1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-pm.h>
20 #include <linux/blk-integrity.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/part_stat.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/blk-crypto.h>
43 
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/block.h>
46 
47 #include "blk.h"
48 #include "blk-mq-sched.h"
49 #include "blk-pm.h"
50 #include "blk-cgroup.h"
51 #include "blk-throttle.h"
52 #include "blk-ioprio.h"
53 
54 struct dentry *blk_debugfs_root;
55 
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
62 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_queue);
63 EXPORT_TRACEPOINT_SYMBOL_GPL(block_getrq);
64 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_issue);
65 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_merge);
66 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_requeue);
67 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_complete);
68 
69 static DEFINE_IDA(blk_queue_ida);
70 
71 /*
72  * For queue allocation
73  */
74 static struct kmem_cache *blk_requestq_cachep;
75 
76 /*
77  * Controlling structure to kblockd
78  */
79 static struct workqueue_struct *kblockd_workqueue;
80 
81 /**
82  * blk_queue_flag_set - atomically set a queue flag
83  * @flag: flag to be set
84  * @q: request queue
85  */
blk_queue_flag_set(unsigned int flag,struct request_queue * q)86 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
87 {
88 	set_bit(flag, &q->queue_flags);
89 }
90 EXPORT_SYMBOL(blk_queue_flag_set);
91 
92 /**
93  * blk_queue_flag_clear - atomically clear a queue flag
94  * @flag: flag to be cleared
95  * @q: request queue
96  */
blk_queue_flag_clear(unsigned int flag,struct request_queue * q)97 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
98 {
99 	clear_bit(flag, &q->queue_flags);
100 }
101 EXPORT_SYMBOL(blk_queue_flag_clear);
102 
103 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
104 static const char *const blk_op_name[] = {
105 	REQ_OP_NAME(READ),
106 	REQ_OP_NAME(WRITE),
107 	REQ_OP_NAME(FLUSH),
108 	REQ_OP_NAME(DISCARD),
109 	REQ_OP_NAME(SECURE_ERASE),
110 	REQ_OP_NAME(ZONE_RESET),
111 	REQ_OP_NAME(ZONE_RESET_ALL),
112 	REQ_OP_NAME(ZONE_OPEN),
113 	REQ_OP_NAME(ZONE_CLOSE),
114 	REQ_OP_NAME(ZONE_FINISH),
115 	REQ_OP_NAME(ZONE_APPEND),
116 	REQ_OP_NAME(WRITE_ZEROES),
117 	REQ_OP_NAME(DRV_IN),
118 	REQ_OP_NAME(DRV_OUT),
119 };
120 #undef REQ_OP_NAME
121 
122 /**
123  * blk_op_str - Return string XXX in the REQ_OP_XXX.
124  * @op: REQ_OP_XXX.
125  *
126  * Description: Centralize block layer function to convert REQ_OP_XXX into
127  * string format. Useful in the debugging and tracing bio or request. For
128  * invalid REQ_OP_XXX it returns string "UNKNOWN".
129  */
blk_op_str(enum req_op op)130 inline const char *blk_op_str(enum req_op op)
131 {
132 	const char *op_str = "UNKNOWN";
133 
134 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
135 		op_str = blk_op_name[op];
136 
137 	return op_str;
138 }
139 EXPORT_SYMBOL_GPL(blk_op_str);
140 
141 static const struct {
142 	int		errno;
143 	const char	*name;
144 } blk_errors[] = {
145 	[BLK_STS_OK]		= { 0,		"" },
146 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
147 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
148 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
149 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
150 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
151 	[BLK_STS_RESV_CONFLICT]	= { -EBADE,	"reservation conflict" },
152 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
153 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
154 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
155 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
156 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
157 	[BLK_STS_OFFLINE]	= { -ENODEV,	"device offline" },
158 
159 	/* device mapper special case, should not leak out: */
160 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
161 
162 	/* zone device specific errors */
163 	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
164 	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
165 
166 	/* Command duration limit device-side timeout */
167 	[BLK_STS_DURATION_LIMIT]	= { -ETIME, "duration limit exceeded" },
168 
169 	[BLK_STS_INVAL]		= { -EINVAL,	"invalid" },
170 
171 	/* everything else not covered above: */
172 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
173 };
174 
errno_to_blk_status(int errno)175 blk_status_t errno_to_blk_status(int errno)
176 {
177 	int i;
178 
179 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
180 		if (blk_errors[i].errno == errno)
181 			return (__force blk_status_t)i;
182 	}
183 
184 	return BLK_STS_IOERR;
185 }
186 EXPORT_SYMBOL_GPL(errno_to_blk_status);
187 
blk_status_to_errno(blk_status_t status)188 int blk_status_to_errno(blk_status_t status)
189 {
190 	int idx = (__force int)status;
191 
192 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
193 		return -EIO;
194 	return blk_errors[idx].errno;
195 }
196 EXPORT_SYMBOL_GPL(blk_status_to_errno);
197 
blk_status_to_str(blk_status_t status)198 const char *blk_status_to_str(blk_status_t status)
199 {
200 	int idx = (__force int)status;
201 
202 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
203 		return "<null>";
204 	return blk_errors[idx].name;
205 }
206 EXPORT_SYMBOL_GPL(blk_status_to_str);
207 
208 /**
209  * blk_sync_queue - cancel any pending callbacks on a queue
210  * @q: the queue
211  *
212  * Description:
213  *     The block layer may perform asynchronous callback activity
214  *     on a queue, such as calling the unplug function after a timeout.
215  *     A block device may call blk_sync_queue to ensure that any
216  *     such activity is cancelled, thus allowing it to release resources
217  *     that the callbacks might use. The caller must already have made sure
218  *     that its ->submit_bio will not re-add plugging prior to calling
219  *     this function.
220  *
221  *     This function does not cancel any asynchronous activity arising
222  *     out of elevator or throttling code. That would require elevator_exit()
223  *     and blkcg_exit_queue() to be called with queue lock initialized.
224  *
225  */
blk_sync_queue(struct request_queue * q)226 void blk_sync_queue(struct request_queue *q)
227 {
228 	del_timer_sync(&q->timeout);
229 	cancel_work_sync(&q->timeout_work);
230 }
231 EXPORT_SYMBOL(blk_sync_queue);
232 
233 /**
234  * blk_set_pm_only - increment pm_only counter
235  * @q: request queue pointer
236  */
blk_set_pm_only(struct request_queue * q)237 void blk_set_pm_only(struct request_queue *q)
238 {
239 	atomic_inc(&q->pm_only);
240 }
241 EXPORT_SYMBOL_GPL(blk_set_pm_only);
242 
blk_clear_pm_only(struct request_queue * q)243 void blk_clear_pm_only(struct request_queue *q)
244 {
245 	int pm_only;
246 
247 	pm_only = atomic_dec_return(&q->pm_only);
248 	WARN_ON_ONCE(pm_only < 0);
249 	if (pm_only == 0)
250 		wake_up_all(&q->mq_freeze_wq);
251 }
252 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
253 
blk_free_queue_rcu(struct rcu_head * rcu_head)254 static void blk_free_queue_rcu(struct rcu_head *rcu_head)
255 {
256 	struct request_queue *q = container_of(rcu_head,
257 			struct request_queue, rcu_head);
258 
259 	percpu_ref_exit(&q->q_usage_counter);
260 	kmem_cache_free(blk_requestq_cachep, q);
261 }
262 
blk_free_queue(struct request_queue * q)263 static void blk_free_queue(struct request_queue *q)
264 {
265 	blk_free_queue_stats(q->stats);
266 	if (queue_is_mq(q))
267 		blk_mq_release(q);
268 
269 	ida_free(&blk_queue_ida, q->id);
270 	lockdep_unregister_key(&q->io_lock_cls_key);
271 	lockdep_unregister_key(&q->q_lock_cls_key);
272 	call_rcu(&q->rcu_head, blk_free_queue_rcu);
273 }
274 
275 /**
276  * blk_put_queue - decrement the request_queue refcount
277  * @q: the request_queue structure to decrement the refcount for
278  *
279  * Decrements the refcount of the request_queue and free it when the refcount
280  * reaches 0.
281  */
blk_put_queue(struct request_queue * q)282 void blk_put_queue(struct request_queue *q)
283 {
284 	if (refcount_dec_and_test(&q->refs))
285 		blk_free_queue(q);
286 }
287 EXPORT_SYMBOL(blk_put_queue);
288 
blk_queue_start_drain(struct request_queue * q)289 bool blk_queue_start_drain(struct request_queue *q)
290 {
291 	/*
292 	 * When queue DYING flag is set, we need to block new req
293 	 * entering queue, so we call blk_freeze_queue_start() to
294 	 * prevent I/O from crossing blk_queue_enter().
295 	 */
296 	bool freeze = __blk_freeze_queue_start(q, current);
297 	if (queue_is_mq(q))
298 		blk_mq_wake_waiters(q);
299 	/* Make blk_queue_enter() reexamine the DYING flag. */
300 	wake_up_all(&q->mq_freeze_wq);
301 
302 	return freeze;
303 }
304 
305 /**
306  * blk_queue_enter() - try to increase q->q_usage_counter
307  * @q: request queue pointer
308  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
309  */
blk_queue_enter(struct request_queue * q,blk_mq_req_flags_t flags)310 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
311 {
312 	const bool pm = flags & BLK_MQ_REQ_PM;
313 
314 	while (!blk_try_enter_queue(q, pm)) {
315 		if (flags & BLK_MQ_REQ_NOWAIT)
316 			return -EAGAIN;
317 
318 		/*
319 		 * read pair of barrier in blk_freeze_queue_start(), we need to
320 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
321 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
322 		 * following wait may never return if the two reads are
323 		 * reordered.
324 		 */
325 		smp_rmb();
326 		wait_event(q->mq_freeze_wq,
327 			   (!q->mq_freeze_depth &&
328 			    blk_pm_resume_queue(pm, q)) ||
329 			   blk_queue_dying(q));
330 		if (blk_queue_dying(q))
331 			return -ENODEV;
332 	}
333 
334 	rwsem_acquire_read(&q->q_lockdep_map, 0, 0, _RET_IP_);
335 	rwsem_release(&q->q_lockdep_map, _RET_IP_);
336 	return 0;
337 }
338 
__bio_queue_enter(struct request_queue * q,struct bio * bio)339 int __bio_queue_enter(struct request_queue *q, struct bio *bio)
340 {
341 	while (!blk_try_enter_queue(q, false)) {
342 		struct gendisk *disk = bio->bi_bdev->bd_disk;
343 
344 		if (bio->bi_opf & REQ_NOWAIT) {
345 			if (test_bit(GD_DEAD, &disk->state))
346 				goto dead;
347 			bio_wouldblock_error(bio);
348 			return -EAGAIN;
349 		}
350 
351 		/*
352 		 * read pair of barrier in blk_freeze_queue_start(), we need to
353 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
354 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
355 		 * following wait may never return if the two reads are
356 		 * reordered.
357 		 */
358 		smp_rmb();
359 		wait_event(q->mq_freeze_wq,
360 			   (!q->mq_freeze_depth &&
361 			    blk_pm_resume_queue(false, q)) ||
362 			   test_bit(GD_DEAD, &disk->state));
363 		if (test_bit(GD_DEAD, &disk->state))
364 			goto dead;
365 	}
366 
367 	rwsem_acquire_read(&q->io_lockdep_map, 0, 0, _RET_IP_);
368 	rwsem_release(&q->io_lockdep_map, _RET_IP_);
369 	return 0;
370 dead:
371 	bio_io_error(bio);
372 	return -ENODEV;
373 }
374 
blk_queue_exit(struct request_queue * q)375 void blk_queue_exit(struct request_queue *q)
376 {
377 	percpu_ref_put(&q->q_usage_counter);
378 }
379 
blk_queue_usage_counter_release(struct percpu_ref * ref)380 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
381 {
382 	struct request_queue *q =
383 		container_of(ref, struct request_queue, q_usage_counter);
384 
385 	wake_up_all(&q->mq_freeze_wq);
386 }
387 
blk_rq_timed_out_timer(struct timer_list * t)388 static void blk_rq_timed_out_timer(struct timer_list *t)
389 {
390 	struct request_queue *q = from_timer(q, t, timeout);
391 
392 	kblockd_schedule_work(&q->timeout_work);
393 }
394 
blk_timeout_work(struct work_struct * work)395 static void blk_timeout_work(struct work_struct *work)
396 {
397 }
398 
blk_alloc_queue(struct queue_limits * lim,int node_id)399 struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id)
400 {
401 	struct request_queue *q;
402 	int error;
403 
404 	q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
405 				  node_id);
406 	if (!q)
407 		return ERR_PTR(-ENOMEM);
408 
409 	q->last_merge = NULL;
410 
411 	q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
412 	if (q->id < 0) {
413 		error = q->id;
414 		goto fail_q;
415 	}
416 
417 	q->stats = blk_alloc_queue_stats();
418 	if (!q->stats) {
419 		error = -ENOMEM;
420 		goto fail_id;
421 	}
422 
423 	error = blk_set_default_limits(lim);
424 	if (error)
425 		goto fail_stats;
426 	q->limits = *lim;
427 
428 	q->node = node_id;
429 
430 	atomic_set(&q->nr_active_requests_shared_tags, 0);
431 
432 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
433 	INIT_WORK(&q->timeout_work, blk_timeout_work);
434 	INIT_LIST_HEAD(&q->icq_list);
435 
436 	refcount_set(&q->refs, 1);
437 	mutex_init(&q->debugfs_mutex);
438 	mutex_init(&q->sysfs_lock);
439 	mutex_init(&q->sysfs_dir_lock);
440 	mutex_init(&q->limits_lock);
441 	mutex_init(&q->rq_qos_mutex);
442 	spin_lock_init(&q->queue_lock);
443 
444 	init_waitqueue_head(&q->mq_freeze_wq);
445 	mutex_init(&q->mq_freeze_lock);
446 
447 	blkg_init_queue(q);
448 
449 	/*
450 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
451 	 * See blk_register_queue() for details.
452 	 */
453 	error = percpu_ref_init(&q->q_usage_counter,
454 				blk_queue_usage_counter_release,
455 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL);
456 	if (error)
457 		goto fail_stats;
458 	lockdep_register_key(&q->io_lock_cls_key);
459 	lockdep_register_key(&q->q_lock_cls_key);
460 	lockdep_init_map(&q->io_lockdep_map, "&q->q_usage_counter(io)",
461 			 &q->io_lock_cls_key, 0);
462 	lockdep_init_map(&q->q_lockdep_map, "&q->q_usage_counter(queue)",
463 			 &q->q_lock_cls_key, 0);
464 
465 	q->nr_requests = BLKDEV_DEFAULT_RQ;
466 
467 	return q;
468 
469 fail_stats:
470 	blk_free_queue_stats(q->stats);
471 fail_id:
472 	ida_free(&blk_queue_ida, q->id);
473 fail_q:
474 	kmem_cache_free(blk_requestq_cachep, q);
475 	return ERR_PTR(error);
476 }
477 
478 /**
479  * blk_get_queue - increment the request_queue refcount
480  * @q: the request_queue structure to increment the refcount for
481  *
482  * Increment the refcount of the request_queue kobject.
483  *
484  * Context: Any context.
485  */
blk_get_queue(struct request_queue * q)486 bool blk_get_queue(struct request_queue *q)
487 {
488 	if (unlikely(blk_queue_dying(q)))
489 		return false;
490 	refcount_inc(&q->refs);
491 	return true;
492 }
493 EXPORT_SYMBOL(blk_get_queue);
494 
495 #ifdef CONFIG_FAIL_MAKE_REQUEST
496 
497 static DECLARE_FAULT_ATTR(fail_make_request);
498 
setup_fail_make_request(char * str)499 static int __init setup_fail_make_request(char *str)
500 {
501 	return setup_fault_attr(&fail_make_request, str);
502 }
503 __setup("fail_make_request=", setup_fail_make_request);
504 
should_fail_request(struct block_device * part,unsigned int bytes)505 bool should_fail_request(struct block_device *part, unsigned int bytes)
506 {
507 	return bdev_test_flag(part, BD_MAKE_IT_FAIL) &&
508 	       should_fail(&fail_make_request, bytes);
509 }
510 
fail_make_request_debugfs(void)511 static int __init fail_make_request_debugfs(void)
512 {
513 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
514 						NULL, &fail_make_request);
515 
516 	return PTR_ERR_OR_ZERO(dir);
517 }
518 
519 late_initcall(fail_make_request_debugfs);
520 #endif /* CONFIG_FAIL_MAKE_REQUEST */
521 
bio_check_ro(struct bio * bio)522 static inline void bio_check_ro(struct bio *bio)
523 {
524 	if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
525 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
526 			return;
527 
528 		if (bdev_test_flag(bio->bi_bdev, BD_RO_WARNED))
529 			return;
530 
531 		bdev_set_flag(bio->bi_bdev, BD_RO_WARNED);
532 
533 		/*
534 		 * Use ioctl to set underlying disk of raid/dm to read-only
535 		 * will trigger this.
536 		 */
537 		pr_warn("Trying to write to read-only block-device %pg\n",
538 			bio->bi_bdev);
539 	}
540 }
541 
should_fail_bio(struct bio * bio)542 static noinline int should_fail_bio(struct bio *bio)
543 {
544 	if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
545 		return -EIO;
546 	return 0;
547 }
548 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
549 
550 /*
551  * Check whether this bio extends beyond the end of the device or partition.
552  * This may well happen - the kernel calls bread() without checking the size of
553  * the device, e.g., when mounting a file system.
554  */
bio_check_eod(struct bio * bio)555 static inline int bio_check_eod(struct bio *bio)
556 {
557 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
558 	unsigned int nr_sectors = bio_sectors(bio);
559 
560 	if (nr_sectors &&
561 	    (nr_sectors > maxsector ||
562 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
563 		pr_info_ratelimited("%s: attempt to access beyond end of device\n"
564 				    "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
565 				    current->comm, bio->bi_bdev, bio->bi_opf,
566 				    bio->bi_iter.bi_sector, nr_sectors, maxsector);
567 		return -EIO;
568 	}
569 	return 0;
570 }
571 
572 /*
573  * Remap block n of partition p to block n+start(p) of the disk.
574  */
blk_partition_remap(struct bio * bio)575 static int blk_partition_remap(struct bio *bio)
576 {
577 	struct block_device *p = bio->bi_bdev;
578 
579 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
580 		return -EIO;
581 	if (bio_sectors(bio)) {
582 		bio->bi_iter.bi_sector += p->bd_start_sect;
583 		trace_block_bio_remap(bio, p->bd_dev,
584 				      bio->bi_iter.bi_sector -
585 				      p->bd_start_sect);
586 	}
587 	bio_set_flag(bio, BIO_REMAPPED);
588 	return 0;
589 }
590 
591 /*
592  * Check write append to a zoned block device.
593  */
blk_check_zone_append(struct request_queue * q,struct bio * bio)594 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
595 						 struct bio *bio)
596 {
597 	int nr_sectors = bio_sectors(bio);
598 
599 	/* Only applicable to zoned block devices */
600 	if (!bdev_is_zoned(bio->bi_bdev))
601 		return BLK_STS_NOTSUPP;
602 
603 	/* The bio sector must point to the start of a sequential zone */
604 	if (!bdev_is_zone_start(bio->bi_bdev, bio->bi_iter.bi_sector))
605 		return BLK_STS_IOERR;
606 
607 	/*
608 	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
609 	 * split and could result in non-contiguous sectors being written in
610 	 * different zones.
611 	 */
612 	if (nr_sectors > q->limits.chunk_sectors)
613 		return BLK_STS_IOERR;
614 
615 	/* Make sure the BIO is small enough and will not get split */
616 	if (nr_sectors > queue_max_zone_append_sectors(q))
617 		return BLK_STS_IOERR;
618 
619 	bio->bi_opf |= REQ_NOMERGE;
620 
621 	return BLK_STS_OK;
622 }
623 
__submit_bio(struct bio * bio)624 static void __submit_bio(struct bio *bio)
625 {
626 	/* If plug is not used, add new plug here to cache nsecs time. */
627 	struct blk_plug plug;
628 
629 	if (unlikely(!blk_crypto_bio_prep(&bio)))
630 		return;
631 
632 	blk_start_plug(&plug);
633 
634 	if (!bdev_test_flag(bio->bi_bdev, BD_HAS_SUBMIT_BIO)) {
635 		blk_mq_submit_bio(bio);
636 	} else if (likely(bio_queue_enter(bio) == 0)) {
637 		struct gendisk *disk = bio->bi_bdev->bd_disk;
638 
639 		if ((bio->bi_opf & REQ_POLLED) &&
640 		    !(disk->queue->limits.features & BLK_FEAT_POLL)) {
641 			bio->bi_status = BLK_STS_NOTSUPP;
642 			bio_endio(bio);
643 		} else {
644 			disk->fops->submit_bio(bio);
645 		}
646 		blk_queue_exit(disk->queue);
647 	}
648 
649 	blk_finish_plug(&plug);
650 }
651 
652 /*
653  * The loop in this function may be a bit non-obvious, and so deserves some
654  * explanation:
655  *
656  *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
657  *    that), so we have a list with a single bio.
658  *  - We pretend that we have just taken it off a longer list, so we assign
659  *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
660  *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
661  *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
662  *    non-NULL value in bio_list and re-enter the loop from the top.
663  *  - In this case we really did just take the bio of the top of the list (no
664  *    pretending) and so remove it from bio_list, and call into ->submit_bio()
665  *    again.
666  *
667  * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
668  * bio_list_on_stack[1] contains bios that were submitted before the current
669  *	->submit_bio, but that haven't been processed yet.
670  */
__submit_bio_noacct(struct bio * bio)671 static void __submit_bio_noacct(struct bio *bio)
672 {
673 	struct bio_list bio_list_on_stack[2];
674 
675 	BUG_ON(bio->bi_next);
676 
677 	bio_list_init(&bio_list_on_stack[0]);
678 	current->bio_list = bio_list_on_stack;
679 
680 	do {
681 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
682 		struct bio_list lower, same;
683 
684 		/*
685 		 * Create a fresh bio_list for all subordinate requests.
686 		 */
687 		bio_list_on_stack[1] = bio_list_on_stack[0];
688 		bio_list_init(&bio_list_on_stack[0]);
689 
690 		__submit_bio(bio);
691 
692 		/*
693 		 * Sort new bios into those for a lower level and those for the
694 		 * same level.
695 		 */
696 		bio_list_init(&lower);
697 		bio_list_init(&same);
698 		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
699 			if (q == bdev_get_queue(bio->bi_bdev))
700 				bio_list_add(&same, bio);
701 			else
702 				bio_list_add(&lower, bio);
703 
704 		/*
705 		 * Now assemble so we handle the lowest level first.
706 		 */
707 		bio_list_merge(&bio_list_on_stack[0], &lower);
708 		bio_list_merge(&bio_list_on_stack[0], &same);
709 		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
710 	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
711 
712 	current->bio_list = NULL;
713 }
714 
__submit_bio_noacct_mq(struct bio * bio)715 static void __submit_bio_noacct_mq(struct bio *bio)
716 {
717 	struct bio_list bio_list[2] = { };
718 
719 	current->bio_list = bio_list;
720 
721 	do {
722 		__submit_bio(bio);
723 	} while ((bio = bio_list_pop(&bio_list[0])));
724 
725 	current->bio_list = NULL;
726 }
727 
submit_bio_noacct_nocheck(struct bio * bio)728 void submit_bio_noacct_nocheck(struct bio *bio)
729 {
730 	blk_cgroup_bio_start(bio);
731 	blkcg_bio_issue_init(bio);
732 
733 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
734 		trace_block_bio_queue(bio);
735 		/*
736 		 * Now that enqueuing has been traced, we need to trace
737 		 * completion as well.
738 		 */
739 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
740 	}
741 
742 	/*
743 	 * We only want one ->submit_bio to be active at a time, else stack
744 	 * usage with stacked devices could be a problem.  Use current->bio_list
745 	 * to collect a list of requests submited by a ->submit_bio method while
746 	 * it is active, and then process them after it returned.
747 	 */
748 	if (current->bio_list)
749 		bio_list_add(¤t->bio_list[0], bio);
750 	else if (!bdev_test_flag(bio->bi_bdev, BD_HAS_SUBMIT_BIO))
751 		__submit_bio_noacct_mq(bio);
752 	else
753 		__submit_bio_noacct(bio);
754 }
755 
blk_validate_atomic_write_op_size(struct request_queue * q,struct bio * bio)756 static blk_status_t blk_validate_atomic_write_op_size(struct request_queue *q,
757 						 struct bio *bio)
758 {
759 	if (bio->bi_iter.bi_size > queue_atomic_write_unit_max_bytes(q))
760 		return BLK_STS_INVAL;
761 
762 	if (bio->bi_iter.bi_size % queue_atomic_write_unit_min_bytes(q))
763 		return BLK_STS_INVAL;
764 
765 	return BLK_STS_OK;
766 }
767 
768 /**
769  * submit_bio_noacct - re-submit a bio to the block device layer for I/O
770  * @bio:  The bio describing the location in memory and on the device.
771  *
772  * This is a version of submit_bio() that shall only be used for I/O that is
773  * resubmitted to lower level drivers by stacking block drivers.  All file
774  * systems and other upper level users of the block layer should use
775  * submit_bio() instead.
776  */
submit_bio_noacct(struct bio * bio)777 void submit_bio_noacct(struct bio *bio)
778 {
779 	struct block_device *bdev = bio->bi_bdev;
780 	struct request_queue *q = bdev_get_queue(bdev);
781 	blk_status_t status = BLK_STS_IOERR;
782 
783 	might_sleep();
784 
785 	/*
786 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
787 	 * if queue does not support NOWAIT.
788 	 */
789 	if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
790 		goto not_supported;
791 
792 	if (should_fail_bio(bio))
793 		goto end_io;
794 	bio_check_ro(bio);
795 	if (!bio_flagged(bio, BIO_REMAPPED)) {
796 		if (unlikely(bio_check_eod(bio)))
797 			goto end_io;
798 		if (bdev_is_partition(bdev) &&
799 		    unlikely(blk_partition_remap(bio)))
800 			goto end_io;
801 	}
802 
803 	/*
804 	 * Filter flush bio's early so that bio based drivers without flush
805 	 * support don't have to worry about them.
806 	 */
807 	if (op_is_flush(bio->bi_opf)) {
808 		if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE &&
809 				 bio_op(bio) != REQ_OP_ZONE_APPEND))
810 			goto end_io;
811 		if (!bdev_write_cache(bdev)) {
812 			bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
813 			if (!bio_sectors(bio)) {
814 				status = BLK_STS_OK;
815 				goto end_io;
816 			}
817 		}
818 	}
819 
820 	switch (bio_op(bio)) {
821 	case REQ_OP_READ:
822 		break;
823 	case REQ_OP_WRITE:
824 		if (bio->bi_opf & REQ_ATOMIC) {
825 			status = blk_validate_atomic_write_op_size(q, bio);
826 			if (status != BLK_STS_OK)
827 				goto end_io;
828 		}
829 		break;
830 	case REQ_OP_FLUSH:
831 		/*
832 		 * REQ_OP_FLUSH can't be submitted through bios, it is only
833 		 * synthetized in struct request by the flush state machine.
834 		 */
835 		goto not_supported;
836 	case REQ_OP_DISCARD:
837 		if (!bdev_max_discard_sectors(bdev))
838 			goto not_supported;
839 		break;
840 	case REQ_OP_SECURE_ERASE:
841 		if (!bdev_max_secure_erase_sectors(bdev))
842 			goto not_supported;
843 		break;
844 	case REQ_OP_ZONE_APPEND:
845 		status = blk_check_zone_append(q, bio);
846 		if (status != BLK_STS_OK)
847 			goto end_io;
848 		break;
849 	case REQ_OP_WRITE_ZEROES:
850 		if (!q->limits.max_write_zeroes_sectors)
851 			goto not_supported;
852 		break;
853 	case REQ_OP_ZONE_RESET:
854 	case REQ_OP_ZONE_OPEN:
855 	case REQ_OP_ZONE_CLOSE:
856 	case REQ_OP_ZONE_FINISH:
857 	case REQ_OP_ZONE_RESET_ALL:
858 		if (!bdev_is_zoned(bio->bi_bdev))
859 			goto not_supported;
860 		break;
861 	case REQ_OP_DRV_IN:
862 	case REQ_OP_DRV_OUT:
863 		/*
864 		 * Driver private operations are only used with passthrough
865 		 * requests.
866 		 */
867 		fallthrough;
868 	default:
869 		goto not_supported;
870 	}
871 
872 	if (blk_throtl_bio(bio))
873 		return;
874 	submit_bio_noacct_nocheck(bio);
875 	return;
876 
877 not_supported:
878 	status = BLK_STS_NOTSUPP;
879 end_io:
880 	bio->bi_status = status;
881 	bio_endio(bio);
882 }
883 EXPORT_SYMBOL(submit_bio_noacct);
884 
885 #ifdef CONFIG_BLK_DEV_ZONED
886 /**
887  * blk_bio_is_seq_zoned_write() - Check if @bio requires write serialization.
888  * @bio: Bio to examine.
889  *
890  * Note: REQ_OP_ZONE_APPEND bios do not require serialization.
891  * Note: this function treats conventional zones on a zoned block device as
892  *   sequential zones. This is fine since zoned UFS devices have no conventional
893  *   zones.
894  */
blk_bio_is_seq_zoned_write(struct bio * bio)895 static bool blk_bio_is_seq_zoned_write(struct bio *bio)
896 {
897 	if (!bdev_is_zoned(bio->bi_bdev))
898 		return false;
899 
900 	return bio_op(bio) == REQ_OP_WRITE ||
901 		bio_op(bio) == REQ_OP_WRITE_ZEROES;
902 }
903 #else
blk_bio_is_seq_zoned_write(struct bio * bio)904 static bool blk_bio_is_seq_zoned_write(struct bio *bio)
905 {
906 	return false;
907 }
908 #endif
909 
bio_set_ioprio(struct bio * bio)910 static void bio_set_ioprio(struct bio *bio)
911 {
912 	/*
913 	 * Do not set the I/O priority of sequential zoned write bios because
914 	 * this could lead to reordering by the mq-deadline I/O scheduler and
915 	 * hence to unaligned write errors.
916 	 */
917 	if (blk_bio_is_seq_zoned_write(bio))
918 		return;
919 
920 	/* Nobody set ioprio so far? Initialize it based on task's nice value */
921 	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
922 		bio->bi_ioprio = get_current_ioprio();
923 	blkcg_set_ioprio(bio);
924 }
925 
926 /**
927  * submit_bio - submit a bio to the block device layer for I/O
928  * @bio: The &struct bio which describes the I/O
929  *
930  * submit_bio() is used to submit I/O requests to block devices.  It is passed a
931  * fully set up &struct bio that describes the I/O that needs to be done.  The
932  * bio will be send to the device described by the bi_bdev field.
933  *
934  * The success/failure status of the request, along with notification of
935  * completion, is delivered asynchronously through the ->bi_end_io() callback
936  * in @bio.  The bio must NOT be touched by the caller until ->bi_end_io() has
937  * been called.
938  */
submit_bio(struct bio * bio)939 void submit_bio(struct bio *bio)
940 {
941 	if (bio_op(bio) == REQ_OP_READ) {
942 		task_io_account_read(bio->bi_iter.bi_size);
943 		count_vm_events(PGPGIN, bio_sectors(bio));
944 	} else if (bio_op(bio) == REQ_OP_WRITE) {
945 		count_vm_events(PGPGOUT, bio_sectors(bio));
946 	}
947 
948 	bio_set_ioprio(bio);
949 	submit_bio_noacct(bio);
950 }
951 EXPORT_SYMBOL(submit_bio);
952 
953 /**
954  * bio_poll - poll for BIO completions
955  * @bio: bio to poll for
956  * @iob: batches of IO
957  * @flags: BLK_POLL_* flags that control the behavior
958  *
959  * Poll for completions on queue associated with the bio. Returns number of
960  * completed entries found.
961  *
962  * Note: the caller must either be the context that submitted @bio, or
963  * be in a RCU critical section to prevent freeing of @bio.
964  */
bio_poll(struct bio * bio,struct io_comp_batch * iob,unsigned int flags)965 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
966 {
967 	blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
968 	struct block_device *bdev;
969 	struct request_queue *q;
970 	int ret = 0;
971 
972 	bdev = READ_ONCE(bio->bi_bdev);
973 	if (!bdev)
974 		return 0;
975 
976 	q = bdev_get_queue(bdev);
977 	if (cookie == BLK_QC_T_NONE)
978 		return 0;
979 
980 	blk_flush_plug(current->plug, false);
981 
982 	/*
983 	 * We need to be able to enter a frozen queue, similar to how
984 	 * timeouts also need to do that. If that is blocked, then we can
985 	 * have pending IO when a queue freeze is started, and then the
986 	 * wait for the freeze to finish will wait for polled requests to
987 	 * timeout as the poller is preventer from entering the queue and
988 	 * completing them. As long as we prevent new IO from being queued,
989 	 * that should be all that matters.
990 	 */
991 	if (!percpu_ref_tryget(&q->q_usage_counter))
992 		return 0;
993 	if (queue_is_mq(q)) {
994 		ret = blk_mq_poll(q, cookie, iob, flags);
995 	} else {
996 		struct gendisk *disk = q->disk;
997 
998 		if ((q->limits.features & BLK_FEAT_POLL) && disk &&
999 		    disk->fops->poll_bio)
1000 			ret = disk->fops->poll_bio(bio, iob, flags);
1001 	}
1002 	blk_queue_exit(q);
1003 	return ret;
1004 }
1005 EXPORT_SYMBOL_GPL(bio_poll);
1006 
1007 /*
1008  * Helper to implement file_operations.iopoll.  Requires the bio to be stored
1009  * in iocb->private, and cleared before freeing the bio.
1010  */
iocb_bio_iopoll(struct kiocb * kiocb,struct io_comp_batch * iob,unsigned int flags)1011 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
1012 		    unsigned int flags)
1013 {
1014 	struct bio *bio;
1015 	int ret = 0;
1016 
1017 	/*
1018 	 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
1019 	 * point to a freshly allocated bio at this point.  If that happens
1020 	 * we have a few cases to consider:
1021 	 *
1022 	 *  1) the bio is beeing initialized and bi_bdev is NULL.  We can just
1023 	 *     simply nothing in this case
1024 	 *  2) the bio points to a not poll enabled device.  bio_poll will catch
1025 	 *     this and return 0
1026 	 *  3) the bio points to a poll capable device, including but not
1027 	 *     limited to the one that the original bio pointed to.  In this
1028 	 *     case we will call into the actual poll method and poll for I/O,
1029 	 *     even if we don't need to, but it won't cause harm either.
1030 	 *
1031 	 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
1032 	 * is still allocated. Because partitions hold a reference to the whole
1033 	 * device bdev and thus disk, the disk is also still valid.  Grabbing
1034 	 * a reference to the queue in bio_poll() ensures the hctxs and requests
1035 	 * are still valid as well.
1036 	 */
1037 	rcu_read_lock();
1038 	bio = READ_ONCE(kiocb->private);
1039 	if (bio)
1040 		ret = bio_poll(bio, iob, flags);
1041 	rcu_read_unlock();
1042 
1043 	return ret;
1044 }
1045 EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
1046 
update_io_ticks(struct block_device * part,unsigned long now,bool end)1047 void update_io_ticks(struct block_device *part, unsigned long now, bool end)
1048 {
1049 	unsigned long stamp;
1050 again:
1051 	stamp = READ_ONCE(part->bd_stamp);
1052 	if (unlikely(time_after(now, stamp)) &&
1053 	    likely(try_cmpxchg(&part->bd_stamp, &stamp, now)) &&
1054 	    (end || part_in_flight(part)))
1055 		__part_stat_add(part, io_ticks, now - stamp);
1056 
1057 	if (bdev_is_partition(part)) {
1058 		part = bdev_whole(part);
1059 		goto again;
1060 	}
1061 }
1062 
bdev_start_io_acct(struct block_device * bdev,enum req_op op,unsigned long start_time)1063 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1064 				 unsigned long start_time)
1065 {
1066 	part_stat_lock();
1067 	update_io_ticks(bdev, start_time, false);
1068 	part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
1069 	part_stat_unlock();
1070 
1071 	return start_time;
1072 }
1073 EXPORT_SYMBOL(bdev_start_io_acct);
1074 
1075 /**
1076  * bio_start_io_acct - start I/O accounting for bio based drivers
1077  * @bio:	bio to start account for
1078  *
1079  * Returns the start time that should be passed back to bio_end_io_acct().
1080  */
bio_start_io_acct(struct bio * bio)1081 unsigned long bio_start_io_acct(struct bio *bio)
1082 {
1083 	return bdev_start_io_acct(bio->bi_bdev, bio_op(bio), jiffies);
1084 }
1085 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1086 
bdev_end_io_acct(struct block_device * bdev,enum req_op op,unsigned int sectors,unsigned long start_time)1087 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1088 		      unsigned int sectors, unsigned long start_time)
1089 {
1090 	const int sgrp = op_stat_group(op);
1091 	unsigned long now = READ_ONCE(jiffies);
1092 	unsigned long duration = now - start_time;
1093 
1094 	part_stat_lock();
1095 	update_io_ticks(bdev, now, true);
1096 	part_stat_inc(bdev, ios[sgrp]);
1097 	part_stat_add(bdev, sectors[sgrp], sectors);
1098 	part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
1099 	part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
1100 	part_stat_unlock();
1101 }
1102 EXPORT_SYMBOL(bdev_end_io_acct);
1103 
bio_end_io_acct_remapped(struct bio * bio,unsigned long start_time,struct block_device * orig_bdev)1104 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1105 			      struct block_device *orig_bdev)
1106 {
1107 	bdev_end_io_acct(orig_bdev, bio_op(bio), bio_sectors(bio), start_time);
1108 }
1109 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1110 
1111 /**
1112  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1113  * @q : the queue of the device being checked
1114  *
1115  * Description:
1116  *    Check if underlying low-level drivers of a device are busy.
1117  *    If the drivers want to export their busy state, they must set own
1118  *    exporting function using blk_queue_lld_busy() first.
1119  *
1120  *    Basically, this function is used only by request stacking drivers
1121  *    to stop dispatching requests to underlying devices when underlying
1122  *    devices are busy.  This behavior helps more I/O merging on the queue
1123  *    of the request stacking driver and prevents I/O throughput regression
1124  *    on burst I/O load.
1125  *
1126  * Return:
1127  *    0 - Not busy (The request stacking driver should dispatch request)
1128  *    1 - Busy (The request stacking driver should stop dispatching request)
1129  */
blk_lld_busy(struct request_queue * q)1130 int blk_lld_busy(struct request_queue *q)
1131 {
1132 	if (queue_is_mq(q) && q->mq_ops->busy)
1133 		return q->mq_ops->busy(q);
1134 
1135 	return 0;
1136 }
1137 EXPORT_SYMBOL_GPL(blk_lld_busy);
1138 
kblockd_schedule_work(struct work_struct * work)1139 int kblockd_schedule_work(struct work_struct *work)
1140 {
1141 	return queue_work(kblockd_workqueue, work);
1142 }
1143 EXPORT_SYMBOL(kblockd_schedule_work);
1144 
kblockd_mod_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)1145 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1146 				unsigned long delay)
1147 {
1148 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1149 }
1150 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1151 
blk_start_plug_nr_ios(struct blk_plug * plug,unsigned short nr_ios)1152 void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1153 {
1154 	struct task_struct *tsk = current;
1155 
1156 	/*
1157 	 * If this is a nested plug, don't actually assign it.
1158 	 */
1159 	if (tsk->plug)
1160 		return;
1161 
1162 	plug->cur_ktime = 0;
1163 	rq_list_init(&plug->mq_list);
1164 	rq_list_init(&plug->cached_rqs);
1165 	plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1166 	plug->rq_count = 0;
1167 	plug->multiple_queues = false;
1168 	plug->has_elevator = false;
1169 	INIT_LIST_HEAD(&plug->cb_list);
1170 
1171 	/*
1172 	 * Store ordering should not be needed here, since a potential
1173 	 * preempt will imply a full memory barrier
1174 	 */
1175 	tsk->plug = plug;
1176 }
1177 
1178 /**
1179  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1180  * @plug:	The &struct blk_plug that needs to be initialized
1181  *
1182  * Description:
1183  *   blk_start_plug() indicates to the block layer an intent by the caller
1184  *   to submit multiple I/O requests in a batch.  The block layer may use
1185  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1186  *   is called.  However, the block layer may choose to submit requests
1187  *   before a call to blk_finish_plug() if the number of queued I/Os
1188  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1189  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1190  *   the task schedules (see below).
1191  *
1192  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1193  *   pending I/O should the task end up blocking between blk_start_plug() and
1194  *   blk_finish_plug(). This is important from a performance perspective, but
1195  *   also ensures that we don't deadlock. For instance, if the task is blocking
1196  *   for a memory allocation, memory reclaim could end up wanting to free a
1197  *   page belonging to that request that is currently residing in our private
1198  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1199  *   this kind of deadlock.
1200  */
blk_start_plug(struct blk_plug * plug)1201 void blk_start_plug(struct blk_plug *plug)
1202 {
1203 	blk_start_plug_nr_ios(plug, 1);
1204 }
1205 EXPORT_SYMBOL(blk_start_plug);
1206 
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)1207 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1208 {
1209 	LIST_HEAD(callbacks);
1210 
1211 	while (!list_empty(&plug->cb_list)) {
1212 		list_splice_init(&plug->cb_list, &callbacks);
1213 
1214 		while (!list_empty(&callbacks)) {
1215 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1216 							  struct blk_plug_cb,
1217 							  list);
1218 			list_del(&cb->list);
1219 			cb->callback(cb, from_schedule);
1220 		}
1221 	}
1222 }
1223 
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)1224 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1225 				      int size)
1226 {
1227 	struct blk_plug *plug = current->plug;
1228 	struct blk_plug_cb *cb;
1229 
1230 	if (!plug)
1231 		return NULL;
1232 
1233 	list_for_each_entry(cb, &plug->cb_list, list)
1234 		if (cb->callback == unplug && cb->data == data)
1235 			return cb;
1236 
1237 	/* Not currently on the callback list */
1238 	BUG_ON(size < sizeof(*cb));
1239 	cb = kzalloc(size, GFP_ATOMIC);
1240 	if (cb) {
1241 		cb->data = data;
1242 		cb->callback = unplug;
1243 		list_add(&cb->list, &plug->cb_list);
1244 	}
1245 	return cb;
1246 }
1247 EXPORT_SYMBOL(blk_check_plugged);
1248 
__blk_flush_plug(struct blk_plug * plug,bool from_schedule)1249 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1250 {
1251 	if (!list_empty(&plug->cb_list))
1252 		flush_plug_callbacks(plug, from_schedule);
1253 	blk_mq_flush_plug_list(plug, from_schedule);
1254 	/*
1255 	 * Unconditionally flush out cached requests, even if the unplug
1256 	 * event came from schedule. Since we know hold references to the
1257 	 * queue for cached requests, we don't want a blocked task holding
1258 	 * up a queue freeze/quiesce event.
1259 	 */
1260 	if (unlikely(!rq_list_empty(&plug->cached_rqs)))
1261 		blk_mq_free_plug_rqs(plug);
1262 
1263 	plug->cur_ktime = 0;
1264 	current->flags &= ~PF_BLOCK_TS;
1265 }
1266 
1267 /**
1268  * blk_finish_plug - mark the end of a batch of submitted I/O
1269  * @plug:	The &struct blk_plug passed to blk_start_plug()
1270  *
1271  * Description:
1272  * Indicate that a batch of I/O submissions is complete.  This function
1273  * must be paired with an initial call to blk_start_plug().  The intent
1274  * is to allow the block layer to optimize I/O submission.  See the
1275  * documentation for blk_start_plug() for more information.
1276  */
blk_finish_plug(struct blk_plug * plug)1277 void blk_finish_plug(struct blk_plug *plug)
1278 {
1279 	if (plug == current->plug) {
1280 		__blk_flush_plug(plug, false);
1281 		current->plug = NULL;
1282 	}
1283 }
1284 EXPORT_SYMBOL(blk_finish_plug);
1285 
blk_io_schedule(void)1286 void blk_io_schedule(void)
1287 {
1288 	/* Prevent hang_check timer from firing at us during very long I/O */
1289 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1290 
1291 	if (timeout)
1292 		io_schedule_timeout(timeout);
1293 	else
1294 		io_schedule();
1295 }
1296 EXPORT_SYMBOL_GPL(blk_io_schedule);
1297 
blk_dev_init(void)1298 int __init blk_dev_init(void)
1299 {
1300 	BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
1301 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1302 			sizeof_field(struct request, cmd_flags));
1303 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1304 			sizeof_field(struct bio, bi_opf));
1305 
1306 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1307 	kblockd_workqueue = alloc_workqueue("kblockd",
1308 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1309 	if (!kblockd_workqueue)
1310 		panic("Failed to create kblockd\n");
1311 
1312 	blk_requestq_cachep = KMEM_CACHE(request_queue, SLAB_PANIC);
1313 
1314 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1315 
1316 	return 0;
1317 }
1318