1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/cleancache.h>
17 #include <linux/fsverity.h>
18 #include "extent_io.h"
19 #include "extent-io-tree.h"
20 #include "extent_map.h"
21 #include "ctree.h"
22 #include "btrfs_inode.h"
23 #include "bio.h"
24 #include "locking.h"
25 #include "backref.h"
26 #include "disk-io.h"
27 #include "subpage.h"
28 #include "zoned.h"
29 #include "block-group.h"
30 #include "compression.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "file-item.h"
34 #include "file.h"
35 #include "dev-replace.h"
36 #include "super.h"
37 #include "transaction.h"
38
39 static struct kmem_cache *extent_buffer_cache;
40
41 #ifdef CONFIG_BTRFS_DEBUG
btrfs_leak_debug_add_eb(struct extent_buffer * eb)42 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
43 {
44 struct btrfs_fs_info *fs_info = eb->fs_info;
45 unsigned long flags;
46
47 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
48 list_add(&eb->leak_list, &fs_info->allocated_ebs);
49 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
50 }
51
btrfs_leak_debug_del_eb(struct extent_buffer * eb)52 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
53 {
54 struct btrfs_fs_info *fs_info = eb->fs_info;
55 unsigned long flags;
56
57 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
58 list_del(&eb->leak_list);
59 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
60 }
61
btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info * fs_info)62 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
63 {
64 struct extent_buffer *eb;
65 unsigned long flags;
66
67 /*
68 * If we didn't get into open_ctree our allocated_ebs will not be
69 * initialized, so just skip this.
70 */
71 if (!fs_info->allocated_ebs.next)
72 return;
73
74 WARN_ON(!list_empty(&fs_info->allocated_ebs));
75 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
76 while (!list_empty(&fs_info->allocated_ebs)) {
77 eb = list_first_entry(&fs_info->allocated_ebs,
78 struct extent_buffer, leak_list);
79 pr_err(
80 "BTRFS: buffer leak start %llu len %u refs %d bflags %lu owner %llu\n",
81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
82 btrfs_header_owner(eb));
83 list_del(&eb->leak_list);
84 WARN_ON_ONCE(1);
85 kmem_cache_free(extent_buffer_cache, eb);
86 }
87 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
88 }
89 #else
90 #define btrfs_leak_debug_add_eb(eb) do {} while (0)
91 #define btrfs_leak_debug_del_eb(eb) do {} while (0)
92 #endif
93
94 /*
95 * Structure to record info about the bio being assembled, and other info like
96 * how many bytes are there before stripe/ordered extent boundary.
97 */
98 struct btrfs_bio_ctrl {
99 struct btrfs_bio *bbio;
100 enum btrfs_compression_type compress_type;
101 u32 len_to_oe_boundary;
102 blk_opf_t opf;
103 btrfs_bio_end_io_t end_io_func;
104 struct writeback_control *wbc;
105
106 /*
107 * The sectors of the page which are going to be submitted by
108 * extent_writepage_io().
109 * This is to avoid touching ranges covered by compression/inline.
110 */
111 unsigned long submit_bitmap;
112 struct readahead_control *ractl;
113
114 /*
115 * The start offset of the last used extent map by a read operation.
116 *
117 * This is for proper compressed read merge.
118 * U64_MAX means we are starting the read and have made no progress yet.
119 *
120 * The current btrfs_bio_is_contig() only uses disk_bytenr as
121 * the condition to check if the read can be merged with previous
122 * bio, which is not correct. E.g. two file extents pointing to the
123 * same extent but with different offset.
124 *
125 * So here we need to do extra checks to only merge reads that are
126 * covered by the same extent map.
127 * Just extent_map::start will be enough, as they are unique
128 * inside the same inode.
129 */
130 u64 last_em_start;
131 };
132
submit_one_bio(struct btrfs_bio_ctrl * bio_ctrl)133 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
134 {
135 struct btrfs_bio *bbio = bio_ctrl->bbio;
136
137 if (!bbio)
138 return;
139
140 /* Caller should ensure the bio has at least some range added */
141 ASSERT(bbio->bio.bi_iter.bi_size);
142
143 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
144 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
145 btrfs_submit_compressed_read(bbio);
146 else
147 btrfs_submit_bbio(bbio, 0);
148
149 /* The bbio is owned by the end_io handler now */
150 bio_ctrl->bbio = NULL;
151 }
152
153 /*
154 * Submit or fail the current bio in the bio_ctrl structure.
155 */
submit_write_bio(struct btrfs_bio_ctrl * bio_ctrl,int ret)156 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
157 {
158 struct btrfs_bio *bbio = bio_ctrl->bbio;
159
160 if (!bbio)
161 return;
162
163 if (ret) {
164 ASSERT(ret < 0);
165 btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
166 /* The bio is owned by the end_io handler now */
167 bio_ctrl->bbio = NULL;
168 } else {
169 submit_one_bio(bio_ctrl);
170 }
171 }
172
extent_buffer_init_cachep(void)173 int __init extent_buffer_init_cachep(void)
174 {
175 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
176 sizeof(struct extent_buffer), 0, 0,
177 NULL);
178 if (!extent_buffer_cache)
179 return -ENOMEM;
180
181 return 0;
182 }
183
extent_buffer_free_cachep(void)184 void __cold extent_buffer_free_cachep(void)
185 {
186 /*
187 * Make sure all delayed rcu free are flushed before we
188 * destroy caches.
189 */
190 rcu_barrier();
191 kmem_cache_destroy(extent_buffer_cache);
192 }
193
process_one_folio(struct btrfs_fs_info * fs_info,struct folio * folio,const struct folio * locked_folio,unsigned long page_ops,u64 start,u64 end)194 static void process_one_folio(struct btrfs_fs_info *fs_info,
195 struct folio *folio, const struct folio *locked_folio,
196 unsigned long page_ops, u64 start, u64 end)
197 {
198 u32 len;
199
200 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
201 len = end + 1 - start;
202
203 if (page_ops & PAGE_SET_ORDERED)
204 btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
205 if (page_ops & PAGE_START_WRITEBACK) {
206 btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
207 btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
208 }
209 if (page_ops & PAGE_END_WRITEBACK)
210 btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
211
212 if (folio != locked_folio && (page_ops & PAGE_UNLOCK))
213 btrfs_folio_end_lock(fs_info, folio, start, len);
214 }
215
__process_folios_contig(struct address_space * mapping,const struct folio * locked_folio,u64 start,u64 end,unsigned long page_ops)216 static void __process_folios_contig(struct address_space *mapping,
217 const struct folio *locked_folio, u64 start,
218 u64 end, unsigned long page_ops)
219 {
220 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
221 pgoff_t start_index = start >> PAGE_SHIFT;
222 pgoff_t end_index = end >> PAGE_SHIFT;
223 pgoff_t index = start_index;
224 struct folio_batch fbatch;
225 int i;
226
227 folio_batch_init(&fbatch);
228 while (index <= end_index) {
229 int found_folios;
230
231 found_folios = filemap_get_folios_contig(mapping, &index,
232 end_index, &fbatch);
233 for (i = 0; i < found_folios; i++) {
234 struct folio *folio = fbatch.folios[i];
235
236 process_one_folio(fs_info, folio, locked_folio,
237 page_ops, start, end);
238 }
239 folio_batch_release(&fbatch);
240 cond_resched();
241 }
242 }
243
__unlock_for_delalloc(const struct inode * inode,const struct folio * locked_folio,u64 start,u64 end)244 static noinline void __unlock_for_delalloc(const struct inode *inode,
245 const struct folio *locked_folio,
246 u64 start, u64 end)
247 {
248 unsigned long index = start >> PAGE_SHIFT;
249 unsigned long end_index = end >> PAGE_SHIFT;
250
251 ASSERT(locked_folio);
252 if (index == locked_folio->index && end_index == index)
253 return;
254
255 __process_folios_contig(inode->i_mapping, locked_folio, start, end,
256 PAGE_UNLOCK);
257 }
258
lock_delalloc_folios(struct inode * inode,const struct folio * locked_folio,u64 start,u64 end)259 static noinline int lock_delalloc_folios(struct inode *inode,
260 const struct folio *locked_folio,
261 u64 start, u64 end)
262 {
263 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
264 struct address_space *mapping = inode->i_mapping;
265 pgoff_t start_index = start >> PAGE_SHIFT;
266 pgoff_t end_index = end >> PAGE_SHIFT;
267 pgoff_t index = start_index;
268 u64 processed_end = start;
269 struct folio_batch fbatch;
270
271 if (index == locked_folio->index && index == end_index)
272 return 0;
273
274 folio_batch_init(&fbatch);
275 while (index <= end_index) {
276 unsigned int found_folios, i;
277
278 found_folios = filemap_get_folios_contig(mapping, &index,
279 end_index, &fbatch);
280 if (found_folios == 0)
281 goto out;
282
283 for (i = 0; i < found_folios; i++) {
284 struct folio *folio = fbatch.folios[i];
285 u64 range_start;
286 u32 range_len;
287
288 if (folio == locked_folio)
289 continue;
290
291 folio_lock(folio);
292 if (!folio_test_dirty(folio) || folio->mapping != mapping) {
293 folio_unlock(folio);
294 goto out;
295 }
296 range_start = max_t(u64, folio_pos(folio), start);
297 range_len = min_t(u64, folio_pos(folio) + folio_size(folio),
298 end + 1) - range_start;
299 btrfs_folio_set_lock(fs_info, folio, range_start, range_len);
300
301 processed_end = range_start + range_len - 1;
302 }
303 folio_batch_release(&fbatch);
304 cond_resched();
305 }
306
307 return 0;
308 out:
309 folio_batch_release(&fbatch);
310 if (processed_end > start)
311 __unlock_for_delalloc(inode, locked_folio, start,
312 processed_end);
313 return -EAGAIN;
314 }
315
316 /*
317 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
318 * more than @max_bytes.
319 *
320 * @start: The original start bytenr to search.
321 * Will store the extent range start bytenr.
322 * @end: The original end bytenr of the search range
323 * Will store the extent range end bytenr.
324 *
325 * Return true if we find a delalloc range which starts inside the original
326 * range, and @start/@end will store the delalloc range start/end.
327 *
328 * Return false if we can't find any delalloc range which starts inside the
329 * original range, and @start/@end will be the non-delalloc range start/end.
330 */
331 EXPORT_FOR_TESTS
find_lock_delalloc_range(struct inode * inode,struct folio * locked_folio,u64 * start,u64 * end)332 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
333 struct folio *locked_folio,
334 u64 *start, u64 *end)
335 {
336 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
337 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
338 const u64 orig_start = *start;
339 const u64 orig_end = *end;
340 /* The sanity tests may not set a valid fs_info. */
341 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
342 u64 delalloc_start;
343 u64 delalloc_end;
344 bool found;
345 struct extent_state *cached_state = NULL;
346 int ret;
347 int loops = 0;
348
349 /* Caller should pass a valid @end to indicate the search range end */
350 ASSERT(orig_end > orig_start);
351
352 /* The range should at least cover part of the folio */
353 ASSERT(!(orig_start >= folio_pos(locked_folio) + folio_size(locked_folio) ||
354 orig_end <= folio_pos(locked_folio)));
355 again:
356 /* step one, find a bunch of delalloc bytes starting at start */
357 delalloc_start = *start;
358 delalloc_end = 0;
359 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
360 max_bytes, &cached_state);
361 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
362 *start = delalloc_start;
363
364 /* @delalloc_end can be -1, never go beyond @orig_end */
365 *end = min(delalloc_end, orig_end);
366 free_extent_state(cached_state);
367 return false;
368 }
369
370 /*
371 * start comes from the offset of locked_folio. We have to lock
372 * folios in order, so we can't process delalloc bytes before
373 * locked_folio
374 */
375 if (delalloc_start < *start)
376 delalloc_start = *start;
377
378 /*
379 * make sure to limit the number of folios we try to lock down
380 */
381 if (delalloc_end + 1 - delalloc_start > max_bytes)
382 delalloc_end = delalloc_start + max_bytes - 1;
383
384 /* step two, lock all the folioss after the folios that has start */
385 ret = lock_delalloc_folios(inode, locked_folio, delalloc_start,
386 delalloc_end);
387 ASSERT(!ret || ret == -EAGAIN);
388 if (ret == -EAGAIN) {
389 /* some of the folios are gone, lets avoid looping by
390 * shortening the size of the delalloc range we're searching
391 */
392 free_extent_state(cached_state);
393 cached_state = NULL;
394 if (!loops) {
395 max_bytes = PAGE_SIZE;
396 loops = 1;
397 goto again;
398 } else {
399 found = false;
400 goto out_failed;
401 }
402 }
403
404 /* step three, lock the state bits for the whole range */
405 lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
406
407 /* then test to make sure it is all still delalloc */
408 ret = test_range_bit(tree, delalloc_start, delalloc_end,
409 EXTENT_DELALLOC, cached_state);
410
411 unlock_extent(tree, delalloc_start, delalloc_end, &cached_state);
412 if (!ret) {
413 __unlock_for_delalloc(inode, locked_folio, delalloc_start,
414 delalloc_end);
415 cond_resched();
416 goto again;
417 }
418 *start = delalloc_start;
419 *end = delalloc_end;
420 out_failed:
421 return found;
422 }
423
extent_clear_unlock_delalloc(struct btrfs_inode * inode,u64 start,u64 end,const struct folio * locked_folio,struct extent_state ** cached,u32 clear_bits,unsigned long page_ops)424 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
425 const struct folio *locked_folio,
426 struct extent_state **cached,
427 u32 clear_bits, unsigned long page_ops)
428 {
429 clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached);
430
431 __process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start,
432 end, page_ops);
433 }
434
btrfs_verify_folio(struct folio * folio,u64 start,u32 len)435 static bool btrfs_verify_folio(struct folio *folio, u64 start, u32 len)
436 {
437 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
438
439 if (!fsverity_active(folio->mapping->host) ||
440 btrfs_folio_test_uptodate(fs_info, folio, start, len) ||
441 start >= i_size_read(folio->mapping->host))
442 return true;
443 return fsverity_verify_folio(folio);
444 }
445
end_folio_read(struct folio * folio,bool uptodate,u64 start,u32 len)446 static void end_folio_read(struct folio *folio, bool uptodate, u64 start, u32 len)
447 {
448 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
449
450 ASSERT(folio_pos(folio) <= start &&
451 start + len <= folio_pos(folio) + PAGE_SIZE);
452
453 if (uptodate && btrfs_verify_folio(folio, start, len))
454 btrfs_folio_set_uptodate(fs_info, folio, start, len);
455 else
456 btrfs_folio_clear_uptodate(fs_info, folio, start, len);
457
458 if (!btrfs_is_subpage(fs_info, folio->mapping))
459 folio_unlock(folio);
460 else
461 btrfs_folio_end_lock(fs_info, folio, start, len);
462 }
463
464 /*
465 * After a write IO is done, we need to:
466 *
467 * - clear the uptodate bits on error
468 * - clear the writeback bits in the extent tree for the range
469 * - filio_end_writeback() if there is no more pending io for the folio
470 *
471 * Scheduling is not allowed, so the extent state tree is expected
472 * to have one and only one object corresponding to this IO.
473 */
end_bbio_data_write(struct btrfs_bio * bbio)474 static void end_bbio_data_write(struct btrfs_bio *bbio)
475 {
476 struct btrfs_fs_info *fs_info = bbio->fs_info;
477 struct bio *bio = &bbio->bio;
478 int error = blk_status_to_errno(bio->bi_status);
479 struct folio_iter fi;
480 const u32 sectorsize = fs_info->sectorsize;
481
482 ASSERT(!bio_flagged(bio, BIO_CLONED));
483 bio_for_each_folio_all(fi, bio) {
484 struct folio *folio = fi.folio;
485 u64 start = folio_pos(folio) + fi.offset;
486 u32 len = fi.length;
487
488 /* Only order 0 (single page) folios are allowed for data. */
489 ASSERT(folio_order(folio) == 0);
490
491 /* Our read/write should always be sector aligned. */
492 if (!IS_ALIGNED(fi.offset, sectorsize))
493 btrfs_err(fs_info,
494 "partial page write in btrfs with offset %zu and length %zu",
495 fi.offset, fi.length);
496 else if (!IS_ALIGNED(fi.length, sectorsize))
497 btrfs_info(fs_info,
498 "incomplete page write with offset %zu and length %zu",
499 fi.offset, fi.length);
500
501 btrfs_finish_ordered_extent(bbio->ordered, folio, start, len,
502 !error);
503 if (error)
504 mapping_set_error(folio->mapping, error);
505 btrfs_folio_clear_writeback(fs_info, folio, start, len);
506 }
507
508 bio_put(bio);
509 }
510
begin_folio_read(struct btrfs_fs_info * fs_info,struct folio * folio)511 static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio)
512 {
513 ASSERT(folio_test_locked(folio));
514 if (!btrfs_is_subpage(fs_info, folio->mapping))
515 return;
516
517 ASSERT(folio_test_private(folio));
518 btrfs_folio_set_lock(fs_info, folio, folio_pos(folio), PAGE_SIZE);
519 }
520
521 /*
522 * After a data read IO is done, we need to:
523 *
524 * - clear the uptodate bits on error
525 * - set the uptodate bits if things worked
526 * - set the folio up to date if all extents in the tree are uptodate
527 * - clear the lock bit in the extent tree
528 * - unlock the folio if there are no other extents locked for it
529 *
530 * Scheduling is not allowed, so the extent state tree is expected
531 * to have one and only one object corresponding to this IO.
532 */
end_bbio_data_read(struct btrfs_bio * bbio)533 static void end_bbio_data_read(struct btrfs_bio *bbio)
534 {
535 struct btrfs_fs_info *fs_info = bbio->fs_info;
536 struct bio *bio = &bbio->bio;
537 struct folio_iter fi;
538 const u32 sectorsize = fs_info->sectorsize;
539
540 ASSERT(!bio_flagged(bio, BIO_CLONED));
541 bio_for_each_folio_all(fi, &bbio->bio) {
542 bool uptodate = !bio->bi_status;
543 struct folio *folio = fi.folio;
544 struct inode *inode = folio->mapping->host;
545 u64 start;
546 u64 end;
547 u32 len;
548
549 btrfs_debug(fs_info,
550 "%s: bi_sector=%llu, err=%d, mirror=%u",
551 __func__, bio->bi_iter.bi_sector, bio->bi_status,
552 bbio->mirror_num);
553
554 /*
555 * We always issue full-sector reads, but if some block in a
556 * folio fails to read, blk_update_request() will advance
557 * bv_offset and adjust bv_len to compensate. Print a warning
558 * for unaligned offsets, and an error if they don't add up to
559 * a full sector.
560 */
561 if (!IS_ALIGNED(fi.offset, sectorsize))
562 btrfs_err(fs_info,
563 "partial page read in btrfs with offset %zu and length %zu",
564 fi.offset, fi.length);
565 else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize))
566 btrfs_info(fs_info,
567 "incomplete page read with offset %zu and length %zu",
568 fi.offset, fi.length);
569
570 start = folio_pos(folio) + fi.offset;
571 end = start + fi.length - 1;
572 len = fi.length;
573
574 if (likely(uptodate)) {
575 loff_t i_size = i_size_read(inode);
576
577 /*
578 * Zero out the remaining part if this range straddles
579 * i_size.
580 *
581 * Here we should only zero the range inside the folio,
582 * not touch anything else.
583 *
584 * NOTE: i_size is exclusive while end is inclusive and
585 * folio_contains() takes PAGE_SIZE units.
586 */
587 if (folio_contains(folio, i_size >> PAGE_SHIFT) &&
588 i_size <= end) {
589 u32 zero_start = max(offset_in_folio(folio, i_size),
590 offset_in_folio(folio, start));
591 u32 zero_len = offset_in_folio(folio, end) + 1 -
592 zero_start;
593
594 folio_zero_range(folio, zero_start, zero_len);
595 }
596 }
597
598 /* Update page status and unlock. */
599 end_folio_read(folio, uptodate, start, len);
600 }
601 bio_put(bio);
602 }
603
604 /*
605 * Populate every free slot in a provided array with folios using GFP_NOFS.
606 *
607 * @nr_folios: number of folios to allocate
608 * @folio_array: the array to fill with folios; any existing non-NULL entries in
609 * the array will be skipped
610 *
611 * Return: 0 if all folios were able to be allocated;
612 * -ENOMEM otherwise, the partially allocated folios would be freed and
613 * the array slots zeroed
614 */
btrfs_alloc_folio_array(unsigned int nr_folios,struct folio ** folio_array)615 int btrfs_alloc_folio_array(unsigned int nr_folios, struct folio **folio_array)
616 {
617 for (int i = 0; i < nr_folios; i++) {
618 if (folio_array[i])
619 continue;
620 folio_array[i] = folio_alloc(GFP_NOFS, 0);
621 if (!folio_array[i])
622 goto error;
623 }
624 return 0;
625 error:
626 for (int i = 0; i < nr_folios; i++) {
627 if (folio_array[i])
628 folio_put(folio_array[i]);
629 }
630 return -ENOMEM;
631 }
632
633 /*
634 * Populate every free slot in a provided array with pages, using GFP_NOFS.
635 *
636 * @nr_pages: number of pages to allocate
637 * @page_array: the array to fill with pages; any existing non-null entries in
638 * the array will be skipped
639 * @nofail: whether using __GFP_NOFAIL flag
640 *
641 * Return: 0 if all pages were able to be allocated;
642 * -ENOMEM otherwise, the partially allocated pages would be freed and
643 * the array slots zeroed
644 */
btrfs_alloc_page_array(unsigned int nr_pages,struct page ** page_array,bool nofail)645 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
646 bool nofail)
647 {
648 const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS;
649 unsigned int allocated;
650
651 for (allocated = 0; allocated < nr_pages;) {
652 unsigned int last = allocated;
653
654 allocated = alloc_pages_bulk_array(gfp, nr_pages, page_array);
655 if (unlikely(allocated == last)) {
656 /* No progress, fail and do cleanup. */
657 for (int i = 0; i < allocated; i++) {
658 __free_page(page_array[i]);
659 page_array[i] = NULL;
660 }
661 return -ENOMEM;
662 }
663 }
664 return 0;
665 }
666
667 /*
668 * Populate needed folios for the extent buffer.
669 *
670 * For now, the folios populated are always in order 0 (aka, single page).
671 */
alloc_eb_folio_array(struct extent_buffer * eb,bool nofail)672 static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail)
673 {
674 struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
675 int num_pages = num_extent_pages(eb);
676 int ret;
677
678 ret = btrfs_alloc_page_array(num_pages, page_array, nofail);
679 if (ret < 0)
680 return ret;
681
682 for (int i = 0; i < num_pages; i++)
683 eb->folios[i] = page_folio(page_array[i]);
684 eb->folio_size = PAGE_SIZE;
685 eb->folio_shift = PAGE_SHIFT;
686 return 0;
687 }
688
btrfs_bio_is_contig(struct btrfs_bio_ctrl * bio_ctrl,struct folio * folio,u64 disk_bytenr,unsigned int pg_offset)689 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
690 struct folio *folio, u64 disk_bytenr,
691 unsigned int pg_offset)
692 {
693 struct bio *bio = &bio_ctrl->bbio->bio;
694 struct bio_vec *bvec = bio_last_bvec_all(bio);
695 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
696 struct folio *bv_folio = page_folio(bvec->bv_page);
697
698 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
699 /*
700 * For compression, all IO should have its logical bytenr set
701 * to the starting bytenr of the compressed extent.
702 */
703 return bio->bi_iter.bi_sector == sector;
704 }
705
706 /*
707 * The contig check requires the following conditions to be met:
708 *
709 * 1) The folios are belonging to the same inode
710 * This is implied by the call chain.
711 *
712 * 2) The range has adjacent logical bytenr
713 *
714 * 3) The range has adjacent file offset
715 * This is required for the usage of btrfs_bio->file_offset.
716 */
717 return bio_end_sector(bio) == sector &&
718 folio_pos(bv_folio) + bvec->bv_offset + bvec->bv_len ==
719 folio_pos(folio) + pg_offset;
720 }
721
alloc_new_bio(struct btrfs_inode * inode,struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,u64 file_offset)722 static void alloc_new_bio(struct btrfs_inode *inode,
723 struct btrfs_bio_ctrl *bio_ctrl,
724 u64 disk_bytenr, u64 file_offset)
725 {
726 struct btrfs_fs_info *fs_info = inode->root->fs_info;
727 struct btrfs_bio *bbio;
728
729 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
730 bio_ctrl->end_io_func, NULL);
731 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
732 bbio->inode = inode;
733 bbio->file_offset = file_offset;
734 bio_ctrl->bbio = bbio;
735 bio_ctrl->len_to_oe_boundary = U32_MAX;
736
737 /* Limit data write bios to the ordered boundary. */
738 if (bio_ctrl->wbc) {
739 struct btrfs_ordered_extent *ordered;
740
741 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
742 if (ordered) {
743 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
744 ordered->file_offset +
745 ordered->disk_num_bytes - file_offset);
746 bbio->ordered = ordered;
747 }
748
749 /*
750 * Pick the last added device to support cgroup writeback. For
751 * multi-device file systems this means blk-cgroup policies have
752 * to always be set on the last added/replaced device.
753 * This is a bit odd but has been like that for a long time.
754 */
755 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
756 wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
757 }
758 }
759
760 /*
761 * @disk_bytenr: logical bytenr where the write will be
762 * @page: page to add to the bio
763 * @size: portion of page that we want to write to
764 * @pg_offset: offset of the new bio or to check whether we are adding
765 * a contiguous page to the previous one
766 *
767 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
768 * new one in @bio_ctrl->bbio.
769 * The mirror number for this IO should already be initizlied in
770 * @bio_ctrl->mirror_num.
771 */
submit_extent_folio(struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,struct folio * folio,size_t size,unsigned long pg_offset)772 static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl,
773 u64 disk_bytenr, struct folio *folio,
774 size_t size, unsigned long pg_offset)
775 {
776 struct btrfs_inode *inode = folio_to_inode(folio);
777
778 ASSERT(pg_offset + size <= PAGE_SIZE);
779 ASSERT(bio_ctrl->end_io_func);
780
781 if (bio_ctrl->bbio &&
782 !btrfs_bio_is_contig(bio_ctrl, folio, disk_bytenr, pg_offset))
783 submit_one_bio(bio_ctrl);
784
785 do {
786 u32 len = size;
787
788 /* Allocate new bio if needed */
789 if (!bio_ctrl->bbio) {
790 alloc_new_bio(inode, bio_ctrl, disk_bytenr,
791 folio_pos(folio) + pg_offset);
792 }
793
794 /* Cap to the current ordered extent boundary if there is one. */
795 if (len > bio_ctrl->len_to_oe_boundary) {
796 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
797 ASSERT(is_data_inode(inode));
798 len = bio_ctrl->len_to_oe_boundary;
799 }
800
801 if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) {
802 /* bio full: move on to a new one */
803 submit_one_bio(bio_ctrl);
804 continue;
805 }
806
807 if (bio_ctrl->wbc)
808 wbc_account_cgroup_owner(bio_ctrl->wbc, folio,
809 len);
810
811 size -= len;
812 pg_offset += len;
813 disk_bytenr += len;
814
815 /*
816 * len_to_oe_boundary defaults to U32_MAX, which isn't folio or
817 * sector aligned. alloc_new_bio() then sets it to the end of
818 * our ordered extent for writes into zoned devices.
819 *
820 * When len_to_oe_boundary is tracking an ordered extent, we
821 * trust the ordered extent code to align things properly, and
822 * the check above to cap our write to the ordered extent
823 * boundary is correct.
824 *
825 * When len_to_oe_boundary is U32_MAX, the cap above would
826 * result in a 4095 byte IO for the last folio right before
827 * we hit the bio limit of UINT_MAX. bio_add_folio() has all
828 * the checks required to make sure we don't overflow the bio,
829 * and we should just ignore len_to_oe_boundary completely
830 * unless we're using it to track an ordered extent.
831 *
832 * It's pretty hard to make a bio sized U32_MAX, but it can
833 * happen when the page cache is able to feed us contiguous
834 * folios for large extents.
835 */
836 if (bio_ctrl->len_to_oe_boundary != U32_MAX)
837 bio_ctrl->len_to_oe_boundary -= len;
838
839 /* Ordered extent boundary: move on to a new bio. */
840 if (bio_ctrl->len_to_oe_boundary == 0)
841 submit_one_bio(bio_ctrl);
842 } while (size);
843 }
844
attach_extent_buffer_folio(struct extent_buffer * eb,struct folio * folio,struct btrfs_subpage * prealloc)845 static int attach_extent_buffer_folio(struct extent_buffer *eb,
846 struct folio *folio,
847 struct btrfs_subpage *prealloc)
848 {
849 struct btrfs_fs_info *fs_info = eb->fs_info;
850 int ret = 0;
851
852 /*
853 * If the page is mapped to btree inode, we should hold the private
854 * lock to prevent race.
855 * For cloned or dummy extent buffers, their pages are not mapped and
856 * will not race with any other ebs.
857 */
858 if (folio->mapping)
859 lockdep_assert_held(&folio->mapping->i_private_lock);
860
861 if (fs_info->nodesize >= PAGE_SIZE) {
862 if (!folio_test_private(folio))
863 folio_attach_private(folio, eb);
864 else
865 WARN_ON(folio_get_private(folio) != eb);
866 return 0;
867 }
868
869 /* Already mapped, just free prealloc */
870 if (folio_test_private(folio)) {
871 btrfs_free_subpage(prealloc);
872 return 0;
873 }
874
875 if (prealloc)
876 /* Has preallocated memory for subpage */
877 folio_attach_private(folio, prealloc);
878 else
879 /* Do new allocation to attach subpage */
880 ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
881 return ret;
882 }
883
set_page_extent_mapped(struct page * page)884 int set_page_extent_mapped(struct page *page)
885 {
886 return set_folio_extent_mapped(page_folio(page));
887 }
888
set_folio_extent_mapped(struct folio * folio)889 int set_folio_extent_mapped(struct folio *folio)
890 {
891 struct btrfs_fs_info *fs_info;
892
893 ASSERT(folio->mapping);
894
895 if (folio_test_private(folio))
896 return 0;
897
898 fs_info = folio_to_fs_info(folio);
899
900 if (btrfs_is_subpage(fs_info, folio->mapping))
901 return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA);
902
903 folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
904 return 0;
905 }
906
clear_folio_extent_mapped(struct folio * folio)907 void clear_folio_extent_mapped(struct folio *folio)
908 {
909 struct btrfs_fs_info *fs_info;
910
911 ASSERT(folio->mapping);
912
913 if (!folio_test_private(folio))
914 return;
915
916 fs_info = folio_to_fs_info(folio);
917 if (btrfs_is_subpage(fs_info, folio->mapping))
918 return btrfs_detach_subpage(fs_info, folio);
919
920 folio_detach_private(folio);
921 }
922
get_extent_map(struct btrfs_inode * inode,struct folio * folio,u64 start,u64 len,struct extent_map ** em_cached)923 static struct extent_map *get_extent_map(struct btrfs_inode *inode,
924 struct folio *folio, u64 start,
925 u64 len, struct extent_map **em_cached)
926 {
927 struct extent_map *em;
928
929 ASSERT(em_cached);
930
931 if (*em_cached) {
932 em = *em_cached;
933 if (extent_map_in_tree(em) && start >= em->start &&
934 start < extent_map_end(em)) {
935 refcount_inc(&em->refs);
936 return em;
937 }
938
939 free_extent_map(em);
940 *em_cached = NULL;
941 }
942
943 em = btrfs_get_extent(inode, folio, start, len);
944 if (!IS_ERR(em)) {
945 BUG_ON(*em_cached);
946 refcount_inc(&em->refs);
947 *em_cached = em;
948 }
949
950 return em;
951 }
952
btrfs_readahead_expand(struct readahead_control * ractl,const struct extent_map * em)953 static void btrfs_readahead_expand(struct readahead_control *ractl,
954 const struct extent_map *em)
955 {
956 const u64 ra_pos = readahead_pos(ractl);
957 const u64 ra_end = ra_pos + readahead_length(ractl);
958 const u64 em_end = em->start + em->ram_bytes;
959
960 /* No expansion for holes and inline extents. */
961 if (em->disk_bytenr > EXTENT_MAP_LAST_BYTE)
962 return;
963
964 ASSERT(em_end >= ra_pos);
965 if (em_end > ra_end)
966 readahead_expand(ractl, ra_pos, em_end - ra_pos);
967 }
968
969 /*
970 * basic readpage implementation. Locked extent state structs are inserted
971 * into the tree that are removed when the IO is done (by the end_io
972 * handlers)
973 * XXX JDM: This needs looking at to ensure proper page locking
974 * return 0 on success, otherwise return error
975 */
btrfs_do_readpage(struct folio * folio,struct extent_map ** em_cached,struct btrfs_bio_ctrl * bio_ctrl)976 static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached,
977 struct btrfs_bio_ctrl *bio_ctrl)
978 {
979 struct inode *inode = folio->mapping->host;
980 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
981 u64 start = folio_pos(folio);
982 const u64 end = start + PAGE_SIZE - 1;
983 u64 cur = start;
984 u64 extent_offset;
985 u64 last_byte = i_size_read(inode);
986 u64 block_start;
987 struct extent_map *em;
988 int ret = 0;
989 size_t pg_offset = 0;
990 size_t iosize;
991 size_t blocksize = fs_info->sectorsize;
992 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
993
994 ret = set_folio_extent_mapped(folio);
995 if (ret < 0) {
996 folio_unlock(folio);
997 return ret;
998 }
999
1000 if (!folio_test_uptodate(folio)) {
1001 if (cleancache_get_page(&folio->page) == 0) {
1002 BUG_ON(blocksize != folio_size(folio));
1003 unlock_extent(tree, start, end, NULL);
1004 folio_unlock(folio);
1005 goto out;
1006 }
1007 }
1008
1009 if (folio_contains(folio, last_byte >> PAGE_SHIFT)) {
1010 size_t zero_offset = offset_in_folio(folio, last_byte);
1011
1012 if (zero_offset) {
1013 iosize = folio_size(folio) - zero_offset;
1014 folio_zero_range(folio, zero_offset, iosize);
1015 }
1016 }
1017 bio_ctrl->end_io_func = end_bbio_data_read;
1018 begin_folio_read(fs_info, folio);
1019 while (cur <= end) {
1020 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
1021 bool force_bio_submit = false;
1022 u64 disk_bytenr;
1023
1024 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1025 if (cur >= last_byte) {
1026 iosize = folio_size(folio) - pg_offset;
1027 folio_zero_range(folio, pg_offset, iosize);
1028 end_folio_read(folio, true, cur, iosize);
1029 break;
1030 }
1031 em = get_extent_map(BTRFS_I(inode), folio, cur, end - cur + 1, em_cached);
1032 if (IS_ERR(em)) {
1033 end_folio_read(folio, false, cur, end + 1 - cur);
1034 return PTR_ERR(em);
1035 }
1036 extent_offset = cur - em->start;
1037 BUG_ON(extent_map_end(em) <= cur);
1038 BUG_ON(end < cur);
1039
1040 compress_type = extent_map_compression(em);
1041
1042 iosize = min(extent_map_end(em) - cur, end - cur + 1);
1043 iosize = ALIGN(iosize, blocksize);
1044
1045 /*
1046 * Only expand readahead for extents which are already creating
1047 * the pages anyway in add_ra_bio_pages, which is compressed
1048 * extents in the non subpage case.
1049 */
1050 if (bio_ctrl->ractl &&
1051 !btrfs_is_subpage(fs_info, folio->mapping) &&
1052 compress_type != BTRFS_COMPRESS_NONE)
1053 btrfs_readahead_expand(bio_ctrl->ractl, em);
1054
1055 if (compress_type != BTRFS_COMPRESS_NONE)
1056 disk_bytenr = em->disk_bytenr;
1057 else
1058 disk_bytenr = extent_map_block_start(em) + extent_offset;
1059 block_start = extent_map_block_start(em);
1060 if (em->flags & EXTENT_FLAG_PREALLOC)
1061 block_start = EXTENT_MAP_HOLE;
1062
1063 /*
1064 * If we have a file range that points to a compressed extent
1065 * and it's followed by a consecutive file range that points
1066 * to the same compressed extent (possibly with a different
1067 * offset and/or length, so it either points to the whole extent
1068 * or only part of it), we must make sure we do not submit a
1069 * single bio to populate the folios for the 2 ranges because
1070 * this makes the compressed extent read zero out the folios
1071 * belonging to the 2nd range. Imagine the following scenario:
1072 *
1073 * File layout
1074 * [0 - 8K] [8K - 24K]
1075 * | |
1076 * | |
1077 * points to extent X, points to extent X,
1078 * offset 4K, length of 8K offset 0, length 16K
1079 *
1080 * [extent X, compressed length = 4K uncompressed length = 16K]
1081 *
1082 * If the bio to read the compressed extent covers both ranges,
1083 * it will decompress extent X into the folios belonging to the
1084 * first range and then it will stop, zeroing out the remaining
1085 * folios that belong to the other range that points to extent X.
1086 * So here we make sure we submit 2 bios, one for the first
1087 * range and another one for the third range. Both will target
1088 * the same physical extent from disk, but we can't currently
1089 * make the compressed bio endio callback populate the folios
1090 * for both ranges because each compressed bio is tightly
1091 * coupled with a single extent map, and each range can have
1092 * an extent map with a different offset value relative to the
1093 * uncompressed data of our extent and different lengths. This
1094 * is a corner case so we prioritize correctness over
1095 * non-optimal behavior (submitting 2 bios for the same extent).
1096 */
1097 if (compress_type != BTRFS_COMPRESS_NONE &&
1098 bio_ctrl->last_em_start != U64_MAX &&
1099 bio_ctrl->last_em_start != em->start)
1100 force_bio_submit = true;
1101
1102 bio_ctrl->last_em_start = em->start;
1103
1104 free_extent_map(em);
1105 em = NULL;
1106
1107 /* we've found a hole, just zero and go on */
1108 if (block_start == EXTENT_MAP_HOLE) {
1109 folio_zero_range(folio, pg_offset, iosize);
1110
1111 end_folio_read(folio, true, cur, iosize);
1112 cur = cur + iosize;
1113 pg_offset += iosize;
1114 continue;
1115 }
1116 /* the get_extent function already copied into the folio */
1117 if (block_start == EXTENT_MAP_INLINE) {
1118 end_folio_read(folio, true, cur, iosize);
1119 cur = cur + iosize;
1120 pg_offset += iosize;
1121 continue;
1122 }
1123
1124 if (bio_ctrl->compress_type != compress_type) {
1125 submit_one_bio(bio_ctrl);
1126 bio_ctrl->compress_type = compress_type;
1127 }
1128
1129 if (force_bio_submit)
1130 submit_one_bio(bio_ctrl);
1131 submit_extent_folio(bio_ctrl, disk_bytenr, folio, iosize,
1132 pg_offset);
1133 cur = cur + iosize;
1134 pg_offset += iosize;
1135 }
1136 out:
1137 return 0;
1138 }
1139
btrfs_read_folio(struct file * file,struct folio * folio)1140 int btrfs_read_folio(struct file *file, struct folio *folio)
1141 {
1142 struct btrfs_inode *inode = folio_to_inode(folio);
1143 const u64 start = folio_pos(folio);
1144 const u64 end = start + folio_size(folio) - 1;
1145 struct extent_state *cached_state = NULL;
1146 struct btrfs_bio_ctrl bio_ctrl = {
1147 .opf = REQ_OP_READ,
1148 .last_em_start = U64_MAX,
1149 };
1150 struct extent_map *em_cached = NULL;
1151 int ret;
1152
1153 btrfs_lock_and_flush_ordered_range(inode, start, end, &cached_state);
1154 ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl);
1155 unlock_extent(&inode->io_tree, start, end, &cached_state);
1156
1157 free_extent_map(em_cached);
1158
1159 /*
1160 * If btrfs_do_readpage() failed we will want to submit the assembled
1161 * bio to do the cleanup.
1162 */
1163 submit_one_bio(&bio_ctrl);
1164 return ret;
1165 }
1166
set_delalloc_bitmap(struct folio * folio,unsigned long * delalloc_bitmap,u64 start,u32 len)1167 static void set_delalloc_bitmap(struct folio *folio, unsigned long *delalloc_bitmap,
1168 u64 start, u32 len)
1169 {
1170 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1171 const u64 folio_start = folio_pos(folio);
1172 unsigned int start_bit;
1173 unsigned int nbits;
1174
1175 ASSERT(start >= folio_start && start + len <= folio_start + PAGE_SIZE);
1176 start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1177 nbits = len >> fs_info->sectorsize_bits;
1178 ASSERT(bitmap_test_range_all_zero(delalloc_bitmap, start_bit, nbits));
1179 bitmap_set(delalloc_bitmap, start_bit, nbits);
1180 }
1181
find_next_delalloc_bitmap(struct folio * folio,unsigned long * delalloc_bitmap,u64 start,u64 * found_start,u32 * found_len)1182 static bool find_next_delalloc_bitmap(struct folio *folio,
1183 unsigned long *delalloc_bitmap, u64 start,
1184 u64 *found_start, u32 *found_len)
1185 {
1186 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1187 const u64 folio_start = folio_pos(folio);
1188 const unsigned int bitmap_size = fs_info->sectors_per_page;
1189 unsigned int start_bit;
1190 unsigned int first_zero;
1191 unsigned int first_set;
1192
1193 ASSERT(start >= folio_start && start < folio_start + PAGE_SIZE);
1194
1195 start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1196 first_set = find_next_bit(delalloc_bitmap, bitmap_size, start_bit);
1197 if (first_set >= bitmap_size)
1198 return false;
1199
1200 *found_start = folio_start + (first_set << fs_info->sectorsize_bits);
1201 first_zero = find_next_zero_bit(delalloc_bitmap, bitmap_size, first_set);
1202 *found_len = (first_zero - first_set) << fs_info->sectorsize_bits;
1203 return true;
1204 }
1205
1206 /*
1207 * Do all of the delayed allocation setup.
1208 *
1209 * Return >0 if all the dirty blocks are submitted async (compression) or inlined.
1210 * The @folio should no longer be touched (treat it as already unlocked).
1211 *
1212 * Return 0 if there is still dirty block that needs to be submitted through
1213 * extent_writepage_io().
1214 * bio_ctrl->submit_bitmap will indicate which blocks of the folio should be
1215 * submitted, and @folio is still kept locked.
1216 *
1217 * Return <0 if there is any error hit.
1218 * Any allocated ordered extent range covering this folio will be marked
1219 * finished (IOERR), and @folio is still kept locked.
1220 */
writepage_delalloc(struct btrfs_inode * inode,struct folio * folio,struct btrfs_bio_ctrl * bio_ctrl)1221 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1222 struct folio *folio,
1223 struct btrfs_bio_ctrl *bio_ctrl)
1224 {
1225 struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode);
1226 struct writeback_control *wbc = bio_ctrl->wbc;
1227 const bool is_subpage = btrfs_is_subpage(fs_info, folio->mapping);
1228 const u64 page_start = folio_pos(folio);
1229 const u64 page_end = page_start + folio_size(folio) - 1;
1230 unsigned long delalloc_bitmap = 0;
1231 /*
1232 * Save the last found delalloc end. As the delalloc end can go beyond
1233 * page boundary, thus we cannot rely on subpage bitmap to locate the
1234 * last delalloc end.
1235 */
1236 u64 last_delalloc_end = 0;
1237 /*
1238 * The range end (exclusive) of the last successfully finished delalloc
1239 * range.
1240 * Any range covered by ordered extent must either be manually marked
1241 * finished (error handling), or has IO submitted (and finish the
1242 * ordered extent normally).
1243 *
1244 * This records the end of ordered extent cleanup if we hit an error.
1245 */
1246 u64 last_finished_delalloc_end = page_start;
1247 u64 delalloc_start = page_start;
1248 u64 delalloc_end = page_end;
1249 u64 delalloc_to_write = 0;
1250 int ret = 0;
1251 int bit;
1252
1253 /* Save the dirty bitmap as our submission bitmap will be a subset of it. */
1254 if (btrfs_is_subpage(fs_info, inode->vfs_inode.i_mapping)) {
1255 ASSERT(fs_info->sectors_per_page > 1);
1256 btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap);
1257 } else {
1258 bio_ctrl->submit_bitmap = 1;
1259 }
1260
1261 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, fs_info->sectors_per_page) {
1262 u64 start = page_start + (bit << fs_info->sectorsize_bits);
1263
1264 btrfs_folio_set_lock(fs_info, folio, start, fs_info->sectorsize);
1265 }
1266
1267 /* Lock all (subpage) delalloc ranges inside the folio first. */
1268 while (delalloc_start < page_end) {
1269 delalloc_end = page_end;
1270 if (!find_lock_delalloc_range(&inode->vfs_inode, folio,
1271 &delalloc_start, &delalloc_end)) {
1272 delalloc_start = delalloc_end + 1;
1273 continue;
1274 }
1275 set_delalloc_bitmap(folio, &delalloc_bitmap, delalloc_start,
1276 min(delalloc_end, page_end) + 1 - delalloc_start);
1277 last_delalloc_end = delalloc_end;
1278 delalloc_start = delalloc_end + 1;
1279 }
1280 delalloc_start = page_start;
1281
1282 if (!last_delalloc_end)
1283 goto out;
1284
1285 /* Run the delalloc ranges for the above locked ranges. */
1286 while (delalloc_start < page_end) {
1287 u64 found_start;
1288 u32 found_len;
1289 bool found;
1290
1291 if (!is_subpage) {
1292 /*
1293 * For non-subpage case, the found delalloc range must
1294 * cover this folio and there must be only one locked
1295 * delalloc range.
1296 */
1297 found_start = page_start;
1298 found_len = last_delalloc_end + 1 - found_start;
1299 found = true;
1300 } else {
1301 found = find_next_delalloc_bitmap(folio, &delalloc_bitmap,
1302 delalloc_start, &found_start, &found_len);
1303 }
1304 if (!found)
1305 break;
1306 /*
1307 * The subpage range covers the last sector, the delalloc range may
1308 * end beyond the folio boundary, use the saved delalloc_end
1309 * instead.
1310 */
1311 if (found_start + found_len >= page_end)
1312 found_len = last_delalloc_end + 1 - found_start;
1313
1314 if (ret >= 0) {
1315 /*
1316 * Some delalloc range may be created by previous folios.
1317 * Thus we still need to clean up this range during error
1318 * handling.
1319 */
1320 last_finished_delalloc_end = found_start;
1321 /* No errors hit so far, run the current delalloc range. */
1322 ret = btrfs_run_delalloc_range(inode, folio,
1323 found_start,
1324 found_start + found_len - 1,
1325 wbc);
1326 if (ret >= 0)
1327 last_finished_delalloc_end = found_start + found_len;
1328 } else {
1329 /*
1330 * We've hit an error during previous delalloc range,
1331 * have to cleanup the remaining locked ranges.
1332 */
1333 unlock_extent(&inode->io_tree, found_start,
1334 found_start + found_len - 1, NULL);
1335 __unlock_for_delalloc(&inode->vfs_inode, folio,
1336 found_start,
1337 found_start + found_len - 1);
1338 }
1339
1340 /*
1341 * We have some ranges that's going to be submitted asynchronously
1342 * (compression or inline). These range have their own control
1343 * on when to unlock the pages. We should not touch them
1344 * anymore, so clear the range from the submission bitmap.
1345 */
1346 if (ret > 0) {
1347 unsigned int start_bit = (found_start - page_start) >>
1348 fs_info->sectorsize_bits;
1349 unsigned int end_bit = (min(page_end + 1, found_start + found_len) -
1350 page_start) >> fs_info->sectorsize_bits;
1351 bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit);
1352 }
1353 /*
1354 * Above btrfs_run_delalloc_range() may have unlocked the folio,
1355 * thus for the last range, we cannot touch the folio anymore.
1356 */
1357 if (found_start + found_len >= last_delalloc_end + 1)
1358 break;
1359
1360 delalloc_start = found_start + found_len;
1361 }
1362 /*
1363 * It's possible we had some ordered extents created before we hit
1364 * an error, cleanup non-async successfully created delalloc ranges.
1365 */
1366 if (unlikely(ret < 0)) {
1367 unsigned int bitmap_size = min(
1368 (last_finished_delalloc_end - page_start) >>
1369 fs_info->sectorsize_bits,
1370 fs_info->sectors_per_page);
1371
1372 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, bitmap_size)
1373 btrfs_mark_ordered_io_finished(inode, folio,
1374 page_start + (bit << fs_info->sectorsize_bits),
1375 fs_info->sectorsize, false);
1376 return ret;
1377 }
1378 out:
1379 if (last_delalloc_end)
1380 delalloc_end = last_delalloc_end;
1381 else
1382 delalloc_end = page_end;
1383 /*
1384 * delalloc_end is already one less than the total length, so
1385 * we don't subtract one from PAGE_SIZE
1386 */
1387 delalloc_to_write +=
1388 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1389
1390 /*
1391 * If all ranges are submitted asynchronously, we just need to account
1392 * for them here.
1393 */
1394 if (bitmap_empty(&bio_ctrl->submit_bitmap, fs_info->sectors_per_page)) {
1395 wbc->nr_to_write -= delalloc_to_write;
1396 return 1;
1397 }
1398
1399 if (wbc->nr_to_write < delalloc_to_write) {
1400 int thresh = 8192;
1401
1402 if (delalloc_to_write < thresh * 2)
1403 thresh = delalloc_to_write;
1404 wbc->nr_to_write = min_t(u64, delalloc_to_write,
1405 thresh);
1406 }
1407
1408 return 0;
1409 }
1410
1411 /*
1412 * Return 0 if we have submitted or queued the sector for submission.
1413 * Return <0 for critical errors.
1414 *
1415 * Caller should make sure filepos < i_size and handle filepos >= i_size case.
1416 */
submit_one_sector(struct btrfs_inode * inode,struct folio * folio,u64 filepos,struct btrfs_bio_ctrl * bio_ctrl,loff_t i_size)1417 static int submit_one_sector(struct btrfs_inode *inode,
1418 struct folio *folio,
1419 u64 filepos, struct btrfs_bio_ctrl *bio_ctrl,
1420 loff_t i_size)
1421 {
1422 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1423 struct extent_map *em;
1424 u64 block_start;
1425 u64 disk_bytenr;
1426 u64 extent_offset;
1427 u64 em_end;
1428 const u32 sectorsize = fs_info->sectorsize;
1429
1430 ASSERT(IS_ALIGNED(filepos, sectorsize));
1431
1432 /* @filepos >= i_size case should be handled by the caller. */
1433 ASSERT(filepos < i_size);
1434
1435 em = btrfs_get_extent(inode, NULL, filepos, sectorsize);
1436 if (IS_ERR(em))
1437 return PTR_ERR_OR_ZERO(em);
1438
1439 extent_offset = filepos - em->start;
1440 em_end = extent_map_end(em);
1441 ASSERT(filepos <= em_end);
1442 ASSERT(IS_ALIGNED(em->start, sectorsize));
1443 ASSERT(IS_ALIGNED(em->len, sectorsize));
1444
1445 block_start = extent_map_block_start(em);
1446 disk_bytenr = extent_map_block_start(em) + extent_offset;
1447
1448 ASSERT(!extent_map_is_compressed(em));
1449 ASSERT(block_start != EXTENT_MAP_HOLE);
1450 ASSERT(block_start != EXTENT_MAP_INLINE);
1451
1452 free_extent_map(em);
1453 em = NULL;
1454
1455 /*
1456 * Although the PageDirty bit is cleared before entering this
1457 * function, subpage dirty bit is not cleared.
1458 * So clear subpage dirty bit here so next time we won't submit
1459 * a folio for a range already written to disk.
1460 */
1461 btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize);
1462 btrfs_set_range_writeback(inode, filepos, filepos + sectorsize - 1);
1463 /*
1464 * Above call should set the whole folio with writeback flag, even
1465 * just for a single subpage sector.
1466 * As long as the folio is properly locked and the range is correct,
1467 * we should always get the folio with writeback flag.
1468 */
1469 ASSERT(folio_test_writeback(folio));
1470
1471 submit_extent_folio(bio_ctrl, disk_bytenr, folio,
1472 sectorsize, filepos - folio_pos(folio));
1473 return 0;
1474 }
1475
1476 /*
1477 * Helper for extent_writepage(). This calls the writepage start hooks,
1478 * and does the loop to map the page into extents and bios.
1479 *
1480 * We return 1 if the IO is started and the page is unlocked,
1481 * 0 if all went well (page still locked)
1482 * < 0 if there were errors (page still locked)
1483 */
extent_writepage_io(struct btrfs_inode * inode,struct folio * folio,u64 start,u32 len,struct btrfs_bio_ctrl * bio_ctrl,loff_t i_size)1484 static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode,
1485 struct folio *folio,
1486 u64 start, u32 len,
1487 struct btrfs_bio_ctrl *bio_ctrl,
1488 loff_t i_size)
1489 {
1490 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1491 unsigned long range_bitmap = 0;
1492 bool submitted_io = false;
1493 bool error = false;
1494 const u64 folio_start = folio_pos(folio);
1495 u64 cur;
1496 int bit;
1497 int ret = 0;
1498
1499 ASSERT(start >= folio_start &&
1500 start + len <= folio_start + folio_size(folio));
1501
1502 ret = btrfs_writepage_cow_fixup(folio);
1503 if (ret) {
1504 /* Fixup worker will requeue */
1505 folio_redirty_for_writepage(bio_ctrl->wbc, folio);
1506 folio_unlock(folio);
1507 return 1;
1508 }
1509
1510 for (cur = start; cur < start + len; cur += fs_info->sectorsize)
1511 set_bit((cur - folio_start) >> fs_info->sectorsize_bits, &range_bitmap);
1512 bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap,
1513 fs_info->sectors_per_page);
1514
1515 bio_ctrl->end_io_func = end_bbio_data_write;
1516
1517 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, fs_info->sectors_per_page) {
1518 cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits);
1519
1520 if (cur >= i_size) {
1521 btrfs_mark_ordered_io_finished(inode, folio, cur,
1522 start + len - cur, true);
1523 /*
1524 * This range is beyond i_size, thus we don't need to
1525 * bother writing back.
1526 * But we still need to clear the dirty subpage bit, or
1527 * the next time the folio gets dirtied, we will try to
1528 * writeback the sectors with subpage dirty bits,
1529 * causing writeback without ordered extent.
1530 */
1531 btrfs_folio_clear_dirty(fs_info, folio, cur,
1532 start + len - cur);
1533 break;
1534 }
1535 ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size);
1536 if (unlikely(ret < 0)) {
1537 /*
1538 * bio_ctrl may contain a bio crossing several folios.
1539 * Submit it immediately so that the bio has a chance
1540 * to finish normally, other than marked as error.
1541 */
1542 submit_one_bio(bio_ctrl);
1543 /*
1544 * Failed to grab the extent map which should be very rare.
1545 * Since there is no bio submitted to finish the ordered
1546 * extent, we have to manually finish this sector.
1547 */
1548 btrfs_mark_ordered_io_finished(inode, folio, cur,
1549 fs_info->sectorsize, false);
1550 error = true;
1551 continue;
1552 }
1553 submitted_io = true;
1554 }
1555
1556 /*
1557 * If we didn't submitted any sector (>= i_size), folio dirty get
1558 * cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared
1559 * by folio_start_writeback() if the folio is not dirty).
1560 *
1561 * Here we set writeback and clear for the range. If the full folio
1562 * is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag.
1563 *
1564 * If we hit any error, the corresponding sector will still be dirty
1565 * thus no need to clear PAGECACHE_TAG_DIRTY.
1566 */
1567 if (!submitted_io && !error) {
1568 btrfs_folio_set_writeback(fs_info, folio, start, len);
1569 btrfs_folio_clear_writeback(fs_info, folio, start, len);
1570 }
1571 return ret;
1572 }
1573
1574 /*
1575 * the writepage semantics are similar to regular writepage. extent
1576 * records are inserted to lock ranges in the tree, and as dirty areas
1577 * are found, they are marked writeback. Then the lock bits are removed
1578 * and the end_io handler clears the writeback ranges
1579 *
1580 * Return 0 if everything goes well.
1581 * Return <0 for error.
1582 */
extent_writepage(struct folio * folio,struct btrfs_bio_ctrl * bio_ctrl)1583 static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl)
1584 {
1585 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
1586 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1587 int ret;
1588 size_t pg_offset;
1589 loff_t i_size = i_size_read(&inode->vfs_inode);
1590 unsigned long end_index = i_size >> PAGE_SHIFT;
1591
1592 trace_extent_writepage(folio, &inode->vfs_inode, bio_ctrl->wbc);
1593
1594 WARN_ON(!folio_test_locked(folio));
1595
1596 pg_offset = offset_in_folio(folio, i_size);
1597 if (folio->index > end_index ||
1598 (folio->index == end_index && !pg_offset)) {
1599 folio_invalidate(folio, 0, folio_size(folio));
1600 folio_unlock(folio);
1601 return 0;
1602 }
1603
1604 if (folio->index == end_index)
1605 folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset);
1606
1607 /*
1608 * Default to unlock the whole folio.
1609 * The proper bitmap can only be initialized until writepage_delalloc().
1610 */
1611 bio_ctrl->submit_bitmap = (unsigned long)-1;
1612 ret = set_folio_extent_mapped(folio);
1613 if (ret < 0)
1614 goto done;
1615
1616 ret = writepage_delalloc(inode, folio, bio_ctrl);
1617 if (ret == 1)
1618 return 0;
1619 if (ret)
1620 goto done;
1621
1622 ret = extent_writepage_io(inode, folio, folio_pos(folio),
1623 PAGE_SIZE, bio_ctrl, i_size);
1624 if (ret == 1)
1625 return 0;
1626
1627 bio_ctrl->wbc->nr_to_write--;
1628
1629 done:
1630 if (ret < 0)
1631 mapping_set_error(folio->mapping, ret);
1632 /*
1633 * Only unlock ranges that are submitted. As there can be some async
1634 * submitted ranges inside the folio.
1635 */
1636 btrfs_folio_end_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap);
1637 ASSERT(ret <= 0);
1638 return ret;
1639 }
1640
wait_on_extent_buffer_writeback(struct extent_buffer * eb)1641 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1642 {
1643 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1644 TASK_UNINTERRUPTIBLE);
1645 }
1646
1647 /*
1648 * Lock extent buffer status and pages for writeback.
1649 *
1650 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1651 * extent buffer is not dirty)
1652 * Return %true is the extent buffer is submitted to bio.
1653 */
lock_extent_buffer_for_io(struct extent_buffer * eb,struct writeback_control * wbc)1654 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1655 struct writeback_control *wbc)
1656 {
1657 struct btrfs_fs_info *fs_info = eb->fs_info;
1658 bool ret = false;
1659
1660 btrfs_tree_lock(eb);
1661 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1662 btrfs_tree_unlock(eb);
1663 if (wbc->sync_mode != WB_SYNC_ALL)
1664 return false;
1665 wait_on_extent_buffer_writeback(eb);
1666 btrfs_tree_lock(eb);
1667 }
1668
1669 /*
1670 * We need to do this to prevent races in people who check if the eb is
1671 * under IO since we can end up having no IO bits set for a short period
1672 * of time.
1673 */
1674 spin_lock(&eb->refs_lock);
1675 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1676 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1677 spin_unlock(&eb->refs_lock);
1678 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1679 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1680 -eb->len,
1681 fs_info->dirty_metadata_batch);
1682 ret = true;
1683 } else {
1684 spin_unlock(&eb->refs_lock);
1685 }
1686 btrfs_tree_unlock(eb);
1687 return ret;
1688 }
1689
set_btree_ioerr(struct extent_buffer * eb)1690 static void set_btree_ioerr(struct extent_buffer *eb)
1691 {
1692 struct btrfs_fs_info *fs_info = eb->fs_info;
1693
1694 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1695
1696 /*
1697 * A read may stumble upon this buffer later, make sure that it gets an
1698 * error and knows there was an error.
1699 */
1700 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1701
1702 /*
1703 * We need to set the mapping with the io error as well because a write
1704 * error will flip the file system readonly, and then syncfs() will
1705 * return a 0 because we are readonly if we don't modify the err seq for
1706 * the superblock.
1707 */
1708 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1709
1710 /*
1711 * If writeback for a btree extent that doesn't belong to a log tree
1712 * failed, increment the counter transaction->eb_write_errors.
1713 * We do this because while the transaction is running and before it's
1714 * committing (when we call filemap_fdata[write|wait]_range against
1715 * the btree inode), we might have
1716 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1717 * returns an error or an error happens during writeback, when we're
1718 * committing the transaction we wouldn't know about it, since the pages
1719 * can be no longer dirty nor marked anymore for writeback (if a
1720 * subsequent modification to the extent buffer didn't happen before the
1721 * transaction commit), which makes filemap_fdata[write|wait]_range not
1722 * able to find the pages which contain errors at transaction
1723 * commit time. So if this happens we must abort the transaction,
1724 * otherwise we commit a super block with btree roots that point to
1725 * btree nodes/leafs whose content on disk is invalid - either garbage
1726 * or the content of some node/leaf from a past generation that got
1727 * cowed or deleted and is no longer valid.
1728 *
1729 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1730 * not be enough - we need to distinguish between log tree extents vs
1731 * non-log tree extents, and the next filemap_fdatawait_range() call
1732 * will catch and clear such errors in the mapping - and that call might
1733 * be from a log sync and not from a transaction commit. Also, checking
1734 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1735 * not done and would not be reliable - the eb might have been released
1736 * from memory and reading it back again means that flag would not be
1737 * set (since it's a runtime flag, not persisted on disk).
1738 *
1739 * Using the flags below in the btree inode also makes us achieve the
1740 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1741 * writeback for all dirty pages and before filemap_fdatawait_range()
1742 * is called, the writeback for all dirty pages had already finished
1743 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1744 * filemap_fdatawait_range() would return success, as it could not know
1745 * that writeback errors happened (the pages were no longer tagged for
1746 * writeback).
1747 */
1748 switch (eb->log_index) {
1749 case -1:
1750 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1751 break;
1752 case 0:
1753 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1754 break;
1755 case 1:
1756 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1757 break;
1758 default:
1759 BUG(); /* unexpected, logic error */
1760 }
1761 }
1762
1763 /*
1764 * The endio specific version which won't touch any unsafe spinlock in endio
1765 * context.
1766 */
find_extent_buffer_nolock(const struct btrfs_fs_info * fs_info,u64 start)1767 static struct extent_buffer *find_extent_buffer_nolock(
1768 const struct btrfs_fs_info *fs_info, u64 start)
1769 {
1770 struct extent_buffer *eb;
1771
1772 rcu_read_lock();
1773 eb = radix_tree_lookup(&fs_info->buffer_radix,
1774 start >> fs_info->sectorsize_bits);
1775 if (eb && atomic_inc_not_zero(&eb->refs)) {
1776 rcu_read_unlock();
1777 return eb;
1778 }
1779 rcu_read_unlock();
1780 return NULL;
1781 }
1782
end_bbio_meta_write(struct btrfs_bio * bbio)1783 static void end_bbio_meta_write(struct btrfs_bio *bbio)
1784 {
1785 struct extent_buffer *eb = bbio->private;
1786 struct btrfs_fs_info *fs_info = eb->fs_info;
1787 bool uptodate = !bbio->bio.bi_status;
1788 struct folio_iter fi;
1789 u32 bio_offset = 0;
1790
1791 if (!uptodate)
1792 set_btree_ioerr(eb);
1793
1794 bio_for_each_folio_all(fi, &bbio->bio) {
1795 u64 start = eb->start + bio_offset;
1796 struct folio *folio = fi.folio;
1797 u32 len = fi.length;
1798
1799 btrfs_folio_clear_writeback(fs_info, folio, start, len);
1800 bio_offset += len;
1801 }
1802
1803 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1804 smp_mb__after_atomic();
1805 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
1806
1807 bio_put(&bbio->bio);
1808 }
1809
prepare_eb_write(struct extent_buffer * eb)1810 static void prepare_eb_write(struct extent_buffer *eb)
1811 {
1812 u32 nritems;
1813 unsigned long start;
1814 unsigned long end;
1815
1816 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1817
1818 /* Set btree blocks beyond nritems with 0 to avoid stale content */
1819 nritems = btrfs_header_nritems(eb);
1820 if (btrfs_header_level(eb) > 0) {
1821 end = btrfs_node_key_ptr_offset(eb, nritems);
1822 memzero_extent_buffer(eb, end, eb->len - end);
1823 } else {
1824 /*
1825 * Leaf:
1826 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1827 */
1828 start = btrfs_item_nr_offset(eb, nritems);
1829 end = btrfs_item_nr_offset(eb, 0);
1830 if (nritems == 0)
1831 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1832 else
1833 end += btrfs_item_offset(eb, nritems - 1);
1834 memzero_extent_buffer(eb, start, end - start);
1835 }
1836 }
1837
write_one_eb(struct extent_buffer * eb,struct writeback_control * wbc)1838 static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1839 struct writeback_control *wbc)
1840 {
1841 struct btrfs_fs_info *fs_info = eb->fs_info;
1842 struct btrfs_bio *bbio;
1843
1844 prepare_eb_write(eb);
1845
1846 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1847 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1848 eb->fs_info, end_bbio_meta_write, eb);
1849 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1850 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1851 wbc_init_bio(wbc, &bbio->bio);
1852 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1853 bbio->file_offset = eb->start;
1854 if (fs_info->nodesize < PAGE_SIZE) {
1855 struct folio *folio = eb->folios[0];
1856 bool ret;
1857
1858 folio_lock(folio);
1859 btrfs_subpage_set_writeback(fs_info, folio, eb->start, eb->len);
1860 if (btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start,
1861 eb->len)) {
1862 folio_clear_dirty_for_io(folio);
1863 wbc->nr_to_write--;
1864 }
1865 ret = bio_add_folio(&bbio->bio, folio, eb->len,
1866 eb->start - folio_pos(folio));
1867 ASSERT(ret);
1868 wbc_account_cgroup_owner(wbc, folio, eb->len);
1869 folio_unlock(folio);
1870 } else {
1871 int num_folios = num_extent_folios(eb);
1872
1873 for (int i = 0; i < num_folios; i++) {
1874 struct folio *folio = eb->folios[i];
1875 bool ret;
1876
1877 folio_lock(folio);
1878 folio_clear_dirty_for_io(folio);
1879 folio_start_writeback(folio);
1880 ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
1881 ASSERT(ret);
1882 wbc_account_cgroup_owner(wbc, folio, eb->folio_size);
1883 wbc->nr_to_write -= folio_nr_pages(folio);
1884 folio_unlock(folio);
1885 }
1886 }
1887 btrfs_submit_bbio(bbio, 0);
1888 }
1889
1890 /*
1891 * Submit one subpage btree page.
1892 *
1893 * The main difference to submit_eb_page() is:
1894 * - Page locking
1895 * For subpage, we don't rely on page locking at all.
1896 *
1897 * - Flush write bio
1898 * We only flush bio if we may be unable to fit current extent buffers into
1899 * current bio.
1900 *
1901 * Return >=0 for the number of submitted extent buffers.
1902 * Return <0 for fatal error.
1903 */
submit_eb_subpage(struct folio * folio,struct writeback_control * wbc)1904 static int submit_eb_subpage(struct folio *folio, struct writeback_control *wbc)
1905 {
1906 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1907 int submitted = 0;
1908 u64 folio_start = folio_pos(folio);
1909 int bit_start = 0;
1910 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
1911
1912 /* Lock and write each dirty extent buffers in the range */
1913 while (bit_start < fs_info->sectors_per_page) {
1914 struct btrfs_subpage *subpage = folio_get_private(folio);
1915 struct extent_buffer *eb;
1916 unsigned long flags;
1917 u64 start;
1918
1919 /*
1920 * Take private lock to ensure the subpage won't be detached
1921 * in the meantime.
1922 */
1923 spin_lock(&folio->mapping->i_private_lock);
1924 if (!folio_test_private(folio)) {
1925 spin_unlock(&folio->mapping->i_private_lock);
1926 break;
1927 }
1928 spin_lock_irqsave(&subpage->lock, flags);
1929 if (!test_bit(bit_start + btrfs_bitmap_nr_dirty * fs_info->sectors_per_page,
1930 subpage->bitmaps)) {
1931 spin_unlock_irqrestore(&subpage->lock, flags);
1932 spin_unlock(&folio->mapping->i_private_lock);
1933 bit_start += sectors_per_node;
1934 continue;
1935 }
1936
1937 start = folio_start + bit_start * fs_info->sectorsize;
1938 bit_start += sectors_per_node;
1939
1940 /*
1941 * Here we just want to grab the eb without touching extra
1942 * spin locks, so call find_extent_buffer_nolock().
1943 */
1944 eb = find_extent_buffer_nolock(fs_info, start);
1945 spin_unlock_irqrestore(&subpage->lock, flags);
1946 spin_unlock(&folio->mapping->i_private_lock);
1947
1948 /*
1949 * The eb has already reached 0 refs thus find_extent_buffer()
1950 * doesn't return it. We don't need to write back such eb
1951 * anyway.
1952 */
1953 if (!eb)
1954 continue;
1955
1956 if (lock_extent_buffer_for_io(eb, wbc)) {
1957 write_one_eb(eb, wbc);
1958 submitted++;
1959 }
1960 free_extent_buffer(eb);
1961 }
1962 return submitted;
1963 }
1964
1965 /*
1966 * Submit all page(s) of one extent buffer.
1967 *
1968 * @page: the page of one extent buffer
1969 * @eb_context: to determine if we need to submit this page, if current page
1970 * belongs to this eb, we don't need to submit
1971 *
1972 * The caller should pass each page in their bytenr order, and here we use
1973 * @eb_context to determine if we have submitted pages of one extent buffer.
1974 *
1975 * If we have, we just skip until we hit a new page that doesn't belong to
1976 * current @eb_context.
1977 *
1978 * If not, we submit all the page(s) of the extent buffer.
1979 *
1980 * Return >0 if we have submitted the extent buffer successfully.
1981 * Return 0 if we don't need to submit the page, as it's already submitted by
1982 * previous call.
1983 * Return <0 for fatal error.
1984 */
submit_eb_page(struct folio * folio,struct btrfs_eb_write_context * ctx)1985 static int submit_eb_page(struct folio *folio, struct btrfs_eb_write_context *ctx)
1986 {
1987 struct writeback_control *wbc = ctx->wbc;
1988 struct address_space *mapping = folio->mapping;
1989 struct extent_buffer *eb;
1990 int ret;
1991
1992 if (!folio_test_private(folio))
1993 return 0;
1994
1995 if (folio_to_fs_info(folio)->nodesize < PAGE_SIZE)
1996 return submit_eb_subpage(folio, wbc);
1997
1998 spin_lock(&mapping->i_private_lock);
1999 if (!folio_test_private(folio)) {
2000 spin_unlock(&mapping->i_private_lock);
2001 return 0;
2002 }
2003
2004 eb = folio_get_private(folio);
2005
2006 /*
2007 * Shouldn't happen and normally this would be a BUG_ON but no point
2008 * crashing the machine for something we can survive anyway.
2009 */
2010 if (WARN_ON(!eb)) {
2011 spin_unlock(&mapping->i_private_lock);
2012 return 0;
2013 }
2014
2015 if (eb == ctx->eb) {
2016 spin_unlock(&mapping->i_private_lock);
2017 return 0;
2018 }
2019 ret = atomic_inc_not_zero(&eb->refs);
2020 spin_unlock(&mapping->i_private_lock);
2021 if (!ret)
2022 return 0;
2023
2024 ctx->eb = eb;
2025
2026 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
2027 if (ret) {
2028 if (ret == -EBUSY)
2029 ret = 0;
2030 free_extent_buffer(eb);
2031 return ret;
2032 }
2033
2034 if (!lock_extent_buffer_for_io(eb, wbc)) {
2035 free_extent_buffer(eb);
2036 return 0;
2037 }
2038 /* Implies write in zoned mode. */
2039 if (ctx->zoned_bg) {
2040 /* Mark the last eb in the block group. */
2041 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
2042 ctx->zoned_bg->meta_write_pointer += eb->len;
2043 }
2044 write_one_eb(eb, wbc);
2045 free_extent_buffer(eb);
2046 return 1;
2047 }
2048
btree_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc)2049 int btree_write_cache_pages(struct address_space *mapping,
2050 struct writeback_control *wbc)
2051 {
2052 struct btrfs_eb_write_context ctx = { .wbc = wbc };
2053 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
2054 int ret = 0;
2055 int done = 0;
2056 int nr_to_write_done = 0;
2057 struct folio_batch fbatch;
2058 unsigned int nr_folios;
2059 pgoff_t index;
2060 pgoff_t end; /* Inclusive */
2061 int scanned = 0;
2062 xa_mark_t tag;
2063
2064 folio_batch_init(&fbatch);
2065 if (wbc->range_cyclic) {
2066 index = mapping->writeback_index; /* Start from prev offset */
2067 end = -1;
2068 /*
2069 * Start from the beginning does not need to cycle over the
2070 * range, mark it as scanned.
2071 */
2072 scanned = (index == 0);
2073 } else {
2074 index = wbc->range_start >> PAGE_SHIFT;
2075 end = wbc->range_end >> PAGE_SHIFT;
2076 scanned = 1;
2077 }
2078 if (wbc->sync_mode == WB_SYNC_ALL)
2079 tag = PAGECACHE_TAG_TOWRITE;
2080 else
2081 tag = PAGECACHE_TAG_DIRTY;
2082 btrfs_zoned_meta_io_lock(fs_info);
2083 retry:
2084 if (wbc->sync_mode == WB_SYNC_ALL)
2085 tag_pages_for_writeback(mapping, index, end);
2086 while (!done && !nr_to_write_done && (index <= end) &&
2087 (nr_folios = filemap_get_folios_tag(mapping, &index, end,
2088 tag, &fbatch))) {
2089 unsigned i;
2090
2091 for (i = 0; i < nr_folios; i++) {
2092 struct folio *folio = fbatch.folios[i];
2093
2094 ret = submit_eb_page(folio, &ctx);
2095 if (ret == 0)
2096 continue;
2097 if (ret < 0) {
2098 done = 1;
2099 break;
2100 }
2101
2102 /*
2103 * the filesystem may choose to bump up nr_to_write.
2104 * We have to make sure to honor the new nr_to_write
2105 * at any time
2106 */
2107 nr_to_write_done = wbc->nr_to_write <= 0;
2108 }
2109 folio_batch_release(&fbatch);
2110 cond_resched();
2111 }
2112 if (!scanned && !done) {
2113 /*
2114 * We hit the last page and there is more work to be done: wrap
2115 * back to the start of the file
2116 */
2117 scanned = 1;
2118 index = 0;
2119 goto retry;
2120 }
2121 /*
2122 * If something went wrong, don't allow any metadata write bio to be
2123 * submitted.
2124 *
2125 * This would prevent use-after-free if we had dirty pages not
2126 * cleaned up, which can still happen by fuzzed images.
2127 *
2128 * - Bad extent tree
2129 * Allowing existing tree block to be allocated for other trees.
2130 *
2131 * - Log tree operations
2132 * Exiting tree blocks get allocated to log tree, bumps its
2133 * generation, then get cleaned in tree re-balance.
2134 * Such tree block will not be written back, since it's clean,
2135 * thus no WRITTEN flag set.
2136 * And after log writes back, this tree block is not traced by
2137 * any dirty extent_io_tree.
2138 *
2139 * - Offending tree block gets re-dirtied from its original owner
2140 * Since it has bumped generation, no WRITTEN flag, it can be
2141 * reused without COWing. This tree block will not be traced
2142 * by btrfs_transaction::dirty_pages.
2143 *
2144 * Now such dirty tree block will not be cleaned by any dirty
2145 * extent io tree. Thus we don't want to submit such wild eb
2146 * if the fs already has error.
2147 *
2148 * We can get ret > 0 from submit_extent_folio() indicating how many ebs
2149 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2150 */
2151 if (ret > 0)
2152 ret = 0;
2153 if (!ret && BTRFS_FS_ERROR(fs_info))
2154 ret = -EROFS;
2155
2156 if (ctx.zoned_bg)
2157 btrfs_put_block_group(ctx.zoned_bg);
2158 btrfs_zoned_meta_io_unlock(fs_info);
2159 return ret;
2160 }
2161
2162 /*
2163 * Walk the list of dirty pages of the given address space and write all of them.
2164 *
2165 * @mapping: address space structure to write
2166 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2167 * @bio_ctrl: holds context for the write, namely the bio
2168 *
2169 * If a page is already under I/O, write_cache_pages() skips it, even
2170 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2171 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2172 * and msync() need to guarantee that all the data which was dirty at the time
2173 * the call was made get new I/O started against them. If wbc->sync_mode is
2174 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2175 * existing IO to complete.
2176 */
extent_write_cache_pages(struct address_space * mapping,struct btrfs_bio_ctrl * bio_ctrl)2177 static int extent_write_cache_pages(struct address_space *mapping,
2178 struct btrfs_bio_ctrl *bio_ctrl)
2179 {
2180 struct writeback_control *wbc = bio_ctrl->wbc;
2181 struct inode *inode = mapping->host;
2182 int ret = 0;
2183 int done = 0;
2184 int nr_to_write_done = 0;
2185 struct folio_batch fbatch;
2186 unsigned int nr_folios;
2187 pgoff_t index;
2188 pgoff_t end; /* Inclusive */
2189 pgoff_t done_index;
2190 int range_whole = 0;
2191 int scanned = 0;
2192 xa_mark_t tag;
2193
2194 /*
2195 * We have to hold onto the inode so that ordered extents can do their
2196 * work when the IO finishes. The alternative to this is failing to add
2197 * an ordered extent if the igrab() fails there and that is a huge pain
2198 * to deal with, so instead just hold onto the inode throughout the
2199 * writepages operation. If it fails here we are freeing up the inode
2200 * anyway and we'd rather not waste our time writing out stuff that is
2201 * going to be truncated anyway.
2202 */
2203 if (!igrab(inode))
2204 return 0;
2205
2206 folio_batch_init(&fbatch);
2207 if (wbc->range_cyclic) {
2208 index = mapping->writeback_index; /* Start from prev offset */
2209 end = -1;
2210 /*
2211 * Start from the beginning does not need to cycle over the
2212 * range, mark it as scanned.
2213 */
2214 scanned = (index == 0);
2215 } else {
2216 index = wbc->range_start >> PAGE_SHIFT;
2217 end = wbc->range_end >> PAGE_SHIFT;
2218 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2219 range_whole = 1;
2220 scanned = 1;
2221 }
2222
2223 /*
2224 * We do the tagged writepage as long as the snapshot flush bit is set
2225 * and we are the first one who do the filemap_flush() on this inode.
2226 *
2227 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2228 * not race in and drop the bit.
2229 */
2230 if (range_whole && wbc->nr_to_write == LONG_MAX &&
2231 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2232 &BTRFS_I(inode)->runtime_flags))
2233 wbc->tagged_writepages = 1;
2234
2235 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2236 tag = PAGECACHE_TAG_TOWRITE;
2237 else
2238 tag = PAGECACHE_TAG_DIRTY;
2239 retry:
2240 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2241 tag_pages_for_writeback(mapping, index, end);
2242 done_index = index;
2243 while (!done && !nr_to_write_done && (index <= end) &&
2244 (nr_folios = filemap_get_folios_tag(mapping, &index,
2245 end, tag, &fbatch))) {
2246 unsigned i;
2247
2248 for (i = 0; i < nr_folios; i++) {
2249 struct folio *folio = fbatch.folios[i];
2250
2251 done_index = folio_next_index(folio);
2252 /*
2253 * At this point we hold neither the i_pages lock nor
2254 * the page lock: the page may be truncated or
2255 * invalidated (changing page->mapping to NULL),
2256 * or even swizzled back from swapper_space to
2257 * tmpfs file mapping
2258 */
2259 if (!folio_trylock(folio)) {
2260 submit_write_bio(bio_ctrl, 0);
2261 folio_lock(folio);
2262 }
2263
2264 if (unlikely(folio->mapping != mapping)) {
2265 folio_unlock(folio);
2266 continue;
2267 }
2268
2269 if (!folio_test_dirty(folio)) {
2270 /* Someone wrote it for us. */
2271 folio_unlock(folio);
2272 continue;
2273 }
2274
2275 if (wbc->sync_mode != WB_SYNC_NONE) {
2276 if (folio_test_writeback(folio))
2277 submit_write_bio(bio_ctrl, 0);
2278 folio_wait_writeback(folio);
2279 }
2280
2281 if (folio_test_writeback(folio) ||
2282 !folio_clear_dirty_for_io(folio)) {
2283 folio_unlock(folio);
2284 continue;
2285 }
2286
2287 ret = extent_writepage(folio, bio_ctrl);
2288 if (ret < 0) {
2289 done = 1;
2290 break;
2291 }
2292
2293 /*
2294 * The filesystem may choose to bump up nr_to_write.
2295 * We have to make sure to honor the new nr_to_write
2296 * at any time.
2297 */
2298 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2299 wbc->nr_to_write <= 0);
2300 }
2301 folio_batch_release(&fbatch);
2302 cond_resched();
2303 }
2304 if (!scanned && !done) {
2305 /*
2306 * We hit the last page and there is more work to be done: wrap
2307 * back to the start of the file
2308 */
2309 scanned = 1;
2310 index = 0;
2311
2312 /*
2313 * If we're looping we could run into a page that is locked by a
2314 * writer and that writer could be waiting on writeback for a
2315 * page in our current bio, and thus deadlock, so flush the
2316 * write bio here.
2317 */
2318 submit_write_bio(bio_ctrl, 0);
2319 goto retry;
2320 }
2321
2322 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2323 mapping->writeback_index = done_index;
2324
2325 btrfs_add_delayed_iput(BTRFS_I(inode));
2326 return ret;
2327 }
2328
2329 /*
2330 * Submit the pages in the range to bio for call sites which delalloc range has
2331 * already been ran (aka, ordered extent inserted) and all pages are still
2332 * locked.
2333 */
extent_write_locked_range(struct inode * inode,const struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc,bool pages_dirty)2334 void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio,
2335 u64 start, u64 end, struct writeback_control *wbc,
2336 bool pages_dirty)
2337 {
2338 bool found_error = false;
2339 int ret = 0;
2340 struct address_space *mapping = inode->i_mapping;
2341 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2342 const u32 sectorsize = fs_info->sectorsize;
2343 loff_t i_size = i_size_read(inode);
2344 u64 cur = start;
2345 struct btrfs_bio_ctrl bio_ctrl = {
2346 .wbc = wbc,
2347 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2348 };
2349
2350 if (wbc->no_cgroup_owner)
2351 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2352
2353 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2354
2355 while (cur <= end) {
2356 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2357 u32 cur_len = cur_end + 1 - cur;
2358 struct folio *folio;
2359
2360 folio = __filemap_get_folio(mapping, cur >> PAGE_SHIFT, 0, 0);
2361
2362 /*
2363 * This shouldn't happen, the pages are pinned and locked, this
2364 * code is just in case, but shouldn't actually be run.
2365 */
2366 if (IS_ERR(folio)) {
2367 btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL,
2368 cur, cur_len, false);
2369 mapping_set_error(mapping, PTR_ERR(folio));
2370 cur = cur_end + 1;
2371 continue;
2372 }
2373
2374 ASSERT(folio_test_locked(folio));
2375 if (pages_dirty && folio != locked_folio)
2376 ASSERT(folio_test_dirty(folio));
2377
2378 /*
2379 * Set the submission bitmap to submit all sectors.
2380 * extent_writepage_io() will do the truncation correctly.
2381 */
2382 bio_ctrl.submit_bitmap = (unsigned long)-1;
2383 ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len,
2384 &bio_ctrl, i_size);
2385 if (ret == 1)
2386 goto next_page;
2387
2388 if (ret)
2389 mapping_set_error(mapping, ret);
2390 btrfs_folio_end_lock(fs_info, folio, cur, cur_len);
2391 if (ret < 0)
2392 found_error = true;
2393 next_page:
2394 folio_put(folio);
2395 cur = cur_end + 1;
2396 }
2397
2398 submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2399 }
2400
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)2401 int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
2402 {
2403 struct inode *inode = mapping->host;
2404 int ret = 0;
2405 struct btrfs_bio_ctrl bio_ctrl = {
2406 .wbc = wbc,
2407 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2408 };
2409
2410 /*
2411 * Allow only a single thread to do the reloc work in zoned mode to
2412 * protect the write pointer updates.
2413 */
2414 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2415 ret = extent_write_cache_pages(mapping, &bio_ctrl);
2416 submit_write_bio(&bio_ctrl, ret);
2417 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2418 return ret;
2419 }
2420
btrfs_readahead(struct readahead_control * rac)2421 void btrfs_readahead(struct readahead_control *rac)
2422 {
2423 struct btrfs_bio_ctrl bio_ctrl = {
2424 .opf = REQ_OP_READ | REQ_RAHEAD,
2425 .ractl = rac,
2426 .last_em_start = U64_MAX,
2427 };
2428 struct folio *folio;
2429 struct btrfs_inode *inode = BTRFS_I(rac->mapping->host);
2430 const u64 start = readahead_pos(rac);
2431 const u64 end = start + readahead_length(rac) - 1;
2432 struct extent_state *cached_state = NULL;
2433 struct extent_map *em_cached = NULL;
2434
2435 btrfs_lock_and_flush_ordered_range(inode, start, end, &cached_state);
2436
2437 while ((folio = readahead_folio(rac)) != NULL)
2438 btrfs_do_readpage(folio, &em_cached, &bio_ctrl);
2439
2440 unlock_extent(&inode->io_tree, start, end, &cached_state);
2441
2442 if (em_cached)
2443 free_extent_map(em_cached);
2444 submit_one_bio(&bio_ctrl);
2445 }
2446
2447 /*
2448 * basic invalidate_folio code, this waits on any locked or writeback
2449 * ranges corresponding to the folio, and then deletes any extent state
2450 * records from the tree
2451 */
extent_invalidate_folio(struct extent_io_tree * tree,struct folio * folio,size_t offset)2452 int extent_invalidate_folio(struct extent_io_tree *tree,
2453 struct folio *folio, size_t offset)
2454 {
2455 struct extent_state *cached_state = NULL;
2456 u64 start = folio_pos(folio);
2457 u64 end = start + folio_size(folio) - 1;
2458 size_t blocksize = folio_to_fs_info(folio)->sectorsize;
2459
2460 /* This function is only called for the btree inode */
2461 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2462
2463 start += ALIGN(offset, blocksize);
2464 if (start > end)
2465 return 0;
2466
2467 lock_extent(tree, start, end, &cached_state);
2468 folio_wait_writeback(folio);
2469
2470 /*
2471 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2472 * so here we only need to unlock the extent range to free any
2473 * existing extent state.
2474 */
2475 unlock_extent(tree, start, end, &cached_state);
2476 return 0;
2477 }
2478
2479 /*
2480 * a helper for release_folio, this tests for areas of the page that
2481 * are locked or under IO and drops the related state bits if it is safe
2482 * to drop the page.
2483 */
try_release_extent_state(struct extent_io_tree * tree,struct folio * folio,gfp_t mask)2484 static bool try_release_extent_state(struct extent_io_tree *tree,
2485 struct folio *folio, gfp_t mask)
2486 {
2487 u64 start = folio_pos(folio);
2488 u64 end = start + PAGE_SIZE - 1;
2489 bool ret;
2490
2491 if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) {
2492 ret = false;
2493 } else {
2494 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2495 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS |
2496 EXTENT_QGROUP_RESERVED);
2497 int ret2;
2498
2499 /*
2500 * At this point we can safely clear everything except the
2501 * locked bit, the nodatasum bit and the delalloc new bit.
2502 * The delalloc new bit will be cleared by ordered extent
2503 * completion.
2504 */
2505 ret2 = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
2506
2507 /* if clear_extent_bit failed for enomem reasons,
2508 * we can't allow the release to continue.
2509 */
2510 if (ret2 < 0)
2511 ret = false;
2512 else
2513 ret = true;
2514 }
2515 return ret;
2516 }
2517
2518 /*
2519 * a helper for release_folio. As long as there are no locked extents
2520 * in the range corresponding to the page, both state records and extent
2521 * map records are removed
2522 */
try_release_extent_mapping(struct folio * folio,gfp_t mask)2523 bool try_release_extent_mapping(struct folio *folio, gfp_t mask)
2524 {
2525 u64 start = folio_pos(folio);
2526 u64 end = start + PAGE_SIZE - 1;
2527 struct btrfs_inode *inode = folio_to_inode(folio);
2528 struct extent_io_tree *io_tree = &inode->io_tree;
2529
2530 while (start <= end) {
2531 const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info);
2532 const u64 len = end - start + 1;
2533 struct extent_map_tree *extent_tree = &inode->extent_tree;
2534 struct extent_map *em;
2535
2536 write_lock(&extent_tree->lock);
2537 em = lookup_extent_mapping(extent_tree, start, len);
2538 if (!em) {
2539 write_unlock(&extent_tree->lock);
2540 break;
2541 }
2542 if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) {
2543 write_unlock(&extent_tree->lock);
2544 free_extent_map(em);
2545 break;
2546 }
2547 if (test_range_bit_exists(io_tree, em->start,
2548 extent_map_end(em) - 1, EXTENT_LOCKED))
2549 goto next;
2550 /*
2551 * If it's not in the list of modified extents, used by a fast
2552 * fsync, we can remove it. If it's being logged we can safely
2553 * remove it since fsync took an extra reference on the em.
2554 */
2555 if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING))
2556 goto remove_em;
2557 /*
2558 * If it's in the list of modified extents, remove it only if
2559 * its generation is older then the current one, in which case
2560 * we don't need it for a fast fsync. Otherwise don't remove it,
2561 * we could be racing with an ongoing fast fsync that could miss
2562 * the new extent.
2563 */
2564 if (em->generation >= cur_gen)
2565 goto next;
2566 remove_em:
2567 /*
2568 * We only remove extent maps that are not in the list of
2569 * modified extents or that are in the list but with a
2570 * generation lower then the current generation, so there is no
2571 * need to set the full fsync flag on the inode (it hurts the
2572 * fsync performance for workloads with a data size that exceeds
2573 * or is close to the system's memory).
2574 */
2575 remove_extent_mapping(inode, em);
2576 /* Once for the inode's extent map tree. */
2577 free_extent_map(em);
2578 next:
2579 start = extent_map_end(em);
2580 write_unlock(&extent_tree->lock);
2581
2582 /* Once for us, for the lookup_extent_mapping() reference. */
2583 free_extent_map(em);
2584
2585 if (need_resched()) {
2586 /*
2587 * If we need to resched but we can't block just exit
2588 * and leave any remaining extent maps.
2589 */
2590 if (!gfpflags_allow_blocking(mask))
2591 break;
2592
2593 cond_resched();
2594 }
2595 }
2596 return try_release_extent_state(io_tree, folio, mask);
2597 }
2598
__free_extent_buffer(struct extent_buffer * eb)2599 static void __free_extent_buffer(struct extent_buffer *eb)
2600 {
2601 kmem_cache_free(extent_buffer_cache, eb);
2602 }
2603
extent_buffer_under_io(const struct extent_buffer * eb)2604 static int extent_buffer_under_io(const struct extent_buffer *eb)
2605 {
2606 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
2607 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2608 }
2609
folio_range_has_eb(struct btrfs_fs_info * fs_info,struct folio * folio)2610 static bool folio_range_has_eb(struct btrfs_fs_info *fs_info, struct folio *folio)
2611 {
2612 struct btrfs_subpage *subpage;
2613
2614 lockdep_assert_held(&folio->mapping->i_private_lock);
2615
2616 if (folio_test_private(folio)) {
2617 subpage = folio_get_private(folio);
2618 if (atomic_read(&subpage->eb_refs))
2619 return true;
2620 }
2621 return false;
2622 }
2623
detach_extent_buffer_folio(const struct extent_buffer * eb,struct folio * folio)2624 static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio)
2625 {
2626 struct btrfs_fs_info *fs_info = eb->fs_info;
2627 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2628
2629 /*
2630 * For mapped eb, we're going to change the folio private, which should
2631 * be done under the i_private_lock.
2632 */
2633 if (mapped)
2634 spin_lock(&folio->mapping->i_private_lock);
2635
2636 if (!folio_test_private(folio)) {
2637 if (mapped)
2638 spin_unlock(&folio->mapping->i_private_lock);
2639 return;
2640 }
2641
2642 if (fs_info->nodesize >= PAGE_SIZE) {
2643 /*
2644 * We do this since we'll remove the pages after we've
2645 * removed the eb from the radix tree, so we could race
2646 * and have this page now attached to the new eb. So
2647 * only clear folio if it's still connected to
2648 * this eb.
2649 */
2650 if (folio_test_private(folio) && folio_get_private(folio) == eb) {
2651 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2652 BUG_ON(folio_test_dirty(folio));
2653 BUG_ON(folio_test_writeback(folio));
2654 /* We need to make sure we haven't be attached to a new eb. */
2655 folio_detach_private(folio);
2656 }
2657 if (mapped)
2658 spin_unlock(&folio->mapping->i_private_lock);
2659 return;
2660 }
2661
2662 /*
2663 * For subpage, we can have dummy eb with folio private attached. In
2664 * this case, we can directly detach the private as such folio is only
2665 * attached to one dummy eb, no sharing.
2666 */
2667 if (!mapped) {
2668 btrfs_detach_subpage(fs_info, folio);
2669 return;
2670 }
2671
2672 btrfs_folio_dec_eb_refs(fs_info, folio);
2673
2674 /*
2675 * We can only detach the folio private if there are no other ebs in the
2676 * page range and no unfinished IO.
2677 */
2678 if (!folio_range_has_eb(fs_info, folio))
2679 btrfs_detach_subpage(fs_info, folio);
2680
2681 spin_unlock(&folio->mapping->i_private_lock);
2682 }
2683
2684 /* Release all pages attached to the extent buffer */
btrfs_release_extent_buffer_pages(const struct extent_buffer * eb)2685 static void btrfs_release_extent_buffer_pages(const struct extent_buffer *eb)
2686 {
2687 ASSERT(!extent_buffer_under_io(eb));
2688
2689 for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
2690 struct folio *folio = eb->folios[i];
2691
2692 if (!folio)
2693 continue;
2694
2695 detach_extent_buffer_folio(eb, folio);
2696
2697 /* One for when we allocated the folio. */
2698 folio_put(folio);
2699 }
2700 }
2701
2702 /*
2703 * Helper for releasing the extent buffer.
2704 */
btrfs_release_extent_buffer(struct extent_buffer * eb)2705 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
2706 {
2707 btrfs_release_extent_buffer_pages(eb);
2708 btrfs_leak_debug_del_eb(eb);
2709 __free_extent_buffer(eb);
2710 }
2711
2712 static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)2713 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
2714 unsigned long len)
2715 {
2716 struct extent_buffer *eb = NULL;
2717
2718 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
2719 eb->start = start;
2720 eb->len = len;
2721 eb->fs_info = fs_info;
2722 init_rwsem(&eb->lock);
2723
2724 btrfs_leak_debug_add_eb(eb);
2725
2726 spin_lock_init(&eb->refs_lock);
2727 atomic_set(&eb->refs, 1);
2728
2729 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
2730
2731 return eb;
2732 }
2733
btrfs_clone_extent_buffer(const struct extent_buffer * src)2734 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
2735 {
2736 struct extent_buffer *new;
2737 int num_folios = num_extent_folios(src);
2738 int ret;
2739
2740 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
2741 if (new == NULL)
2742 return NULL;
2743
2744 /*
2745 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
2746 * btrfs_release_extent_buffer() have different behavior for
2747 * UNMAPPED subpage extent buffer.
2748 */
2749 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
2750
2751 ret = alloc_eb_folio_array(new, false);
2752 if (ret) {
2753 btrfs_release_extent_buffer(new);
2754 return NULL;
2755 }
2756
2757 for (int i = 0; i < num_folios; i++) {
2758 struct folio *folio = new->folios[i];
2759
2760 ret = attach_extent_buffer_folio(new, folio, NULL);
2761 if (ret < 0) {
2762 btrfs_release_extent_buffer(new);
2763 return NULL;
2764 }
2765 WARN_ON(folio_test_dirty(folio));
2766 }
2767 copy_extent_buffer_full(new, src);
2768 set_extent_buffer_uptodate(new);
2769
2770 return new;
2771 }
2772
__alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)2773 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
2774 u64 start, unsigned long len)
2775 {
2776 struct extent_buffer *eb;
2777 int num_folios = 0;
2778 int ret;
2779
2780 eb = __alloc_extent_buffer(fs_info, start, len);
2781 if (!eb)
2782 return NULL;
2783
2784 ret = alloc_eb_folio_array(eb, false);
2785 if (ret)
2786 goto err;
2787
2788 num_folios = num_extent_folios(eb);
2789 for (int i = 0; i < num_folios; i++) {
2790 ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
2791 if (ret < 0)
2792 goto err;
2793 }
2794
2795 set_extent_buffer_uptodate(eb);
2796 btrfs_set_header_nritems(eb, 0);
2797 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2798
2799 return eb;
2800 err:
2801 for (int i = 0; i < num_folios; i++) {
2802 if (eb->folios[i]) {
2803 detach_extent_buffer_folio(eb, eb->folios[i]);
2804 folio_put(eb->folios[i]);
2805 }
2806 }
2807 __free_extent_buffer(eb);
2808 return NULL;
2809 }
2810
alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)2811 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
2812 u64 start)
2813 {
2814 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
2815 }
2816
check_buffer_tree_ref(struct extent_buffer * eb)2817 static void check_buffer_tree_ref(struct extent_buffer *eb)
2818 {
2819 int refs;
2820 /*
2821 * The TREE_REF bit is first set when the extent_buffer is added
2822 * to the radix tree. It is also reset, if unset, when a new reference
2823 * is created by find_extent_buffer.
2824 *
2825 * It is only cleared in two cases: freeing the last non-tree
2826 * reference to the extent_buffer when its STALE bit is set or
2827 * calling release_folio when the tree reference is the only reference.
2828 *
2829 * In both cases, care is taken to ensure that the extent_buffer's
2830 * pages are not under io. However, release_folio can be concurrently
2831 * called with creating new references, which is prone to race
2832 * conditions between the calls to check_buffer_tree_ref in those
2833 * codepaths and clearing TREE_REF in try_release_extent_buffer.
2834 *
2835 * The actual lifetime of the extent_buffer in the radix tree is
2836 * adequately protected by the refcount, but the TREE_REF bit and
2837 * its corresponding reference are not. To protect against this
2838 * class of races, we call check_buffer_tree_ref from the codepaths
2839 * which trigger io. Note that once io is initiated, TREE_REF can no
2840 * longer be cleared, so that is the moment at which any such race is
2841 * best fixed.
2842 */
2843 refs = atomic_read(&eb->refs);
2844 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
2845 return;
2846
2847 spin_lock(&eb->refs_lock);
2848 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
2849 atomic_inc(&eb->refs);
2850 spin_unlock(&eb->refs_lock);
2851 }
2852
mark_extent_buffer_accessed(struct extent_buffer * eb)2853 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
2854 {
2855 int num_folios= num_extent_folios(eb);
2856
2857 check_buffer_tree_ref(eb);
2858
2859 for (int i = 0; i < num_folios; i++)
2860 folio_mark_accessed(eb->folios[i]);
2861 }
2862
find_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)2863 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
2864 u64 start)
2865 {
2866 struct extent_buffer *eb;
2867
2868 eb = find_extent_buffer_nolock(fs_info, start);
2869 if (!eb)
2870 return NULL;
2871 /*
2872 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
2873 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
2874 * another task running free_extent_buffer() might have seen that flag
2875 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
2876 * writeback flags not set) and it's still in the tree (flag
2877 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
2878 * decrementing the extent buffer's reference count twice. So here we
2879 * could race and increment the eb's reference count, clear its stale
2880 * flag, mark it as dirty and drop our reference before the other task
2881 * finishes executing free_extent_buffer, which would later result in
2882 * an attempt to free an extent buffer that is dirty.
2883 */
2884 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
2885 spin_lock(&eb->refs_lock);
2886 spin_unlock(&eb->refs_lock);
2887 }
2888 mark_extent_buffer_accessed(eb);
2889 return eb;
2890 }
2891
alloc_test_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)2892 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
2893 u64 start)
2894 {
2895 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
2896 struct extent_buffer *eb, *exists = NULL;
2897 int ret;
2898
2899 eb = find_extent_buffer(fs_info, start);
2900 if (eb)
2901 return eb;
2902 eb = alloc_dummy_extent_buffer(fs_info, start);
2903 if (!eb)
2904 return ERR_PTR(-ENOMEM);
2905 eb->fs_info = fs_info;
2906 again:
2907 ret = radix_tree_preload(GFP_NOFS);
2908 if (ret) {
2909 exists = ERR_PTR(ret);
2910 goto free_eb;
2911 }
2912 spin_lock(&fs_info->buffer_lock);
2913 ret = radix_tree_insert(&fs_info->buffer_radix,
2914 start >> fs_info->sectorsize_bits, eb);
2915 spin_unlock(&fs_info->buffer_lock);
2916 radix_tree_preload_end();
2917 if (ret == -EEXIST) {
2918 exists = find_extent_buffer(fs_info, start);
2919 if (exists)
2920 goto free_eb;
2921 else
2922 goto again;
2923 }
2924 check_buffer_tree_ref(eb);
2925 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
2926
2927 return eb;
2928 free_eb:
2929 btrfs_release_extent_buffer(eb);
2930 return exists;
2931 #else
2932 /* Stub to avoid linker error when compiled with optimizations turned off. */
2933 return NULL;
2934 #endif
2935 }
2936
grab_extent_buffer(struct btrfs_fs_info * fs_info,struct page * page)2937 static struct extent_buffer *grab_extent_buffer(
2938 struct btrfs_fs_info *fs_info, struct page *page)
2939 {
2940 struct folio *folio = page_folio(page);
2941 struct extent_buffer *exists;
2942
2943 lockdep_assert_held(&page->mapping->i_private_lock);
2944
2945 /*
2946 * For subpage case, we completely rely on radix tree to ensure we
2947 * don't try to insert two ebs for the same bytenr. So here we always
2948 * return NULL and just continue.
2949 */
2950 if (fs_info->nodesize < PAGE_SIZE)
2951 return NULL;
2952
2953 /* Page not yet attached to an extent buffer */
2954 if (!folio_test_private(folio))
2955 return NULL;
2956
2957 /*
2958 * We could have already allocated an eb for this page and attached one
2959 * so lets see if we can get a ref on the existing eb, and if we can we
2960 * know it's good and we can just return that one, else we know we can
2961 * just overwrite folio private.
2962 */
2963 exists = folio_get_private(folio);
2964 if (atomic_inc_not_zero(&exists->refs))
2965 return exists;
2966
2967 WARN_ON(PageDirty(page));
2968 folio_detach_private(folio);
2969 return NULL;
2970 }
2971
check_eb_alignment(struct btrfs_fs_info * fs_info,u64 start)2972 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
2973 {
2974 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
2975 btrfs_err(fs_info, "bad tree block start %llu", start);
2976 return -EINVAL;
2977 }
2978
2979 if (fs_info->nodesize < PAGE_SIZE &&
2980 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
2981 btrfs_err(fs_info,
2982 "tree block crosses page boundary, start %llu nodesize %u",
2983 start, fs_info->nodesize);
2984 return -EINVAL;
2985 }
2986 if (fs_info->nodesize >= PAGE_SIZE &&
2987 !PAGE_ALIGNED(start)) {
2988 btrfs_err(fs_info,
2989 "tree block is not page aligned, start %llu nodesize %u",
2990 start, fs_info->nodesize);
2991 return -EINVAL;
2992 }
2993 if (!IS_ALIGNED(start, fs_info->nodesize) &&
2994 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) {
2995 btrfs_warn(fs_info,
2996 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
2997 start, fs_info->nodesize);
2998 }
2999 return 0;
3000 }
3001
3002
3003 /*
3004 * Return 0 if eb->folios[i] is attached to btree inode successfully.
3005 * Return >0 if there is already another extent buffer for the range,
3006 * and @found_eb_ret would be updated.
3007 * Return -EAGAIN if the filemap has an existing folio but with different size
3008 * than @eb.
3009 * The caller needs to free the existing folios and retry using the same order.
3010 */
attach_eb_folio_to_filemap(struct extent_buffer * eb,int i,struct btrfs_subpage * prealloc,struct extent_buffer ** found_eb_ret)3011 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
3012 struct btrfs_subpage *prealloc,
3013 struct extent_buffer **found_eb_ret)
3014 {
3015
3016 struct btrfs_fs_info *fs_info = eb->fs_info;
3017 struct address_space *mapping = fs_info->btree_inode->i_mapping;
3018 const unsigned long index = eb->start >> PAGE_SHIFT;
3019 struct folio *existing_folio = NULL;
3020 int ret;
3021
3022 ASSERT(found_eb_ret);
3023
3024 /* Caller should ensure the folio exists. */
3025 ASSERT(eb->folios[i]);
3026
3027 retry:
3028 ret = filemap_add_folio(mapping, eb->folios[i], index + i,
3029 GFP_NOFS | __GFP_NOFAIL);
3030 if (!ret)
3031 goto finish;
3032
3033 existing_folio = filemap_lock_folio(mapping, index + i);
3034 /* The page cache only exists for a very short time, just retry. */
3035 if (IS_ERR(existing_folio)) {
3036 existing_folio = NULL;
3037 goto retry;
3038 }
3039
3040 /* For now, we should only have single-page folios for btree inode. */
3041 ASSERT(folio_nr_pages(existing_folio) == 1);
3042
3043 if (folio_size(existing_folio) != eb->folio_size) {
3044 folio_unlock(existing_folio);
3045 folio_put(existing_folio);
3046 return -EAGAIN;
3047 }
3048
3049 finish:
3050 spin_lock(&mapping->i_private_lock);
3051 if (existing_folio && fs_info->nodesize < PAGE_SIZE) {
3052 /* We're going to reuse the existing page, can drop our folio now. */
3053 __free_page(folio_page(eb->folios[i], 0));
3054 eb->folios[i] = existing_folio;
3055 } else if (existing_folio) {
3056 struct extent_buffer *existing_eb;
3057
3058 existing_eb = grab_extent_buffer(fs_info,
3059 folio_page(existing_folio, 0));
3060 if (existing_eb) {
3061 /* The extent buffer still exists, we can use it directly. */
3062 *found_eb_ret = existing_eb;
3063 spin_unlock(&mapping->i_private_lock);
3064 folio_unlock(existing_folio);
3065 folio_put(existing_folio);
3066 return 1;
3067 }
3068 /* The extent buffer no longer exists, we can reuse the folio. */
3069 __free_page(folio_page(eb->folios[i], 0));
3070 eb->folios[i] = existing_folio;
3071 }
3072 eb->folio_size = folio_size(eb->folios[i]);
3073 eb->folio_shift = folio_shift(eb->folios[i]);
3074 /* Should not fail, as we have preallocated the memory. */
3075 ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc);
3076 ASSERT(!ret);
3077 /*
3078 * To inform we have an extra eb under allocation, so that
3079 * detach_extent_buffer_page() won't release the folio private when the
3080 * eb hasn't been inserted into radix tree yet.
3081 *
3082 * The ref will be decreased when the eb releases the page, in
3083 * detach_extent_buffer_page(). Thus needs no special handling in the
3084 * error path.
3085 */
3086 btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]);
3087 spin_unlock(&mapping->i_private_lock);
3088 return 0;
3089 }
3090
alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,u64 owner_root,int level)3091 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3092 u64 start, u64 owner_root, int level)
3093 {
3094 unsigned long len = fs_info->nodesize;
3095 int num_folios;
3096 int attached = 0;
3097 struct extent_buffer *eb;
3098 struct extent_buffer *existing_eb = NULL;
3099 struct btrfs_subpage *prealloc = NULL;
3100 u64 lockdep_owner = owner_root;
3101 bool page_contig = true;
3102 int uptodate = 1;
3103 int ret;
3104
3105 if (check_eb_alignment(fs_info, start))
3106 return ERR_PTR(-EINVAL);
3107
3108 #if BITS_PER_LONG == 32
3109 if (start >= MAX_LFS_FILESIZE) {
3110 btrfs_err_rl(fs_info,
3111 "extent buffer %llu is beyond 32bit page cache limit", start);
3112 btrfs_err_32bit_limit(fs_info);
3113 return ERR_PTR(-EOVERFLOW);
3114 }
3115 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3116 btrfs_warn_32bit_limit(fs_info);
3117 #endif
3118
3119 eb = find_extent_buffer(fs_info, start);
3120 if (eb)
3121 return eb;
3122
3123 eb = __alloc_extent_buffer(fs_info, start, len);
3124 if (!eb)
3125 return ERR_PTR(-ENOMEM);
3126
3127 /*
3128 * The reloc trees are just snapshots, so we need them to appear to be
3129 * just like any other fs tree WRT lockdep.
3130 */
3131 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3132 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3133
3134 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3135
3136 /*
3137 * Preallocate folio private for subpage case, so that we won't
3138 * allocate memory with i_private_lock nor page lock hold.
3139 *
3140 * The memory will be freed by attach_extent_buffer_page() or freed
3141 * manually if we exit earlier.
3142 */
3143 if (fs_info->nodesize < PAGE_SIZE) {
3144 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3145 if (IS_ERR(prealloc)) {
3146 ret = PTR_ERR(prealloc);
3147 goto out;
3148 }
3149 }
3150
3151 reallocate:
3152 /* Allocate all pages first. */
3153 ret = alloc_eb_folio_array(eb, true);
3154 if (ret < 0) {
3155 btrfs_free_subpage(prealloc);
3156 goto out;
3157 }
3158
3159 num_folios = num_extent_folios(eb);
3160 /* Attach all pages to the filemap. */
3161 for (int i = 0; i < num_folios; i++) {
3162 struct folio *folio;
3163
3164 ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb);
3165 if (ret > 0) {
3166 ASSERT(existing_eb);
3167 goto out;
3168 }
3169
3170 /*
3171 * TODO: Special handling for a corner case where the order of
3172 * folios mismatch between the new eb and filemap.
3173 *
3174 * This happens when:
3175 *
3176 * - the new eb is using higher order folio
3177 *
3178 * - the filemap is still using 0-order folios for the range
3179 * This can happen at the previous eb allocation, and we don't
3180 * have higher order folio for the call.
3181 *
3182 * - the existing eb has already been freed
3183 *
3184 * In this case, we have to free the existing folios first, and
3185 * re-allocate using the same order.
3186 * Thankfully this is not going to happen yet, as we're still
3187 * using 0-order folios.
3188 */
3189 if (unlikely(ret == -EAGAIN)) {
3190 ASSERT(0);
3191 goto reallocate;
3192 }
3193 attached++;
3194
3195 /*
3196 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
3197 * reliable, as we may choose to reuse the existing page cache
3198 * and free the allocated page.
3199 */
3200 folio = eb->folios[i];
3201 WARN_ON(btrfs_folio_test_dirty(fs_info, folio, eb->start, eb->len));
3202
3203 /*
3204 * Check if the current page is physically contiguous with previous eb
3205 * page.
3206 * At this stage, either we allocated a large folio, thus @i
3207 * would only be 0, or we fall back to per-page allocation.
3208 */
3209 if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
3210 page_contig = false;
3211
3212 if (!btrfs_folio_test_uptodate(fs_info, folio, eb->start, eb->len))
3213 uptodate = 0;
3214
3215 /*
3216 * We can't unlock the pages just yet since the extent buffer
3217 * hasn't been properly inserted in the radix tree, this
3218 * opens a race with btree_release_folio which can free a page
3219 * while we are still filling in all pages for the buffer and
3220 * we could crash.
3221 */
3222 }
3223 if (uptodate)
3224 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3225 /* All pages are physically contiguous, can skip cross page handling. */
3226 if (page_contig)
3227 eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
3228 again:
3229 ret = radix_tree_preload(GFP_NOFS);
3230 if (ret)
3231 goto out;
3232
3233 spin_lock(&fs_info->buffer_lock);
3234 ret = radix_tree_insert(&fs_info->buffer_radix,
3235 start >> fs_info->sectorsize_bits, eb);
3236 spin_unlock(&fs_info->buffer_lock);
3237 radix_tree_preload_end();
3238 if (ret == -EEXIST) {
3239 ret = 0;
3240 existing_eb = find_extent_buffer(fs_info, start);
3241 if (existing_eb)
3242 goto out;
3243 else
3244 goto again;
3245 }
3246 /* add one reference for the tree */
3247 check_buffer_tree_ref(eb);
3248 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3249
3250 /*
3251 * Now it's safe to unlock the pages because any calls to
3252 * btree_release_folio will correctly detect that a page belongs to a
3253 * live buffer and won't free them prematurely.
3254 */
3255 for (int i = 0; i < num_folios; i++)
3256 unlock_page(folio_page(eb->folios[i], 0));
3257 return eb;
3258
3259 out:
3260 WARN_ON(!atomic_dec_and_test(&eb->refs));
3261
3262 /*
3263 * Any attached folios need to be detached before we unlock them. This
3264 * is because when we're inserting our new folios into the mapping, and
3265 * then attaching our eb to that folio. If we fail to insert our folio
3266 * we'll lookup the folio for that index, and grab that EB. We do not
3267 * want that to grab this eb, as we're getting ready to free it. So we
3268 * have to detach it first and then unlock it.
3269 *
3270 * We have to drop our reference and NULL it out here because in the
3271 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb.
3272 * Below when we call btrfs_release_extent_buffer() we will call
3273 * detach_extent_buffer_folio() on our remaining pages in the !subpage
3274 * case. If we left eb->folios[i] populated in the subpage case we'd
3275 * double put our reference and be super sad.
3276 */
3277 for (int i = 0; i < attached; i++) {
3278 ASSERT(eb->folios[i]);
3279 detach_extent_buffer_folio(eb, eb->folios[i]);
3280 unlock_page(folio_page(eb->folios[i], 0));
3281 folio_put(eb->folios[i]);
3282 eb->folios[i] = NULL;
3283 }
3284 /*
3285 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag,
3286 * so it can be cleaned up without utlizing page->mapping.
3287 */
3288 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3289
3290 btrfs_release_extent_buffer(eb);
3291 if (ret < 0)
3292 return ERR_PTR(ret);
3293 ASSERT(existing_eb);
3294 return existing_eb;
3295 }
3296
btrfs_release_extent_buffer_rcu(struct rcu_head * head)3297 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3298 {
3299 struct extent_buffer *eb =
3300 container_of(head, struct extent_buffer, rcu_head);
3301
3302 __free_extent_buffer(eb);
3303 }
3304
release_extent_buffer(struct extent_buffer * eb)3305 static int release_extent_buffer(struct extent_buffer *eb)
3306 __releases(&eb->refs_lock)
3307 {
3308 lockdep_assert_held(&eb->refs_lock);
3309
3310 WARN_ON(atomic_read(&eb->refs) == 0);
3311 if (atomic_dec_and_test(&eb->refs)) {
3312 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
3313 struct btrfs_fs_info *fs_info = eb->fs_info;
3314
3315 spin_unlock(&eb->refs_lock);
3316
3317 spin_lock(&fs_info->buffer_lock);
3318 radix_tree_delete(&fs_info->buffer_radix,
3319 eb->start >> fs_info->sectorsize_bits);
3320 spin_unlock(&fs_info->buffer_lock);
3321 } else {
3322 spin_unlock(&eb->refs_lock);
3323 }
3324
3325 btrfs_leak_debug_del_eb(eb);
3326 /* Should be safe to release our pages at this point */
3327 btrfs_release_extent_buffer_pages(eb);
3328 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3329 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3330 __free_extent_buffer(eb);
3331 return 1;
3332 }
3333 #endif
3334 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3335 return 1;
3336 }
3337 spin_unlock(&eb->refs_lock);
3338
3339 return 0;
3340 }
3341
free_extent_buffer(struct extent_buffer * eb)3342 void free_extent_buffer(struct extent_buffer *eb)
3343 {
3344 int refs;
3345 if (!eb)
3346 return;
3347
3348 refs = atomic_read(&eb->refs);
3349 while (1) {
3350 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3351 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3352 refs == 1))
3353 break;
3354 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
3355 return;
3356 }
3357
3358 spin_lock(&eb->refs_lock);
3359 if (atomic_read(&eb->refs) == 2 &&
3360 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3361 !extent_buffer_under_io(eb) &&
3362 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3363 atomic_dec(&eb->refs);
3364
3365 /*
3366 * I know this is terrible, but it's temporary until we stop tracking
3367 * the uptodate bits and such for the extent buffers.
3368 */
3369 release_extent_buffer(eb);
3370 }
3371
free_extent_buffer_stale(struct extent_buffer * eb)3372 void free_extent_buffer_stale(struct extent_buffer *eb)
3373 {
3374 if (!eb)
3375 return;
3376
3377 spin_lock(&eb->refs_lock);
3378 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3379
3380 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3381 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3382 atomic_dec(&eb->refs);
3383 release_extent_buffer(eb);
3384 }
3385
btree_clear_folio_dirty(struct folio * folio)3386 static void btree_clear_folio_dirty(struct folio *folio)
3387 {
3388 ASSERT(folio_test_dirty(folio));
3389 ASSERT(folio_test_locked(folio));
3390 folio_clear_dirty_for_io(folio);
3391 xa_lock_irq(&folio->mapping->i_pages);
3392 if (!folio_test_dirty(folio))
3393 __xa_clear_mark(&folio->mapping->i_pages,
3394 folio_index(folio), PAGECACHE_TAG_DIRTY);
3395 xa_unlock_irq(&folio->mapping->i_pages);
3396 }
3397
clear_subpage_extent_buffer_dirty(const struct extent_buffer * eb)3398 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
3399 {
3400 struct btrfs_fs_info *fs_info = eb->fs_info;
3401 struct folio *folio = eb->folios[0];
3402 bool last;
3403
3404 /* btree_clear_folio_dirty() needs page locked. */
3405 folio_lock(folio);
3406 last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, eb->len);
3407 if (last)
3408 btree_clear_folio_dirty(folio);
3409 folio_unlock(folio);
3410 WARN_ON(atomic_read(&eb->refs) == 0);
3411 }
3412
btrfs_clear_buffer_dirty(struct btrfs_trans_handle * trans,struct extent_buffer * eb)3413 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3414 struct extent_buffer *eb)
3415 {
3416 struct btrfs_fs_info *fs_info = eb->fs_info;
3417 int num_folios;
3418
3419 btrfs_assert_tree_write_locked(eb);
3420
3421 if (trans && btrfs_header_generation(eb) != trans->transid)
3422 return;
3423
3424 /*
3425 * Instead of clearing the dirty flag off of the buffer, mark it as
3426 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
3427 * write-ordering in zoned mode, without the need to later re-dirty
3428 * the extent_buffer.
3429 *
3430 * The actual zeroout of the buffer will happen later in
3431 * btree_csum_one_bio.
3432 */
3433 if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3434 set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
3435 return;
3436 }
3437
3438 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3439 return;
3440
3441 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3442 fs_info->dirty_metadata_batch);
3443
3444 if (eb->fs_info->nodesize < PAGE_SIZE)
3445 return clear_subpage_extent_buffer_dirty(eb);
3446
3447 num_folios = num_extent_folios(eb);
3448 for (int i = 0; i < num_folios; i++) {
3449 struct folio *folio = eb->folios[i];
3450
3451 if (!folio_test_dirty(folio))
3452 continue;
3453 folio_lock(folio);
3454 btree_clear_folio_dirty(folio);
3455 folio_unlock(folio);
3456 }
3457 WARN_ON(atomic_read(&eb->refs) == 0);
3458 }
3459
set_extent_buffer_dirty(struct extent_buffer * eb)3460 void set_extent_buffer_dirty(struct extent_buffer *eb)
3461 {
3462 int num_folios;
3463 bool was_dirty;
3464
3465 check_buffer_tree_ref(eb);
3466
3467 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3468
3469 num_folios = num_extent_folios(eb);
3470 WARN_ON(atomic_read(&eb->refs) == 0);
3471 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3472 WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags));
3473
3474 if (!was_dirty) {
3475 bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
3476
3477 /*
3478 * For subpage case, we can have other extent buffers in the
3479 * same page, and in clear_subpage_extent_buffer_dirty() we
3480 * have to clear page dirty without subpage lock held.
3481 * This can cause race where our page gets dirty cleared after
3482 * we just set it.
3483 *
3484 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
3485 * its page for other reasons, we can use page lock to prevent
3486 * the above race.
3487 */
3488 if (subpage)
3489 lock_page(folio_page(eb->folios[0], 0));
3490 for (int i = 0; i < num_folios; i++)
3491 btrfs_folio_set_dirty(eb->fs_info, eb->folios[i],
3492 eb->start, eb->len);
3493 if (subpage)
3494 unlock_page(folio_page(eb->folios[0], 0));
3495 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
3496 eb->len,
3497 eb->fs_info->dirty_metadata_batch);
3498 }
3499 #ifdef CONFIG_BTRFS_DEBUG
3500 for (int i = 0; i < num_folios; i++)
3501 ASSERT(folio_test_dirty(eb->folios[i]));
3502 #endif
3503 }
3504
clear_extent_buffer_uptodate(struct extent_buffer * eb)3505 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
3506 {
3507 struct btrfs_fs_info *fs_info = eb->fs_info;
3508 int num_folios = num_extent_folios(eb);
3509
3510 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3511 for (int i = 0; i < num_folios; i++) {
3512 struct folio *folio = eb->folios[i];
3513
3514 if (!folio)
3515 continue;
3516
3517 /*
3518 * This is special handling for metadata subpage, as regular
3519 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3520 */
3521 if (fs_info->nodesize >= PAGE_SIZE)
3522 folio_clear_uptodate(folio);
3523 else
3524 btrfs_subpage_clear_uptodate(fs_info, folio,
3525 eb->start, eb->len);
3526 }
3527 }
3528
set_extent_buffer_uptodate(struct extent_buffer * eb)3529 void set_extent_buffer_uptodate(struct extent_buffer *eb)
3530 {
3531 struct btrfs_fs_info *fs_info = eb->fs_info;
3532 int num_folios = num_extent_folios(eb);
3533
3534 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3535 for (int i = 0; i < num_folios; i++) {
3536 struct folio *folio = eb->folios[i];
3537
3538 /*
3539 * This is special handling for metadata subpage, as regular
3540 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3541 */
3542 if (fs_info->nodesize >= PAGE_SIZE)
3543 folio_mark_uptodate(folio);
3544 else
3545 btrfs_subpage_set_uptodate(fs_info, folio,
3546 eb->start, eb->len);
3547 }
3548 }
3549
clear_extent_buffer_reading(struct extent_buffer * eb)3550 static void clear_extent_buffer_reading(struct extent_buffer *eb)
3551 {
3552 clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
3553 smp_mb__after_atomic();
3554 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
3555 }
3556
end_bbio_meta_read(struct btrfs_bio * bbio)3557 static void end_bbio_meta_read(struct btrfs_bio *bbio)
3558 {
3559 struct extent_buffer *eb = bbio->private;
3560 struct btrfs_fs_info *fs_info = eb->fs_info;
3561 bool uptodate = !bbio->bio.bi_status;
3562 struct folio_iter fi;
3563 u32 bio_offset = 0;
3564
3565 /*
3566 * If the extent buffer is marked UPTODATE before the read operation
3567 * completes, other calls to read_extent_buffer_pages() will return
3568 * early without waiting for the read to finish, causing data races.
3569 */
3570 WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags));
3571
3572 eb->read_mirror = bbio->mirror_num;
3573
3574 if (uptodate &&
3575 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
3576 uptodate = false;
3577
3578 if (uptodate) {
3579 set_extent_buffer_uptodate(eb);
3580 } else {
3581 clear_extent_buffer_uptodate(eb);
3582 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3583 }
3584
3585 bio_for_each_folio_all(fi, &bbio->bio) {
3586 struct folio *folio = fi.folio;
3587 u64 start = eb->start + bio_offset;
3588 u32 len = fi.length;
3589
3590 if (uptodate)
3591 btrfs_folio_set_uptodate(fs_info, folio, start, len);
3592 else
3593 btrfs_folio_clear_uptodate(fs_info, folio, start, len);
3594
3595 bio_offset += len;
3596 }
3597
3598 clear_extent_buffer_reading(eb);
3599 free_extent_buffer(eb);
3600
3601 bio_put(&bbio->bio);
3602 }
3603
read_extent_buffer_pages(struct extent_buffer * eb,int wait,int mirror_num,const struct btrfs_tree_parent_check * check)3604 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
3605 const struct btrfs_tree_parent_check *check)
3606 {
3607 struct btrfs_bio *bbio;
3608 bool ret;
3609
3610 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3611 return 0;
3612
3613 /*
3614 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
3615 * operation, which could potentially still be in flight. In this case
3616 * we simply want to return an error.
3617 */
3618 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
3619 return -EIO;
3620
3621 /* Someone else is already reading the buffer, just wait for it. */
3622 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
3623 goto done;
3624
3625 /*
3626 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above
3627 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have
3628 * started and finished reading the same eb. In this case, UPTODATE
3629 * will now be set, and we shouldn't read it in again.
3630 */
3631 if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) {
3632 clear_extent_buffer_reading(eb);
3633 return 0;
3634 }
3635
3636 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3637 eb->read_mirror = 0;
3638 check_buffer_tree_ref(eb);
3639 atomic_inc(&eb->refs);
3640
3641 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
3642 REQ_OP_READ | REQ_META, eb->fs_info,
3643 end_bbio_meta_read, eb);
3644 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
3645 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
3646 bbio->file_offset = eb->start;
3647 memcpy(&bbio->parent_check, check, sizeof(*check));
3648 if (eb->fs_info->nodesize < PAGE_SIZE) {
3649 ret = bio_add_folio(&bbio->bio, eb->folios[0], eb->len,
3650 eb->start - folio_pos(eb->folios[0]));
3651 ASSERT(ret);
3652 } else {
3653 int num_folios = num_extent_folios(eb);
3654
3655 for (int i = 0; i < num_folios; i++) {
3656 struct folio *folio = eb->folios[i];
3657
3658 ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
3659 ASSERT(ret);
3660 }
3661 }
3662 btrfs_submit_bbio(bbio, mirror_num);
3663
3664 done:
3665 if (wait == WAIT_COMPLETE) {
3666 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
3667 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3668 return -EIO;
3669 }
3670
3671 return 0;
3672 }
3673
report_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)3674 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
3675 unsigned long len)
3676 {
3677 btrfs_warn(eb->fs_info,
3678 "access to eb bytenr %llu len %u out of range start %lu len %lu",
3679 eb->start, eb->len, start, len);
3680 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
3681
3682 return true;
3683 }
3684
3685 /*
3686 * Check if the [start, start + len) range is valid before reading/writing
3687 * the eb.
3688 * NOTE: @start and @len are offset inside the eb, not logical address.
3689 *
3690 * Caller should not touch the dst/src memory if this function returns error.
3691 */
check_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)3692 static inline int check_eb_range(const struct extent_buffer *eb,
3693 unsigned long start, unsigned long len)
3694 {
3695 unsigned long offset;
3696
3697 /* start, start + len should not go beyond eb->len nor overflow */
3698 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
3699 return report_eb_range(eb, start, len);
3700
3701 return false;
3702 }
3703
read_extent_buffer(const struct extent_buffer * eb,void * dstv,unsigned long start,unsigned long len)3704 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
3705 unsigned long start, unsigned long len)
3706 {
3707 const int unit_size = eb->folio_size;
3708 size_t cur;
3709 size_t offset;
3710 char *dst = (char *)dstv;
3711 unsigned long i = get_eb_folio_index(eb, start);
3712
3713 if (check_eb_range(eb, start, len)) {
3714 /*
3715 * Invalid range hit, reset the memory, so callers won't get
3716 * some random garbage for their uninitialized memory.
3717 */
3718 memset(dstv, 0, len);
3719 return;
3720 }
3721
3722 if (eb->addr) {
3723 memcpy(dstv, eb->addr + start, len);
3724 return;
3725 }
3726
3727 offset = get_eb_offset_in_folio(eb, start);
3728
3729 while (len > 0) {
3730 char *kaddr;
3731
3732 cur = min(len, unit_size - offset);
3733 kaddr = folio_address(eb->folios[i]);
3734 memcpy(dst, kaddr + offset, cur);
3735
3736 dst += cur;
3737 len -= cur;
3738 offset = 0;
3739 i++;
3740 }
3741 }
3742
read_extent_buffer_to_user_nofault(const struct extent_buffer * eb,void __user * dstv,unsigned long start,unsigned long len)3743 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
3744 void __user *dstv,
3745 unsigned long start, unsigned long len)
3746 {
3747 const int unit_size = eb->folio_size;
3748 size_t cur;
3749 size_t offset;
3750 char __user *dst = (char __user *)dstv;
3751 unsigned long i = get_eb_folio_index(eb, start);
3752 int ret = 0;
3753
3754 WARN_ON(start > eb->len);
3755 WARN_ON(start + len > eb->start + eb->len);
3756
3757 if (eb->addr) {
3758 if (copy_to_user_nofault(dstv, eb->addr + start, len))
3759 ret = -EFAULT;
3760 return ret;
3761 }
3762
3763 offset = get_eb_offset_in_folio(eb, start);
3764
3765 while (len > 0) {
3766 char *kaddr;
3767
3768 cur = min(len, unit_size - offset);
3769 kaddr = folio_address(eb->folios[i]);
3770 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
3771 ret = -EFAULT;
3772 break;
3773 }
3774
3775 dst += cur;
3776 len -= cur;
3777 offset = 0;
3778 i++;
3779 }
3780
3781 return ret;
3782 }
3783
memcmp_extent_buffer(const struct extent_buffer * eb,const void * ptrv,unsigned long start,unsigned long len)3784 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
3785 unsigned long start, unsigned long len)
3786 {
3787 const int unit_size = eb->folio_size;
3788 size_t cur;
3789 size_t offset;
3790 char *kaddr;
3791 char *ptr = (char *)ptrv;
3792 unsigned long i = get_eb_folio_index(eb, start);
3793 int ret = 0;
3794
3795 if (check_eb_range(eb, start, len))
3796 return -EINVAL;
3797
3798 if (eb->addr)
3799 return memcmp(ptrv, eb->addr + start, len);
3800
3801 offset = get_eb_offset_in_folio(eb, start);
3802
3803 while (len > 0) {
3804 cur = min(len, unit_size - offset);
3805 kaddr = folio_address(eb->folios[i]);
3806 ret = memcmp(ptr, kaddr + offset, cur);
3807 if (ret)
3808 break;
3809
3810 ptr += cur;
3811 len -= cur;
3812 offset = 0;
3813 i++;
3814 }
3815 return ret;
3816 }
3817
3818 /*
3819 * Check that the extent buffer is uptodate.
3820 *
3821 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
3822 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
3823 */
assert_eb_folio_uptodate(const struct extent_buffer * eb,int i)3824 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
3825 {
3826 struct btrfs_fs_info *fs_info = eb->fs_info;
3827 struct folio *folio = eb->folios[i];
3828
3829 ASSERT(folio);
3830
3831 /*
3832 * If we are using the commit root we could potentially clear a page
3833 * Uptodate while we're using the extent buffer that we've previously
3834 * looked up. We don't want to complain in this case, as the page was
3835 * valid before, we just didn't write it out. Instead we want to catch
3836 * the case where we didn't actually read the block properly, which
3837 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
3838 */
3839 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3840 return;
3841
3842 if (fs_info->nodesize < PAGE_SIZE) {
3843 folio = eb->folios[0];
3844 ASSERT(i == 0);
3845 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
3846 eb->start, eb->len)))
3847 btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
3848 } else {
3849 WARN_ON(!folio_test_uptodate(folio));
3850 }
3851 }
3852
__write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len,bool use_memmove)3853 static void __write_extent_buffer(const struct extent_buffer *eb,
3854 const void *srcv, unsigned long start,
3855 unsigned long len, bool use_memmove)
3856 {
3857 const int unit_size = eb->folio_size;
3858 size_t cur;
3859 size_t offset;
3860 char *kaddr;
3861 const char *src = (const char *)srcv;
3862 unsigned long i = get_eb_folio_index(eb, start);
3863 /* For unmapped (dummy) ebs, no need to check their uptodate status. */
3864 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3865
3866 if (check_eb_range(eb, start, len))
3867 return;
3868
3869 if (eb->addr) {
3870 if (use_memmove)
3871 memmove(eb->addr + start, srcv, len);
3872 else
3873 memcpy(eb->addr + start, srcv, len);
3874 return;
3875 }
3876
3877 offset = get_eb_offset_in_folio(eb, start);
3878
3879 while (len > 0) {
3880 if (check_uptodate)
3881 assert_eb_folio_uptodate(eb, i);
3882
3883 cur = min(len, unit_size - offset);
3884 kaddr = folio_address(eb->folios[i]);
3885 if (use_memmove)
3886 memmove(kaddr + offset, src, cur);
3887 else
3888 memcpy(kaddr + offset, src, cur);
3889
3890 src += cur;
3891 len -= cur;
3892 offset = 0;
3893 i++;
3894 }
3895 }
3896
write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len)3897 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
3898 unsigned long start, unsigned long len)
3899 {
3900 return __write_extent_buffer(eb, srcv, start, len, false);
3901 }
3902
memset_extent_buffer(const struct extent_buffer * eb,int c,unsigned long start,unsigned long len)3903 static void memset_extent_buffer(const struct extent_buffer *eb, int c,
3904 unsigned long start, unsigned long len)
3905 {
3906 const int unit_size = eb->folio_size;
3907 unsigned long cur = start;
3908
3909 if (eb->addr) {
3910 memset(eb->addr + start, c, len);
3911 return;
3912 }
3913
3914 while (cur < start + len) {
3915 unsigned long index = get_eb_folio_index(eb, cur);
3916 unsigned int offset = get_eb_offset_in_folio(eb, cur);
3917 unsigned int cur_len = min(start + len - cur, unit_size - offset);
3918
3919 assert_eb_folio_uptodate(eb, index);
3920 memset(folio_address(eb->folios[index]) + offset, c, cur_len);
3921
3922 cur += cur_len;
3923 }
3924 }
3925
memzero_extent_buffer(const struct extent_buffer * eb,unsigned long start,unsigned long len)3926 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
3927 unsigned long len)
3928 {
3929 if (check_eb_range(eb, start, len))
3930 return;
3931 return memset_extent_buffer(eb, 0, start, len);
3932 }
3933
copy_extent_buffer_full(const struct extent_buffer * dst,const struct extent_buffer * src)3934 void copy_extent_buffer_full(const struct extent_buffer *dst,
3935 const struct extent_buffer *src)
3936 {
3937 const int unit_size = src->folio_size;
3938 unsigned long cur = 0;
3939
3940 ASSERT(dst->len == src->len);
3941
3942 while (cur < src->len) {
3943 unsigned long index = get_eb_folio_index(src, cur);
3944 unsigned long offset = get_eb_offset_in_folio(src, cur);
3945 unsigned long cur_len = min(src->len, unit_size - offset);
3946 void *addr = folio_address(src->folios[index]) + offset;
3947
3948 write_extent_buffer(dst, addr, cur, cur_len);
3949
3950 cur += cur_len;
3951 }
3952 }
3953
copy_extent_buffer(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)3954 void copy_extent_buffer(const struct extent_buffer *dst,
3955 const struct extent_buffer *src,
3956 unsigned long dst_offset, unsigned long src_offset,
3957 unsigned long len)
3958 {
3959 const int unit_size = dst->folio_size;
3960 u64 dst_len = dst->len;
3961 size_t cur;
3962 size_t offset;
3963 char *kaddr;
3964 unsigned long i = get_eb_folio_index(dst, dst_offset);
3965
3966 if (check_eb_range(dst, dst_offset, len) ||
3967 check_eb_range(src, src_offset, len))
3968 return;
3969
3970 WARN_ON(src->len != dst_len);
3971
3972 offset = get_eb_offset_in_folio(dst, dst_offset);
3973
3974 while (len > 0) {
3975 assert_eb_folio_uptodate(dst, i);
3976
3977 cur = min(len, (unsigned long)(unit_size - offset));
3978
3979 kaddr = folio_address(dst->folios[i]);
3980 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3981
3982 src_offset += cur;
3983 len -= cur;
3984 offset = 0;
3985 i++;
3986 }
3987 }
3988
3989 /*
3990 * Calculate the folio and offset of the byte containing the given bit number.
3991 *
3992 * @eb: the extent buffer
3993 * @start: offset of the bitmap item in the extent buffer
3994 * @nr: bit number
3995 * @folio_index: return index of the folio in the extent buffer that contains
3996 * the given bit number
3997 * @folio_offset: return offset into the folio given by folio_index
3998 *
3999 * This helper hides the ugliness of finding the byte in an extent buffer which
4000 * contains a given bit.
4001 */
eb_bitmap_offset(const struct extent_buffer * eb,unsigned long start,unsigned long nr,unsigned long * folio_index,size_t * folio_offset)4002 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4003 unsigned long start, unsigned long nr,
4004 unsigned long *folio_index,
4005 size_t *folio_offset)
4006 {
4007 size_t byte_offset = BIT_BYTE(nr);
4008 size_t offset;
4009
4010 /*
4011 * The byte we want is the offset of the extent buffer + the offset of
4012 * the bitmap item in the extent buffer + the offset of the byte in the
4013 * bitmap item.
4014 */
4015 offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset;
4016
4017 *folio_index = offset >> eb->folio_shift;
4018 *folio_offset = offset_in_eb_folio(eb, offset);
4019 }
4020
4021 /*
4022 * Determine whether a bit in a bitmap item is set.
4023 *
4024 * @eb: the extent buffer
4025 * @start: offset of the bitmap item in the extent buffer
4026 * @nr: bit number to test
4027 */
extent_buffer_test_bit(const struct extent_buffer * eb,unsigned long start,unsigned long nr)4028 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4029 unsigned long nr)
4030 {
4031 unsigned long i;
4032 size_t offset;
4033 u8 *kaddr;
4034
4035 eb_bitmap_offset(eb, start, nr, &i, &offset);
4036 assert_eb_folio_uptodate(eb, i);
4037 kaddr = folio_address(eb->folios[i]);
4038 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4039 }
4040
extent_buffer_get_byte(const struct extent_buffer * eb,unsigned long bytenr)4041 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4042 {
4043 unsigned long index = get_eb_folio_index(eb, bytenr);
4044
4045 if (check_eb_range(eb, bytenr, 1))
4046 return NULL;
4047 return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
4048 }
4049
4050 /*
4051 * Set an area of a bitmap to 1.
4052 *
4053 * @eb: the extent buffer
4054 * @start: offset of the bitmap item in the extent buffer
4055 * @pos: bit number of the first bit
4056 * @len: number of bits to set
4057 */
extent_buffer_bitmap_set(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)4058 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4059 unsigned long pos, unsigned long len)
4060 {
4061 unsigned int first_byte = start + BIT_BYTE(pos);
4062 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4063 const bool same_byte = (first_byte == last_byte);
4064 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4065 u8 *kaddr;
4066
4067 if (same_byte)
4068 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4069
4070 /* Handle the first byte. */
4071 kaddr = extent_buffer_get_byte(eb, first_byte);
4072 *kaddr |= mask;
4073 if (same_byte)
4074 return;
4075
4076 /* Handle the byte aligned part. */
4077 ASSERT(first_byte + 1 <= last_byte);
4078 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4079
4080 /* Handle the last byte. */
4081 kaddr = extent_buffer_get_byte(eb, last_byte);
4082 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4083 }
4084
4085
4086 /*
4087 * Clear an area of a bitmap.
4088 *
4089 * @eb: the extent buffer
4090 * @start: offset of the bitmap item in the extent buffer
4091 * @pos: bit number of the first bit
4092 * @len: number of bits to clear
4093 */
extent_buffer_bitmap_clear(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)4094 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4095 unsigned long start, unsigned long pos,
4096 unsigned long len)
4097 {
4098 unsigned int first_byte = start + BIT_BYTE(pos);
4099 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4100 const bool same_byte = (first_byte == last_byte);
4101 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4102 u8 *kaddr;
4103
4104 if (same_byte)
4105 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4106
4107 /* Handle the first byte. */
4108 kaddr = extent_buffer_get_byte(eb, first_byte);
4109 *kaddr &= ~mask;
4110 if (same_byte)
4111 return;
4112
4113 /* Handle the byte aligned part. */
4114 ASSERT(first_byte + 1 <= last_byte);
4115 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4116
4117 /* Handle the last byte. */
4118 kaddr = extent_buffer_get_byte(eb, last_byte);
4119 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4120 }
4121
areas_overlap(unsigned long src,unsigned long dst,unsigned long len)4122 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4123 {
4124 unsigned long distance = (src > dst) ? src - dst : dst - src;
4125 return distance < len;
4126 }
4127
memcpy_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4128 void memcpy_extent_buffer(const struct extent_buffer *dst,
4129 unsigned long dst_offset, unsigned long src_offset,
4130 unsigned long len)
4131 {
4132 const int unit_size = dst->folio_size;
4133 unsigned long cur_off = 0;
4134
4135 if (check_eb_range(dst, dst_offset, len) ||
4136 check_eb_range(dst, src_offset, len))
4137 return;
4138
4139 if (dst->addr) {
4140 const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
4141
4142 if (use_memmove)
4143 memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4144 else
4145 memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
4146 return;
4147 }
4148
4149 while (cur_off < len) {
4150 unsigned long cur_src = cur_off + src_offset;
4151 unsigned long folio_index = get_eb_folio_index(dst, cur_src);
4152 unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
4153 unsigned long cur_len = min(src_offset + len - cur_src,
4154 unit_size - folio_off);
4155 void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
4156 const bool use_memmove = areas_overlap(src_offset + cur_off,
4157 dst_offset + cur_off, cur_len);
4158
4159 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4160 use_memmove);
4161 cur_off += cur_len;
4162 }
4163 }
4164
memmove_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4165 void memmove_extent_buffer(const struct extent_buffer *dst,
4166 unsigned long dst_offset, unsigned long src_offset,
4167 unsigned long len)
4168 {
4169 unsigned long dst_end = dst_offset + len - 1;
4170 unsigned long src_end = src_offset + len - 1;
4171
4172 if (check_eb_range(dst, dst_offset, len) ||
4173 check_eb_range(dst, src_offset, len))
4174 return;
4175
4176 if (dst_offset < src_offset) {
4177 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4178 return;
4179 }
4180
4181 if (dst->addr) {
4182 memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4183 return;
4184 }
4185
4186 while (len > 0) {
4187 unsigned long src_i;
4188 size_t cur;
4189 size_t dst_off_in_folio;
4190 size_t src_off_in_folio;
4191 void *src_addr;
4192 bool use_memmove;
4193
4194 src_i = get_eb_folio_index(dst, src_end);
4195
4196 dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4197 src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
4198
4199 cur = min_t(unsigned long, len, src_off_in_folio + 1);
4200 cur = min(cur, dst_off_in_folio + 1);
4201
4202 src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
4203 cur + 1;
4204 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4205 cur);
4206
4207 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4208 use_memmove);
4209
4210 dst_end -= cur;
4211 src_end -= cur;
4212 len -= cur;
4213 }
4214 }
4215
4216 #define GANG_LOOKUP_SIZE 16
get_next_extent_buffer(const struct btrfs_fs_info * fs_info,struct folio * folio,u64 bytenr)4217 static struct extent_buffer *get_next_extent_buffer(
4218 const struct btrfs_fs_info *fs_info, struct folio *folio, u64 bytenr)
4219 {
4220 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4221 struct extent_buffer *found = NULL;
4222 u64 folio_start = folio_pos(folio);
4223 u64 cur = folio_start;
4224
4225 ASSERT(in_range(bytenr, folio_start, PAGE_SIZE));
4226 lockdep_assert_held(&fs_info->buffer_lock);
4227
4228 while (cur < folio_start + PAGE_SIZE) {
4229 int ret;
4230 int i;
4231
4232 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4233 (void **)gang, cur >> fs_info->sectorsize_bits,
4234 min_t(unsigned int, GANG_LOOKUP_SIZE,
4235 PAGE_SIZE / fs_info->nodesize));
4236 if (ret == 0)
4237 goto out;
4238 for (i = 0; i < ret; i++) {
4239 /* Already beyond page end */
4240 if (gang[i]->start >= folio_start + PAGE_SIZE)
4241 goto out;
4242 /* Found one */
4243 if (gang[i]->start >= bytenr) {
4244 found = gang[i];
4245 goto out;
4246 }
4247 }
4248 cur = gang[ret - 1]->start + gang[ret - 1]->len;
4249 }
4250 out:
4251 return found;
4252 }
4253
try_release_subpage_extent_buffer(struct folio * folio)4254 static int try_release_subpage_extent_buffer(struct folio *folio)
4255 {
4256 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
4257 u64 cur = folio_pos(folio);
4258 const u64 end = cur + PAGE_SIZE;
4259 int ret;
4260
4261 while (cur < end) {
4262 struct extent_buffer *eb = NULL;
4263
4264 /*
4265 * Unlike try_release_extent_buffer() which uses folio private
4266 * to grab buffer, for subpage case we rely on radix tree, thus
4267 * we need to ensure radix tree consistency.
4268 *
4269 * We also want an atomic snapshot of the radix tree, thus go
4270 * with spinlock rather than RCU.
4271 */
4272 spin_lock(&fs_info->buffer_lock);
4273 eb = get_next_extent_buffer(fs_info, folio, cur);
4274 if (!eb) {
4275 /* No more eb in the page range after or at cur */
4276 spin_unlock(&fs_info->buffer_lock);
4277 break;
4278 }
4279 cur = eb->start + eb->len;
4280
4281 /*
4282 * The same as try_release_extent_buffer(), to ensure the eb
4283 * won't disappear out from under us.
4284 */
4285 spin_lock(&eb->refs_lock);
4286 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4287 spin_unlock(&eb->refs_lock);
4288 spin_unlock(&fs_info->buffer_lock);
4289 break;
4290 }
4291 spin_unlock(&fs_info->buffer_lock);
4292
4293 /*
4294 * If tree ref isn't set then we know the ref on this eb is a
4295 * real ref, so just return, this eb will likely be freed soon
4296 * anyway.
4297 */
4298 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4299 spin_unlock(&eb->refs_lock);
4300 break;
4301 }
4302
4303 /*
4304 * Here we don't care about the return value, we will always
4305 * check the folio private at the end. And
4306 * release_extent_buffer() will release the refs_lock.
4307 */
4308 release_extent_buffer(eb);
4309 }
4310 /*
4311 * Finally to check if we have cleared folio private, as if we have
4312 * released all ebs in the page, the folio private should be cleared now.
4313 */
4314 spin_lock(&folio->mapping->i_private_lock);
4315 if (!folio_test_private(folio))
4316 ret = 1;
4317 else
4318 ret = 0;
4319 spin_unlock(&folio->mapping->i_private_lock);
4320 return ret;
4321
4322 }
4323
try_release_extent_buffer(struct folio * folio)4324 int try_release_extent_buffer(struct folio *folio)
4325 {
4326 struct extent_buffer *eb;
4327
4328 if (folio_to_fs_info(folio)->nodesize < PAGE_SIZE)
4329 return try_release_subpage_extent_buffer(folio);
4330
4331 /*
4332 * We need to make sure nobody is changing folio private, as we rely on
4333 * folio private as the pointer to extent buffer.
4334 */
4335 spin_lock(&folio->mapping->i_private_lock);
4336 if (!folio_test_private(folio)) {
4337 spin_unlock(&folio->mapping->i_private_lock);
4338 return 1;
4339 }
4340
4341 eb = folio_get_private(folio);
4342 BUG_ON(!eb);
4343
4344 /*
4345 * This is a little awful but should be ok, we need to make sure that
4346 * the eb doesn't disappear out from under us while we're looking at
4347 * this page.
4348 */
4349 spin_lock(&eb->refs_lock);
4350 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4351 spin_unlock(&eb->refs_lock);
4352 spin_unlock(&folio->mapping->i_private_lock);
4353 return 0;
4354 }
4355 spin_unlock(&folio->mapping->i_private_lock);
4356
4357 /*
4358 * If tree ref isn't set then we know the ref on this eb is a real ref,
4359 * so just return, this page will likely be freed soon anyway.
4360 */
4361 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4362 spin_unlock(&eb->refs_lock);
4363 return 0;
4364 }
4365
4366 return release_extent_buffer(eb);
4367 }
4368
4369 /*
4370 * Attempt to readahead a child block.
4371 *
4372 * @fs_info: the fs_info
4373 * @bytenr: bytenr to read
4374 * @owner_root: objectid of the root that owns this eb
4375 * @gen: generation for the uptodate check, can be 0
4376 * @level: level for the eb
4377 *
4378 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
4379 * normal uptodate check of the eb, without checking the generation. If we have
4380 * to read the block we will not block on anything.
4381 */
btrfs_readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,u64 gen,int level)4382 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4383 u64 bytenr, u64 owner_root, u64 gen, int level)
4384 {
4385 struct btrfs_tree_parent_check check = {
4386 .has_first_key = 0,
4387 .level = level,
4388 .transid = gen
4389 };
4390 struct extent_buffer *eb;
4391 int ret;
4392
4393 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4394 if (IS_ERR(eb))
4395 return;
4396
4397 if (btrfs_buffer_uptodate(eb, gen, 1)) {
4398 free_extent_buffer(eb);
4399 return;
4400 }
4401
4402 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
4403 if (ret < 0)
4404 free_extent_buffer_stale(eb);
4405 else
4406 free_extent_buffer(eb);
4407 }
4408
4409 /*
4410 * Readahead a node's child block.
4411 *
4412 * @node: parent node we're reading from
4413 * @slot: slot in the parent node for the child we want to read
4414 *
4415 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4416 * the slot in the node provided.
4417 */
btrfs_readahead_node_child(struct extent_buffer * node,int slot)4418 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4419 {
4420 btrfs_readahead_tree_block(node->fs_info,
4421 btrfs_node_blockptr(node, slot),
4422 btrfs_header_owner(node),
4423 btrfs_node_ptr_generation(node, slot),
4424 btrfs_header_level(node) - 1);
4425 }
4426