1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <linux/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "bio.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "dev-replace.h"
33 #include "raid56.h"
34 #include "sysfs.h"
35 #include "qgroup.h"
36 #include "compression.h"
37 #include "tree-checker.h"
38 #include "ref-verify.h"
39 #include "block-group.h"
40 #include "discard.h"
41 #include "space-info.h"
42 #include "zoned.h"
43 #include "subpage.h"
44 #include "fs.h"
45 #include "accessors.h"
46 #include "extent-tree.h"
47 #include "root-tree.h"
48 #include "defrag.h"
49 #include "uuid-tree.h"
50 #include "relocation.h"
51 #include "scrub.h"
52 #include "super.h"
53
54 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
55 BTRFS_HEADER_FLAG_RELOC |\
56 BTRFS_SUPER_FLAG_ERROR |\
57 BTRFS_SUPER_FLAG_SEEDING |\
58 BTRFS_SUPER_FLAG_METADUMP |\
59 BTRFS_SUPER_FLAG_METADUMP_V2)
60
61 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
62 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
63
btrfs_free_csum_hash(struct btrfs_fs_info * fs_info)64 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
65 {
66 if (fs_info->csum_shash)
67 crypto_free_shash(fs_info->csum_shash);
68 }
69
70 /*
71 * Compute the csum of a btree block and store the result to provided buffer.
72 */
csum_tree_block(struct extent_buffer * buf,u8 * result)73 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
74 {
75 struct btrfs_fs_info *fs_info = buf->fs_info;
76 int num_pages;
77 u32 first_page_part;
78 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
79 char *kaddr;
80 int i;
81
82 shash->tfm = fs_info->csum_shash;
83 crypto_shash_init(shash);
84
85 if (buf->addr) {
86 /* Pages are contiguous, handle them as a big one. */
87 kaddr = buf->addr;
88 first_page_part = fs_info->nodesize;
89 num_pages = 1;
90 } else {
91 kaddr = folio_address(buf->folios[0]);
92 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
93 num_pages = num_extent_pages(buf);
94 }
95
96 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
97 first_page_part - BTRFS_CSUM_SIZE);
98
99 /*
100 * Multiple single-page folios case would reach here.
101 *
102 * nodesize <= PAGE_SIZE and large folio all handled by above
103 * crypto_shash_update() already.
104 */
105 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
106 kaddr = folio_address(buf->folios[i]);
107 crypto_shash_update(shash, kaddr, PAGE_SIZE);
108 }
109 memset(result, 0, BTRFS_CSUM_SIZE);
110 crypto_shash_final(shash, result);
111 }
112
113 /*
114 * we can't consider a given block up to date unless the transid of the
115 * block matches the transid in the parent node's pointer. This is how we
116 * detect blocks that either didn't get written at all or got written
117 * in the wrong place.
118 */
btrfs_buffer_uptodate(struct extent_buffer * eb,u64 parent_transid,int atomic)119 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
120 {
121 if (!extent_buffer_uptodate(eb))
122 return 0;
123
124 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
125 return 1;
126
127 if (atomic)
128 return -EAGAIN;
129
130 if (!extent_buffer_uptodate(eb) ||
131 btrfs_header_generation(eb) != parent_transid) {
132 btrfs_err_rl(eb->fs_info,
133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
134 eb->start, eb->read_mirror,
135 parent_transid, btrfs_header_generation(eb));
136 clear_extent_buffer_uptodate(eb);
137 return 0;
138 }
139 return 1;
140 }
141
btrfs_supported_super_csum(u16 csum_type)142 static bool btrfs_supported_super_csum(u16 csum_type)
143 {
144 switch (csum_type) {
145 case BTRFS_CSUM_TYPE_CRC32:
146 case BTRFS_CSUM_TYPE_XXHASH:
147 case BTRFS_CSUM_TYPE_SHA256:
148 case BTRFS_CSUM_TYPE_BLAKE2:
149 return true;
150 default:
151 return false;
152 }
153 }
154
155 /*
156 * Return 0 if the superblock checksum type matches the checksum value of that
157 * algorithm. Pass the raw disk superblock data.
158 */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,const struct btrfs_super_block * disk_sb)159 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
160 const struct btrfs_super_block *disk_sb)
161 {
162 char result[BTRFS_CSUM_SIZE];
163 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
164
165 shash->tfm = fs_info->csum_shash;
166
167 /*
168 * The super_block structure does not span the whole
169 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
170 * filled with zeros and is included in the checksum.
171 */
172 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
173 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
174
175 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
176 return 1;
177
178 return 0;
179 }
180
btrfs_repair_eb_io_failure(const struct extent_buffer * eb,int mirror_num)181 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
182 int mirror_num)
183 {
184 struct btrfs_fs_info *fs_info = eb->fs_info;
185 int num_folios = num_extent_folios(eb);
186 int ret = 0;
187
188 if (sb_rdonly(fs_info->sb))
189 return -EROFS;
190
191 for (int i = 0; i < num_folios; i++) {
192 struct folio *folio = eb->folios[i];
193 u64 start = max_t(u64, eb->start, folio_pos(folio));
194 u64 end = min_t(u64, eb->start + eb->len,
195 folio_pos(folio) + eb->folio_size);
196 u32 len = end - start;
197
198 ret = btrfs_repair_io_failure(fs_info, 0, start, len,
199 start, folio, offset_in_folio(folio, start),
200 mirror_num);
201 if (ret)
202 break;
203 }
204
205 return ret;
206 }
207
208 /*
209 * helper to read a given tree block, doing retries as required when
210 * the checksums don't match and we have alternate mirrors to try.
211 *
212 * @check: expected tree parentness check, see the comments of the
213 * structure for details.
214 */
btrfs_read_extent_buffer(struct extent_buffer * eb,const struct btrfs_tree_parent_check * check)215 int btrfs_read_extent_buffer(struct extent_buffer *eb,
216 const struct btrfs_tree_parent_check *check)
217 {
218 struct btrfs_fs_info *fs_info = eb->fs_info;
219 int failed = 0;
220 int ret;
221 int num_copies = 0;
222 int mirror_num = 0;
223 int failed_mirror = 0;
224
225 ASSERT(check);
226
227 while (1) {
228 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
229 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
230 if (!ret)
231 break;
232
233 num_copies = btrfs_num_copies(fs_info,
234 eb->start, eb->len);
235 if (num_copies == 1)
236 break;
237
238 if (!failed_mirror) {
239 failed = 1;
240 failed_mirror = eb->read_mirror;
241 }
242
243 mirror_num++;
244 if (mirror_num == failed_mirror)
245 mirror_num++;
246
247 if (mirror_num > num_copies)
248 break;
249 }
250
251 if (failed && !ret && failed_mirror)
252 btrfs_repair_eb_io_failure(eb, failed_mirror);
253
254 return ret;
255 }
256
257 /*
258 * Checksum a dirty tree block before IO.
259 */
btree_csum_one_bio(struct btrfs_bio * bbio)260 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
261 {
262 struct extent_buffer *eb = bbio->private;
263 struct btrfs_fs_info *fs_info = eb->fs_info;
264 u64 found_start = btrfs_header_bytenr(eb);
265 u64 last_trans;
266 u8 result[BTRFS_CSUM_SIZE];
267 int ret;
268
269 /* Btree blocks are always contiguous on disk. */
270 if (WARN_ON_ONCE(bbio->file_offset != eb->start))
271 return BLK_STS_IOERR;
272 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
273 return BLK_STS_IOERR;
274
275 /*
276 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
277 * checksum it but zero-out its content. This is done to preserve
278 * ordering of I/O without unnecessarily writing out data.
279 */
280 if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
281 memzero_extent_buffer(eb, 0, eb->len);
282 return BLK_STS_OK;
283 }
284
285 if (WARN_ON_ONCE(found_start != eb->start))
286 return BLK_STS_IOERR;
287 if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0],
288 eb->start, eb->len)))
289 return BLK_STS_IOERR;
290
291 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
292 offsetof(struct btrfs_header, fsid),
293 BTRFS_FSID_SIZE) == 0);
294 csum_tree_block(eb, result);
295
296 if (btrfs_header_level(eb))
297 ret = btrfs_check_node(eb);
298 else
299 ret = btrfs_check_leaf(eb);
300
301 if (ret < 0)
302 goto error;
303
304 /*
305 * Also check the generation, the eb reached here must be newer than
306 * last committed. Or something seriously wrong happened.
307 */
308 last_trans = btrfs_get_last_trans_committed(fs_info);
309 if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
310 ret = -EUCLEAN;
311 btrfs_err(fs_info,
312 "block=%llu bad generation, have %llu expect > %llu",
313 eb->start, btrfs_header_generation(eb), last_trans);
314 goto error;
315 }
316 write_extent_buffer(eb, result, 0, fs_info->csum_size);
317 return BLK_STS_OK;
318
319 error:
320 btrfs_print_tree(eb, 0);
321 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
322 eb->start);
323 /*
324 * Be noisy if this is an extent buffer from a log tree. We don't abort
325 * a transaction in case there's a bad log tree extent buffer, we just
326 * fallback to a transaction commit. Still we want to know when there is
327 * a bad log tree extent buffer, as that may signal a bug somewhere.
328 */
329 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
330 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
331 return errno_to_blk_status(ret);
332 }
333
check_tree_block_fsid(struct extent_buffer * eb)334 static bool check_tree_block_fsid(struct extent_buffer *eb)
335 {
336 struct btrfs_fs_info *fs_info = eb->fs_info;
337 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
338 u8 fsid[BTRFS_FSID_SIZE];
339
340 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
341 BTRFS_FSID_SIZE);
342
343 /*
344 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
345 * This is then overwritten by metadata_uuid if it is present in the
346 * device_list_add(). The same true for a seed device as well. So use of
347 * fs_devices::metadata_uuid is appropriate here.
348 */
349 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
350 return false;
351
352 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
353 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
354 return false;
355
356 return true;
357 }
358
359 /* Do basic extent buffer checks at read time */
btrfs_validate_extent_buffer(struct extent_buffer * eb,const struct btrfs_tree_parent_check * check)360 int btrfs_validate_extent_buffer(struct extent_buffer *eb,
361 const struct btrfs_tree_parent_check *check)
362 {
363 struct btrfs_fs_info *fs_info = eb->fs_info;
364 u64 found_start;
365 const u32 csum_size = fs_info->csum_size;
366 u8 found_level;
367 u8 result[BTRFS_CSUM_SIZE];
368 const u8 *header_csum;
369 int ret = 0;
370 const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS);
371
372 ASSERT(check);
373
374 found_start = btrfs_header_bytenr(eb);
375 if (found_start != eb->start) {
376 btrfs_err_rl(fs_info,
377 "bad tree block start, mirror %u want %llu have %llu",
378 eb->read_mirror, eb->start, found_start);
379 ret = -EIO;
380 goto out;
381 }
382 if (check_tree_block_fsid(eb)) {
383 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
384 eb->start, eb->read_mirror);
385 ret = -EIO;
386 goto out;
387 }
388 found_level = btrfs_header_level(eb);
389 if (found_level >= BTRFS_MAX_LEVEL) {
390 btrfs_err(fs_info,
391 "bad tree block level, mirror %u level %d on logical %llu",
392 eb->read_mirror, btrfs_header_level(eb), eb->start);
393 ret = -EIO;
394 goto out;
395 }
396
397 csum_tree_block(eb, result);
398 header_csum = folio_address(eb->folios[0]) +
399 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
400
401 if (memcmp(result, header_csum, csum_size) != 0) {
402 btrfs_warn_rl(fs_info,
403 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d%s",
404 eb->start, eb->read_mirror,
405 CSUM_FMT_VALUE(csum_size, header_csum),
406 CSUM_FMT_VALUE(csum_size, result),
407 btrfs_header_level(eb),
408 ignore_csum ? ", ignored" : "");
409 if (!ignore_csum) {
410 ret = -EUCLEAN;
411 goto out;
412 }
413 }
414
415 if (found_level != check->level) {
416 btrfs_err(fs_info,
417 "level verify failed on logical %llu mirror %u wanted %u found %u",
418 eb->start, eb->read_mirror, check->level, found_level);
419 ret = -EIO;
420 goto out;
421 }
422 if (unlikely(check->transid &&
423 btrfs_header_generation(eb) != check->transid)) {
424 btrfs_err_rl(eb->fs_info,
425 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
426 eb->start, eb->read_mirror, check->transid,
427 btrfs_header_generation(eb));
428 ret = -EIO;
429 goto out;
430 }
431 if (check->has_first_key) {
432 const struct btrfs_key *expect_key = &check->first_key;
433 struct btrfs_key found_key;
434
435 if (found_level)
436 btrfs_node_key_to_cpu(eb, &found_key, 0);
437 else
438 btrfs_item_key_to_cpu(eb, &found_key, 0);
439 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
440 btrfs_err(fs_info,
441 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
442 eb->start, check->transid,
443 expect_key->objectid,
444 expect_key->type, expect_key->offset,
445 found_key.objectid, found_key.type,
446 found_key.offset);
447 ret = -EUCLEAN;
448 goto out;
449 }
450 }
451 if (check->owner_root) {
452 ret = btrfs_check_eb_owner(eb, check->owner_root);
453 if (ret < 0)
454 goto out;
455 }
456
457 /*
458 * If this is a leaf block and it is corrupt, set the corrupt bit so
459 * that we don't try and read the other copies of this block, just
460 * return -EIO.
461 */
462 if (found_level == 0 && btrfs_check_leaf(eb)) {
463 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
464 ret = -EIO;
465 }
466
467 if (found_level > 0 && btrfs_check_node(eb))
468 ret = -EIO;
469
470 if (ret)
471 btrfs_err(fs_info,
472 "read time tree block corruption detected on logical %llu mirror %u",
473 eb->start, eb->read_mirror);
474 out:
475 return ret;
476 }
477
478 #ifdef CONFIG_MIGRATION
btree_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)479 static int btree_migrate_folio(struct address_space *mapping,
480 struct folio *dst, struct folio *src, enum migrate_mode mode)
481 {
482 /*
483 * we can't safely write a btree page from here,
484 * we haven't done the locking hook
485 */
486 if (folio_test_dirty(src))
487 return -EAGAIN;
488 /*
489 * Buffers may be managed in a filesystem specific way.
490 * We must have no buffers or drop them.
491 */
492 if (folio_get_private(src) &&
493 !filemap_release_folio(src, GFP_KERNEL))
494 return -EAGAIN;
495 return migrate_folio(mapping, dst, src, mode);
496 }
497 #else
498 #define btree_migrate_folio NULL
499 #endif
500
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)501 static int btree_writepages(struct address_space *mapping,
502 struct writeback_control *wbc)
503 {
504 int ret;
505
506 if (wbc->sync_mode == WB_SYNC_NONE) {
507 struct btrfs_fs_info *fs_info;
508
509 if (wbc->for_kupdate)
510 return 0;
511
512 fs_info = inode_to_fs_info(mapping->host);
513 /* this is a bit racy, but that's ok */
514 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
515 BTRFS_DIRTY_METADATA_THRESH,
516 fs_info->dirty_metadata_batch);
517 if (ret < 0)
518 return 0;
519 }
520 return btree_write_cache_pages(mapping, wbc);
521 }
522
btree_release_folio(struct folio * folio,gfp_t gfp_flags)523 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
524 {
525 if (folio_test_writeback(folio) || folio_test_dirty(folio))
526 return false;
527
528 return try_release_extent_buffer(folio);
529 }
530
btree_invalidate_folio(struct folio * folio,size_t offset,size_t length)531 static void btree_invalidate_folio(struct folio *folio, size_t offset,
532 size_t length)
533 {
534 struct extent_io_tree *tree;
535
536 tree = &folio_to_inode(folio)->io_tree;
537 extent_invalidate_folio(tree, folio, offset);
538 btree_release_folio(folio, GFP_NOFS);
539 if (folio_get_private(folio)) {
540 btrfs_warn(folio_to_fs_info(folio),
541 "folio private not zero on folio %llu",
542 (unsigned long long)folio_pos(folio));
543 folio_detach_private(folio);
544 }
545 }
546
547 #ifdef DEBUG
btree_dirty_folio(struct address_space * mapping,struct folio * folio)548 static bool btree_dirty_folio(struct address_space *mapping,
549 struct folio *folio)
550 {
551 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
552 struct btrfs_subpage_info *spi = fs_info->subpage_info;
553 struct btrfs_subpage *subpage;
554 struct extent_buffer *eb;
555 int cur_bit = 0;
556 u64 page_start = folio_pos(folio);
557
558 if (fs_info->sectorsize == PAGE_SIZE) {
559 eb = folio_get_private(folio);
560 BUG_ON(!eb);
561 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
562 BUG_ON(!atomic_read(&eb->refs));
563 btrfs_assert_tree_write_locked(eb);
564 return filemap_dirty_folio(mapping, folio);
565 }
566
567 ASSERT(spi);
568 subpage = folio_get_private(folio);
569
570 for (cur_bit = spi->dirty_offset;
571 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
572 cur_bit++) {
573 unsigned long flags;
574 u64 cur;
575
576 spin_lock_irqsave(&subpage->lock, flags);
577 if (!test_bit(cur_bit, subpage->bitmaps)) {
578 spin_unlock_irqrestore(&subpage->lock, flags);
579 continue;
580 }
581 spin_unlock_irqrestore(&subpage->lock, flags);
582 cur = page_start + cur_bit * fs_info->sectorsize;
583
584 eb = find_extent_buffer(fs_info, cur);
585 ASSERT(eb);
586 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
587 ASSERT(atomic_read(&eb->refs));
588 btrfs_assert_tree_write_locked(eb);
589 free_extent_buffer(eb);
590
591 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
592 }
593 return filemap_dirty_folio(mapping, folio);
594 }
595 #else
596 #define btree_dirty_folio filemap_dirty_folio
597 #endif
598
599 static const struct address_space_operations btree_aops = {
600 .writepages = btree_writepages,
601 .release_folio = btree_release_folio,
602 .invalidate_folio = btree_invalidate_folio,
603 .migrate_folio = btree_migrate_folio,
604 .dirty_folio = btree_dirty_folio,
605 };
606
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,int level)607 struct extent_buffer *btrfs_find_create_tree_block(
608 struct btrfs_fs_info *fs_info,
609 u64 bytenr, u64 owner_root,
610 int level)
611 {
612 if (btrfs_is_testing(fs_info))
613 return alloc_test_extent_buffer(fs_info, bytenr);
614 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
615 }
616
617 /*
618 * Read tree block at logical address @bytenr and do variant basic but critical
619 * verification.
620 *
621 * @check: expected tree parentness check, see comments of the
622 * structure for details.
623 */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,struct btrfs_tree_parent_check * check)624 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
625 struct btrfs_tree_parent_check *check)
626 {
627 struct extent_buffer *buf = NULL;
628 int ret;
629
630 ASSERT(check);
631
632 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
633 check->level);
634 if (IS_ERR(buf))
635 return buf;
636
637 ret = btrfs_read_extent_buffer(buf, check);
638 if (ret) {
639 free_extent_buffer_stale(buf);
640 return ERR_PTR(ret);
641 }
642 return buf;
643
644 }
645
__setup_root(struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)646 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
647 u64 objectid)
648 {
649 bool dummy = btrfs_is_testing(fs_info);
650
651 memset(&root->root_key, 0, sizeof(root->root_key));
652 memset(&root->root_item, 0, sizeof(root->root_item));
653 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
654 root->fs_info = fs_info;
655 root->root_key.objectid = objectid;
656 root->node = NULL;
657 root->commit_root = NULL;
658 root->state = 0;
659 RB_CLEAR_NODE(&root->rb_node);
660
661 btrfs_set_root_last_trans(root, 0);
662 root->free_objectid = 0;
663 root->nr_delalloc_inodes = 0;
664 root->nr_ordered_extents = 0;
665 xa_init(&root->inodes);
666 xa_init(&root->delayed_nodes);
667
668 btrfs_init_root_block_rsv(root);
669
670 INIT_LIST_HEAD(&root->dirty_list);
671 INIT_LIST_HEAD(&root->root_list);
672 INIT_LIST_HEAD(&root->delalloc_inodes);
673 INIT_LIST_HEAD(&root->delalloc_root);
674 INIT_LIST_HEAD(&root->ordered_extents);
675 INIT_LIST_HEAD(&root->ordered_root);
676 INIT_LIST_HEAD(&root->reloc_dirty_list);
677 spin_lock_init(&root->delalloc_lock);
678 spin_lock_init(&root->ordered_extent_lock);
679 spin_lock_init(&root->accounting_lock);
680 spin_lock_init(&root->qgroup_meta_rsv_lock);
681 mutex_init(&root->objectid_mutex);
682 mutex_init(&root->log_mutex);
683 mutex_init(&root->ordered_extent_mutex);
684 mutex_init(&root->delalloc_mutex);
685 init_waitqueue_head(&root->qgroup_flush_wait);
686 init_waitqueue_head(&root->log_writer_wait);
687 init_waitqueue_head(&root->log_commit_wait[0]);
688 init_waitqueue_head(&root->log_commit_wait[1]);
689 INIT_LIST_HEAD(&root->log_ctxs[0]);
690 INIT_LIST_HEAD(&root->log_ctxs[1]);
691 atomic_set(&root->log_commit[0], 0);
692 atomic_set(&root->log_commit[1], 0);
693 atomic_set(&root->log_writers, 0);
694 atomic_set(&root->log_batch, 0);
695 refcount_set(&root->refs, 1);
696 atomic_set(&root->snapshot_force_cow, 0);
697 atomic_set(&root->nr_swapfiles, 0);
698 btrfs_set_root_log_transid(root, 0);
699 root->log_transid_committed = -1;
700 btrfs_set_root_last_log_commit(root, 0);
701 root->anon_dev = 0;
702 if (!dummy) {
703 extent_io_tree_init(fs_info, &root->dirty_log_pages,
704 IO_TREE_ROOT_DIRTY_LOG_PAGES);
705 extent_io_tree_init(fs_info, &root->log_csum_range,
706 IO_TREE_LOG_CSUM_RANGE);
707 }
708
709 spin_lock_init(&root->root_item_lock);
710 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
711 #ifdef CONFIG_BTRFS_DEBUG
712 INIT_LIST_HEAD(&root->leak_list);
713 spin_lock(&fs_info->fs_roots_radix_lock);
714 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
715 spin_unlock(&fs_info->fs_roots_radix_lock);
716 #endif
717 }
718
btrfs_alloc_root(struct btrfs_fs_info * fs_info,u64 objectid,gfp_t flags)719 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
720 u64 objectid, gfp_t flags)
721 {
722 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
723 if (root)
724 __setup_root(root, fs_info, objectid);
725 return root;
726 }
727
728 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
729 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)730 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
731 {
732 struct btrfs_root *root;
733
734 if (!fs_info)
735 return ERR_PTR(-EINVAL);
736
737 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
738 if (!root)
739 return ERR_PTR(-ENOMEM);
740
741 /* We don't use the stripesize in selftest, set it as sectorsize */
742 root->alloc_bytenr = 0;
743
744 return root;
745 }
746 #endif
747
global_root_cmp(struct rb_node * a_node,const struct rb_node * b_node)748 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
749 {
750 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
751 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
752
753 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
754 }
755
global_root_key_cmp(const void * k,const struct rb_node * node)756 static int global_root_key_cmp(const void *k, const struct rb_node *node)
757 {
758 const struct btrfs_key *key = k;
759 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
760
761 return btrfs_comp_cpu_keys(key, &root->root_key);
762 }
763
btrfs_global_root_insert(struct btrfs_root * root)764 int btrfs_global_root_insert(struct btrfs_root *root)
765 {
766 struct btrfs_fs_info *fs_info = root->fs_info;
767 struct rb_node *tmp;
768 int ret = 0;
769
770 write_lock(&fs_info->global_root_lock);
771 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
772 write_unlock(&fs_info->global_root_lock);
773
774 if (tmp) {
775 ret = -EEXIST;
776 btrfs_warn(fs_info, "global root %llu %llu already exists",
777 btrfs_root_id(root), root->root_key.offset);
778 }
779 return ret;
780 }
781
btrfs_global_root_delete(struct btrfs_root * root)782 void btrfs_global_root_delete(struct btrfs_root *root)
783 {
784 struct btrfs_fs_info *fs_info = root->fs_info;
785
786 write_lock(&fs_info->global_root_lock);
787 rb_erase(&root->rb_node, &fs_info->global_root_tree);
788 write_unlock(&fs_info->global_root_lock);
789 }
790
btrfs_global_root(struct btrfs_fs_info * fs_info,struct btrfs_key * key)791 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
792 struct btrfs_key *key)
793 {
794 struct rb_node *node;
795 struct btrfs_root *root = NULL;
796
797 read_lock(&fs_info->global_root_lock);
798 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
799 if (node)
800 root = container_of(node, struct btrfs_root, rb_node);
801 read_unlock(&fs_info->global_root_lock);
802
803 return root;
804 }
805
btrfs_global_root_id(struct btrfs_fs_info * fs_info,u64 bytenr)806 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
807 {
808 struct btrfs_block_group *block_group;
809 u64 ret;
810
811 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
812 return 0;
813
814 if (bytenr)
815 block_group = btrfs_lookup_block_group(fs_info, bytenr);
816 else
817 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
818 ASSERT(block_group);
819 if (!block_group)
820 return 0;
821 ret = block_group->global_root_id;
822 btrfs_put_block_group(block_group);
823
824 return ret;
825 }
826
btrfs_csum_root(struct btrfs_fs_info * fs_info,u64 bytenr)827 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
828 {
829 struct btrfs_key key = {
830 .objectid = BTRFS_CSUM_TREE_OBJECTID,
831 .type = BTRFS_ROOT_ITEM_KEY,
832 .offset = btrfs_global_root_id(fs_info, bytenr),
833 };
834
835 return btrfs_global_root(fs_info, &key);
836 }
837
btrfs_extent_root(struct btrfs_fs_info * fs_info,u64 bytenr)838 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
839 {
840 struct btrfs_key key = {
841 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
842 .type = BTRFS_ROOT_ITEM_KEY,
843 .offset = btrfs_global_root_id(fs_info, bytenr),
844 };
845
846 return btrfs_global_root(fs_info, &key);
847 }
848
btrfs_create_tree(struct btrfs_trans_handle * trans,u64 objectid)849 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
850 u64 objectid)
851 {
852 struct btrfs_fs_info *fs_info = trans->fs_info;
853 struct extent_buffer *leaf;
854 struct btrfs_root *tree_root = fs_info->tree_root;
855 struct btrfs_root *root;
856 struct btrfs_key key;
857 unsigned int nofs_flag;
858 int ret = 0;
859
860 /*
861 * We're holding a transaction handle, so use a NOFS memory allocation
862 * context to avoid deadlock if reclaim happens.
863 */
864 nofs_flag = memalloc_nofs_save();
865 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
866 memalloc_nofs_restore(nofs_flag);
867 if (!root)
868 return ERR_PTR(-ENOMEM);
869
870 root->root_key.objectid = objectid;
871 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
872 root->root_key.offset = 0;
873
874 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
875 0, BTRFS_NESTING_NORMAL);
876 if (IS_ERR(leaf)) {
877 ret = PTR_ERR(leaf);
878 leaf = NULL;
879 goto fail;
880 }
881
882 root->node = leaf;
883 btrfs_mark_buffer_dirty(trans, leaf);
884
885 root->commit_root = btrfs_root_node(root);
886 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
887
888 btrfs_set_root_flags(&root->root_item, 0);
889 btrfs_set_root_limit(&root->root_item, 0);
890 btrfs_set_root_bytenr(&root->root_item, leaf->start);
891 btrfs_set_root_generation(&root->root_item, trans->transid);
892 btrfs_set_root_level(&root->root_item, 0);
893 btrfs_set_root_refs(&root->root_item, 1);
894 btrfs_set_root_used(&root->root_item, leaf->len);
895 btrfs_set_root_last_snapshot(&root->root_item, 0);
896 btrfs_set_root_dirid(&root->root_item, 0);
897 if (is_fstree(objectid))
898 generate_random_guid(root->root_item.uuid);
899 else
900 export_guid(root->root_item.uuid, &guid_null);
901 btrfs_set_root_drop_level(&root->root_item, 0);
902
903 btrfs_tree_unlock(leaf);
904
905 key.objectid = objectid;
906 key.type = BTRFS_ROOT_ITEM_KEY;
907 key.offset = 0;
908 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
909 if (ret)
910 goto fail;
911
912 return root;
913
914 fail:
915 btrfs_put_root(root);
916
917 return ERR_PTR(ret);
918 }
919
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)920 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
921 struct btrfs_fs_info *fs_info)
922 {
923 struct btrfs_root *root;
924
925 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
926 if (!root)
927 return ERR_PTR(-ENOMEM);
928
929 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
930 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
931 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
932
933 return root;
934 }
935
btrfs_alloc_log_tree_node(struct btrfs_trans_handle * trans,struct btrfs_root * root)936 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
937 struct btrfs_root *root)
938 {
939 struct extent_buffer *leaf;
940
941 /*
942 * DON'T set SHAREABLE bit for log trees.
943 *
944 * Log trees are not exposed to user space thus can't be snapshotted,
945 * and they go away before a real commit is actually done.
946 *
947 * They do store pointers to file data extents, and those reference
948 * counts still get updated (along with back refs to the log tree).
949 */
950
951 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
952 NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
953 if (IS_ERR(leaf))
954 return PTR_ERR(leaf);
955
956 root->node = leaf;
957
958 btrfs_mark_buffer_dirty(trans, root->node);
959 btrfs_tree_unlock(root->node);
960
961 return 0;
962 }
963
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)964 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
965 struct btrfs_fs_info *fs_info)
966 {
967 struct btrfs_root *log_root;
968
969 log_root = alloc_log_tree(trans, fs_info);
970 if (IS_ERR(log_root))
971 return PTR_ERR(log_root);
972
973 if (!btrfs_is_zoned(fs_info)) {
974 int ret = btrfs_alloc_log_tree_node(trans, log_root);
975
976 if (ret) {
977 btrfs_put_root(log_root);
978 return ret;
979 }
980 }
981
982 WARN_ON(fs_info->log_root_tree);
983 fs_info->log_root_tree = log_root;
984 return 0;
985 }
986
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)987 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
988 struct btrfs_root *root)
989 {
990 struct btrfs_fs_info *fs_info = root->fs_info;
991 struct btrfs_root *log_root;
992 struct btrfs_inode_item *inode_item;
993 int ret;
994
995 log_root = alloc_log_tree(trans, fs_info);
996 if (IS_ERR(log_root))
997 return PTR_ERR(log_root);
998
999 ret = btrfs_alloc_log_tree_node(trans, log_root);
1000 if (ret) {
1001 btrfs_put_root(log_root);
1002 return ret;
1003 }
1004
1005 btrfs_set_root_last_trans(log_root, trans->transid);
1006 log_root->root_key.offset = btrfs_root_id(root);
1007
1008 inode_item = &log_root->root_item.inode;
1009 btrfs_set_stack_inode_generation(inode_item, 1);
1010 btrfs_set_stack_inode_size(inode_item, 3);
1011 btrfs_set_stack_inode_nlink(inode_item, 1);
1012 btrfs_set_stack_inode_nbytes(inode_item,
1013 fs_info->nodesize);
1014 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1015
1016 btrfs_set_root_node(&log_root->root_item, log_root->node);
1017
1018 WARN_ON(root->log_root);
1019 root->log_root = log_root;
1020 btrfs_set_root_log_transid(root, 0);
1021 root->log_transid_committed = -1;
1022 btrfs_set_root_last_log_commit(root, 0);
1023 return 0;
1024 }
1025
read_tree_root_path(struct btrfs_root * tree_root,struct btrfs_path * path,const struct btrfs_key * key)1026 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1027 struct btrfs_path *path,
1028 const struct btrfs_key *key)
1029 {
1030 struct btrfs_root *root;
1031 struct btrfs_tree_parent_check check = { 0 };
1032 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1033 u64 generation;
1034 int ret;
1035 int level;
1036
1037 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1038 if (!root)
1039 return ERR_PTR(-ENOMEM);
1040
1041 ret = btrfs_find_root(tree_root, key, path,
1042 &root->root_item, &root->root_key);
1043 if (ret) {
1044 if (ret > 0)
1045 ret = -ENOENT;
1046 goto fail;
1047 }
1048
1049 generation = btrfs_root_generation(&root->root_item);
1050 level = btrfs_root_level(&root->root_item);
1051 check.level = level;
1052 check.transid = generation;
1053 check.owner_root = key->objectid;
1054 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1055 &check);
1056 if (IS_ERR(root->node)) {
1057 ret = PTR_ERR(root->node);
1058 root->node = NULL;
1059 goto fail;
1060 }
1061 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1062 ret = -EIO;
1063 goto fail;
1064 }
1065
1066 /*
1067 * For real fs, and not log/reloc trees, root owner must
1068 * match its root node owner
1069 */
1070 if (!btrfs_is_testing(fs_info) &&
1071 btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1072 btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
1073 btrfs_root_id(root) != btrfs_header_owner(root->node)) {
1074 btrfs_crit(fs_info,
1075 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1076 btrfs_root_id(root), root->node->start,
1077 btrfs_header_owner(root->node),
1078 btrfs_root_id(root));
1079 ret = -EUCLEAN;
1080 goto fail;
1081 }
1082 root->commit_root = btrfs_root_node(root);
1083 return root;
1084 fail:
1085 btrfs_put_root(root);
1086 return ERR_PTR(ret);
1087 }
1088
btrfs_read_tree_root(struct btrfs_root * tree_root,const struct btrfs_key * key)1089 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1090 const struct btrfs_key *key)
1091 {
1092 struct btrfs_root *root;
1093 struct btrfs_path *path;
1094
1095 path = btrfs_alloc_path();
1096 if (!path)
1097 return ERR_PTR(-ENOMEM);
1098 root = read_tree_root_path(tree_root, path, key);
1099 btrfs_free_path(path);
1100
1101 return root;
1102 }
1103
1104 /*
1105 * Initialize subvolume root in-memory structure
1106 *
1107 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1108 */
btrfs_init_fs_root(struct btrfs_root * root,dev_t anon_dev)1109 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1110 {
1111 int ret;
1112
1113 btrfs_drew_lock_init(&root->snapshot_lock);
1114
1115 if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1116 !btrfs_is_data_reloc_root(root) &&
1117 is_fstree(btrfs_root_id(root))) {
1118 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1119 btrfs_check_and_init_root_item(&root->root_item);
1120 }
1121
1122 /*
1123 * Don't assign anonymous block device to roots that are not exposed to
1124 * userspace, the id pool is limited to 1M
1125 */
1126 if (is_fstree(btrfs_root_id(root)) &&
1127 btrfs_root_refs(&root->root_item) > 0) {
1128 if (!anon_dev) {
1129 ret = get_anon_bdev(&root->anon_dev);
1130 if (ret)
1131 goto fail;
1132 } else {
1133 root->anon_dev = anon_dev;
1134 }
1135 }
1136
1137 mutex_lock(&root->objectid_mutex);
1138 ret = btrfs_init_root_free_objectid(root);
1139 if (ret) {
1140 mutex_unlock(&root->objectid_mutex);
1141 goto fail;
1142 }
1143
1144 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1145
1146 mutex_unlock(&root->objectid_mutex);
1147
1148 return 0;
1149 fail:
1150 /* The caller is responsible to call btrfs_free_fs_root */
1151 return ret;
1152 }
1153
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1154 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1155 u64 root_id)
1156 {
1157 struct btrfs_root *root;
1158
1159 spin_lock(&fs_info->fs_roots_radix_lock);
1160 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1161 (unsigned long)root_id);
1162 root = btrfs_grab_root(root);
1163 spin_unlock(&fs_info->fs_roots_radix_lock);
1164 return root;
1165 }
1166
btrfs_get_global_root(struct btrfs_fs_info * fs_info,u64 objectid)1167 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1168 u64 objectid)
1169 {
1170 struct btrfs_key key = {
1171 .objectid = objectid,
1172 .type = BTRFS_ROOT_ITEM_KEY,
1173 .offset = 0,
1174 };
1175
1176 switch (objectid) {
1177 case BTRFS_ROOT_TREE_OBJECTID:
1178 return btrfs_grab_root(fs_info->tree_root);
1179 case BTRFS_EXTENT_TREE_OBJECTID:
1180 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1181 case BTRFS_CHUNK_TREE_OBJECTID:
1182 return btrfs_grab_root(fs_info->chunk_root);
1183 case BTRFS_DEV_TREE_OBJECTID:
1184 return btrfs_grab_root(fs_info->dev_root);
1185 case BTRFS_CSUM_TREE_OBJECTID:
1186 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1187 case BTRFS_QUOTA_TREE_OBJECTID:
1188 return btrfs_grab_root(fs_info->quota_root);
1189 case BTRFS_UUID_TREE_OBJECTID:
1190 return btrfs_grab_root(fs_info->uuid_root);
1191 case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1192 return btrfs_grab_root(fs_info->block_group_root);
1193 case BTRFS_FREE_SPACE_TREE_OBJECTID:
1194 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1195 case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1196 return btrfs_grab_root(fs_info->stripe_root);
1197 default:
1198 return NULL;
1199 }
1200 }
1201
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1202 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1203 struct btrfs_root *root)
1204 {
1205 int ret;
1206
1207 ret = radix_tree_preload(GFP_NOFS);
1208 if (ret)
1209 return ret;
1210
1211 spin_lock(&fs_info->fs_roots_radix_lock);
1212 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1213 (unsigned long)btrfs_root_id(root),
1214 root);
1215 if (ret == 0) {
1216 btrfs_grab_root(root);
1217 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1218 }
1219 spin_unlock(&fs_info->fs_roots_radix_lock);
1220 radix_tree_preload_end();
1221
1222 return ret;
1223 }
1224
btrfs_check_leaked_roots(const struct btrfs_fs_info * fs_info)1225 void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info)
1226 {
1227 #ifdef CONFIG_BTRFS_DEBUG
1228 struct btrfs_root *root;
1229
1230 while (!list_empty(&fs_info->allocated_roots)) {
1231 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1232
1233 root = list_first_entry(&fs_info->allocated_roots,
1234 struct btrfs_root, leak_list);
1235 btrfs_err(fs_info, "leaked root %s refcount %d",
1236 btrfs_root_name(&root->root_key, buf),
1237 refcount_read(&root->refs));
1238 WARN_ON_ONCE(1);
1239 while (refcount_read(&root->refs) > 1)
1240 btrfs_put_root(root);
1241 btrfs_put_root(root);
1242 }
1243 #endif
1244 }
1245
free_global_roots(struct btrfs_fs_info * fs_info)1246 static void free_global_roots(struct btrfs_fs_info *fs_info)
1247 {
1248 struct btrfs_root *root;
1249 struct rb_node *node;
1250
1251 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1252 root = rb_entry(node, struct btrfs_root, rb_node);
1253 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1254 btrfs_put_root(root);
1255 }
1256 }
1257
btrfs_free_fs_info(struct btrfs_fs_info * fs_info)1258 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1259 {
1260 struct percpu_counter *em_counter = &fs_info->evictable_extent_maps;
1261
1262 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1263 percpu_counter_destroy(&fs_info->delalloc_bytes);
1264 percpu_counter_destroy(&fs_info->ordered_bytes);
1265 if (percpu_counter_initialized(em_counter))
1266 ASSERT(percpu_counter_sum_positive(em_counter) == 0);
1267 percpu_counter_destroy(em_counter);
1268 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1269 btrfs_free_csum_hash(fs_info);
1270 btrfs_free_stripe_hash_table(fs_info);
1271 btrfs_free_ref_cache(fs_info);
1272 kfree(fs_info->balance_ctl);
1273 kfree(fs_info->delayed_root);
1274 free_global_roots(fs_info);
1275 btrfs_put_root(fs_info->tree_root);
1276 btrfs_put_root(fs_info->chunk_root);
1277 btrfs_put_root(fs_info->dev_root);
1278 btrfs_put_root(fs_info->quota_root);
1279 btrfs_put_root(fs_info->uuid_root);
1280 btrfs_put_root(fs_info->fs_root);
1281 btrfs_put_root(fs_info->data_reloc_root);
1282 btrfs_put_root(fs_info->block_group_root);
1283 btrfs_put_root(fs_info->stripe_root);
1284 btrfs_check_leaked_roots(fs_info);
1285 btrfs_extent_buffer_leak_debug_check(fs_info);
1286 kfree(fs_info->super_copy);
1287 kfree(fs_info->super_for_commit);
1288 kvfree(fs_info);
1289 }
1290
1291
1292 /*
1293 * Get an in-memory reference of a root structure.
1294 *
1295 * For essential trees like root/extent tree, we grab it from fs_info directly.
1296 * For subvolume trees, we check the cached filesystem roots first. If not
1297 * found, then read it from disk and add it to cached fs roots.
1298 *
1299 * Caller should release the root by calling btrfs_put_root() after the usage.
1300 *
1301 * NOTE: Reloc and log trees can't be read by this function as they share the
1302 * same root objectid.
1303 *
1304 * @objectid: root id
1305 * @anon_dev: preallocated anonymous block device number for new roots,
1306 * pass NULL for a new allocation.
1307 * @check_ref: whether to check root item references, If true, return -ENOENT
1308 * for orphan roots
1309 */
btrfs_get_root_ref(struct btrfs_fs_info * fs_info,u64 objectid,dev_t * anon_dev,bool check_ref)1310 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1311 u64 objectid, dev_t *anon_dev,
1312 bool check_ref)
1313 {
1314 struct btrfs_root *root;
1315 struct btrfs_path *path;
1316 struct btrfs_key key;
1317 int ret;
1318
1319 root = btrfs_get_global_root(fs_info, objectid);
1320 if (root)
1321 return root;
1322
1323 /*
1324 * If we're called for non-subvolume trees, and above function didn't
1325 * find one, do not try to read it from disk.
1326 *
1327 * This is namely for free-space-tree and quota tree, which can change
1328 * at runtime and should only be grabbed from fs_info.
1329 */
1330 if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1331 return ERR_PTR(-ENOENT);
1332 again:
1333 root = btrfs_lookup_fs_root(fs_info, objectid);
1334 if (root) {
1335 /*
1336 * Some other caller may have read out the newly inserted
1337 * subvolume already (for things like backref walk etc). Not
1338 * that common but still possible. In that case, we just need
1339 * to free the anon_dev.
1340 */
1341 if (unlikely(anon_dev && *anon_dev)) {
1342 free_anon_bdev(*anon_dev);
1343 *anon_dev = 0;
1344 }
1345
1346 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1347 btrfs_put_root(root);
1348 return ERR_PTR(-ENOENT);
1349 }
1350 return root;
1351 }
1352
1353 key.objectid = objectid;
1354 key.type = BTRFS_ROOT_ITEM_KEY;
1355 key.offset = (u64)-1;
1356 root = btrfs_read_tree_root(fs_info->tree_root, &key);
1357 if (IS_ERR(root))
1358 return root;
1359
1360 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1361 ret = -ENOENT;
1362 goto fail;
1363 }
1364
1365 ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
1366 if (ret)
1367 goto fail;
1368
1369 path = btrfs_alloc_path();
1370 if (!path) {
1371 ret = -ENOMEM;
1372 goto fail;
1373 }
1374 key.objectid = BTRFS_ORPHAN_OBJECTID;
1375 key.type = BTRFS_ORPHAN_ITEM_KEY;
1376 key.offset = objectid;
1377
1378 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1379 btrfs_free_path(path);
1380 if (ret < 0)
1381 goto fail;
1382 if (ret == 0)
1383 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1384
1385 ret = btrfs_insert_fs_root(fs_info, root);
1386 if (ret) {
1387 if (ret == -EEXIST) {
1388 btrfs_put_root(root);
1389 goto again;
1390 }
1391 goto fail;
1392 }
1393 return root;
1394 fail:
1395 /*
1396 * If our caller provided us an anonymous device, then it's his
1397 * responsibility to free it in case we fail. So we have to set our
1398 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1399 * and once again by our caller.
1400 */
1401 if (anon_dev && *anon_dev)
1402 root->anon_dev = 0;
1403 btrfs_put_root(root);
1404 return ERR_PTR(ret);
1405 }
1406
1407 /*
1408 * Get in-memory reference of a root structure
1409 *
1410 * @objectid: tree objectid
1411 * @check_ref: if set, verify that the tree exists and the item has at least
1412 * one reference
1413 */
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,bool check_ref)1414 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1415 u64 objectid, bool check_ref)
1416 {
1417 return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
1418 }
1419
1420 /*
1421 * Get in-memory reference of a root structure, created as new, optionally pass
1422 * the anonymous block device id
1423 *
1424 * @objectid: tree objectid
1425 * @anon_dev: if NULL, allocate a new anonymous block device or use the
1426 * parameter value if not NULL
1427 */
btrfs_get_new_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,dev_t * anon_dev)1428 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1429 u64 objectid, dev_t *anon_dev)
1430 {
1431 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1432 }
1433
1434 /*
1435 * Return a root for the given objectid.
1436 *
1437 * @fs_info: the fs_info
1438 * @objectid: the objectid we need to lookup
1439 *
1440 * This is exclusively used for backref walking, and exists specifically because
1441 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1442 * creation time, which means we may have to read the tree_root in order to look
1443 * up a fs root that is not in memory. If the root is not in memory we will
1444 * read the tree root commit root and look up the fs root from there. This is a
1445 * temporary root, it will not be inserted into the radix tree as it doesn't
1446 * have the most uptodate information, it'll simply be discarded once the
1447 * backref code is finished using the root.
1448 */
btrfs_get_fs_root_commit_root(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 objectid)1449 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1450 struct btrfs_path *path,
1451 u64 objectid)
1452 {
1453 struct btrfs_root *root;
1454 struct btrfs_key key;
1455
1456 ASSERT(path->search_commit_root && path->skip_locking);
1457
1458 /*
1459 * This can return -ENOENT if we ask for a root that doesn't exist, but
1460 * since this is called via the backref walking code we won't be looking
1461 * up a root that doesn't exist, unless there's corruption. So if root
1462 * != NULL just return it.
1463 */
1464 root = btrfs_get_global_root(fs_info, objectid);
1465 if (root)
1466 return root;
1467
1468 root = btrfs_lookup_fs_root(fs_info, objectid);
1469 if (root)
1470 return root;
1471
1472 key.objectid = objectid;
1473 key.type = BTRFS_ROOT_ITEM_KEY;
1474 key.offset = (u64)-1;
1475 root = read_tree_root_path(fs_info->tree_root, path, &key);
1476 btrfs_release_path(path);
1477
1478 return root;
1479 }
1480
cleaner_kthread(void * arg)1481 static int cleaner_kthread(void *arg)
1482 {
1483 struct btrfs_fs_info *fs_info = arg;
1484 int again;
1485
1486 while (1) {
1487 again = 0;
1488
1489 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1490
1491 /* Make the cleaner go to sleep early. */
1492 if (btrfs_need_cleaner_sleep(fs_info))
1493 goto sleep;
1494
1495 /*
1496 * Do not do anything if we might cause open_ctree() to block
1497 * before we have finished mounting the filesystem.
1498 */
1499 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1500 goto sleep;
1501
1502 if (!mutex_trylock(&fs_info->cleaner_mutex))
1503 goto sleep;
1504
1505 /*
1506 * Avoid the problem that we change the status of the fs
1507 * during the above check and trylock.
1508 */
1509 if (btrfs_need_cleaner_sleep(fs_info)) {
1510 mutex_unlock(&fs_info->cleaner_mutex);
1511 goto sleep;
1512 }
1513
1514 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1515 btrfs_sysfs_feature_update(fs_info);
1516
1517 btrfs_run_delayed_iputs(fs_info);
1518
1519 again = btrfs_clean_one_deleted_snapshot(fs_info);
1520 mutex_unlock(&fs_info->cleaner_mutex);
1521
1522 /*
1523 * The defragger has dealt with the R/O remount and umount,
1524 * needn't do anything special here.
1525 */
1526 btrfs_run_defrag_inodes(fs_info);
1527
1528 /*
1529 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1530 * with relocation (btrfs_relocate_chunk) and relocation
1531 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1532 * after acquiring fs_info->reclaim_bgs_lock. So we
1533 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1534 * unused block groups.
1535 */
1536 btrfs_delete_unused_bgs(fs_info);
1537
1538 /*
1539 * Reclaim block groups in the reclaim_bgs list after we deleted
1540 * all unused block_groups. This possibly gives us some more free
1541 * space.
1542 */
1543 btrfs_reclaim_bgs(fs_info);
1544 sleep:
1545 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1546 if (kthread_should_park())
1547 kthread_parkme();
1548 if (kthread_should_stop())
1549 return 0;
1550 if (!again) {
1551 set_current_state(TASK_INTERRUPTIBLE);
1552 schedule();
1553 __set_current_state(TASK_RUNNING);
1554 }
1555 }
1556 }
1557
transaction_kthread(void * arg)1558 static int transaction_kthread(void *arg)
1559 {
1560 struct btrfs_root *root = arg;
1561 struct btrfs_fs_info *fs_info = root->fs_info;
1562 struct btrfs_trans_handle *trans;
1563 struct btrfs_transaction *cur;
1564 u64 transid;
1565 time64_t delta;
1566 unsigned long delay;
1567 bool cannot_commit;
1568
1569 do {
1570 cannot_commit = false;
1571 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1572 mutex_lock(&fs_info->transaction_kthread_mutex);
1573
1574 spin_lock(&fs_info->trans_lock);
1575 cur = fs_info->running_transaction;
1576 if (!cur) {
1577 spin_unlock(&fs_info->trans_lock);
1578 goto sleep;
1579 }
1580
1581 delta = ktime_get_seconds() - cur->start_time;
1582 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1583 cur->state < TRANS_STATE_COMMIT_PREP &&
1584 delta < fs_info->commit_interval) {
1585 spin_unlock(&fs_info->trans_lock);
1586 delay -= msecs_to_jiffies((delta - 1) * 1000);
1587 delay = min(delay,
1588 msecs_to_jiffies(fs_info->commit_interval * 1000));
1589 goto sleep;
1590 }
1591 transid = cur->transid;
1592 spin_unlock(&fs_info->trans_lock);
1593
1594 /* If the file system is aborted, this will always fail. */
1595 trans = btrfs_attach_transaction(root);
1596 if (IS_ERR(trans)) {
1597 if (PTR_ERR(trans) != -ENOENT)
1598 cannot_commit = true;
1599 goto sleep;
1600 }
1601 if (transid == trans->transid) {
1602 btrfs_commit_transaction(trans);
1603 } else {
1604 btrfs_end_transaction(trans);
1605 }
1606 sleep:
1607 wake_up_process(fs_info->cleaner_kthread);
1608 mutex_unlock(&fs_info->transaction_kthread_mutex);
1609
1610 if (BTRFS_FS_ERROR(fs_info))
1611 btrfs_cleanup_transaction(fs_info);
1612 if (!kthread_should_stop() &&
1613 (!btrfs_transaction_blocked(fs_info) ||
1614 cannot_commit))
1615 schedule_timeout_interruptible(delay);
1616 } while (!kthread_should_stop());
1617 return 0;
1618 }
1619
1620 /*
1621 * This will find the highest generation in the array of root backups. The
1622 * index of the highest array is returned, or -EINVAL if we can't find
1623 * anything.
1624 *
1625 * We check to make sure the array is valid by comparing the
1626 * generation of the latest root in the array with the generation
1627 * in the super block. If they don't match we pitch it.
1628 */
find_newest_super_backup(struct btrfs_fs_info * info)1629 static int find_newest_super_backup(struct btrfs_fs_info *info)
1630 {
1631 const u64 newest_gen = btrfs_super_generation(info->super_copy);
1632 u64 cur;
1633 struct btrfs_root_backup *root_backup;
1634 int i;
1635
1636 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1637 root_backup = info->super_copy->super_roots + i;
1638 cur = btrfs_backup_tree_root_gen(root_backup);
1639 if (cur == newest_gen)
1640 return i;
1641 }
1642
1643 return -EINVAL;
1644 }
1645
1646 /*
1647 * copy all the root pointers into the super backup array.
1648 * this will bump the backup pointer by one when it is
1649 * done
1650 */
backup_super_roots(struct btrfs_fs_info * info)1651 static void backup_super_roots(struct btrfs_fs_info *info)
1652 {
1653 const int next_backup = info->backup_root_index;
1654 struct btrfs_root_backup *root_backup;
1655
1656 root_backup = info->super_for_commit->super_roots + next_backup;
1657
1658 /*
1659 * make sure all of our padding and empty slots get zero filled
1660 * regardless of which ones we use today
1661 */
1662 memset(root_backup, 0, sizeof(*root_backup));
1663
1664 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1665
1666 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1667 btrfs_set_backup_tree_root_gen(root_backup,
1668 btrfs_header_generation(info->tree_root->node));
1669
1670 btrfs_set_backup_tree_root_level(root_backup,
1671 btrfs_header_level(info->tree_root->node));
1672
1673 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1674 btrfs_set_backup_chunk_root_gen(root_backup,
1675 btrfs_header_generation(info->chunk_root->node));
1676 btrfs_set_backup_chunk_root_level(root_backup,
1677 btrfs_header_level(info->chunk_root->node));
1678
1679 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1680 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1681 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1682
1683 btrfs_set_backup_extent_root(root_backup,
1684 extent_root->node->start);
1685 btrfs_set_backup_extent_root_gen(root_backup,
1686 btrfs_header_generation(extent_root->node));
1687 btrfs_set_backup_extent_root_level(root_backup,
1688 btrfs_header_level(extent_root->node));
1689
1690 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1691 btrfs_set_backup_csum_root_gen(root_backup,
1692 btrfs_header_generation(csum_root->node));
1693 btrfs_set_backup_csum_root_level(root_backup,
1694 btrfs_header_level(csum_root->node));
1695 }
1696
1697 /*
1698 * we might commit during log recovery, which happens before we set
1699 * the fs_root. Make sure it is valid before we fill it in.
1700 */
1701 if (info->fs_root && info->fs_root->node) {
1702 btrfs_set_backup_fs_root(root_backup,
1703 info->fs_root->node->start);
1704 btrfs_set_backup_fs_root_gen(root_backup,
1705 btrfs_header_generation(info->fs_root->node));
1706 btrfs_set_backup_fs_root_level(root_backup,
1707 btrfs_header_level(info->fs_root->node));
1708 }
1709
1710 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1711 btrfs_set_backup_dev_root_gen(root_backup,
1712 btrfs_header_generation(info->dev_root->node));
1713 btrfs_set_backup_dev_root_level(root_backup,
1714 btrfs_header_level(info->dev_root->node));
1715
1716 btrfs_set_backup_total_bytes(root_backup,
1717 btrfs_super_total_bytes(info->super_copy));
1718 btrfs_set_backup_bytes_used(root_backup,
1719 btrfs_super_bytes_used(info->super_copy));
1720 btrfs_set_backup_num_devices(root_backup,
1721 btrfs_super_num_devices(info->super_copy));
1722
1723 /*
1724 * if we don't copy this out to the super_copy, it won't get remembered
1725 * for the next commit
1726 */
1727 memcpy(&info->super_copy->super_roots,
1728 &info->super_for_commit->super_roots,
1729 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1730 }
1731
1732 /*
1733 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1734 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1735 *
1736 * @fs_info: filesystem whose backup roots need to be read
1737 * @priority: priority of backup root required
1738 *
1739 * Returns backup root index on success and -EINVAL otherwise.
1740 */
read_backup_root(struct btrfs_fs_info * fs_info,u8 priority)1741 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1742 {
1743 int backup_index = find_newest_super_backup(fs_info);
1744 struct btrfs_super_block *super = fs_info->super_copy;
1745 struct btrfs_root_backup *root_backup;
1746
1747 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1748 if (priority == 0)
1749 return backup_index;
1750
1751 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1752 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1753 } else {
1754 return -EINVAL;
1755 }
1756
1757 root_backup = super->super_roots + backup_index;
1758
1759 btrfs_set_super_generation(super,
1760 btrfs_backup_tree_root_gen(root_backup));
1761 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1762 btrfs_set_super_root_level(super,
1763 btrfs_backup_tree_root_level(root_backup));
1764 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1765
1766 /*
1767 * Fixme: the total bytes and num_devices need to match or we should
1768 * need a fsck
1769 */
1770 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1771 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1772
1773 return backup_index;
1774 }
1775
1776 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)1777 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1778 {
1779 btrfs_destroy_workqueue(fs_info->fixup_workers);
1780 btrfs_destroy_workqueue(fs_info->delalloc_workers);
1781 btrfs_destroy_workqueue(fs_info->workers);
1782 if (fs_info->endio_workers)
1783 destroy_workqueue(fs_info->endio_workers);
1784 if (fs_info->rmw_workers)
1785 destroy_workqueue(fs_info->rmw_workers);
1786 if (fs_info->compressed_write_workers)
1787 destroy_workqueue(fs_info->compressed_write_workers);
1788 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1789 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1790 btrfs_destroy_workqueue(fs_info->delayed_workers);
1791 btrfs_destroy_workqueue(fs_info->caching_workers);
1792 btrfs_destroy_workqueue(fs_info->flush_workers);
1793 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1794 if (fs_info->discard_ctl.discard_workers)
1795 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1796 /*
1797 * Now that all other work queues are destroyed, we can safely destroy
1798 * the queues used for metadata I/O, since tasks from those other work
1799 * queues can do metadata I/O operations.
1800 */
1801 if (fs_info->endio_meta_workers)
1802 destroy_workqueue(fs_info->endio_meta_workers);
1803 }
1804
free_root_extent_buffers(struct btrfs_root * root)1805 static void free_root_extent_buffers(struct btrfs_root *root)
1806 {
1807 if (root) {
1808 free_extent_buffer(root->node);
1809 free_extent_buffer(root->commit_root);
1810 root->node = NULL;
1811 root->commit_root = NULL;
1812 }
1813 }
1814
free_global_root_pointers(struct btrfs_fs_info * fs_info)1815 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1816 {
1817 struct btrfs_root *root, *tmp;
1818
1819 rbtree_postorder_for_each_entry_safe(root, tmp,
1820 &fs_info->global_root_tree,
1821 rb_node)
1822 free_root_extent_buffers(root);
1823 }
1824
1825 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,bool free_chunk_root)1826 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1827 {
1828 free_root_extent_buffers(info->tree_root);
1829
1830 free_global_root_pointers(info);
1831 free_root_extent_buffers(info->dev_root);
1832 free_root_extent_buffers(info->quota_root);
1833 free_root_extent_buffers(info->uuid_root);
1834 free_root_extent_buffers(info->fs_root);
1835 free_root_extent_buffers(info->data_reloc_root);
1836 free_root_extent_buffers(info->block_group_root);
1837 free_root_extent_buffers(info->stripe_root);
1838 if (free_chunk_root)
1839 free_root_extent_buffers(info->chunk_root);
1840 }
1841
btrfs_put_root(struct btrfs_root * root)1842 void btrfs_put_root(struct btrfs_root *root)
1843 {
1844 if (!root)
1845 return;
1846
1847 if (refcount_dec_and_test(&root->refs)) {
1848 if (WARN_ON(!xa_empty(&root->inodes)))
1849 xa_destroy(&root->inodes);
1850 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1851 if (root->anon_dev)
1852 free_anon_bdev(root->anon_dev);
1853 free_root_extent_buffers(root);
1854 #ifdef CONFIG_BTRFS_DEBUG
1855 spin_lock(&root->fs_info->fs_roots_radix_lock);
1856 list_del_init(&root->leak_list);
1857 spin_unlock(&root->fs_info->fs_roots_radix_lock);
1858 #endif
1859 kfree(root);
1860 }
1861 }
1862
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)1863 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1864 {
1865 int ret;
1866 struct btrfs_root *gang[8];
1867 int i;
1868
1869 while (!list_empty(&fs_info->dead_roots)) {
1870 gang[0] = list_entry(fs_info->dead_roots.next,
1871 struct btrfs_root, root_list);
1872 list_del(&gang[0]->root_list);
1873
1874 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1875 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1876 btrfs_put_root(gang[0]);
1877 }
1878
1879 while (1) {
1880 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1881 (void **)gang, 0,
1882 ARRAY_SIZE(gang));
1883 if (!ret)
1884 break;
1885 for (i = 0; i < ret; i++)
1886 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1887 }
1888 }
1889
btrfs_init_scrub(struct btrfs_fs_info * fs_info)1890 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1891 {
1892 mutex_init(&fs_info->scrub_lock);
1893 atomic_set(&fs_info->scrubs_running, 0);
1894 atomic_set(&fs_info->scrub_pause_req, 0);
1895 atomic_set(&fs_info->scrubs_paused, 0);
1896 atomic_set(&fs_info->scrub_cancel_req, 0);
1897 init_waitqueue_head(&fs_info->scrub_pause_wait);
1898 refcount_set(&fs_info->scrub_workers_refcnt, 0);
1899 }
1900
btrfs_init_balance(struct btrfs_fs_info * fs_info)1901 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1902 {
1903 spin_lock_init(&fs_info->balance_lock);
1904 mutex_init(&fs_info->balance_mutex);
1905 atomic_set(&fs_info->balance_pause_req, 0);
1906 atomic_set(&fs_info->balance_cancel_req, 0);
1907 fs_info->balance_ctl = NULL;
1908 init_waitqueue_head(&fs_info->balance_wait_q);
1909 atomic_set(&fs_info->reloc_cancel_req, 0);
1910 }
1911
btrfs_init_btree_inode(struct super_block * sb)1912 static int btrfs_init_btree_inode(struct super_block *sb)
1913 {
1914 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1915 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1916 fs_info->tree_root);
1917 struct inode *inode;
1918
1919 inode = new_inode(sb);
1920 if (!inode)
1921 return -ENOMEM;
1922
1923 btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID);
1924 set_nlink(inode, 1);
1925 /*
1926 * we set the i_size on the btree inode to the max possible int.
1927 * the real end of the address space is determined by all of
1928 * the devices in the system
1929 */
1930 inode->i_size = OFFSET_MAX;
1931 inode->i_mapping->a_ops = &btree_aops;
1932 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1933
1934 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1935 IO_TREE_BTREE_INODE_IO);
1936 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1937
1938 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1939 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1940 __insert_inode_hash(inode, hash);
1941 fs_info->btree_inode = inode;
1942
1943 return 0;
1944 }
1945
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)1946 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1947 {
1948 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1949 init_rwsem(&fs_info->dev_replace.rwsem);
1950 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1951 }
1952
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)1953 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1954 {
1955 spin_lock_init(&fs_info->qgroup_lock);
1956 mutex_init(&fs_info->qgroup_ioctl_lock);
1957 fs_info->qgroup_tree = RB_ROOT;
1958 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1959 fs_info->qgroup_seq = 1;
1960 fs_info->qgroup_ulist = NULL;
1961 fs_info->qgroup_rescan_running = false;
1962 fs_info->qgroup_drop_subtree_thres = BTRFS_QGROUP_DROP_SUBTREE_THRES_DEFAULT;
1963 mutex_init(&fs_info->qgroup_rescan_lock);
1964 }
1965
btrfs_init_workqueues(struct btrfs_fs_info * fs_info)1966 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1967 {
1968 u32 max_active = fs_info->thread_pool_size;
1969 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1970 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1971
1972 fs_info->workers =
1973 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1974
1975 fs_info->delalloc_workers =
1976 btrfs_alloc_workqueue(fs_info, "delalloc",
1977 flags, max_active, 2);
1978
1979 fs_info->flush_workers =
1980 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1981 flags, max_active, 0);
1982
1983 fs_info->caching_workers =
1984 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1985
1986 fs_info->fixup_workers =
1987 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1988
1989 fs_info->endio_workers =
1990 alloc_workqueue("btrfs-endio", flags, max_active);
1991 fs_info->endio_meta_workers =
1992 alloc_workqueue("btrfs-endio-meta", flags, max_active);
1993 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
1994 fs_info->endio_write_workers =
1995 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1996 max_active, 2);
1997 fs_info->compressed_write_workers =
1998 alloc_workqueue("btrfs-compressed-write", flags, max_active);
1999 fs_info->endio_freespace_worker =
2000 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2001 max_active, 0);
2002 fs_info->delayed_workers =
2003 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2004 max_active, 0);
2005 fs_info->qgroup_rescan_workers =
2006 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
2007 ordered_flags);
2008 fs_info->discard_ctl.discard_workers =
2009 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
2010
2011 if (!(fs_info->workers &&
2012 fs_info->delalloc_workers && fs_info->flush_workers &&
2013 fs_info->endio_workers && fs_info->endio_meta_workers &&
2014 fs_info->compressed_write_workers &&
2015 fs_info->endio_write_workers &&
2016 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2017 fs_info->caching_workers && fs_info->fixup_workers &&
2018 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2019 fs_info->discard_ctl.discard_workers)) {
2020 return -ENOMEM;
2021 }
2022
2023 return 0;
2024 }
2025
btrfs_init_csum_hash(struct btrfs_fs_info * fs_info,u16 csum_type)2026 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2027 {
2028 struct crypto_shash *csum_shash;
2029 const char *csum_driver = btrfs_super_csum_driver(csum_type);
2030
2031 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2032
2033 if (IS_ERR(csum_shash)) {
2034 btrfs_err(fs_info, "error allocating %s hash for checksum",
2035 csum_driver);
2036 return PTR_ERR(csum_shash);
2037 }
2038
2039 fs_info->csum_shash = csum_shash;
2040
2041 /*
2042 * Check if the checksum implementation is a fast accelerated one.
2043 * As-is this is a bit of a hack and should be replaced once the csum
2044 * implementations provide that information themselves.
2045 */
2046 switch (csum_type) {
2047 case BTRFS_CSUM_TYPE_CRC32:
2048 if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2049 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2050 break;
2051 case BTRFS_CSUM_TYPE_XXHASH:
2052 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2053 break;
2054 default:
2055 break;
2056 }
2057
2058 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2059 btrfs_super_csum_name(csum_type),
2060 crypto_shash_driver_name(csum_shash));
2061 return 0;
2062 }
2063
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2064 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2065 struct btrfs_fs_devices *fs_devices)
2066 {
2067 int ret;
2068 struct btrfs_tree_parent_check check = { 0 };
2069 struct btrfs_root *log_tree_root;
2070 struct btrfs_super_block *disk_super = fs_info->super_copy;
2071 u64 bytenr = btrfs_super_log_root(disk_super);
2072 int level = btrfs_super_log_root_level(disk_super);
2073
2074 if (fs_devices->rw_devices == 0) {
2075 btrfs_warn(fs_info, "log replay required on RO media");
2076 return -EIO;
2077 }
2078
2079 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2080 GFP_KERNEL);
2081 if (!log_tree_root)
2082 return -ENOMEM;
2083
2084 check.level = level;
2085 check.transid = fs_info->generation + 1;
2086 check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2087 log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2088 if (IS_ERR(log_tree_root->node)) {
2089 btrfs_warn(fs_info, "failed to read log tree");
2090 ret = PTR_ERR(log_tree_root->node);
2091 log_tree_root->node = NULL;
2092 btrfs_put_root(log_tree_root);
2093 return ret;
2094 }
2095 if (!extent_buffer_uptodate(log_tree_root->node)) {
2096 btrfs_err(fs_info, "failed to read log tree");
2097 btrfs_put_root(log_tree_root);
2098 return -EIO;
2099 }
2100
2101 /* returns with log_tree_root freed on success */
2102 ret = btrfs_recover_log_trees(log_tree_root);
2103 if (ret) {
2104 btrfs_handle_fs_error(fs_info, ret,
2105 "Failed to recover log tree");
2106 btrfs_put_root(log_tree_root);
2107 return ret;
2108 }
2109
2110 if (sb_rdonly(fs_info->sb)) {
2111 ret = btrfs_commit_super(fs_info);
2112 if (ret)
2113 return ret;
2114 }
2115
2116 return 0;
2117 }
2118
load_global_roots_objectid(struct btrfs_root * tree_root,struct btrfs_path * path,u64 objectid,const char * name)2119 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2120 struct btrfs_path *path, u64 objectid,
2121 const char *name)
2122 {
2123 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2124 struct btrfs_root *root;
2125 u64 max_global_id = 0;
2126 int ret;
2127 struct btrfs_key key = {
2128 .objectid = objectid,
2129 .type = BTRFS_ROOT_ITEM_KEY,
2130 .offset = 0,
2131 };
2132 bool found = false;
2133
2134 /* If we have IGNOREDATACSUMS skip loading these roots. */
2135 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2136 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2137 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2138 return 0;
2139 }
2140
2141 while (1) {
2142 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2143 if (ret < 0)
2144 break;
2145
2146 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2147 ret = btrfs_next_leaf(tree_root, path);
2148 if (ret) {
2149 if (ret > 0)
2150 ret = 0;
2151 break;
2152 }
2153 }
2154 ret = 0;
2155
2156 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2157 if (key.objectid != objectid)
2158 break;
2159 btrfs_release_path(path);
2160
2161 /*
2162 * Just worry about this for extent tree, it'll be the same for
2163 * everybody.
2164 */
2165 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2166 max_global_id = max(max_global_id, key.offset);
2167
2168 found = true;
2169 root = read_tree_root_path(tree_root, path, &key);
2170 if (IS_ERR(root)) {
2171 ret = PTR_ERR(root);
2172 break;
2173 }
2174 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2175 ret = btrfs_global_root_insert(root);
2176 if (ret) {
2177 btrfs_put_root(root);
2178 break;
2179 }
2180 key.offset++;
2181 }
2182 btrfs_release_path(path);
2183
2184 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2185 fs_info->nr_global_roots = max_global_id + 1;
2186
2187 if (!found || ret) {
2188 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2189 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2190
2191 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2192 ret = ret ? ret : -ENOENT;
2193 else
2194 ret = 0;
2195 btrfs_err(fs_info, "failed to load root %s", name);
2196 }
2197 return ret;
2198 }
2199
load_global_roots(struct btrfs_root * tree_root)2200 static int load_global_roots(struct btrfs_root *tree_root)
2201 {
2202 struct btrfs_path *path;
2203 int ret = 0;
2204
2205 path = btrfs_alloc_path();
2206 if (!path)
2207 return -ENOMEM;
2208
2209 ret = load_global_roots_objectid(tree_root, path,
2210 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2211 if (ret)
2212 goto out;
2213 ret = load_global_roots_objectid(tree_root, path,
2214 BTRFS_CSUM_TREE_OBJECTID, "csum");
2215 if (ret)
2216 goto out;
2217 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2218 goto out;
2219 ret = load_global_roots_objectid(tree_root, path,
2220 BTRFS_FREE_SPACE_TREE_OBJECTID,
2221 "free space");
2222 out:
2223 btrfs_free_path(path);
2224 return ret;
2225 }
2226
btrfs_read_roots(struct btrfs_fs_info * fs_info)2227 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2228 {
2229 struct btrfs_root *tree_root = fs_info->tree_root;
2230 struct btrfs_root *root;
2231 struct btrfs_key location;
2232 int ret;
2233
2234 ASSERT(fs_info->tree_root);
2235
2236 ret = load_global_roots(tree_root);
2237 if (ret)
2238 return ret;
2239
2240 location.type = BTRFS_ROOT_ITEM_KEY;
2241 location.offset = 0;
2242
2243 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2244 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2245 root = btrfs_read_tree_root(tree_root, &location);
2246 if (IS_ERR(root)) {
2247 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2248 ret = PTR_ERR(root);
2249 goto out;
2250 }
2251 } else {
2252 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2253 fs_info->block_group_root = root;
2254 }
2255 }
2256
2257 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2258 root = btrfs_read_tree_root(tree_root, &location);
2259 if (IS_ERR(root)) {
2260 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2261 ret = PTR_ERR(root);
2262 goto out;
2263 }
2264 } else {
2265 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2266 fs_info->dev_root = root;
2267 }
2268 /* Initialize fs_info for all devices in any case */
2269 ret = btrfs_init_devices_late(fs_info);
2270 if (ret)
2271 goto out;
2272
2273 /*
2274 * This tree can share blocks with some other fs tree during relocation
2275 * and we need a proper setup by btrfs_get_fs_root
2276 */
2277 root = btrfs_get_fs_root(tree_root->fs_info,
2278 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2279 if (IS_ERR(root)) {
2280 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2281 ret = PTR_ERR(root);
2282 goto out;
2283 }
2284 } else {
2285 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2286 fs_info->data_reloc_root = root;
2287 }
2288
2289 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2290 root = btrfs_read_tree_root(tree_root, &location);
2291 if (!IS_ERR(root)) {
2292 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2293 fs_info->quota_root = root;
2294 }
2295
2296 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2297 root = btrfs_read_tree_root(tree_root, &location);
2298 if (IS_ERR(root)) {
2299 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2300 ret = PTR_ERR(root);
2301 if (ret != -ENOENT)
2302 goto out;
2303 }
2304 } else {
2305 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2306 fs_info->uuid_root = root;
2307 }
2308
2309 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2310 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2311 root = btrfs_read_tree_root(tree_root, &location);
2312 if (IS_ERR(root)) {
2313 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2314 ret = PTR_ERR(root);
2315 goto out;
2316 }
2317 } else {
2318 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2319 fs_info->stripe_root = root;
2320 }
2321 }
2322
2323 return 0;
2324 out:
2325 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2326 location.objectid, ret);
2327 return ret;
2328 }
2329
2330 /*
2331 * Real super block validation
2332 * NOTE: super csum type and incompat features will not be checked here.
2333 *
2334 * @sb: super block to check
2335 * @mirror_num: the super block number to check its bytenr:
2336 * 0 the primary (1st) sb
2337 * 1, 2 2nd and 3rd backup copy
2338 * -1 skip bytenr check
2339 */
btrfs_validate_super(const struct btrfs_fs_info * fs_info,const struct btrfs_super_block * sb,int mirror_num)2340 int btrfs_validate_super(const struct btrfs_fs_info *fs_info,
2341 const struct btrfs_super_block *sb, int mirror_num)
2342 {
2343 u64 nodesize = btrfs_super_nodesize(sb);
2344 u64 sectorsize = btrfs_super_sectorsize(sb);
2345 int ret = 0;
2346 const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS);
2347
2348 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2349 btrfs_err(fs_info, "no valid FS found");
2350 ret = -EINVAL;
2351 }
2352 if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) {
2353 if (!ignore_flags) {
2354 btrfs_err(fs_info,
2355 "unrecognized or unsupported super flag 0x%llx",
2356 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2357 ret = -EINVAL;
2358 } else {
2359 btrfs_info(fs_info,
2360 "unrecognized or unsupported super flags: 0x%llx, ignored",
2361 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2362 }
2363 }
2364 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2365 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2366 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2367 ret = -EINVAL;
2368 }
2369 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2370 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2371 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2372 ret = -EINVAL;
2373 }
2374 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2375 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2376 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2377 ret = -EINVAL;
2378 }
2379
2380 /*
2381 * Check sectorsize and nodesize first, other check will need it.
2382 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2383 */
2384 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2385 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2386 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2387 ret = -EINVAL;
2388 }
2389
2390 /*
2391 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2392 *
2393 * We can support 16K sectorsize with 64K page size without problem,
2394 * but such sectorsize/pagesize combination doesn't make much sense.
2395 * 4K will be our future standard, PAGE_SIZE is supported from the very
2396 * beginning.
2397 */
2398 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2399 btrfs_err(fs_info,
2400 "sectorsize %llu not yet supported for page size %lu",
2401 sectorsize, PAGE_SIZE);
2402 ret = -EINVAL;
2403 }
2404
2405 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2406 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2407 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2408 ret = -EINVAL;
2409 }
2410 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2411 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2412 le32_to_cpu(sb->__unused_leafsize), nodesize);
2413 ret = -EINVAL;
2414 }
2415
2416 /* Root alignment check */
2417 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2418 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2419 btrfs_super_root(sb));
2420 ret = -EINVAL;
2421 }
2422 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2423 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2424 btrfs_super_chunk_root(sb));
2425 ret = -EINVAL;
2426 }
2427 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2428 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2429 btrfs_super_log_root(sb));
2430 ret = -EINVAL;
2431 }
2432
2433 if (!fs_info->fs_devices->temp_fsid &&
2434 memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2435 btrfs_err(fs_info,
2436 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2437 sb->fsid, fs_info->fs_devices->fsid);
2438 ret = -EINVAL;
2439 }
2440
2441 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2442 BTRFS_FSID_SIZE) != 0) {
2443 btrfs_err(fs_info,
2444 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2445 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2446 ret = -EINVAL;
2447 }
2448
2449 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2450 BTRFS_FSID_SIZE) != 0) {
2451 btrfs_err(fs_info,
2452 "dev_item UUID does not match metadata fsid: %pU != %pU",
2453 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2454 ret = -EINVAL;
2455 }
2456
2457 /*
2458 * Artificial requirement for block-group-tree to force newer features
2459 * (free-space-tree, no-holes) so the test matrix is smaller.
2460 */
2461 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2462 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2463 !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2464 btrfs_err(fs_info,
2465 "block-group-tree feature requires free-space-tree and no-holes");
2466 ret = -EINVAL;
2467 }
2468
2469 /*
2470 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2471 * done later
2472 */
2473 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2474 btrfs_err(fs_info, "bytes_used is too small %llu",
2475 btrfs_super_bytes_used(sb));
2476 ret = -EINVAL;
2477 }
2478 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2479 btrfs_err(fs_info, "invalid stripesize %u",
2480 btrfs_super_stripesize(sb));
2481 ret = -EINVAL;
2482 }
2483 if (btrfs_super_num_devices(sb) > (1UL << 31))
2484 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2485 btrfs_super_num_devices(sb));
2486 if (btrfs_super_num_devices(sb) == 0) {
2487 btrfs_err(fs_info, "number of devices is 0");
2488 ret = -EINVAL;
2489 }
2490
2491 if (mirror_num >= 0 &&
2492 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2493 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2494 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2495 ret = -EINVAL;
2496 }
2497
2498 /*
2499 * Obvious sys_chunk_array corruptions, it must hold at least one key
2500 * and one chunk
2501 */
2502 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2503 btrfs_err(fs_info, "system chunk array too big %u > %u",
2504 btrfs_super_sys_array_size(sb),
2505 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2506 ret = -EINVAL;
2507 }
2508 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2509 + sizeof(struct btrfs_chunk)) {
2510 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2511 btrfs_super_sys_array_size(sb),
2512 sizeof(struct btrfs_disk_key)
2513 + sizeof(struct btrfs_chunk));
2514 ret = -EINVAL;
2515 }
2516
2517 /*
2518 * The generation is a global counter, we'll trust it more than the others
2519 * but it's still possible that it's the one that's wrong.
2520 */
2521 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2522 btrfs_warn(fs_info,
2523 "suspicious: generation < chunk_root_generation: %llu < %llu",
2524 btrfs_super_generation(sb),
2525 btrfs_super_chunk_root_generation(sb));
2526 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2527 && btrfs_super_cache_generation(sb) != (u64)-1)
2528 btrfs_warn(fs_info,
2529 "suspicious: generation < cache_generation: %llu < %llu",
2530 btrfs_super_generation(sb),
2531 btrfs_super_cache_generation(sb));
2532
2533 return ret;
2534 }
2535
2536 /*
2537 * Validation of super block at mount time.
2538 * Some checks already done early at mount time, like csum type and incompat
2539 * flags will be skipped.
2540 */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2541 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2542 {
2543 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2544 }
2545
2546 /*
2547 * Validation of super block at write time.
2548 * Some checks like bytenr check will be skipped as their values will be
2549 * overwritten soon.
2550 * Extra checks like csum type and incompat flags will be done here.
2551 */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2552 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2553 struct btrfs_super_block *sb)
2554 {
2555 int ret;
2556
2557 ret = btrfs_validate_super(fs_info, sb, -1);
2558 if (ret < 0)
2559 goto out;
2560 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2561 ret = -EUCLEAN;
2562 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2563 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2564 goto out;
2565 }
2566 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2567 ret = -EUCLEAN;
2568 btrfs_err(fs_info,
2569 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2570 btrfs_super_incompat_flags(sb),
2571 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2572 goto out;
2573 }
2574 out:
2575 if (ret < 0)
2576 btrfs_err(fs_info,
2577 "super block corruption detected before writing it to disk");
2578 return ret;
2579 }
2580
load_super_root(struct btrfs_root * root,u64 bytenr,u64 gen,int level)2581 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2582 {
2583 struct btrfs_tree_parent_check check = {
2584 .level = level,
2585 .transid = gen,
2586 .owner_root = btrfs_root_id(root)
2587 };
2588 int ret = 0;
2589
2590 root->node = read_tree_block(root->fs_info, bytenr, &check);
2591 if (IS_ERR(root->node)) {
2592 ret = PTR_ERR(root->node);
2593 root->node = NULL;
2594 return ret;
2595 }
2596 if (!extent_buffer_uptodate(root->node)) {
2597 free_extent_buffer(root->node);
2598 root->node = NULL;
2599 return -EIO;
2600 }
2601
2602 btrfs_set_root_node(&root->root_item, root->node);
2603 root->commit_root = btrfs_root_node(root);
2604 btrfs_set_root_refs(&root->root_item, 1);
2605 return ret;
2606 }
2607
load_important_roots(struct btrfs_fs_info * fs_info)2608 static int load_important_roots(struct btrfs_fs_info *fs_info)
2609 {
2610 struct btrfs_super_block *sb = fs_info->super_copy;
2611 u64 gen, bytenr;
2612 int level, ret;
2613
2614 bytenr = btrfs_super_root(sb);
2615 gen = btrfs_super_generation(sb);
2616 level = btrfs_super_root_level(sb);
2617 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2618 if (ret) {
2619 btrfs_warn(fs_info, "couldn't read tree root");
2620 return ret;
2621 }
2622 return 0;
2623 }
2624
init_tree_roots(struct btrfs_fs_info * fs_info)2625 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2626 {
2627 int backup_index = find_newest_super_backup(fs_info);
2628 struct btrfs_super_block *sb = fs_info->super_copy;
2629 struct btrfs_root *tree_root = fs_info->tree_root;
2630 bool handle_error = false;
2631 int ret = 0;
2632 int i;
2633
2634 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2635 if (handle_error) {
2636 if (!IS_ERR(tree_root->node))
2637 free_extent_buffer(tree_root->node);
2638 tree_root->node = NULL;
2639
2640 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2641 break;
2642
2643 free_root_pointers(fs_info, 0);
2644
2645 /*
2646 * Don't use the log in recovery mode, it won't be
2647 * valid
2648 */
2649 btrfs_set_super_log_root(sb, 0);
2650
2651 btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2652 ret = read_backup_root(fs_info, i);
2653 backup_index = ret;
2654 if (ret < 0)
2655 return ret;
2656 }
2657
2658 ret = load_important_roots(fs_info);
2659 if (ret) {
2660 handle_error = true;
2661 continue;
2662 }
2663
2664 /*
2665 * No need to hold btrfs_root::objectid_mutex since the fs
2666 * hasn't been fully initialised and we are the only user
2667 */
2668 ret = btrfs_init_root_free_objectid(tree_root);
2669 if (ret < 0) {
2670 handle_error = true;
2671 continue;
2672 }
2673
2674 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2675
2676 ret = btrfs_read_roots(fs_info);
2677 if (ret < 0) {
2678 handle_error = true;
2679 continue;
2680 }
2681
2682 /* All successful */
2683 fs_info->generation = btrfs_header_generation(tree_root->node);
2684 btrfs_set_last_trans_committed(fs_info, fs_info->generation);
2685 fs_info->last_reloc_trans = 0;
2686
2687 /* Always begin writing backup roots after the one being used */
2688 if (backup_index < 0) {
2689 fs_info->backup_root_index = 0;
2690 } else {
2691 fs_info->backup_root_index = backup_index + 1;
2692 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2693 }
2694 break;
2695 }
2696
2697 return ret;
2698 }
2699
btrfs_init_fs_info(struct btrfs_fs_info * fs_info)2700 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2701 {
2702 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2703 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2704 INIT_LIST_HEAD(&fs_info->trans_list);
2705 INIT_LIST_HEAD(&fs_info->dead_roots);
2706 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2707 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2708 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2709 spin_lock_init(&fs_info->delalloc_root_lock);
2710 spin_lock_init(&fs_info->trans_lock);
2711 spin_lock_init(&fs_info->fs_roots_radix_lock);
2712 spin_lock_init(&fs_info->delayed_iput_lock);
2713 spin_lock_init(&fs_info->defrag_inodes_lock);
2714 spin_lock_init(&fs_info->super_lock);
2715 spin_lock_init(&fs_info->buffer_lock);
2716 spin_lock_init(&fs_info->unused_bgs_lock);
2717 spin_lock_init(&fs_info->treelog_bg_lock);
2718 spin_lock_init(&fs_info->zone_active_bgs_lock);
2719 spin_lock_init(&fs_info->relocation_bg_lock);
2720 rwlock_init(&fs_info->tree_mod_log_lock);
2721 rwlock_init(&fs_info->global_root_lock);
2722 mutex_init(&fs_info->unused_bg_unpin_mutex);
2723 mutex_init(&fs_info->reclaim_bgs_lock);
2724 mutex_init(&fs_info->reloc_mutex);
2725 mutex_init(&fs_info->delalloc_root_mutex);
2726 mutex_init(&fs_info->zoned_meta_io_lock);
2727 mutex_init(&fs_info->zoned_data_reloc_io_lock);
2728 seqlock_init(&fs_info->profiles_lock);
2729
2730 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2731 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2732 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2733 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2734 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2735 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2736 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2737 BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2738 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2739 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2740 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2741 BTRFS_LOCKDEP_TRANS_COMPLETED);
2742
2743 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2744 INIT_LIST_HEAD(&fs_info->space_info);
2745 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2746 INIT_LIST_HEAD(&fs_info->unused_bgs);
2747 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2748 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2749 #ifdef CONFIG_BTRFS_DEBUG
2750 INIT_LIST_HEAD(&fs_info->allocated_roots);
2751 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2752 spin_lock_init(&fs_info->eb_leak_lock);
2753 #endif
2754 fs_info->mapping_tree = RB_ROOT_CACHED;
2755 rwlock_init(&fs_info->mapping_tree_lock);
2756 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2757 BTRFS_BLOCK_RSV_GLOBAL);
2758 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2759 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2760 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2761 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2762 BTRFS_BLOCK_RSV_DELOPS);
2763 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2764 BTRFS_BLOCK_RSV_DELREFS);
2765
2766 atomic_set(&fs_info->async_delalloc_pages, 0);
2767 atomic_set(&fs_info->defrag_running, 0);
2768 atomic_set(&fs_info->nr_delayed_iputs, 0);
2769 atomic64_set(&fs_info->tree_mod_seq, 0);
2770 fs_info->global_root_tree = RB_ROOT;
2771 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2772 fs_info->metadata_ratio = 0;
2773 fs_info->defrag_inodes = RB_ROOT;
2774 atomic64_set(&fs_info->free_chunk_space, 0);
2775 fs_info->tree_mod_log = RB_ROOT;
2776 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2777 btrfs_init_ref_verify(fs_info);
2778
2779 fs_info->thread_pool_size = min_t(unsigned long,
2780 num_online_cpus() + 2, 8);
2781
2782 INIT_LIST_HEAD(&fs_info->ordered_roots);
2783 spin_lock_init(&fs_info->ordered_root_lock);
2784
2785 btrfs_init_scrub(fs_info);
2786 btrfs_init_balance(fs_info);
2787 btrfs_init_async_reclaim_work(fs_info);
2788 btrfs_init_extent_map_shrinker_work(fs_info);
2789
2790 rwlock_init(&fs_info->block_group_cache_lock);
2791 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2792
2793 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2794 IO_TREE_FS_EXCLUDED_EXTENTS);
2795
2796 mutex_init(&fs_info->ordered_operations_mutex);
2797 mutex_init(&fs_info->tree_log_mutex);
2798 mutex_init(&fs_info->chunk_mutex);
2799 mutex_init(&fs_info->transaction_kthread_mutex);
2800 mutex_init(&fs_info->cleaner_mutex);
2801 mutex_init(&fs_info->ro_block_group_mutex);
2802 init_rwsem(&fs_info->commit_root_sem);
2803 init_rwsem(&fs_info->cleanup_work_sem);
2804 init_rwsem(&fs_info->subvol_sem);
2805 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2806
2807 btrfs_init_dev_replace_locks(fs_info);
2808 btrfs_init_qgroup(fs_info);
2809 btrfs_discard_init(fs_info);
2810
2811 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2812 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2813
2814 init_waitqueue_head(&fs_info->transaction_throttle);
2815 init_waitqueue_head(&fs_info->transaction_wait);
2816 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2817 init_waitqueue_head(&fs_info->async_submit_wait);
2818 init_waitqueue_head(&fs_info->delayed_iputs_wait);
2819
2820 /* Usable values until the real ones are cached from the superblock */
2821 fs_info->nodesize = 4096;
2822 fs_info->sectorsize = 4096;
2823 fs_info->sectorsize_bits = ilog2(4096);
2824 fs_info->stripesize = 4096;
2825
2826 /* Default compress algorithm when user does -o compress */
2827 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2828
2829 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2830
2831 spin_lock_init(&fs_info->swapfile_pins_lock);
2832 fs_info->swapfile_pins = RB_ROOT;
2833
2834 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2835 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2836 }
2837
init_mount_fs_info(struct btrfs_fs_info * fs_info,struct super_block * sb)2838 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2839 {
2840 int ret;
2841
2842 fs_info->sb = sb;
2843 /* Temporary fixed values for block size until we read the superblock. */
2844 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2845 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2846
2847 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2848 if (ret)
2849 return ret;
2850
2851 ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL);
2852 if (ret)
2853 return ret;
2854
2855 spin_lock_init(&fs_info->extent_map_shrinker_lock);
2856
2857 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2858 if (ret)
2859 return ret;
2860
2861 fs_info->dirty_metadata_batch = PAGE_SIZE *
2862 (1 + ilog2(nr_cpu_ids));
2863
2864 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2865 if (ret)
2866 return ret;
2867
2868 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2869 GFP_KERNEL);
2870 if (ret)
2871 return ret;
2872
2873 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2874 GFP_KERNEL);
2875 if (!fs_info->delayed_root)
2876 return -ENOMEM;
2877 btrfs_init_delayed_root(fs_info->delayed_root);
2878
2879 if (sb_rdonly(sb))
2880 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2881 if (btrfs_test_opt(fs_info, IGNOREMETACSUMS))
2882 set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state);
2883
2884 return btrfs_alloc_stripe_hash_table(fs_info);
2885 }
2886
btrfs_uuid_rescan_kthread(void * data)2887 static int btrfs_uuid_rescan_kthread(void *data)
2888 {
2889 struct btrfs_fs_info *fs_info = data;
2890 int ret;
2891
2892 /*
2893 * 1st step is to iterate through the existing UUID tree and
2894 * to delete all entries that contain outdated data.
2895 * 2nd step is to add all missing entries to the UUID tree.
2896 */
2897 ret = btrfs_uuid_tree_iterate(fs_info);
2898 if (ret < 0) {
2899 if (ret != -EINTR)
2900 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2901 ret);
2902 up(&fs_info->uuid_tree_rescan_sem);
2903 return ret;
2904 }
2905 return btrfs_uuid_scan_kthread(data);
2906 }
2907
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)2908 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2909 {
2910 struct task_struct *task;
2911
2912 down(&fs_info->uuid_tree_rescan_sem);
2913 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2914 if (IS_ERR(task)) {
2915 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2916 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2917 up(&fs_info->uuid_tree_rescan_sem);
2918 return PTR_ERR(task);
2919 }
2920
2921 return 0;
2922 }
2923
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)2924 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2925 {
2926 u64 root_objectid = 0;
2927 struct btrfs_root *gang[8];
2928 int ret = 0;
2929
2930 while (1) {
2931 unsigned int found;
2932
2933 spin_lock(&fs_info->fs_roots_radix_lock);
2934 found = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2935 (void **)gang, root_objectid,
2936 ARRAY_SIZE(gang));
2937 if (!found) {
2938 spin_unlock(&fs_info->fs_roots_radix_lock);
2939 break;
2940 }
2941 root_objectid = btrfs_root_id(gang[found - 1]) + 1;
2942
2943 for (int i = 0; i < found; i++) {
2944 /* Avoid to grab roots in dead_roots. */
2945 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2946 gang[i] = NULL;
2947 continue;
2948 }
2949 /* Grab all the search result for later use. */
2950 gang[i] = btrfs_grab_root(gang[i]);
2951 }
2952 spin_unlock(&fs_info->fs_roots_radix_lock);
2953
2954 for (int i = 0; i < found; i++) {
2955 if (!gang[i])
2956 continue;
2957 root_objectid = btrfs_root_id(gang[i]);
2958 /*
2959 * Continue to release the remaining roots after the first
2960 * error without cleanup and preserve the first error
2961 * for the return.
2962 */
2963 if (!ret)
2964 ret = btrfs_orphan_cleanup(gang[i]);
2965 btrfs_put_root(gang[i]);
2966 }
2967 if (ret)
2968 break;
2969
2970 root_objectid++;
2971 }
2972 return ret;
2973 }
2974
2975 /*
2976 * Mounting logic specific to read-write file systems. Shared by open_ctree
2977 * and btrfs_remount when remounting from read-only to read-write.
2978 */
btrfs_start_pre_rw_mount(struct btrfs_fs_info * fs_info)2979 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2980 {
2981 int ret;
2982 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2983 bool rebuild_free_space_tree = false;
2984
2985 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2986 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2987 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2988 btrfs_warn(fs_info,
2989 "'clear_cache' option is ignored with extent tree v2");
2990 else
2991 rebuild_free_space_tree = true;
2992 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2993 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2994 btrfs_warn(fs_info, "free space tree is invalid");
2995 rebuild_free_space_tree = true;
2996 }
2997
2998 if (rebuild_free_space_tree) {
2999 btrfs_info(fs_info, "rebuilding free space tree");
3000 ret = btrfs_rebuild_free_space_tree(fs_info);
3001 if (ret) {
3002 btrfs_warn(fs_info,
3003 "failed to rebuild free space tree: %d", ret);
3004 goto out;
3005 }
3006 }
3007
3008 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3009 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
3010 btrfs_info(fs_info, "disabling free space tree");
3011 ret = btrfs_delete_free_space_tree(fs_info);
3012 if (ret) {
3013 btrfs_warn(fs_info,
3014 "failed to disable free space tree: %d", ret);
3015 goto out;
3016 }
3017 }
3018
3019 /*
3020 * btrfs_find_orphan_roots() is responsible for finding all the dead
3021 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3022 * them into the fs_info->fs_roots_radix tree. This must be done before
3023 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3024 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3025 * item before the root's tree is deleted - this means that if we unmount
3026 * or crash before the deletion completes, on the next mount we will not
3027 * delete what remains of the tree because the orphan item does not
3028 * exists anymore, which is what tells us we have a pending deletion.
3029 */
3030 ret = btrfs_find_orphan_roots(fs_info);
3031 if (ret)
3032 goto out;
3033
3034 ret = btrfs_cleanup_fs_roots(fs_info);
3035 if (ret)
3036 goto out;
3037
3038 down_read(&fs_info->cleanup_work_sem);
3039 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3040 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3041 up_read(&fs_info->cleanup_work_sem);
3042 goto out;
3043 }
3044 up_read(&fs_info->cleanup_work_sem);
3045
3046 mutex_lock(&fs_info->cleaner_mutex);
3047 ret = btrfs_recover_relocation(fs_info);
3048 mutex_unlock(&fs_info->cleaner_mutex);
3049 if (ret < 0) {
3050 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3051 goto out;
3052 }
3053
3054 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3055 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3056 btrfs_info(fs_info, "creating free space tree");
3057 ret = btrfs_create_free_space_tree(fs_info);
3058 if (ret) {
3059 btrfs_warn(fs_info,
3060 "failed to create free space tree: %d", ret);
3061 goto out;
3062 }
3063 }
3064
3065 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3066 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3067 if (ret)
3068 goto out;
3069 }
3070
3071 ret = btrfs_resume_balance_async(fs_info);
3072 if (ret)
3073 goto out;
3074
3075 ret = btrfs_resume_dev_replace_async(fs_info);
3076 if (ret) {
3077 btrfs_warn(fs_info, "failed to resume dev_replace");
3078 goto out;
3079 }
3080
3081 btrfs_qgroup_rescan_resume(fs_info);
3082
3083 if (!fs_info->uuid_root) {
3084 btrfs_info(fs_info, "creating UUID tree");
3085 ret = btrfs_create_uuid_tree(fs_info);
3086 if (ret) {
3087 btrfs_warn(fs_info,
3088 "failed to create the UUID tree %d", ret);
3089 goto out;
3090 }
3091 }
3092
3093 out:
3094 return ret;
3095 }
3096
3097 /*
3098 * Do various sanity and dependency checks of different features.
3099 *
3100 * @is_rw_mount: If the mount is read-write.
3101 *
3102 * This is the place for less strict checks (like for subpage or artificial
3103 * feature dependencies).
3104 *
3105 * For strict checks or possible corruption detection, see
3106 * btrfs_validate_super().
3107 *
3108 * This should be called after btrfs_parse_options(), as some mount options
3109 * (space cache related) can modify on-disk format like free space tree and
3110 * screw up certain feature dependencies.
3111 */
btrfs_check_features(struct btrfs_fs_info * fs_info,bool is_rw_mount)3112 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3113 {
3114 struct btrfs_super_block *disk_super = fs_info->super_copy;
3115 u64 incompat = btrfs_super_incompat_flags(disk_super);
3116 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3117 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3118
3119 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3120 btrfs_err(fs_info,
3121 "cannot mount because of unknown incompat features (0x%llx)",
3122 incompat);
3123 return -EINVAL;
3124 }
3125
3126 /* Runtime limitation for mixed block groups. */
3127 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3128 (fs_info->sectorsize != fs_info->nodesize)) {
3129 btrfs_err(fs_info,
3130 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3131 fs_info->nodesize, fs_info->sectorsize);
3132 return -EINVAL;
3133 }
3134
3135 /* Mixed backref is an always-enabled feature. */
3136 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3137
3138 /* Set compression related flags just in case. */
3139 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3140 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3141 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3142 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3143
3144 /*
3145 * An ancient flag, which should really be marked deprecated.
3146 * Such runtime limitation doesn't really need a incompat flag.
3147 */
3148 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3149 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3150
3151 if (compat_ro_unsupp && is_rw_mount) {
3152 btrfs_err(fs_info,
3153 "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3154 compat_ro);
3155 return -EINVAL;
3156 }
3157
3158 /*
3159 * We have unsupported RO compat features, although RO mounted, we
3160 * should not cause any metadata writes, including log replay.
3161 * Or we could screw up whatever the new feature requires.
3162 */
3163 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3164 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3165 btrfs_err(fs_info,
3166 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3167 compat_ro);
3168 return -EINVAL;
3169 }
3170
3171 /*
3172 * Artificial limitations for block group tree, to force
3173 * block-group-tree to rely on no-holes and free-space-tree.
3174 */
3175 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3176 (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3177 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3178 btrfs_err(fs_info,
3179 "block-group-tree feature requires no-holes and free-space-tree features");
3180 return -EINVAL;
3181 }
3182
3183 /*
3184 * Subpage runtime limitation on v1 cache.
3185 *
3186 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3187 * we're already defaulting to v2 cache, no need to bother v1 as it's
3188 * going to be deprecated anyway.
3189 */
3190 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3191 btrfs_warn(fs_info,
3192 "v1 space cache is not supported for page size %lu with sectorsize %u",
3193 PAGE_SIZE, fs_info->sectorsize);
3194 return -EINVAL;
3195 }
3196
3197 /* This can be called by remount, we need to protect the super block. */
3198 spin_lock(&fs_info->super_lock);
3199 btrfs_set_super_incompat_flags(disk_super, incompat);
3200 spin_unlock(&fs_info->super_lock);
3201
3202 return 0;
3203 }
3204
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices)3205 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices)
3206 {
3207 u32 sectorsize;
3208 u32 nodesize;
3209 u32 stripesize;
3210 u64 generation;
3211 u16 csum_type;
3212 struct btrfs_super_block *disk_super;
3213 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3214 struct btrfs_root *tree_root;
3215 struct btrfs_root *chunk_root;
3216 int ret;
3217 int level;
3218
3219 ret = init_mount_fs_info(fs_info, sb);
3220 if (ret)
3221 goto fail;
3222
3223 /* These need to be init'ed before we start creating inodes and such. */
3224 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3225 GFP_KERNEL);
3226 fs_info->tree_root = tree_root;
3227 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3228 GFP_KERNEL);
3229 fs_info->chunk_root = chunk_root;
3230 if (!tree_root || !chunk_root) {
3231 ret = -ENOMEM;
3232 goto fail;
3233 }
3234
3235 ret = btrfs_init_btree_inode(sb);
3236 if (ret)
3237 goto fail;
3238
3239 invalidate_bdev(fs_devices->latest_dev->bdev);
3240
3241 /*
3242 * Read super block and check the signature bytes only
3243 */
3244 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3245 if (IS_ERR(disk_super)) {
3246 ret = PTR_ERR(disk_super);
3247 goto fail_alloc;
3248 }
3249
3250 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3251 /*
3252 * Verify the type first, if that or the checksum value are
3253 * corrupted, we'll find out
3254 */
3255 csum_type = btrfs_super_csum_type(disk_super);
3256 if (!btrfs_supported_super_csum(csum_type)) {
3257 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3258 csum_type);
3259 ret = -EINVAL;
3260 btrfs_release_disk_super(disk_super);
3261 goto fail_alloc;
3262 }
3263
3264 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3265
3266 ret = btrfs_init_csum_hash(fs_info, csum_type);
3267 if (ret) {
3268 btrfs_release_disk_super(disk_super);
3269 goto fail_alloc;
3270 }
3271
3272 /*
3273 * We want to check superblock checksum, the type is stored inside.
3274 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3275 */
3276 if (btrfs_check_super_csum(fs_info, disk_super)) {
3277 btrfs_err(fs_info, "superblock checksum mismatch");
3278 ret = -EINVAL;
3279 btrfs_release_disk_super(disk_super);
3280 goto fail_alloc;
3281 }
3282
3283 /*
3284 * super_copy is zeroed at allocation time and we never touch the
3285 * following bytes up to INFO_SIZE, the checksum is calculated from
3286 * the whole block of INFO_SIZE
3287 */
3288 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3289 btrfs_release_disk_super(disk_super);
3290
3291 disk_super = fs_info->super_copy;
3292
3293 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3294 sizeof(*fs_info->super_for_commit));
3295
3296 ret = btrfs_validate_mount_super(fs_info);
3297 if (ret) {
3298 btrfs_err(fs_info, "superblock contains fatal errors");
3299 ret = -EINVAL;
3300 goto fail_alloc;
3301 }
3302
3303 if (!btrfs_super_root(disk_super)) {
3304 btrfs_err(fs_info, "invalid superblock tree root bytenr");
3305 ret = -EINVAL;
3306 goto fail_alloc;
3307 }
3308
3309 /* check FS state, whether FS is broken. */
3310 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3311 WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3312
3313 /* Set up fs_info before parsing mount options */
3314 nodesize = btrfs_super_nodesize(disk_super);
3315 sectorsize = btrfs_super_sectorsize(disk_super);
3316 stripesize = sectorsize;
3317 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3318 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3319
3320 fs_info->nodesize = nodesize;
3321 fs_info->sectorsize = sectorsize;
3322 fs_info->sectorsize_bits = ilog2(sectorsize);
3323 fs_info->sectors_per_page = (PAGE_SIZE >> fs_info->sectorsize_bits);
3324 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3325 fs_info->stripesize = stripesize;
3326
3327 /*
3328 * Handle the space caching options appropriately now that we have the
3329 * super block loaded and validated.
3330 */
3331 btrfs_set_free_space_cache_settings(fs_info);
3332
3333 if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3334 ret = -EINVAL;
3335 goto fail_alloc;
3336 }
3337
3338 ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3339 if (ret < 0)
3340 goto fail_alloc;
3341
3342 /*
3343 * At this point our mount options are validated, if we set ->max_inline
3344 * to something non-standard make sure we truncate it to sectorsize.
3345 */
3346 fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
3347
3348 if (sectorsize < PAGE_SIZE)
3349 btrfs_warn(fs_info,
3350 "read-write for sector size %u with page size %lu is experimental",
3351 sectorsize, PAGE_SIZE);
3352
3353 ret = btrfs_init_workqueues(fs_info);
3354 if (ret)
3355 goto fail_sb_buffer;
3356
3357 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3358 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3359
3360 /* Update the values for the current filesystem. */
3361 sb->s_blocksize = sectorsize;
3362 sb->s_blocksize_bits = blksize_bits(sectorsize);
3363 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3364
3365 mutex_lock(&fs_info->chunk_mutex);
3366 ret = btrfs_read_sys_array(fs_info);
3367 mutex_unlock(&fs_info->chunk_mutex);
3368 if (ret) {
3369 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3370 goto fail_sb_buffer;
3371 }
3372
3373 generation = btrfs_super_chunk_root_generation(disk_super);
3374 level = btrfs_super_chunk_root_level(disk_super);
3375 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3376 generation, level);
3377 if (ret) {
3378 btrfs_err(fs_info, "failed to read chunk root");
3379 goto fail_tree_roots;
3380 }
3381
3382 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3383 offsetof(struct btrfs_header, chunk_tree_uuid),
3384 BTRFS_UUID_SIZE);
3385
3386 ret = btrfs_read_chunk_tree(fs_info);
3387 if (ret) {
3388 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3389 goto fail_tree_roots;
3390 }
3391
3392 /*
3393 * At this point we know all the devices that make this filesystem,
3394 * including the seed devices but we don't know yet if the replace
3395 * target is required. So free devices that are not part of this
3396 * filesystem but skip the replace target device which is checked
3397 * below in btrfs_init_dev_replace().
3398 */
3399 btrfs_free_extra_devids(fs_devices);
3400 if (!fs_devices->latest_dev->bdev) {
3401 btrfs_err(fs_info, "failed to read devices");
3402 ret = -EIO;
3403 goto fail_tree_roots;
3404 }
3405
3406 ret = init_tree_roots(fs_info);
3407 if (ret)
3408 goto fail_tree_roots;
3409
3410 /*
3411 * Get zone type information of zoned block devices. This will also
3412 * handle emulation of a zoned filesystem if a regular device has the
3413 * zoned incompat feature flag set.
3414 */
3415 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3416 if (ret) {
3417 btrfs_err(fs_info,
3418 "zoned: failed to read device zone info: %d", ret);
3419 goto fail_block_groups;
3420 }
3421
3422 /*
3423 * If we have a uuid root and we're not being told to rescan we need to
3424 * check the generation here so we can set the
3425 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3426 * transaction during a balance or the log replay without updating the
3427 * uuid generation, and then if we crash we would rescan the uuid tree,
3428 * even though it was perfectly fine.
3429 */
3430 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3431 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3432 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3433
3434 ret = btrfs_verify_dev_extents(fs_info);
3435 if (ret) {
3436 btrfs_err(fs_info,
3437 "failed to verify dev extents against chunks: %d",
3438 ret);
3439 goto fail_block_groups;
3440 }
3441 ret = btrfs_recover_balance(fs_info);
3442 if (ret) {
3443 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3444 goto fail_block_groups;
3445 }
3446
3447 ret = btrfs_init_dev_stats(fs_info);
3448 if (ret) {
3449 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3450 goto fail_block_groups;
3451 }
3452
3453 ret = btrfs_init_dev_replace(fs_info);
3454 if (ret) {
3455 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3456 goto fail_block_groups;
3457 }
3458
3459 ret = btrfs_check_zoned_mode(fs_info);
3460 if (ret) {
3461 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3462 ret);
3463 goto fail_block_groups;
3464 }
3465
3466 ret = btrfs_sysfs_add_fsid(fs_devices);
3467 if (ret) {
3468 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3469 ret);
3470 goto fail_block_groups;
3471 }
3472
3473 ret = btrfs_sysfs_add_mounted(fs_info);
3474 if (ret) {
3475 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3476 goto fail_fsdev_sysfs;
3477 }
3478
3479 ret = btrfs_init_space_info(fs_info);
3480 if (ret) {
3481 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3482 goto fail_sysfs;
3483 }
3484
3485 ret = btrfs_read_block_groups(fs_info);
3486 if (ret) {
3487 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3488 goto fail_sysfs;
3489 }
3490
3491 btrfs_free_zone_cache(fs_info);
3492
3493 btrfs_check_active_zone_reservation(fs_info);
3494
3495 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3496 !btrfs_check_rw_degradable(fs_info, NULL)) {
3497 btrfs_warn(fs_info,
3498 "writable mount is not allowed due to too many missing devices");
3499 ret = -EINVAL;
3500 goto fail_sysfs;
3501 }
3502
3503 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3504 "btrfs-cleaner");
3505 if (IS_ERR(fs_info->cleaner_kthread)) {
3506 ret = PTR_ERR(fs_info->cleaner_kthread);
3507 goto fail_sysfs;
3508 }
3509
3510 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3511 tree_root,
3512 "btrfs-transaction");
3513 if (IS_ERR(fs_info->transaction_kthread)) {
3514 ret = PTR_ERR(fs_info->transaction_kthread);
3515 goto fail_cleaner;
3516 }
3517
3518 ret = btrfs_read_qgroup_config(fs_info);
3519 if (ret)
3520 goto fail_trans_kthread;
3521
3522 if (btrfs_build_ref_tree(fs_info))
3523 btrfs_err(fs_info, "couldn't build ref tree");
3524
3525 /* do not make disk changes in broken FS or nologreplay is given */
3526 if (btrfs_super_log_root(disk_super) != 0 &&
3527 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3528 btrfs_info(fs_info, "start tree-log replay");
3529 ret = btrfs_replay_log(fs_info, fs_devices);
3530 if (ret)
3531 goto fail_qgroup;
3532 }
3533
3534 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3535 if (IS_ERR(fs_info->fs_root)) {
3536 ret = PTR_ERR(fs_info->fs_root);
3537 btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3538 fs_info->fs_root = NULL;
3539 goto fail_qgroup;
3540 }
3541
3542 if (sb_rdonly(sb))
3543 return 0;
3544
3545 ret = btrfs_start_pre_rw_mount(fs_info);
3546 if (ret) {
3547 close_ctree(fs_info);
3548 return ret;
3549 }
3550 btrfs_discard_resume(fs_info);
3551
3552 if (fs_info->uuid_root &&
3553 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3554 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3555 btrfs_info(fs_info, "checking UUID tree");
3556 ret = btrfs_check_uuid_tree(fs_info);
3557 if (ret) {
3558 btrfs_warn(fs_info,
3559 "failed to check the UUID tree: %d", ret);
3560 close_ctree(fs_info);
3561 return ret;
3562 }
3563 }
3564
3565 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3566
3567 /* Kick the cleaner thread so it'll start deleting snapshots. */
3568 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3569 wake_up_process(fs_info->cleaner_kthread);
3570
3571 return 0;
3572
3573 fail_qgroup:
3574 btrfs_free_qgroup_config(fs_info);
3575 fail_trans_kthread:
3576 kthread_stop(fs_info->transaction_kthread);
3577 btrfs_cleanup_transaction(fs_info);
3578 btrfs_free_fs_roots(fs_info);
3579 fail_cleaner:
3580 kthread_stop(fs_info->cleaner_kthread);
3581
3582 /*
3583 * make sure we're done with the btree inode before we stop our
3584 * kthreads
3585 */
3586 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3587
3588 fail_sysfs:
3589 btrfs_sysfs_remove_mounted(fs_info);
3590
3591 fail_fsdev_sysfs:
3592 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3593
3594 fail_block_groups:
3595 btrfs_put_block_group_cache(fs_info);
3596
3597 fail_tree_roots:
3598 if (fs_info->data_reloc_root)
3599 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3600 free_root_pointers(fs_info, true);
3601 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3602
3603 fail_sb_buffer:
3604 btrfs_stop_all_workers(fs_info);
3605 btrfs_free_block_groups(fs_info);
3606 fail_alloc:
3607 btrfs_mapping_tree_free(fs_info);
3608
3609 iput(fs_info->btree_inode);
3610 fail:
3611 btrfs_close_devices(fs_info->fs_devices);
3612 ASSERT(ret < 0);
3613 return ret;
3614 }
3615 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3616
btrfs_end_super_write(struct bio * bio)3617 static void btrfs_end_super_write(struct bio *bio)
3618 {
3619 struct btrfs_device *device = bio->bi_private;
3620 struct folio_iter fi;
3621
3622 bio_for_each_folio_all(fi, bio) {
3623 if (bio->bi_status) {
3624 btrfs_warn_rl_in_rcu(device->fs_info,
3625 "lost super block write due to IO error on %s (%d)",
3626 btrfs_dev_name(device),
3627 blk_status_to_errno(bio->bi_status));
3628 btrfs_dev_stat_inc_and_print(device,
3629 BTRFS_DEV_STAT_WRITE_ERRS);
3630 /* Ensure failure if the primary sb fails. */
3631 if (bio->bi_opf & REQ_FUA)
3632 atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR,
3633 &device->sb_write_errors);
3634 else
3635 atomic_inc(&device->sb_write_errors);
3636 }
3637 folio_unlock(fi.folio);
3638 folio_put(fi.folio);
3639 }
3640
3641 bio_put(bio);
3642 }
3643
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num,bool drop_cache)3644 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3645 int copy_num, bool drop_cache)
3646 {
3647 struct btrfs_super_block *super;
3648 struct page *page;
3649 u64 bytenr, bytenr_orig;
3650 struct address_space *mapping = bdev->bd_mapping;
3651 int ret;
3652
3653 bytenr_orig = btrfs_sb_offset(copy_num);
3654 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3655 if (ret == -ENOENT)
3656 return ERR_PTR(-EINVAL);
3657 else if (ret)
3658 return ERR_PTR(ret);
3659
3660 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3661 return ERR_PTR(-EINVAL);
3662
3663 if (drop_cache) {
3664 /* This should only be called with the primary sb. */
3665 ASSERT(copy_num == 0);
3666
3667 /*
3668 * Drop the page of the primary superblock, so later read will
3669 * always read from the device.
3670 */
3671 invalidate_inode_pages2_range(mapping,
3672 bytenr >> PAGE_SHIFT,
3673 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3674 }
3675
3676 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3677 if (IS_ERR(page))
3678 return ERR_CAST(page);
3679
3680 super = page_address(page);
3681 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3682 btrfs_release_disk_super(super);
3683 return ERR_PTR(-ENODATA);
3684 }
3685
3686 if (btrfs_super_bytenr(super) != bytenr_orig) {
3687 btrfs_release_disk_super(super);
3688 return ERR_PTR(-EINVAL);
3689 }
3690
3691 return super;
3692 }
3693
3694
btrfs_read_dev_super(struct block_device * bdev)3695 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3696 {
3697 struct btrfs_super_block *super, *latest = NULL;
3698 int i;
3699 u64 transid = 0;
3700
3701 /* we would like to check all the supers, but that would make
3702 * a btrfs mount succeed after a mkfs from a different FS.
3703 * So, we need to add a special mount option to scan for
3704 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3705 */
3706 for (i = 0; i < 1; i++) {
3707 super = btrfs_read_dev_one_super(bdev, i, false);
3708 if (IS_ERR(super))
3709 continue;
3710
3711 if (!latest || btrfs_super_generation(super) > transid) {
3712 if (latest)
3713 btrfs_release_disk_super(super);
3714
3715 latest = super;
3716 transid = btrfs_super_generation(super);
3717 }
3718 }
3719
3720 return super;
3721 }
3722
3723 /*
3724 * Write superblock @sb to the @device. Do not wait for completion, all the
3725 * folios we use for writing are locked.
3726 *
3727 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3728 * the expected device size at commit time. Note that max_mirrors must be
3729 * same for write and wait phases.
3730 *
3731 * Return number of errors when folio is not found or submission fails.
3732 */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3733 static int write_dev_supers(struct btrfs_device *device,
3734 struct btrfs_super_block *sb, int max_mirrors)
3735 {
3736 struct btrfs_fs_info *fs_info = device->fs_info;
3737 struct address_space *mapping = device->bdev->bd_mapping;
3738 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3739 int i;
3740 int ret;
3741 u64 bytenr, bytenr_orig;
3742
3743 atomic_set(&device->sb_write_errors, 0);
3744
3745 if (max_mirrors == 0)
3746 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3747
3748 shash->tfm = fs_info->csum_shash;
3749
3750 for (i = 0; i < max_mirrors; i++) {
3751 struct folio *folio;
3752 struct bio *bio;
3753 struct btrfs_super_block *disk_super;
3754 size_t offset;
3755
3756 bytenr_orig = btrfs_sb_offset(i);
3757 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3758 if (ret == -ENOENT) {
3759 continue;
3760 } else if (ret < 0) {
3761 btrfs_err(device->fs_info,
3762 "couldn't get super block location for mirror %d",
3763 i);
3764 atomic_inc(&device->sb_write_errors);
3765 continue;
3766 }
3767 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3768 device->commit_total_bytes)
3769 break;
3770
3771 btrfs_set_super_bytenr(sb, bytenr_orig);
3772
3773 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3774 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3775 sb->csum);
3776
3777 folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT,
3778 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3779 GFP_NOFS);
3780 if (IS_ERR(folio)) {
3781 btrfs_err(device->fs_info,
3782 "couldn't get super block page for bytenr %llu",
3783 bytenr);
3784 atomic_inc(&device->sb_write_errors);
3785 continue;
3786 }
3787 ASSERT(folio_order(folio) == 0);
3788
3789 offset = offset_in_folio(folio, bytenr);
3790 disk_super = folio_address(folio) + offset;
3791 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3792
3793 /*
3794 * Directly use bios here instead of relying on the page cache
3795 * to do I/O, so we don't lose the ability to do integrity
3796 * checking.
3797 */
3798 bio = bio_alloc(device->bdev, 1,
3799 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3800 GFP_NOFS);
3801 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3802 bio->bi_private = device;
3803 bio->bi_end_io = btrfs_end_super_write;
3804 bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset);
3805
3806 /*
3807 * We FUA only the first super block. The others we allow to
3808 * go down lazy and there's a short window where the on-disk
3809 * copies might still contain the older version.
3810 */
3811 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3812 bio->bi_opf |= REQ_FUA;
3813 submit_bio(bio);
3814
3815 if (btrfs_advance_sb_log(device, i))
3816 atomic_inc(&device->sb_write_errors);
3817 }
3818 return atomic_read(&device->sb_write_errors) < i ? 0 : -1;
3819 }
3820
3821 /*
3822 * Wait for write completion of superblocks done by write_dev_supers,
3823 * @max_mirrors same for write and wait phases.
3824 *
3825 * Return -1 if primary super block write failed or when there were no super block
3826 * copies written. Otherwise 0.
3827 */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)3828 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3829 {
3830 int i;
3831 int errors = 0;
3832 bool primary_failed = false;
3833 int ret;
3834 u64 bytenr;
3835
3836 if (max_mirrors == 0)
3837 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3838
3839 for (i = 0; i < max_mirrors; i++) {
3840 struct folio *folio;
3841
3842 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3843 if (ret == -ENOENT) {
3844 break;
3845 } else if (ret < 0) {
3846 errors++;
3847 if (i == 0)
3848 primary_failed = true;
3849 continue;
3850 }
3851 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3852 device->commit_total_bytes)
3853 break;
3854
3855 folio = filemap_get_folio(device->bdev->bd_mapping,
3856 bytenr >> PAGE_SHIFT);
3857 /* If the folio has been removed, then we know it completed. */
3858 if (IS_ERR(folio))
3859 continue;
3860 ASSERT(folio_order(folio) == 0);
3861
3862 /* Folio will be unlocked once the write completes. */
3863 folio_wait_locked(folio);
3864 folio_put(folio);
3865 }
3866
3867 errors += atomic_read(&device->sb_write_errors);
3868 if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR)
3869 primary_failed = true;
3870 if (primary_failed) {
3871 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3872 device->devid);
3873 return -1;
3874 }
3875
3876 return errors < i ? 0 : -1;
3877 }
3878
3879 /*
3880 * endio for the write_dev_flush, this will wake anyone waiting
3881 * for the barrier when it is done
3882 */
btrfs_end_empty_barrier(struct bio * bio)3883 static void btrfs_end_empty_barrier(struct bio *bio)
3884 {
3885 bio_uninit(bio);
3886 complete(bio->bi_private);
3887 }
3888
3889 /*
3890 * Submit a flush request to the device if it supports it. Error handling is
3891 * done in the waiting counterpart.
3892 */
write_dev_flush(struct btrfs_device * device)3893 static void write_dev_flush(struct btrfs_device *device)
3894 {
3895 struct bio *bio = &device->flush_bio;
3896
3897 device->last_flush_error = BLK_STS_OK;
3898
3899 bio_init(bio, device->bdev, NULL, 0,
3900 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3901 bio->bi_end_io = btrfs_end_empty_barrier;
3902 init_completion(&device->flush_wait);
3903 bio->bi_private = &device->flush_wait;
3904 submit_bio(bio);
3905 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3906 }
3907
3908 /*
3909 * If the flush bio has been submitted by write_dev_flush, wait for it.
3910 * Return true for any error, and false otherwise.
3911 */
wait_dev_flush(struct btrfs_device * device)3912 static bool wait_dev_flush(struct btrfs_device *device)
3913 {
3914 struct bio *bio = &device->flush_bio;
3915
3916 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3917 return false;
3918
3919 wait_for_completion_io(&device->flush_wait);
3920
3921 if (bio->bi_status) {
3922 device->last_flush_error = bio->bi_status;
3923 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3924 return true;
3925 }
3926
3927 return false;
3928 }
3929
3930 /*
3931 * send an empty flush down to each device in parallel,
3932 * then wait for them
3933 */
barrier_all_devices(struct btrfs_fs_info * info)3934 static int barrier_all_devices(struct btrfs_fs_info *info)
3935 {
3936 struct list_head *head;
3937 struct btrfs_device *dev;
3938 int errors_wait = 0;
3939
3940 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3941 /* send down all the barriers */
3942 head = &info->fs_devices->devices;
3943 list_for_each_entry(dev, head, dev_list) {
3944 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3945 continue;
3946 if (!dev->bdev)
3947 continue;
3948 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3949 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3950 continue;
3951
3952 write_dev_flush(dev);
3953 }
3954
3955 /* wait for all the barriers */
3956 list_for_each_entry(dev, head, dev_list) {
3957 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3958 continue;
3959 if (!dev->bdev) {
3960 errors_wait++;
3961 continue;
3962 }
3963 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3964 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3965 continue;
3966
3967 if (wait_dev_flush(dev))
3968 errors_wait++;
3969 }
3970
3971 /*
3972 * Checks last_flush_error of disks in order to determine the device
3973 * state.
3974 */
3975 if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
3976 return -EIO;
3977
3978 return 0;
3979 }
3980
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)3981 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3982 {
3983 int raid_type;
3984 int min_tolerated = INT_MAX;
3985
3986 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3987 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3988 min_tolerated = min_t(int, min_tolerated,
3989 btrfs_raid_array[BTRFS_RAID_SINGLE].
3990 tolerated_failures);
3991
3992 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3993 if (raid_type == BTRFS_RAID_SINGLE)
3994 continue;
3995 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3996 continue;
3997 min_tolerated = min_t(int, min_tolerated,
3998 btrfs_raid_array[raid_type].
3999 tolerated_failures);
4000 }
4001
4002 if (min_tolerated == INT_MAX) {
4003 pr_warn("BTRFS: unknown raid flag: %llu", flags);
4004 min_tolerated = 0;
4005 }
4006
4007 return min_tolerated;
4008 }
4009
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)4010 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4011 {
4012 struct list_head *head;
4013 struct btrfs_device *dev;
4014 struct btrfs_super_block *sb;
4015 struct btrfs_dev_item *dev_item;
4016 int ret;
4017 int do_barriers;
4018 int max_errors;
4019 int total_errors = 0;
4020 u64 flags;
4021
4022 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4023
4024 /*
4025 * max_mirrors == 0 indicates we're from commit_transaction,
4026 * not from fsync where the tree roots in fs_info have not
4027 * been consistent on disk.
4028 */
4029 if (max_mirrors == 0)
4030 backup_super_roots(fs_info);
4031
4032 sb = fs_info->super_for_commit;
4033 dev_item = &sb->dev_item;
4034
4035 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4036 head = &fs_info->fs_devices->devices;
4037 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4038
4039 if (do_barriers) {
4040 ret = barrier_all_devices(fs_info);
4041 if (ret) {
4042 mutex_unlock(
4043 &fs_info->fs_devices->device_list_mutex);
4044 btrfs_handle_fs_error(fs_info, ret,
4045 "errors while submitting device barriers.");
4046 return ret;
4047 }
4048 }
4049
4050 list_for_each_entry(dev, head, dev_list) {
4051 if (!dev->bdev) {
4052 total_errors++;
4053 continue;
4054 }
4055 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4056 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4057 continue;
4058
4059 btrfs_set_stack_device_generation(dev_item, 0);
4060 btrfs_set_stack_device_type(dev_item, dev->type);
4061 btrfs_set_stack_device_id(dev_item, dev->devid);
4062 btrfs_set_stack_device_total_bytes(dev_item,
4063 dev->commit_total_bytes);
4064 btrfs_set_stack_device_bytes_used(dev_item,
4065 dev->commit_bytes_used);
4066 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4067 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4068 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4069 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4070 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4071 BTRFS_FSID_SIZE);
4072
4073 flags = btrfs_super_flags(sb);
4074 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4075
4076 ret = btrfs_validate_write_super(fs_info, sb);
4077 if (ret < 0) {
4078 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4079 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4080 "unexpected superblock corruption detected");
4081 return -EUCLEAN;
4082 }
4083
4084 ret = write_dev_supers(dev, sb, max_mirrors);
4085 if (ret)
4086 total_errors++;
4087 }
4088 if (total_errors > max_errors) {
4089 btrfs_err(fs_info, "%d errors while writing supers",
4090 total_errors);
4091 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4092
4093 /* FUA is masked off if unsupported and can't be the reason */
4094 btrfs_handle_fs_error(fs_info, -EIO,
4095 "%d errors while writing supers",
4096 total_errors);
4097 return -EIO;
4098 }
4099
4100 total_errors = 0;
4101 list_for_each_entry(dev, head, dev_list) {
4102 if (!dev->bdev)
4103 continue;
4104 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4105 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4106 continue;
4107
4108 ret = wait_dev_supers(dev, max_mirrors);
4109 if (ret)
4110 total_errors++;
4111 }
4112 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4113 if (total_errors > max_errors) {
4114 btrfs_handle_fs_error(fs_info, -EIO,
4115 "%d errors while writing supers",
4116 total_errors);
4117 return -EIO;
4118 }
4119 return 0;
4120 }
4121
4122 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)4123 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4124 struct btrfs_root *root)
4125 {
4126 bool drop_ref = false;
4127
4128 spin_lock(&fs_info->fs_roots_radix_lock);
4129 radix_tree_delete(&fs_info->fs_roots_radix,
4130 (unsigned long)btrfs_root_id(root));
4131 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4132 drop_ref = true;
4133 spin_unlock(&fs_info->fs_roots_radix_lock);
4134
4135 if (BTRFS_FS_ERROR(fs_info)) {
4136 ASSERT(root->log_root == NULL);
4137 if (root->reloc_root) {
4138 btrfs_put_root(root->reloc_root);
4139 root->reloc_root = NULL;
4140 }
4141 }
4142
4143 if (drop_ref)
4144 btrfs_put_root(root);
4145 }
4146
btrfs_commit_super(struct btrfs_fs_info * fs_info)4147 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4148 {
4149 mutex_lock(&fs_info->cleaner_mutex);
4150 btrfs_run_delayed_iputs(fs_info);
4151 mutex_unlock(&fs_info->cleaner_mutex);
4152 wake_up_process(fs_info->cleaner_kthread);
4153
4154 /* wait until ongoing cleanup work done */
4155 down_write(&fs_info->cleanup_work_sem);
4156 up_write(&fs_info->cleanup_work_sem);
4157
4158 return btrfs_commit_current_transaction(fs_info->tree_root);
4159 }
4160
warn_about_uncommitted_trans(struct btrfs_fs_info * fs_info)4161 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4162 {
4163 struct btrfs_transaction *trans;
4164 struct btrfs_transaction *tmp;
4165 bool found = false;
4166
4167 /*
4168 * This function is only called at the very end of close_ctree(),
4169 * thus no other running transaction, no need to take trans_lock.
4170 */
4171 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4172 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4173 struct extent_state *cached = NULL;
4174 u64 dirty_bytes = 0;
4175 u64 cur = 0;
4176 u64 found_start;
4177 u64 found_end;
4178
4179 found = true;
4180 while (find_first_extent_bit(&trans->dirty_pages, cur,
4181 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4182 dirty_bytes += found_end + 1 - found_start;
4183 cur = found_end + 1;
4184 }
4185 btrfs_warn(fs_info,
4186 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4187 trans->transid, dirty_bytes);
4188 btrfs_cleanup_one_transaction(trans, fs_info);
4189
4190 if (trans == fs_info->running_transaction)
4191 fs_info->running_transaction = NULL;
4192 list_del_init(&trans->list);
4193
4194 btrfs_put_transaction(trans);
4195 trace_btrfs_transaction_commit(fs_info);
4196 }
4197 ASSERT(!found);
4198 }
4199
close_ctree(struct btrfs_fs_info * fs_info)4200 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4201 {
4202 int ret;
4203
4204 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4205
4206 /*
4207 * If we had UNFINISHED_DROPS we could still be processing them, so
4208 * clear that bit and wake up relocation so it can stop.
4209 * We must do this before stopping the block group reclaim task, because
4210 * at btrfs_relocate_block_group() we wait for this bit, and after the
4211 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4212 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4213 * return 1.
4214 */
4215 btrfs_wake_unfinished_drop(fs_info);
4216
4217 /*
4218 * We may have the reclaim task running and relocating a data block group,
4219 * in which case it may create delayed iputs. So stop it before we park
4220 * the cleaner kthread otherwise we can get new delayed iputs after
4221 * parking the cleaner, and that can make the async reclaim task to hang
4222 * if it's waiting for delayed iputs to complete, since the cleaner is
4223 * parked and can not run delayed iputs - this will make us hang when
4224 * trying to stop the async reclaim task.
4225 */
4226 cancel_work_sync(&fs_info->reclaim_bgs_work);
4227 /*
4228 * We don't want the cleaner to start new transactions, add more delayed
4229 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4230 * because that frees the task_struct, and the transaction kthread might
4231 * still try to wake up the cleaner.
4232 */
4233 kthread_park(fs_info->cleaner_kthread);
4234
4235 /* wait for the qgroup rescan worker to stop */
4236 btrfs_qgroup_wait_for_completion(fs_info, false);
4237
4238 /* wait for the uuid_scan task to finish */
4239 down(&fs_info->uuid_tree_rescan_sem);
4240 /* avoid complains from lockdep et al., set sem back to initial state */
4241 up(&fs_info->uuid_tree_rescan_sem);
4242
4243 /* pause restriper - we want to resume on mount */
4244 btrfs_pause_balance(fs_info);
4245
4246 btrfs_dev_replace_suspend_for_unmount(fs_info);
4247
4248 btrfs_scrub_cancel(fs_info);
4249
4250 /* wait for any defraggers to finish */
4251 wait_event(fs_info->transaction_wait,
4252 (atomic_read(&fs_info->defrag_running) == 0));
4253
4254 /* clear out the rbtree of defraggable inodes */
4255 btrfs_cleanup_defrag_inodes(fs_info);
4256
4257 /*
4258 * Handle the error fs first, as it will flush and wait for all ordered
4259 * extents. This will generate delayed iputs, thus we want to handle
4260 * it first.
4261 */
4262 if (unlikely(BTRFS_FS_ERROR(fs_info)))
4263 btrfs_error_commit_super(fs_info);
4264
4265 /*
4266 * Wait for any fixup workers to complete.
4267 * If we don't wait for them here and they are still running by the time
4268 * we call kthread_stop() against the cleaner kthread further below, we
4269 * get an use-after-free on the cleaner because the fixup worker adds an
4270 * inode to the list of delayed iputs and then attempts to wakeup the
4271 * cleaner kthread, which was already stopped and destroyed. We parked
4272 * already the cleaner, but below we run all pending delayed iputs.
4273 */
4274 btrfs_flush_workqueue(fs_info->fixup_workers);
4275 /*
4276 * Similar case here, we have to wait for delalloc workers before we
4277 * proceed below and stop the cleaner kthread, otherwise we trigger a
4278 * use-after-tree on the cleaner kthread task_struct when a delalloc
4279 * worker running submit_compressed_extents() adds a delayed iput, which
4280 * does a wake up on the cleaner kthread, which was already freed below
4281 * when we call kthread_stop().
4282 */
4283 btrfs_flush_workqueue(fs_info->delalloc_workers);
4284
4285 /*
4286 * We can have ordered extents getting their last reference dropped from
4287 * the fs_info->workers queue because for async writes for data bios we
4288 * queue a work for that queue, at btrfs_wq_submit_bio(), that runs
4289 * run_one_async_done() which calls btrfs_bio_end_io() in case the bio
4290 * has an error, and that later function can do the final
4291 * btrfs_put_ordered_extent() on the ordered extent attached to the bio,
4292 * which adds a delayed iput for the inode. So we must flush the queue
4293 * so that we don't have delayed iputs after committing the current
4294 * transaction below and stopping the cleaner and transaction kthreads.
4295 */
4296 btrfs_flush_workqueue(fs_info->workers);
4297
4298 /*
4299 * When finishing a compressed write bio we schedule a work queue item
4300 * to finish an ordered extent - btrfs_finish_compressed_write_work()
4301 * calls btrfs_finish_ordered_extent() which in turns does a call to
4302 * btrfs_queue_ordered_fn(), and that queues the ordered extent
4303 * completion either in the endio_write_workers work queue or in the
4304 * fs_info->endio_freespace_worker work queue. We flush those queues
4305 * below, so before we flush them we must flush this queue for the
4306 * workers of compressed writes.
4307 */
4308 flush_workqueue(fs_info->compressed_write_workers);
4309
4310 /*
4311 * After we parked the cleaner kthread, ordered extents may have
4312 * completed and created new delayed iputs. If one of the async reclaim
4313 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4314 * can hang forever trying to stop it, because if a delayed iput is
4315 * added after it ran btrfs_run_delayed_iputs() and before it called
4316 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4317 * no one else to run iputs.
4318 *
4319 * So wait for all ongoing ordered extents to complete and then run
4320 * delayed iputs. This works because once we reach this point no one
4321 * can either create new ordered extents nor create delayed iputs
4322 * through some other means.
4323 *
4324 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4325 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4326 * but the delayed iput for the respective inode is made only when doing
4327 * the final btrfs_put_ordered_extent() (which must happen at
4328 * btrfs_finish_ordered_io() when we are unmounting).
4329 */
4330 btrfs_flush_workqueue(fs_info->endio_write_workers);
4331 /* Ordered extents for free space inodes. */
4332 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4333 btrfs_run_delayed_iputs(fs_info);
4334
4335 cancel_work_sync(&fs_info->async_reclaim_work);
4336 cancel_work_sync(&fs_info->async_data_reclaim_work);
4337 cancel_work_sync(&fs_info->preempt_reclaim_work);
4338 cancel_work_sync(&fs_info->extent_map_shrinker_work);
4339
4340 /* Cancel or finish ongoing discard work */
4341 btrfs_discard_cleanup(fs_info);
4342
4343 if (!sb_rdonly(fs_info->sb)) {
4344 /*
4345 * The cleaner kthread is stopped, so do one final pass over
4346 * unused block groups.
4347 */
4348 btrfs_delete_unused_bgs(fs_info);
4349
4350 /*
4351 * There might be existing delayed inode workers still running
4352 * and holding an empty delayed inode item. We must wait for
4353 * them to complete first because they can create a transaction.
4354 * This happens when someone calls btrfs_balance_delayed_items()
4355 * and then a transaction commit runs the same delayed nodes
4356 * before any delayed worker has done something with the nodes.
4357 * We must wait for any worker here and not at transaction
4358 * commit time since that could cause a deadlock.
4359 * This is a very rare case.
4360 */
4361 btrfs_flush_workqueue(fs_info->delayed_workers);
4362
4363 ret = btrfs_commit_super(fs_info);
4364 if (ret)
4365 btrfs_err(fs_info, "commit super ret %d", ret);
4366 }
4367
4368 kthread_stop(fs_info->transaction_kthread);
4369 kthread_stop(fs_info->cleaner_kthread);
4370
4371 ASSERT(list_empty(&fs_info->delayed_iputs));
4372 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4373
4374 if (btrfs_check_quota_leak(fs_info)) {
4375 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4376 btrfs_err(fs_info, "qgroup reserved space leaked");
4377 }
4378
4379 btrfs_free_qgroup_config(fs_info);
4380 ASSERT(list_empty(&fs_info->delalloc_roots));
4381
4382 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4383 btrfs_info(fs_info, "at unmount delalloc count %lld",
4384 percpu_counter_sum(&fs_info->delalloc_bytes));
4385 }
4386
4387 if (percpu_counter_sum(&fs_info->ordered_bytes))
4388 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4389 percpu_counter_sum(&fs_info->ordered_bytes));
4390
4391 btrfs_sysfs_remove_mounted(fs_info);
4392 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4393
4394 btrfs_put_block_group_cache(fs_info);
4395
4396 /*
4397 * we must make sure there is not any read request to
4398 * submit after we stopping all workers.
4399 */
4400 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4401 btrfs_stop_all_workers(fs_info);
4402
4403 /* We shouldn't have any transaction open at this point */
4404 warn_about_uncommitted_trans(fs_info);
4405
4406 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4407 free_root_pointers(fs_info, true);
4408 btrfs_free_fs_roots(fs_info);
4409
4410 /*
4411 * We must free the block groups after dropping the fs_roots as we could
4412 * have had an IO error and have left over tree log blocks that aren't
4413 * cleaned up until the fs roots are freed. This makes the block group
4414 * accounting appear to be wrong because there's pending reserved bytes,
4415 * so make sure we do the block group cleanup afterwards.
4416 */
4417 btrfs_free_block_groups(fs_info);
4418
4419 iput(fs_info->btree_inode);
4420
4421 btrfs_mapping_tree_free(fs_info);
4422 btrfs_close_devices(fs_info->fs_devices);
4423 }
4424
btrfs_mark_buffer_dirty(struct btrfs_trans_handle * trans,struct extent_buffer * buf)4425 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4426 struct extent_buffer *buf)
4427 {
4428 struct btrfs_fs_info *fs_info = buf->fs_info;
4429 u64 transid = btrfs_header_generation(buf);
4430
4431 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4432 /*
4433 * This is a fast path so only do this check if we have sanity tests
4434 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4435 * outside of the sanity tests.
4436 */
4437 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4438 return;
4439 #endif
4440 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4441 ASSERT(trans->transid == fs_info->generation);
4442 btrfs_assert_tree_write_locked(buf);
4443 if (unlikely(transid != fs_info->generation)) {
4444 btrfs_abort_transaction(trans, -EUCLEAN);
4445 btrfs_crit(fs_info,
4446 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4447 buf->start, transid, fs_info->generation);
4448 }
4449 set_extent_buffer_dirty(buf);
4450 }
4451
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4452 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4453 int flush_delayed)
4454 {
4455 /*
4456 * looks as though older kernels can get into trouble with
4457 * this code, they end up stuck in balance_dirty_pages forever
4458 */
4459 int ret;
4460
4461 if (current->flags & PF_MEMALLOC)
4462 return;
4463
4464 if (flush_delayed)
4465 btrfs_balance_delayed_items(fs_info);
4466
4467 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4468 BTRFS_DIRTY_METADATA_THRESH,
4469 fs_info->dirty_metadata_batch);
4470 if (ret > 0) {
4471 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4472 }
4473 }
4474
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4475 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4476 {
4477 __btrfs_btree_balance_dirty(fs_info, 1);
4478 }
4479
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4480 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4481 {
4482 __btrfs_btree_balance_dirty(fs_info, 0);
4483 }
4484
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4485 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4486 {
4487 /* cleanup FS via transaction */
4488 btrfs_cleanup_transaction(fs_info);
4489
4490 down_write(&fs_info->cleanup_work_sem);
4491 up_write(&fs_info->cleanup_work_sem);
4492 }
4493
btrfs_drop_all_logs(struct btrfs_fs_info * fs_info)4494 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4495 {
4496 struct btrfs_root *gang[8];
4497 u64 root_objectid = 0;
4498 int ret;
4499
4500 spin_lock(&fs_info->fs_roots_radix_lock);
4501 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4502 (void **)gang, root_objectid,
4503 ARRAY_SIZE(gang))) != 0) {
4504 int i;
4505
4506 for (i = 0; i < ret; i++)
4507 gang[i] = btrfs_grab_root(gang[i]);
4508 spin_unlock(&fs_info->fs_roots_radix_lock);
4509
4510 for (i = 0; i < ret; i++) {
4511 if (!gang[i])
4512 continue;
4513 root_objectid = btrfs_root_id(gang[i]);
4514 btrfs_free_log(NULL, gang[i]);
4515 btrfs_put_root(gang[i]);
4516 }
4517 root_objectid++;
4518 spin_lock(&fs_info->fs_roots_radix_lock);
4519 }
4520 spin_unlock(&fs_info->fs_roots_radix_lock);
4521 btrfs_free_log_root_tree(NULL, fs_info);
4522 }
4523
btrfs_destroy_ordered_extents(struct btrfs_root * root)4524 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4525 {
4526 struct btrfs_ordered_extent *ordered;
4527
4528 spin_lock(&root->ordered_extent_lock);
4529 /*
4530 * This will just short circuit the ordered completion stuff which will
4531 * make sure the ordered extent gets properly cleaned up.
4532 */
4533 list_for_each_entry(ordered, &root->ordered_extents,
4534 root_extent_list)
4535 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4536 spin_unlock(&root->ordered_extent_lock);
4537 }
4538
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4539 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4540 {
4541 struct btrfs_root *root;
4542 LIST_HEAD(splice);
4543
4544 spin_lock(&fs_info->ordered_root_lock);
4545 list_splice_init(&fs_info->ordered_roots, &splice);
4546 while (!list_empty(&splice)) {
4547 root = list_first_entry(&splice, struct btrfs_root,
4548 ordered_root);
4549 list_move_tail(&root->ordered_root,
4550 &fs_info->ordered_roots);
4551
4552 spin_unlock(&fs_info->ordered_root_lock);
4553 btrfs_destroy_ordered_extents(root);
4554
4555 cond_resched();
4556 spin_lock(&fs_info->ordered_root_lock);
4557 }
4558 spin_unlock(&fs_info->ordered_root_lock);
4559
4560 /*
4561 * We need this here because if we've been flipped read-only we won't
4562 * get sync() from the umount, so we need to make sure any ordered
4563 * extents that haven't had their dirty pages IO start writeout yet
4564 * actually get run and error out properly.
4565 */
4566 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
4567 }
4568
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)4569 static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4570 struct btrfs_fs_info *fs_info)
4571 {
4572 struct rb_node *node;
4573 struct btrfs_delayed_ref_root *delayed_refs = &trans->delayed_refs;
4574 struct btrfs_delayed_ref_node *ref;
4575
4576 spin_lock(&delayed_refs->lock);
4577 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4578 struct btrfs_delayed_ref_head *head;
4579 struct rb_node *n;
4580 bool pin_bytes = false;
4581
4582 head = rb_entry(node, struct btrfs_delayed_ref_head,
4583 href_node);
4584 if (btrfs_delayed_ref_lock(delayed_refs, head))
4585 continue;
4586
4587 spin_lock(&head->lock);
4588 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4589 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4590 ref_node);
4591 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4592 RB_CLEAR_NODE(&ref->ref_node);
4593 if (!list_empty(&ref->add_list))
4594 list_del(&ref->add_list);
4595 atomic_dec(&delayed_refs->num_entries);
4596 btrfs_put_delayed_ref(ref);
4597 btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
4598 }
4599 if (head->must_insert_reserved)
4600 pin_bytes = true;
4601 btrfs_free_delayed_extent_op(head->extent_op);
4602 btrfs_delete_ref_head(delayed_refs, head);
4603 spin_unlock(&head->lock);
4604 spin_unlock(&delayed_refs->lock);
4605 mutex_unlock(&head->mutex);
4606
4607 if (pin_bytes) {
4608 struct btrfs_block_group *cache;
4609
4610 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4611 BUG_ON(!cache);
4612
4613 spin_lock(&cache->space_info->lock);
4614 spin_lock(&cache->lock);
4615 cache->pinned += head->num_bytes;
4616 btrfs_space_info_update_bytes_pinned(fs_info,
4617 cache->space_info, head->num_bytes);
4618 cache->reserved -= head->num_bytes;
4619 cache->space_info->bytes_reserved -= head->num_bytes;
4620 spin_unlock(&cache->lock);
4621 spin_unlock(&cache->space_info->lock);
4622
4623 btrfs_put_block_group(cache);
4624
4625 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4626 head->bytenr + head->num_bytes - 1);
4627 }
4628 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4629 btrfs_put_delayed_ref_head(head);
4630 cond_resched();
4631 spin_lock(&delayed_refs->lock);
4632 }
4633 btrfs_qgroup_destroy_extent_records(trans);
4634
4635 spin_unlock(&delayed_refs->lock);
4636 }
4637
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4638 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4639 {
4640 struct btrfs_inode *btrfs_inode;
4641 LIST_HEAD(splice);
4642
4643 spin_lock(&root->delalloc_lock);
4644 list_splice_init(&root->delalloc_inodes, &splice);
4645
4646 while (!list_empty(&splice)) {
4647 struct inode *inode = NULL;
4648 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4649 delalloc_inodes);
4650 btrfs_del_delalloc_inode(btrfs_inode);
4651 spin_unlock(&root->delalloc_lock);
4652
4653 /*
4654 * Make sure we get a live inode and that it'll not disappear
4655 * meanwhile.
4656 */
4657 inode = igrab(&btrfs_inode->vfs_inode);
4658 if (inode) {
4659 unsigned int nofs_flag;
4660
4661 nofs_flag = memalloc_nofs_save();
4662 invalidate_inode_pages2(inode->i_mapping);
4663 memalloc_nofs_restore(nofs_flag);
4664 iput(inode);
4665 }
4666 spin_lock(&root->delalloc_lock);
4667 }
4668 spin_unlock(&root->delalloc_lock);
4669 }
4670
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4671 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4672 {
4673 struct btrfs_root *root;
4674 LIST_HEAD(splice);
4675
4676 spin_lock(&fs_info->delalloc_root_lock);
4677 list_splice_init(&fs_info->delalloc_roots, &splice);
4678 while (!list_empty(&splice)) {
4679 root = list_first_entry(&splice, struct btrfs_root,
4680 delalloc_root);
4681 root = btrfs_grab_root(root);
4682 BUG_ON(!root);
4683 spin_unlock(&fs_info->delalloc_root_lock);
4684
4685 btrfs_destroy_delalloc_inodes(root);
4686 btrfs_put_root(root);
4687
4688 spin_lock(&fs_info->delalloc_root_lock);
4689 }
4690 spin_unlock(&fs_info->delalloc_root_lock);
4691 }
4692
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)4693 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4694 struct extent_io_tree *dirty_pages,
4695 int mark)
4696 {
4697 struct extent_buffer *eb;
4698 u64 start = 0;
4699 u64 end;
4700
4701 while (find_first_extent_bit(dirty_pages, start, &start, &end,
4702 mark, NULL)) {
4703 clear_extent_bits(dirty_pages, start, end, mark);
4704 while (start <= end) {
4705 eb = find_extent_buffer(fs_info, start);
4706 start += fs_info->nodesize;
4707 if (!eb)
4708 continue;
4709
4710 btrfs_tree_lock(eb);
4711 wait_on_extent_buffer_writeback(eb);
4712 btrfs_clear_buffer_dirty(NULL, eb);
4713 btrfs_tree_unlock(eb);
4714
4715 free_extent_buffer_stale(eb);
4716 }
4717 }
4718 }
4719
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * unpin)4720 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4721 struct extent_io_tree *unpin)
4722 {
4723 u64 start;
4724 u64 end;
4725
4726 while (1) {
4727 struct extent_state *cached_state = NULL;
4728
4729 /*
4730 * The btrfs_finish_extent_commit() may get the same range as
4731 * ours between find_first_extent_bit and clear_extent_dirty.
4732 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4733 * the same extent range.
4734 */
4735 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4736 if (!find_first_extent_bit(unpin, 0, &start, &end,
4737 EXTENT_DIRTY, &cached_state)) {
4738 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4739 break;
4740 }
4741
4742 clear_extent_dirty(unpin, start, end, &cached_state);
4743 free_extent_state(cached_state);
4744 btrfs_error_unpin_extent_range(fs_info, start, end);
4745 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4746 cond_resched();
4747 }
4748 }
4749
btrfs_cleanup_bg_io(struct btrfs_block_group * cache)4750 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4751 {
4752 struct inode *inode;
4753
4754 inode = cache->io_ctl.inode;
4755 if (inode) {
4756 unsigned int nofs_flag;
4757
4758 nofs_flag = memalloc_nofs_save();
4759 invalidate_inode_pages2(inode->i_mapping);
4760 memalloc_nofs_restore(nofs_flag);
4761
4762 BTRFS_I(inode)->generation = 0;
4763 cache->io_ctl.inode = NULL;
4764 iput(inode);
4765 }
4766 ASSERT(cache->io_ctl.pages == NULL);
4767 btrfs_put_block_group(cache);
4768 }
4769
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4770 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4771 struct btrfs_fs_info *fs_info)
4772 {
4773 struct btrfs_block_group *cache;
4774
4775 spin_lock(&cur_trans->dirty_bgs_lock);
4776 while (!list_empty(&cur_trans->dirty_bgs)) {
4777 cache = list_first_entry(&cur_trans->dirty_bgs,
4778 struct btrfs_block_group,
4779 dirty_list);
4780
4781 if (!list_empty(&cache->io_list)) {
4782 spin_unlock(&cur_trans->dirty_bgs_lock);
4783 list_del_init(&cache->io_list);
4784 btrfs_cleanup_bg_io(cache);
4785 spin_lock(&cur_trans->dirty_bgs_lock);
4786 }
4787
4788 list_del_init(&cache->dirty_list);
4789 spin_lock(&cache->lock);
4790 cache->disk_cache_state = BTRFS_DC_ERROR;
4791 spin_unlock(&cache->lock);
4792
4793 spin_unlock(&cur_trans->dirty_bgs_lock);
4794 btrfs_put_block_group(cache);
4795 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
4796 spin_lock(&cur_trans->dirty_bgs_lock);
4797 }
4798 spin_unlock(&cur_trans->dirty_bgs_lock);
4799
4800 /*
4801 * Refer to the definition of io_bgs member for details why it's safe
4802 * to use it without any locking
4803 */
4804 while (!list_empty(&cur_trans->io_bgs)) {
4805 cache = list_first_entry(&cur_trans->io_bgs,
4806 struct btrfs_block_group,
4807 io_list);
4808
4809 list_del_init(&cache->io_list);
4810 spin_lock(&cache->lock);
4811 cache->disk_cache_state = BTRFS_DC_ERROR;
4812 spin_unlock(&cache->lock);
4813 btrfs_cleanup_bg_io(cache);
4814 }
4815 }
4816
btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info * fs_info)4817 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4818 {
4819 struct btrfs_root *gang[8];
4820 int i;
4821 int ret;
4822
4823 spin_lock(&fs_info->fs_roots_radix_lock);
4824 while (1) {
4825 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4826 (void **)gang, 0,
4827 ARRAY_SIZE(gang),
4828 BTRFS_ROOT_TRANS_TAG);
4829 if (ret == 0)
4830 break;
4831 for (i = 0; i < ret; i++) {
4832 struct btrfs_root *root = gang[i];
4833
4834 btrfs_qgroup_free_meta_all_pertrans(root);
4835 radix_tree_tag_clear(&fs_info->fs_roots_radix,
4836 (unsigned long)btrfs_root_id(root),
4837 BTRFS_ROOT_TRANS_TAG);
4838 }
4839 }
4840 spin_unlock(&fs_info->fs_roots_radix_lock);
4841 }
4842
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4843 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4844 struct btrfs_fs_info *fs_info)
4845 {
4846 struct btrfs_device *dev, *tmp;
4847
4848 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4849 ASSERT(list_empty(&cur_trans->dirty_bgs));
4850 ASSERT(list_empty(&cur_trans->io_bgs));
4851
4852 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4853 post_commit_list) {
4854 list_del_init(&dev->post_commit_list);
4855 }
4856
4857 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4858
4859 cur_trans->state = TRANS_STATE_COMMIT_START;
4860 wake_up(&fs_info->transaction_blocked_wait);
4861
4862 cur_trans->state = TRANS_STATE_UNBLOCKED;
4863 wake_up(&fs_info->transaction_wait);
4864
4865 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4866 EXTENT_DIRTY);
4867 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4868
4869 cur_trans->state =TRANS_STATE_COMPLETED;
4870 wake_up(&cur_trans->commit_wait);
4871 }
4872
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)4873 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4874 {
4875 struct btrfs_transaction *t;
4876
4877 mutex_lock(&fs_info->transaction_kthread_mutex);
4878
4879 spin_lock(&fs_info->trans_lock);
4880 while (!list_empty(&fs_info->trans_list)) {
4881 t = list_first_entry(&fs_info->trans_list,
4882 struct btrfs_transaction, list);
4883 if (t->state >= TRANS_STATE_COMMIT_PREP) {
4884 refcount_inc(&t->use_count);
4885 spin_unlock(&fs_info->trans_lock);
4886 btrfs_wait_for_commit(fs_info, t->transid);
4887 btrfs_put_transaction(t);
4888 spin_lock(&fs_info->trans_lock);
4889 continue;
4890 }
4891 if (t == fs_info->running_transaction) {
4892 t->state = TRANS_STATE_COMMIT_DOING;
4893 spin_unlock(&fs_info->trans_lock);
4894 /*
4895 * We wait for 0 num_writers since we don't hold a trans
4896 * handle open currently for this transaction.
4897 */
4898 wait_event(t->writer_wait,
4899 atomic_read(&t->num_writers) == 0);
4900 } else {
4901 spin_unlock(&fs_info->trans_lock);
4902 }
4903 btrfs_cleanup_one_transaction(t, fs_info);
4904
4905 spin_lock(&fs_info->trans_lock);
4906 if (t == fs_info->running_transaction)
4907 fs_info->running_transaction = NULL;
4908 list_del_init(&t->list);
4909 spin_unlock(&fs_info->trans_lock);
4910
4911 btrfs_put_transaction(t);
4912 trace_btrfs_transaction_commit(fs_info);
4913 spin_lock(&fs_info->trans_lock);
4914 }
4915 spin_unlock(&fs_info->trans_lock);
4916 btrfs_destroy_all_ordered_extents(fs_info);
4917 btrfs_destroy_delayed_inodes(fs_info);
4918 btrfs_assert_delayed_root_empty(fs_info);
4919 btrfs_destroy_all_delalloc_inodes(fs_info);
4920 btrfs_drop_all_logs(fs_info);
4921 btrfs_free_all_qgroup_pertrans(fs_info);
4922 mutex_unlock(&fs_info->transaction_kthread_mutex);
4923
4924 return 0;
4925 }
4926
btrfs_init_root_free_objectid(struct btrfs_root * root)4927 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4928 {
4929 struct btrfs_path *path;
4930 int ret;
4931 struct extent_buffer *l;
4932 struct btrfs_key search_key;
4933 struct btrfs_key found_key;
4934 int slot;
4935
4936 path = btrfs_alloc_path();
4937 if (!path)
4938 return -ENOMEM;
4939
4940 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4941 search_key.type = -1;
4942 search_key.offset = (u64)-1;
4943 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4944 if (ret < 0)
4945 goto error;
4946 if (ret == 0) {
4947 /*
4948 * Key with offset -1 found, there would have to exist a root
4949 * with such id, but this is out of valid range.
4950 */
4951 ret = -EUCLEAN;
4952 goto error;
4953 }
4954 if (path->slots[0] > 0) {
4955 slot = path->slots[0] - 1;
4956 l = path->nodes[0];
4957 btrfs_item_key_to_cpu(l, &found_key, slot);
4958 root->free_objectid = max_t(u64, found_key.objectid + 1,
4959 BTRFS_FIRST_FREE_OBJECTID);
4960 } else {
4961 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4962 }
4963 ret = 0;
4964 error:
4965 btrfs_free_path(path);
4966 return ret;
4967 }
4968
btrfs_get_free_objectid(struct btrfs_root * root,u64 * objectid)4969 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4970 {
4971 int ret;
4972 mutex_lock(&root->objectid_mutex);
4973
4974 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4975 btrfs_warn(root->fs_info,
4976 "the objectid of root %llu reaches its highest value",
4977 btrfs_root_id(root));
4978 ret = -ENOSPC;
4979 goto out;
4980 }
4981
4982 *objectid = root->free_objectid++;
4983 ret = 0;
4984 out:
4985 mutex_unlock(&root->objectid_mutex);
4986 return ret;
4987 }
4988