1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "backref.h"
17 #include "compression.h"
18 #include "qgroup.h"
19 #include "block-group.h"
20 #include "space-info.h"
21 #include "inode-item.h"
22 #include "fs.h"
23 #include "accessors.h"
24 #include "extent-tree.h"
25 #include "root-tree.h"
26 #include "dir-item.h"
27 #include "file-item.h"
28 #include "file.h"
29 #include "orphan.h"
30 #include "tree-checker.h"
31
32 #define MAX_CONFLICT_INODES 10
33
34 /* magic values for the inode_only field in btrfs_log_inode:
35 *
36 * LOG_INODE_ALL means to log everything
37 * LOG_INODE_EXISTS means to log just enough to recreate the inode
38 * during log replay
39 */
40 enum {
41 LOG_INODE_ALL,
42 LOG_INODE_EXISTS,
43 };
44
45 /*
46 * directory trouble cases
47 *
48 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
49 * log, we must force a full commit before doing an fsync of the directory
50 * where the unlink was done.
51 * ---> record transid of last unlink/rename per directory
52 *
53 * mkdir foo/some_dir
54 * normal commit
55 * rename foo/some_dir foo2/some_dir
56 * mkdir foo/some_dir
57 * fsync foo/some_dir/some_file
58 *
59 * The fsync above will unlink the original some_dir without recording
60 * it in its new location (foo2). After a crash, some_dir will be gone
61 * unless the fsync of some_file forces a full commit
62 *
63 * 2) we must log any new names for any file or dir that is in the fsync
64 * log. ---> check inode while renaming/linking.
65 *
66 * 2a) we must log any new names for any file or dir during rename
67 * when the directory they are being removed from was logged.
68 * ---> check inode and old parent dir during rename
69 *
70 * 2a is actually the more important variant. With the extra logging
71 * a crash might unlink the old name without recreating the new one
72 *
73 * 3) after a crash, we must go through any directories with a link count
74 * of zero and redo the rm -rf
75 *
76 * mkdir f1/foo
77 * normal commit
78 * rm -rf f1/foo
79 * fsync(f1)
80 *
81 * The directory f1 was fully removed from the FS, but fsync was never
82 * called on f1, only its parent dir. After a crash the rm -rf must
83 * be replayed. This must be able to recurse down the entire
84 * directory tree. The inode link count fixup code takes care of the
85 * ugly details.
86 */
87
88 /*
89 * stages for the tree walking. The first
90 * stage (0) is to only pin down the blocks we find
91 * the second stage (1) is to make sure that all the inodes
92 * we find in the log are created in the subvolume.
93 *
94 * The last stage is to deal with directories and links and extents
95 * and all the other fun semantics
96 */
97 enum {
98 LOG_WALK_PIN_ONLY,
99 LOG_WALK_REPLAY_INODES,
100 LOG_WALK_REPLAY_DIR_INDEX,
101 LOG_WALK_REPLAY_ALL,
102 };
103
104 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
105 struct btrfs_inode *inode,
106 int inode_only,
107 struct btrfs_log_ctx *ctx);
108 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root,
110 struct btrfs_path *path, u64 objectid);
111 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
112 struct btrfs_root *root,
113 struct btrfs_root *log,
114 struct btrfs_path *path,
115 u64 dirid, int del_all);
116 static void wait_log_commit(struct btrfs_root *root, int transid);
117
118 /*
119 * tree logging is a special write ahead log used to make sure that
120 * fsyncs and O_SYNCs can happen without doing full tree commits.
121 *
122 * Full tree commits are expensive because they require commonly
123 * modified blocks to be recowed, creating many dirty pages in the
124 * extent tree an 4x-6x higher write load than ext3.
125 *
126 * Instead of doing a tree commit on every fsync, we use the
127 * key ranges and transaction ids to find items for a given file or directory
128 * that have changed in this transaction. Those items are copied into
129 * a special tree (one per subvolume root), that tree is written to disk
130 * and then the fsync is considered complete.
131 *
132 * After a crash, items are copied out of the log-tree back into the
133 * subvolume tree. Any file data extents found are recorded in the extent
134 * allocation tree, and the log-tree freed.
135 *
136 * The log tree is read three times, once to pin down all the extents it is
137 * using in ram and once, once to create all the inodes logged in the tree
138 * and once to do all the other items.
139 */
140
btrfs_iget_logging(u64 objectid,struct btrfs_root * root)141 static struct btrfs_inode *btrfs_iget_logging(u64 objectid, struct btrfs_root *root)
142 {
143 unsigned int nofs_flag;
144 struct inode *inode;
145
146 /* Only meant to be called for subvolume roots and not for log roots. */
147 ASSERT(is_fstree(btrfs_root_id(root)));
148
149 /*
150 * We're holding a transaction handle whether we are logging or
151 * replaying a log tree, so we must make sure NOFS semantics apply
152 * because btrfs_alloc_inode() may be triggered and it uses GFP_KERNEL
153 * to allocate an inode, which can recurse back into the filesystem and
154 * attempt a transaction commit, resulting in a deadlock.
155 */
156 nofs_flag = memalloc_nofs_save();
157 inode = btrfs_iget(objectid, root);
158 memalloc_nofs_restore(nofs_flag);
159
160 if (IS_ERR(inode))
161 return ERR_CAST(inode);
162
163 return BTRFS_I(inode);
164 }
165
166 /*
167 * start a sub transaction and setup the log tree
168 * this increments the log tree writer count to make the people
169 * syncing the tree wait for us to finish
170 */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)171 static int start_log_trans(struct btrfs_trans_handle *trans,
172 struct btrfs_root *root,
173 struct btrfs_log_ctx *ctx)
174 {
175 struct btrfs_fs_info *fs_info = root->fs_info;
176 struct btrfs_root *tree_root = fs_info->tree_root;
177 const bool zoned = btrfs_is_zoned(fs_info);
178 int ret = 0;
179 bool created = false;
180
181 /*
182 * First check if the log root tree was already created. If not, create
183 * it before locking the root's log_mutex, just to keep lockdep happy.
184 */
185 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
186 mutex_lock(&tree_root->log_mutex);
187 if (!fs_info->log_root_tree) {
188 ret = btrfs_init_log_root_tree(trans, fs_info);
189 if (!ret) {
190 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
191 created = true;
192 }
193 }
194 mutex_unlock(&tree_root->log_mutex);
195 if (ret)
196 return ret;
197 }
198
199 mutex_lock(&root->log_mutex);
200
201 again:
202 if (root->log_root) {
203 int index = (root->log_transid + 1) % 2;
204
205 if (btrfs_need_log_full_commit(trans)) {
206 ret = BTRFS_LOG_FORCE_COMMIT;
207 goto out;
208 }
209
210 if (zoned && atomic_read(&root->log_commit[index])) {
211 wait_log_commit(root, root->log_transid - 1);
212 goto again;
213 }
214
215 if (!root->log_start_pid) {
216 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
217 root->log_start_pid = current->pid;
218 } else if (root->log_start_pid != current->pid) {
219 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
220 }
221 } else {
222 /*
223 * This means fs_info->log_root_tree was already created
224 * for some other FS trees. Do the full commit not to mix
225 * nodes from multiple log transactions to do sequential
226 * writing.
227 */
228 if (zoned && !created) {
229 ret = BTRFS_LOG_FORCE_COMMIT;
230 goto out;
231 }
232
233 ret = btrfs_add_log_tree(trans, root);
234 if (ret)
235 goto out;
236
237 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
238 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
239 root->log_start_pid = current->pid;
240 }
241
242 atomic_inc(&root->log_writers);
243 if (!ctx->logging_new_name) {
244 int index = root->log_transid % 2;
245 list_add_tail(&ctx->list, &root->log_ctxs[index]);
246 ctx->log_transid = root->log_transid;
247 }
248
249 out:
250 mutex_unlock(&root->log_mutex);
251 return ret;
252 }
253
254 /*
255 * returns 0 if there was a log transaction running and we were able
256 * to join, or returns -ENOENT if there were not transactions
257 * in progress
258 */
join_running_log_trans(struct btrfs_root * root)259 static int join_running_log_trans(struct btrfs_root *root)
260 {
261 const bool zoned = btrfs_is_zoned(root->fs_info);
262 int ret = -ENOENT;
263
264 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
265 return ret;
266
267 mutex_lock(&root->log_mutex);
268 again:
269 if (root->log_root) {
270 int index = (root->log_transid + 1) % 2;
271
272 ret = 0;
273 if (zoned && atomic_read(&root->log_commit[index])) {
274 wait_log_commit(root, root->log_transid - 1);
275 goto again;
276 }
277 atomic_inc(&root->log_writers);
278 }
279 mutex_unlock(&root->log_mutex);
280 return ret;
281 }
282
283 /*
284 * This either makes the current running log transaction wait
285 * until you call btrfs_end_log_trans() or it makes any future
286 * log transactions wait until you call btrfs_end_log_trans()
287 */
btrfs_pin_log_trans(struct btrfs_root * root)288 void btrfs_pin_log_trans(struct btrfs_root *root)
289 {
290 atomic_inc(&root->log_writers);
291 }
292
293 /*
294 * indicate we're done making changes to the log tree
295 * and wake up anyone waiting to do a sync
296 */
btrfs_end_log_trans(struct btrfs_root * root)297 void btrfs_end_log_trans(struct btrfs_root *root)
298 {
299 if (atomic_dec_and_test(&root->log_writers)) {
300 /* atomic_dec_and_test implies a barrier */
301 cond_wake_up_nomb(&root->log_writer_wait);
302 }
303 }
304
305 /*
306 * the walk control struct is used to pass state down the chain when
307 * processing the log tree. The stage field tells us which part
308 * of the log tree processing we are currently doing. The others
309 * are state fields used for that specific part
310 */
311 struct walk_control {
312 /* should we free the extent on disk when done? This is used
313 * at transaction commit time while freeing a log tree
314 */
315 int free;
316
317 /* pin only walk, we record which extents on disk belong to the
318 * log trees
319 */
320 int pin;
321
322 /* what stage of the replay code we're currently in */
323 int stage;
324
325 /*
326 * Ignore any items from the inode currently being processed. Needs
327 * to be set every time we find a BTRFS_INODE_ITEM_KEY.
328 */
329 bool ignore_cur_inode;
330
331 /* the root we are currently replaying */
332 struct btrfs_root *replay_dest;
333
334 /* the trans handle for the current replay */
335 struct btrfs_trans_handle *trans;
336
337 /* the function that gets used to process blocks we find in the
338 * tree. Note the extent_buffer might not be up to date when it is
339 * passed in, and it must be checked or read if you need the data
340 * inside it
341 */
342 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
343 struct walk_control *wc, u64 gen, int level);
344 };
345
346 /*
347 * process_func used to pin down extents, write them or wait on them
348 */
process_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)349 static int process_one_buffer(struct btrfs_root *log,
350 struct extent_buffer *eb,
351 struct walk_control *wc, u64 gen, int level)
352 {
353 struct btrfs_fs_info *fs_info = log->fs_info;
354 int ret = 0;
355
356 /*
357 * If this fs is mixed then we need to be able to process the leaves to
358 * pin down any logged extents, so we have to read the block.
359 */
360 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
361 struct btrfs_tree_parent_check check = {
362 .level = level,
363 .transid = gen
364 };
365
366 ret = btrfs_read_extent_buffer(eb, &check);
367 if (ret)
368 return ret;
369 }
370
371 if (wc->pin) {
372 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb);
373 if (ret)
374 return ret;
375
376 if (btrfs_buffer_uptodate(eb, gen, 0) &&
377 btrfs_header_level(eb) == 0)
378 ret = btrfs_exclude_logged_extents(eb);
379 }
380 return ret;
381 }
382
383 /*
384 * Item overwrite used by replay and tree logging. eb, slot and key all refer
385 * to the src data we are copying out.
386 *
387 * root is the tree we are copying into, and path is a scratch
388 * path for use in this function (it should be released on entry and
389 * will be released on exit).
390 *
391 * If the key is already in the destination tree the existing item is
392 * overwritten. If the existing item isn't big enough, it is extended.
393 * If it is too large, it is truncated.
394 *
395 * If the key isn't in the destination yet, a new item is inserted.
396 */
overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)397 static int overwrite_item(struct btrfs_trans_handle *trans,
398 struct btrfs_root *root,
399 struct btrfs_path *path,
400 struct extent_buffer *eb, int slot,
401 struct btrfs_key *key)
402 {
403 int ret;
404 u32 item_size;
405 u64 saved_i_size = 0;
406 int save_old_i_size = 0;
407 unsigned long src_ptr;
408 unsigned long dst_ptr;
409 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
410
411 /*
412 * This is only used during log replay, so the root is always from a
413 * fs/subvolume tree. In case we ever need to support a log root, then
414 * we'll have to clone the leaf in the path, release the path and use
415 * the leaf before writing into the log tree. See the comments at
416 * copy_items() for more details.
417 */
418 ASSERT(btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
419
420 item_size = btrfs_item_size(eb, slot);
421 src_ptr = btrfs_item_ptr_offset(eb, slot);
422
423 /* Look for the key in the destination tree. */
424 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
425 if (ret < 0)
426 return ret;
427
428 if (ret == 0) {
429 char *src_copy;
430 char *dst_copy;
431 u32 dst_size = btrfs_item_size(path->nodes[0],
432 path->slots[0]);
433 if (dst_size != item_size)
434 goto insert;
435
436 if (item_size == 0) {
437 btrfs_release_path(path);
438 return 0;
439 }
440 dst_copy = kmalloc(item_size, GFP_NOFS);
441 src_copy = kmalloc(item_size, GFP_NOFS);
442 if (!dst_copy || !src_copy) {
443 btrfs_release_path(path);
444 kfree(dst_copy);
445 kfree(src_copy);
446 return -ENOMEM;
447 }
448
449 read_extent_buffer(eb, src_copy, src_ptr, item_size);
450
451 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
452 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
453 item_size);
454 ret = memcmp(dst_copy, src_copy, item_size);
455
456 kfree(dst_copy);
457 kfree(src_copy);
458 /*
459 * they have the same contents, just return, this saves
460 * us from cowing blocks in the destination tree and doing
461 * extra writes that may not have been done by a previous
462 * sync
463 */
464 if (ret == 0) {
465 btrfs_release_path(path);
466 return 0;
467 }
468
469 /*
470 * We need to load the old nbytes into the inode so when we
471 * replay the extents we've logged we get the right nbytes.
472 */
473 if (inode_item) {
474 struct btrfs_inode_item *item;
475 u64 nbytes;
476 u32 mode;
477
478 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
479 struct btrfs_inode_item);
480 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
481 item = btrfs_item_ptr(eb, slot,
482 struct btrfs_inode_item);
483 btrfs_set_inode_nbytes(eb, item, nbytes);
484
485 /*
486 * If this is a directory we need to reset the i_size to
487 * 0 so that we can set it up properly when replaying
488 * the rest of the items in this log.
489 */
490 mode = btrfs_inode_mode(eb, item);
491 if (S_ISDIR(mode))
492 btrfs_set_inode_size(eb, item, 0);
493 }
494 } else if (inode_item) {
495 struct btrfs_inode_item *item;
496 u32 mode;
497
498 /*
499 * New inode, set nbytes to 0 so that the nbytes comes out
500 * properly when we replay the extents.
501 */
502 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
503 btrfs_set_inode_nbytes(eb, item, 0);
504
505 /*
506 * If this is a directory we need to reset the i_size to 0 so
507 * that we can set it up properly when replaying the rest of
508 * the items in this log.
509 */
510 mode = btrfs_inode_mode(eb, item);
511 if (S_ISDIR(mode))
512 btrfs_set_inode_size(eb, item, 0);
513 }
514 insert:
515 btrfs_release_path(path);
516 /* try to insert the key into the destination tree */
517 path->skip_release_on_error = 1;
518 ret = btrfs_insert_empty_item(trans, root, path,
519 key, item_size);
520 path->skip_release_on_error = 0;
521
522 /* make sure any existing item is the correct size */
523 if (ret == -EEXIST || ret == -EOVERFLOW) {
524 u32 found_size;
525 found_size = btrfs_item_size(path->nodes[0],
526 path->slots[0]);
527 if (found_size > item_size)
528 btrfs_truncate_item(trans, path, item_size, 1);
529 else if (found_size < item_size)
530 btrfs_extend_item(trans, path, item_size - found_size);
531 } else if (ret) {
532 return ret;
533 }
534 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
535 path->slots[0]);
536
537 /* don't overwrite an existing inode if the generation number
538 * was logged as zero. This is done when the tree logging code
539 * is just logging an inode to make sure it exists after recovery.
540 *
541 * Also, don't overwrite i_size on directories during replay.
542 * log replay inserts and removes directory items based on the
543 * state of the tree found in the subvolume, and i_size is modified
544 * as it goes
545 */
546 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
547 struct btrfs_inode_item *src_item;
548 struct btrfs_inode_item *dst_item;
549
550 src_item = (struct btrfs_inode_item *)src_ptr;
551 dst_item = (struct btrfs_inode_item *)dst_ptr;
552
553 if (btrfs_inode_generation(eb, src_item) == 0) {
554 struct extent_buffer *dst_eb = path->nodes[0];
555 const u64 ino_size = btrfs_inode_size(eb, src_item);
556
557 /*
558 * For regular files an ino_size == 0 is used only when
559 * logging that an inode exists, as part of a directory
560 * fsync, and the inode wasn't fsynced before. In this
561 * case don't set the size of the inode in the fs/subvol
562 * tree, otherwise we would be throwing valid data away.
563 */
564 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
565 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
566 ino_size != 0)
567 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
568 goto no_copy;
569 }
570
571 if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
572 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
573 save_old_i_size = 1;
574 saved_i_size = btrfs_inode_size(path->nodes[0],
575 dst_item);
576 }
577 }
578
579 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
580 src_ptr, item_size);
581
582 if (save_old_i_size) {
583 struct btrfs_inode_item *dst_item;
584 dst_item = (struct btrfs_inode_item *)dst_ptr;
585 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
586 }
587
588 /* make sure the generation is filled in */
589 if (key->type == BTRFS_INODE_ITEM_KEY) {
590 struct btrfs_inode_item *dst_item;
591 dst_item = (struct btrfs_inode_item *)dst_ptr;
592 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
593 btrfs_set_inode_generation(path->nodes[0], dst_item,
594 trans->transid);
595 }
596 }
597 no_copy:
598 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
599 btrfs_release_path(path);
600 return 0;
601 }
602
read_alloc_one_name(struct extent_buffer * eb,void * start,int len,struct fscrypt_str * name)603 static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
604 struct fscrypt_str *name)
605 {
606 char *buf;
607
608 buf = kmalloc(len, GFP_NOFS);
609 if (!buf)
610 return -ENOMEM;
611
612 read_extent_buffer(eb, buf, (unsigned long)start, len);
613 name->name = buf;
614 name->len = len;
615 return 0;
616 }
617
618 /* replays a single extent in 'eb' at 'slot' with 'key' into the
619 * subvolume 'root'. path is released on entry and should be released
620 * on exit.
621 *
622 * extents in the log tree have not been allocated out of the extent
623 * tree yet. So, this completes the allocation, taking a reference
624 * as required if the extent already exists or creating a new extent
625 * if it isn't in the extent allocation tree yet.
626 *
627 * The extent is inserted into the file, dropping any existing extents
628 * from the file that overlap the new one.
629 */
replay_one_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)630 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
631 struct btrfs_root *root,
632 struct btrfs_path *path,
633 struct extent_buffer *eb, int slot,
634 struct btrfs_key *key)
635 {
636 struct btrfs_drop_extents_args drop_args = { 0 };
637 struct btrfs_fs_info *fs_info = root->fs_info;
638 int found_type;
639 u64 extent_end;
640 u64 start = key->offset;
641 u64 nbytes = 0;
642 struct btrfs_file_extent_item *item;
643 struct btrfs_inode *inode = NULL;
644 unsigned long size;
645 int ret = 0;
646
647 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
648 found_type = btrfs_file_extent_type(eb, item);
649
650 if (found_type == BTRFS_FILE_EXTENT_REG ||
651 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
652 nbytes = btrfs_file_extent_num_bytes(eb, item);
653 extent_end = start + nbytes;
654
655 /*
656 * We don't add to the inodes nbytes if we are prealloc or a
657 * hole.
658 */
659 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
660 nbytes = 0;
661 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
662 size = btrfs_file_extent_ram_bytes(eb, item);
663 nbytes = btrfs_file_extent_ram_bytes(eb, item);
664 extent_end = ALIGN(start + size,
665 fs_info->sectorsize);
666 } else {
667 return 0;
668 }
669
670 inode = btrfs_iget_logging(key->objectid, root);
671 if (IS_ERR(inode))
672 return PTR_ERR(inode);
673
674 /*
675 * first check to see if we already have this extent in the
676 * file. This must be done before the btrfs_drop_extents run
677 * so we don't try to drop this extent.
678 */
679 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), start, 0);
680
681 if (ret == 0 &&
682 (found_type == BTRFS_FILE_EXTENT_REG ||
683 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
684 struct btrfs_file_extent_item cmp1;
685 struct btrfs_file_extent_item cmp2;
686 struct btrfs_file_extent_item *existing;
687 struct extent_buffer *leaf;
688
689 leaf = path->nodes[0];
690 existing = btrfs_item_ptr(leaf, path->slots[0],
691 struct btrfs_file_extent_item);
692
693 read_extent_buffer(eb, &cmp1, (unsigned long)item,
694 sizeof(cmp1));
695 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
696 sizeof(cmp2));
697
698 /*
699 * we already have a pointer to this exact extent,
700 * we don't have to do anything
701 */
702 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
703 btrfs_release_path(path);
704 goto out;
705 }
706 }
707 btrfs_release_path(path);
708
709 /* drop any overlapping extents */
710 drop_args.start = start;
711 drop_args.end = extent_end;
712 drop_args.drop_cache = true;
713 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
714 if (ret)
715 goto out;
716
717 if (found_type == BTRFS_FILE_EXTENT_REG ||
718 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
719 u64 offset;
720 unsigned long dest_offset;
721 struct btrfs_key ins;
722
723 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
724 btrfs_fs_incompat(fs_info, NO_HOLES))
725 goto update_inode;
726
727 ret = btrfs_insert_empty_item(trans, root, path, key,
728 sizeof(*item));
729 if (ret)
730 goto out;
731 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
732 path->slots[0]);
733 copy_extent_buffer(path->nodes[0], eb, dest_offset,
734 (unsigned long)item, sizeof(*item));
735
736 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
737 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
738 ins.type = BTRFS_EXTENT_ITEM_KEY;
739 offset = key->offset - btrfs_file_extent_offset(eb, item);
740
741 /*
742 * Manually record dirty extent, as here we did a shallow
743 * file extent item copy and skip normal backref update,
744 * but modifying extent tree all by ourselves.
745 * So need to manually record dirty extent for qgroup,
746 * as the owner of the file extent changed from log tree
747 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
748 */
749 ret = btrfs_qgroup_trace_extent(trans,
750 btrfs_file_extent_disk_bytenr(eb, item),
751 btrfs_file_extent_disk_num_bytes(eb, item));
752 if (ret < 0)
753 goto out;
754
755 if (ins.objectid > 0) {
756 u64 csum_start;
757 u64 csum_end;
758 LIST_HEAD(ordered_sums);
759
760 /*
761 * is this extent already allocated in the extent
762 * allocation tree? If so, just add a reference
763 */
764 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
765 ins.offset);
766 if (ret < 0) {
767 goto out;
768 } else if (ret == 0) {
769 struct btrfs_ref ref = {
770 .action = BTRFS_ADD_DELAYED_REF,
771 .bytenr = ins.objectid,
772 .num_bytes = ins.offset,
773 .owning_root = btrfs_root_id(root),
774 .ref_root = btrfs_root_id(root),
775 };
776 btrfs_init_data_ref(&ref, key->objectid, offset,
777 0, false);
778 ret = btrfs_inc_extent_ref(trans, &ref);
779 if (ret)
780 goto out;
781 } else {
782 /*
783 * insert the extent pointer in the extent
784 * allocation tree
785 */
786 ret = btrfs_alloc_logged_file_extent(trans,
787 btrfs_root_id(root),
788 key->objectid, offset, &ins);
789 if (ret)
790 goto out;
791 }
792 btrfs_release_path(path);
793
794 if (btrfs_file_extent_compression(eb, item)) {
795 csum_start = ins.objectid;
796 csum_end = csum_start + ins.offset;
797 } else {
798 csum_start = ins.objectid +
799 btrfs_file_extent_offset(eb, item);
800 csum_end = csum_start +
801 btrfs_file_extent_num_bytes(eb, item);
802 }
803
804 ret = btrfs_lookup_csums_list(root->log_root,
805 csum_start, csum_end - 1,
806 &ordered_sums, false);
807 if (ret < 0)
808 goto out;
809 ret = 0;
810 /*
811 * Now delete all existing cums in the csum root that
812 * cover our range. We do this because we can have an
813 * extent that is completely referenced by one file
814 * extent item and partially referenced by another
815 * file extent item (like after using the clone or
816 * extent_same ioctls). In this case if we end up doing
817 * the replay of the one that partially references the
818 * extent first, and we do not do the csum deletion
819 * below, we can get 2 csum items in the csum tree that
820 * overlap each other. For example, imagine our log has
821 * the two following file extent items:
822 *
823 * key (257 EXTENT_DATA 409600)
824 * extent data disk byte 12845056 nr 102400
825 * extent data offset 20480 nr 20480 ram 102400
826 *
827 * key (257 EXTENT_DATA 819200)
828 * extent data disk byte 12845056 nr 102400
829 * extent data offset 0 nr 102400 ram 102400
830 *
831 * Where the second one fully references the 100K extent
832 * that starts at disk byte 12845056, and the log tree
833 * has a single csum item that covers the entire range
834 * of the extent:
835 *
836 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
837 *
838 * After the first file extent item is replayed, the
839 * csum tree gets the following csum item:
840 *
841 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
842 *
843 * Which covers the 20K sub-range starting at offset 20K
844 * of our extent. Now when we replay the second file
845 * extent item, if we do not delete existing csum items
846 * that cover any of its blocks, we end up getting two
847 * csum items in our csum tree that overlap each other:
848 *
849 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
850 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
851 *
852 * Which is a problem, because after this anyone trying
853 * to lookup up for the checksum of any block of our
854 * extent starting at an offset of 40K or higher, will
855 * end up looking at the second csum item only, which
856 * does not contain the checksum for any block starting
857 * at offset 40K or higher of our extent.
858 */
859 while (!list_empty(&ordered_sums)) {
860 struct btrfs_ordered_sum *sums;
861 struct btrfs_root *csum_root;
862
863 sums = list_entry(ordered_sums.next,
864 struct btrfs_ordered_sum,
865 list);
866 csum_root = btrfs_csum_root(fs_info,
867 sums->logical);
868 if (!ret)
869 ret = btrfs_del_csums(trans, csum_root,
870 sums->logical,
871 sums->len);
872 if (!ret)
873 ret = btrfs_csum_file_blocks(trans,
874 csum_root,
875 sums);
876 list_del(&sums->list);
877 kfree(sums);
878 }
879 if (ret)
880 goto out;
881 } else {
882 btrfs_release_path(path);
883 }
884 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
885 /* inline extents are easy, we just overwrite them */
886 ret = overwrite_item(trans, root, path, eb, slot, key);
887 if (ret)
888 goto out;
889 }
890
891 ret = btrfs_inode_set_file_extent_range(inode, start, extent_end - start);
892 if (ret)
893 goto out;
894
895 update_inode:
896 btrfs_update_inode_bytes(inode, nbytes, drop_args.bytes_found);
897 ret = btrfs_update_inode(trans, inode);
898 out:
899 iput(&inode->vfs_inode);
900 return ret;
901 }
902
unlink_inode_for_log_replay(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name)903 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
904 struct btrfs_inode *dir,
905 struct btrfs_inode *inode,
906 const struct fscrypt_str *name)
907 {
908 int ret;
909
910 ret = btrfs_unlink_inode(trans, dir, inode, name);
911 if (ret)
912 return ret;
913 /*
914 * Whenever we need to check if a name exists or not, we check the
915 * fs/subvolume tree. So after an unlink we must run delayed items, so
916 * that future checks for a name during log replay see that the name
917 * does not exists anymore.
918 */
919 return btrfs_run_delayed_items(trans);
920 }
921
922 /*
923 * when cleaning up conflicts between the directory names in the
924 * subvolume, directory names in the log and directory names in the
925 * inode back references, we may have to unlink inodes from directories.
926 *
927 * This is a helper function to do the unlink of a specific directory
928 * item
929 */
drop_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_inode * dir,struct btrfs_dir_item * di)930 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
931 struct btrfs_path *path,
932 struct btrfs_inode *dir,
933 struct btrfs_dir_item *di)
934 {
935 struct btrfs_root *root = dir->root;
936 struct btrfs_inode *inode;
937 struct fscrypt_str name;
938 struct extent_buffer *leaf;
939 struct btrfs_key location;
940 int ret;
941
942 leaf = path->nodes[0];
943
944 btrfs_dir_item_key_to_cpu(leaf, di, &location);
945 ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
946 if (ret)
947 return -ENOMEM;
948
949 btrfs_release_path(path);
950
951 inode = btrfs_iget_logging(location.objectid, root);
952 if (IS_ERR(inode)) {
953 ret = PTR_ERR(inode);
954 inode = NULL;
955 goto out;
956 }
957
958 ret = link_to_fixup_dir(trans, root, path, location.objectid);
959 if (ret)
960 goto out;
961
962 ret = unlink_inode_for_log_replay(trans, dir, inode, &name);
963 out:
964 kfree(name.name);
965 if (inode)
966 iput(&inode->vfs_inode);
967 return ret;
968 }
969
970 /*
971 * See if a given name and sequence number found in an inode back reference are
972 * already in a directory and correctly point to this inode.
973 *
974 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
975 * exists.
976 */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,struct fscrypt_str * name)977 static noinline int inode_in_dir(struct btrfs_root *root,
978 struct btrfs_path *path,
979 u64 dirid, u64 objectid, u64 index,
980 struct fscrypt_str *name)
981 {
982 struct btrfs_dir_item *di;
983 struct btrfs_key location;
984 int ret = 0;
985
986 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
987 index, name, 0);
988 if (IS_ERR(di)) {
989 ret = PTR_ERR(di);
990 goto out;
991 } else if (di) {
992 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
993 if (location.objectid != objectid)
994 goto out;
995 } else {
996 goto out;
997 }
998
999 btrfs_release_path(path);
1000 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
1001 if (IS_ERR(di)) {
1002 ret = PTR_ERR(di);
1003 goto out;
1004 } else if (di) {
1005 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1006 if (location.objectid == objectid)
1007 ret = 1;
1008 }
1009 out:
1010 btrfs_release_path(path);
1011 return ret;
1012 }
1013
1014 /*
1015 * helper function to check a log tree for a named back reference in
1016 * an inode. This is used to decide if a back reference that is
1017 * found in the subvolume conflicts with what we find in the log.
1018 *
1019 * inode backreferences may have multiple refs in a single item,
1020 * during replay we process one reference at a time, and we don't
1021 * want to delete valid links to a file from the subvolume if that
1022 * link is also in the log.
1023 */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,u64 ref_objectid,const struct fscrypt_str * name)1024 static noinline int backref_in_log(struct btrfs_root *log,
1025 struct btrfs_key *key,
1026 u64 ref_objectid,
1027 const struct fscrypt_str *name)
1028 {
1029 struct btrfs_path *path;
1030 int ret;
1031
1032 path = btrfs_alloc_path();
1033 if (!path)
1034 return -ENOMEM;
1035
1036 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1037 if (ret < 0) {
1038 goto out;
1039 } else if (ret == 1) {
1040 ret = 0;
1041 goto out;
1042 }
1043
1044 if (key->type == BTRFS_INODE_EXTREF_KEY)
1045 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1046 path->slots[0],
1047 ref_objectid, name);
1048 else
1049 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1050 path->slots[0], name);
1051 out:
1052 btrfs_free_path(path);
1053 return ret;
1054 }
1055
__add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_root * log_root,struct btrfs_inode * dir,struct btrfs_inode * inode,u64 inode_objectid,u64 parent_objectid,u64 ref_index,struct fscrypt_str * name)1056 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1057 struct btrfs_root *root,
1058 struct btrfs_path *path,
1059 struct btrfs_root *log_root,
1060 struct btrfs_inode *dir,
1061 struct btrfs_inode *inode,
1062 u64 inode_objectid, u64 parent_objectid,
1063 u64 ref_index, struct fscrypt_str *name)
1064 {
1065 int ret;
1066 struct extent_buffer *leaf;
1067 struct btrfs_dir_item *di;
1068 struct btrfs_key search_key;
1069 struct btrfs_inode_extref *extref;
1070
1071 again:
1072 /* Search old style refs */
1073 search_key.objectid = inode_objectid;
1074 search_key.type = BTRFS_INODE_REF_KEY;
1075 search_key.offset = parent_objectid;
1076 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1077 if (ret < 0) {
1078 return ret;
1079 } else if (ret == 0) {
1080 struct btrfs_inode_ref *victim_ref;
1081 unsigned long ptr;
1082 unsigned long ptr_end;
1083
1084 leaf = path->nodes[0];
1085
1086 /* are we trying to overwrite a back ref for the root directory
1087 * if so, just jump out, we're done
1088 */
1089 if (search_key.objectid == search_key.offset)
1090 return 1;
1091
1092 /* check all the names in this back reference to see
1093 * if they are in the log. if so, we allow them to stay
1094 * otherwise they must be unlinked as a conflict
1095 */
1096 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1097 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1098 while (ptr < ptr_end) {
1099 struct fscrypt_str victim_name;
1100
1101 victim_ref = (struct btrfs_inode_ref *)ptr;
1102 ret = read_alloc_one_name(leaf, (victim_ref + 1),
1103 btrfs_inode_ref_name_len(leaf, victim_ref),
1104 &victim_name);
1105 if (ret)
1106 return ret;
1107
1108 ret = backref_in_log(log_root, &search_key,
1109 parent_objectid, &victim_name);
1110 if (ret < 0) {
1111 kfree(victim_name.name);
1112 return ret;
1113 } else if (!ret) {
1114 inc_nlink(&inode->vfs_inode);
1115 btrfs_release_path(path);
1116
1117 ret = unlink_inode_for_log_replay(trans, dir, inode,
1118 &victim_name);
1119 kfree(victim_name.name);
1120 if (ret)
1121 return ret;
1122 goto again;
1123 }
1124 kfree(victim_name.name);
1125
1126 ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1127 }
1128 }
1129 btrfs_release_path(path);
1130
1131 /* Same search but for extended refs */
1132 extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1133 inode_objectid, parent_objectid, 0,
1134 0);
1135 if (IS_ERR(extref)) {
1136 return PTR_ERR(extref);
1137 } else if (extref) {
1138 u32 item_size;
1139 u32 cur_offset = 0;
1140 unsigned long base;
1141 struct btrfs_inode *victim_parent;
1142
1143 leaf = path->nodes[0];
1144
1145 item_size = btrfs_item_size(leaf, path->slots[0]);
1146 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1147
1148 while (cur_offset < item_size) {
1149 struct fscrypt_str victim_name;
1150
1151 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1152 victim_name.len = btrfs_inode_extref_name_len(leaf, extref);
1153
1154 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1155 goto next;
1156
1157 ret = read_alloc_one_name(leaf, &extref->name,
1158 victim_name.len, &victim_name);
1159 if (ret)
1160 return ret;
1161
1162 search_key.objectid = inode_objectid;
1163 search_key.type = BTRFS_INODE_EXTREF_KEY;
1164 search_key.offset = btrfs_extref_hash(parent_objectid,
1165 victim_name.name,
1166 victim_name.len);
1167 ret = backref_in_log(log_root, &search_key,
1168 parent_objectid, &victim_name);
1169 if (ret < 0) {
1170 kfree(victim_name.name);
1171 return ret;
1172 } else if (!ret) {
1173 victim_parent = btrfs_iget_logging(parent_objectid, root);
1174 if (IS_ERR(victim_parent)) {
1175 ret = PTR_ERR(victim_parent);
1176 } else {
1177 inc_nlink(&inode->vfs_inode);
1178 btrfs_release_path(path);
1179
1180 ret = unlink_inode_for_log_replay(trans,
1181 victim_parent,
1182 inode, &victim_name);
1183 iput(&victim_parent->vfs_inode);
1184 }
1185 kfree(victim_name.name);
1186 if (ret)
1187 return ret;
1188 goto again;
1189 }
1190 kfree(victim_name.name);
1191 next:
1192 cur_offset += victim_name.len + sizeof(*extref);
1193 }
1194 }
1195 btrfs_release_path(path);
1196
1197 /* look for a conflicting sequence number */
1198 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1199 ref_index, name, 0);
1200 if (IS_ERR(di)) {
1201 return PTR_ERR(di);
1202 } else if (di) {
1203 ret = drop_one_dir_item(trans, path, dir, di);
1204 if (ret)
1205 return ret;
1206 }
1207 btrfs_release_path(path);
1208
1209 /* look for a conflicting name */
1210 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1211 if (IS_ERR(di)) {
1212 return PTR_ERR(di);
1213 } else if (di) {
1214 ret = drop_one_dir_item(trans, path, dir, di);
1215 if (ret)
1216 return ret;
1217 }
1218 btrfs_release_path(path);
1219
1220 return 0;
1221 }
1222
extref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,struct fscrypt_str * name,u64 * index,u64 * parent_objectid)1223 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1224 struct fscrypt_str *name, u64 *index,
1225 u64 *parent_objectid)
1226 {
1227 struct btrfs_inode_extref *extref;
1228 int ret;
1229
1230 extref = (struct btrfs_inode_extref *)ref_ptr;
1231
1232 ret = read_alloc_one_name(eb, &extref->name,
1233 btrfs_inode_extref_name_len(eb, extref), name);
1234 if (ret)
1235 return ret;
1236
1237 if (index)
1238 *index = btrfs_inode_extref_index(eb, extref);
1239 if (parent_objectid)
1240 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1241
1242 return 0;
1243 }
1244
ref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,struct fscrypt_str * name,u64 * index)1245 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1246 struct fscrypt_str *name, u64 *index)
1247 {
1248 struct btrfs_inode_ref *ref;
1249 int ret;
1250
1251 ref = (struct btrfs_inode_ref *)ref_ptr;
1252
1253 ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1254 name);
1255 if (ret)
1256 return ret;
1257
1258 if (index)
1259 *index = btrfs_inode_ref_index(eb, ref);
1260
1261 return 0;
1262 }
1263
1264 /*
1265 * Take an inode reference item from the log tree and iterate all names from the
1266 * inode reference item in the subvolume tree with the same key (if it exists).
1267 * For any name that is not in the inode reference item from the log tree, do a
1268 * proper unlink of that name (that is, remove its entry from the inode
1269 * reference item and both dir index keys).
1270 */
unlink_old_inode_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_inode * inode,struct extent_buffer * log_eb,int log_slot,struct btrfs_key * key)1271 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1272 struct btrfs_root *root,
1273 struct btrfs_path *path,
1274 struct btrfs_inode *inode,
1275 struct extent_buffer *log_eb,
1276 int log_slot,
1277 struct btrfs_key *key)
1278 {
1279 int ret;
1280 unsigned long ref_ptr;
1281 unsigned long ref_end;
1282 struct extent_buffer *eb;
1283
1284 again:
1285 btrfs_release_path(path);
1286 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1287 if (ret > 0) {
1288 ret = 0;
1289 goto out;
1290 }
1291 if (ret < 0)
1292 goto out;
1293
1294 eb = path->nodes[0];
1295 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1296 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1297 while (ref_ptr < ref_end) {
1298 struct fscrypt_str name;
1299 u64 parent_id;
1300
1301 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1302 ret = extref_get_fields(eb, ref_ptr, &name,
1303 NULL, &parent_id);
1304 } else {
1305 parent_id = key->offset;
1306 ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1307 }
1308 if (ret)
1309 goto out;
1310
1311 if (key->type == BTRFS_INODE_EXTREF_KEY)
1312 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1313 parent_id, &name);
1314 else
1315 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1316
1317 if (!ret) {
1318 struct btrfs_inode *dir;
1319
1320 btrfs_release_path(path);
1321 dir = btrfs_iget_logging(parent_id, root);
1322 if (IS_ERR(dir)) {
1323 ret = PTR_ERR(dir);
1324 kfree(name.name);
1325 goto out;
1326 }
1327 ret = unlink_inode_for_log_replay(trans, dir, inode, &name);
1328 kfree(name.name);
1329 iput(&dir->vfs_inode);
1330 if (ret)
1331 goto out;
1332 goto again;
1333 }
1334
1335 kfree(name.name);
1336 ref_ptr += name.len;
1337 if (key->type == BTRFS_INODE_EXTREF_KEY)
1338 ref_ptr += sizeof(struct btrfs_inode_extref);
1339 else
1340 ref_ptr += sizeof(struct btrfs_inode_ref);
1341 }
1342 ret = 0;
1343 out:
1344 btrfs_release_path(path);
1345 return ret;
1346 }
1347
1348 /*
1349 * replay one inode back reference item found in the log tree.
1350 * eb, slot and key refer to the buffer and key found in the log tree.
1351 * root is the destination we are replaying into, and path is for temp
1352 * use by this function. (it should be released on return).
1353 */
add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1354 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1355 struct btrfs_root *root,
1356 struct btrfs_root *log,
1357 struct btrfs_path *path,
1358 struct extent_buffer *eb, int slot,
1359 struct btrfs_key *key)
1360 {
1361 struct btrfs_inode *dir = NULL;
1362 struct btrfs_inode *inode = NULL;
1363 unsigned long ref_ptr;
1364 unsigned long ref_end;
1365 struct fscrypt_str name = { 0 };
1366 int ret;
1367 int log_ref_ver = 0;
1368 u64 parent_objectid;
1369 u64 inode_objectid;
1370 u64 ref_index = 0;
1371 int ref_struct_size;
1372
1373 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1374 ref_end = ref_ptr + btrfs_item_size(eb, slot);
1375
1376 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1377 struct btrfs_inode_extref *r;
1378
1379 ref_struct_size = sizeof(struct btrfs_inode_extref);
1380 log_ref_ver = 1;
1381 r = (struct btrfs_inode_extref *)ref_ptr;
1382 parent_objectid = btrfs_inode_extref_parent(eb, r);
1383 } else {
1384 ref_struct_size = sizeof(struct btrfs_inode_ref);
1385 parent_objectid = key->offset;
1386 }
1387 inode_objectid = key->objectid;
1388
1389 /*
1390 * it is possible that we didn't log all the parent directories
1391 * for a given inode. If we don't find the dir, just don't
1392 * copy the back ref in. The link count fixup code will take
1393 * care of the rest
1394 */
1395 dir = btrfs_iget_logging(parent_objectid, root);
1396 if (IS_ERR(dir)) {
1397 ret = PTR_ERR(dir);
1398 if (ret == -ENOENT)
1399 ret = 0;
1400 dir = NULL;
1401 goto out;
1402 }
1403
1404 inode = btrfs_iget_logging(inode_objectid, root);
1405 if (IS_ERR(inode)) {
1406 ret = PTR_ERR(inode);
1407 inode = NULL;
1408 goto out;
1409 }
1410
1411 while (ref_ptr < ref_end) {
1412 if (log_ref_ver) {
1413 ret = extref_get_fields(eb, ref_ptr, &name,
1414 &ref_index, &parent_objectid);
1415 if (ret)
1416 goto out;
1417 /*
1418 * parent object can change from one array
1419 * item to another.
1420 */
1421 if (!dir) {
1422 dir = btrfs_iget_logging(parent_objectid, root);
1423 if (IS_ERR(dir)) {
1424 ret = PTR_ERR(dir);
1425 dir = NULL;
1426 /*
1427 * A new parent dir may have not been
1428 * logged and not exist in the subvolume
1429 * tree, see the comment above before
1430 * the loop when getting the first
1431 * parent dir.
1432 */
1433 if (ret == -ENOENT) {
1434 /*
1435 * The next extref may refer to
1436 * another parent dir that
1437 * exists, so continue.
1438 */
1439 ret = 0;
1440 goto next;
1441 }
1442 goto out;
1443 }
1444 }
1445 } else {
1446 ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
1447 if (ret)
1448 goto out;
1449 }
1450
1451 ret = inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1452 ref_index, &name);
1453 if (ret < 0) {
1454 goto out;
1455 } else if (ret == 0) {
1456 /*
1457 * look for a conflicting back reference in the
1458 * metadata. if we find one we have to unlink that name
1459 * of the file before we add our new link. Later on, we
1460 * overwrite any existing back reference, and we don't
1461 * want to create dangling pointers in the directory.
1462 */
1463 ret = __add_inode_ref(trans, root, path, log, dir, inode,
1464 inode_objectid, parent_objectid,
1465 ref_index, &name);
1466 if (ret) {
1467 if (ret == 1)
1468 ret = 0;
1469 goto out;
1470 }
1471
1472 /* insert our name */
1473 ret = btrfs_add_link(trans, dir, inode, &name, 0, ref_index);
1474 if (ret)
1475 goto out;
1476
1477 ret = btrfs_update_inode(trans, inode);
1478 if (ret)
1479 goto out;
1480 }
1481 /* Else, ret == 1, we already have a perfect match, we're done. */
1482
1483 next:
1484 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1485 kfree(name.name);
1486 name.name = NULL;
1487 if (log_ref_ver && dir) {
1488 iput(&dir->vfs_inode);
1489 dir = NULL;
1490 }
1491 }
1492
1493 /*
1494 * Before we overwrite the inode reference item in the subvolume tree
1495 * with the item from the log tree, we must unlink all names from the
1496 * parent directory that are in the subvolume's tree inode reference
1497 * item, otherwise we end up with an inconsistent subvolume tree where
1498 * dir index entries exist for a name but there is no inode reference
1499 * item with the same name.
1500 */
1501 ret = unlink_old_inode_refs(trans, root, path, inode, eb, slot, key);
1502 if (ret)
1503 goto out;
1504
1505 /* finally write the back reference in the inode */
1506 ret = overwrite_item(trans, root, path, eb, slot, key);
1507 out:
1508 btrfs_release_path(path);
1509 kfree(name.name);
1510 if (dir)
1511 iput(&dir->vfs_inode);
1512 if (inode)
1513 iput(&inode->vfs_inode);
1514 return ret;
1515 }
1516
count_inode_extrefs(struct btrfs_inode * inode,struct btrfs_path * path)1517 static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path)
1518 {
1519 int ret = 0;
1520 int name_len;
1521 unsigned int nlink = 0;
1522 u32 item_size;
1523 u32 cur_offset = 0;
1524 u64 inode_objectid = btrfs_ino(inode);
1525 u64 offset = 0;
1526 unsigned long ptr;
1527 struct btrfs_inode_extref *extref;
1528 struct extent_buffer *leaf;
1529
1530 while (1) {
1531 ret = btrfs_find_one_extref(inode->root, inode_objectid, offset,
1532 path, &extref, &offset);
1533 if (ret)
1534 break;
1535
1536 leaf = path->nodes[0];
1537 item_size = btrfs_item_size(leaf, path->slots[0]);
1538 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1539 cur_offset = 0;
1540
1541 while (cur_offset < item_size) {
1542 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1543 name_len = btrfs_inode_extref_name_len(leaf, extref);
1544
1545 nlink++;
1546
1547 cur_offset += name_len + sizeof(*extref);
1548 }
1549
1550 offset++;
1551 btrfs_release_path(path);
1552 }
1553 btrfs_release_path(path);
1554
1555 if (ret < 0 && ret != -ENOENT)
1556 return ret;
1557 return nlink;
1558 }
1559
count_inode_refs(struct btrfs_inode * inode,struct btrfs_path * path)1560 static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path)
1561 {
1562 int ret;
1563 struct btrfs_key key;
1564 unsigned int nlink = 0;
1565 unsigned long ptr;
1566 unsigned long ptr_end;
1567 int name_len;
1568 u64 ino = btrfs_ino(inode);
1569
1570 key.objectid = ino;
1571 key.type = BTRFS_INODE_REF_KEY;
1572 key.offset = (u64)-1;
1573
1574 while (1) {
1575 ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0);
1576 if (ret < 0)
1577 break;
1578 if (ret > 0) {
1579 if (path->slots[0] == 0)
1580 break;
1581 path->slots[0]--;
1582 }
1583 process_slot:
1584 btrfs_item_key_to_cpu(path->nodes[0], &key,
1585 path->slots[0]);
1586 if (key.objectid != ino ||
1587 key.type != BTRFS_INODE_REF_KEY)
1588 break;
1589 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1590 ptr_end = ptr + btrfs_item_size(path->nodes[0],
1591 path->slots[0]);
1592 while (ptr < ptr_end) {
1593 struct btrfs_inode_ref *ref;
1594
1595 ref = (struct btrfs_inode_ref *)ptr;
1596 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1597 ref);
1598 ptr = (unsigned long)(ref + 1) + name_len;
1599 nlink++;
1600 }
1601
1602 if (key.offset == 0)
1603 break;
1604 if (path->slots[0] > 0) {
1605 path->slots[0]--;
1606 goto process_slot;
1607 }
1608 key.offset--;
1609 btrfs_release_path(path);
1610 }
1611 btrfs_release_path(path);
1612
1613 return nlink;
1614 }
1615
1616 /*
1617 * There are a few corners where the link count of the file can't
1618 * be properly maintained during replay. So, instead of adding
1619 * lots of complexity to the log code, we just scan the backrefs
1620 * for any file that has been through replay.
1621 *
1622 * The scan will update the link count on the inode to reflect the
1623 * number of back refs found. If it goes down to zero, the iput
1624 * will free the inode.
1625 */
fixup_inode_link_count(struct btrfs_trans_handle * trans,struct inode * inode)1626 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1627 struct inode *inode)
1628 {
1629 struct btrfs_root *root = BTRFS_I(inode)->root;
1630 struct btrfs_path *path;
1631 int ret;
1632 u64 nlink = 0;
1633 u64 ino = btrfs_ino(BTRFS_I(inode));
1634
1635 path = btrfs_alloc_path();
1636 if (!path)
1637 return -ENOMEM;
1638
1639 ret = count_inode_refs(BTRFS_I(inode), path);
1640 if (ret < 0)
1641 goto out;
1642
1643 nlink = ret;
1644
1645 ret = count_inode_extrefs(BTRFS_I(inode), path);
1646 if (ret < 0)
1647 goto out;
1648
1649 nlink += ret;
1650
1651 ret = 0;
1652
1653 if (nlink != inode->i_nlink) {
1654 set_nlink(inode, nlink);
1655 ret = btrfs_update_inode(trans, BTRFS_I(inode));
1656 if (ret)
1657 goto out;
1658 }
1659 if (S_ISDIR(inode->i_mode))
1660 BTRFS_I(inode)->index_cnt = (u64)-1;
1661
1662 if (inode->i_nlink == 0) {
1663 if (S_ISDIR(inode->i_mode)) {
1664 ret = replay_dir_deletes(trans, root, NULL, path,
1665 ino, 1);
1666 if (ret)
1667 goto out;
1668 }
1669 ret = btrfs_insert_orphan_item(trans, root, ino);
1670 if (ret == -EEXIST)
1671 ret = 0;
1672 }
1673
1674 out:
1675 btrfs_free_path(path);
1676 return ret;
1677 }
1678
fixup_inode_link_counts(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)1679 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1680 struct btrfs_root *root,
1681 struct btrfs_path *path)
1682 {
1683 int ret;
1684 struct btrfs_key key;
1685
1686 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1687 key.type = BTRFS_ORPHAN_ITEM_KEY;
1688 key.offset = (u64)-1;
1689 while (1) {
1690 struct btrfs_inode *inode;
1691
1692 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1693 if (ret < 0)
1694 break;
1695
1696 if (ret == 1) {
1697 ret = 0;
1698 if (path->slots[0] == 0)
1699 break;
1700 path->slots[0]--;
1701 }
1702
1703 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1704 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1705 key.type != BTRFS_ORPHAN_ITEM_KEY)
1706 break;
1707
1708 ret = btrfs_del_item(trans, root, path);
1709 if (ret)
1710 break;
1711
1712 btrfs_release_path(path);
1713 inode = btrfs_iget_logging(key.offset, root);
1714 if (IS_ERR(inode)) {
1715 ret = PTR_ERR(inode);
1716 break;
1717 }
1718
1719 ret = fixup_inode_link_count(trans, &inode->vfs_inode);
1720 iput(&inode->vfs_inode);
1721 if (ret)
1722 break;
1723
1724 /*
1725 * fixup on a directory may create new entries,
1726 * make sure we always look for the highset possible
1727 * offset
1728 */
1729 key.offset = (u64)-1;
1730 }
1731 btrfs_release_path(path);
1732 return ret;
1733 }
1734
1735
1736 /*
1737 * record a given inode in the fixup dir so we can check its link
1738 * count when replay is done. The link count is incremented here
1739 * so the inode won't go away until we check it
1740 */
link_to_fixup_dir(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid)1741 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1742 struct btrfs_root *root,
1743 struct btrfs_path *path,
1744 u64 objectid)
1745 {
1746 struct btrfs_key key;
1747 int ret = 0;
1748 struct btrfs_inode *inode;
1749 struct inode *vfs_inode;
1750
1751 inode = btrfs_iget_logging(objectid, root);
1752 if (IS_ERR(inode))
1753 return PTR_ERR(inode);
1754
1755 vfs_inode = &inode->vfs_inode;
1756 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1757 key.type = BTRFS_ORPHAN_ITEM_KEY;
1758 key.offset = objectid;
1759
1760 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1761
1762 btrfs_release_path(path);
1763 if (ret == 0) {
1764 if (!vfs_inode->i_nlink)
1765 set_nlink(vfs_inode, 1);
1766 else
1767 inc_nlink(vfs_inode);
1768 ret = btrfs_update_inode(trans, inode);
1769 } else if (ret == -EEXIST) {
1770 ret = 0;
1771 }
1772 iput(vfs_inode);
1773
1774 return ret;
1775 }
1776
1777 /*
1778 * when replaying the log for a directory, we only insert names
1779 * for inodes that actually exist. This means an fsync on a directory
1780 * does not implicitly fsync all the new files in it
1781 */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 dirid,u64 index,const struct fscrypt_str * name,struct btrfs_key * location)1782 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1783 struct btrfs_root *root,
1784 u64 dirid, u64 index,
1785 const struct fscrypt_str *name,
1786 struct btrfs_key *location)
1787 {
1788 struct btrfs_inode *inode;
1789 struct btrfs_inode *dir;
1790 int ret;
1791
1792 inode = btrfs_iget_logging(location->objectid, root);
1793 if (IS_ERR(inode))
1794 return PTR_ERR(inode);
1795
1796 dir = btrfs_iget_logging(dirid, root);
1797 if (IS_ERR(dir)) {
1798 iput(&inode->vfs_inode);
1799 return PTR_ERR(dir);
1800 }
1801
1802 ret = btrfs_add_link(trans, dir, inode, name, 1, index);
1803
1804 /* FIXME, put inode into FIXUP list */
1805
1806 iput(&inode->vfs_inode);
1807 iput(&dir->vfs_inode);
1808 return ret;
1809 }
1810
delete_conflicting_dir_entry(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_path * path,struct btrfs_dir_item * dst_di,const struct btrfs_key * log_key,u8 log_flags,bool exists)1811 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1812 struct btrfs_inode *dir,
1813 struct btrfs_path *path,
1814 struct btrfs_dir_item *dst_di,
1815 const struct btrfs_key *log_key,
1816 u8 log_flags,
1817 bool exists)
1818 {
1819 struct btrfs_key found_key;
1820
1821 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1822 /* The existing dentry points to the same inode, don't delete it. */
1823 if (found_key.objectid == log_key->objectid &&
1824 found_key.type == log_key->type &&
1825 found_key.offset == log_key->offset &&
1826 btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1827 return 1;
1828
1829 /*
1830 * Don't drop the conflicting directory entry if the inode for the new
1831 * entry doesn't exist.
1832 */
1833 if (!exists)
1834 return 0;
1835
1836 return drop_one_dir_item(trans, path, dir, dst_di);
1837 }
1838
1839 /*
1840 * take a single entry in a log directory item and replay it into
1841 * the subvolume.
1842 *
1843 * if a conflicting item exists in the subdirectory already,
1844 * the inode it points to is unlinked and put into the link count
1845 * fix up tree.
1846 *
1847 * If a name from the log points to a file or directory that does
1848 * not exist in the FS, it is skipped. fsyncs on directories
1849 * do not force down inodes inside that directory, just changes to the
1850 * names or unlinks in a directory.
1851 *
1852 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1853 * non-existing inode) and 1 if the name was replayed.
1854 */
replay_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,struct btrfs_dir_item * di,struct btrfs_key * key)1855 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1856 struct btrfs_root *root,
1857 struct btrfs_path *path,
1858 struct extent_buffer *eb,
1859 struct btrfs_dir_item *di,
1860 struct btrfs_key *key)
1861 {
1862 struct fscrypt_str name = { 0 };
1863 struct btrfs_dir_item *dir_dst_di;
1864 struct btrfs_dir_item *index_dst_di;
1865 bool dir_dst_matches = false;
1866 bool index_dst_matches = false;
1867 struct btrfs_key log_key;
1868 struct btrfs_key search_key;
1869 struct btrfs_inode *dir;
1870 u8 log_flags;
1871 bool exists;
1872 int ret;
1873 bool update_size = true;
1874 bool name_added = false;
1875
1876 dir = btrfs_iget_logging(key->objectid, root);
1877 if (IS_ERR(dir))
1878 return PTR_ERR(dir);
1879
1880 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1881 if (ret)
1882 goto out;
1883
1884 log_flags = btrfs_dir_flags(eb, di);
1885 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1886 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1887 btrfs_release_path(path);
1888 if (ret < 0)
1889 goto out;
1890 exists = (ret == 0);
1891 ret = 0;
1892
1893 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1894 &name, 1);
1895 if (IS_ERR(dir_dst_di)) {
1896 ret = PTR_ERR(dir_dst_di);
1897 goto out;
1898 } else if (dir_dst_di) {
1899 ret = delete_conflicting_dir_entry(trans, dir, path, dir_dst_di,
1900 &log_key, log_flags, exists);
1901 if (ret < 0)
1902 goto out;
1903 dir_dst_matches = (ret == 1);
1904 }
1905
1906 btrfs_release_path(path);
1907
1908 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1909 key->objectid, key->offset,
1910 &name, 1);
1911 if (IS_ERR(index_dst_di)) {
1912 ret = PTR_ERR(index_dst_di);
1913 goto out;
1914 } else if (index_dst_di) {
1915 ret = delete_conflicting_dir_entry(trans, dir, path, index_dst_di,
1916 &log_key, log_flags, exists);
1917 if (ret < 0)
1918 goto out;
1919 index_dst_matches = (ret == 1);
1920 }
1921
1922 btrfs_release_path(path);
1923
1924 if (dir_dst_matches && index_dst_matches) {
1925 ret = 0;
1926 update_size = false;
1927 goto out;
1928 }
1929
1930 /*
1931 * Check if the inode reference exists in the log for the given name,
1932 * inode and parent inode
1933 */
1934 search_key.objectid = log_key.objectid;
1935 search_key.type = BTRFS_INODE_REF_KEY;
1936 search_key.offset = key->objectid;
1937 ret = backref_in_log(root->log_root, &search_key, 0, &name);
1938 if (ret < 0) {
1939 goto out;
1940 } else if (ret) {
1941 /* The dentry will be added later. */
1942 ret = 0;
1943 update_size = false;
1944 goto out;
1945 }
1946
1947 search_key.objectid = log_key.objectid;
1948 search_key.type = BTRFS_INODE_EXTREF_KEY;
1949 search_key.offset = btrfs_extref_hash(key->objectid, name.name, name.len);
1950 ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1951 if (ret < 0) {
1952 goto out;
1953 } else if (ret) {
1954 /* The dentry will be added later. */
1955 ret = 0;
1956 update_size = false;
1957 goto out;
1958 }
1959 btrfs_release_path(path);
1960 ret = insert_one_name(trans, root, key->objectid, key->offset,
1961 &name, &log_key);
1962 if (ret && ret != -ENOENT && ret != -EEXIST)
1963 goto out;
1964 if (!ret)
1965 name_added = true;
1966 update_size = false;
1967 ret = 0;
1968
1969 out:
1970 if (!ret && update_size) {
1971 btrfs_i_size_write(dir, dir->vfs_inode.i_size + name.len * 2);
1972 ret = btrfs_update_inode(trans, dir);
1973 }
1974 kfree(name.name);
1975 iput(&dir->vfs_inode);
1976 if (!ret && name_added)
1977 ret = 1;
1978 return ret;
1979 }
1980
1981 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
replay_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1982 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1983 struct btrfs_root *root,
1984 struct btrfs_path *path,
1985 struct extent_buffer *eb, int slot,
1986 struct btrfs_key *key)
1987 {
1988 int ret;
1989 struct btrfs_dir_item *di;
1990
1991 /* We only log dir index keys, which only contain a single dir item. */
1992 ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1993
1994 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1995 ret = replay_one_name(trans, root, path, eb, di, key);
1996 if (ret < 0)
1997 return ret;
1998
1999 /*
2000 * If this entry refers to a non-directory (directories can not have a
2001 * link count > 1) and it was added in the transaction that was not
2002 * committed, make sure we fixup the link count of the inode the entry
2003 * points to. Otherwise something like the following would result in a
2004 * directory pointing to an inode with a wrong link that does not account
2005 * for this dir entry:
2006 *
2007 * mkdir testdir
2008 * touch testdir/foo
2009 * touch testdir/bar
2010 * sync
2011 *
2012 * ln testdir/bar testdir/bar_link
2013 * ln testdir/foo testdir/foo_link
2014 * xfs_io -c "fsync" testdir/bar
2015 *
2016 * <power failure>
2017 *
2018 * mount fs, log replay happens
2019 *
2020 * File foo would remain with a link count of 1 when it has two entries
2021 * pointing to it in the directory testdir. This would make it impossible
2022 * to ever delete the parent directory has it would result in stale
2023 * dentries that can never be deleted.
2024 */
2025 if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
2026 struct btrfs_path *fixup_path;
2027 struct btrfs_key di_key;
2028
2029 fixup_path = btrfs_alloc_path();
2030 if (!fixup_path)
2031 return -ENOMEM;
2032
2033 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2034 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2035 btrfs_free_path(fixup_path);
2036 }
2037
2038 return ret;
2039 }
2040
2041 /*
2042 * directory replay has two parts. There are the standard directory
2043 * items in the log copied from the subvolume, and range items
2044 * created in the log while the subvolume was logged.
2045 *
2046 * The range items tell us which parts of the key space the log
2047 * is authoritative for. During replay, if a key in the subvolume
2048 * directory is in a logged range item, but not actually in the log
2049 * that means it was deleted from the directory before the fsync
2050 * and should be removed.
2051 */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 * start_ret,u64 * end_ret)2052 static noinline int find_dir_range(struct btrfs_root *root,
2053 struct btrfs_path *path,
2054 u64 dirid,
2055 u64 *start_ret, u64 *end_ret)
2056 {
2057 struct btrfs_key key;
2058 u64 found_end;
2059 struct btrfs_dir_log_item *item;
2060 int ret;
2061 int nritems;
2062
2063 if (*start_ret == (u64)-1)
2064 return 1;
2065
2066 key.objectid = dirid;
2067 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2068 key.offset = *start_ret;
2069
2070 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2071 if (ret < 0)
2072 goto out;
2073 if (ret > 0) {
2074 if (path->slots[0] == 0)
2075 goto out;
2076 path->slots[0]--;
2077 }
2078 if (ret != 0)
2079 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2080
2081 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2082 ret = 1;
2083 goto next;
2084 }
2085 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2086 struct btrfs_dir_log_item);
2087 found_end = btrfs_dir_log_end(path->nodes[0], item);
2088
2089 if (*start_ret >= key.offset && *start_ret <= found_end) {
2090 ret = 0;
2091 *start_ret = key.offset;
2092 *end_ret = found_end;
2093 goto out;
2094 }
2095 ret = 1;
2096 next:
2097 /* check the next slot in the tree to see if it is a valid item */
2098 nritems = btrfs_header_nritems(path->nodes[0]);
2099 path->slots[0]++;
2100 if (path->slots[0] >= nritems) {
2101 ret = btrfs_next_leaf(root, path);
2102 if (ret)
2103 goto out;
2104 }
2105
2106 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2107
2108 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2109 ret = 1;
2110 goto out;
2111 }
2112 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2113 struct btrfs_dir_log_item);
2114 found_end = btrfs_dir_log_end(path->nodes[0], item);
2115 *start_ret = key.offset;
2116 *end_ret = found_end;
2117 ret = 0;
2118 out:
2119 btrfs_release_path(path);
2120 return ret;
2121 }
2122
2123 /*
2124 * this looks for a given directory item in the log. If the directory
2125 * item is not in the log, the item is removed and the inode it points
2126 * to is unlinked
2127 */
check_item_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_path * log_path,struct btrfs_inode * dir,struct btrfs_key * dir_key)2128 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2129 struct btrfs_root *log,
2130 struct btrfs_path *path,
2131 struct btrfs_path *log_path,
2132 struct btrfs_inode *dir,
2133 struct btrfs_key *dir_key)
2134 {
2135 struct btrfs_root *root = dir->root;
2136 int ret;
2137 struct extent_buffer *eb;
2138 int slot;
2139 struct btrfs_dir_item *di;
2140 struct fscrypt_str name = { 0 };
2141 struct btrfs_inode *inode = NULL;
2142 struct btrfs_key location;
2143
2144 /*
2145 * Currently we only log dir index keys. Even if we replay a log created
2146 * by an older kernel that logged both dir index and dir item keys, all
2147 * we need to do is process the dir index keys, we (and our caller) can
2148 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2149 */
2150 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2151
2152 eb = path->nodes[0];
2153 slot = path->slots[0];
2154 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2155 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2156 if (ret)
2157 goto out;
2158
2159 if (log) {
2160 struct btrfs_dir_item *log_di;
2161
2162 log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2163 dir_key->objectid,
2164 dir_key->offset, &name, 0);
2165 if (IS_ERR(log_di)) {
2166 ret = PTR_ERR(log_di);
2167 goto out;
2168 } else if (log_di) {
2169 /* The dentry exists in the log, we have nothing to do. */
2170 ret = 0;
2171 goto out;
2172 }
2173 }
2174
2175 btrfs_dir_item_key_to_cpu(eb, di, &location);
2176 btrfs_release_path(path);
2177 btrfs_release_path(log_path);
2178 inode = btrfs_iget_logging(location.objectid, root);
2179 if (IS_ERR(inode)) {
2180 ret = PTR_ERR(inode);
2181 inode = NULL;
2182 goto out;
2183 }
2184
2185 ret = link_to_fixup_dir(trans, root, path, location.objectid);
2186 if (ret)
2187 goto out;
2188
2189 inc_nlink(&inode->vfs_inode);
2190 ret = unlink_inode_for_log_replay(trans, dir, inode, &name);
2191 /*
2192 * Unlike dir item keys, dir index keys can only have one name (entry) in
2193 * them, as there are no key collisions since each key has a unique offset
2194 * (an index number), so we're done.
2195 */
2196 out:
2197 btrfs_release_path(path);
2198 btrfs_release_path(log_path);
2199 kfree(name.name);
2200 if (inode)
2201 iput(&inode->vfs_inode);
2202 return ret;
2203 }
2204
replay_xattr_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,const u64 ino)2205 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2206 struct btrfs_root *root,
2207 struct btrfs_root *log,
2208 struct btrfs_path *path,
2209 const u64 ino)
2210 {
2211 struct btrfs_key search_key;
2212 struct btrfs_path *log_path;
2213 int i;
2214 int nritems;
2215 int ret;
2216
2217 log_path = btrfs_alloc_path();
2218 if (!log_path)
2219 return -ENOMEM;
2220
2221 search_key.objectid = ino;
2222 search_key.type = BTRFS_XATTR_ITEM_KEY;
2223 search_key.offset = 0;
2224 again:
2225 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2226 if (ret < 0)
2227 goto out;
2228 process_leaf:
2229 nritems = btrfs_header_nritems(path->nodes[0]);
2230 for (i = path->slots[0]; i < nritems; i++) {
2231 struct btrfs_key key;
2232 struct btrfs_dir_item *di;
2233 struct btrfs_dir_item *log_di;
2234 u32 total_size;
2235 u32 cur;
2236
2237 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2238 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2239 ret = 0;
2240 goto out;
2241 }
2242
2243 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2244 total_size = btrfs_item_size(path->nodes[0], i);
2245 cur = 0;
2246 while (cur < total_size) {
2247 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2248 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2249 u32 this_len = sizeof(*di) + name_len + data_len;
2250 char *name;
2251
2252 name = kmalloc(name_len, GFP_NOFS);
2253 if (!name) {
2254 ret = -ENOMEM;
2255 goto out;
2256 }
2257 read_extent_buffer(path->nodes[0], name,
2258 (unsigned long)(di + 1), name_len);
2259
2260 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2261 name, name_len, 0);
2262 btrfs_release_path(log_path);
2263 if (!log_di) {
2264 /* Doesn't exist in log tree, so delete it. */
2265 btrfs_release_path(path);
2266 di = btrfs_lookup_xattr(trans, root, path, ino,
2267 name, name_len, -1);
2268 kfree(name);
2269 if (IS_ERR(di)) {
2270 ret = PTR_ERR(di);
2271 goto out;
2272 }
2273 ASSERT(di);
2274 ret = btrfs_delete_one_dir_name(trans, root,
2275 path, di);
2276 if (ret)
2277 goto out;
2278 btrfs_release_path(path);
2279 search_key = key;
2280 goto again;
2281 }
2282 kfree(name);
2283 if (IS_ERR(log_di)) {
2284 ret = PTR_ERR(log_di);
2285 goto out;
2286 }
2287 cur += this_len;
2288 di = (struct btrfs_dir_item *)((char *)di + this_len);
2289 }
2290 }
2291 ret = btrfs_next_leaf(root, path);
2292 if (ret > 0)
2293 ret = 0;
2294 else if (ret == 0)
2295 goto process_leaf;
2296 out:
2297 btrfs_free_path(log_path);
2298 btrfs_release_path(path);
2299 return ret;
2300 }
2301
2302
2303 /*
2304 * deletion replay happens before we copy any new directory items
2305 * out of the log or out of backreferences from inodes. It
2306 * scans the log to find ranges of keys that log is authoritative for,
2307 * and then scans the directory to find items in those ranges that are
2308 * not present in the log.
2309 *
2310 * Anything we don't find in the log is unlinked and removed from the
2311 * directory.
2312 */
replay_dir_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,int del_all)2313 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2314 struct btrfs_root *root,
2315 struct btrfs_root *log,
2316 struct btrfs_path *path,
2317 u64 dirid, int del_all)
2318 {
2319 u64 range_start;
2320 u64 range_end;
2321 int ret = 0;
2322 struct btrfs_key dir_key;
2323 struct btrfs_key found_key;
2324 struct btrfs_path *log_path;
2325 struct btrfs_inode *dir;
2326
2327 dir_key.objectid = dirid;
2328 dir_key.type = BTRFS_DIR_INDEX_KEY;
2329 log_path = btrfs_alloc_path();
2330 if (!log_path)
2331 return -ENOMEM;
2332
2333 dir = btrfs_iget_logging(dirid, root);
2334 /*
2335 * It isn't an error if the inode isn't there, that can happen because
2336 * we replay the deletes before we copy in the inode item from the log.
2337 */
2338 if (IS_ERR(dir)) {
2339 btrfs_free_path(log_path);
2340 ret = PTR_ERR(dir);
2341 if (ret == -ENOENT)
2342 ret = 0;
2343 return ret;
2344 }
2345
2346 range_start = 0;
2347 range_end = 0;
2348 while (1) {
2349 if (del_all)
2350 range_end = (u64)-1;
2351 else {
2352 ret = find_dir_range(log, path, dirid,
2353 &range_start, &range_end);
2354 if (ret < 0)
2355 goto out;
2356 else if (ret > 0)
2357 break;
2358 }
2359
2360 dir_key.offset = range_start;
2361 while (1) {
2362 int nritems;
2363 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2364 0, 0);
2365 if (ret < 0)
2366 goto out;
2367
2368 nritems = btrfs_header_nritems(path->nodes[0]);
2369 if (path->slots[0] >= nritems) {
2370 ret = btrfs_next_leaf(root, path);
2371 if (ret == 1)
2372 break;
2373 else if (ret < 0)
2374 goto out;
2375 }
2376 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2377 path->slots[0]);
2378 if (found_key.objectid != dirid ||
2379 found_key.type != dir_key.type) {
2380 ret = 0;
2381 goto out;
2382 }
2383
2384 if (found_key.offset > range_end)
2385 break;
2386
2387 ret = check_item_in_log(trans, log, path,
2388 log_path, dir,
2389 &found_key);
2390 if (ret)
2391 goto out;
2392 if (found_key.offset == (u64)-1)
2393 break;
2394 dir_key.offset = found_key.offset + 1;
2395 }
2396 btrfs_release_path(path);
2397 if (range_end == (u64)-1)
2398 break;
2399 range_start = range_end + 1;
2400 }
2401 ret = 0;
2402 out:
2403 btrfs_release_path(path);
2404 btrfs_free_path(log_path);
2405 iput(&dir->vfs_inode);
2406 return ret;
2407 }
2408
2409 /*
2410 * the process_func used to replay items from the log tree. This
2411 * gets called in two different stages. The first stage just looks
2412 * for inodes and makes sure they are all copied into the subvolume.
2413 *
2414 * The second stage copies all the other item types from the log into
2415 * the subvolume. The two stage approach is slower, but gets rid of
2416 * lots of complexity around inodes referencing other inodes that exist
2417 * only in the log (references come from either directory items or inode
2418 * back refs).
2419 */
replay_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)2420 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2421 struct walk_control *wc, u64 gen, int level)
2422 {
2423 int nritems;
2424 struct btrfs_tree_parent_check check = {
2425 .transid = gen,
2426 .level = level
2427 };
2428 struct btrfs_path *path;
2429 struct btrfs_root *root = wc->replay_dest;
2430 struct btrfs_key key;
2431 int i;
2432 int ret;
2433
2434 ret = btrfs_read_extent_buffer(eb, &check);
2435 if (ret)
2436 return ret;
2437
2438 level = btrfs_header_level(eb);
2439
2440 if (level != 0)
2441 return 0;
2442
2443 path = btrfs_alloc_path();
2444 if (!path)
2445 return -ENOMEM;
2446
2447 nritems = btrfs_header_nritems(eb);
2448 for (i = 0; i < nritems; i++) {
2449 struct btrfs_inode_item *inode_item;
2450
2451 btrfs_item_key_to_cpu(eb, &key, i);
2452
2453 if (key.type == BTRFS_INODE_ITEM_KEY) {
2454 inode_item = btrfs_item_ptr(eb, i, struct btrfs_inode_item);
2455 /*
2456 * An inode with no links is either:
2457 *
2458 * 1) A tmpfile (O_TMPFILE) that got fsync'ed and never
2459 * got linked before the fsync, skip it, as replaying
2460 * it is pointless since it would be deleted later.
2461 * We skip logging tmpfiles, but it's always possible
2462 * we are replaying a log created with a kernel that
2463 * used to log tmpfiles;
2464 *
2465 * 2) A non-tmpfile which got its last link deleted
2466 * while holding an open fd on it and later got
2467 * fsynced through that fd. We always log the
2468 * parent inodes when inode->last_unlink_trans is
2469 * set to the current transaction, so ignore all the
2470 * inode items for this inode. We will delete the
2471 * inode when processing the parent directory with
2472 * replay_dir_deletes().
2473 */
2474 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2475 wc->ignore_cur_inode = true;
2476 continue;
2477 } else {
2478 wc->ignore_cur_inode = false;
2479 }
2480 }
2481
2482 /* Inode keys are done during the first stage. */
2483 if (key.type == BTRFS_INODE_ITEM_KEY &&
2484 wc->stage == LOG_WALK_REPLAY_INODES) {
2485 u32 mode;
2486
2487 ret = replay_xattr_deletes(wc->trans, root, log, path, key.objectid);
2488 if (ret)
2489 break;
2490 mode = btrfs_inode_mode(eb, inode_item);
2491 if (S_ISDIR(mode)) {
2492 ret = replay_dir_deletes(wc->trans,
2493 root, log, path, key.objectid, 0);
2494 if (ret)
2495 break;
2496 }
2497 ret = overwrite_item(wc->trans, root, path,
2498 eb, i, &key);
2499 if (ret)
2500 break;
2501
2502 /*
2503 * Before replaying extents, truncate the inode to its
2504 * size. We need to do it now and not after log replay
2505 * because before an fsync we can have prealloc extents
2506 * added beyond the inode's i_size. If we did it after,
2507 * through orphan cleanup for example, we would drop
2508 * those prealloc extents just after replaying them.
2509 */
2510 if (S_ISREG(mode)) {
2511 struct btrfs_drop_extents_args drop_args = { 0 };
2512 struct btrfs_inode *inode;
2513 u64 from;
2514
2515 inode = btrfs_iget_logging(key.objectid, root);
2516 if (IS_ERR(inode)) {
2517 ret = PTR_ERR(inode);
2518 break;
2519 }
2520 from = ALIGN(i_size_read(&inode->vfs_inode),
2521 root->fs_info->sectorsize);
2522 drop_args.start = from;
2523 drop_args.end = (u64)-1;
2524 drop_args.drop_cache = true;
2525 ret = btrfs_drop_extents(wc->trans, root, inode,
2526 &drop_args);
2527 if (!ret) {
2528 inode_sub_bytes(&inode->vfs_inode,
2529 drop_args.bytes_found);
2530 /* Update the inode's nbytes. */
2531 ret = btrfs_update_inode(wc->trans, inode);
2532 }
2533 iput(&inode->vfs_inode);
2534 if (ret)
2535 break;
2536 }
2537
2538 ret = link_to_fixup_dir(wc->trans, root,
2539 path, key.objectid);
2540 if (ret)
2541 break;
2542 }
2543
2544 if (wc->ignore_cur_inode)
2545 continue;
2546
2547 if (key.type == BTRFS_DIR_INDEX_KEY &&
2548 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2549 ret = replay_one_dir_item(wc->trans, root, path,
2550 eb, i, &key);
2551 if (ret)
2552 break;
2553 }
2554
2555 if (wc->stage < LOG_WALK_REPLAY_ALL)
2556 continue;
2557
2558 /* these keys are simply copied */
2559 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2560 ret = overwrite_item(wc->trans, root, path,
2561 eb, i, &key);
2562 if (ret)
2563 break;
2564 } else if (key.type == BTRFS_INODE_REF_KEY ||
2565 key.type == BTRFS_INODE_EXTREF_KEY) {
2566 ret = add_inode_ref(wc->trans, root, log, path,
2567 eb, i, &key);
2568 if (ret)
2569 break;
2570 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2571 ret = replay_one_extent(wc->trans, root, path,
2572 eb, i, &key);
2573 if (ret)
2574 break;
2575 }
2576 /*
2577 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2578 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2579 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2580 * older kernel with such keys, ignore them.
2581 */
2582 }
2583 btrfs_free_path(path);
2584 return ret;
2585 }
2586
2587 /*
2588 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2589 */
unaccount_log_buffer(struct btrfs_fs_info * fs_info,u64 start)2590 static int unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2591 {
2592 struct btrfs_block_group *cache;
2593
2594 cache = btrfs_lookup_block_group(fs_info, start);
2595 if (!cache) {
2596 btrfs_err(fs_info, "unable to find block group for %llu", start);
2597 return -ENOENT;
2598 }
2599
2600 spin_lock(&cache->space_info->lock);
2601 spin_lock(&cache->lock);
2602 cache->reserved -= fs_info->nodesize;
2603 cache->space_info->bytes_reserved -= fs_info->nodesize;
2604 spin_unlock(&cache->lock);
2605 spin_unlock(&cache->space_info->lock);
2606
2607 btrfs_put_block_group(cache);
2608
2609 return 0;
2610 }
2611
clean_log_buffer(struct btrfs_trans_handle * trans,struct extent_buffer * eb)2612 static int clean_log_buffer(struct btrfs_trans_handle *trans,
2613 struct extent_buffer *eb)
2614 {
2615 btrfs_tree_lock(eb);
2616 btrfs_clear_buffer_dirty(trans, eb);
2617 wait_on_extent_buffer_writeback(eb);
2618 btrfs_tree_unlock(eb);
2619
2620 if (trans)
2621 return btrfs_pin_reserved_extent(trans, eb);
2622
2623 return unaccount_log_buffer(eb->fs_info, eb->start);
2624 }
2625
walk_down_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2626 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2627 struct btrfs_root *root,
2628 struct btrfs_path *path, int *level,
2629 struct walk_control *wc)
2630 {
2631 struct btrfs_fs_info *fs_info = root->fs_info;
2632 u64 bytenr;
2633 u64 ptr_gen;
2634 struct extent_buffer *next;
2635 struct extent_buffer *cur;
2636 int ret = 0;
2637
2638 while (*level > 0) {
2639 struct btrfs_tree_parent_check check = { 0 };
2640
2641 cur = path->nodes[*level];
2642
2643 WARN_ON(btrfs_header_level(cur) != *level);
2644
2645 if (path->slots[*level] >=
2646 btrfs_header_nritems(cur))
2647 break;
2648
2649 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2650 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2651 check.transid = ptr_gen;
2652 check.level = *level - 1;
2653 check.has_first_key = true;
2654 btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2655
2656 next = btrfs_find_create_tree_block(fs_info, bytenr,
2657 btrfs_header_owner(cur),
2658 *level - 1);
2659 if (IS_ERR(next))
2660 return PTR_ERR(next);
2661
2662 if (*level == 1) {
2663 ret = wc->process_func(root, next, wc, ptr_gen,
2664 *level - 1);
2665 if (ret) {
2666 free_extent_buffer(next);
2667 return ret;
2668 }
2669
2670 path->slots[*level]++;
2671 if (wc->free) {
2672 ret = btrfs_read_extent_buffer(next, &check);
2673 if (ret) {
2674 free_extent_buffer(next);
2675 return ret;
2676 }
2677
2678 ret = clean_log_buffer(trans, next);
2679 if (ret) {
2680 free_extent_buffer(next);
2681 return ret;
2682 }
2683 }
2684 free_extent_buffer(next);
2685 continue;
2686 }
2687 ret = btrfs_read_extent_buffer(next, &check);
2688 if (ret) {
2689 free_extent_buffer(next);
2690 return ret;
2691 }
2692
2693 if (path->nodes[*level-1])
2694 free_extent_buffer(path->nodes[*level-1]);
2695 path->nodes[*level-1] = next;
2696 *level = btrfs_header_level(next);
2697 path->slots[*level] = 0;
2698 cond_resched();
2699 }
2700 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2701
2702 cond_resched();
2703 return 0;
2704 }
2705
walk_up_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2706 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2707 struct btrfs_root *root,
2708 struct btrfs_path *path, int *level,
2709 struct walk_control *wc)
2710 {
2711 int i;
2712 int slot;
2713 int ret;
2714
2715 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2716 slot = path->slots[i];
2717 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2718 path->slots[i]++;
2719 *level = i;
2720 WARN_ON(*level == 0);
2721 return 0;
2722 } else {
2723 ret = wc->process_func(root, path->nodes[*level], wc,
2724 btrfs_header_generation(path->nodes[*level]),
2725 *level);
2726 if (ret)
2727 return ret;
2728
2729 if (wc->free) {
2730 ret = clean_log_buffer(trans, path->nodes[*level]);
2731 if (ret)
2732 return ret;
2733 }
2734 free_extent_buffer(path->nodes[*level]);
2735 path->nodes[*level] = NULL;
2736 *level = i + 1;
2737 }
2738 }
2739 return 1;
2740 }
2741
2742 /*
2743 * drop the reference count on the tree rooted at 'snap'. This traverses
2744 * the tree freeing any blocks that have a ref count of zero after being
2745 * decremented.
2746 */
walk_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct walk_control * wc)2747 static int walk_log_tree(struct btrfs_trans_handle *trans,
2748 struct btrfs_root *log, struct walk_control *wc)
2749 {
2750 int ret = 0;
2751 int wret;
2752 int level;
2753 struct btrfs_path *path;
2754 int orig_level;
2755
2756 path = btrfs_alloc_path();
2757 if (!path)
2758 return -ENOMEM;
2759
2760 level = btrfs_header_level(log->node);
2761 orig_level = level;
2762 path->nodes[level] = log->node;
2763 atomic_inc(&log->node->refs);
2764 path->slots[level] = 0;
2765
2766 while (1) {
2767 wret = walk_down_log_tree(trans, log, path, &level, wc);
2768 if (wret > 0)
2769 break;
2770 if (wret < 0) {
2771 ret = wret;
2772 goto out;
2773 }
2774
2775 wret = walk_up_log_tree(trans, log, path, &level, wc);
2776 if (wret > 0)
2777 break;
2778 if (wret < 0) {
2779 ret = wret;
2780 goto out;
2781 }
2782 }
2783
2784 /* was the root node processed? if not, catch it here */
2785 if (path->nodes[orig_level]) {
2786 ret = wc->process_func(log, path->nodes[orig_level], wc,
2787 btrfs_header_generation(path->nodes[orig_level]),
2788 orig_level);
2789 if (ret)
2790 goto out;
2791 if (wc->free)
2792 ret = clean_log_buffer(trans, path->nodes[orig_level]);
2793 }
2794
2795 out:
2796 btrfs_free_path(path);
2797 return ret;
2798 }
2799
2800 /*
2801 * helper function to update the item for a given subvolumes log root
2802 * in the tree of log roots
2803 */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_root_item * root_item)2804 static int update_log_root(struct btrfs_trans_handle *trans,
2805 struct btrfs_root *log,
2806 struct btrfs_root_item *root_item)
2807 {
2808 struct btrfs_fs_info *fs_info = log->fs_info;
2809 int ret;
2810
2811 if (log->log_transid == 1) {
2812 /* insert root item on the first sync */
2813 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2814 &log->root_key, root_item);
2815 } else {
2816 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2817 &log->root_key, root_item);
2818 }
2819 return ret;
2820 }
2821
wait_log_commit(struct btrfs_root * root,int transid)2822 static void wait_log_commit(struct btrfs_root *root, int transid)
2823 {
2824 DEFINE_WAIT(wait);
2825 int index = transid % 2;
2826
2827 /*
2828 * we only allow two pending log transactions at a time,
2829 * so we know that if ours is more than 2 older than the
2830 * current transaction, we're done
2831 */
2832 for (;;) {
2833 prepare_to_wait(&root->log_commit_wait[index],
2834 &wait, TASK_UNINTERRUPTIBLE);
2835
2836 if (!(root->log_transid_committed < transid &&
2837 atomic_read(&root->log_commit[index])))
2838 break;
2839
2840 mutex_unlock(&root->log_mutex);
2841 schedule();
2842 mutex_lock(&root->log_mutex);
2843 }
2844 finish_wait(&root->log_commit_wait[index], &wait);
2845 }
2846
wait_for_writer(struct btrfs_root * root)2847 static void wait_for_writer(struct btrfs_root *root)
2848 {
2849 DEFINE_WAIT(wait);
2850
2851 for (;;) {
2852 prepare_to_wait(&root->log_writer_wait, &wait,
2853 TASK_UNINTERRUPTIBLE);
2854 if (!atomic_read(&root->log_writers))
2855 break;
2856
2857 mutex_unlock(&root->log_mutex);
2858 schedule();
2859 mutex_lock(&root->log_mutex);
2860 }
2861 finish_wait(&root->log_writer_wait, &wait);
2862 }
2863
btrfs_init_log_ctx(struct btrfs_log_ctx * ctx,struct btrfs_inode * inode)2864 void btrfs_init_log_ctx(struct btrfs_log_ctx *ctx, struct btrfs_inode *inode)
2865 {
2866 ctx->log_ret = 0;
2867 ctx->log_transid = 0;
2868 ctx->log_new_dentries = false;
2869 ctx->logging_new_name = false;
2870 ctx->logging_new_delayed_dentries = false;
2871 ctx->logged_before = false;
2872 ctx->inode = inode;
2873 INIT_LIST_HEAD(&ctx->list);
2874 INIT_LIST_HEAD(&ctx->ordered_extents);
2875 INIT_LIST_HEAD(&ctx->conflict_inodes);
2876 ctx->num_conflict_inodes = 0;
2877 ctx->logging_conflict_inodes = false;
2878 ctx->scratch_eb = NULL;
2879 }
2880
btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx * ctx)2881 void btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx *ctx)
2882 {
2883 struct btrfs_inode *inode = ctx->inode;
2884
2885 if (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
2886 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
2887 return;
2888
2889 /*
2890 * Don't care about allocation failure. This is just for optimization,
2891 * if we fail to allocate here, we will try again later if needed.
2892 */
2893 ctx->scratch_eb = alloc_dummy_extent_buffer(inode->root->fs_info, 0);
2894 }
2895
btrfs_release_log_ctx_extents(struct btrfs_log_ctx * ctx)2896 void btrfs_release_log_ctx_extents(struct btrfs_log_ctx *ctx)
2897 {
2898 struct btrfs_ordered_extent *ordered;
2899 struct btrfs_ordered_extent *tmp;
2900
2901 btrfs_assert_inode_locked(ctx->inode);
2902
2903 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
2904 list_del_init(&ordered->log_list);
2905 btrfs_put_ordered_extent(ordered);
2906 }
2907 }
2908
2909
btrfs_remove_log_ctx(struct btrfs_root * root,struct btrfs_log_ctx * ctx)2910 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2911 struct btrfs_log_ctx *ctx)
2912 {
2913 mutex_lock(&root->log_mutex);
2914 list_del_init(&ctx->list);
2915 mutex_unlock(&root->log_mutex);
2916 }
2917
2918 /*
2919 * Invoked in log mutex context, or be sure there is no other task which
2920 * can access the list.
2921 */
btrfs_remove_all_log_ctxs(struct btrfs_root * root,int index,int error)2922 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2923 int index, int error)
2924 {
2925 struct btrfs_log_ctx *ctx;
2926 struct btrfs_log_ctx *safe;
2927
2928 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2929 list_del_init(&ctx->list);
2930 ctx->log_ret = error;
2931 }
2932 }
2933
2934 /*
2935 * Sends a given tree log down to the disk and updates the super blocks to
2936 * record it. When this call is done, you know that any inodes previously
2937 * logged are safely on disk only if it returns 0.
2938 *
2939 * Any other return value means you need to call btrfs_commit_transaction.
2940 * Some of the edge cases for fsyncing directories that have had unlinks
2941 * or renames done in the past mean that sometimes the only safe
2942 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2943 * that has happened.
2944 */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)2945 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2946 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2947 {
2948 int index1;
2949 int index2;
2950 int mark;
2951 int ret;
2952 struct btrfs_fs_info *fs_info = root->fs_info;
2953 struct btrfs_root *log = root->log_root;
2954 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2955 struct btrfs_root_item new_root_item;
2956 int log_transid = 0;
2957 struct btrfs_log_ctx root_log_ctx;
2958 struct blk_plug plug;
2959 u64 log_root_start;
2960 u64 log_root_level;
2961
2962 mutex_lock(&root->log_mutex);
2963 log_transid = ctx->log_transid;
2964 if (root->log_transid_committed >= log_transid) {
2965 mutex_unlock(&root->log_mutex);
2966 return ctx->log_ret;
2967 }
2968
2969 index1 = log_transid % 2;
2970 if (atomic_read(&root->log_commit[index1])) {
2971 wait_log_commit(root, log_transid);
2972 mutex_unlock(&root->log_mutex);
2973 return ctx->log_ret;
2974 }
2975 ASSERT(log_transid == root->log_transid);
2976 atomic_set(&root->log_commit[index1], 1);
2977
2978 /* wait for previous tree log sync to complete */
2979 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2980 wait_log_commit(root, log_transid - 1);
2981
2982 while (1) {
2983 int batch = atomic_read(&root->log_batch);
2984 /* when we're on an ssd, just kick the log commit out */
2985 if (!btrfs_test_opt(fs_info, SSD) &&
2986 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2987 mutex_unlock(&root->log_mutex);
2988 schedule_timeout_uninterruptible(1);
2989 mutex_lock(&root->log_mutex);
2990 }
2991 wait_for_writer(root);
2992 if (batch == atomic_read(&root->log_batch))
2993 break;
2994 }
2995
2996 /* bail out if we need to do a full commit */
2997 if (btrfs_need_log_full_commit(trans)) {
2998 ret = BTRFS_LOG_FORCE_COMMIT;
2999 mutex_unlock(&root->log_mutex);
3000 goto out;
3001 }
3002
3003 if (log_transid % 2 == 0)
3004 mark = EXTENT_DIRTY;
3005 else
3006 mark = EXTENT_NEW;
3007
3008 /* we start IO on all the marked extents here, but we don't actually
3009 * wait for them until later.
3010 */
3011 blk_start_plug(&plug);
3012 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3013 /*
3014 * -EAGAIN happens when someone, e.g., a concurrent transaction
3015 * commit, writes a dirty extent in this tree-log commit. This
3016 * concurrent write will create a hole writing out the extents,
3017 * and we cannot proceed on a zoned filesystem, requiring
3018 * sequential writing. While we can bail out to a full commit
3019 * here, but we can continue hoping the concurrent writing fills
3020 * the hole.
3021 */
3022 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3023 ret = 0;
3024 if (ret) {
3025 blk_finish_plug(&plug);
3026 btrfs_set_log_full_commit(trans);
3027 mutex_unlock(&root->log_mutex);
3028 goto out;
3029 }
3030
3031 /*
3032 * We _must_ update under the root->log_mutex in order to make sure we
3033 * have a consistent view of the log root we are trying to commit at
3034 * this moment.
3035 *
3036 * We _must_ copy this into a local copy, because we are not holding the
3037 * log_root_tree->log_mutex yet. This is important because when we
3038 * commit the log_root_tree we must have a consistent view of the
3039 * log_root_tree when we update the super block to point at the
3040 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3041 * with the commit and possibly point at the new block which we may not
3042 * have written out.
3043 */
3044 btrfs_set_root_node(&log->root_item, log->node);
3045 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3046
3047 btrfs_set_root_log_transid(root, root->log_transid + 1);
3048 log->log_transid = root->log_transid;
3049 root->log_start_pid = 0;
3050 /*
3051 * IO has been started, blocks of the log tree have WRITTEN flag set
3052 * in their headers. new modifications of the log will be written to
3053 * new positions. so it's safe to allow log writers to go in.
3054 */
3055 mutex_unlock(&root->log_mutex);
3056
3057 if (btrfs_is_zoned(fs_info)) {
3058 mutex_lock(&fs_info->tree_root->log_mutex);
3059 if (!log_root_tree->node) {
3060 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3061 if (ret) {
3062 mutex_unlock(&fs_info->tree_root->log_mutex);
3063 blk_finish_plug(&plug);
3064 goto out;
3065 }
3066 }
3067 mutex_unlock(&fs_info->tree_root->log_mutex);
3068 }
3069
3070 btrfs_init_log_ctx(&root_log_ctx, NULL);
3071
3072 mutex_lock(&log_root_tree->log_mutex);
3073
3074 index2 = log_root_tree->log_transid % 2;
3075 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3076 root_log_ctx.log_transid = log_root_tree->log_transid;
3077
3078 /*
3079 * Now we are safe to update the log_root_tree because we're under the
3080 * log_mutex, and we're a current writer so we're holding the commit
3081 * open until we drop the log_mutex.
3082 */
3083 ret = update_log_root(trans, log, &new_root_item);
3084 if (ret) {
3085 list_del_init(&root_log_ctx.list);
3086 blk_finish_plug(&plug);
3087 btrfs_set_log_full_commit(trans);
3088 if (ret != -ENOSPC)
3089 btrfs_err(fs_info,
3090 "failed to update log for root %llu ret %d",
3091 btrfs_root_id(root), ret);
3092 btrfs_wait_tree_log_extents(log, mark);
3093 mutex_unlock(&log_root_tree->log_mutex);
3094 goto out;
3095 }
3096
3097 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3098 blk_finish_plug(&plug);
3099 list_del_init(&root_log_ctx.list);
3100 mutex_unlock(&log_root_tree->log_mutex);
3101 ret = root_log_ctx.log_ret;
3102 goto out;
3103 }
3104
3105 if (atomic_read(&log_root_tree->log_commit[index2])) {
3106 blk_finish_plug(&plug);
3107 ret = btrfs_wait_tree_log_extents(log, mark);
3108 wait_log_commit(log_root_tree,
3109 root_log_ctx.log_transid);
3110 mutex_unlock(&log_root_tree->log_mutex);
3111 if (!ret)
3112 ret = root_log_ctx.log_ret;
3113 goto out;
3114 }
3115 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3116 atomic_set(&log_root_tree->log_commit[index2], 1);
3117
3118 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3119 wait_log_commit(log_root_tree,
3120 root_log_ctx.log_transid - 1);
3121 }
3122
3123 /*
3124 * now that we've moved on to the tree of log tree roots,
3125 * check the full commit flag again
3126 */
3127 if (btrfs_need_log_full_commit(trans)) {
3128 blk_finish_plug(&plug);
3129 btrfs_wait_tree_log_extents(log, mark);
3130 mutex_unlock(&log_root_tree->log_mutex);
3131 ret = BTRFS_LOG_FORCE_COMMIT;
3132 goto out_wake_log_root;
3133 }
3134
3135 ret = btrfs_write_marked_extents(fs_info,
3136 &log_root_tree->dirty_log_pages,
3137 EXTENT_DIRTY | EXTENT_NEW);
3138 blk_finish_plug(&plug);
3139 /*
3140 * As described above, -EAGAIN indicates a hole in the extents. We
3141 * cannot wait for these write outs since the waiting cause a
3142 * deadlock. Bail out to the full commit instead.
3143 */
3144 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3145 btrfs_set_log_full_commit(trans);
3146 btrfs_wait_tree_log_extents(log, mark);
3147 mutex_unlock(&log_root_tree->log_mutex);
3148 goto out_wake_log_root;
3149 } else if (ret) {
3150 btrfs_set_log_full_commit(trans);
3151 mutex_unlock(&log_root_tree->log_mutex);
3152 goto out_wake_log_root;
3153 }
3154 ret = btrfs_wait_tree_log_extents(log, mark);
3155 if (!ret)
3156 ret = btrfs_wait_tree_log_extents(log_root_tree,
3157 EXTENT_NEW | EXTENT_DIRTY);
3158 if (ret) {
3159 btrfs_set_log_full_commit(trans);
3160 mutex_unlock(&log_root_tree->log_mutex);
3161 goto out_wake_log_root;
3162 }
3163
3164 log_root_start = log_root_tree->node->start;
3165 log_root_level = btrfs_header_level(log_root_tree->node);
3166 log_root_tree->log_transid++;
3167 mutex_unlock(&log_root_tree->log_mutex);
3168
3169 /*
3170 * Here we are guaranteed that nobody is going to write the superblock
3171 * for the current transaction before us and that neither we do write
3172 * our superblock before the previous transaction finishes its commit
3173 * and writes its superblock, because:
3174 *
3175 * 1) We are holding a handle on the current transaction, so no body
3176 * can commit it until we release the handle;
3177 *
3178 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3179 * if the previous transaction is still committing, and hasn't yet
3180 * written its superblock, we wait for it to do it, because a
3181 * transaction commit acquires the tree_log_mutex when the commit
3182 * begins and releases it only after writing its superblock.
3183 */
3184 mutex_lock(&fs_info->tree_log_mutex);
3185
3186 /*
3187 * The previous transaction writeout phase could have failed, and thus
3188 * marked the fs in an error state. We must not commit here, as we
3189 * could have updated our generation in the super_for_commit and
3190 * writing the super here would result in transid mismatches. If there
3191 * is an error here just bail.
3192 */
3193 if (BTRFS_FS_ERROR(fs_info)) {
3194 ret = -EIO;
3195 btrfs_set_log_full_commit(trans);
3196 btrfs_abort_transaction(trans, ret);
3197 mutex_unlock(&fs_info->tree_log_mutex);
3198 goto out_wake_log_root;
3199 }
3200
3201 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3202 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3203 ret = write_all_supers(fs_info, 1);
3204 mutex_unlock(&fs_info->tree_log_mutex);
3205 if (ret) {
3206 btrfs_set_log_full_commit(trans);
3207 btrfs_abort_transaction(trans, ret);
3208 goto out_wake_log_root;
3209 }
3210
3211 /*
3212 * We know there can only be one task here, since we have not yet set
3213 * root->log_commit[index1] to 0 and any task attempting to sync the
3214 * log must wait for the previous log transaction to commit if it's
3215 * still in progress or wait for the current log transaction commit if
3216 * someone else already started it. We use <= and not < because the
3217 * first log transaction has an ID of 0.
3218 */
3219 ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid);
3220 btrfs_set_root_last_log_commit(root, log_transid);
3221
3222 out_wake_log_root:
3223 mutex_lock(&log_root_tree->log_mutex);
3224 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3225
3226 log_root_tree->log_transid_committed++;
3227 atomic_set(&log_root_tree->log_commit[index2], 0);
3228 mutex_unlock(&log_root_tree->log_mutex);
3229
3230 /*
3231 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3232 * all the updates above are seen by the woken threads. It might not be
3233 * necessary, but proving that seems to be hard.
3234 */
3235 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3236 out:
3237 mutex_lock(&root->log_mutex);
3238 btrfs_remove_all_log_ctxs(root, index1, ret);
3239 root->log_transid_committed++;
3240 atomic_set(&root->log_commit[index1], 0);
3241 mutex_unlock(&root->log_mutex);
3242
3243 /*
3244 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3245 * all the updates above are seen by the woken threads. It might not be
3246 * necessary, but proving that seems to be hard.
3247 */
3248 cond_wake_up(&root->log_commit_wait[index1]);
3249 return ret;
3250 }
3251
free_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log)3252 static void free_log_tree(struct btrfs_trans_handle *trans,
3253 struct btrfs_root *log)
3254 {
3255 int ret;
3256 struct walk_control wc = {
3257 .free = 1,
3258 .process_func = process_one_buffer
3259 };
3260
3261 if (log->node) {
3262 ret = walk_log_tree(trans, log, &wc);
3263 if (ret) {
3264 /*
3265 * We weren't able to traverse the entire log tree, the
3266 * typical scenario is getting an -EIO when reading an
3267 * extent buffer of the tree, due to a previous writeback
3268 * failure of it.
3269 */
3270 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3271 &log->fs_info->fs_state);
3272
3273 /*
3274 * Some extent buffers of the log tree may still be dirty
3275 * and not yet written back to storage, because we may
3276 * have updates to a log tree without syncing a log tree,
3277 * such as during rename and link operations. So flush
3278 * them out and wait for their writeback to complete, so
3279 * that we properly cleanup their state and pages.
3280 */
3281 btrfs_write_marked_extents(log->fs_info,
3282 &log->dirty_log_pages,
3283 EXTENT_DIRTY | EXTENT_NEW);
3284 btrfs_wait_tree_log_extents(log,
3285 EXTENT_DIRTY | EXTENT_NEW);
3286
3287 if (trans)
3288 btrfs_abort_transaction(trans, ret);
3289 else
3290 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3291 }
3292 }
3293
3294 extent_io_tree_release(&log->dirty_log_pages);
3295 extent_io_tree_release(&log->log_csum_range);
3296
3297 btrfs_put_root(log);
3298 }
3299
3300 /*
3301 * free all the extents used by the tree log. This should be called
3302 * at commit time of the full transaction
3303 */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)3304 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3305 {
3306 if (root->log_root) {
3307 free_log_tree(trans, root->log_root);
3308 root->log_root = NULL;
3309 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3310 }
3311 return 0;
3312 }
3313
btrfs_free_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3314 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3315 struct btrfs_fs_info *fs_info)
3316 {
3317 if (fs_info->log_root_tree) {
3318 free_log_tree(trans, fs_info->log_root_tree);
3319 fs_info->log_root_tree = NULL;
3320 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3321 }
3322 return 0;
3323 }
3324
mark_inode_as_not_logged(const struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3325 static bool mark_inode_as_not_logged(const struct btrfs_trans_handle *trans,
3326 struct btrfs_inode *inode)
3327 {
3328 bool ret = false;
3329
3330 /*
3331 * Do this only if ->logged_trans is still 0 to prevent races with
3332 * concurrent logging as we may see the inode not logged when
3333 * inode_logged() is called but it gets logged after inode_logged() did
3334 * not find it in the log tree and we end up setting ->logged_trans to a
3335 * value less than trans->transid after the concurrent logging task has
3336 * set it to trans->transid. As a consequence, subsequent rename, unlink
3337 * and link operations may end up not logging new names and removing old
3338 * names from the log.
3339 */
3340 spin_lock(&inode->lock);
3341 if (inode->logged_trans == 0)
3342 inode->logged_trans = trans->transid - 1;
3343 else if (inode->logged_trans == trans->transid)
3344 ret = true;
3345 spin_unlock(&inode->lock);
3346
3347 return ret;
3348 }
3349
3350 /*
3351 * Check if an inode was logged in the current transaction. This correctly deals
3352 * with the case where the inode was logged but has a logged_trans of 0, which
3353 * happens if the inode is evicted and loaded again, as logged_trans is an in
3354 * memory only field (not persisted).
3355 *
3356 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3357 * and < 0 on error.
3358 */
inode_logged(const struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path_in)3359 static int inode_logged(const struct btrfs_trans_handle *trans,
3360 struct btrfs_inode *inode,
3361 struct btrfs_path *path_in)
3362 {
3363 struct btrfs_path *path = path_in;
3364 struct btrfs_key key;
3365 int ret;
3366
3367 /*
3368 * Quick lockless call, since once ->logged_trans is set to the current
3369 * transaction, we never set it to a lower value anywhere else.
3370 */
3371 if (data_race(inode->logged_trans) == trans->transid)
3372 return 1;
3373
3374 /*
3375 * If logged_trans is not 0 and not trans->transid, then we know the
3376 * inode was not logged in this transaction, so we can return false
3377 * right away. We take the lock to avoid a race caused by load/store
3378 * tearing with a concurrent btrfs_log_inode() call or a concurrent task
3379 * in this function further below - an update to trans->transid can be
3380 * teared into two 32 bits updates for example, in which case we could
3381 * see a positive value that is not trans->transid and assume the inode
3382 * was not logged when it was.
3383 */
3384 spin_lock(&inode->lock);
3385 if (inode->logged_trans == trans->transid) {
3386 spin_unlock(&inode->lock);
3387 return 1;
3388 } else if (inode->logged_trans > 0) {
3389 spin_unlock(&inode->lock);
3390 return 0;
3391 }
3392 spin_unlock(&inode->lock);
3393
3394 /*
3395 * If no log tree was created for this root in this transaction, then
3396 * the inode can not have been logged in this transaction. In that case
3397 * set logged_trans to anything greater than 0 and less than the current
3398 * transaction's ID, to avoid the search below in a future call in case
3399 * a log tree gets created after this.
3400 */
3401 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state))
3402 return mark_inode_as_not_logged(trans, inode);
3403
3404 /*
3405 * We have a log tree and the inode's logged_trans is 0. We can't tell
3406 * for sure if the inode was logged before in this transaction by looking
3407 * only at logged_trans. We could be pessimistic and assume it was, but
3408 * that can lead to unnecessarily logging an inode during rename and link
3409 * operations, and then further updating the log in followup rename and
3410 * link operations, specially if it's a directory, which adds latency
3411 * visible to applications doing a series of rename or link operations.
3412 *
3413 * A logged_trans of 0 here can mean several things:
3414 *
3415 * 1) The inode was never logged since the filesystem was mounted, and may
3416 * or may have not been evicted and loaded again;
3417 *
3418 * 2) The inode was logged in a previous transaction, then evicted and
3419 * then loaded again;
3420 *
3421 * 3) The inode was logged in the current transaction, then evicted and
3422 * then loaded again.
3423 *
3424 * For cases 1) and 2) we don't want to return true, but we need to detect
3425 * case 3) and return true. So we do a search in the log root for the inode
3426 * item.
3427 */
3428 key.objectid = btrfs_ino(inode);
3429 key.type = BTRFS_INODE_ITEM_KEY;
3430 key.offset = 0;
3431
3432 if (!path) {
3433 path = btrfs_alloc_path();
3434 if (!path)
3435 return -ENOMEM;
3436 }
3437
3438 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3439
3440 if (path_in)
3441 btrfs_release_path(path);
3442 else
3443 btrfs_free_path(path);
3444
3445 /*
3446 * Logging an inode always results in logging its inode item. So if we
3447 * did not find the item we know the inode was not logged for sure.
3448 */
3449 if (ret < 0) {
3450 return ret;
3451 } else if (ret > 0) {
3452 /*
3453 * Set logged_trans to a value greater than 0 and less then the
3454 * current transaction to avoid doing the search in future calls.
3455 */
3456 return mark_inode_as_not_logged(trans, inode);
3457 }
3458
3459 /*
3460 * The inode was previously logged and then evicted, set logged_trans to
3461 * the current transacion's ID, to avoid future tree searches as long as
3462 * the inode is not evicted again.
3463 */
3464 spin_lock(&inode->lock);
3465 inode->logged_trans = trans->transid;
3466 spin_unlock(&inode->lock);
3467
3468 return 1;
3469 }
3470
3471 /*
3472 * Delete a directory entry from the log if it exists.
3473 *
3474 * Returns < 0 on error
3475 * 1 if the entry does not exists
3476 * 0 if the entry existed and was successfully deleted
3477 */
del_logged_dentry(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 dir_ino,const struct fscrypt_str * name,u64 index)3478 static int del_logged_dentry(struct btrfs_trans_handle *trans,
3479 struct btrfs_root *log,
3480 struct btrfs_path *path,
3481 u64 dir_ino,
3482 const struct fscrypt_str *name,
3483 u64 index)
3484 {
3485 struct btrfs_dir_item *di;
3486
3487 /*
3488 * We only log dir index items of a directory, so we don't need to look
3489 * for dir item keys.
3490 */
3491 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3492 index, name, -1);
3493 if (IS_ERR(di))
3494 return PTR_ERR(di);
3495 else if (!di)
3496 return 1;
3497
3498 /*
3499 * We do not need to update the size field of the directory's
3500 * inode item because on log replay we update the field to reflect
3501 * all existing entries in the directory (see overwrite_item()).
3502 */
3503 return btrfs_delete_one_dir_name(trans, log, path, di);
3504 }
3505
3506 /*
3507 * If both a file and directory are logged, and unlinks or renames are
3508 * mixed in, we have a few interesting corners:
3509 *
3510 * create file X in dir Y
3511 * link file X to X.link in dir Y
3512 * fsync file X
3513 * unlink file X but leave X.link
3514 * fsync dir Y
3515 *
3516 * After a crash we would expect only X.link to exist. But file X
3517 * didn't get fsync'd again so the log has back refs for X and X.link.
3518 *
3519 * We solve this by removing directory entries and inode backrefs from the
3520 * log when a file that was logged in the current transaction is
3521 * unlinked. Any later fsync will include the updated log entries, and
3522 * we'll be able to reconstruct the proper directory items from backrefs.
3523 *
3524 * This optimizations allows us to avoid relogging the entire inode
3525 * or the entire directory.
3526 */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct fscrypt_str * name,struct btrfs_inode * dir,u64 index)3527 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3528 struct btrfs_root *root,
3529 const struct fscrypt_str *name,
3530 struct btrfs_inode *dir, u64 index)
3531 {
3532 struct btrfs_path *path;
3533 int ret;
3534
3535 ret = inode_logged(trans, dir, NULL);
3536 if (ret == 0)
3537 return;
3538 else if (ret < 0) {
3539 btrfs_set_log_full_commit(trans);
3540 return;
3541 }
3542
3543 ret = join_running_log_trans(root);
3544 if (ret)
3545 return;
3546
3547 mutex_lock(&dir->log_mutex);
3548
3549 path = btrfs_alloc_path();
3550 if (!path) {
3551 ret = -ENOMEM;
3552 goto out_unlock;
3553 }
3554
3555 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3556 name, index);
3557 btrfs_free_path(path);
3558 out_unlock:
3559 mutex_unlock(&dir->log_mutex);
3560 if (ret < 0)
3561 btrfs_set_log_full_commit(trans);
3562 btrfs_end_log_trans(root);
3563 }
3564
3565 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct fscrypt_str * name,struct btrfs_inode * inode,u64 dirid)3566 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3567 struct btrfs_root *root,
3568 const struct fscrypt_str *name,
3569 struct btrfs_inode *inode, u64 dirid)
3570 {
3571 struct btrfs_root *log;
3572 u64 index;
3573 int ret;
3574
3575 ret = inode_logged(trans, inode, NULL);
3576 if (ret == 0)
3577 return;
3578 else if (ret < 0) {
3579 btrfs_set_log_full_commit(trans);
3580 return;
3581 }
3582
3583 ret = join_running_log_trans(root);
3584 if (ret)
3585 return;
3586 log = root->log_root;
3587 mutex_lock(&inode->log_mutex);
3588
3589 ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3590 dirid, &index);
3591 mutex_unlock(&inode->log_mutex);
3592 if (ret < 0 && ret != -ENOENT)
3593 btrfs_set_log_full_commit(trans);
3594 btrfs_end_log_trans(root);
3595 }
3596
3597 /*
3598 * creates a range item in the log for 'dirid'. first_offset and
3599 * last_offset tell us which parts of the key space the log should
3600 * be considered authoritative for.
3601 */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,u64 first_offset,u64 last_offset)3602 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3603 struct btrfs_root *log,
3604 struct btrfs_path *path,
3605 u64 dirid,
3606 u64 first_offset, u64 last_offset)
3607 {
3608 int ret;
3609 struct btrfs_key key;
3610 struct btrfs_dir_log_item *item;
3611
3612 key.objectid = dirid;
3613 key.offset = first_offset;
3614 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3615 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3616 /*
3617 * -EEXIST is fine and can happen sporadically when we are logging a
3618 * directory and have concurrent insertions in the subvolume's tree for
3619 * items from other inodes and that result in pushing off some dir items
3620 * from one leaf to another in order to accommodate for the new items.
3621 * This results in logging the same dir index range key.
3622 */
3623 if (ret && ret != -EEXIST)
3624 return ret;
3625
3626 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3627 struct btrfs_dir_log_item);
3628 if (ret == -EEXIST) {
3629 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3630
3631 /*
3632 * btrfs_del_dir_entries_in_log() might have been called during
3633 * an unlink between the initial insertion of this key and the
3634 * current update, or we might be logging a single entry deletion
3635 * during a rename, so set the new last_offset to the max value.
3636 */
3637 last_offset = max(last_offset, curr_end);
3638 }
3639 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3640 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3641 btrfs_release_path(path);
3642 return 0;
3643 }
3644
flush_dir_items_batch(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct extent_buffer * src,struct btrfs_path * dst_path,int start_slot,int count)3645 static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3646 struct btrfs_inode *inode,
3647 struct extent_buffer *src,
3648 struct btrfs_path *dst_path,
3649 int start_slot,
3650 int count)
3651 {
3652 struct btrfs_root *log = inode->root->log_root;
3653 char *ins_data = NULL;
3654 struct btrfs_item_batch batch;
3655 struct extent_buffer *dst;
3656 unsigned long src_offset;
3657 unsigned long dst_offset;
3658 u64 last_index;
3659 struct btrfs_key key;
3660 u32 item_size;
3661 int ret;
3662 int i;
3663
3664 ASSERT(count > 0);
3665 batch.nr = count;
3666
3667 if (count == 1) {
3668 btrfs_item_key_to_cpu(src, &key, start_slot);
3669 item_size = btrfs_item_size(src, start_slot);
3670 batch.keys = &key;
3671 batch.data_sizes = &item_size;
3672 batch.total_data_size = item_size;
3673 } else {
3674 struct btrfs_key *ins_keys;
3675 u32 *ins_sizes;
3676
3677 ins_data = kmalloc(count * sizeof(u32) +
3678 count * sizeof(struct btrfs_key), GFP_NOFS);
3679 if (!ins_data)
3680 return -ENOMEM;
3681
3682 ins_sizes = (u32 *)ins_data;
3683 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3684 batch.keys = ins_keys;
3685 batch.data_sizes = ins_sizes;
3686 batch.total_data_size = 0;
3687
3688 for (i = 0; i < count; i++) {
3689 const int slot = start_slot + i;
3690
3691 btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3692 ins_sizes[i] = btrfs_item_size(src, slot);
3693 batch.total_data_size += ins_sizes[i];
3694 }
3695 }
3696
3697 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3698 if (ret)
3699 goto out;
3700
3701 dst = dst_path->nodes[0];
3702 /*
3703 * Copy all the items in bulk, in a single copy operation. Item data is
3704 * organized such that it's placed at the end of a leaf and from right
3705 * to left. For example, the data for the second item ends at an offset
3706 * that matches the offset where the data for the first item starts, the
3707 * data for the third item ends at an offset that matches the offset
3708 * where the data of the second items starts, and so on.
3709 * Therefore our source and destination start offsets for copy match the
3710 * offsets of the last items (highest slots).
3711 */
3712 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3713 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3714 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3715 btrfs_release_path(dst_path);
3716
3717 last_index = batch.keys[count - 1].offset;
3718 ASSERT(last_index > inode->last_dir_index_offset);
3719
3720 /*
3721 * If for some unexpected reason the last item's index is not greater
3722 * than the last index we logged, warn and force a transaction commit.
3723 */
3724 if (WARN_ON(last_index <= inode->last_dir_index_offset))
3725 ret = BTRFS_LOG_FORCE_COMMIT;
3726 else
3727 inode->last_dir_index_offset = last_index;
3728
3729 if (btrfs_get_first_dir_index_to_log(inode) == 0)
3730 btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset);
3731 out:
3732 kfree(ins_data);
3733
3734 return ret;
3735 }
3736
clone_leaf(struct btrfs_path * path,struct btrfs_log_ctx * ctx)3737 static int clone_leaf(struct btrfs_path *path, struct btrfs_log_ctx *ctx)
3738 {
3739 const int slot = path->slots[0];
3740
3741 if (ctx->scratch_eb) {
3742 copy_extent_buffer_full(ctx->scratch_eb, path->nodes[0]);
3743 } else {
3744 ctx->scratch_eb = btrfs_clone_extent_buffer(path->nodes[0]);
3745 if (!ctx->scratch_eb)
3746 return -ENOMEM;
3747 }
3748
3749 btrfs_release_path(path);
3750 path->nodes[0] = ctx->scratch_eb;
3751 path->slots[0] = slot;
3752 /*
3753 * Add extra ref to scratch eb so that it is not freed when callers
3754 * release the path, so we can reuse it later if needed.
3755 */
3756 atomic_inc(&ctx->scratch_eb->refs);
3757
3758 return 0;
3759 }
3760
process_dir_items_leaf(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx,u64 * last_old_dentry_offset)3761 static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3762 struct btrfs_inode *inode,
3763 struct btrfs_path *path,
3764 struct btrfs_path *dst_path,
3765 struct btrfs_log_ctx *ctx,
3766 u64 *last_old_dentry_offset)
3767 {
3768 struct btrfs_root *log = inode->root->log_root;
3769 struct extent_buffer *src;
3770 const int nritems = btrfs_header_nritems(path->nodes[0]);
3771 const u64 ino = btrfs_ino(inode);
3772 bool last_found = false;
3773 int batch_start = 0;
3774 int batch_size = 0;
3775 int ret;
3776
3777 /*
3778 * We need to clone the leaf, release the read lock on it, and use the
3779 * clone before modifying the log tree. See the comment at copy_items()
3780 * about why we need to do this.
3781 */
3782 ret = clone_leaf(path, ctx);
3783 if (ret < 0)
3784 return ret;
3785
3786 src = path->nodes[0];
3787
3788 for (int i = path->slots[0]; i < nritems; i++) {
3789 struct btrfs_dir_item *di;
3790 struct btrfs_key key;
3791 int ret;
3792
3793 btrfs_item_key_to_cpu(src, &key, i);
3794
3795 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3796 last_found = true;
3797 break;
3798 }
3799
3800 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3801
3802 /*
3803 * Skip ranges of items that consist only of dir item keys created
3804 * in past transactions. However if we find a gap, we must log a
3805 * dir index range item for that gap, so that index keys in that
3806 * gap are deleted during log replay.
3807 */
3808 if (btrfs_dir_transid(src, di) < trans->transid) {
3809 if (key.offset > *last_old_dentry_offset + 1) {
3810 ret = insert_dir_log_key(trans, log, dst_path,
3811 ino, *last_old_dentry_offset + 1,
3812 key.offset - 1);
3813 if (ret < 0)
3814 return ret;
3815 }
3816
3817 *last_old_dentry_offset = key.offset;
3818 continue;
3819 }
3820
3821 /* If we logged this dir index item before, we can skip it. */
3822 if (key.offset <= inode->last_dir_index_offset)
3823 continue;
3824
3825 /*
3826 * We must make sure that when we log a directory entry, the
3827 * corresponding inode, after log replay, has a matching link
3828 * count. For example:
3829 *
3830 * touch foo
3831 * mkdir mydir
3832 * sync
3833 * ln foo mydir/bar
3834 * xfs_io -c "fsync" mydir
3835 * <crash>
3836 * <mount fs and log replay>
3837 *
3838 * Would result in a fsync log that when replayed, our file inode
3839 * would have a link count of 1, but we get two directory entries
3840 * pointing to the same inode. After removing one of the names,
3841 * it would not be possible to remove the other name, which
3842 * resulted always in stale file handle errors, and would not be
3843 * possible to rmdir the parent directory, since its i_size could
3844 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3845 * resulting in -ENOTEMPTY errors.
3846 */
3847 if (!ctx->log_new_dentries) {
3848 struct btrfs_key di_key;
3849
3850 btrfs_dir_item_key_to_cpu(src, di, &di_key);
3851 if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3852 ctx->log_new_dentries = true;
3853 }
3854
3855 if (batch_size == 0)
3856 batch_start = i;
3857 batch_size++;
3858 }
3859
3860 if (batch_size > 0) {
3861 int ret;
3862
3863 ret = flush_dir_items_batch(trans, inode, src, dst_path,
3864 batch_start, batch_size);
3865 if (ret < 0)
3866 return ret;
3867 }
3868
3869 return last_found ? 1 : 0;
3870 }
3871
3872 /*
3873 * log all the items included in the current transaction for a given
3874 * directory. This also creates the range items in the log tree required
3875 * to replay anything deleted before the fsync
3876 */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx,u64 min_offset,u64 * last_offset_ret)3877 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3878 struct btrfs_inode *inode,
3879 struct btrfs_path *path,
3880 struct btrfs_path *dst_path,
3881 struct btrfs_log_ctx *ctx,
3882 u64 min_offset, u64 *last_offset_ret)
3883 {
3884 struct btrfs_key min_key;
3885 struct btrfs_root *root = inode->root;
3886 struct btrfs_root *log = root->log_root;
3887 int ret;
3888 u64 last_old_dentry_offset = min_offset - 1;
3889 u64 last_offset = (u64)-1;
3890 u64 ino = btrfs_ino(inode);
3891
3892 min_key.objectid = ino;
3893 min_key.type = BTRFS_DIR_INDEX_KEY;
3894 min_key.offset = min_offset;
3895
3896 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3897
3898 /*
3899 * we didn't find anything from this transaction, see if there
3900 * is anything at all
3901 */
3902 if (ret != 0 || min_key.objectid != ino ||
3903 min_key.type != BTRFS_DIR_INDEX_KEY) {
3904 min_key.objectid = ino;
3905 min_key.type = BTRFS_DIR_INDEX_KEY;
3906 min_key.offset = (u64)-1;
3907 btrfs_release_path(path);
3908 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3909 if (ret < 0) {
3910 btrfs_release_path(path);
3911 return ret;
3912 }
3913 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3914
3915 /* if ret == 0 there are items for this type,
3916 * create a range to tell us the last key of this type.
3917 * otherwise, there are no items in this directory after
3918 * *min_offset, and we create a range to indicate that.
3919 */
3920 if (ret == 0) {
3921 struct btrfs_key tmp;
3922
3923 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3924 path->slots[0]);
3925 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3926 last_old_dentry_offset = tmp.offset;
3927 } else if (ret > 0) {
3928 ret = 0;
3929 }
3930
3931 goto done;
3932 }
3933
3934 /* go backward to find any previous key */
3935 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3936 if (ret == 0) {
3937 struct btrfs_key tmp;
3938
3939 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3940 /*
3941 * The dir index key before the first one we found that needs to
3942 * be logged might be in a previous leaf, and there might be a
3943 * gap between these keys, meaning that we had deletions that
3944 * happened. So the key range item we log (key type
3945 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3946 * previous key's offset plus 1, so that those deletes are replayed.
3947 */
3948 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3949 last_old_dentry_offset = tmp.offset;
3950 } else if (ret < 0) {
3951 goto done;
3952 }
3953
3954 btrfs_release_path(path);
3955
3956 /*
3957 * Find the first key from this transaction again or the one we were at
3958 * in the loop below in case we had to reschedule. We may be logging the
3959 * directory without holding its VFS lock, which happen when logging new
3960 * dentries (through log_new_dir_dentries()) or in some cases when we
3961 * need to log the parent directory of an inode. This means a dir index
3962 * key might be deleted from the inode's root, and therefore we may not
3963 * find it anymore. If we can't find it, just move to the next key. We
3964 * can not bail out and ignore, because if we do that we will simply
3965 * not log dir index keys that come after the one that was just deleted
3966 * and we can end up logging a dir index range that ends at (u64)-1
3967 * (@last_offset is initialized to that), resulting in removing dir
3968 * entries we should not remove at log replay time.
3969 */
3970 search:
3971 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3972 if (ret > 0) {
3973 ret = btrfs_next_item(root, path);
3974 if (ret > 0) {
3975 /* There are no more keys in the inode's root. */
3976 ret = 0;
3977 goto done;
3978 }
3979 }
3980 if (ret < 0)
3981 goto done;
3982
3983 /*
3984 * we have a block from this transaction, log every item in it
3985 * from our directory
3986 */
3987 while (1) {
3988 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3989 &last_old_dentry_offset);
3990 if (ret != 0) {
3991 if (ret > 0)
3992 ret = 0;
3993 goto done;
3994 }
3995 path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3996
3997 /*
3998 * look ahead to the next item and see if it is also
3999 * from this directory and from this transaction
4000 */
4001 ret = btrfs_next_leaf(root, path);
4002 if (ret) {
4003 if (ret == 1) {
4004 last_offset = (u64)-1;
4005 ret = 0;
4006 }
4007 goto done;
4008 }
4009 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
4010 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
4011 last_offset = (u64)-1;
4012 goto done;
4013 }
4014 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
4015 /*
4016 * The next leaf was not changed in the current transaction
4017 * and has at least one dir index key.
4018 * We check for the next key because there might have been
4019 * one or more deletions between the last key we logged and
4020 * that next key. So the key range item we log (key type
4021 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
4022 * offset minus 1, so that those deletes are replayed.
4023 */
4024 last_offset = min_key.offset - 1;
4025 goto done;
4026 }
4027 if (need_resched()) {
4028 btrfs_release_path(path);
4029 cond_resched();
4030 goto search;
4031 }
4032 }
4033 done:
4034 btrfs_release_path(path);
4035 btrfs_release_path(dst_path);
4036
4037 if (ret == 0) {
4038 *last_offset_ret = last_offset;
4039 /*
4040 * In case the leaf was changed in the current transaction but
4041 * all its dir items are from a past transaction, the last item
4042 * in the leaf is a dir item and there's no gap between that last
4043 * dir item and the first one on the next leaf (which did not
4044 * change in the current transaction), then we don't need to log
4045 * a range, last_old_dentry_offset is == to last_offset.
4046 */
4047 ASSERT(last_old_dentry_offset <= last_offset);
4048 if (last_old_dentry_offset < last_offset)
4049 ret = insert_dir_log_key(trans, log, path, ino,
4050 last_old_dentry_offset + 1,
4051 last_offset);
4052 }
4053
4054 return ret;
4055 }
4056
4057 /*
4058 * If the inode was logged before and it was evicted, then its
4059 * last_dir_index_offset is 0, so we don't know the value of the last index
4060 * key offset. If that's the case, search for it and update the inode. This
4061 * is to avoid lookups in the log tree every time we try to insert a dir index
4062 * key from a leaf changed in the current transaction, and to allow us to always
4063 * do batch insertions of dir index keys.
4064 */
update_last_dir_index_offset(struct btrfs_inode * inode,struct btrfs_path * path,const struct btrfs_log_ctx * ctx)4065 static int update_last_dir_index_offset(struct btrfs_inode *inode,
4066 struct btrfs_path *path,
4067 const struct btrfs_log_ctx *ctx)
4068 {
4069 const u64 ino = btrfs_ino(inode);
4070 struct btrfs_key key;
4071 int ret;
4072
4073 lockdep_assert_held(&inode->log_mutex);
4074
4075 if (inode->last_dir_index_offset != 0)
4076 return 0;
4077
4078 if (!ctx->logged_before) {
4079 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4080 return 0;
4081 }
4082
4083 key.objectid = ino;
4084 key.type = BTRFS_DIR_INDEX_KEY;
4085 key.offset = (u64)-1;
4086
4087 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
4088 /*
4089 * An error happened or we actually have an index key with an offset
4090 * value of (u64)-1. Bail out, we're done.
4091 */
4092 if (ret <= 0)
4093 goto out;
4094
4095 ret = 0;
4096 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4097
4098 /*
4099 * No dir index items, bail out and leave last_dir_index_offset with
4100 * the value right before the first valid index value.
4101 */
4102 if (path->slots[0] == 0)
4103 goto out;
4104
4105 /*
4106 * btrfs_search_slot() left us at one slot beyond the slot with the last
4107 * index key, or beyond the last key of the directory that is not an
4108 * index key. If we have an index key before, set last_dir_index_offset
4109 * to its offset value, otherwise leave it with a value right before the
4110 * first valid index value, as it means we have an empty directory.
4111 */
4112 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4113 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4114 inode->last_dir_index_offset = key.offset;
4115
4116 out:
4117 btrfs_release_path(path);
4118
4119 return ret;
4120 }
4121
4122 /*
4123 * logging directories is very similar to logging inodes, We find all the items
4124 * from the current transaction and write them to the log.
4125 *
4126 * The recovery code scans the directory in the subvolume, and if it finds a
4127 * key in the range logged that is not present in the log tree, then it means
4128 * that dir entry was unlinked during the transaction.
4129 *
4130 * In order for that scan to work, we must include one key smaller than
4131 * the smallest logged by this transaction and one key larger than the largest
4132 * key logged by this transaction.
4133 */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)4134 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4135 struct btrfs_inode *inode,
4136 struct btrfs_path *path,
4137 struct btrfs_path *dst_path,
4138 struct btrfs_log_ctx *ctx)
4139 {
4140 u64 min_key;
4141 u64 max_key;
4142 int ret;
4143
4144 ret = update_last_dir_index_offset(inode, path, ctx);
4145 if (ret)
4146 return ret;
4147
4148 min_key = BTRFS_DIR_START_INDEX;
4149 max_key = 0;
4150
4151 while (1) {
4152 ret = log_dir_items(trans, inode, path, dst_path,
4153 ctx, min_key, &max_key);
4154 if (ret)
4155 return ret;
4156 if (max_key == (u64)-1)
4157 break;
4158 min_key = max_key + 1;
4159 }
4160
4161 return 0;
4162 }
4163
4164 /*
4165 * a helper function to drop items from the log before we relog an
4166 * inode. max_key_type indicates the highest item type to remove.
4167 * This cannot be run for file data extents because it does not
4168 * free the extents they point to.
4169 */
drop_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode,int max_key_type)4170 static int drop_inode_items(struct btrfs_trans_handle *trans,
4171 struct btrfs_root *log,
4172 struct btrfs_path *path,
4173 struct btrfs_inode *inode,
4174 int max_key_type)
4175 {
4176 int ret;
4177 struct btrfs_key key;
4178 struct btrfs_key found_key;
4179 int start_slot;
4180
4181 key.objectid = btrfs_ino(inode);
4182 key.type = max_key_type;
4183 key.offset = (u64)-1;
4184
4185 while (1) {
4186 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4187 if (ret < 0) {
4188 break;
4189 } else if (ret > 0) {
4190 if (path->slots[0] == 0)
4191 break;
4192 path->slots[0]--;
4193 }
4194
4195 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4196 path->slots[0]);
4197
4198 if (found_key.objectid != key.objectid)
4199 break;
4200
4201 found_key.offset = 0;
4202 found_key.type = 0;
4203 ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot);
4204 if (ret < 0)
4205 break;
4206
4207 ret = btrfs_del_items(trans, log, path, start_slot,
4208 path->slots[0] - start_slot + 1);
4209 /*
4210 * If start slot isn't 0 then we don't need to re-search, we've
4211 * found the last guy with the objectid in this tree.
4212 */
4213 if (ret || start_slot != 0)
4214 break;
4215 btrfs_release_path(path);
4216 }
4217 btrfs_release_path(path);
4218 if (ret > 0)
4219 ret = 0;
4220 return ret;
4221 }
4222
truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * log_root,struct btrfs_inode * inode,u64 new_size,u32 min_type)4223 static int truncate_inode_items(struct btrfs_trans_handle *trans,
4224 struct btrfs_root *log_root,
4225 struct btrfs_inode *inode,
4226 u64 new_size, u32 min_type)
4227 {
4228 struct btrfs_truncate_control control = {
4229 .new_size = new_size,
4230 .ino = btrfs_ino(inode),
4231 .min_type = min_type,
4232 .skip_ref_updates = true,
4233 };
4234
4235 return btrfs_truncate_inode_items(trans, log_root, &control);
4236 }
4237
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode,int log_inode_only,u64 logged_isize)4238 static void fill_inode_item(struct btrfs_trans_handle *trans,
4239 struct extent_buffer *leaf,
4240 struct btrfs_inode_item *item,
4241 struct inode *inode, int log_inode_only,
4242 u64 logged_isize)
4243 {
4244 struct btrfs_map_token token;
4245 u64 flags;
4246
4247 btrfs_init_map_token(&token, leaf);
4248
4249 if (log_inode_only) {
4250 /* set the generation to zero so the recover code
4251 * can tell the difference between an logging
4252 * just to say 'this inode exists' and a logging
4253 * to say 'update this inode with these values'
4254 */
4255 btrfs_set_token_inode_generation(&token, item, 0);
4256 btrfs_set_token_inode_size(&token, item, logged_isize);
4257 } else {
4258 btrfs_set_token_inode_generation(&token, item,
4259 BTRFS_I(inode)->generation);
4260 btrfs_set_token_inode_size(&token, item, inode->i_size);
4261 }
4262
4263 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4264 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4265 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4266 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4267
4268 btrfs_set_token_timespec_sec(&token, &item->atime,
4269 inode_get_atime_sec(inode));
4270 btrfs_set_token_timespec_nsec(&token, &item->atime,
4271 inode_get_atime_nsec(inode));
4272
4273 btrfs_set_token_timespec_sec(&token, &item->mtime,
4274 inode_get_mtime_sec(inode));
4275 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4276 inode_get_mtime_nsec(inode));
4277
4278 btrfs_set_token_timespec_sec(&token, &item->ctime,
4279 inode_get_ctime_sec(inode));
4280 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4281 inode_get_ctime_nsec(inode));
4282
4283 btrfs_set_timespec_sec(leaf, &item->otime, BTRFS_I(inode)->i_otime_sec);
4284 btrfs_set_timespec_nsec(leaf, &item->otime, BTRFS_I(inode)->i_otime_nsec);
4285
4286 /*
4287 * We do not need to set the nbytes field, in fact during a fast fsync
4288 * its value may not even be correct, since a fast fsync does not wait
4289 * for ordered extent completion, which is where we update nbytes, it
4290 * only waits for writeback to complete. During log replay as we find
4291 * file extent items and replay them, we adjust the nbytes field of the
4292 * inode item in subvolume tree as needed (see overwrite_item()).
4293 */
4294
4295 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4296 btrfs_set_token_inode_transid(&token, item, trans->transid);
4297 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4298 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4299 BTRFS_I(inode)->ro_flags);
4300 btrfs_set_token_inode_flags(&token, item, flags);
4301 btrfs_set_token_inode_block_group(&token, item, 0);
4302 }
4303
log_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode,bool inode_item_dropped)4304 static int log_inode_item(struct btrfs_trans_handle *trans,
4305 struct btrfs_root *log, struct btrfs_path *path,
4306 struct btrfs_inode *inode, bool inode_item_dropped)
4307 {
4308 struct btrfs_inode_item *inode_item;
4309 struct btrfs_key key;
4310 int ret;
4311
4312 btrfs_get_inode_key(inode, &key);
4313 /*
4314 * If we are doing a fast fsync and the inode was logged before in the
4315 * current transaction, then we know the inode was previously logged and
4316 * it exists in the log tree. For performance reasons, in this case use
4317 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4318 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4319 * contention in case there are concurrent fsyncs for other inodes of the
4320 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4321 * already exists can also result in unnecessarily splitting a leaf.
4322 */
4323 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4324 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4325 ASSERT(ret <= 0);
4326 if (ret > 0)
4327 ret = -ENOENT;
4328 } else {
4329 /*
4330 * This means it is the first fsync in the current transaction,
4331 * so the inode item is not in the log and we need to insert it.
4332 * We can never get -EEXIST because we are only called for a fast
4333 * fsync and in case an inode eviction happens after the inode was
4334 * logged before in the current transaction, when we load again
4335 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4336 * flags and set ->logged_trans to 0.
4337 */
4338 ret = btrfs_insert_empty_item(trans, log, path, &key,
4339 sizeof(*inode_item));
4340 ASSERT(ret != -EEXIST);
4341 }
4342 if (ret)
4343 return ret;
4344 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4345 struct btrfs_inode_item);
4346 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4347 0, 0);
4348 btrfs_release_path(path);
4349 return 0;
4350 }
4351
log_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,struct btrfs_ordered_sum * sums)4352 static int log_csums(struct btrfs_trans_handle *trans,
4353 struct btrfs_inode *inode,
4354 struct btrfs_root *log_root,
4355 struct btrfs_ordered_sum *sums)
4356 {
4357 const u64 lock_end = sums->logical + sums->len - 1;
4358 struct extent_state *cached_state = NULL;
4359 int ret;
4360
4361 /*
4362 * If this inode was not used for reflink operations in the current
4363 * transaction with new extents, then do the fast path, no need to
4364 * worry about logging checksum items with overlapping ranges.
4365 */
4366 if (inode->last_reflink_trans < trans->transid)
4367 return btrfs_csum_file_blocks(trans, log_root, sums);
4368
4369 /*
4370 * Serialize logging for checksums. This is to avoid racing with the
4371 * same checksum being logged by another task that is logging another
4372 * file which happens to refer to the same extent as well. Such races
4373 * can leave checksum items in the log with overlapping ranges.
4374 */
4375 ret = lock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4376 &cached_state);
4377 if (ret)
4378 return ret;
4379 /*
4380 * Due to extent cloning, we might have logged a csum item that covers a
4381 * subrange of a cloned extent, and later we can end up logging a csum
4382 * item for a larger subrange of the same extent or the entire range.
4383 * This would leave csum items in the log tree that cover the same range
4384 * and break the searches for checksums in the log tree, resulting in
4385 * some checksums missing in the fs/subvolume tree. So just delete (or
4386 * trim and adjust) any existing csum items in the log for this range.
4387 */
4388 ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len);
4389 if (!ret)
4390 ret = btrfs_csum_file_blocks(trans, log_root, sums);
4391
4392 unlock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4393 &cached_state);
4394
4395 return ret;
4396 }
4397
copy_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * dst_path,struct btrfs_path * src_path,int start_slot,int nr,int inode_only,u64 logged_isize,struct btrfs_log_ctx * ctx)4398 static noinline int copy_items(struct btrfs_trans_handle *trans,
4399 struct btrfs_inode *inode,
4400 struct btrfs_path *dst_path,
4401 struct btrfs_path *src_path,
4402 int start_slot, int nr, int inode_only,
4403 u64 logged_isize, struct btrfs_log_ctx *ctx)
4404 {
4405 struct btrfs_root *log = inode->root->log_root;
4406 struct btrfs_file_extent_item *extent;
4407 struct extent_buffer *src;
4408 int ret;
4409 struct btrfs_key *ins_keys;
4410 u32 *ins_sizes;
4411 struct btrfs_item_batch batch;
4412 char *ins_data;
4413 int dst_index;
4414 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4415 const u64 i_size = i_size_read(&inode->vfs_inode);
4416
4417 /*
4418 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4419 * use the clone. This is because otherwise we would be changing the log
4420 * tree, to insert items from the subvolume tree or insert csum items,
4421 * while holding a read lock on a leaf from the subvolume tree, which
4422 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4423 *
4424 * 1) Modifying the log tree triggers an extent buffer allocation while
4425 * holding a write lock on a parent extent buffer from the log tree.
4426 * Allocating the pages for an extent buffer, or the extent buffer
4427 * struct, can trigger inode eviction and finally the inode eviction
4428 * will trigger a release/remove of a delayed node, which requires
4429 * taking the delayed node's mutex;
4430 *
4431 * 2) Allocating a metadata extent for a log tree can trigger the async
4432 * reclaim thread and make us wait for it to release enough space and
4433 * unblock our reservation ticket. The reclaim thread can start
4434 * flushing delayed items, and that in turn results in the need to
4435 * lock delayed node mutexes and in the need to write lock extent
4436 * buffers of a subvolume tree - all this while holding a write lock
4437 * on the parent extent buffer in the log tree.
4438 *
4439 * So one task in scenario 1) running in parallel with another task in
4440 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4441 * node mutex while having a read lock on a leaf from the subvolume,
4442 * while the other is holding the delayed node's mutex and wants to
4443 * write lock the same subvolume leaf for flushing delayed items.
4444 */
4445 ret = clone_leaf(src_path, ctx);
4446 if (ret < 0)
4447 return ret;
4448
4449 src = src_path->nodes[0];
4450
4451 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4452 nr * sizeof(u32), GFP_NOFS);
4453 if (!ins_data)
4454 return -ENOMEM;
4455
4456 ins_sizes = (u32 *)ins_data;
4457 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4458 batch.keys = ins_keys;
4459 batch.data_sizes = ins_sizes;
4460 batch.total_data_size = 0;
4461 batch.nr = 0;
4462
4463 dst_index = 0;
4464 for (int i = 0; i < nr; i++) {
4465 const int src_slot = start_slot + i;
4466 struct btrfs_root *csum_root;
4467 struct btrfs_ordered_sum *sums;
4468 struct btrfs_ordered_sum *sums_next;
4469 LIST_HEAD(ordered_sums);
4470 u64 disk_bytenr;
4471 u64 disk_num_bytes;
4472 u64 extent_offset;
4473 u64 extent_num_bytes;
4474 bool is_old_extent;
4475
4476 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4477
4478 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4479 goto add_to_batch;
4480
4481 extent = btrfs_item_ptr(src, src_slot,
4482 struct btrfs_file_extent_item);
4483
4484 is_old_extent = (btrfs_file_extent_generation(src, extent) <
4485 trans->transid);
4486
4487 /*
4488 * Don't copy extents from past generations. That would make us
4489 * log a lot more metadata for common cases like doing only a
4490 * few random writes into a file and then fsync it for the first
4491 * time or after the full sync flag is set on the inode. We can
4492 * get leaves full of extent items, most of which are from past
4493 * generations, so we can skip them - as long as the inode has
4494 * not been the target of a reflink operation in this transaction,
4495 * as in that case it might have had file extent items with old
4496 * generations copied into it. We also must always log prealloc
4497 * extents that start at or beyond eof, otherwise we would lose
4498 * them on log replay.
4499 */
4500 if (is_old_extent &&
4501 ins_keys[dst_index].offset < i_size &&
4502 inode->last_reflink_trans < trans->transid)
4503 continue;
4504
4505 if (skip_csum)
4506 goto add_to_batch;
4507
4508 /* Only regular extents have checksums. */
4509 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4510 goto add_to_batch;
4511
4512 /*
4513 * If it's an extent created in a past transaction, then its
4514 * checksums are already accessible from the committed csum tree,
4515 * no need to log them.
4516 */
4517 if (is_old_extent)
4518 goto add_to_batch;
4519
4520 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4521 /* If it's an explicit hole, there are no checksums. */
4522 if (disk_bytenr == 0)
4523 goto add_to_batch;
4524
4525 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4526
4527 if (btrfs_file_extent_compression(src, extent)) {
4528 extent_offset = 0;
4529 extent_num_bytes = disk_num_bytes;
4530 } else {
4531 extent_offset = btrfs_file_extent_offset(src, extent);
4532 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4533 }
4534
4535 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4536 disk_bytenr += extent_offset;
4537 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4538 disk_bytenr + extent_num_bytes - 1,
4539 &ordered_sums, false);
4540 if (ret < 0)
4541 goto out;
4542 ret = 0;
4543
4544 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4545 if (!ret)
4546 ret = log_csums(trans, inode, log, sums);
4547 list_del(&sums->list);
4548 kfree(sums);
4549 }
4550 if (ret)
4551 goto out;
4552
4553 add_to_batch:
4554 ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4555 batch.total_data_size += ins_sizes[dst_index];
4556 batch.nr++;
4557 dst_index++;
4558 }
4559
4560 /*
4561 * We have a leaf full of old extent items that don't need to be logged,
4562 * so we don't need to do anything.
4563 */
4564 if (batch.nr == 0)
4565 goto out;
4566
4567 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4568 if (ret)
4569 goto out;
4570
4571 dst_index = 0;
4572 for (int i = 0; i < nr; i++) {
4573 const int src_slot = start_slot + i;
4574 const int dst_slot = dst_path->slots[0] + dst_index;
4575 struct btrfs_key key;
4576 unsigned long src_offset;
4577 unsigned long dst_offset;
4578
4579 /*
4580 * We're done, all the remaining items in the source leaf
4581 * correspond to old file extent items.
4582 */
4583 if (dst_index >= batch.nr)
4584 break;
4585
4586 btrfs_item_key_to_cpu(src, &key, src_slot);
4587
4588 if (key.type != BTRFS_EXTENT_DATA_KEY)
4589 goto copy_item;
4590
4591 extent = btrfs_item_ptr(src, src_slot,
4592 struct btrfs_file_extent_item);
4593
4594 /* See the comment in the previous loop, same logic. */
4595 if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4596 key.offset < i_size &&
4597 inode->last_reflink_trans < trans->transid)
4598 continue;
4599
4600 copy_item:
4601 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4602 src_offset = btrfs_item_ptr_offset(src, src_slot);
4603
4604 if (key.type == BTRFS_INODE_ITEM_KEY) {
4605 struct btrfs_inode_item *inode_item;
4606
4607 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4608 struct btrfs_inode_item);
4609 fill_inode_item(trans, dst_path->nodes[0], inode_item,
4610 &inode->vfs_inode,
4611 inode_only == LOG_INODE_EXISTS,
4612 logged_isize);
4613 } else {
4614 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4615 src_offset, ins_sizes[dst_index]);
4616 }
4617
4618 dst_index++;
4619 }
4620
4621 btrfs_mark_buffer_dirty(trans, dst_path->nodes[0]);
4622 btrfs_release_path(dst_path);
4623 out:
4624 kfree(ins_data);
4625
4626 return ret;
4627 }
4628
extent_cmp(void * priv,const struct list_head * a,const struct list_head * b)4629 static int extent_cmp(void *priv, const struct list_head *a,
4630 const struct list_head *b)
4631 {
4632 const struct extent_map *em1, *em2;
4633
4634 em1 = list_entry(a, struct extent_map, list);
4635 em2 = list_entry(b, struct extent_map, list);
4636
4637 if (em1->start < em2->start)
4638 return -1;
4639 else if (em1->start > em2->start)
4640 return 1;
4641 return 0;
4642 }
4643
log_extent_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,const struct extent_map * em,struct btrfs_log_ctx * ctx)4644 static int log_extent_csums(struct btrfs_trans_handle *trans,
4645 struct btrfs_inode *inode,
4646 struct btrfs_root *log_root,
4647 const struct extent_map *em,
4648 struct btrfs_log_ctx *ctx)
4649 {
4650 struct btrfs_ordered_extent *ordered;
4651 struct btrfs_root *csum_root;
4652 u64 block_start;
4653 u64 csum_offset;
4654 u64 csum_len;
4655 u64 mod_start = em->start;
4656 u64 mod_len = em->len;
4657 LIST_HEAD(ordered_sums);
4658 int ret = 0;
4659
4660 if (inode->flags & BTRFS_INODE_NODATASUM ||
4661 (em->flags & EXTENT_FLAG_PREALLOC) ||
4662 em->disk_bytenr == EXTENT_MAP_HOLE)
4663 return 0;
4664
4665 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4666 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4667 const u64 mod_end = mod_start + mod_len;
4668 struct btrfs_ordered_sum *sums;
4669
4670 if (mod_len == 0)
4671 break;
4672
4673 if (ordered_end <= mod_start)
4674 continue;
4675 if (mod_end <= ordered->file_offset)
4676 break;
4677
4678 /*
4679 * We are going to copy all the csums on this ordered extent, so
4680 * go ahead and adjust mod_start and mod_len in case this ordered
4681 * extent has already been logged.
4682 */
4683 if (ordered->file_offset > mod_start) {
4684 if (ordered_end >= mod_end)
4685 mod_len = ordered->file_offset - mod_start;
4686 /*
4687 * If we have this case
4688 *
4689 * |--------- logged extent ---------|
4690 * |----- ordered extent ----|
4691 *
4692 * Just don't mess with mod_start and mod_len, we'll
4693 * just end up logging more csums than we need and it
4694 * will be ok.
4695 */
4696 } else {
4697 if (ordered_end < mod_end) {
4698 mod_len = mod_end - ordered_end;
4699 mod_start = ordered_end;
4700 } else {
4701 mod_len = 0;
4702 }
4703 }
4704
4705 /*
4706 * To keep us from looping for the above case of an ordered
4707 * extent that falls inside of the logged extent.
4708 */
4709 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4710 continue;
4711
4712 list_for_each_entry(sums, &ordered->list, list) {
4713 ret = log_csums(trans, inode, log_root, sums);
4714 if (ret)
4715 return ret;
4716 }
4717 }
4718
4719 /* We're done, found all csums in the ordered extents. */
4720 if (mod_len == 0)
4721 return 0;
4722
4723 /* If we're compressed we have to save the entire range of csums. */
4724 if (extent_map_is_compressed(em)) {
4725 csum_offset = 0;
4726 csum_len = em->disk_num_bytes;
4727 } else {
4728 csum_offset = mod_start - em->start;
4729 csum_len = mod_len;
4730 }
4731
4732 /* block start is already adjusted for the file extent offset. */
4733 block_start = extent_map_block_start(em);
4734 csum_root = btrfs_csum_root(trans->fs_info, block_start);
4735 ret = btrfs_lookup_csums_list(csum_root, block_start + csum_offset,
4736 block_start + csum_offset + csum_len - 1,
4737 &ordered_sums, false);
4738 if (ret < 0)
4739 return ret;
4740 ret = 0;
4741
4742 while (!list_empty(&ordered_sums)) {
4743 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4744 struct btrfs_ordered_sum,
4745 list);
4746 if (!ret)
4747 ret = log_csums(trans, inode, log_root, sums);
4748 list_del(&sums->list);
4749 kfree(sums);
4750 }
4751
4752 return ret;
4753 }
4754
log_one_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,const struct extent_map * em,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4755 static int log_one_extent(struct btrfs_trans_handle *trans,
4756 struct btrfs_inode *inode,
4757 const struct extent_map *em,
4758 struct btrfs_path *path,
4759 struct btrfs_log_ctx *ctx)
4760 {
4761 struct btrfs_drop_extents_args drop_args = { 0 };
4762 struct btrfs_root *log = inode->root->log_root;
4763 struct btrfs_file_extent_item fi = { 0 };
4764 struct extent_buffer *leaf;
4765 struct btrfs_key key;
4766 enum btrfs_compression_type compress_type;
4767 u64 extent_offset = em->offset;
4768 u64 block_start = extent_map_block_start(em);
4769 u64 block_len;
4770 int ret;
4771
4772 btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4773 if (em->flags & EXTENT_FLAG_PREALLOC)
4774 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4775 else
4776 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4777
4778 block_len = em->disk_num_bytes;
4779 compress_type = extent_map_compression(em);
4780 if (compress_type != BTRFS_COMPRESS_NONE) {
4781 btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start);
4782 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4783 } else if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
4784 btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start - extent_offset);
4785 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4786 }
4787
4788 btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4789 btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4790 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4791 btrfs_set_stack_file_extent_compression(&fi, compress_type);
4792
4793 ret = log_extent_csums(trans, inode, log, em, ctx);
4794 if (ret)
4795 return ret;
4796
4797 /*
4798 * If this is the first time we are logging the inode in the current
4799 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4800 * because it does a deletion search, which always acquires write locks
4801 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4802 * but also adds significant contention in a log tree, since log trees
4803 * are small, with a root at level 2 or 3 at most, due to their short
4804 * life span.
4805 */
4806 if (ctx->logged_before) {
4807 drop_args.path = path;
4808 drop_args.start = em->start;
4809 drop_args.end = em->start + em->len;
4810 drop_args.replace_extent = true;
4811 drop_args.extent_item_size = sizeof(fi);
4812 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4813 if (ret)
4814 return ret;
4815 }
4816
4817 if (!drop_args.extent_inserted) {
4818 key.objectid = btrfs_ino(inode);
4819 key.type = BTRFS_EXTENT_DATA_KEY;
4820 key.offset = em->start;
4821
4822 ret = btrfs_insert_empty_item(trans, log, path, &key,
4823 sizeof(fi));
4824 if (ret)
4825 return ret;
4826 }
4827 leaf = path->nodes[0];
4828 write_extent_buffer(leaf, &fi,
4829 btrfs_item_ptr_offset(leaf, path->slots[0]),
4830 sizeof(fi));
4831 btrfs_mark_buffer_dirty(trans, leaf);
4832
4833 btrfs_release_path(path);
4834
4835 return ret;
4836 }
4837
4838 /*
4839 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4840 * lose them after doing a full/fast fsync and replaying the log. We scan the
4841 * subvolume's root instead of iterating the inode's extent map tree because
4842 * otherwise we can log incorrect extent items based on extent map conversion.
4843 * That can happen due to the fact that extent maps are merged when they
4844 * are not in the extent map tree's list of modified extents.
4845 */
btrfs_log_prealloc_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4846 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4847 struct btrfs_inode *inode,
4848 struct btrfs_path *path,
4849 struct btrfs_log_ctx *ctx)
4850 {
4851 struct btrfs_root *root = inode->root;
4852 struct btrfs_key key;
4853 const u64 i_size = i_size_read(&inode->vfs_inode);
4854 const u64 ino = btrfs_ino(inode);
4855 struct btrfs_path *dst_path = NULL;
4856 bool dropped_extents = false;
4857 u64 truncate_offset = i_size;
4858 struct extent_buffer *leaf;
4859 int slot;
4860 int ins_nr = 0;
4861 int start_slot = 0;
4862 int ret;
4863
4864 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4865 return 0;
4866
4867 key.objectid = ino;
4868 key.type = BTRFS_EXTENT_DATA_KEY;
4869 key.offset = i_size;
4870 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4871 if (ret < 0)
4872 goto out;
4873
4874 /*
4875 * We must check if there is a prealloc extent that starts before the
4876 * i_size and crosses the i_size boundary. This is to ensure later we
4877 * truncate down to the end of that extent and not to the i_size, as
4878 * otherwise we end up losing part of the prealloc extent after a log
4879 * replay and with an implicit hole if there is another prealloc extent
4880 * that starts at an offset beyond i_size.
4881 */
4882 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4883 if (ret < 0)
4884 goto out;
4885
4886 if (ret == 0) {
4887 struct btrfs_file_extent_item *ei;
4888
4889 leaf = path->nodes[0];
4890 slot = path->slots[0];
4891 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4892
4893 if (btrfs_file_extent_type(leaf, ei) ==
4894 BTRFS_FILE_EXTENT_PREALLOC) {
4895 u64 extent_end;
4896
4897 btrfs_item_key_to_cpu(leaf, &key, slot);
4898 extent_end = key.offset +
4899 btrfs_file_extent_num_bytes(leaf, ei);
4900
4901 if (extent_end > i_size)
4902 truncate_offset = extent_end;
4903 }
4904 } else {
4905 ret = 0;
4906 }
4907
4908 while (true) {
4909 leaf = path->nodes[0];
4910 slot = path->slots[0];
4911
4912 if (slot >= btrfs_header_nritems(leaf)) {
4913 if (ins_nr > 0) {
4914 ret = copy_items(trans, inode, dst_path, path,
4915 start_slot, ins_nr, 1, 0, ctx);
4916 if (ret < 0)
4917 goto out;
4918 ins_nr = 0;
4919 }
4920 ret = btrfs_next_leaf(root, path);
4921 if (ret < 0)
4922 goto out;
4923 if (ret > 0) {
4924 ret = 0;
4925 break;
4926 }
4927 continue;
4928 }
4929
4930 btrfs_item_key_to_cpu(leaf, &key, slot);
4931 if (key.objectid > ino)
4932 break;
4933 if (WARN_ON_ONCE(key.objectid < ino) ||
4934 key.type < BTRFS_EXTENT_DATA_KEY ||
4935 key.offset < i_size) {
4936 path->slots[0]++;
4937 continue;
4938 }
4939 /*
4940 * Avoid overlapping items in the log tree. The first time we
4941 * get here, get rid of everything from a past fsync. After
4942 * that, if the current extent starts before the end of the last
4943 * extent we copied, truncate the last one. This can happen if
4944 * an ordered extent completion modifies the subvolume tree
4945 * while btrfs_next_leaf() has the tree unlocked.
4946 */
4947 if (!dropped_extents || key.offset < truncate_offset) {
4948 ret = truncate_inode_items(trans, root->log_root, inode,
4949 min(key.offset, truncate_offset),
4950 BTRFS_EXTENT_DATA_KEY);
4951 if (ret)
4952 goto out;
4953 dropped_extents = true;
4954 }
4955 truncate_offset = btrfs_file_extent_end(path);
4956 if (ins_nr == 0)
4957 start_slot = slot;
4958 ins_nr++;
4959 path->slots[0]++;
4960 if (!dst_path) {
4961 dst_path = btrfs_alloc_path();
4962 if (!dst_path) {
4963 ret = -ENOMEM;
4964 goto out;
4965 }
4966 }
4967 }
4968 if (ins_nr > 0)
4969 ret = copy_items(trans, inode, dst_path, path,
4970 start_slot, ins_nr, 1, 0, ctx);
4971 out:
4972 btrfs_release_path(path);
4973 btrfs_free_path(dst_path);
4974 return ret;
4975 }
4976
btrfs_log_changed_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4977 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4978 struct btrfs_inode *inode,
4979 struct btrfs_path *path,
4980 struct btrfs_log_ctx *ctx)
4981 {
4982 struct btrfs_ordered_extent *ordered;
4983 struct btrfs_ordered_extent *tmp;
4984 struct extent_map *em, *n;
4985 LIST_HEAD(extents);
4986 struct extent_map_tree *tree = &inode->extent_tree;
4987 int ret = 0;
4988 int num = 0;
4989
4990 write_lock(&tree->lock);
4991
4992 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4993 list_del_init(&em->list);
4994 /*
4995 * Just an arbitrary number, this can be really CPU intensive
4996 * once we start getting a lot of extents, and really once we
4997 * have a bunch of extents we just want to commit since it will
4998 * be faster.
4999 */
5000 if (++num > 32768) {
5001 list_del_init(&tree->modified_extents);
5002 ret = -EFBIG;
5003 goto process;
5004 }
5005
5006 if (em->generation < trans->transid)
5007 continue;
5008
5009 /* We log prealloc extents beyond eof later. */
5010 if ((em->flags & EXTENT_FLAG_PREALLOC) &&
5011 em->start >= i_size_read(&inode->vfs_inode))
5012 continue;
5013
5014 /* Need a ref to keep it from getting evicted from cache */
5015 refcount_inc(&em->refs);
5016 em->flags |= EXTENT_FLAG_LOGGING;
5017 list_add_tail(&em->list, &extents);
5018 num++;
5019 }
5020
5021 list_sort(NULL, &extents, extent_cmp);
5022 process:
5023 while (!list_empty(&extents)) {
5024 em = list_entry(extents.next, struct extent_map, list);
5025
5026 list_del_init(&em->list);
5027
5028 /*
5029 * If we had an error we just need to delete everybody from our
5030 * private list.
5031 */
5032 if (ret) {
5033 clear_em_logging(inode, em);
5034 free_extent_map(em);
5035 continue;
5036 }
5037
5038 write_unlock(&tree->lock);
5039
5040 ret = log_one_extent(trans, inode, em, path, ctx);
5041 write_lock(&tree->lock);
5042 clear_em_logging(inode, em);
5043 free_extent_map(em);
5044 }
5045 WARN_ON(!list_empty(&extents));
5046 write_unlock(&tree->lock);
5047
5048 if (!ret)
5049 ret = btrfs_log_prealloc_extents(trans, inode, path, ctx);
5050 if (ret)
5051 return ret;
5052
5053 /*
5054 * We have logged all extents successfully, now make sure the commit of
5055 * the current transaction waits for the ordered extents to complete
5056 * before it commits and wipes out the log trees, otherwise we would
5057 * lose data if an ordered extents completes after the transaction
5058 * commits and a power failure happens after the transaction commit.
5059 */
5060 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
5061 list_del_init(&ordered->log_list);
5062 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
5063
5064 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5065 spin_lock_irq(&inode->ordered_tree_lock);
5066 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5067 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
5068 atomic_inc(&trans->transaction->pending_ordered);
5069 }
5070 spin_unlock_irq(&inode->ordered_tree_lock);
5071 }
5072 btrfs_put_ordered_extent(ordered);
5073 }
5074
5075 return 0;
5076 }
5077
logged_inode_size(struct btrfs_root * log,struct btrfs_inode * inode,struct btrfs_path * path,u64 * size_ret)5078 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
5079 struct btrfs_path *path, u64 *size_ret)
5080 {
5081 struct btrfs_key key;
5082 int ret;
5083
5084 key.objectid = btrfs_ino(inode);
5085 key.type = BTRFS_INODE_ITEM_KEY;
5086 key.offset = 0;
5087
5088 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
5089 if (ret < 0) {
5090 return ret;
5091 } else if (ret > 0) {
5092 *size_ret = 0;
5093 } else {
5094 struct btrfs_inode_item *item;
5095
5096 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5097 struct btrfs_inode_item);
5098 *size_ret = btrfs_inode_size(path->nodes[0], item);
5099 /*
5100 * If the in-memory inode's i_size is smaller then the inode
5101 * size stored in the btree, return the inode's i_size, so
5102 * that we get a correct inode size after replaying the log
5103 * when before a power failure we had a shrinking truncate
5104 * followed by addition of a new name (rename / new hard link).
5105 * Otherwise return the inode size from the btree, to avoid
5106 * data loss when replaying a log due to previously doing a
5107 * write that expands the inode's size and logging a new name
5108 * immediately after.
5109 */
5110 if (*size_ret > inode->vfs_inode.i_size)
5111 *size_ret = inode->vfs_inode.i_size;
5112 }
5113
5114 btrfs_release_path(path);
5115 return 0;
5116 }
5117
5118 /*
5119 * At the moment we always log all xattrs. This is to figure out at log replay
5120 * time which xattrs must have their deletion replayed. If a xattr is missing
5121 * in the log tree and exists in the fs/subvol tree, we delete it. This is
5122 * because if a xattr is deleted, the inode is fsynced and a power failure
5123 * happens, causing the log to be replayed the next time the fs is mounted,
5124 * we want the xattr to not exist anymore (same behaviour as other filesystems
5125 * with a journal, ext3/4, xfs, f2fs, etc).
5126 */
btrfs_log_all_xattrs(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)5127 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5128 struct btrfs_inode *inode,
5129 struct btrfs_path *path,
5130 struct btrfs_path *dst_path,
5131 struct btrfs_log_ctx *ctx)
5132 {
5133 struct btrfs_root *root = inode->root;
5134 int ret;
5135 struct btrfs_key key;
5136 const u64 ino = btrfs_ino(inode);
5137 int ins_nr = 0;
5138 int start_slot = 0;
5139 bool found_xattrs = false;
5140
5141 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5142 return 0;
5143
5144 key.objectid = ino;
5145 key.type = BTRFS_XATTR_ITEM_KEY;
5146 key.offset = 0;
5147
5148 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5149 if (ret < 0)
5150 return ret;
5151
5152 while (true) {
5153 int slot = path->slots[0];
5154 struct extent_buffer *leaf = path->nodes[0];
5155 int nritems = btrfs_header_nritems(leaf);
5156
5157 if (slot >= nritems) {
5158 if (ins_nr > 0) {
5159 ret = copy_items(trans, inode, dst_path, path,
5160 start_slot, ins_nr, 1, 0, ctx);
5161 if (ret < 0)
5162 return ret;
5163 ins_nr = 0;
5164 }
5165 ret = btrfs_next_leaf(root, path);
5166 if (ret < 0)
5167 return ret;
5168 else if (ret > 0)
5169 break;
5170 continue;
5171 }
5172
5173 btrfs_item_key_to_cpu(leaf, &key, slot);
5174 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5175 break;
5176
5177 if (ins_nr == 0)
5178 start_slot = slot;
5179 ins_nr++;
5180 path->slots[0]++;
5181 found_xattrs = true;
5182 cond_resched();
5183 }
5184 if (ins_nr > 0) {
5185 ret = copy_items(trans, inode, dst_path, path,
5186 start_slot, ins_nr, 1, 0, ctx);
5187 if (ret < 0)
5188 return ret;
5189 }
5190
5191 if (!found_xattrs)
5192 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5193
5194 return 0;
5195 }
5196
5197 /*
5198 * When using the NO_HOLES feature if we punched a hole that causes the
5199 * deletion of entire leafs or all the extent items of the first leaf (the one
5200 * that contains the inode item and references) we may end up not processing
5201 * any extents, because there are no leafs with a generation matching the
5202 * current transaction that have extent items for our inode. So we need to find
5203 * if any holes exist and then log them. We also need to log holes after any
5204 * truncate operation that changes the inode's size.
5205 */
btrfs_log_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path)5206 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5207 struct btrfs_inode *inode,
5208 struct btrfs_path *path)
5209 {
5210 struct btrfs_root *root = inode->root;
5211 struct btrfs_fs_info *fs_info = root->fs_info;
5212 struct btrfs_key key;
5213 const u64 ino = btrfs_ino(inode);
5214 const u64 i_size = i_size_read(&inode->vfs_inode);
5215 u64 prev_extent_end = 0;
5216 int ret;
5217
5218 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5219 return 0;
5220
5221 key.objectid = ino;
5222 key.type = BTRFS_EXTENT_DATA_KEY;
5223 key.offset = 0;
5224
5225 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5226 if (ret < 0)
5227 return ret;
5228
5229 while (true) {
5230 struct extent_buffer *leaf = path->nodes[0];
5231
5232 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5233 ret = btrfs_next_leaf(root, path);
5234 if (ret < 0)
5235 return ret;
5236 if (ret > 0) {
5237 ret = 0;
5238 break;
5239 }
5240 leaf = path->nodes[0];
5241 }
5242
5243 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5244 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5245 break;
5246
5247 /* We have a hole, log it. */
5248 if (prev_extent_end < key.offset) {
5249 const u64 hole_len = key.offset - prev_extent_end;
5250
5251 /*
5252 * Release the path to avoid deadlocks with other code
5253 * paths that search the root while holding locks on
5254 * leafs from the log root.
5255 */
5256 btrfs_release_path(path);
5257 ret = btrfs_insert_hole_extent(trans, root->log_root,
5258 ino, prev_extent_end,
5259 hole_len);
5260 if (ret < 0)
5261 return ret;
5262
5263 /*
5264 * Search for the same key again in the root. Since it's
5265 * an extent item and we are holding the inode lock, the
5266 * key must still exist. If it doesn't just emit warning
5267 * and return an error to fall back to a transaction
5268 * commit.
5269 */
5270 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5271 if (ret < 0)
5272 return ret;
5273 if (WARN_ON(ret > 0))
5274 return -ENOENT;
5275 leaf = path->nodes[0];
5276 }
5277
5278 prev_extent_end = btrfs_file_extent_end(path);
5279 path->slots[0]++;
5280 cond_resched();
5281 }
5282
5283 if (prev_extent_end < i_size) {
5284 u64 hole_len;
5285
5286 btrfs_release_path(path);
5287 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5288 ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5289 prev_extent_end, hole_len);
5290 if (ret < 0)
5291 return ret;
5292 }
5293
5294 return 0;
5295 }
5296
5297 /*
5298 * When we are logging a new inode X, check if it doesn't have a reference that
5299 * matches the reference from some other inode Y created in a past transaction
5300 * and that was renamed in the current transaction. If we don't do this, then at
5301 * log replay time we can lose inode Y (and all its files if it's a directory):
5302 *
5303 * mkdir /mnt/x
5304 * echo "hello world" > /mnt/x/foobar
5305 * sync
5306 * mv /mnt/x /mnt/y
5307 * mkdir /mnt/x # or touch /mnt/x
5308 * xfs_io -c fsync /mnt/x
5309 * <power fail>
5310 * mount fs, trigger log replay
5311 *
5312 * After the log replay procedure, we would lose the first directory and all its
5313 * files (file foobar).
5314 * For the case where inode Y is not a directory we simply end up losing it:
5315 *
5316 * echo "123" > /mnt/foo
5317 * sync
5318 * mv /mnt/foo /mnt/bar
5319 * echo "abc" > /mnt/foo
5320 * xfs_io -c fsync /mnt/foo
5321 * <power fail>
5322 *
5323 * We also need this for cases where a snapshot entry is replaced by some other
5324 * entry (file or directory) otherwise we end up with an unreplayable log due to
5325 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5326 * if it were a regular entry:
5327 *
5328 * mkdir /mnt/x
5329 * btrfs subvolume snapshot /mnt /mnt/x/snap
5330 * btrfs subvolume delete /mnt/x/snap
5331 * rmdir /mnt/x
5332 * mkdir /mnt/x
5333 * fsync /mnt/x or fsync some new file inside it
5334 * <power fail>
5335 *
5336 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5337 * the same transaction.
5338 */
btrfs_check_ref_name_override(struct extent_buffer * eb,const int slot,const struct btrfs_key * key,struct btrfs_inode * inode,u64 * other_ino,u64 * other_parent)5339 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5340 const int slot,
5341 const struct btrfs_key *key,
5342 struct btrfs_inode *inode,
5343 u64 *other_ino, u64 *other_parent)
5344 {
5345 int ret;
5346 struct btrfs_path *search_path;
5347 char *name = NULL;
5348 u32 name_len = 0;
5349 u32 item_size = btrfs_item_size(eb, slot);
5350 u32 cur_offset = 0;
5351 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5352
5353 search_path = btrfs_alloc_path();
5354 if (!search_path)
5355 return -ENOMEM;
5356 search_path->search_commit_root = 1;
5357 search_path->skip_locking = 1;
5358
5359 while (cur_offset < item_size) {
5360 u64 parent;
5361 u32 this_name_len;
5362 u32 this_len;
5363 unsigned long name_ptr;
5364 struct btrfs_dir_item *di;
5365 struct fscrypt_str name_str;
5366
5367 if (key->type == BTRFS_INODE_REF_KEY) {
5368 struct btrfs_inode_ref *iref;
5369
5370 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5371 parent = key->offset;
5372 this_name_len = btrfs_inode_ref_name_len(eb, iref);
5373 name_ptr = (unsigned long)(iref + 1);
5374 this_len = sizeof(*iref) + this_name_len;
5375 } else {
5376 struct btrfs_inode_extref *extref;
5377
5378 extref = (struct btrfs_inode_extref *)(ptr +
5379 cur_offset);
5380 parent = btrfs_inode_extref_parent(eb, extref);
5381 this_name_len = btrfs_inode_extref_name_len(eb, extref);
5382 name_ptr = (unsigned long)&extref->name;
5383 this_len = sizeof(*extref) + this_name_len;
5384 }
5385
5386 if (this_name_len > name_len) {
5387 char *new_name;
5388
5389 new_name = krealloc(name, this_name_len, GFP_NOFS);
5390 if (!new_name) {
5391 ret = -ENOMEM;
5392 goto out;
5393 }
5394 name_len = this_name_len;
5395 name = new_name;
5396 }
5397
5398 read_extent_buffer(eb, name, name_ptr, this_name_len);
5399
5400 name_str.name = name;
5401 name_str.len = this_name_len;
5402 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5403 parent, &name_str, 0);
5404 if (di && !IS_ERR(di)) {
5405 struct btrfs_key di_key;
5406
5407 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5408 di, &di_key);
5409 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5410 if (di_key.objectid != key->objectid) {
5411 ret = 1;
5412 *other_ino = di_key.objectid;
5413 *other_parent = parent;
5414 } else {
5415 ret = 0;
5416 }
5417 } else {
5418 ret = -EAGAIN;
5419 }
5420 goto out;
5421 } else if (IS_ERR(di)) {
5422 ret = PTR_ERR(di);
5423 goto out;
5424 }
5425 btrfs_release_path(search_path);
5426
5427 cur_offset += this_len;
5428 }
5429 ret = 0;
5430 out:
5431 btrfs_free_path(search_path);
5432 kfree(name);
5433 return ret;
5434 }
5435
5436 /*
5437 * Check if we need to log an inode. This is used in contexts where while
5438 * logging an inode we need to log another inode (either that it exists or in
5439 * full mode). This is used instead of btrfs_inode_in_log() because the later
5440 * requires the inode to be in the log and have the log transaction committed,
5441 * while here we do not care if the log transaction was already committed - our
5442 * caller will commit the log later - and we want to avoid logging an inode
5443 * multiple times when multiple tasks have joined the same log transaction.
5444 */
need_log_inode(const struct btrfs_trans_handle * trans,struct btrfs_inode * inode)5445 static bool need_log_inode(const struct btrfs_trans_handle *trans,
5446 struct btrfs_inode *inode)
5447 {
5448 /*
5449 * If a directory was not modified, no dentries added or removed, we can
5450 * and should avoid logging it.
5451 */
5452 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5453 return false;
5454
5455 /*
5456 * If this inode does not have new/updated/deleted xattrs since the last
5457 * time it was logged and is flagged as logged in the current transaction,
5458 * we can skip logging it. As for new/deleted names, those are updated in
5459 * the log by link/unlink/rename operations.
5460 * In case the inode was logged and then evicted and reloaded, its
5461 * logged_trans will be 0, in which case we have to fully log it since
5462 * logged_trans is a transient field, not persisted.
5463 */
5464 if (inode_logged(trans, inode, NULL) == 1 &&
5465 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5466 return false;
5467
5468 return true;
5469 }
5470
5471 struct btrfs_dir_list {
5472 u64 ino;
5473 struct list_head list;
5474 };
5475
5476 /*
5477 * Log the inodes of the new dentries of a directory.
5478 * See process_dir_items_leaf() for details about why it is needed.
5479 * This is a recursive operation - if an existing dentry corresponds to a
5480 * directory, that directory's new entries are logged too (same behaviour as
5481 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5482 * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5483 * complains about the following circular lock dependency / possible deadlock:
5484 *
5485 * CPU0 CPU1
5486 * ---- ----
5487 * lock(&type->i_mutex_dir_key#3/2);
5488 * lock(sb_internal#2);
5489 * lock(&type->i_mutex_dir_key#3/2);
5490 * lock(&sb->s_type->i_mutex_key#14);
5491 *
5492 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5493 * sb_start_intwrite() in btrfs_start_transaction().
5494 * Not acquiring the VFS lock of the inodes is still safe because:
5495 *
5496 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5497 * that while logging the inode new references (names) are added or removed
5498 * from the inode, leaving the logged inode item with a link count that does
5499 * not match the number of logged inode reference items. This is fine because
5500 * at log replay time we compute the real number of links and correct the
5501 * link count in the inode item (see replay_one_buffer() and
5502 * link_to_fixup_dir());
5503 *
5504 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5505 * while logging the inode's items new index items (key type
5506 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5507 * has a size that doesn't match the sum of the lengths of all the logged
5508 * names - this is ok, not a problem, because at log replay time we set the
5509 * directory's i_size to the correct value (see replay_one_name() and
5510 * overwrite_item()).
5511 */
log_new_dir_dentries(struct btrfs_trans_handle * trans,struct btrfs_inode * start_inode,struct btrfs_log_ctx * ctx)5512 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5513 struct btrfs_inode *start_inode,
5514 struct btrfs_log_ctx *ctx)
5515 {
5516 struct btrfs_root *root = start_inode->root;
5517 struct btrfs_path *path;
5518 LIST_HEAD(dir_list);
5519 struct btrfs_dir_list *dir_elem;
5520 u64 ino = btrfs_ino(start_inode);
5521 struct btrfs_inode *curr_inode = start_inode;
5522 int ret = 0;
5523
5524 /*
5525 * If we are logging a new name, as part of a link or rename operation,
5526 * don't bother logging new dentries, as we just want to log the names
5527 * of an inode and that any new parents exist.
5528 */
5529 if (ctx->logging_new_name)
5530 return 0;
5531
5532 path = btrfs_alloc_path();
5533 if (!path)
5534 return -ENOMEM;
5535
5536 /* Pairs with btrfs_add_delayed_iput below. */
5537 ihold(&curr_inode->vfs_inode);
5538
5539 while (true) {
5540 struct btrfs_key key;
5541 struct btrfs_key found_key;
5542 u64 next_index;
5543 bool continue_curr_inode = true;
5544 int iter_ret;
5545
5546 key.objectid = ino;
5547 key.type = BTRFS_DIR_INDEX_KEY;
5548 key.offset = btrfs_get_first_dir_index_to_log(curr_inode);
5549 next_index = key.offset;
5550 again:
5551 btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) {
5552 struct extent_buffer *leaf = path->nodes[0];
5553 struct btrfs_dir_item *di;
5554 struct btrfs_key di_key;
5555 struct btrfs_inode *di_inode;
5556 int log_mode = LOG_INODE_EXISTS;
5557 int type;
5558
5559 if (found_key.objectid != ino ||
5560 found_key.type != BTRFS_DIR_INDEX_KEY) {
5561 continue_curr_inode = false;
5562 break;
5563 }
5564
5565 next_index = found_key.offset + 1;
5566
5567 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5568 type = btrfs_dir_ftype(leaf, di);
5569 if (btrfs_dir_transid(leaf, di) < trans->transid)
5570 continue;
5571 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5572 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5573 continue;
5574
5575 btrfs_release_path(path);
5576 di_inode = btrfs_iget_logging(di_key.objectid, root);
5577 if (IS_ERR(di_inode)) {
5578 ret = PTR_ERR(di_inode);
5579 goto out;
5580 }
5581
5582 if (!need_log_inode(trans, di_inode)) {
5583 btrfs_add_delayed_iput(di_inode);
5584 break;
5585 }
5586
5587 ctx->log_new_dentries = false;
5588 if (type == BTRFS_FT_DIR)
5589 log_mode = LOG_INODE_ALL;
5590 ret = btrfs_log_inode(trans, di_inode, log_mode, ctx);
5591 btrfs_add_delayed_iput(di_inode);
5592 if (ret)
5593 goto out;
5594 if (ctx->log_new_dentries) {
5595 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5596 if (!dir_elem) {
5597 ret = -ENOMEM;
5598 goto out;
5599 }
5600 dir_elem->ino = di_key.objectid;
5601 list_add_tail(&dir_elem->list, &dir_list);
5602 }
5603 break;
5604 }
5605
5606 btrfs_release_path(path);
5607
5608 if (iter_ret < 0) {
5609 ret = iter_ret;
5610 goto out;
5611 } else if (iter_ret > 0) {
5612 continue_curr_inode = false;
5613 } else {
5614 key = found_key;
5615 }
5616
5617 if (continue_curr_inode && key.offset < (u64)-1) {
5618 key.offset++;
5619 goto again;
5620 }
5621
5622 btrfs_set_first_dir_index_to_log(curr_inode, next_index);
5623
5624 if (list_empty(&dir_list))
5625 break;
5626
5627 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5628 ino = dir_elem->ino;
5629 list_del(&dir_elem->list);
5630 kfree(dir_elem);
5631
5632 btrfs_add_delayed_iput(curr_inode);
5633
5634 curr_inode = btrfs_iget_logging(ino, root);
5635 if (IS_ERR(curr_inode)) {
5636 ret = PTR_ERR(curr_inode);
5637 curr_inode = NULL;
5638 break;
5639 }
5640 }
5641 out:
5642 btrfs_free_path(path);
5643 if (curr_inode)
5644 btrfs_add_delayed_iput(curr_inode);
5645
5646 if (ret) {
5647 struct btrfs_dir_list *next;
5648
5649 list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5650 kfree(dir_elem);
5651 }
5652
5653 return ret;
5654 }
5655
5656 struct btrfs_ino_list {
5657 u64 ino;
5658 u64 parent;
5659 struct list_head list;
5660 };
5661
free_conflicting_inodes(struct btrfs_log_ctx * ctx)5662 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5663 {
5664 struct btrfs_ino_list *curr;
5665 struct btrfs_ino_list *next;
5666
5667 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5668 list_del(&curr->list);
5669 kfree(curr);
5670 }
5671 }
5672
conflicting_inode_is_dir(struct btrfs_root * root,u64 ino,struct btrfs_path * path)5673 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5674 struct btrfs_path *path)
5675 {
5676 struct btrfs_key key;
5677 int ret;
5678
5679 key.objectid = ino;
5680 key.type = BTRFS_INODE_ITEM_KEY;
5681 key.offset = 0;
5682
5683 path->search_commit_root = 1;
5684 path->skip_locking = 1;
5685
5686 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5687 if (WARN_ON_ONCE(ret > 0)) {
5688 /*
5689 * We have previously found the inode through the commit root
5690 * so this should not happen. If it does, just error out and
5691 * fallback to a transaction commit.
5692 */
5693 ret = -ENOENT;
5694 } else if (ret == 0) {
5695 struct btrfs_inode_item *item;
5696
5697 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5698 struct btrfs_inode_item);
5699 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5700 ret = 1;
5701 }
5702
5703 btrfs_release_path(path);
5704 path->search_commit_root = 0;
5705 path->skip_locking = 0;
5706
5707 return ret;
5708 }
5709
add_conflicting_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 ino,u64 parent,struct btrfs_log_ctx * ctx)5710 static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5711 struct btrfs_root *root,
5712 struct btrfs_path *path,
5713 u64 ino, u64 parent,
5714 struct btrfs_log_ctx *ctx)
5715 {
5716 struct btrfs_ino_list *ino_elem;
5717 struct btrfs_inode *inode;
5718
5719 /*
5720 * It's rare to have a lot of conflicting inodes, in practice it is not
5721 * common to have more than 1 or 2. We don't want to collect too many,
5722 * as we could end up logging too many inodes (even if only in
5723 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5724 * commits.
5725 */
5726 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5727 return BTRFS_LOG_FORCE_COMMIT;
5728
5729 inode = btrfs_iget_logging(ino, root);
5730 /*
5731 * If the other inode that had a conflicting dir entry was deleted in
5732 * the current transaction then we either:
5733 *
5734 * 1) Log the parent directory (later after adding it to the list) if
5735 * the inode is a directory. This is because it may be a deleted
5736 * subvolume/snapshot or it may be a regular directory that had
5737 * deleted subvolumes/snapshots (or subdirectories that had them),
5738 * and at the moment we can't deal with dropping subvolumes/snapshots
5739 * during log replay. So we just log the parent, which will result in
5740 * a fallback to a transaction commit if we are dealing with those
5741 * cases (last_unlink_trans will match the current transaction);
5742 *
5743 * 2) Do nothing if it's not a directory. During log replay we simply
5744 * unlink the conflicting dentry from the parent directory and then
5745 * add the dentry for our inode. Like this we can avoid logging the
5746 * parent directory (and maybe fallback to a transaction commit in
5747 * case it has a last_unlink_trans == trans->transid, due to moving
5748 * some inode from it to some other directory).
5749 */
5750 if (IS_ERR(inode)) {
5751 int ret = PTR_ERR(inode);
5752
5753 if (ret != -ENOENT)
5754 return ret;
5755
5756 ret = conflicting_inode_is_dir(root, ino, path);
5757 /* Not a directory or we got an error. */
5758 if (ret <= 0)
5759 return ret;
5760
5761 /* Conflicting inode is a directory, so we'll log its parent. */
5762 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5763 if (!ino_elem)
5764 return -ENOMEM;
5765 ino_elem->ino = ino;
5766 ino_elem->parent = parent;
5767 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5768 ctx->num_conflict_inodes++;
5769
5770 return 0;
5771 }
5772
5773 /*
5774 * If the inode was already logged skip it - otherwise we can hit an
5775 * infinite loop. Example:
5776 *
5777 * From the commit root (previous transaction) we have the following
5778 * inodes:
5779 *
5780 * inode 257 a directory
5781 * inode 258 with references "zz" and "zz_link" on inode 257
5782 * inode 259 with reference "a" on inode 257
5783 *
5784 * And in the current (uncommitted) transaction we have:
5785 *
5786 * inode 257 a directory, unchanged
5787 * inode 258 with references "a" and "a2" on inode 257
5788 * inode 259 with reference "zz_link" on inode 257
5789 * inode 261 with reference "zz" on inode 257
5790 *
5791 * When logging inode 261 the following infinite loop could
5792 * happen if we don't skip already logged inodes:
5793 *
5794 * - we detect inode 258 as a conflicting inode, with inode 261
5795 * on reference "zz", and log it;
5796 *
5797 * - we detect inode 259 as a conflicting inode, with inode 258
5798 * on reference "a", and log it;
5799 *
5800 * - we detect inode 258 as a conflicting inode, with inode 259
5801 * on reference "zz_link", and log it - again! After this we
5802 * repeat the above steps forever.
5803 *
5804 * Here we can use need_log_inode() because we only need to log the
5805 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5806 * so that the log ends up with the new name and without the old name.
5807 */
5808 if (!need_log_inode(trans, inode)) {
5809 btrfs_add_delayed_iput(inode);
5810 return 0;
5811 }
5812
5813 btrfs_add_delayed_iput(inode);
5814
5815 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5816 if (!ino_elem)
5817 return -ENOMEM;
5818 ino_elem->ino = ino;
5819 ino_elem->parent = parent;
5820 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5821 ctx->num_conflict_inodes++;
5822
5823 return 0;
5824 }
5825
log_conflicting_inodes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)5826 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5827 struct btrfs_root *root,
5828 struct btrfs_log_ctx *ctx)
5829 {
5830 int ret = 0;
5831
5832 /*
5833 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5834 * otherwise we could have unbounded recursion of btrfs_log_inode()
5835 * calls. This check guarantees we can have only 1 level of recursion.
5836 */
5837 if (ctx->logging_conflict_inodes)
5838 return 0;
5839
5840 ctx->logging_conflict_inodes = true;
5841
5842 /*
5843 * New conflicting inodes may be found and added to the list while we
5844 * are logging a conflicting inode, so keep iterating while the list is
5845 * not empty.
5846 */
5847 while (!list_empty(&ctx->conflict_inodes)) {
5848 struct btrfs_ino_list *curr;
5849 struct btrfs_inode *inode;
5850 u64 ino;
5851 u64 parent;
5852
5853 curr = list_first_entry(&ctx->conflict_inodes,
5854 struct btrfs_ino_list, list);
5855 ino = curr->ino;
5856 parent = curr->parent;
5857 list_del(&curr->list);
5858 kfree(curr);
5859
5860 inode = btrfs_iget_logging(ino, root);
5861 /*
5862 * If the other inode that had a conflicting dir entry was
5863 * deleted in the current transaction, we need to log its parent
5864 * directory. See the comment at add_conflicting_inode().
5865 */
5866 if (IS_ERR(inode)) {
5867 ret = PTR_ERR(inode);
5868 if (ret != -ENOENT)
5869 break;
5870
5871 inode = btrfs_iget_logging(parent, root);
5872 if (IS_ERR(inode)) {
5873 ret = PTR_ERR(inode);
5874 break;
5875 }
5876
5877 /*
5878 * Always log the directory, we cannot make this
5879 * conditional on need_log_inode() because the directory
5880 * might have been logged in LOG_INODE_EXISTS mode or
5881 * the dir index of the conflicting inode is not in a
5882 * dir index key range logged for the directory. So we
5883 * must make sure the deletion is recorded.
5884 */
5885 ret = btrfs_log_inode(trans, inode, LOG_INODE_ALL, ctx);
5886 btrfs_add_delayed_iput(inode);
5887 if (ret)
5888 break;
5889 continue;
5890 }
5891
5892 /*
5893 * Here we can use need_log_inode() because we only need to log
5894 * the inode in LOG_INODE_EXISTS mode and rename operations
5895 * update the log, so that the log ends up with the new name and
5896 * without the old name.
5897 *
5898 * We did this check at add_conflicting_inode(), but here we do
5899 * it again because if some other task logged the inode after
5900 * that, we can avoid doing it again.
5901 */
5902 if (!need_log_inode(trans, inode)) {
5903 btrfs_add_delayed_iput(inode);
5904 continue;
5905 }
5906
5907 /*
5908 * We are safe logging the other inode without acquiring its
5909 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5910 * are safe against concurrent renames of the other inode as
5911 * well because during a rename we pin the log and update the
5912 * log with the new name before we unpin it.
5913 */
5914 ret = btrfs_log_inode(trans, inode, LOG_INODE_EXISTS, ctx);
5915 btrfs_add_delayed_iput(inode);
5916 if (ret)
5917 break;
5918 }
5919
5920 ctx->logging_conflict_inodes = false;
5921 if (ret)
5922 free_conflicting_inodes(ctx);
5923
5924 return ret;
5925 }
5926
copy_inode_items_to_log(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_key * min_key,const struct btrfs_key * max_key,struct btrfs_path * path,struct btrfs_path * dst_path,const u64 logged_isize,const int inode_only,struct btrfs_log_ctx * ctx,bool * need_log_inode_item)5927 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5928 struct btrfs_inode *inode,
5929 struct btrfs_key *min_key,
5930 const struct btrfs_key *max_key,
5931 struct btrfs_path *path,
5932 struct btrfs_path *dst_path,
5933 const u64 logged_isize,
5934 const int inode_only,
5935 struct btrfs_log_ctx *ctx,
5936 bool *need_log_inode_item)
5937 {
5938 const u64 i_size = i_size_read(&inode->vfs_inode);
5939 struct btrfs_root *root = inode->root;
5940 int ins_start_slot = 0;
5941 int ins_nr = 0;
5942 int ret;
5943
5944 while (1) {
5945 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5946 if (ret < 0)
5947 return ret;
5948 if (ret > 0) {
5949 ret = 0;
5950 break;
5951 }
5952 again:
5953 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5954 if (min_key->objectid != max_key->objectid)
5955 break;
5956 if (min_key->type > max_key->type)
5957 break;
5958
5959 if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5960 *need_log_inode_item = false;
5961 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5962 min_key->offset >= i_size) {
5963 /*
5964 * Extents at and beyond eof are logged with
5965 * btrfs_log_prealloc_extents().
5966 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5967 * and no keys greater than that, so bail out.
5968 */
5969 break;
5970 } else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5971 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5972 (inode->generation == trans->transid ||
5973 ctx->logging_conflict_inodes)) {
5974 u64 other_ino = 0;
5975 u64 other_parent = 0;
5976
5977 ret = btrfs_check_ref_name_override(path->nodes[0],
5978 path->slots[0], min_key, inode,
5979 &other_ino, &other_parent);
5980 if (ret < 0) {
5981 return ret;
5982 } else if (ret > 0 &&
5983 other_ino != btrfs_ino(ctx->inode)) {
5984 if (ins_nr > 0) {
5985 ins_nr++;
5986 } else {
5987 ins_nr = 1;
5988 ins_start_slot = path->slots[0];
5989 }
5990 ret = copy_items(trans, inode, dst_path, path,
5991 ins_start_slot, ins_nr,
5992 inode_only, logged_isize, ctx);
5993 if (ret < 0)
5994 return ret;
5995 ins_nr = 0;
5996
5997 btrfs_release_path(path);
5998 ret = add_conflicting_inode(trans, root, path,
5999 other_ino,
6000 other_parent, ctx);
6001 if (ret)
6002 return ret;
6003 goto next_key;
6004 }
6005 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
6006 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */
6007 if (ins_nr == 0)
6008 goto next_slot;
6009 ret = copy_items(trans, inode, dst_path, path,
6010 ins_start_slot,
6011 ins_nr, inode_only, logged_isize, ctx);
6012 if (ret < 0)
6013 return ret;
6014 ins_nr = 0;
6015 goto next_slot;
6016 }
6017
6018 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
6019 ins_nr++;
6020 goto next_slot;
6021 } else if (!ins_nr) {
6022 ins_start_slot = path->slots[0];
6023 ins_nr = 1;
6024 goto next_slot;
6025 }
6026
6027 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
6028 ins_nr, inode_only, logged_isize, ctx);
6029 if (ret < 0)
6030 return ret;
6031 ins_nr = 1;
6032 ins_start_slot = path->slots[0];
6033 next_slot:
6034 path->slots[0]++;
6035 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
6036 btrfs_item_key_to_cpu(path->nodes[0], min_key,
6037 path->slots[0]);
6038 goto again;
6039 }
6040 if (ins_nr) {
6041 ret = copy_items(trans, inode, dst_path, path,
6042 ins_start_slot, ins_nr, inode_only,
6043 logged_isize, ctx);
6044 if (ret < 0)
6045 return ret;
6046 ins_nr = 0;
6047 }
6048 btrfs_release_path(path);
6049 next_key:
6050 if (min_key->offset < (u64)-1) {
6051 min_key->offset++;
6052 } else if (min_key->type < max_key->type) {
6053 min_key->type++;
6054 min_key->offset = 0;
6055 } else {
6056 break;
6057 }
6058
6059 /*
6060 * We may process many leaves full of items for our inode, so
6061 * avoid monopolizing a cpu for too long by rescheduling while
6062 * not holding locks on any tree.
6063 */
6064 cond_resched();
6065 }
6066 if (ins_nr) {
6067 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
6068 ins_nr, inode_only, logged_isize, ctx);
6069 if (ret)
6070 return ret;
6071 }
6072
6073 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
6074 /*
6075 * Release the path because otherwise we might attempt to double
6076 * lock the same leaf with btrfs_log_prealloc_extents() below.
6077 */
6078 btrfs_release_path(path);
6079 ret = btrfs_log_prealloc_extents(trans, inode, dst_path, ctx);
6080 }
6081
6082 return ret;
6083 }
6084
insert_delayed_items_batch(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,const struct btrfs_item_batch * batch,const struct btrfs_delayed_item * first_item)6085 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
6086 struct btrfs_root *log,
6087 struct btrfs_path *path,
6088 const struct btrfs_item_batch *batch,
6089 const struct btrfs_delayed_item *first_item)
6090 {
6091 const struct btrfs_delayed_item *curr = first_item;
6092 int ret;
6093
6094 ret = btrfs_insert_empty_items(trans, log, path, batch);
6095 if (ret)
6096 return ret;
6097
6098 for (int i = 0; i < batch->nr; i++) {
6099 char *data_ptr;
6100
6101 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
6102 write_extent_buffer(path->nodes[0], &curr->data,
6103 (unsigned long)data_ptr, curr->data_len);
6104 curr = list_next_entry(curr, log_list);
6105 path->slots[0]++;
6106 }
6107
6108 btrfs_release_path(path);
6109
6110 return 0;
6111 }
6112
log_delayed_insertion_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_ins_list,struct btrfs_log_ctx * ctx)6113 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
6114 struct btrfs_inode *inode,
6115 struct btrfs_path *path,
6116 const struct list_head *delayed_ins_list,
6117 struct btrfs_log_ctx *ctx)
6118 {
6119 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6120 const int max_batch_size = 195;
6121 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6122 const u64 ino = btrfs_ino(inode);
6123 struct btrfs_root *log = inode->root->log_root;
6124 struct btrfs_item_batch batch = {
6125 .nr = 0,
6126 .total_data_size = 0,
6127 };
6128 const struct btrfs_delayed_item *first = NULL;
6129 const struct btrfs_delayed_item *curr;
6130 char *ins_data;
6131 struct btrfs_key *ins_keys;
6132 u32 *ins_sizes;
6133 u64 curr_batch_size = 0;
6134 int batch_idx = 0;
6135 int ret;
6136
6137 /* We are adding dir index items to the log tree. */
6138 lockdep_assert_held(&inode->log_mutex);
6139
6140 /*
6141 * We collect delayed items before copying index keys from the subvolume
6142 * to the log tree. However just after we collected them, they may have
6143 * been flushed (all of them or just some of them), and therefore we
6144 * could have copied them from the subvolume tree to the log tree.
6145 * So find the first delayed item that was not yet logged (they are
6146 * sorted by index number).
6147 */
6148 list_for_each_entry(curr, delayed_ins_list, log_list) {
6149 if (curr->index > inode->last_dir_index_offset) {
6150 first = curr;
6151 break;
6152 }
6153 }
6154
6155 /* Empty list or all delayed items were already logged. */
6156 if (!first)
6157 return 0;
6158
6159 ins_data = kmalloc(max_batch_size * sizeof(u32) +
6160 max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6161 if (!ins_data)
6162 return -ENOMEM;
6163 ins_sizes = (u32 *)ins_data;
6164 batch.data_sizes = ins_sizes;
6165 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6166 batch.keys = ins_keys;
6167
6168 curr = first;
6169 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6170 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6171
6172 if (curr_batch_size + curr_size > leaf_data_size ||
6173 batch.nr == max_batch_size) {
6174 ret = insert_delayed_items_batch(trans, log, path,
6175 &batch, first);
6176 if (ret)
6177 goto out;
6178 batch_idx = 0;
6179 batch.nr = 0;
6180 batch.total_data_size = 0;
6181 curr_batch_size = 0;
6182 first = curr;
6183 }
6184
6185 ins_sizes[batch_idx] = curr->data_len;
6186 ins_keys[batch_idx].objectid = ino;
6187 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6188 ins_keys[batch_idx].offset = curr->index;
6189 curr_batch_size += curr_size;
6190 batch.total_data_size += curr->data_len;
6191 batch.nr++;
6192 batch_idx++;
6193 curr = list_next_entry(curr, log_list);
6194 }
6195
6196 ASSERT(batch.nr >= 1);
6197 ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6198
6199 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6200 log_list);
6201 inode->last_dir_index_offset = curr->index;
6202 out:
6203 kfree(ins_data);
6204
6205 return ret;
6206 }
6207
log_delayed_deletions_full(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6208 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6209 struct btrfs_inode *inode,
6210 struct btrfs_path *path,
6211 const struct list_head *delayed_del_list,
6212 struct btrfs_log_ctx *ctx)
6213 {
6214 const u64 ino = btrfs_ino(inode);
6215 const struct btrfs_delayed_item *curr;
6216
6217 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6218 log_list);
6219
6220 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6221 u64 first_dir_index = curr->index;
6222 u64 last_dir_index;
6223 const struct btrfs_delayed_item *next;
6224 int ret;
6225
6226 /*
6227 * Find a range of consecutive dir index items to delete. Like
6228 * this we log a single dir range item spanning several contiguous
6229 * dir items instead of logging one range item per dir index item.
6230 */
6231 next = list_next_entry(curr, log_list);
6232 while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6233 if (next->index != curr->index + 1)
6234 break;
6235 curr = next;
6236 next = list_next_entry(next, log_list);
6237 }
6238
6239 last_dir_index = curr->index;
6240 ASSERT(last_dir_index >= first_dir_index);
6241
6242 ret = insert_dir_log_key(trans, inode->root->log_root, path,
6243 ino, first_dir_index, last_dir_index);
6244 if (ret)
6245 return ret;
6246 curr = list_next_entry(curr, log_list);
6247 }
6248
6249 return 0;
6250 }
6251
batch_delete_dir_index_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx,const struct list_head * delayed_del_list,const struct btrfs_delayed_item * first,const struct btrfs_delayed_item ** last_ret)6252 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6253 struct btrfs_inode *inode,
6254 struct btrfs_path *path,
6255 struct btrfs_log_ctx *ctx,
6256 const struct list_head *delayed_del_list,
6257 const struct btrfs_delayed_item *first,
6258 const struct btrfs_delayed_item **last_ret)
6259 {
6260 const struct btrfs_delayed_item *next;
6261 struct extent_buffer *leaf = path->nodes[0];
6262 const int last_slot = btrfs_header_nritems(leaf) - 1;
6263 int slot = path->slots[0] + 1;
6264 const u64 ino = btrfs_ino(inode);
6265
6266 next = list_next_entry(first, log_list);
6267
6268 while (slot < last_slot &&
6269 !list_entry_is_head(next, delayed_del_list, log_list)) {
6270 struct btrfs_key key;
6271
6272 btrfs_item_key_to_cpu(leaf, &key, slot);
6273 if (key.objectid != ino ||
6274 key.type != BTRFS_DIR_INDEX_KEY ||
6275 key.offset != next->index)
6276 break;
6277
6278 slot++;
6279 *last_ret = next;
6280 next = list_next_entry(next, log_list);
6281 }
6282
6283 return btrfs_del_items(trans, inode->root->log_root, path,
6284 path->slots[0], slot - path->slots[0]);
6285 }
6286
log_delayed_deletions_incremental(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6287 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6288 struct btrfs_inode *inode,
6289 struct btrfs_path *path,
6290 const struct list_head *delayed_del_list,
6291 struct btrfs_log_ctx *ctx)
6292 {
6293 struct btrfs_root *log = inode->root->log_root;
6294 const struct btrfs_delayed_item *curr;
6295 u64 last_range_start = 0;
6296 u64 last_range_end = 0;
6297 struct btrfs_key key;
6298
6299 key.objectid = btrfs_ino(inode);
6300 key.type = BTRFS_DIR_INDEX_KEY;
6301 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6302 log_list);
6303
6304 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6305 const struct btrfs_delayed_item *last = curr;
6306 u64 first_dir_index = curr->index;
6307 u64 last_dir_index;
6308 bool deleted_items = false;
6309 int ret;
6310
6311 key.offset = curr->index;
6312 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6313 if (ret < 0) {
6314 return ret;
6315 } else if (ret == 0) {
6316 ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6317 delayed_del_list, curr,
6318 &last);
6319 if (ret)
6320 return ret;
6321 deleted_items = true;
6322 }
6323
6324 btrfs_release_path(path);
6325
6326 /*
6327 * If we deleted items from the leaf, it means we have a range
6328 * item logging their range, so no need to add one or update an
6329 * existing one. Otherwise we have to log a dir range item.
6330 */
6331 if (deleted_items)
6332 goto next_batch;
6333
6334 last_dir_index = last->index;
6335 ASSERT(last_dir_index >= first_dir_index);
6336 /*
6337 * If this range starts right after where the previous one ends,
6338 * then we want to reuse the previous range item and change its
6339 * end offset to the end of this range. This is just to minimize
6340 * leaf space usage, by avoiding adding a new range item.
6341 */
6342 if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6343 first_dir_index = last_range_start;
6344
6345 ret = insert_dir_log_key(trans, log, path, key.objectid,
6346 first_dir_index, last_dir_index);
6347 if (ret)
6348 return ret;
6349
6350 last_range_start = first_dir_index;
6351 last_range_end = last_dir_index;
6352 next_batch:
6353 curr = list_next_entry(last, log_list);
6354 }
6355
6356 return 0;
6357 }
6358
log_delayed_deletion_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6359 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6360 struct btrfs_inode *inode,
6361 struct btrfs_path *path,
6362 const struct list_head *delayed_del_list,
6363 struct btrfs_log_ctx *ctx)
6364 {
6365 /*
6366 * We are deleting dir index items from the log tree or adding range
6367 * items to it.
6368 */
6369 lockdep_assert_held(&inode->log_mutex);
6370
6371 if (list_empty(delayed_del_list))
6372 return 0;
6373
6374 if (ctx->logged_before)
6375 return log_delayed_deletions_incremental(trans, inode, path,
6376 delayed_del_list, ctx);
6377
6378 return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6379 ctx);
6380 }
6381
6382 /*
6383 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6384 * items instead of the subvolume tree.
6385 */
log_new_delayed_dentries(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,const struct list_head * delayed_ins_list,struct btrfs_log_ctx * ctx)6386 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6387 struct btrfs_inode *inode,
6388 const struct list_head *delayed_ins_list,
6389 struct btrfs_log_ctx *ctx)
6390 {
6391 const bool orig_log_new_dentries = ctx->log_new_dentries;
6392 struct btrfs_delayed_item *item;
6393 int ret = 0;
6394
6395 /*
6396 * No need for the log mutex, plus to avoid potential deadlocks or
6397 * lockdep annotations due to nesting of delayed inode mutexes and log
6398 * mutexes.
6399 */
6400 lockdep_assert_not_held(&inode->log_mutex);
6401
6402 ASSERT(!ctx->logging_new_delayed_dentries);
6403 ctx->logging_new_delayed_dentries = true;
6404
6405 list_for_each_entry(item, delayed_ins_list, log_list) {
6406 struct btrfs_dir_item *dir_item;
6407 struct btrfs_inode *di_inode;
6408 struct btrfs_key key;
6409 int log_mode = LOG_INODE_EXISTS;
6410
6411 dir_item = (struct btrfs_dir_item *)item->data;
6412 btrfs_disk_key_to_cpu(&key, &dir_item->location);
6413
6414 if (key.type == BTRFS_ROOT_ITEM_KEY)
6415 continue;
6416
6417 di_inode = btrfs_iget_logging(key.objectid, inode->root);
6418 if (IS_ERR(di_inode)) {
6419 ret = PTR_ERR(di_inode);
6420 break;
6421 }
6422
6423 if (!need_log_inode(trans, di_inode)) {
6424 btrfs_add_delayed_iput(di_inode);
6425 continue;
6426 }
6427
6428 if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6429 log_mode = LOG_INODE_ALL;
6430
6431 ctx->log_new_dentries = false;
6432 ret = btrfs_log_inode(trans, di_inode, log_mode, ctx);
6433
6434 if (!ret && ctx->log_new_dentries)
6435 ret = log_new_dir_dentries(trans, di_inode, ctx);
6436
6437 btrfs_add_delayed_iput(di_inode);
6438
6439 if (ret)
6440 break;
6441 }
6442
6443 ctx->log_new_dentries = orig_log_new_dentries;
6444 ctx->logging_new_delayed_dentries = false;
6445
6446 return ret;
6447 }
6448
6449 /* log a single inode in the tree log.
6450 * At least one parent directory for this inode must exist in the tree
6451 * or be logged already.
6452 *
6453 * Any items from this inode changed by the current transaction are copied
6454 * to the log tree. An extra reference is taken on any extents in this
6455 * file, allowing us to avoid a whole pile of corner cases around logging
6456 * blocks that have been removed from the tree.
6457 *
6458 * See LOG_INODE_ALL and related defines for a description of what inode_only
6459 * does.
6460 *
6461 * This handles both files and directories.
6462 */
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,int inode_only,struct btrfs_log_ctx * ctx)6463 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6464 struct btrfs_inode *inode,
6465 int inode_only,
6466 struct btrfs_log_ctx *ctx)
6467 {
6468 struct btrfs_path *path;
6469 struct btrfs_path *dst_path;
6470 struct btrfs_key min_key;
6471 struct btrfs_key max_key;
6472 struct btrfs_root *log = inode->root->log_root;
6473 int ret;
6474 bool fast_search = false;
6475 u64 ino = btrfs_ino(inode);
6476 struct extent_map_tree *em_tree = &inode->extent_tree;
6477 u64 logged_isize = 0;
6478 bool need_log_inode_item = true;
6479 bool xattrs_logged = false;
6480 bool inode_item_dropped = true;
6481 bool full_dir_logging = false;
6482 LIST_HEAD(delayed_ins_list);
6483 LIST_HEAD(delayed_del_list);
6484
6485 path = btrfs_alloc_path();
6486 if (!path)
6487 return -ENOMEM;
6488 dst_path = btrfs_alloc_path();
6489 if (!dst_path) {
6490 btrfs_free_path(path);
6491 return -ENOMEM;
6492 }
6493
6494 min_key.objectid = ino;
6495 min_key.type = BTRFS_INODE_ITEM_KEY;
6496 min_key.offset = 0;
6497
6498 max_key.objectid = ino;
6499
6500
6501 /* today the code can only do partial logging of directories */
6502 if (S_ISDIR(inode->vfs_inode.i_mode) ||
6503 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6504 &inode->runtime_flags) &&
6505 inode_only >= LOG_INODE_EXISTS))
6506 max_key.type = BTRFS_XATTR_ITEM_KEY;
6507 else
6508 max_key.type = (u8)-1;
6509 max_key.offset = (u64)-1;
6510
6511 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6512 full_dir_logging = true;
6513
6514 /*
6515 * If we are logging a directory while we are logging dentries of the
6516 * delayed items of some other inode, then we need to flush the delayed
6517 * items of this directory and not log the delayed items directly. This
6518 * is to prevent more than one level of recursion into btrfs_log_inode()
6519 * by having something like this:
6520 *
6521 * $ mkdir -p a/b/c/d/e/f/g/h/...
6522 * $ xfs_io -c "fsync" a
6523 *
6524 * Where all directories in the path did not exist before and are
6525 * created in the current transaction.
6526 * So in such a case we directly log the delayed items of the main
6527 * directory ("a") without flushing them first, while for each of its
6528 * subdirectories we flush their delayed items before logging them.
6529 * This prevents a potential unbounded recursion like this:
6530 *
6531 * btrfs_log_inode()
6532 * log_new_delayed_dentries()
6533 * btrfs_log_inode()
6534 * log_new_delayed_dentries()
6535 * btrfs_log_inode()
6536 * log_new_delayed_dentries()
6537 * (...)
6538 *
6539 * We have thresholds for the maximum number of delayed items to have in
6540 * memory, and once they are hit, the items are flushed asynchronously.
6541 * However the limit is quite high, so lets prevent deep levels of
6542 * recursion to happen by limiting the maximum depth to be 1.
6543 */
6544 if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6545 ret = btrfs_commit_inode_delayed_items(trans, inode);
6546 if (ret)
6547 goto out;
6548 }
6549
6550 mutex_lock(&inode->log_mutex);
6551
6552 /*
6553 * For symlinks, we must always log their content, which is stored in an
6554 * inline extent, otherwise we could end up with an empty symlink after
6555 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6556 * one attempts to create an empty symlink).
6557 * We don't need to worry about flushing delalloc, because when we create
6558 * the inline extent when the symlink is created (we never have delalloc
6559 * for symlinks).
6560 */
6561 if (S_ISLNK(inode->vfs_inode.i_mode))
6562 inode_only = LOG_INODE_ALL;
6563
6564 /*
6565 * Before logging the inode item, cache the value returned by
6566 * inode_logged(), because after that we have the need to figure out if
6567 * the inode was previously logged in this transaction.
6568 */
6569 ret = inode_logged(trans, inode, path);
6570 if (ret < 0)
6571 goto out_unlock;
6572 ctx->logged_before = (ret == 1);
6573 ret = 0;
6574
6575 /*
6576 * This is for cases where logging a directory could result in losing a
6577 * a file after replaying the log. For example, if we move a file from a
6578 * directory A to a directory B, then fsync directory A, we have no way
6579 * to known the file was moved from A to B, so logging just A would
6580 * result in losing the file after a log replay.
6581 */
6582 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6583 ret = BTRFS_LOG_FORCE_COMMIT;
6584 goto out_unlock;
6585 }
6586
6587 /*
6588 * a brute force approach to making sure we get the most uptodate
6589 * copies of everything.
6590 */
6591 if (S_ISDIR(inode->vfs_inode.i_mode)) {
6592 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6593 if (ctx->logged_before)
6594 ret = drop_inode_items(trans, log, path, inode,
6595 BTRFS_XATTR_ITEM_KEY);
6596 } else {
6597 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6598 /*
6599 * Make sure the new inode item we write to the log has
6600 * the same isize as the current one (if it exists).
6601 * This is necessary to prevent data loss after log
6602 * replay, and also to prevent doing a wrong expanding
6603 * truncate - for e.g. create file, write 4K into offset
6604 * 0, fsync, write 4K into offset 4096, add hard link,
6605 * fsync some other file (to sync log), power fail - if
6606 * we use the inode's current i_size, after log replay
6607 * we get a 8Kb file, with the last 4Kb extent as a hole
6608 * (zeroes), as if an expanding truncate happened,
6609 * instead of getting a file of 4Kb only.
6610 */
6611 ret = logged_inode_size(log, inode, path, &logged_isize);
6612 if (ret)
6613 goto out_unlock;
6614 }
6615 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6616 &inode->runtime_flags)) {
6617 if (inode_only == LOG_INODE_EXISTS) {
6618 max_key.type = BTRFS_XATTR_ITEM_KEY;
6619 if (ctx->logged_before)
6620 ret = drop_inode_items(trans, log, path,
6621 inode, max_key.type);
6622 } else {
6623 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6624 &inode->runtime_flags);
6625 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6626 &inode->runtime_flags);
6627 if (ctx->logged_before)
6628 ret = truncate_inode_items(trans, log,
6629 inode, 0, 0);
6630 }
6631 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6632 &inode->runtime_flags) ||
6633 inode_only == LOG_INODE_EXISTS) {
6634 if (inode_only == LOG_INODE_ALL)
6635 fast_search = true;
6636 max_key.type = BTRFS_XATTR_ITEM_KEY;
6637 if (ctx->logged_before)
6638 ret = drop_inode_items(trans, log, path, inode,
6639 max_key.type);
6640 } else {
6641 if (inode_only == LOG_INODE_ALL)
6642 fast_search = true;
6643 inode_item_dropped = false;
6644 goto log_extents;
6645 }
6646
6647 }
6648 if (ret)
6649 goto out_unlock;
6650
6651 /*
6652 * If we are logging a directory in full mode, collect the delayed items
6653 * before iterating the subvolume tree, so that we don't miss any new
6654 * dir index items in case they get flushed while or right after we are
6655 * iterating the subvolume tree.
6656 */
6657 if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6658 btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6659 &delayed_del_list);
6660
6661 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6662 path, dst_path, logged_isize,
6663 inode_only, ctx,
6664 &need_log_inode_item);
6665 if (ret)
6666 goto out_unlock;
6667
6668 btrfs_release_path(path);
6669 btrfs_release_path(dst_path);
6670 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6671 if (ret)
6672 goto out_unlock;
6673 xattrs_logged = true;
6674 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6675 btrfs_release_path(path);
6676 btrfs_release_path(dst_path);
6677 ret = btrfs_log_holes(trans, inode, path);
6678 if (ret)
6679 goto out_unlock;
6680 }
6681 log_extents:
6682 btrfs_release_path(path);
6683 btrfs_release_path(dst_path);
6684 if (need_log_inode_item) {
6685 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6686 if (ret)
6687 goto out_unlock;
6688 /*
6689 * If we are doing a fast fsync and the inode was logged before
6690 * in this transaction, we don't need to log the xattrs because
6691 * they were logged before. If xattrs were added, changed or
6692 * deleted since the last time we logged the inode, then we have
6693 * already logged them because the inode had the runtime flag
6694 * BTRFS_INODE_COPY_EVERYTHING set.
6695 */
6696 if (!xattrs_logged && inode->logged_trans < trans->transid) {
6697 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6698 if (ret)
6699 goto out_unlock;
6700 btrfs_release_path(path);
6701 }
6702 }
6703 if (fast_search) {
6704 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6705 if (ret)
6706 goto out_unlock;
6707 } else if (inode_only == LOG_INODE_ALL) {
6708 struct extent_map *em, *n;
6709
6710 write_lock(&em_tree->lock);
6711 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6712 list_del_init(&em->list);
6713 write_unlock(&em_tree->lock);
6714 }
6715
6716 if (full_dir_logging) {
6717 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6718 if (ret)
6719 goto out_unlock;
6720 ret = log_delayed_insertion_items(trans, inode, path,
6721 &delayed_ins_list, ctx);
6722 if (ret)
6723 goto out_unlock;
6724 ret = log_delayed_deletion_items(trans, inode, path,
6725 &delayed_del_list, ctx);
6726 if (ret)
6727 goto out_unlock;
6728 }
6729
6730 spin_lock(&inode->lock);
6731 inode->logged_trans = trans->transid;
6732 /*
6733 * Don't update last_log_commit if we logged that an inode exists.
6734 * We do this for three reasons:
6735 *
6736 * 1) We might have had buffered writes to this inode that were
6737 * flushed and had their ordered extents completed in this
6738 * transaction, but we did not previously log the inode with
6739 * LOG_INODE_ALL. Later the inode was evicted and after that
6740 * it was loaded again and this LOG_INODE_EXISTS log operation
6741 * happened. We must make sure that if an explicit fsync against
6742 * the inode is performed later, it logs the new extents, an
6743 * updated inode item, etc, and syncs the log. The same logic
6744 * applies to direct IO writes instead of buffered writes.
6745 *
6746 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6747 * is logged with an i_size of 0 or whatever value was logged
6748 * before. If later the i_size of the inode is increased by a
6749 * truncate operation, the log is synced through an fsync of
6750 * some other inode and then finally an explicit fsync against
6751 * this inode is made, we must make sure this fsync logs the
6752 * inode with the new i_size, the hole between old i_size and
6753 * the new i_size, and syncs the log.
6754 *
6755 * 3) If we are logging that an ancestor inode exists as part of
6756 * logging a new name from a link or rename operation, don't update
6757 * its last_log_commit - otherwise if an explicit fsync is made
6758 * against an ancestor, the fsync considers the inode in the log
6759 * and doesn't sync the log, resulting in the ancestor missing after
6760 * a power failure unless the log was synced as part of an fsync
6761 * against any other unrelated inode.
6762 */
6763 if (inode_only != LOG_INODE_EXISTS)
6764 inode->last_log_commit = inode->last_sub_trans;
6765 spin_unlock(&inode->lock);
6766
6767 /*
6768 * Reset the last_reflink_trans so that the next fsync does not need to
6769 * go through the slower path when logging extents and their checksums.
6770 */
6771 if (inode_only == LOG_INODE_ALL)
6772 inode->last_reflink_trans = 0;
6773
6774 out_unlock:
6775 mutex_unlock(&inode->log_mutex);
6776 out:
6777 btrfs_free_path(path);
6778 btrfs_free_path(dst_path);
6779
6780 if (ret)
6781 free_conflicting_inodes(ctx);
6782 else
6783 ret = log_conflicting_inodes(trans, inode->root, ctx);
6784
6785 if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6786 if (!ret)
6787 ret = log_new_delayed_dentries(trans, inode,
6788 &delayed_ins_list, ctx);
6789
6790 btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6791 &delayed_del_list);
6792 }
6793
6794 return ret;
6795 }
6796
btrfs_log_all_parents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_log_ctx * ctx)6797 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6798 struct btrfs_inode *inode,
6799 struct btrfs_log_ctx *ctx)
6800 {
6801 int ret;
6802 struct btrfs_path *path;
6803 struct btrfs_key key;
6804 struct btrfs_root *root = inode->root;
6805 const u64 ino = btrfs_ino(inode);
6806
6807 path = btrfs_alloc_path();
6808 if (!path)
6809 return -ENOMEM;
6810 path->skip_locking = 1;
6811 path->search_commit_root = 1;
6812
6813 key.objectid = ino;
6814 key.type = BTRFS_INODE_REF_KEY;
6815 key.offset = 0;
6816 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6817 if (ret < 0)
6818 goto out;
6819
6820 while (true) {
6821 struct extent_buffer *leaf = path->nodes[0];
6822 int slot = path->slots[0];
6823 u32 cur_offset = 0;
6824 u32 item_size;
6825 unsigned long ptr;
6826
6827 if (slot >= btrfs_header_nritems(leaf)) {
6828 ret = btrfs_next_leaf(root, path);
6829 if (ret < 0)
6830 goto out;
6831 else if (ret > 0)
6832 break;
6833 continue;
6834 }
6835
6836 btrfs_item_key_to_cpu(leaf, &key, slot);
6837 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6838 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6839 break;
6840
6841 item_size = btrfs_item_size(leaf, slot);
6842 ptr = btrfs_item_ptr_offset(leaf, slot);
6843 while (cur_offset < item_size) {
6844 struct btrfs_key inode_key;
6845 struct btrfs_inode *dir_inode;
6846
6847 inode_key.type = BTRFS_INODE_ITEM_KEY;
6848 inode_key.offset = 0;
6849
6850 if (key.type == BTRFS_INODE_EXTREF_KEY) {
6851 struct btrfs_inode_extref *extref;
6852
6853 extref = (struct btrfs_inode_extref *)
6854 (ptr + cur_offset);
6855 inode_key.objectid = btrfs_inode_extref_parent(
6856 leaf, extref);
6857 cur_offset += sizeof(*extref);
6858 cur_offset += btrfs_inode_extref_name_len(leaf,
6859 extref);
6860 } else {
6861 inode_key.objectid = key.offset;
6862 cur_offset = item_size;
6863 }
6864
6865 dir_inode = btrfs_iget_logging(inode_key.objectid, root);
6866 /*
6867 * If the parent inode was deleted, return an error to
6868 * fallback to a transaction commit. This is to prevent
6869 * getting an inode that was moved from one parent A to
6870 * a parent B, got its former parent A deleted and then
6871 * it got fsync'ed, from existing at both parents after
6872 * a log replay (and the old parent still existing).
6873 * Example:
6874 *
6875 * mkdir /mnt/A
6876 * mkdir /mnt/B
6877 * touch /mnt/B/bar
6878 * sync
6879 * mv /mnt/B/bar /mnt/A/bar
6880 * mv -T /mnt/A /mnt/B
6881 * fsync /mnt/B/bar
6882 * <power fail>
6883 *
6884 * If we ignore the old parent B which got deleted,
6885 * after a log replay we would have file bar linked
6886 * at both parents and the old parent B would still
6887 * exist.
6888 */
6889 if (IS_ERR(dir_inode)) {
6890 ret = PTR_ERR(dir_inode);
6891 goto out;
6892 }
6893
6894 if (!need_log_inode(trans, dir_inode)) {
6895 btrfs_add_delayed_iput(dir_inode);
6896 continue;
6897 }
6898
6899 ctx->log_new_dentries = false;
6900 ret = btrfs_log_inode(trans, dir_inode, LOG_INODE_ALL, ctx);
6901 if (!ret && ctx->log_new_dentries)
6902 ret = log_new_dir_dentries(trans, dir_inode, ctx);
6903 btrfs_add_delayed_iput(dir_inode);
6904 if (ret)
6905 goto out;
6906 }
6907 path->slots[0]++;
6908 }
6909 ret = 0;
6910 out:
6911 btrfs_free_path(path);
6912 return ret;
6913 }
6914
log_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_log_ctx * ctx)6915 static int log_new_ancestors(struct btrfs_trans_handle *trans,
6916 struct btrfs_root *root,
6917 struct btrfs_path *path,
6918 struct btrfs_log_ctx *ctx)
6919 {
6920 struct btrfs_key found_key;
6921
6922 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6923
6924 while (true) {
6925 struct extent_buffer *leaf;
6926 int slot;
6927 struct btrfs_key search_key;
6928 struct btrfs_inode *inode;
6929 u64 ino;
6930 int ret = 0;
6931
6932 btrfs_release_path(path);
6933
6934 ino = found_key.offset;
6935
6936 search_key.objectid = found_key.offset;
6937 search_key.type = BTRFS_INODE_ITEM_KEY;
6938 search_key.offset = 0;
6939 inode = btrfs_iget_logging(ino, root);
6940 if (IS_ERR(inode))
6941 return PTR_ERR(inode);
6942
6943 if (inode->generation >= trans->transid &&
6944 need_log_inode(trans, inode))
6945 ret = btrfs_log_inode(trans, inode, LOG_INODE_EXISTS, ctx);
6946 btrfs_add_delayed_iput(inode);
6947 if (ret)
6948 return ret;
6949
6950 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6951 break;
6952
6953 search_key.type = BTRFS_INODE_REF_KEY;
6954 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6955 if (ret < 0)
6956 return ret;
6957
6958 leaf = path->nodes[0];
6959 slot = path->slots[0];
6960 if (slot >= btrfs_header_nritems(leaf)) {
6961 ret = btrfs_next_leaf(root, path);
6962 if (ret < 0)
6963 return ret;
6964 else if (ret > 0)
6965 return -ENOENT;
6966 leaf = path->nodes[0];
6967 slot = path->slots[0];
6968 }
6969
6970 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6971 if (found_key.objectid != search_key.objectid ||
6972 found_key.type != BTRFS_INODE_REF_KEY)
6973 return -ENOENT;
6974 }
6975 return 0;
6976 }
6977
log_new_ancestors_fast(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)6978 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6979 struct btrfs_inode *inode,
6980 struct dentry *parent,
6981 struct btrfs_log_ctx *ctx)
6982 {
6983 struct btrfs_root *root = inode->root;
6984 struct dentry *old_parent = NULL;
6985 struct super_block *sb = inode->vfs_inode.i_sb;
6986 int ret = 0;
6987
6988 while (true) {
6989 if (!parent || d_really_is_negative(parent) ||
6990 sb != parent->d_sb)
6991 break;
6992
6993 inode = BTRFS_I(d_inode(parent));
6994 if (root != inode->root)
6995 break;
6996
6997 if (inode->generation >= trans->transid &&
6998 need_log_inode(trans, inode)) {
6999 ret = btrfs_log_inode(trans, inode,
7000 LOG_INODE_EXISTS, ctx);
7001 if (ret)
7002 break;
7003 }
7004 if (IS_ROOT(parent))
7005 break;
7006
7007 parent = dget_parent(parent);
7008 dput(old_parent);
7009 old_parent = parent;
7010 }
7011 dput(old_parent);
7012
7013 return ret;
7014 }
7015
log_all_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)7016 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
7017 struct btrfs_inode *inode,
7018 struct dentry *parent,
7019 struct btrfs_log_ctx *ctx)
7020 {
7021 struct btrfs_root *root = inode->root;
7022 const u64 ino = btrfs_ino(inode);
7023 struct btrfs_path *path;
7024 struct btrfs_key search_key;
7025 int ret;
7026
7027 /*
7028 * For a single hard link case, go through a fast path that does not
7029 * need to iterate the fs/subvolume tree.
7030 */
7031 if (inode->vfs_inode.i_nlink < 2)
7032 return log_new_ancestors_fast(trans, inode, parent, ctx);
7033
7034 path = btrfs_alloc_path();
7035 if (!path)
7036 return -ENOMEM;
7037
7038 search_key.objectid = ino;
7039 search_key.type = BTRFS_INODE_REF_KEY;
7040 search_key.offset = 0;
7041 again:
7042 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
7043 if (ret < 0)
7044 goto out;
7045 if (ret == 0)
7046 path->slots[0]++;
7047
7048 while (true) {
7049 struct extent_buffer *leaf = path->nodes[0];
7050 int slot = path->slots[0];
7051 struct btrfs_key found_key;
7052
7053 if (slot >= btrfs_header_nritems(leaf)) {
7054 ret = btrfs_next_leaf(root, path);
7055 if (ret < 0)
7056 goto out;
7057 else if (ret > 0)
7058 break;
7059 continue;
7060 }
7061
7062 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7063 if (found_key.objectid != ino ||
7064 found_key.type > BTRFS_INODE_EXTREF_KEY)
7065 break;
7066
7067 /*
7068 * Don't deal with extended references because they are rare
7069 * cases and too complex to deal with (we would need to keep
7070 * track of which subitem we are processing for each item in
7071 * this loop, etc). So just return some error to fallback to
7072 * a transaction commit.
7073 */
7074 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
7075 ret = -EMLINK;
7076 goto out;
7077 }
7078
7079 /*
7080 * Logging ancestors needs to do more searches on the fs/subvol
7081 * tree, so it releases the path as needed to avoid deadlocks.
7082 * Keep track of the last inode ref key and resume from that key
7083 * after logging all new ancestors for the current hard link.
7084 */
7085 memcpy(&search_key, &found_key, sizeof(search_key));
7086
7087 ret = log_new_ancestors(trans, root, path, ctx);
7088 if (ret)
7089 goto out;
7090 btrfs_release_path(path);
7091 goto again;
7092 }
7093 ret = 0;
7094 out:
7095 btrfs_free_path(path);
7096 return ret;
7097 }
7098
7099 /*
7100 * helper function around btrfs_log_inode to make sure newly created
7101 * parent directories also end up in the log. A minimal inode and backref
7102 * only logging is done of any parent directories that are older than
7103 * the last committed transaction
7104 */
btrfs_log_inode_parent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,int inode_only,struct btrfs_log_ctx * ctx)7105 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
7106 struct btrfs_inode *inode,
7107 struct dentry *parent,
7108 int inode_only,
7109 struct btrfs_log_ctx *ctx)
7110 {
7111 struct btrfs_root *root = inode->root;
7112 struct btrfs_fs_info *fs_info = root->fs_info;
7113 int ret = 0;
7114 bool log_dentries = false;
7115
7116 if (btrfs_test_opt(fs_info, NOTREELOG)) {
7117 ret = BTRFS_LOG_FORCE_COMMIT;
7118 goto end_no_trans;
7119 }
7120
7121 if (btrfs_root_refs(&root->root_item) == 0) {
7122 ret = BTRFS_LOG_FORCE_COMMIT;
7123 goto end_no_trans;
7124 }
7125
7126 /*
7127 * If we're logging an inode from a subvolume created in the current
7128 * transaction we must force a commit since the root is not persisted.
7129 */
7130 if (btrfs_root_generation(&root->root_item) == trans->transid) {
7131 ret = BTRFS_LOG_FORCE_COMMIT;
7132 goto end_no_trans;
7133 }
7134
7135 /*
7136 * Skip already logged inodes or inodes corresponding to tmpfiles
7137 * (since logging them is pointless, a link count of 0 means they
7138 * will never be accessible).
7139 */
7140 if ((btrfs_inode_in_log(inode, trans->transid) &&
7141 list_empty(&ctx->ordered_extents)) ||
7142 inode->vfs_inode.i_nlink == 0) {
7143 ret = BTRFS_NO_LOG_SYNC;
7144 goto end_no_trans;
7145 }
7146
7147 ret = start_log_trans(trans, root, ctx);
7148 if (ret)
7149 goto end_no_trans;
7150
7151 ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7152 if (ret)
7153 goto end_trans;
7154
7155 /*
7156 * for regular files, if its inode is already on disk, we don't
7157 * have to worry about the parents at all. This is because
7158 * we can use the last_unlink_trans field to record renames
7159 * and other fun in this file.
7160 */
7161 if (S_ISREG(inode->vfs_inode.i_mode) &&
7162 inode->generation < trans->transid &&
7163 inode->last_unlink_trans < trans->transid) {
7164 ret = 0;
7165 goto end_trans;
7166 }
7167
7168 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7169 log_dentries = true;
7170
7171 /*
7172 * On unlink we must make sure all our current and old parent directory
7173 * inodes are fully logged. This is to prevent leaving dangling
7174 * directory index entries in directories that were our parents but are
7175 * not anymore. Not doing this results in old parent directory being
7176 * impossible to delete after log replay (rmdir will always fail with
7177 * error -ENOTEMPTY).
7178 *
7179 * Example 1:
7180 *
7181 * mkdir testdir
7182 * touch testdir/foo
7183 * ln testdir/foo testdir/bar
7184 * sync
7185 * unlink testdir/bar
7186 * xfs_io -c fsync testdir/foo
7187 * <power failure>
7188 * mount fs, triggers log replay
7189 *
7190 * If we don't log the parent directory (testdir), after log replay the
7191 * directory still has an entry pointing to the file inode using the bar
7192 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7193 * the file inode has a link count of 1.
7194 *
7195 * Example 2:
7196 *
7197 * mkdir testdir
7198 * touch foo
7199 * ln foo testdir/foo2
7200 * ln foo testdir/foo3
7201 * sync
7202 * unlink testdir/foo3
7203 * xfs_io -c fsync foo
7204 * <power failure>
7205 * mount fs, triggers log replay
7206 *
7207 * Similar as the first example, after log replay the parent directory
7208 * testdir still has an entry pointing to the inode file with name foo3
7209 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7210 * and has a link count of 2.
7211 */
7212 if (inode->last_unlink_trans >= trans->transid) {
7213 ret = btrfs_log_all_parents(trans, inode, ctx);
7214 if (ret)
7215 goto end_trans;
7216 }
7217
7218 ret = log_all_new_ancestors(trans, inode, parent, ctx);
7219 if (ret)
7220 goto end_trans;
7221
7222 if (log_dentries)
7223 ret = log_new_dir_dentries(trans, inode, ctx);
7224 else
7225 ret = 0;
7226 end_trans:
7227 if (ret < 0) {
7228 btrfs_set_log_full_commit(trans);
7229 ret = BTRFS_LOG_FORCE_COMMIT;
7230 }
7231
7232 if (ret)
7233 btrfs_remove_log_ctx(root, ctx);
7234 btrfs_end_log_trans(root);
7235 end_no_trans:
7236 return ret;
7237 }
7238
7239 /*
7240 * it is not safe to log dentry if the chunk root has added new
7241 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
7242 * If this returns 1, you must commit the transaction to safely get your
7243 * data on disk.
7244 */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct dentry * dentry,struct btrfs_log_ctx * ctx)7245 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7246 struct dentry *dentry,
7247 struct btrfs_log_ctx *ctx)
7248 {
7249 struct dentry *parent = dget_parent(dentry);
7250 int ret;
7251
7252 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7253 LOG_INODE_ALL, ctx);
7254 dput(parent);
7255
7256 return ret;
7257 }
7258
7259 /*
7260 * should be called during mount to recover any replay any log trees
7261 * from the FS
7262 */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)7263 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7264 {
7265 int ret;
7266 struct btrfs_path *path;
7267 struct btrfs_trans_handle *trans;
7268 struct btrfs_key key;
7269 struct btrfs_key found_key;
7270 struct btrfs_root *log;
7271 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7272 struct walk_control wc = {
7273 .process_func = process_one_buffer,
7274 .stage = LOG_WALK_PIN_ONLY,
7275 };
7276
7277 path = btrfs_alloc_path();
7278 if (!path)
7279 return -ENOMEM;
7280
7281 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7282
7283 trans = btrfs_start_transaction(fs_info->tree_root, 0);
7284 if (IS_ERR(trans)) {
7285 ret = PTR_ERR(trans);
7286 goto error;
7287 }
7288
7289 wc.trans = trans;
7290 wc.pin = 1;
7291
7292 ret = walk_log_tree(trans, log_root_tree, &wc);
7293 if (ret) {
7294 btrfs_abort_transaction(trans, ret);
7295 goto error;
7296 }
7297
7298 again:
7299 key.objectid = BTRFS_TREE_LOG_OBJECTID;
7300 key.offset = (u64)-1;
7301 key.type = BTRFS_ROOT_ITEM_KEY;
7302
7303 while (1) {
7304 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7305
7306 if (ret < 0) {
7307 btrfs_abort_transaction(trans, ret);
7308 goto error;
7309 }
7310 if (ret > 0) {
7311 if (path->slots[0] == 0)
7312 break;
7313 path->slots[0]--;
7314 }
7315 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7316 path->slots[0]);
7317 btrfs_release_path(path);
7318 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7319 break;
7320
7321 log = btrfs_read_tree_root(log_root_tree, &found_key);
7322 if (IS_ERR(log)) {
7323 ret = PTR_ERR(log);
7324 btrfs_abort_transaction(trans, ret);
7325 goto error;
7326 }
7327
7328 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7329 true);
7330 if (IS_ERR(wc.replay_dest)) {
7331 ret = PTR_ERR(wc.replay_dest);
7332
7333 /*
7334 * We didn't find the subvol, likely because it was
7335 * deleted. This is ok, simply skip this log and go to
7336 * the next one.
7337 *
7338 * We need to exclude the root because we can't have
7339 * other log replays overwriting this log as we'll read
7340 * it back in a few more times. This will keep our
7341 * block from being modified, and we'll just bail for
7342 * each subsequent pass.
7343 */
7344 if (ret == -ENOENT)
7345 ret = btrfs_pin_extent_for_log_replay(trans, log->node);
7346 btrfs_put_root(log);
7347
7348 if (!ret)
7349 goto next;
7350 btrfs_abort_transaction(trans, ret);
7351 goto error;
7352 }
7353
7354 wc.replay_dest->log_root = log;
7355 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7356 if (ret) {
7357 /* The loop needs to continue due to the root refs */
7358 btrfs_abort_transaction(trans, ret);
7359 } else {
7360 ret = walk_log_tree(trans, log, &wc);
7361 if (ret)
7362 btrfs_abort_transaction(trans, ret);
7363 }
7364
7365 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7366 ret = fixup_inode_link_counts(trans, wc.replay_dest,
7367 path);
7368 if (ret)
7369 btrfs_abort_transaction(trans, ret);
7370 }
7371
7372 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7373 struct btrfs_root *root = wc.replay_dest;
7374
7375 btrfs_release_path(path);
7376
7377 /*
7378 * We have just replayed everything, and the highest
7379 * objectid of fs roots probably has changed in case
7380 * some inode_item's got replayed.
7381 *
7382 * root->objectid_mutex is not acquired as log replay
7383 * could only happen during mount.
7384 */
7385 ret = btrfs_init_root_free_objectid(root);
7386 if (ret)
7387 btrfs_abort_transaction(trans, ret);
7388 }
7389
7390 wc.replay_dest->log_root = NULL;
7391 btrfs_put_root(wc.replay_dest);
7392 btrfs_put_root(log);
7393
7394 if (ret)
7395 goto error;
7396 next:
7397 if (found_key.offset == 0)
7398 break;
7399 key.offset = found_key.offset - 1;
7400 }
7401 btrfs_release_path(path);
7402
7403 /* step one is to pin it all, step two is to replay just inodes */
7404 if (wc.pin) {
7405 wc.pin = 0;
7406 wc.process_func = replay_one_buffer;
7407 wc.stage = LOG_WALK_REPLAY_INODES;
7408 goto again;
7409 }
7410 /* step three is to replay everything */
7411 if (wc.stage < LOG_WALK_REPLAY_ALL) {
7412 wc.stage++;
7413 goto again;
7414 }
7415
7416 btrfs_free_path(path);
7417
7418 /* step 4: commit the transaction, which also unpins the blocks */
7419 ret = btrfs_commit_transaction(trans);
7420 if (ret)
7421 return ret;
7422
7423 log_root_tree->log_root = NULL;
7424 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7425 btrfs_put_root(log_root_tree);
7426
7427 return 0;
7428 error:
7429 if (wc.trans)
7430 btrfs_end_transaction(wc.trans);
7431 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7432 btrfs_free_path(path);
7433 return ret;
7434 }
7435
7436 /*
7437 * there are some corner cases where we want to force a full
7438 * commit instead of allowing a directory to be logged.
7439 *
7440 * They revolve around files there were unlinked from the directory, and
7441 * this function updates the parent directory so that a full commit is
7442 * properly done if it is fsync'd later after the unlinks are done.
7443 *
7444 * Must be called before the unlink operations (updates to the subvolume tree,
7445 * inodes, etc) are done.
7446 */
btrfs_record_unlink_dir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,bool for_rename)7447 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7448 struct btrfs_inode *dir, struct btrfs_inode *inode,
7449 bool for_rename)
7450 {
7451 /*
7452 * when we're logging a file, if it hasn't been renamed
7453 * or unlinked, and its inode is fully committed on disk,
7454 * we don't have to worry about walking up the directory chain
7455 * to log its parents.
7456 *
7457 * So, we use the last_unlink_trans field to put this transid
7458 * into the file. When the file is logged we check it and
7459 * don't log the parents if the file is fully on disk.
7460 */
7461 mutex_lock(&inode->log_mutex);
7462 inode->last_unlink_trans = trans->transid;
7463 mutex_unlock(&inode->log_mutex);
7464
7465 if (!for_rename)
7466 return;
7467
7468 /*
7469 * If this directory was already logged, any new names will be logged
7470 * with btrfs_log_new_name() and old names will be deleted from the log
7471 * tree with btrfs_del_dir_entries_in_log() or with
7472 * btrfs_del_inode_ref_in_log().
7473 */
7474 if (inode_logged(trans, dir, NULL) == 1)
7475 return;
7476
7477 /*
7478 * If the inode we're about to unlink was logged before, the log will be
7479 * properly updated with the new name with btrfs_log_new_name() and the
7480 * old name removed with btrfs_del_dir_entries_in_log() or with
7481 * btrfs_del_inode_ref_in_log().
7482 */
7483 if (inode_logged(trans, inode, NULL) == 1)
7484 return;
7485
7486 /*
7487 * when renaming files across directories, if the directory
7488 * there we're unlinking from gets fsync'd later on, there's
7489 * no way to find the destination directory later and fsync it
7490 * properly. So, we have to be conservative and force commits
7491 * so the new name gets discovered.
7492 */
7493 mutex_lock(&dir->log_mutex);
7494 dir->last_unlink_trans = trans->transid;
7495 mutex_unlock(&dir->log_mutex);
7496 }
7497
7498 /*
7499 * Make sure that if someone attempts to fsync the parent directory of a deleted
7500 * snapshot, it ends up triggering a transaction commit. This is to guarantee
7501 * that after replaying the log tree of the parent directory's root we will not
7502 * see the snapshot anymore and at log replay time we will not see any log tree
7503 * corresponding to the deleted snapshot's root, which could lead to replaying
7504 * it after replaying the log tree of the parent directory (which would replay
7505 * the snapshot delete operation).
7506 *
7507 * Must be called before the actual snapshot destroy operation (updates to the
7508 * parent root and tree of tree roots trees, etc) are done.
7509 */
btrfs_record_snapshot_destroy(struct btrfs_trans_handle * trans,struct btrfs_inode * dir)7510 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7511 struct btrfs_inode *dir)
7512 {
7513 mutex_lock(&dir->log_mutex);
7514 dir->last_unlink_trans = trans->transid;
7515 mutex_unlock(&dir->log_mutex);
7516 }
7517
7518 /*
7519 * Call this when creating a subvolume in a directory.
7520 * Because we don't commit a transaction when creating a subvolume, we can't
7521 * allow the directory pointing to the subvolume to be logged with an entry that
7522 * points to an unpersisted root if we are still in the transaction used to
7523 * create the subvolume, so make any attempt to log the directory to result in a
7524 * full log sync.
7525 * Also we don't need to worry with renames, since btrfs_rename() marks the log
7526 * for full commit when renaming a subvolume.
7527 *
7528 * Must be called before creating the subvolume entry in its parent directory.
7529 */
btrfs_record_new_subvolume(const struct btrfs_trans_handle * trans,struct btrfs_inode * dir)7530 void btrfs_record_new_subvolume(const struct btrfs_trans_handle *trans,
7531 struct btrfs_inode *dir)
7532 {
7533 mutex_lock(&dir->log_mutex);
7534 dir->last_unlink_trans = trans->transid;
7535 mutex_unlock(&dir->log_mutex);
7536 }
7537
7538 /*
7539 * Update the log after adding a new name for an inode.
7540 *
7541 * @trans: Transaction handle.
7542 * @old_dentry: The dentry associated with the old name and the old
7543 * parent directory.
7544 * @old_dir: The inode of the previous parent directory for the case
7545 * of a rename. For a link operation, it must be NULL.
7546 * @old_dir_index: The index number associated with the old name, meaningful
7547 * only for rename operations (when @old_dir is not NULL).
7548 * Ignored for link operations.
7549 * @parent: The dentry associated with the directory under which the
7550 * new name is located.
7551 *
7552 * Call this after adding a new name for an inode, as a result of a link or
7553 * rename operation, and it will properly update the log to reflect the new name.
7554 */
btrfs_log_new_name(struct btrfs_trans_handle * trans,struct dentry * old_dentry,struct btrfs_inode * old_dir,u64 old_dir_index,struct dentry * parent)7555 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7556 struct dentry *old_dentry, struct btrfs_inode *old_dir,
7557 u64 old_dir_index, struct dentry *parent)
7558 {
7559 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7560 struct btrfs_root *root = inode->root;
7561 struct btrfs_log_ctx ctx;
7562 bool log_pinned = false;
7563 int ret;
7564
7565 /*
7566 * this will force the logging code to walk the dentry chain
7567 * up for the file
7568 */
7569 if (!S_ISDIR(inode->vfs_inode.i_mode))
7570 inode->last_unlink_trans = trans->transid;
7571
7572 /*
7573 * if this inode hasn't been logged and directory we're renaming it
7574 * from hasn't been logged, we don't need to log it
7575 */
7576 ret = inode_logged(trans, inode, NULL);
7577 if (ret < 0) {
7578 goto out;
7579 } else if (ret == 0) {
7580 if (!old_dir)
7581 return;
7582 /*
7583 * If the inode was not logged and we are doing a rename (old_dir is not
7584 * NULL), check if old_dir was logged - if it was not we can return and
7585 * do nothing.
7586 */
7587 ret = inode_logged(trans, old_dir, NULL);
7588 if (ret < 0)
7589 goto out;
7590 else if (ret == 0)
7591 return;
7592 }
7593 ret = 0;
7594
7595 /*
7596 * If we are doing a rename (old_dir is not NULL) from a directory that
7597 * was previously logged, make sure that on log replay we get the old
7598 * dir entry deleted. This is needed because we will also log the new
7599 * name of the renamed inode, so we need to make sure that after log
7600 * replay we don't end up with both the new and old dir entries existing.
7601 */
7602 if (old_dir && old_dir->logged_trans == trans->transid) {
7603 struct btrfs_root *log = old_dir->root->log_root;
7604 struct btrfs_path *path;
7605 struct fscrypt_name fname;
7606
7607 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7608
7609 ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7610 &old_dentry->d_name, 0, &fname);
7611 if (ret)
7612 goto out;
7613 /*
7614 * We have two inodes to update in the log, the old directory and
7615 * the inode that got renamed, so we must pin the log to prevent
7616 * anyone from syncing the log until we have updated both inodes
7617 * in the log.
7618 */
7619 ret = join_running_log_trans(root);
7620 /*
7621 * At least one of the inodes was logged before, so this should
7622 * not fail, but if it does, it's not serious, just bail out and
7623 * mark the log for a full commit.
7624 */
7625 if (WARN_ON_ONCE(ret < 0)) {
7626 fscrypt_free_filename(&fname);
7627 goto out;
7628 }
7629
7630 log_pinned = true;
7631
7632 path = btrfs_alloc_path();
7633 if (!path) {
7634 ret = -ENOMEM;
7635 fscrypt_free_filename(&fname);
7636 goto out;
7637 }
7638
7639 /*
7640 * Other concurrent task might be logging the old directory,
7641 * as it can be triggered when logging other inode that had or
7642 * still has a dentry in the old directory. We lock the old
7643 * directory's log_mutex to ensure the deletion of the old
7644 * name is persisted, because during directory logging we
7645 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7646 * the old name's dir index item is in the delayed items, so
7647 * it could be missed by an in progress directory logging.
7648 */
7649 mutex_lock(&old_dir->log_mutex);
7650 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7651 &fname.disk_name, old_dir_index);
7652 if (ret > 0) {
7653 /*
7654 * The dentry does not exist in the log, so record its
7655 * deletion.
7656 */
7657 btrfs_release_path(path);
7658 ret = insert_dir_log_key(trans, log, path,
7659 btrfs_ino(old_dir),
7660 old_dir_index, old_dir_index);
7661 }
7662 mutex_unlock(&old_dir->log_mutex);
7663
7664 btrfs_free_path(path);
7665 fscrypt_free_filename(&fname);
7666 if (ret < 0)
7667 goto out;
7668 }
7669
7670 btrfs_init_log_ctx(&ctx, inode);
7671 ctx.logging_new_name = true;
7672 btrfs_init_log_ctx_scratch_eb(&ctx);
7673 /*
7674 * We don't care about the return value. If we fail to log the new name
7675 * then we know the next attempt to sync the log will fallback to a full
7676 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7677 * we don't need to worry about getting a log committed that has an
7678 * inconsistent state after a rename operation.
7679 */
7680 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7681 free_extent_buffer(ctx.scratch_eb);
7682 ASSERT(list_empty(&ctx.conflict_inodes));
7683 out:
7684 /*
7685 * If an error happened mark the log for a full commit because it's not
7686 * consistent and up to date or we couldn't find out if one of the
7687 * inodes was logged before in this transaction. Do it before unpinning
7688 * the log, to avoid any races with someone else trying to commit it.
7689 */
7690 if (ret < 0)
7691 btrfs_set_log_full_commit(trans);
7692 if (log_pinned)
7693 btrfs_end_log_trans(root);
7694 }
7695
7696