1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-pm.h>
20 #include <linux/blk-integrity.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/part_stat.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/blk-crypto.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/block.h>
46
47 #include "blk.h"
48 #include "blk-mq-sched.h"
49 #include "blk-pm.h"
50 #include "blk-cgroup.h"
51 #include "blk-throttle.h"
52 #include "blk-ioprio.h"
53
54 struct dentry *blk_debugfs_root;
55
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
62 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_queue);
63 EXPORT_TRACEPOINT_SYMBOL_GPL(block_getrq);
64 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_issue);
65 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_merge);
66 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_requeue);
67 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_complete);
68
69 static DEFINE_IDA(blk_queue_ida);
70
71 /*
72 * For queue allocation
73 */
74 static struct kmem_cache *blk_requestq_cachep;
75
76 /*
77 * Controlling structure to kblockd
78 */
79 static struct workqueue_struct *kblockd_workqueue;
80
81 /**
82 * blk_queue_flag_set - atomically set a queue flag
83 * @flag: flag to be set
84 * @q: request queue
85 */
blk_queue_flag_set(unsigned int flag,struct request_queue * q)86 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
87 {
88 set_bit(flag, &q->queue_flags);
89 }
90 EXPORT_SYMBOL(blk_queue_flag_set);
91
92 /**
93 * blk_queue_flag_clear - atomically clear a queue flag
94 * @flag: flag to be cleared
95 * @q: request queue
96 */
blk_queue_flag_clear(unsigned int flag,struct request_queue * q)97 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
98 {
99 clear_bit(flag, &q->queue_flags);
100 }
101 EXPORT_SYMBOL(blk_queue_flag_clear);
102
103 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
104 static const char *const blk_op_name[] = {
105 REQ_OP_NAME(READ),
106 REQ_OP_NAME(WRITE),
107 REQ_OP_NAME(FLUSH),
108 REQ_OP_NAME(DISCARD),
109 REQ_OP_NAME(SECURE_ERASE),
110 REQ_OP_NAME(ZONE_RESET),
111 REQ_OP_NAME(ZONE_RESET_ALL),
112 REQ_OP_NAME(ZONE_OPEN),
113 REQ_OP_NAME(ZONE_CLOSE),
114 REQ_OP_NAME(ZONE_FINISH),
115 REQ_OP_NAME(ZONE_APPEND),
116 REQ_OP_NAME(WRITE_ZEROES),
117 REQ_OP_NAME(DRV_IN),
118 REQ_OP_NAME(DRV_OUT),
119 };
120 #undef REQ_OP_NAME
121
122 /**
123 * blk_op_str - Return string XXX in the REQ_OP_XXX.
124 * @op: REQ_OP_XXX.
125 *
126 * Description: Centralize block layer function to convert REQ_OP_XXX into
127 * string format. Useful in the debugging and tracing bio or request. For
128 * invalid REQ_OP_XXX it returns string "UNKNOWN".
129 */
blk_op_str(enum req_op op)130 inline const char *blk_op_str(enum req_op op)
131 {
132 const char *op_str = "UNKNOWN";
133
134 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
135 op_str = blk_op_name[op];
136
137 return op_str;
138 }
139 EXPORT_SYMBOL_GPL(blk_op_str);
140
141 static const struct {
142 int errno;
143 const char *name;
144 } blk_errors[] = {
145 [BLK_STS_OK] = { 0, "" },
146 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
147 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
148 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
149 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
150 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
151 [BLK_STS_RESV_CONFLICT] = { -EBADE, "reservation conflict" },
152 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
153 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
154 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
155 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
156 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
157 [BLK_STS_OFFLINE] = { -ENODEV, "device offline" },
158
159 /* device mapper special case, should not leak out: */
160 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
161
162 /* zone device specific errors */
163 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
164 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
165
166 /* Command duration limit device-side timeout */
167 [BLK_STS_DURATION_LIMIT] = { -ETIME, "duration limit exceeded" },
168
169 [BLK_STS_INVAL] = { -EINVAL, "invalid" },
170
171 /* everything else not covered above: */
172 [BLK_STS_IOERR] = { -EIO, "I/O" },
173 };
174
errno_to_blk_status(int errno)175 blk_status_t errno_to_blk_status(int errno)
176 {
177 int i;
178
179 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
180 if (blk_errors[i].errno == errno)
181 return (__force blk_status_t)i;
182 }
183
184 return BLK_STS_IOERR;
185 }
186 EXPORT_SYMBOL_GPL(errno_to_blk_status);
187
blk_status_to_errno(blk_status_t status)188 int blk_status_to_errno(blk_status_t status)
189 {
190 int idx = (__force int)status;
191
192 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
193 return -EIO;
194 return blk_errors[idx].errno;
195 }
196 EXPORT_SYMBOL_GPL(blk_status_to_errno);
197
blk_status_to_str(blk_status_t status)198 const char *blk_status_to_str(blk_status_t status)
199 {
200 int idx = (__force int)status;
201
202 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
203 return "<null>";
204 return blk_errors[idx].name;
205 }
206 EXPORT_SYMBOL_GPL(blk_status_to_str);
207
208 /**
209 * blk_sync_queue - cancel any pending callbacks on a queue
210 * @q: the queue
211 *
212 * Description:
213 * The block layer may perform asynchronous callback activity
214 * on a queue, such as calling the unplug function after a timeout.
215 * A block device may call blk_sync_queue to ensure that any
216 * such activity is cancelled, thus allowing it to release resources
217 * that the callbacks might use. The caller must already have made sure
218 * that its ->submit_bio will not re-add plugging prior to calling
219 * this function.
220 *
221 * This function does not cancel any asynchronous activity arising
222 * out of elevator or throttling code. That would require elevator_exit()
223 * and blkcg_exit_queue() to be called with queue lock initialized.
224 *
225 */
blk_sync_queue(struct request_queue * q)226 void blk_sync_queue(struct request_queue *q)
227 {
228 del_timer_sync(&q->timeout);
229 cancel_work_sync(&q->timeout_work);
230 }
231 EXPORT_SYMBOL(blk_sync_queue);
232
233 /**
234 * blk_set_pm_only - increment pm_only counter
235 * @q: request queue pointer
236 */
blk_set_pm_only(struct request_queue * q)237 void blk_set_pm_only(struct request_queue *q)
238 {
239 atomic_inc(&q->pm_only);
240 }
241 EXPORT_SYMBOL_GPL(blk_set_pm_only);
242
blk_clear_pm_only(struct request_queue * q)243 void blk_clear_pm_only(struct request_queue *q)
244 {
245 int pm_only;
246
247 pm_only = atomic_dec_return(&q->pm_only);
248 WARN_ON_ONCE(pm_only < 0);
249 if (pm_only == 0)
250 wake_up_all(&q->mq_freeze_wq);
251 }
252 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
253
blk_free_queue_rcu(struct rcu_head * rcu_head)254 static void blk_free_queue_rcu(struct rcu_head *rcu_head)
255 {
256 struct request_queue *q = container_of(rcu_head,
257 struct request_queue, rcu_head);
258
259 percpu_ref_exit(&q->q_usage_counter);
260 kmem_cache_free(blk_requestq_cachep, q);
261 }
262
blk_free_queue(struct request_queue * q)263 static void blk_free_queue(struct request_queue *q)
264 {
265 blk_free_queue_stats(q->stats);
266 if (queue_is_mq(q))
267 blk_mq_release(q);
268
269 ida_free(&blk_queue_ida, q->id);
270 lockdep_unregister_key(&q->io_lock_cls_key);
271 lockdep_unregister_key(&q->q_lock_cls_key);
272 call_rcu(&q->rcu_head, blk_free_queue_rcu);
273 }
274
275 /**
276 * blk_put_queue - decrement the request_queue refcount
277 * @q: the request_queue structure to decrement the refcount for
278 *
279 * Decrements the refcount of the request_queue and free it when the refcount
280 * reaches 0.
281 */
blk_put_queue(struct request_queue * q)282 void blk_put_queue(struct request_queue *q)
283 {
284 if (refcount_dec_and_test(&q->refs))
285 blk_free_queue(q);
286 }
287 EXPORT_SYMBOL(blk_put_queue);
288
blk_queue_start_drain(struct request_queue * q)289 bool blk_queue_start_drain(struct request_queue *q)
290 {
291 /*
292 * When queue DYING flag is set, we need to block new req
293 * entering queue, so we call blk_freeze_queue_start() to
294 * prevent I/O from crossing blk_queue_enter().
295 */
296 bool freeze = __blk_freeze_queue_start(q, current);
297 if (queue_is_mq(q))
298 blk_mq_wake_waiters(q);
299 /* Make blk_queue_enter() reexamine the DYING flag. */
300 wake_up_all(&q->mq_freeze_wq);
301
302 return freeze;
303 }
304
305 /**
306 * blk_queue_enter() - try to increase q->q_usage_counter
307 * @q: request queue pointer
308 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
309 */
blk_queue_enter(struct request_queue * q,blk_mq_req_flags_t flags)310 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
311 {
312 const bool pm = flags & BLK_MQ_REQ_PM;
313
314 while (!blk_try_enter_queue(q, pm)) {
315 if (flags & BLK_MQ_REQ_NOWAIT)
316 return -EAGAIN;
317
318 /*
319 * read pair of barrier in blk_freeze_queue_start(), we need to
320 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
321 * reading .mq_freeze_depth or queue dying flag, otherwise the
322 * following wait may never return if the two reads are
323 * reordered.
324 */
325 smp_rmb();
326 wait_event(q->mq_freeze_wq,
327 (!q->mq_freeze_depth &&
328 blk_pm_resume_queue(pm, q)) ||
329 blk_queue_dying(q));
330 if (blk_queue_dying(q))
331 return -ENODEV;
332 }
333
334 rwsem_acquire_read(&q->q_lockdep_map, 0, 0, _RET_IP_);
335 rwsem_release(&q->q_lockdep_map, _RET_IP_);
336 return 0;
337 }
338
__bio_queue_enter(struct request_queue * q,struct bio * bio)339 int __bio_queue_enter(struct request_queue *q, struct bio *bio)
340 {
341 while (!blk_try_enter_queue(q, false)) {
342 struct gendisk *disk = bio->bi_bdev->bd_disk;
343
344 if (bio->bi_opf & REQ_NOWAIT) {
345 if (test_bit(GD_DEAD, &disk->state))
346 goto dead;
347 bio_wouldblock_error(bio);
348 return -EAGAIN;
349 }
350
351 /*
352 * read pair of barrier in blk_freeze_queue_start(), we need to
353 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
354 * reading .mq_freeze_depth or queue dying flag, otherwise the
355 * following wait may never return if the two reads are
356 * reordered.
357 */
358 smp_rmb();
359 wait_event(q->mq_freeze_wq,
360 (!q->mq_freeze_depth &&
361 blk_pm_resume_queue(false, q)) ||
362 test_bit(GD_DEAD, &disk->state));
363 if (test_bit(GD_DEAD, &disk->state))
364 goto dead;
365 }
366
367 rwsem_acquire_read(&q->io_lockdep_map, 0, 0, _RET_IP_);
368 rwsem_release(&q->io_lockdep_map, _RET_IP_);
369 return 0;
370 dead:
371 bio_io_error(bio);
372 return -ENODEV;
373 }
374
blk_queue_exit(struct request_queue * q)375 void blk_queue_exit(struct request_queue *q)
376 {
377 percpu_ref_put(&q->q_usage_counter);
378 }
379
blk_queue_usage_counter_release(struct percpu_ref * ref)380 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
381 {
382 struct request_queue *q =
383 container_of(ref, struct request_queue, q_usage_counter);
384
385 wake_up_all(&q->mq_freeze_wq);
386 }
387
blk_rq_timed_out_timer(struct timer_list * t)388 static void blk_rq_timed_out_timer(struct timer_list *t)
389 {
390 struct request_queue *q = from_timer(q, t, timeout);
391
392 kblockd_schedule_work(&q->timeout_work);
393 }
394
blk_timeout_work(struct work_struct * work)395 static void blk_timeout_work(struct work_struct *work)
396 {
397 }
398
blk_alloc_queue(struct queue_limits * lim,int node_id)399 struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id)
400 {
401 struct request_queue *q;
402 int error;
403
404 q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
405 node_id);
406 if (!q)
407 return ERR_PTR(-ENOMEM);
408
409 q->last_merge = NULL;
410
411 q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
412 if (q->id < 0) {
413 error = q->id;
414 goto fail_q;
415 }
416
417 q->stats = blk_alloc_queue_stats();
418 if (!q->stats) {
419 error = -ENOMEM;
420 goto fail_id;
421 }
422
423 error = blk_set_default_limits(lim);
424 if (error)
425 goto fail_stats;
426 q->limits = *lim;
427
428 q->node = node_id;
429
430 atomic_set(&q->nr_active_requests_shared_tags, 0);
431
432 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
433 INIT_WORK(&q->timeout_work, blk_timeout_work);
434 INIT_LIST_HEAD(&q->icq_list);
435
436 refcount_set(&q->refs, 1);
437 mutex_init(&q->debugfs_mutex);
438 mutex_init(&q->sysfs_lock);
439 mutex_init(&q->sysfs_dir_lock);
440 mutex_init(&q->limits_lock);
441 mutex_init(&q->rq_qos_mutex);
442 spin_lock_init(&q->queue_lock);
443
444 init_waitqueue_head(&q->mq_freeze_wq);
445 mutex_init(&q->mq_freeze_lock);
446
447 blkg_init_queue(q);
448
449 /*
450 * Init percpu_ref in atomic mode so that it's faster to shutdown.
451 * See blk_register_queue() for details.
452 */
453 error = percpu_ref_init(&q->q_usage_counter,
454 blk_queue_usage_counter_release,
455 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL);
456 if (error)
457 goto fail_stats;
458 lockdep_register_key(&q->io_lock_cls_key);
459 lockdep_register_key(&q->q_lock_cls_key);
460 lockdep_init_map(&q->io_lockdep_map, "&q->q_usage_counter(io)",
461 &q->io_lock_cls_key, 0);
462 lockdep_init_map(&q->q_lockdep_map, "&q->q_usage_counter(queue)",
463 &q->q_lock_cls_key, 0);
464
465 q->nr_requests = BLKDEV_DEFAULT_RQ;
466
467 return q;
468
469 fail_stats:
470 blk_free_queue_stats(q->stats);
471 fail_id:
472 ida_free(&blk_queue_ida, q->id);
473 fail_q:
474 kmem_cache_free(blk_requestq_cachep, q);
475 return ERR_PTR(error);
476 }
477
478 /**
479 * blk_get_queue - increment the request_queue refcount
480 * @q: the request_queue structure to increment the refcount for
481 *
482 * Increment the refcount of the request_queue kobject.
483 *
484 * Context: Any context.
485 */
blk_get_queue(struct request_queue * q)486 bool blk_get_queue(struct request_queue *q)
487 {
488 if (unlikely(blk_queue_dying(q)))
489 return false;
490 refcount_inc(&q->refs);
491 return true;
492 }
493 EXPORT_SYMBOL(blk_get_queue);
494
495 #ifdef CONFIG_FAIL_MAKE_REQUEST
496
497 static DECLARE_FAULT_ATTR(fail_make_request);
498
setup_fail_make_request(char * str)499 static int __init setup_fail_make_request(char *str)
500 {
501 return setup_fault_attr(&fail_make_request, str);
502 }
503 __setup("fail_make_request=", setup_fail_make_request);
504
should_fail_request(struct block_device * part,unsigned int bytes)505 bool should_fail_request(struct block_device *part, unsigned int bytes)
506 {
507 return bdev_test_flag(part, BD_MAKE_IT_FAIL) &&
508 should_fail(&fail_make_request, bytes);
509 }
510
fail_make_request_debugfs(void)511 static int __init fail_make_request_debugfs(void)
512 {
513 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
514 NULL, &fail_make_request);
515
516 return PTR_ERR_OR_ZERO(dir);
517 }
518
519 late_initcall(fail_make_request_debugfs);
520 #endif /* CONFIG_FAIL_MAKE_REQUEST */
521
bio_check_ro(struct bio * bio)522 static inline void bio_check_ro(struct bio *bio)
523 {
524 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
525 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
526 return;
527
528 if (bdev_test_flag(bio->bi_bdev, BD_RO_WARNED))
529 return;
530
531 bdev_set_flag(bio->bi_bdev, BD_RO_WARNED);
532
533 /*
534 * Use ioctl to set underlying disk of raid/dm to read-only
535 * will trigger this.
536 */
537 pr_warn("Trying to write to read-only block-device %pg\n",
538 bio->bi_bdev);
539 }
540 }
541
should_fail_bio(struct bio * bio)542 static noinline int should_fail_bio(struct bio *bio)
543 {
544 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
545 return -EIO;
546 return 0;
547 }
548 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
549
550 /*
551 * Check whether this bio extends beyond the end of the device or partition.
552 * This may well happen - the kernel calls bread() without checking the size of
553 * the device, e.g., when mounting a file system.
554 */
bio_check_eod(struct bio * bio)555 static inline int bio_check_eod(struct bio *bio)
556 {
557 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
558 unsigned int nr_sectors = bio_sectors(bio);
559
560 if (nr_sectors &&
561 (nr_sectors > maxsector ||
562 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
563 pr_info_ratelimited("%s: attempt to access beyond end of device\n"
564 "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
565 current->comm, bio->bi_bdev, bio->bi_opf,
566 bio->bi_iter.bi_sector, nr_sectors, maxsector);
567 return -EIO;
568 }
569 return 0;
570 }
571
572 /*
573 * Remap block n of partition p to block n+start(p) of the disk.
574 */
blk_partition_remap(struct bio * bio)575 static int blk_partition_remap(struct bio *bio)
576 {
577 struct block_device *p = bio->bi_bdev;
578
579 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
580 return -EIO;
581 if (bio_sectors(bio)) {
582 bio->bi_iter.bi_sector += p->bd_start_sect;
583 trace_block_bio_remap(bio, p->bd_dev,
584 bio->bi_iter.bi_sector -
585 p->bd_start_sect);
586 }
587 bio_set_flag(bio, BIO_REMAPPED);
588 return 0;
589 }
590
591 /*
592 * Check write append to a zoned block device.
593 */
blk_check_zone_append(struct request_queue * q,struct bio * bio)594 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
595 struct bio *bio)
596 {
597 int nr_sectors = bio_sectors(bio);
598
599 /* Only applicable to zoned block devices */
600 if (!bdev_is_zoned(bio->bi_bdev))
601 return BLK_STS_NOTSUPP;
602
603 /* The bio sector must point to the start of a sequential zone */
604 if (!bdev_is_zone_start(bio->bi_bdev, bio->bi_iter.bi_sector))
605 return BLK_STS_IOERR;
606
607 /*
608 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
609 * split and could result in non-contiguous sectors being written in
610 * different zones.
611 */
612 if (nr_sectors > q->limits.chunk_sectors)
613 return BLK_STS_IOERR;
614
615 /* Make sure the BIO is small enough and will not get split */
616 if (nr_sectors > queue_max_zone_append_sectors(q))
617 return BLK_STS_IOERR;
618
619 bio->bi_opf |= REQ_NOMERGE;
620
621 return BLK_STS_OK;
622 }
623
__submit_bio(struct bio * bio)624 static void __submit_bio(struct bio *bio)
625 {
626 /* If plug is not used, add new plug here to cache nsecs time. */
627 struct blk_plug plug;
628
629 if (unlikely(!blk_crypto_bio_prep(&bio)))
630 return;
631
632 blk_start_plug(&plug);
633
634 if (!bdev_test_flag(bio->bi_bdev, BD_HAS_SUBMIT_BIO)) {
635 blk_mq_submit_bio(bio);
636 } else if (likely(bio_queue_enter(bio) == 0)) {
637 struct gendisk *disk = bio->bi_bdev->bd_disk;
638
639 if ((bio->bi_opf & REQ_POLLED) &&
640 !(disk->queue->limits.features & BLK_FEAT_POLL)) {
641 bio->bi_status = BLK_STS_NOTSUPP;
642 bio_endio(bio);
643 } else {
644 disk->fops->submit_bio(bio);
645 }
646 blk_queue_exit(disk->queue);
647 }
648
649 blk_finish_plug(&plug);
650 }
651
652 /*
653 * The loop in this function may be a bit non-obvious, and so deserves some
654 * explanation:
655 *
656 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
657 * that), so we have a list with a single bio.
658 * - We pretend that we have just taken it off a longer list, so we assign
659 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
660 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
661 * bios through a recursive call to submit_bio_noacct. If it did, we find a
662 * non-NULL value in bio_list and re-enter the loop from the top.
663 * - In this case we really did just take the bio of the top of the list (no
664 * pretending) and so remove it from bio_list, and call into ->submit_bio()
665 * again.
666 *
667 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
668 * bio_list_on_stack[1] contains bios that were submitted before the current
669 * ->submit_bio, but that haven't been processed yet.
670 */
__submit_bio_noacct(struct bio * bio)671 static void __submit_bio_noacct(struct bio *bio)
672 {
673 struct bio_list bio_list_on_stack[2];
674
675 BUG_ON(bio->bi_next);
676
677 bio_list_init(&bio_list_on_stack[0]);
678 current->bio_list = bio_list_on_stack;
679
680 do {
681 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
682 struct bio_list lower, same;
683
684 /*
685 * Create a fresh bio_list for all subordinate requests.
686 */
687 bio_list_on_stack[1] = bio_list_on_stack[0];
688 bio_list_init(&bio_list_on_stack[0]);
689
690 __submit_bio(bio);
691
692 /*
693 * Sort new bios into those for a lower level and those for the
694 * same level.
695 */
696 bio_list_init(&lower);
697 bio_list_init(&same);
698 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
699 if (q == bdev_get_queue(bio->bi_bdev))
700 bio_list_add(&same, bio);
701 else
702 bio_list_add(&lower, bio);
703
704 /*
705 * Now assemble so we handle the lowest level first.
706 */
707 bio_list_merge(&bio_list_on_stack[0], &lower);
708 bio_list_merge(&bio_list_on_stack[0], &same);
709 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
710 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
711
712 current->bio_list = NULL;
713 }
714
__submit_bio_noacct_mq(struct bio * bio)715 static void __submit_bio_noacct_mq(struct bio *bio)
716 {
717 struct bio_list bio_list[2] = { };
718
719 current->bio_list = bio_list;
720
721 do {
722 __submit_bio(bio);
723 } while ((bio = bio_list_pop(&bio_list[0])));
724
725 current->bio_list = NULL;
726 }
727
submit_bio_noacct_nocheck(struct bio * bio)728 void submit_bio_noacct_nocheck(struct bio *bio)
729 {
730 blk_cgroup_bio_start(bio);
731 blkcg_bio_issue_init(bio);
732
733 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
734 trace_block_bio_queue(bio);
735 /*
736 * Now that enqueuing has been traced, we need to trace
737 * completion as well.
738 */
739 bio_set_flag(bio, BIO_TRACE_COMPLETION);
740 }
741
742 /*
743 * We only want one ->submit_bio to be active at a time, else stack
744 * usage with stacked devices could be a problem. Use current->bio_list
745 * to collect a list of requests submited by a ->submit_bio method while
746 * it is active, and then process them after it returned.
747 */
748 if (current->bio_list)
749 bio_list_add(¤t->bio_list[0], bio);
750 else if (!bdev_test_flag(bio->bi_bdev, BD_HAS_SUBMIT_BIO))
751 __submit_bio_noacct_mq(bio);
752 else
753 __submit_bio_noacct(bio);
754 }
755
blk_validate_atomic_write_op_size(struct request_queue * q,struct bio * bio)756 static blk_status_t blk_validate_atomic_write_op_size(struct request_queue *q,
757 struct bio *bio)
758 {
759 if (bio->bi_iter.bi_size > queue_atomic_write_unit_max_bytes(q))
760 return BLK_STS_INVAL;
761
762 if (bio->bi_iter.bi_size % queue_atomic_write_unit_min_bytes(q))
763 return BLK_STS_INVAL;
764
765 return BLK_STS_OK;
766 }
767
768 /**
769 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
770 * @bio: The bio describing the location in memory and on the device.
771 *
772 * This is a version of submit_bio() that shall only be used for I/O that is
773 * resubmitted to lower level drivers by stacking block drivers. All file
774 * systems and other upper level users of the block layer should use
775 * submit_bio() instead.
776 */
submit_bio_noacct(struct bio * bio)777 void submit_bio_noacct(struct bio *bio)
778 {
779 struct block_device *bdev = bio->bi_bdev;
780 struct request_queue *q = bdev_get_queue(bdev);
781 blk_status_t status = BLK_STS_IOERR;
782
783 might_sleep();
784
785 /*
786 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
787 * if queue does not support NOWAIT.
788 */
789 if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
790 goto not_supported;
791
792 if (should_fail_bio(bio))
793 goto end_io;
794 bio_check_ro(bio);
795 if (!bio_flagged(bio, BIO_REMAPPED)) {
796 if (unlikely(bio_check_eod(bio)))
797 goto end_io;
798 if (bdev_is_partition(bdev) &&
799 unlikely(blk_partition_remap(bio)))
800 goto end_io;
801 }
802
803 /*
804 * Filter flush bio's early so that bio based drivers without flush
805 * support don't have to worry about them.
806 */
807 if (op_is_flush(bio->bi_opf)) {
808 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE &&
809 bio_op(bio) != REQ_OP_ZONE_APPEND))
810 goto end_io;
811 if (!bdev_write_cache(bdev)) {
812 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
813 if (!bio_sectors(bio)) {
814 status = BLK_STS_OK;
815 goto end_io;
816 }
817 }
818 }
819
820 switch (bio_op(bio)) {
821 case REQ_OP_READ:
822 break;
823 case REQ_OP_WRITE:
824 if (bio->bi_opf & REQ_ATOMIC) {
825 status = blk_validate_atomic_write_op_size(q, bio);
826 if (status != BLK_STS_OK)
827 goto end_io;
828 }
829 break;
830 case REQ_OP_FLUSH:
831 /*
832 * REQ_OP_FLUSH can't be submitted through bios, it is only
833 * synthetized in struct request by the flush state machine.
834 */
835 goto not_supported;
836 case REQ_OP_DISCARD:
837 if (!bdev_max_discard_sectors(bdev))
838 goto not_supported;
839 break;
840 case REQ_OP_SECURE_ERASE:
841 if (!bdev_max_secure_erase_sectors(bdev))
842 goto not_supported;
843 break;
844 case REQ_OP_ZONE_APPEND:
845 status = blk_check_zone_append(q, bio);
846 if (status != BLK_STS_OK)
847 goto end_io;
848 break;
849 case REQ_OP_WRITE_ZEROES:
850 if (!q->limits.max_write_zeroes_sectors)
851 goto not_supported;
852 break;
853 case REQ_OP_ZONE_RESET:
854 case REQ_OP_ZONE_OPEN:
855 case REQ_OP_ZONE_CLOSE:
856 case REQ_OP_ZONE_FINISH:
857 case REQ_OP_ZONE_RESET_ALL:
858 if (!bdev_is_zoned(bio->bi_bdev))
859 goto not_supported;
860 break;
861 case REQ_OP_DRV_IN:
862 case REQ_OP_DRV_OUT:
863 /*
864 * Driver private operations are only used with passthrough
865 * requests.
866 */
867 fallthrough;
868 default:
869 goto not_supported;
870 }
871
872 if (blk_throtl_bio(bio))
873 return;
874 submit_bio_noacct_nocheck(bio);
875 return;
876
877 not_supported:
878 status = BLK_STS_NOTSUPP;
879 end_io:
880 bio->bi_status = status;
881 bio_endio(bio);
882 }
883 EXPORT_SYMBOL(submit_bio_noacct);
884
885 #ifdef CONFIG_BLK_DEV_ZONED
886 /**
887 * blk_bio_is_seq_zoned_write() - Check if @bio requires write serialization.
888 * @bio: Bio to examine.
889 *
890 * Note: REQ_OP_ZONE_APPEND bios do not require serialization.
891 * Note: this function treats conventional zones on a zoned block device as
892 * sequential zones. This is fine since zoned UFS devices have no conventional
893 * zones.
894 */
blk_bio_is_seq_zoned_write(struct bio * bio)895 static bool blk_bio_is_seq_zoned_write(struct bio *bio)
896 {
897 if (!bdev_is_zoned(bio->bi_bdev))
898 return false;
899
900 return bio_op(bio) == REQ_OP_WRITE ||
901 bio_op(bio) == REQ_OP_WRITE_ZEROES;
902 }
903 #else
blk_bio_is_seq_zoned_write(struct bio * bio)904 static bool blk_bio_is_seq_zoned_write(struct bio *bio)
905 {
906 return false;
907 }
908 #endif
909
bio_set_ioprio(struct bio * bio)910 static void bio_set_ioprio(struct bio *bio)
911 {
912 /*
913 * Do not set the I/O priority of sequential zoned write bios because
914 * this could lead to reordering by the mq-deadline I/O scheduler and
915 * hence to unaligned write errors.
916 */
917 if (blk_bio_is_seq_zoned_write(bio))
918 return;
919
920 /* Nobody set ioprio so far? Initialize it based on task's nice value */
921 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
922 bio->bi_ioprio = get_current_ioprio();
923 blkcg_set_ioprio(bio);
924 }
925
926 /**
927 * submit_bio - submit a bio to the block device layer for I/O
928 * @bio: The &struct bio which describes the I/O
929 *
930 * submit_bio() is used to submit I/O requests to block devices. It is passed a
931 * fully set up &struct bio that describes the I/O that needs to be done. The
932 * bio will be send to the device described by the bi_bdev field.
933 *
934 * The success/failure status of the request, along with notification of
935 * completion, is delivered asynchronously through the ->bi_end_io() callback
936 * in @bio. The bio must NOT be touched by the caller until ->bi_end_io() has
937 * been called.
938 */
submit_bio(struct bio * bio)939 void submit_bio(struct bio *bio)
940 {
941 if (bio_op(bio) == REQ_OP_READ) {
942 task_io_account_read(bio->bi_iter.bi_size);
943 count_vm_events(PGPGIN, bio_sectors(bio));
944 } else if (bio_op(bio) == REQ_OP_WRITE) {
945 count_vm_events(PGPGOUT, bio_sectors(bio));
946 }
947
948 bio_set_ioprio(bio);
949 submit_bio_noacct(bio);
950 }
951 EXPORT_SYMBOL(submit_bio);
952
953 /**
954 * bio_poll - poll for BIO completions
955 * @bio: bio to poll for
956 * @iob: batches of IO
957 * @flags: BLK_POLL_* flags that control the behavior
958 *
959 * Poll for completions on queue associated with the bio. Returns number of
960 * completed entries found.
961 *
962 * Note: the caller must either be the context that submitted @bio, or
963 * be in a RCU critical section to prevent freeing of @bio.
964 */
bio_poll(struct bio * bio,struct io_comp_batch * iob,unsigned int flags)965 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
966 {
967 blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
968 struct block_device *bdev;
969 struct request_queue *q;
970 int ret = 0;
971
972 bdev = READ_ONCE(bio->bi_bdev);
973 if (!bdev)
974 return 0;
975
976 q = bdev_get_queue(bdev);
977 if (cookie == BLK_QC_T_NONE)
978 return 0;
979
980 blk_flush_plug(current->plug, false);
981
982 /*
983 * We need to be able to enter a frozen queue, similar to how
984 * timeouts also need to do that. If that is blocked, then we can
985 * have pending IO when a queue freeze is started, and then the
986 * wait for the freeze to finish will wait for polled requests to
987 * timeout as the poller is preventer from entering the queue and
988 * completing them. As long as we prevent new IO from being queued,
989 * that should be all that matters.
990 */
991 if (!percpu_ref_tryget(&q->q_usage_counter))
992 return 0;
993 if (queue_is_mq(q)) {
994 ret = blk_mq_poll(q, cookie, iob, flags);
995 } else {
996 struct gendisk *disk = q->disk;
997
998 if ((q->limits.features & BLK_FEAT_POLL) && disk &&
999 disk->fops->poll_bio)
1000 ret = disk->fops->poll_bio(bio, iob, flags);
1001 }
1002 blk_queue_exit(q);
1003 return ret;
1004 }
1005 EXPORT_SYMBOL_GPL(bio_poll);
1006
1007 /*
1008 * Helper to implement file_operations.iopoll. Requires the bio to be stored
1009 * in iocb->private, and cleared before freeing the bio.
1010 */
iocb_bio_iopoll(struct kiocb * kiocb,struct io_comp_batch * iob,unsigned int flags)1011 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
1012 unsigned int flags)
1013 {
1014 struct bio *bio;
1015 int ret = 0;
1016
1017 /*
1018 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
1019 * point to a freshly allocated bio at this point. If that happens
1020 * we have a few cases to consider:
1021 *
1022 * 1) the bio is beeing initialized and bi_bdev is NULL. We can just
1023 * simply nothing in this case
1024 * 2) the bio points to a not poll enabled device. bio_poll will catch
1025 * this and return 0
1026 * 3) the bio points to a poll capable device, including but not
1027 * limited to the one that the original bio pointed to. In this
1028 * case we will call into the actual poll method and poll for I/O,
1029 * even if we don't need to, but it won't cause harm either.
1030 *
1031 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
1032 * is still allocated. Because partitions hold a reference to the whole
1033 * device bdev and thus disk, the disk is also still valid. Grabbing
1034 * a reference to the queue in bio_poll() ensures the hctxs and requests
1035 * are still valid as well.
1036 */
1037 rcu_read_lock();
1038 bio = READ_ONCE(kiocb->private);
1039 if (bio)
1040 ret = bio_poll(bio, iob, flags);
1041 rcu_read_unlock();
1042
1043 return ret;
1044 }
1045 EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
1046
update_io_ticks(struct block_device * part,unsigned long now,bool end)1047 void update_io_ticks(struct block_device *part, unsigned long now, bool end)
1048 {
1049 unsigned long stamp;
1050 again:
1051 stamp = READ_ONCE(part->bd_stamp);
1052 if (unlikely(time_after(now, stamp)) &&
1053 likely(try_cmpxchg(&part->bd_stamp, &stamp, now)) &&
1054 (end || part_in_flight(part)))
1055 __part_stat_add(part, io_ticks, now - stamp);
1056
1057 if (bdev_is_partition(part)) {
1058 part = bdev_whole(part);
1059 goto again;
1060 }
1061 }
1062
bdev_start_io_acct(struct block_device * bdev,enum req_op op,unsigned long start_time)1063 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1064 unsigned long start_time)
1065 {
1066 part_stat_lock();
1067 update_io_ticks(bdev, start_time, false);
1068 part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
1069 part_stat_unlock();
1070
1071 return start_time;
1072 }
1073 EXPORT_SYMBOL(bdev_start_io_acct);
1074
1075 /**
1076 * bio_start_io_acct - start I/O accounting for bio based drivers
1077 * @bio: bio to start account for
1078 *
1079 * Returns the start time that should be passed back to bio_end_io_acct().
1080 */
bio_start_io_acct(struct bio * bio)1081 unsigned long bio_start_io_acct(struct bio *bio)
1082 {
1083 return bdev_start_io_acct(bio->bi_bdev, bio_op(bio), jiffies);
1084 }
1085 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1086
bdev_end_io_acct(struct block_device * bdev,enum req_op op,unsigned int sectors,unsigned long start_time)1087 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1088 unsigned int sectors, unsigned long start_time)
1089 {
1090 const int sgrp = op_stat_group(op);
1091 unsigned long now = READ_ONCE(jiffies);
1092 unsigned long duration = now - start_time;
1093
1094 part_stat_lock();
1095 update_io_ticks(bdev, now, true);
1096 part_stat_inc(bdev, ios[sgrp]);
1097 part_stat_add(bdev, sectors[sgrp], sectors);
1098 part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
1099 part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
1100 part_stat_unlock();
1101 }
1102 EXPORT_SYMBOL(bdev_end_io_acct);
1103
bio_end_io_acct_remapped(struct bio * bio,unsigned long start_time,struct block_device * orig_bdev)1104 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1105 struct block_device *orig_bdev)
1106 {
1107 bdev_end_io_acct(orig_bdev, bio_op(bio), bio_sectors(bio), start_time);
1108 }
1109 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1110
1111 /**
1112 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1113 * @q : the queue of the device being checked
1114 *
1115 * Description:
1116 * Check if underlying low-level drivers of a device are busy.
1117 * If the drivers want to export their busy state, they must set own
1118 * exporting function using blk_queue_lld_busy() first.
1119 *
1120 * Basically, this function is used only by request stacking drivers
1121 * to stop dispatching requests to underlying devices when underlying
1122 * devices are busy. This behavior helps more I/O merging on the queue
1123 * of the request stacking driver and prevents I/O throughput regression
1124 * on burst I/O load.
1125 *
1126 * Return:
1127 * 0 - Not busy (The request stacking driver should dispatch request)
1128 * 1 - Busy (The request stacking driver should stop dispatching request)
1129 */
blk_lld_busy(struct request_queue * q)1130 int blk_lld_busy(struct request_queue *q)
1131 {
1132 if (queue_is_mq(q) && q->mq_ops->busy)
1133 return q->mq_ops->busy(q);
1134
1135 return 0;
1136 }
1137 EXPORT_SYMBOL_GPL(blk_lld_busy);
1138
kblockd_schedule_work(struct work_struct * work)1139 int kblockd_schedule_work(struct work_struct *work)
1140 {
1141 return queue_work(kblockd_workqueue, work);
1142 }
1143 EXPORT_SYMBOL(kblockd_schedule_work);
1144
kblockd_mod_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)1145 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1146 unsigned long delay)
1147 {
1148 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1149 }
1150 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1151
blk_start_plug_nr_ios(struct blk_plug * plug,unsigned short nr_ios)1152 void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1153 {
1154 struct task_struct *tsk = current;
1155
1156 /*
1157 * If this is a nested plug, don't actually assign it.
1158 */
1159 if (tsk->plug)
1160 return;
1161
1162 plug->cur_ktime = 0;
1163 rq_list_init(&plug->mq_list);
1164 rq_list_init(&plug->cached_rqs);
1165 plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1166 plug->rq_count = 0;
1167 plug->multiple_queues = false;
1168 plug->has_elevator = false;
1169 INIT_LIST_HEAD(&plug->cb_list);
1170
1171 /*
1172 * Store ordering should not be needed here, since a potential
1173 * preempt will imply a full memory barrier
1174 */
1175 tsk->plug = plug;
1176 }
1177
1178 /**
1179 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1180 * @plug: The &struct blk_plug that needs to be initialized
1181 *
1182 * Description:
1183 * blk_start_plug() indicates to the block layer an intent by the caller
1184 * to submit multiple I/O requests in a batch. The block layer may use
1185 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1186 * is called. However, the block layer may choose to submit requests
1187 * before a call to blk_finish_plug() if the number of queued I/Os
1188 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1189 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1190 * the task schedules (see below).
1191 *
1192 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1193 * pending I/O should the task end up blocking between blk_start_plug() and
1194 * blk_finish_plug(). This is important from a performance perspective, but
1195 * also ensures that we don't deadlock. For instance, if the task is blocking
1196 * for a memory allocation, memory reclaim could end up wanting to free a
1197 * page belonging to that request that is currently residing in our private
1198 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1199 * this kind of deadlock.
1200 */
blk_start_plug(struct blk_plug * plug)1201 void blk_start_plug(struct blk_plug *plug)
1202 {
1203 blk_start_plug_nr_ios(plug, 1);
1204 }
1205 EXPORT_SYMBOL(blk_start_plug);
1206
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)1207 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1208 {
1209 LIST_HEAD(callbacks);
1210
1211 while (!list_empty(&plug->cb_list)) {
1212 list_splice_init(&plug->cb_list, &callbacks);
1213
1214 while (!list_empty(&callbacks)) {
1215 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1216 struct blk_plug_cb,
1217 list);
1218 list_del(&cb->list);
1219 cb->callback(cb, from_schedule);
1220 }
1221 }
1222 }
1223
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)1224 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1225 int size)
1226 {
1227 struct blk_plug *plug = current->plug;
1228 struct blk_plug_cb *cb;
1229
1230 if (!plug)
1231 return NULL;
1232
1233 list_for_each_entry(cb, &plug->cb_list, list)
1234 if (cb->callback == unplug && cb->data == data)
1235 return cb;
1236
1237 /* Not currently on the callback list */
1238 BUG_ON(size < sizeof(*cb));
1239 cb = kzalloc(size, GFP_ATOMIC);
1240 if (cb) {
1241 cb->data = data;
1242 cb->callback = unplug;
1243 list_add(&cb->list, &plug->cb_list);
1244 }
1245 return cb;
1246 }
1247 EXPORT_SYMBOL(blk_check_plugged);
1248
__blk_flush_plug(struct blk_plug * plug,bool from_schedule)1249 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1250 {
1251 if (!list_empty(&plug->cb_list))
1252 flush_plug_callbacks(plug, from_schedule);
1253 blk_mq_flush_plug_list(plug, from_schedule);
1254 /*
1255 * Unconditionally flush out cached requests, even if the unplug
1256 * event came from schedule. Since we know hold references to the
1257 * queue for cached requests, we don't want a blocked task holding
1258 * up a queue freeze/quiesce event.
1259 */
1260 if (unlikely(!rq_list_empty(&plug->cached_rqs)))
1261 blk_mq_free_plug_rqs(plug);
1262
1263 plug->cur_ktime = 0;
1264 current->flags &= ~PF_BLOCK_TS;
1265 }
1266
1267 /**
1268 * blk_finish_plug - mark the end of a batch of submitted I/O
1269 * @plug: The &struct blk_plug passed to blk_start_plug()
1270 *
1271 * Description:
1272 * Indicate that a batch of I/O submissions is complete. This function
1273 * must be paired with an initial call to blk_start_plug(). The intent
1274 * is to allow the block layer to optimize I/O submission. See the
1275 * documentation for blk_start_plug() for more information.
1276 */
blk_finish_plug(struct blk_plug * plug)1277 void blk_finish_plug(struct blk_plug *plug)
1278 {
1279 if (plug == current->plug) {
1280 __blk_flush_plug(plug, false);
1281 current->plug = NULL;
1282 }
1283 }
1284 EXPORT_SYMBOL(blk_finish_plug);
1285
blk_io_schedule(void)1286 void blk_io_schedule(void)
1287 {
1288 /* Prevent hang_check timer from firing at us during very long I/O */
1289 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1290
1291 if (timeout)
1292 io_schedule_timeout(timeout);
1293 else
1294 io_schedule();
1295 }
1296 EXPORT_SYMBOL_GPL(blk_io_schedule);
1297
blk_dev_init(void)1298 int __init blk_dev_init(void)
1299 {
1300 BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
1301 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1302 sizeof_field(struct request, cmd_flags));
1303 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1304 sizeof_field(struct bio, bi_opf));
1305
1306 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1307 kblockd_workqueue = alloc_workqueue("kblockd",
1308 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1309 if (!kblockd_workqueue)
1310 panic("Failed to create kblockd\n");
1311
1312 blk_requestq_cachep = KMEM_CACHE(request_queue, SLAB_PANIC);
1313
1314 blk_debugfs_root = debugfs_create_dir("block", NULL);
1315
1316 return 0;
1317 }
1318