385 /**
4386  * blk_mq_destroy_queue - shutdown a request queue
4387  * @q: request queue to shutdown
4388  *
4389  * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4390  * requests will be failed with -ENODEV. The caller is responsible for dropping
4391  * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4392  *
4393  * Context: can sleep
4394  */
blk_mq_destroy_queue(struct request_queue * q)4395 void blk_mq_destroy_queue(struct request_queue *q)
4396 {
4397 	WARN_ON_ONCE(!queue_is_mq(q));
4398 	WARN_ON_ONCE(blk_queue_registered(q));
4399 
4400 	might_sleep();
4401 
4402 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4403 	blk_queue_start_drain(q);
4404 	blk_mq_freeze_queue_wait(q);
4405 
4406 	blk_sync_queue(q);
4407 	blk_mq_cancel_work_sync(q);
4408 	blk_mq_exit_queue(q);
4409 }
4410 EXPORT_SYMBOL(blk_mq_destroy_queue);
4411 
__blk_mq_alloc_disk(struct blk_mq_tag_set * set,struct queue_limits * lim,void * queuedata,struct lock_class_key * lkclass)4412 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4413 		struct queue_limits *lim, void *queuedata,
4414 		struct lock_class_key *lkclass)
4415 {
4416 	struct request_queue *q;
4417 	struct gendisk *disk;
4418 
4419 	q = blk_mq_alloc_queue(set, lim, queuedata);
4420 	if (IS_ERR(q))
4421 		return ERR_CAST(q);
4422 
4423 	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4424 	if (!disk) {
4425 		blk_mq_destroy_queue(q);
4426 		blk_put_queue(q);
4427 		return ERR_PTR(-ENOMEM);
4428 	}
4429 	set_bit(GD_OWNS_QUEUE, &disk->state);
4430 	return disk;
4431 }
4432 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4433 
blk_mq_alloc_disk_for_queue(struct request_queue * q,struct lock_class_key * lkclass)4434 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4435 		struct lock_class_key *lkclass)
4436 {
4437 	struct gendisk *disk;
4438 
4439 	if (!blk_get_queue(q))
4440 		return NULL;
4441 	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4442 	if (!disk)
4443 		blk_put_queue(q);
4444 	return disk;
4445 }
4446 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4447 
4448 /*
4449  * Only hctx removed from cpuhp list can be reused
4450  */
blk_mq_hctx_is_reusable(struct blk_mq_hw_ctx * hctx)4451 static bool blk_mq_hctx_is_reusable(struct blk_mq_hw_ctx *hctx)
4452 {
4453 	return hlist_unhashed(&hctx->cpuhp_online) &&
4454 		hlist_unhashed(&hctx->cpuhp_dead);
4455 }
4456 
blk_mq_alloc_and_init_hctx(struct blk_mq_tag_set * set,struct request_queue * q,int hctx_idx,int node)4457 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4458 		struct blk_mq_tag_set *set, struct request_queue *q,
4459 		int hctx_idx, int node)
4460 {
4461 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4462 
4463 	/* reuse dead hctx first */
4464 	spin_lock(&q->unused_hctx_lock);
4465 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4466 		if (tmp->numa_node == node && blk_mq_hctx_is_reusable(tmp)) {
4467 			hctx = tmp;
4468 			break;
4469 		}
4470 	}
4471 	if (hctx)
4472 		list_del_init(&hctx->hctx_list);
4473 	spin_unlock(&q->unused_hctx_lock);
4474 
4475 	if (!hctx)
4476 		hctx = blk_mq_alloc_hctx(q, set, node);
4477 	if (!hctx)
4478 		goto fail;
4479 
4480 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4481 		goto free_hctx;
4482 
4483 	return hctx;
4484 
4485  free_hctx:
4486 	kobject_put(&hctx->kobj);
4487  fail:
4488 	return NULL;
4489 }
4490 
blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)4491 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4492 						struct request_queue *q)
4493 {
4494 	struct blk_mq_hw_ctx *hctx;
4495 	unsigned long i, j;
4496 
4497 	/* protect against switching io scheduler  */
4498 	mutex_lock(&q->sysfs_lock);
4499 	for (i = 0; i < set->nr_hw_queues; i++) {
4500 		int old_node;
4501 		int node = blk_mq_get_hctx_node(set, i);
4502 		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4503 
4504 		if (old_hctx) {
4505 			old_node = old_hctx->numa_node;
4506 			blk_mq_exit_hctx(q, set, old_hctx, i);
4507 		}
4508 
4509 		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4510 			if (!old_hctx)
4511 				break;
4512 			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4513 					node, old_node);
4514 			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4515 			WARN_ON_ONCE(!hctx);
4516 		}
4517 	}
4518 	/*
4519 	 * Increasing nr_hw_queues fails. Free the newly allocated
4520 	 * hctxs and keep the previous q->nr_hw_queues.
4521 	 */
4522 	if (i != set->nr_hw_queues) {
4523 		j = q->nr_hw_queues;
4524 	} else {
4525 		j = i;
4526 		q->nr_hw_queues = set->nr_hw_queues;
4527 	}
4528 
4529 	xa_for_each_start(&q->hctx_table, j, hctx, j)
4530 		blk_mq_exit_hctx(q, set, hctx, j);
4531 	mutex_unlock(&q->sysfs_lock);
4532 
4533 	/* unregister cpuhp callbacks for exited hctxs */
4534 	blk_mq_remove_hw_queues_cpuhp(q);
4535 
4536 	/* register cpuhp for new initialized hctxs */
4537 	blk_mq_add_hw_queues_cpuhp(q);
4538 }
4539 
blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q)4540 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4541 		struct request_queue *q)
4542 {
4543 	/* mark the queue as mq asap */
4544 	q->mq_ops = set->ops;
4545 
4546 	/*
4547 	 * ->tag_set has to be setup before initialize hctx, which cpuphp
4548 	 * handler needs it for checking queue mapping
4549 	 */
4550 	q->tag_set = set;
4551 
4552 	if (blk_mq_alloc_ctxs(q))
4553 		goto err_exit;
4554 
4555 	/* init q->mq_kobj and sw queues' kobjects */
4556 	blk_mq_sysfs_init(q);
4557 
4558 	INIT_LIST_HEAD(&q->unused_hctx_list);
4559 	spin_lock_init(&q->unused_hctx_lock);
4560 
4561 	xa_init(&q->hctx_table);
4562 
4563 	blk_mq_realloc_hw_ctxs(set, q);
4564 	if (!q->nr_hw_queues)
4565 		goto err_hctxs;
4566 
4567 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4568 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4569 
4570 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4571 
4572 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4573 	INIT_LIST_HEAD(&q->flush_list);
4574 	INIT_LIST_HEAD(&q->requeue_list);
4575 	spin_lock_init(&q->requeue_lock);
4576 
4577 	q->nr_requests = set->queue_depth;
4578 
4579 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4580 	blk_mq_add_queue_tag_set(set, q);
4581 	blk_mq_map_swqueue(q);
4582 	return 0;
4583 
4584 err_hctxs:
4585 	blk_mq_release(q);
4586 err_exit:
4587 	q->mq_ops = NULL;
4588 	return -ENOMEM;
4589 }
4590 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4591 
4592 /* tags can _not_ be used after returning from blk_mq_exit_queue */
blk_mq_exit_queue(struct request_queue * q)4593 void blk_mq_exit_queue(struct request_queue *q)
4594 {
4595 	struct blk_mq_tag_set *set = q->tag_set;
4596 
4597 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4598 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4599 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4600 	blk_mq_del_queue_tag_set(q);
4601 }
4602 
__blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)4603 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4604 {
4605 	int i;
4606 
4607 	if (blk_mq_is_shared_tags(set->flags)) {
4608 		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4609 						BLK_MQ_NO_HCTX_IDX,
4610 						set->queue_depth);
4611 		if (!set->shared_tags)
4612 			return -ENOMEM;
4613 	}
4614 
4615 	for (i = 0; i < set->nr_hw_queues; i++) {
4616 		if (!__blk_mq_alloc_map_and_rqs(set, i))
4617 			goto out_unwind;
4618 		cond_resched();
4619 	}
4620 
4621 	return 0;
4622 
4623 out_unwind:
4624 	while (--i >= 0)
4625 		__blk_mq_free_map_and_rqs(set, i);
4626 
4627 	if (blk_mq_is_shared_tags(set->flags)) {
4628 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4629 					BLK_MQ_NO_HCTX_IDX);
4630 	}
4631 
4632 	return -ENOMEM;
4633 }
4634 
4635 /*
4636  * Allocate the request maps associated with this tag_set. Note that this
4637  * may reduce the depth asked for, if memory is tight. set->queue_depth
4638  * will be updated to reflect the allocated depth.
4639  */
blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set * set)4640 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4641 {
4642 	unsigned int depth;
4643 	int err;
4644 
4645 	depth = set->queue_depth;
4646 	do {
4647 		err = __blk_mq_alloc_rq_maps(set);
4648 		if (!err)
4649 			break;
4650 
4651 		set->queue_depth >>= 1;
4652 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4653 			err = -ENOMEM;
4654 			break;
4655 		}
4656 	} while (set->queue_depth);
4657 
4658 	if (!set->queue_depth || err) {
4659 		pr_err("blk-mq: failed to allocate request map\n");
4660 		return -ENOMEM;
4661 	}
4662 
4663 	if (depth != set->queue_depth)
4664 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4665 						depth, set->queue_depth);
4666 
4667 	return 0;
4668 }
4669 
blk_mq_update_queue_map(struct blk_mq_tag_set * set)4670 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4671 {
4672 	/*
4673 	 * blk_mq_map_queues() and multiple .map_queues() implementations
4674 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4675 	 * number of hardware queues.
4676 	 */
4677 	if (set->nr_maps == 1)
4678 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4679 
4680 	if (set->ops->map_queues) {
4681 		int i;
4682 
4683 		/*
4684 		 * transport .map_queues is usually done in the following
4685 		 * way:
4686 		 *
4687 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4688 		 * 	mask = get_cpu_mask(queue)
4689 		 * 	for_each_cpu(cpu, mask)
4690 		 * 		set->map[x].mq_map[cpu] = queue;
4691 		 * }
4692 		 *
4693 		 * When we need to remap, the table has to be cleared for
4694 		 * killing stale mapping since one CPU may not be mapped
4695 		 * to any hw queue.
4696 		 */
4697 		for (i = 0; i < set->nr_maps; i++)
4698 			blk_mq_clear_mq_map(&set->map[i]);
4699 
4700 		set->ops->map_queues(set);
4701 	} else {
4702 		BUG_ON(set->nr_maps > 1);
4703 		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4704 	}
4705 }
4706 
blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set * set,int new_nr_hw_queues)4707 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4708 				       int new_nr_hw_queues)
4709 {
4710 	struct blk_mq_tags **new_tags;
4711 	int i;
4712 
4713 	if (set->nr_hw_queues >= new_nr_hw_queues)
4714 		goto done;
4715 
4716 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4717 				GFP_KERNEL, set->numa_node);
4718 	if (!new_tags)
4719 		return -ENOMEM;
4720 
4721 	if (set->tags)
4722 		memcpy(new_tags, set->tags, set->nr_hw_queues *
4723 		       sizeof(*set->tags));
4724 	kfree(set->tags);
4725 	set->tags = new_tags;
4726 
4727 	for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4728 		if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4729 			while (--i >= set->nr_hw_queues)
4730 				__blk_mq_free_map_and_rqs(set, i);
4731 			return -ENOMEM;
4732 		}
4733 		cond_resched();
4734 	}
4735 
4736 done:
4737 	set->nr_hw_queues = new_nr_hw_queues;
4738 	return 0;
4739 }
4740 
4741 /*
4742  * Alloc a tag set to be associated with one or more request queues.
4743  * May fail with EINVAL for various error conditions. May adjust the
4744  * requested depth down, if it's too large. In that case, the set
4745  * value will be stored in set->queue_depth.
4746  */
blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)4747 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4748 {
4749 	int i, ret;
4750 
4751 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4752 
4753 	if (!set->nr_hw_queues)
4754 		return -EINVAL;
4755 	if (!set->queue_depth)
4756 		return -EINVAL;
4757 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4758 		return -EINVAL;
4759 
4760 	if (!set->ops->queue_rq)
4761 		return -EINVAL;
4762 
4763 	if (!set->ops->get_budget ^ !set->ops->put_budget)
4764 		return -EINVAL;
4765 
4766 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4767 		pr_info("blk-mq: reduced tag depth to %u\n",
4768 			BLK_MQ_MAX_DEPTH);
4769 		set->queue_depth = BLK_MQ_MAX_DEPTH;
4770 	}
4771 
4772 	if (!set->nr_maps)
4773 		set->nr_maps = 1;
4774 	else if (set->nr_maps > HCTX_MAX_TYPES)
4775 		return -EINVAL;
4776 
4777 	/*
4778 	 * If a crashdump is active, then we are potentially in a very
4779 	 * memory constrained environment. Limit us to  64 tags to prevent
4780 	 * using too much memory.
4781 	 */
4782 	if (is_kdump_kernel())
4783 		set->queue_depth = min(64U, set->queue_depth);
4784 
4785 	/*
4786 	 * There is no use for more h/w queues than cpus if we just have
4787 	 * a single map
4788 	 */
4789 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4790 		set->nr_hw_queues = nr_cpu_ids;
4791 
4792 	if (set->flags & BLK_MQ_F_BLOCKING) {
4793 		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4794 		if (!set->srcu)
4795 			return -ENOMEM;
4796 		ret = init_srcu_struct(set->srcu);
4797 		if (ret)
4798 			goto out_free_srcu;
4799 	}
4800 
4801 	ret = -ENOMEM;
4802 	set->tags = kcalloc_node(set->nr_hw_queues,
4803 				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4804 				 set->numa_node);
4805 	if (!set->tags)
4806 		goto out_cleanup_srcu;
4807 
4808 	for (i = 0; i < set->nr_maps; i++) {
4809 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4810 						  sizeof(set->map[i].mq_map[0]),
4811 						  GFP_KERNEL, set->numa_node);
4812 		if (!set->map[i].mq_map)
4813 			goto out_free_mq_map;
4814 		set->map[i].nr_queues = set->nr_hw_queues;
4815 	}
4816 
4817 	blk_mq_update_queue_map(set);
4818 
4819 	ret = blk_mq_alloc_set_map_and_rqs(set);
4820 	if (ret)
4821 		goto out_free_mq_map;
4822 
4823 	mutex_init(&set->tag_list_lock);
4824 	INIT_LIST_HEAD(&set->tag_list);
4825 
4826 	return 0;
4827 
4828 out_free_mq_map:
4829 	for (i = 0; i < set->nr_maps; i++) {
4830 		kfree(set->map[i].mq_map);
4831 		set->map[i].mq_map = NULL;
4832 	}
4833 	kfree(set->tags);
4834 	set->tags = NULL;
4835 out_cleanup_srcu:
4836 	if (set->flags & BLK_MQ_F_BLOCKING)
4837 		cleanup_srcu_struct(set->srcu);
4838 out_free_srcu:
4839 	if (set->flags & BLK_MQ_F_BLOCKING)
4840 		kfree(set->srcu);
4841 	return ret;
4842 }
4843 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4844 
4845 /* allocate and initialize a tagset for a simple single-queue device */
blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int queue_depth,unsigned int set_flags)4846 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4847 		const struct blk_mq_ops *ops, unsigned int queue_depth,
4848 		unsigned int set_flags)
4849 {
4850 	memset(set, 0, sizeof(*set));
4851 	set->ops = ops;
4852 	set->nr_hw_queues = 1;
4853 	set->nr_maps = 1;
4854 	set->queue_depth = queue_depth;
4855 	set->numa_node = NUMA_NO_NODE;
4856 	set->flags = set_flags;
4857 	return blk_mq_alloc_tag_set(set);
4858 }
4859 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4860 
blk_mq_free_tag_set(struct blk_mq_tag_set * set)4861 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4862 {
4863 	int i, j;
4864 
4865 	for (i = 0; i < set->nr_hw_queues; i++)
4866 		__blk_mq_free_map_and_rqs(set, i);
4867 
4868 	if (blk_mq_is_shared_tags(set->flags)) {
4869 		blk_mq_free_map_and_rqs(set, set->shared_tags,
4870 					BLK_MQ_NO_HCTX_IDX);
4871 	}
4872 
4873 	for (j = 0; j < set->nr_maps; j++) {
4874 		kfree(set->map[j].mq_map);
4875 		set->map[j].mq_map = NULL;
4876 	}
4877 
4878 	kfree(set->tags);
4879 	set->tags = NULL;
4880 	if (set->flags & BLK_MQ_F_BLOCKING) {
4881 		cleanup_srcu_struct(set->srcu);
4882 		kfree(set->srcu);
4883 	}
4884 }
4885 EXPORT_SYMBOL(blk_mq_free_tag_set);
4886 
blk_mq_update_nr_requests(struct request_queue * q,unsigned int nr)4887 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4888 {
4889 	struct blk_mq_tag_set *set = q->tag_set;
4890 	struct blk_mq_hw_ctx *hctx;
4891 	int ret;
4892 	unsigned long i;
4893 
4894 	if (WARN_ON_ONCE(!q->mq_freeze_depth))
4895 		return -EINVAL;
4896 
4897 	if (!set)
4898 		return -EINVAL;
4899 
4900 	if (q->nr_requests == nr)
4901 		return 0;
4902 
4903 	blk_mq_quiesce_queue(q);
4904 
4905 	ret = 0;
4906 	queue_for_each_hw_ctx(q, hctx, i) {
4907 		if (!hctx->tags)
4908 			continue;
4909 		/*
4910 		 * If we're using an MQ scheduler, just update the scheduler
4911 		 * queue depth. This is similar to what the old code would do.
4912 		 */
4913 		if (hctx->sched_tags) {
4914 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4915 						      nr, true);
4916 		} else {
4917 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4918 						      false);
4919 		}
4920 		if (ret)
4921 			break;
4922 		if (q->elevator && q->elevator->type->ops.depth_updated)
4923 			q->elevator->type->ops.depth_updated(hctx);
4924 	}
4925 	if (!ret) {
4926 		q->nr_requests = nr;
4927 		if (blk_mq_is_shared_tags(set->flags)) {
4928 			if (q->elevator)
4929 				blk_mq_tag_update_sched_shared_tags(q);
4930 			else
4931 				blk_mq_tag_resize_shared_tags(set, nr);
4932 		}
4933 	}
4934 
4935 	blk_mq_unquiesce_queue(q);
4936 
4937 	return ret;
4938 }
4939 
4940 /*
4941  * request_queue and elevator_type pair.
4942  * It is just used by __blk_mq_update_nr_hw_queues to cache
4943  * the elevator_type associated with a request_queue.
4944  */
4945 struct blk_mq_qe_pair {
4946 	struct list_head node;
4947 	struct request_queue *q;
4948 	struct elevator_type *type;
4949 };
4950 
4951 /*
4952  * Cache the elevator_type in qe pair list and switch the
4953  * io scheduler to 'none'
4954  */
blk_mq_elv_switch_none(struct list_head * head,struct request_queue * q)4955 static bool blk_mq_elv_switch_none(struct list_head *head,
4956 		struct request_queue *q)
4957 {
4958 	struct blk_mq_qe_pair *qe;
4959 
4960 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4961 	if (!qe)
4962 		return false;
4963 
4964 	/* q->elevator needs protection from ->sysfs_lock */
4965 	mutex_lock(&q->sysfs_lock);
4966 
4967 	/* the check has to be done with holding sysfs_lock */
4968 	if (!q->elevator) {
4969 		kfree(qe);
4970 		goto unlock;
4971 	}
4972 
4973 	INIT_LIST_HEAD(&qe->node);
4974 	qe->q = q;
4975 	qe->type = q->elevator->type;
4976 	/* keep a reference to the elevator module as we'll switch back */
4977 	__elevator_get(qe->type);
4978 	list_add(&qe->node, head);
4979 	elevator_disable(q);
4980 unlock:
4981 	mutex_unlock(&q->sysfs_lock);
4982 
4983 	return true;
4984 }
4985 
blk_lookup_qe_pair(struct list_head * head,struct request_queue * q)4986 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4987 						struct request_queue *q)
4988 {
4989 	struct blk_mq_qe_pair *qe;
4990 
4991 	list_for_each_entry(qe, head, node)
4992 		if (qe->q == q)
4993 			return qe;
4994 
4995 	return NULL;
4996 }
4997 
blk_mq_elv_switch_back(struct list_head * head,struct request_queue * q)4998 static void blk_mq_elv_switch_back(struct list_head *head,
4999 				  struct request_queue *q)
5000 {
5001 	struct blk_mq_qe_pair *qe;
5002 	struct elevator_type *t;
5003 
5004 	qe = blk_lookup_qe_pair(head, q);
5005 	if (!qe)
5006 		return;
5007 	t = qe->type;
5008 	list_del(&qe->node);
5009 	kfree(qe);
5010 
5011 	mutex_lock(&q->sysfs_lock);
5012 	elevator_switch(q, t);
5013 	/* drop the reference acquired in blk_mq_elv_switch_none */
5014 	elevator_put(t);
5015 	mutex_unlock(&q->sysfs_lock);
5016 }
5017 
__blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)5018 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
5019 							int nr_hw_queues)
5020 {
5021 	struct request_queue *q;
5022 	LIST_HEAD(head);
5023 	int prev_nr_hw_queues = set->nr_hw_queues;
5024 	int i;
5025 
5026 	lockdep_assert_held(&set->tag_list_lock);
5027 
5028 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
5029 		nr_hw_queues = nr_cpu_ids;
5030 	if (nr_hw_queues < 1)
5031 		return;
5032 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
5033 		return;
5034 
5035 	list_for_each_entry(q, &set->tag_list, tag_set_list)
5036 		blk_mq_freeze_queue(q);
5037 	/*
5038 	 * Switch IO scheduler to 'none', cleaning up the data associated
5039 	 * with the previous scheduler. We will switch back once we are done
5040 	 * updating the new sw to hw queue mappings.
5041 	 */
5042 	list_for_each_entry(q, &set->tag_list, tag_set_list)
5043 		if (!blk_mq_elv_switch_none(&head, q))
5044 			goto switch_back;
5045 
5046 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
5047 		blk_mq_debugfs_unregister_hctxs(q);
5048 		blk_mq_sysfs_unregister_hctxs(q);
5049 	}
5050 
5051 	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
5052 		goto reregister;
5053 
5054 fallback:
5055 	blk_mq_update_queue_map(set);
5056 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
5057 		blk_mq_realloc_hw_ctxs(set, q);
5058 
5059 		if (q->nr_hw_queues != set->nr_hw_queues) {
5060 			int i = prev_nr_hw_queues;
5061 
5062 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
5063 					nr_hw_queues, prev_nr_hw_queues);
5064 			for (; i < set->nr_hw_queues; i++)
5065 				__blk_mq_free_map_and_rqs(set, i);
5066 
5067 			set->nr_hw_queues = prev_nr_hw_queues;
5068 			goto fallback;
5069 		}
5070 		blk_mq_map_swqueue(q);
5071 	}
5072 
5073 reregister:
5074 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
5075 		blk_mq_sysfs_register_hctxs(q);
5076 		blk_mq_debugfs_register_hctxs(q);
5077 	}
5078 
5079 switch_back:
5080 	list_for_each_entry(q, &set->tag_list, tag_set_list)
5081 		blk_mq_elv_switch_back(&head, q);
5082 
5083 	list_for_each_entry(q, &set->tag_list, tag_set_list)
5084 		blk_mq_unfreeze_queue(q);
5085 
5086 	/* Free the excess tags when nr_hw_queues shrink. */
5087 	for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
5088 		__blk_mq_free_map_and_rqs(set, i);
5089 }
5090 
blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)5091 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
5092 {
5093 	mutex_lock(&set->tag_list_lock);
5094 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
5095 	mutex_unlock(&set->tag_list_lock);
5096 }
5097 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
5098 
blk_hctx_poll(struct request_queue * q,struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob,unsigned int flags)5099 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
5100 			 struct io_comp_batch *iob, unsigned int flags)
5101 {
5102 	long state = get_current_state();
5103 	int ret;
5104 
5105 	do {
5106 		ret = q->mq_ops->poll(hctx, iob);
5107 		if (ret > 0) {
5108 			__set_current_state(TASK_RUNNING);
5109 			return ret;
5110 		}
5111 
5112 		if (signal_pending_state(state, current))
5113 			__set_current_state(TASK_RUNNING);
5114 		if (task_is_running(current))
5115 			return 1;
5116 
5117 		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
5118 			break;
5119 		cpu_relax();
5120 	} while (!need_resched());
5121 
5122 	__set_current_state(TASK_RUNNING);
5123 	return 0;
5124 }
5125 
blk_mq_poll(struct request_queue * q,blk_qc_t cookie,struct io_comp_batch * iob,unsigned int flags)5126 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
5127 		struct io_comp_batch *iob, unsigned int flags)
5128 {
5129 	if (!blk_mq_can_poll(q))
5130 		return 0;
5131 	return blk_hctx_poll(q, xa_load(&q->hctx_table, cookie), iob, flags);
5132 }
5133 
blk_rq_poll(struct request * rq,struct io_comp_batch * iob,unsigned int poll_flags)5134 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
5135 		unsigned int poll_flags)
5136 {
5137 	struct request_queue *q = rq->q;
5138 	int ret;
5139 
5140 	if (!blk_rq_is_poll(rq))
5141 		return 0;
5142 	if (!percpu_ref_tryget(&q->q_usage_counter))
5143 		return 0;
5144 
5145 	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
5146 	blk_queue_exit(q);
5147 
5148 	return ret;
5149 }
5150 EXPORT_SYMBOL_GPL(blk_rq_poll);
5151 
blk_mq_rq_cpu(struct request * rq)5152 unsigned int blk_mq_rq_cpu(struct request *rq)
5153 {
5154 	return rq->mq_ctx->cpu;
5155 }
5156 EXPORT_SYMBOL(blk_mq_rq_cpu);
5157 
blk_mq_cancel_work_sync(struct request_queue * q)5158 void blk_mq_cancel_work_sync(struct request_queue *q)
5159 {
5160 	struct blk_mq_hw_ctx *hctx;
5161 	unsigned long i;
5162 
5163 	cancel_delayed_work_sync(&q->requeue_work);
5164 
5165 	queue_for_each_hw_ctx(q, hctx, i)
5166 		cancel_delayed_work_sync(&hctx->run_work);
5167 }
5168 
blk_mq_init(void)5169 static int __init blk_mq_init(void)
5170 {
5171 	int i;
5172 
5173 	for_each_possible_cpu(i)
5174 		init_llist_head(&per_cpu(blk_cpu_done, i));
5175 	for_each_possible_cpu(i)
5176 		INIT_CSD(&per_cpu(blk_cpu_csd, i),
5177 			 __blk_mq_complete_request_remote, NULL);
5178 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
5179 
5180 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
5181 				  "block/softirq:dead", NULL,
5182 				  blk_softirq_cpu_dead);
5183 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
5184 				blk_mq_hctx_notify_dead);
5185 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
5186 				blk_mq_hctx_notify_online,
5187 				blk_mq_hctx_notify_offline);
5188 	return 0;
5189 }
5190 subsys_initcall(blk_mq_init);
5191