1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "fs.h"
27 #include "accessors.h"
28 #include "extent-tree.h"
29 #include "root-tree.h"
30 #include "dir-item.h"
31 #include "uuid-tree.h"
32 #include "ioctl.h"
33 #include "relocation.h"
34 #include "scrub.h"
35
36 static struct kmem_cache *btrfs_trans_handle_cachep;
37
38 /*
39 * Transaction states and transitions
40 *
41 * No running transaction (fs tree blocks are not modified)
42 * |
43 * | To next stage:
44 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
45 * V
46 * Transaction N [[TRANS_STATE_RUNNING]]
47 * |
48 * | New trans handles can be attached to transaction N by calling all
49 * | start_transaction() variants.
50 * |
51 * | To next stage:
52 * | Call btrfs_commit_transaction() on any trans handle attached to
53 * | transaction N
54 * V
55 * Transaction N [[TRANS_STATE_COMMIT_PREP]]
56 * |
57 * | If there are simultaneous calls to btrfs_commit_transaction() one will win
58 * | the race and the rest will wait for the winner to commit the transaction.
59 * |
60 * | The winner will wait for previous running transaction to completely finish
61 * | if there is one.
62 * |
63 * Transaction N [[TRANS_STATE_COMMIT_START]]
64 * |
65 * | Then one of the following happens:
66 * | - Wait for all other trans handle holders to release.
67 * | The btrfs_commit_transaction() caller will do the commit work.
68 * | - Wait for current transaction to be committed by others.
69 * | Other btrfs_commit_transaction() caller will do the commit work.
70 * |
71 * | At this stage, only btrfs_join_transaction*() variants can attach
72 * | to this running transaction.
73 * | All other variants will wait for current one to finish and attach to
74 * | transaction N+1.
75 * |
76 * | To next stage:
77 * | Caller is chosen to commit transaction N, and all other trans handle
78 * | haven been released.
79 * V
80 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
81 * |
82 * | The heavy lifting transaction work is started.
83 * | From running delayed refs (modifying extent tree) to creating pending
84 * | snapshots, running qgroups.
85 * | In short, modify supporting trees to reflect modifications of subvolume
86 * | trees.
87 * |
88 * | At this stage, all start_transaction() calls will wait for this
89 * | transaction to finish and attach to transaction N+1.
90 * |
91 * | To next stage:
92 * | Until all supporting trees are updated.
93 * V
94 * Transaction N [[TRANS_STATE_UNBLOCKED]]
95 * | Transaction N+1
96 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
97 * | need to write them back to disk and update |
98 * | super blocks. |
99 * | |
100 * | At this stage, new transaction is allowed to |
101 * | start. |
102 * | All new start_transaction() calls will be |
103 * | attached to transid N+1. |
104 * | |
105 * | To next stage: |
106 * | Until all tree blocks are super blocks are |
107 * | written to block devices |
108 * V |
109 * Transaction N [[TRANS_STATE_COMPLETED]] V
110 * All tree blocks and super blocks are written. Transaction N+1
111 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
112 * data structures will be cleaned up. | Life goes on
113 */
114 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
115 [TRANS_STATE_RUNNING] = 0U,
116 [TRANS_STATE_COMMIT_PREP] = 0U,
117 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
118 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
119 __TRANS_ATTACH |
120 __TRANS_JOIN |
121 __TRANS_JOIN_NOSTART),
122 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
123 __TRANS_ATTACH |
124 __TRANS_JOIN |
125 __TRANS_JOIN_NOLOCK |
126 __TRANS_JOIN_NOSTART),
127 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
128 __TRANS_ATTACH |
129 __TRANS_JOIN |
130 __TRANS_JOIN_NOLOCK |
131 __TRANS_JOIN_NOSTART),
132 [TRANS_STATE_COMPLETED] = (__TRANS_START |
133 __TRANS_ATTACH |
134 __TRANS_JOIN |
135 __TRANS_JOIN_NOLOCK |
136 __TRANS_JOIN_NOSTART),
137 };
138
btrfs_put_transaction(struct btrfs_transaction * transaction)139 void btrfs_put_transaction(struct btrfs_transaction *transaction)
140 {
141 WARN_ON(refcount_read(&transaction->use_count) == 0);
142 if (refcount_dec_and_test(&transaction->use_count)) {
143 BUG_ON(!list_empty(&transaction->list));
144 WARN_ON(!RB_EMPTY_ROOT(
145 &transaction->delayed_refs.href_root.rb_root));
146 WARN_ON(!xa_empty(&transaction->delayed_refs.dirty_extents));
147 if (transaction->delayed_refs.pending_csums)
148 btrfs_err(transaction->fs_info,
149 "pending csums is %llu",
150 transaction->delayed_refs.pending_csums);
151 /*
152 * If any block groups are found in ->deleted_bgs then it's
153 * because the transaction was aborted and a commit did not
154 * happen (things failed before writing the new superblock
155 * and calling btrfs_finish_extent_commit()), so we can not
156 * discard the physical locations of the block groups.
157 */
158 while (!list_empty(&transaction->deleted_bgs)) {
159 struct btrfs_block_group *cache;
160
161 cache = list_first_entry(&transaction->deleted_bgs,
162 struct btrfs_block_group,
163 bg_list);
164 /*
165 * Not strictly necessary to lock, as no other task will be using a
166 * block_group on the deleted_bgs list during a transaction abort.
167 */
168 spin_lock(&transaction->fs_info->unused_bgs_lock);
169 list_del_init(&cache->bg_list);
170 spin_unlock(&transaction->fs_info->unused_bgs_lock);
171 btrfs_unfreeze_block_group(cache);
172 btrfs_put_block_group(cache);
173 }
174 WARN_ON(!list_empty(&transaction->dev_update_list));
175 kfree(transaction);
176 }
177 }
178
switch_commit_roots(struct btrfs_trans_handle * trans)179 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
180 {
181 struct btrfs_transaction *cur_trans = trans->transaction;
182 struct btrfs_fs_info *fs_info = trans->fs_info;
183 struct btrfs_root *root, *tmp;
184
185 /*
186 * At this point no one can be using this transaction to modify any tree
187 * and no one can start another transaction to modify any tree either.
188 */
189 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
190
191 down_write(&fs_info->commit_root_sem);
192
193 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
194 fs_info->last_reloc_trans = trans->transid;
195
196 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
197 dirty_list) {
198 list_del_init(&root->dirty_list);
199 free_extent_buffer(root->commit_root);
200 root->commit_root = btrfs_root_node(root);
201 extent_io_tree_release(&root->dirty_log_pages);
202 btrfs_qgroup_clean_swapped_blocks(root);
203 }
204
205 /* We can free old roots now. */
206 spin_lock(&cur_trans->dropped_roots_lock);
207 while (!list_empty(&cur_trans->dropped_roots)) {
208 root = list_first_entry(&cur_trans->dropped_roots,
209 struct btrfs_root, root_list);
210 list_del_init(&root->root_list);
211 spin_unlock(&cur_trans->dropped_roots_lock);
212 btrfs_free_log(trans, root);
213 btrfs_drop_and_free_fs_root(fs_info, root);
214 spin_lock(&cur_trans->dropped_roots_lock);
215 }
216 spin_unlock(&cur_trans->dropped_roots_lock);
217
218 up_write(&fs_info->commit_root_sem);
219 }
220
extwriter_counter_inc(struct btrfs_transaction * trans,unsigned int type)221 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
222 unsigned int type)
223 {
224 if (type & TRANS_EXTWRITERS)
225 atomic_inc(&trans->num_extwriters);
226 }
227
extwriter_counter_dec(struct btrfs_transaction * trans,unsigned int type)228 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
229 unsigned int type)
230 {
231 if (type & TRANS_EXTWRITERS)
232 atomic_dec(&trans->num_extwriters);
233 }
234
extwriter_counter_init(struct btrfs_transaction * trans,unsigned int type)235 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
236 unsigned int type)
237 {
238 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
239 }
240
extwriter_counter_read(struct btrfs_transaction * trans)241 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
242 {
243 return atomic_read(&trans->num_extwriters);
244 }
245
246 /*
247 * To be called after doing the chunk btree updates right after allocating a new
248 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
249 * chunk after all chunk btree updates and after finishing the second phase of
250 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
251 * group had its chunk item insertion delayed to the second phase.
252 */
btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle * trans)253 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
254 {
255 struct btrfs_fs_info *fs_info = trans->fs_info;
256
257 if (!trans->chunk_bytes_reserved)
258 return;
259
260 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
261 trans->chunk_bytes_reserved, NULL);
262 trans->chunk_bytes_reserved = 0;
263 }
264
265 /*
266 * either allocate a new transaction or hop into the existing one
267 */
join_transaction(struct btrfs_fs_info * fs_info,unsigned int type)268 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
269 unsigned int type)
270 {
271 struct btrfs_transaction *cur_trans;
272
273 spin_lock(&fs_info->trans_lock);
274 loop:
275 /* The file system has been taken offline. No new transactions. */
276 if (BTRFS_FS_ERROR(fs_info)) {
277 spin_unlock(&fs_info->trans_lock);
278 return -EROFS;
279 }
280
281 cur_trans = fs_info->running_transaction;
282 if (cur_trans) {
283 if (TRANS_ABORTED(cur_trans)) {
284 const int abort_error = cur_trans->aborted;
285
286 spin_unlock(&fs_info->trans_lock);
287 return abort_error;
288 }
289 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
290 spin_unlock(&fs_info->trans_lock);
291 return -EBUSY;
292 }
293 refcount_inc(&cur_trans->use_count);
294 atomic_inc(&cur_trans->num_writers);
295 extwriter_counter_inc(cur_trans, type);
296 spin_unlock(&fs_info->trans_lock);
297 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
298 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
299 return 0;
300 }
301 spin_unlock(&fs_info->trans_lock);
302
303 /*
304 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
305 * current transaction, and commit it. If there is no transaction, just
306 * return ENOENT.
307 */
308 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
309 return -ENOENT;
310
311 /*
312 * JOIN_NOLOCK only happens during the transaction commit, so
313 * it is impossible that ->running_transaction is NULL
314 */
315 BUG_ON(type == TRANS_JOIN_NOLOCK);
316
317 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
318 if (!cur_trans)
319 return -ENOMEM;
320
321 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
322 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
323
324 spin_lock(&fs_info->trans_lock);
325 if (fs_info->running_transaction) {
326 /*
327 * someone started a transaction after we unlocked. Make sure
328 * to redo the checks above
329 */
330 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
331 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
332 kfree(cur_trans);
333 goto loop;
334 } else if (BTRFS_FS_ERROR(fs_info)) {
335 spin_unlock(&fs_info->trans_lock);
336 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
337 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
338 kfree(cur_trans);
339 return -EROFS;
340 }
341
342 cur_trans->fs_info = fs_info;
343 atomic_set(&cur_trans->pending_ordered, 0);
344 init_waitqueue_head(&cur_trans->pending_wait);
345 atomic_set(&cur_trans->num_writers, 1);
346 extwriter_counter_init(cur_trans, type);
347 init_waitqueue_head(&cur_trans->writer_wait);
348 init_waitqueue_head(&cur_trans->commit_wait);
349 cur_trans->state = TRANS_STATE_RUNNING;
350 /*
351 * One for this trans handle, one so it will live on until we
352 * commit the transaction.
353 */
354 refcount_set(&cur_trans->use_count, 2);
355 cur_trans->flags = 0;
356 cur_trans->start_time = ktime_get_seconds();
357
358 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
359
360 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
361 xa_init(&cur_trans->delayed_refs.dirty_extents);
362 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
363
364 /*
365 * although the tree mod log is per file system and not per transaction,
366 * the log must never go across transaction boundaries.
367 */
368 smp_mb();
369 if (!list_empty(&fs_info->tree_mod_seq_list))
370 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
371 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
372 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
373 atomic64_set(&fs_info->tree_mod_seq, 0);
374
375 spin_lock_init(&cur_trans->delayed_refs.lock);
376
377 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
378 INIT_LIST_HEAD(&cur_trans->dev_update_list);
379 INIT_LIST_HEAD(&cur_trans->switch_commits);
380 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
381 INIT_LIST_HEAD(&cur_trans->io_bgs);
382 INIT_LIST_HEAD(&cur_trans->dropped_roots);
383 mutex_init(&cur_trans->cache_write_mutex);
384 spin_lock_init(&cur_trans->dirty_bgs_lock);
385 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
386 spin_lock_init(&cur_trans->dropped_roots_lock);
387 list_add_tail(&cur_trans->list, &fs_info->trans_list);
388 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
389 IO_TREE_TRANS_DIRTY_PAGES);
390 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
391 IO_TREE_FS_PINNED_EXTENTS);
392 btrfs_set_fs_generation(fs_info, fs_info->generation + 1);
393 cur_trans->transid = fs_info->generation;
394 fs_info->running_transaction = cur_trans;
395 cur_trans->aborted = 0;
396 spin_unlock(&fs_info->trans_lock);
397
398 return 0;
399 }
400
401 /*
402 * This does all the record keeping required to make sure that a shareable root
403 * is properly recorded in a given transaction. This is required to make sure
404 * the old root from before we joined the transaction is deleted when the
405 * transaction commits.
406 */
record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,int force)407 static int record_root_in_trans(struct btrfs_trans_handle *trans,
408 struct btrfs_root *root,
409 int force)
410 {
411 struct btrfs_fs_info *fs_info = root->fs_info;
412 int ret = 0;
413
414 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
415 btrfs_get_root_last_trans(root) < trans->transid) || force) {
416 WARN_ON(!force && root->commit_root != root->node);
417
418 /*
419 * see below for IN_TRANS_SETUP usage rules
420 * we have the reloc mutex held now, so there
421 * is only one writer in this function
422 */
423 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
424
425 /* make sure readers find IN_TRANS_SETUP before
426 * they find our root->last_trans update
427 */
428 smp_wmb();
429
430 spin_lock(&fs_info->fs_roots_radix_lock);
431 if (btrfs_get_root_last_trans(root) == trans->transid && !force) {
432 spin_unlock(&fs_info->fs_roots_radix_lock);
433 return 0;
434 }
435 radix_tree_tag_set(&fs_info->fs_roots_radix,
436 (unsigned long)btrfs_root_id(root),
437 BTRFS_ROOT_TRANS_TAG);
438 spin_unlock(&fs_info->fs_roots_radix_lock);
439 btrfs_set_root_last_trans(root, trans->transid);
440
441 /* this is pretty tricky. We don't want to
442 * take the relocation lock in btrfs_record_root_in_trans
443 * unless we're really doing the first setup for this root in
444 * this transaction.
445 *
446 * Normally we'd use root->last_trans as a flag to decide
447 * if we want to take the expensive mutex.
448 *
449 * But, we have to set root->last_trans before we
450 * init the relocation root, otherwise, we trip over warnings
451 * in ctree.c. The solution used here is to flag ourselves
452 * with root IN_TRANS_SETUP. When this is 1, we're still
453 * fixing up the reloc trees and everyone must wait.
454 *
455 * When this is zero, they can trust root->last_trans and fly
456 * through btrfs_record_root_in_trans without having to take the
457 * lock. smp_wmb() makes sure that all the writes above are
458 * done before we pop in the zero below
459 */
460 ret = btrfs_init_reloc_root(trans, root);
461 smp_mb__before_atomic();
462 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
463 }
464 return ret;
465 }
466
467
btrfs_add_dropped_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)468 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
469 struct btrfs_root *root)
470 {
471 struct btrfs_fs_info *fs_info = root->fs_info;
472 struct btrfs_transaction *cur_trans = trans->transaction;
473
474 /* Add ourselves to the transaction dropped list */
475 spin_lock(&cur_trans->dropped_roots_lock);
476 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
477 spin_unlock(&cur_trans->dropped_roots_lock);
478
479 /* Make sure we don't try to update the root at commit time */
480 spin_lock(&fs_info->fs_roots_radix_lock);
481 radix_tree_tag_clear(&fs_info->fs_roots_radix,
482 (unsigned long)btrfs_root_id(root),
483 BTRFS_ROOT_TRANS_TAG);
484 spin_unlock(&fs_info->fs_roots_radix_lock);
485 }
486
btrfs_record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)487 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
488 struct btrfs_root *root)
489 {
490 struct btrfs_fs_info *fs_info = root->fs_info;
491 int ret;
492
493 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
494 return 0;
495
496 /*
497 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
498 * and barriers
499 */
500 smp_rmb();
501 if (btrfs_get_root_last_trans(root) == trans->transid &&
502 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
503 return 0;
504
505 mutex_lock(&fs_info->reloc_mutex);
506 ret = record_root_in_trans(trans, root, 0);
507 mutex_unlock(&fs_info->reloc_mutex);
508
509 return ret;
510 }
511
is_transaction_blocked(struct btrfs_transaction * trans)512 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
513 {
514 return (trans->state >= TRANS_STATE_COMMIT_START &&
515 trans->state < TRANS_STATE_UNBLOCKED &&
516 !TRANS_ABORTED(trans));
517 }
518
519 /* wait for commit against the current transaction to become unblocked
520 * when this is done, it is safe to start a new transaction, but the current
521 * transaction might not be fully on disk.
522 */
wait_current_trans(struct btrfs_fs_info * fs_info)523 static void wait_current_trans(struct btrfs_fs_info *fs_info)
524 {
525 struct btrfs_transaction *cur_trans;
526
527 spin_lock(&fs_info->trans_lock);
528 cur_trans = fs_info->running_transaction;
529 if (cur_trans && is_transaction_blocked(cur_trans)) {
530 refcount_inc(&cur_trans->use_count);
531 spin_unlock(&fs_info->trans_lock);
532
533 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
534 wait_event(fs_info->transaction_wait,
535 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
536 TRANS_ABORTED(cur_trans));
537 btrfs_put_transaction(cur_trans);
538 } else {
539 spin_unlock(&fs_info->trans_lock);
540 }
541 }
542
may_wait_transaction(struct btrfs_fs_info * fs_info,int type)543 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
544 {
545 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
546 return 0;
547
548 if (type == TRANS_START)
549 return 1;
550
551 return 0;
552 }
553
need_reserve_reloc_root(struct btrfs_root * root)554 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
555 {
556 struct btrfs_fs_info *fs_info = root->fs_info;
557
558 if (!fs_info->reloc_ctl ||
559 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
560 btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
561 root->reloc_root)
562 return false;
563
564 return true;
565 }
566
btrfs_reserve_trans_metadata(struct btrfs_fs_info * fs_info,enum btrfs_reserve_flush_enum flush,u64 num_bytes,u64 * delayed_refs_bytes)567 static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
568 enum btrfs_reserve_flush_enum flush,
569 u64 num_bytes,
570 u64 *delayed_refs_bytes)
571 {
572 struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
573 u64 bytes = num_bytes + *delayed_refs_bytes;
574 int ret;
575
576 /*
577 * We want to reserve all the bytes we may need all at once, so we only
578 * do 1 enospc flushing cycle per transaction start.
579 */
580 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
581
582 /*
583 * If we are an emergency flush, which can steal from the global block
584 * reserve, then attempt to not reserve space for the delayed refs, as
585 * we will consume space for them from the global block reserve.
586 */
587 if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
588 bytes -= *delayed_refs_bytes;
589 *delayed_refs_bytes = 0;
590 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
591 }
592
593 return ret;
594 }
595
596 static struct btrfs_trans_handle *
start_transaction(struct btrfs_root * root,unsigned int num_items,unsigned int type,enum btrfs_reserve_flush_enum flush,bool enforce_qgroups)597 start_transaction(struct btrfs_root *root, unsigned int num_items,
598 unsigned int type, enum btrfs_reserve_flush_enum flush,
599 bool enforce_qgroups)
600 {
601 struct btrfs_fs_info *fs_info = root->fs_info;
602 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
603 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
604 struct btrfs_trans_handle *h;
605 struct btrfs_transaction *cur_trans;
606 u64 num_bytes = 0;
607 u64 qgroup_reserved = 0;
608 u64 delayed_refs_bytes = 0;
609 bool reloc_reserved = false;
610 bool do_chunk_alloc = false;
611 int ret;
612
613 if (BTRFS_FS_ERROR(fs_info))
614 return ERR_PTR(-EROFS);
615
616 if (current->journal_info) {
617 WARN_ON(type & TRANS_EXTWRITERS);
618 h = current->journal_info;
619 refcount_inc(&h->use_count);
620 WARN_ON(refcount_read(&h->use_count) > 2);
621 h->orig_rsv = h->block_rsv;
622 h->block_rsv = NULL;
623 goto got_it;
624 }
625
626 /*
627 * Do the reservation before we join the transaction so we can do all
628 * the appropriate flushing if need be.
629 */
630 if (num_items && root != fs_info->chunk_root) {
631 qgroup_reserved = num_items * fs_info->nodesize;
632 /*
633 * Use prealloc for now, as there might be a currently running
634 * transaction that could free this reserved space prematurely
635 * by committing.
636 */
637 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
638 enforce_qgroups, false);
639 if (ret)
640 return ERR_PTR(ret);
641
642 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
643 /*
644 * If we plan to insert/update/delete "num_items" from a btree,
645 * we will also generate delayed refs for extent buffers in the
646 * respective btree paths, so reserve space for the delayed refs
647 * that will be generated by the caller as it modifies btrees.
648 * Try to reserve them to avoid excessive use of the global
649 * block reserve.
650 */
651 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
652
653 /*
654 * Do the reservation for the relocation root creation
655 */
656 if (need_reserve_reloc_root(root)) {
657 num_bytes += fs_info->nodesize;
658 reloc_reserved = true;
659 }
660
661 ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
662 &delayed_refs_bytes);
663 if (ret)
664 goto reserve_fail;
665
666 btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
667
668 if (trans_rsv->space_info->force_alloc)
669 do_chunk_alloc = true;
670 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
671 !btrfs_block_rsv_full(delayed_refs_rsv)) {
672 /*
673 * Some people call with btrfs_start_transaction(root, 0)
674 * because they can be throttled, but have some other mechanism
675 * for reserving space. We still want these guys to refill the
676 * delayed block_rsv so just add 1 items worth of reservation
677 * here.
678 */
679 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
680 if (ret)
681 goto reserve_fail;
682 }
683 again:
684 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
685 if (!h) {
686 ret = -ENOMEM;
687 goto alloc_fail;
688 }
689
690 /*
691 * If we are JOIN_NOLOCK we're already committing a transaction and
692 * waiting on this guy, so we don't need to do the sb_start_intwrite
693 * because we're already holding a ref. We need this because we could
694 * have raced in and did an fsync() on a file which can kick a commit
695 * and then we deadlock with somebody doing a freeze.
696 *
697 * If we are ATTACH, it means we just want to catch the current
698 * transaction and commit it, so we needn't do sb_start_intwrite().
699 */
700 if (type & __TRANS_FREEZABLE)
701 sb_start_intwrite(fs_info->sb);
702
703 if (may_wait_transaction(fs_info, type))
704 wait_current_trans(fs_info);
705
706 do {
707 ret = join_transaction(fs_info, type);
708 if (ret == -EBUSY) {
709 wait_current_trans(fs_info);
710 if (unlikely(type == TRANS_ATTACH ||
711 type == TRANS_JOIN_NOSTART))
712 ret = -ENOENT;
713 }
714 } while (ret == -EBUSY);
715
716 if (ret < 0)
717 goto join_fail;
718
719 cur_trans = fs_info->running_transaction;
720
721 h->transid = cur_trans->transid;
722 h->transaction = cur_trans;
723 refcount_set(&h->use_count, 1);
724 h->fs_info = root->fs_info;
725
726 h->type = type;
727 INIT_LIST_HEAD(&h->new_bgs);
728 btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
729
730 smp_mb();
731 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
732 may_wait_transaction(fs_info, type)) {
733 current->journal_info = h;
734 btrfs_commit_transaction(h);
735 goto again;
736 }
737
738 if (num_bytes) {
739 trace_btrfs_space_reservation(fs_info, "transaction",
740 h->transid, num_bytes, 1);
741 h->block_rsv = trans_rsv;
742 h->bytes_reserved = num_bytes;
743 if (delayed_refs_bytes > 0) {
744 trace_btrfs_space_reservation(fs_info,
745 "local_delayed_refs_rsv",
746 h->transid,
747 delayed_refs_bytes, 1);
748 h->delayed_refs_bytes_reserved = delayed_refs_bytes;
749 btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
750 delayed_refs_bytes = 0;
751 }
752 h->reloc_reserved = reloc_reserved;
753 }
754
755 got_it:
756 if (!current->journal_info)
757 current->journal_info = h;
758
759 /*
760 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
761 * ALLOC_FORCE the first run through, and then we won't allocate for
762 * anybody else who races in later. We don't care about the return
763 * value here.
764 */
765 if (do_chunk_alloc && num_bytes) {
766 u64 flags = h->block_rsv->space_info->flags;
767
768 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
769 CHUNK_ALLOC_NO_FORCE);
770 }
771
772 /*
773 * btrfs_record_root_in_trans() needs to alloc new extents, and may
774 * call btrfs_join_transaction() while we're also starting a
775 * transaction.
776 *
777 * Thus it need to be called after current->journal_info initialized,
778 * or we can deadlock.
779 */
780 ret = btrfs_record_root_in_trans(h, root);
781 if (ret) {
782 /*
783 * The transaction handle is fully initialized and linked with
784 * other structures so it needs to be ended in case of errors,
785 * not just freed.
786 */
787 btrfs_end_transaction(h);
788 goto reserve_fail;
789 }
790 /*
791 * Now that we have found a transaction to be a part of, convert the
792 * qgroup reservation from prealloc to pertrans. A different transaction
793 * can't race in and free our pertrans out from under us.
794 */
795 if (qgroup_reserved)
796 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
797
798 return h;
799
800 join_fail:
801 if (type & __TRANS_FREEZABLE)
802 sb_end_intwrite(fs_info->sb);
803 kmem_cache_free(btrfs_trans_handle_cachep, h);
804 alloc_fail:
805 if (num_bytes)
806 btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
807 if (delayed_refs_bytes)
808 btrfs_space_info_free_bytes_may_use(fs_info, trans_rsv->space_info,
809 delayed_refs_bytes);
810 reserve_fail:
811 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
812 return ERR_PTR(ret);
813 }
814
btrfs_start_transaction(struct btrfs_root * root,unsigned int num_items)815 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
816 unsigned int num_items)
817 {
818 return start_transaction(root, num_items, TRANS_START,
819 BTRFS_RESERVE_FLUSH_ALL, true);
820 }
821
btrfs_start_transaction_fallback_global_rsv(struct btrfs_root * root,unsigned int num_items)822 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
823 struct btrfs_root *root,
824 unsigned int num_items)
825 {
826 return start_transaction(root, num_items, TRANS_START,
827 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
828 }
829
btrfs_join_transaction(struct btrfs_root * root)830 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
831 {
832 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
833 true);
834 }
835
btrfs_join_transaction_spacecache(struct btrfs_root * root)836 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
837 {
838 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
839 BTRFS_RESERVE_NO_FLUSH, true);
840 }
841
842 /*
843 * Similar to regular join but it never starts a transaction when none is
844 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
845 * This is similar to btrfs_attach_transaction() but it allows the join to
846 * happen if the transaction commit already started but it's not yet in the
847 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
848 */
btrfs_join_transaction_nostart(struct btrfs_root * root)849 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
850 {
851 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
852 BTRFS_RESERVE_NO_FLUSH, true);
853 }
854
855 /*
856 * Catch the running transaction.
857 *
858 * It is used when we want to commit the current the transaction, but
859 * don't want to start a new one.
860 *
861 * Note: If this function return -ENOENT, it just means there is no
862 * running transaction. But it is possible that the inactive transaction
863 * is still in the memory, not fully on disk. If you hope there is no
864 * inactive transaction in the fs when -ENOENT is returned, you should
865 * invoke
866 * btrfs_attach_transaction_barrier()
867 */
btrfs_attach_transaction(struct btrfs_root * root)868 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
869 {
870 return start_transaction(root, 0, TRANS_ATTACH,
871 BTRFS_RESERVE_NO_FLUSH, true);
872 }
873
874 /*
875 * Catch the running transaction.
876 *
877 * It is similar to the above function, the difference is this one
878 * will wait for all the inactive transactions until they fully
879 * complete.
880 */
881 struct btrfs_trans_handle *
btrfs_attach_transaction_barrier(struct btrfs_root * root)882 btrfs_attach_transaction_barrier(struct btrfs_root *root)
883 {
884 struct btrfs_trans_handle *trans;
885
886 trans = start_transaction(root, 0, TRANS_ATTACH,
887 BTRFS_RESERVE_NO_FLUSH, true);
888 if (trans == ERR_PTR(-ENOENT)) {
889 int ret;
890
891 ret = btrfs_wait_for_commit(root->fs_info, 0);
892 if (ret)
893 return ERR_PTR(ret);
894 }
895
896 return trans;
897 }
898
899 /* Wait for a transaction commit to reach at least the given state. */
wait_for_commit(struct btrfs_transaction * commit,const enum btrfs_trans_state min_state)900 static noinline void wait_for_commit(struct btrfs_transaction *commit,
901 const enum btrfs_trans_state min_state)
902 {
903 struct btrfs_fs_info *fs_info = commit->fs_info;
904 u64 transid = commit->transid;
905 bool put = false;
906
907 /*
908 * At the moment this function is called with min_state either being
909 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
910 */
911 if (min_state == TRANS_STATE_COMPLETED)
912 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
913 else
914 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
915
916 while (1) {
917 wait_event(commit->commit_wait, commit->state >= min_state);
918 if (put)
919 btrfs_put_transaction(commit);
920
921 if (min_state < TRANS_STATE_COMPLETED)
922 break;
923
924 /*
925 * A transaction isn't really completed until all of the
926 * previous transactions are completed, but with fsync we can
927 * end up with SUPER_COMMITTED transactions before a COMPLETED
928 * transaction. Wait for those.
929 */
930
931 spin_lock(&fs_info->trans_lock);
932 commit = list_first_entry_or_null(&fs_info->trans_list,
933 struct btrfs_transaction,
934 list);
935 if (!commit || commit->transid > transid) {
936 spin_unlock(&fs_info->trans_lock);
937 break;
938 }
939 refcount_inc(&commit->use_count);
940 put = true;
941 spin_unlock(&fs_info->trans_lock);
942 }
943 }
944
btrfs_wait_for_commit(struct btrfs_fs_info * fs_info,u64 transid)945 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
946 {
947 struct btrfs_transaction *cur_trans = NULL, *t;
948 int ret = 0;
949
950 if (transid) {
951 if (transid <= btrfs_get_last_trans_committed(fs_info))
952 goto out;
953
954 /* find specified transaction */
955 spin_lock(&fs_info->trans_lock);
956 list_for_each_entry(t, &fs_info->trans_list, list) {
957 if (t->transid == transid) {
958 cur_trans = t;
959 refcount_inc(&cur_trans->use_count);
960 ret = 0;
961 break;
962 }
963 if (t->transid > transid) {
964 ret = 0;
965 break;
966 }
967 }
968 spin_unlock(&fs_info->trans_lock);
969
970 /*
971 * The specified transaction doesn't exist, or we
972 * raced with btrfs_commit_transaction
973 */
974 if (!cur_trans) {
975 if (transid > btrfs_get_last_trans_committed(fs_info))
976 ret = -EINVAL;
977 goto out;
978 }
979 } else {
980 /* find newest transaction that is committing | committed */
981 spin_lock(&fs_info->trans_lock);
982 list_for_each_entry_reverse(t, &fs_info->trans_list,
983 list) {
984 if (t->state >= TRANS_STATE_COMMIT_START) {
985 if (t->state == TRANS_STATE_COMPLETED)
986 break;
987 cur_trans = t;
988 refcount_inc(&cur_trans->use_count);
989 break;
990 }
991 }
992 spin_unlock(&fs_info->trans_lock);
993 if (!cur_trans)
994 goto out; /* nothing committing|committed */
995 }
996
997 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
998 ret = cur_trans->aborted;
999 btrfs_put_transaction(cur_trans);
1000 out:
1001 return ret;
1002 }
1003
btrfs_throttle(struct btrfs_fs_info * fs_info)1004 void btrfs_throttle(struct btrfs_fs_info *fs_info)
1005 {
1006 wait_current_trans(fs_info);
1007 }
1008
btrfs_should_end_transaction(struct btrfs_trans_handle * trans)1009 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
1010 {
1011 struct btrfs_transaction *cur_trans = trans->transaction;
1012
1013 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
1014 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
1015 return true;
1016
1017 if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1018 return true;
1019
1020 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
1021 }
1022
btrfs_trans_release_metadata(struct btrfs_trans_handle * trans)1023 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1024
1025 {
1026 struct btrfs_fs_info *fs_info = trans->fs_info;
1027
1028 if (!trans->block_rsv) {
1029 ASSERT(!trans->bytes_reserved);
1030 ASSERT(!trans->delayed_refs_bytes_reserved);
1031 return;
1032 }
1033
1034 if (!trans->bytes_reserved) {
1035 ASSERT(!trans->delayed_refs_bytes_reserved);
1036 return;
1037 }
1038
1039 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1040 trace_btrfs_space_reservation(fs_info, "transaction",
1041 trans->transid, trans->bytes_reserved, 0);
1042 btrfs_block_rsv_release(fs_info, trans->block_rsv,
1043 trans->bytes_reserved, NULL);
1044 trans->bytes_reserved = 0;
1045
1046 if (!trans->delayed_refs_bytes_reserved)
1047 return;
1048
1049 trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1050 trans->transid,
1051 trans->delayed_refs_bytes_reserved, 0);
1052 btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1053 trans->delayed_refs_bytes_reserved, NULL);
1054 trans->delayed_refs_bytes_reserved = 0;
1055 }
1056
__btrfs_end_transaction(struct btrfs_trans_handle * trans,int throttle)1057 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1058 int throttle)
1059 {
1060 struct btrfs_fs_info *info = trans->fs_info;
1061 struct btrfs_transaction *cur_trans = trans->transaction;
1062 int ret = 0;
1063
1064 if (refcount_read(&trans->use_count) > 1) {
1065 refcount_dec(&trans->use_count);
1066 trans->block_rsv = trans->orig_rsv;
1067 return 0;
1068 }
1069
1070 btrfs_trans_release_metadata(trans);
1071 trans->block_rsv = NULL;
1072
1073 btrfs_create_pending_block_groups(trans);
1074
1075 btrfs_trans_release_chunk_metadata(trans);
1076
1077 if (trans->type & __TRANS_FREEZABLE)
1078 sb_end_intwrite(info->sb);
1079
1080 WARN_ON(cur_trans != info->running_transaction);
1081 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1082 atomic_dec(&cur_trans->num_writers);
1083 extwriter_counter_dec(cur_trans, trans->type);
1084
1085 cond_wake_up(&cur_trans->writer_wait);
1086
1087 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1088 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1089
1090 btrfs_put_transaction(cur_trans);
1091
1092 if (current->journal_info == trans)
1093 current->journal_info = NULL;
1094
1095 if (throttle)
1096 btrfs_run_delayed_iputs(info);
1097
1098 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1099 wake_up_process(info->transaction_kthread);
1100 if (TRANS_ABORTED(trans))
1101 ret = trans->aborted;
1102 else
1103 ret = -EROFS;
1104 }
1105
1106 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1107 return ret;
1108 }
1109
btrfs_end_transaction(struct btrfs_trans_handle * trans)1110 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1111 {
1112 return __btrfs_end_transaction(trans, 0);
1113 }
1114
btrfs_end_transaction_throttle(struct btrfs_trans_handle * trans)1115 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1116 {
1117 return __btrfs_end_transaction(trans, 1);
1118 }
1119
1120 /*
1121 * when btree blocks are allocated, they have some corresponding bits set for
1122 * them in one of two extent_io trees. This is used to make sure all of
1123 * those extents are sent to disk but does not wait on them
1124 */
btrfs_write_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)1125 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1126 struct extent_io_tree *dirty_pages, int mark)
1127 {
1128 int ret = 0;
1129 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1130 struct extent_state *cached_state = NULL;
1131 u64 start = 0;
1132 u64 end;
1133
1134 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1135 mark, &cached_state)) {
1136 bool wait_writeback = false;
1137
1138 ret = convert_extent_bit(dirty_pages, start, end,
1139 EXTENT_NEED_WAIT,
1140 mark, &cached_state);
1141 /*
1142 * convert_extent_bit can return -ENOMEM, which is most of the
1143 * time a temporary error. So when it happens, ignore the error
1144 * and wait for writeback of this range to finish - because we
1145 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1146 * to __btrfs_wait_marked_extents() would not know that
1147 * writeback for this range started and therefore wouldn't
1148 * wait for it to finish - we don't want to commit a
1149 * superblock that points to btree nodes/leafs for which
1150 * writeback hasn't finished yet (and without errors).
1151 * We cleanup any entries left in the io tree when committing
1152 * the transaction (through extent_io_tree_release()).
1153 */
1154 if (ret == -ENOMEM) {
1155 ret = 0;
1156 wait_writeback = true;
1157 }
1158 if (!ret)
1159 ret = filemap_fdatawrite_range(mapping, start, end);
1160 if (!ret && wait_writeback)
1161 ret = filemap_fdatawait_range(mapping, start, end);
1162 free_extent_state(cached_state);
1163 if (ret)
1164 break;
1165 cached_state = NULL;
1166 cond_resched();
1167 start = end + 1;
1168 }
1169 return ret;
1170 }
1171
1172 /*
1173 * when btree blocks are allocated, they have some corresponding bits set for
1174 * them in one of two extent_io trees. This is used to make sure all of
1175 * those extents are on disk for transaction or log commit. We wait
1176 * on all the pages and clear them from the dirty pages state tree
1177 */
__btrfs_wait_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1178 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1179 struct extent_io_tree *dirty_pages)
1180 {
1181 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1182 struct extent_state *cached_state = NULL;
1183 u64 start = 0;
1184 u64 end;
1185 int ret = 0;
1186
1187 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1188 EXTENT_NEED_WAIT, &cached_state)) {
1189 /*
1190 * Ignore -ENOMEM errors returned by clear_extent_bit().
1191 * When committing the transaction, we'll remove any entries
1192 * left in the io tree. For a log commit, we don't remove them
1193 * after committing the log because the tree can be accessed
1194 * concurrently - we do it only at transaction commit time when
1195 * it's safe to do it (through extent_io_tree_release()).
1196 */
1197 ret = clear_extent_bit(dirty_pages, start, end,
1198 EXTENT_NEED_WAIT, &cached_state);
1199 if (ret == -ENOMEM)
1200 ret = 0;
1201 if (!ret)
1202 ret = filemap_fdatawait_range(mapping, start, end);
1203 free_extent_state(cached_state);
1204 if (ret)
1205 break;
1206 cached_state = NULL;
1207 cond_resched();
1208 start = end + 1;
1209 }
1210 return ret;
1211 }
1212
btrfs_wait_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)1213 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1214 struct extent_io_tree *dirty_pages)
1215 {
1216 bool errors = false;
1217 int err;
1218
1219 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1220 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1221 errors = true;
1222
1223 if (errors && !err)
1224 err = -EIO;
1225 return err;
1226 }
1227
btrfs_wait_tree_log_extents(struct btrfs_root * log_root,int mark)1228 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1229 {
1230 struct btrfs_fs_info *fs_info = log_root->fs_info;
1231 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1232 bool errors = false;
1233 int err;
1234
1235 ASSERT(btrfs_root_id(log_root) == BTRFS_TREE_LOG_OBJECTID);
1236
1237 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1238 if ((mark & EXTENT_DIRTY) &&
1239 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1240 errors = true;
1241
1242 if ((mark & EXTENT_NEW) &&
1243 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1244 errors = true;
1245
1246 if (errors && !err)
1247 err = -EIO;
1248 return err;
1249 }
1250
1251 /*
1252 * When btree blocks are allocated the corresponding extents are marked dirty.
1253 * This function ensures such extents are persisted on disk for transaction or
1254 * log commit.
1255 *
1256 * @trans: transaction whose dirty pages we'd like to write
1257 */
btrfs_write_and_wait_transaction(struct btrfs_trans_handle * trans)1258 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1259 {
1260 int ret;
1261 int ret2;
1262 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1263 struct btrfs_fs_info *fs_info = trans->fs_info;
1264 struct blk_plug plug;
1265
1266 blk_start_plug(&plug);
1267 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1268 blk_finish_plug(&plug);
1269 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1270
1271 extent_io_tree_release(&trans->transaction->dirty_pages);
1272
1273 if (ret)
1274 return ret;
1275 else if (ret2)
1276 return ret2;
1277 else
1278 return 0;
1279 }
1280
1281 /*
1282 * this is used to update the root pointer in the tree of tree roots.
1283 *
1284 * But, in the case of the extent allocation tree, updating the root
1285 * pointer may allocate blocks which may change the root of the extent
1286 * allocation tree.
1287 *
1288 * So, this loops and repeats and makes sure the cowonly root didn't
1289 * change while the root pointer was being updated in the metadata.
1290 */
update_cowonly_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1291 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1292 struct btrfs_root *root)
1293 {
1294 int ret;
1295 u64 old_root_bytenr;
1296 u64 old_root_used;
1297 struct btrfs_fs_info *fs_info = root->fs_info;
1298 struct btrfs_root *tree_root = fs_info->tree_root;
1299
1300 old_root_used = btrfs_root_used(&root->root_item);
1301
1302 while (1) {
1303 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1304 if (old_root_bytenr == root->node->start &&
1305 old_root_used == btrfs_root_used(&root->root_item))
1306 break;
1307
1308 btrfs_set_root_node(&root->root_item, root->node);
1309 ret = btrfs_update_root(trans, tree_root,
1310 &root->root_key,
1311 &root->root_item);
1312 if (ret)
1313 return ret;
1314
1315 old_root_used = btrfs_root_used(&root->root_item);
1316 }
1317
1318 return 0;
1319 }
1320
1321 /*
1322 * update all the cowonly tree roots on disk
1323 *
1324 * The error handling in this function may not be obvious. Any of the
1325 * failures will cause the file system to go offline. We still need
1326 * to clean up the delayed refs.
1327 */
commit_cowonly_roots(struct btrfs_trans_handle * trans)1328 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1329 {
1330 struct btrfs_fs_info *fs_info = trans->fs_info;
1331 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1332 struct list_head *io_bgs = &trans->transaction->io_bgs;
1333 struct list_head *next;
1334 struct extent_buffer *eb;
1335 int ret;
1336
1337 /*
1338 * At this point no one can be using this transaction to modify any tree
1339 * and no one can start another transaction to modify any tree either.
1340 */
1341 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1342
1343 eb = btrfs_lock_root_node(fs_info->tree_root);
1344 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1345 0, &eb, BTRFS_NESTING_COW);
1346 btrfs_tree_unlock(eb);
1347 free_extent_buffer(eb);
1348
1349 if (ret)
1350 return ret;
1351
1352 ret = btrfs_run_dev_stats(trans);
1353 if (ret)
1354 return ret;
1355 ret = btrfs_run_dev_replace(trans);
1356 if (ret)
1357 return ret;
1358 ret = btrfs_run_qgroups(trans);
1359 if (ret)
1360 return ret;
1361
1362 ret = btrfs_setup_space_cache(trans);
1363 if (ret)
1364 return ret;
1365
1366 again:
1367 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1368 struct btrfs_root *root;
1369 next = fs_info->dirty_cowonly_roots.next;
1370 list_del_init(next);
1371 root = list_entry(next, struct btrfs_root, dirty_list);
1372 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1373
1374 list_add_tail(&root->dirty_list,
1375 &trans->transaction->switch_commits);
1376 ret = update_cowonly_root(trans, root);
1377 if (ret)
1378 return ret;
1379 }
1380
1381 /* Now flush any delayed refs generated by updating all of the roots */
1382 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1383 if (ret)
1384 return ret;
1385
1386 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1387 ret = btrfs_write_dirty_block_groups(trans);
1388 if (ret)
1389 return ret;
1390
1391 /*
1392 * We're writing the dirty block groups, which could generate
1393 * delayed refs, which could generate more dirty block groups,
1394 * so we want to keep this flushing in this loop to make sure
1395 * everything gets run.
1396 */
1397 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1398 if (ret)
1399 return ret;
1400 }
1401
1402 if (!list_empty(&fs_info->dirty_cowonly_roots))
1403 goto again;
1404
1405 /* Update dev-replace pointer once everything is committed */
1406 fs_info->dev_replace.committed_cursor_left =
1407 fs_info->dev_replace.cursor_left_last_write_of_item;
1408
1409 return 0;
1410 }
1411
1412 /*
1413 * If we had a pending drop we need to see if there are any others left in our
1414 * dead roots list, and if not clear our bit and wake any waiters.
1415 */
btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info * fs_info)1416 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1417 {
1418 /*
1419 * We put the drop in progress roots at the front of the list, so if the
1420 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1421 * up.
1422 */
1423 spin_lock(&fs_info->trans_lock);
1424 if (!list_empty(&fs_info->dead_roots)) {
1425 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1426 struct btrfs_root,
1427 root_list);
1428 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1429 spin_unlock(&fs_info->trans_lock);
1430 return;
1431 }
1432 }
1433 spin_unlock(&fs_info->trans_lock);
1434
1435 btrfs_wake_unfinished_drop(fs_info);
1436 }
1437
1438 /*
1439 * dead roots are old snapshots that need to be deleted. This allocates
1440 * a dirty root struct and adds it into the list of dead roots that need to
1441 * be deleted
1442 */
btrfs_add_dead_root(struct btrfs_root * root)1443 void btrfs_add_dead_root(struct btrfs_root *root)
1444 {
1445 struct btrfs_fs_info *fs_info = root->fs_info;
1446
1447 spin_lock(&fs_info->trans_lock);
1448 if (list_empty(&root->root_list)) {
1449 btrfs_grab_root(root);
1450
1451 /* We want to process the partially complete drops first. */
1452 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1453 list_add(&root->root_list, &fs_info->dead_roots);
1454 else
1455 list_add_tail(&root->root_list, &fs_info->dead_roots);
1456 }
1457 spin_unlock(&fs_info->trans_lock);
1458 }
1459
1460 /*
1461 * Update each subvolume root and its relocation root, if it exists, in the tree
1462 * of tree roots. Also free log roots if they exist.
1463 */
commit_fs_roots(struct btrfs_trans_handle * trans)1464 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1465 {
1466 struct btrfs_fs_info *fs_info = trans->fs_info;
1467 struct btrfs_root *gang[8];
1468 int i;
1469 int ret;
1470
1471 /*
1472 * At this point no one can be using this transaction to modify any tree
1473 * and no one can start another transaction to modify any tree either.
1474 */
1475 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1476
1477 spin_lock(&fs_info->fs_roots_radix_lock);
1478 while (1) {
1479 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1480 (void **)gang, 0,
1481 ARRAY_SIZE(gang),
1482 BTRFS_ROOT_TRANS_TAG);
1483 if (ret == 0)
1484 break;
1485 for (i = 0; i < ret; i++) {
1486 struct btrfs_root *root = gang[i];
1487 int ret2;
1488
1489 /*
1490 * At this point we can neither have tasks logging inodes
1491 * from a root nor trying to commit a log tree.
1492 */
1493 ASSERT(atomic_read(&root->log_writers) == 0);
1494 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1495 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1496
1497 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1498 (unsigned long)btrfs_root_id(root),
1499 BTRFS_ROOT_TRANS_TAG);
1500 btrfs_qgroup_free_meta_all_pertrans(root);
1501 spin_unlock(&fs_info->fs_roots_radix_lock);
1502
1503 btrfs_free_log(trans, root);
1504 ret2 = btrfs_update_reloc_root(trans, root);
1505 if (ret2)
1506 return ret2;
1507
1508 /* see comments in should_cow_block() */
1509 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1510 smp_mb__after_atomic();
1511
1512 if (root->commit_root != root->node) {
1513 list_add_tail(&root->dirty_list,
1514 &trans->transaction->switch_commits);
1515 btrfs_set_root_node(&root->root_item,
1516 root->node);
1517 }
1518
1519 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1520 &root->root_key,
1521 &root->root_item);
1522 if (ret2)
1523 return ret2;
1524 spin_lock(&fs_info->fs_roots_radix_lock);
1525 }
1526 }
1527 spin_unlock(&fs_info->fs_roots_radix_lock);
1528 return 0;
1529 }
1530
1531 /*
1532 * Do all special snapshot related qgroup dirty hack.
1533 *
1534 * Will do all needed qgroup inherit and dirty hack like switch commit
1535 * roots inside one transaction and write all btree into disk, to make
1536 * qgroup works.
1537 */
qgroup_account_snapshot(struct btrfs_trans_handle * trans,struct btrfs_root * src,struct btrfs_root * parent,struct btrfs_qgroup_inherit * inherit,u64 dst_objectid)1538 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1539 struct btrfs_root *src,
1540 struct btrfs_root *parent,
1541 struct btrfs_qgroup_inherit *inherit,
1542 u64 dst_objectid)
1543 {
1544 struct btrfs_fs_info *fs_info = src->fs_info;
1545 int ret;
1546
1547 /*
1548 * Save some performance in the case that qgroups are not enabled. If
1549 * this check races with the ioctl, rescan will kick in anyway.
1550 */
1551 if (!btrfs_qgroup_full_accounting(fs_info))
1552 return 0;
1553
1554 /*
1555 * Ensure dirty @src will be committed. Or, after coming
1556 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1557 * recorded root will never be updated again, causing an outdated root
1558 * item.
1559 */
1560 ret = record_root_in_trans(trans, src, 1);
1561 if (ret)
1562 return ret;
1563
1564 /*
1565 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1566 * src root, so we must run the delayed refs here.
1567 *
1568 * However this isn't particularly fool proof, because there's no
1569 * synchronization keeping us from changing the tree after this point
1570 * before we do the qgroup_inherit, or even from making changes while
1571 * we're doing the qgroup_inherit. But that's a problem for the future,
1572 * for now flush the delayed refs to narrow the race window where the
1573 * qgroup counters could end up wrong.
1574 */
1575 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1576 if (ret) {
1577 btrfs_abort_transaction(trans, ret);
1578 return ret;
1579 }
1580
1581 ret = commit_fs_roots(trans);
1582 if (ret)
1583 goto out;
1584 ret = btrfs_qgroup_account_extents(trans);
1585 if (ret < 0)
1586 goto out;
1587
1588 /* Now qgroup are all updated, we can inherit it to new qgroups */
1589 ret = btrfs_qgroup_inherit(trans, btrfs_root_id(src), dst_objectid,
1590 btrfs_root_id(parent), inherit);
1591 if (ret < 0)
1592 goto out;
1593
1594 /*
1595 * Now we do a simplified commit transaction, which will:
1596 * 1) commit all subvolume and extent tree
1597 * To ensure all subvolume and extent tree have a valid
1598 * commit_root to accounting later insert_dir_item()
1599 * 2) write all btree blocks onto disk
1600 * This is to make sure later btree modification will be cowed
1601 * Or commit_root can be populated and cause wrong qgroup numbers
1602 * In this simplified commit, we don't really care about other trees
1603 * like chunk and root tree, as they won't affect qgroup.
1604 * And we don't write super to avoid half committed status.
1605 */
1606 ret = commit_cowonly_roots(trans);
1607 if (ret)
1608 goto out;
1609 switch_commit_roots(trans);
1610 ret = btrfs_write_and_wait_transaction(trans);
1611 if (ret)
1612 btrfs_handle_fs_error(fs_info, ret,
1613 "Error while writing out transaction for qgroup");
1614
1615 out:
1616 /*
1617 * Force parent root to be updated, as we recorded it before so its
1618 * last_trans == cur_transid.
1619 * Or it won't be committed again onto disk after later
1620 * insert_dir_item()
1621 */
1622 if (!ret)
1623 ret = record_root_in_trans(trans, parent, 1);
1624 return ret;
1625 }
1626
1627 /*
1628 * new snapshots need to be created at a very specific time in the
1629 * transaction commit. This does the actual creation.
1630 *
1631 * Note:
1632 * If the error which may affect the commitment of the current transaction
1633 * happens, we should return the error number. If the error which just affect
1634 * the creation of the pending snapshots, just return 0.
1635 */
create_pending_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)1636 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1637 struct btrfs_pending_snapshot *pending)
1638 {
1639
1640 struct btrfs_fs_info *fs_info = trans->fs_info;
1641 struct btrfs_key key;
1642 struct btrfs_root_item *new_root_item;
1643 struct btrfs_root *tree_root = fs_info->tree_root;
1644 struct btrfs_root *root = pending->root;
1645 struct btrfs_root *parent_root;
1646 struct btrfs_block_rsv *rsv;
1647 struct inode *parent_inode = &pending->dir->vfs_inode;
1648 struct btrfs_path *path;
1649 struct btrfs_dir_item *dir_item;
1650 struct extent_buffer *tmp;
1651 struct extent_buffer *old;
1652 struct timespec64 cur_time;
1653 int ret = 0;
1654 u64 to_reserve = 0;
1655 u64 index = 0;
1656 u64 objectid;
1657 u64 root_flags;
1658 unsigned int nofs_flags;
1659 struct fscrypt_name fname;
1660
1661 ASSERT(pending->path);
1662 path = pending->path;
1663
1664 ASSERT(pending->root_item);
1665 new_root_item = pending->root_item;
1666
1667 /*
1668 * We're inside a transaction and must make sure that any potential
1669 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1670 * filesystem.
1671 */
1672 nofs_flags = memalloc_nofs_save();
1673 pending->error = fscrypt_setup_filename(parent_inode,
1674 &pending->dentry->d_name, 0,
1675 &fname);
1676 memalloc_nofs_restore(nofs_flags);
1677 if (pending->error)
1678 goto free_pending;
1679
1680 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1681 if (pending->error)
1682 goto free_fname;
1683
1684 /*
1685 * Make qgroup to skip current new snapshot's qgroupid, as it is
1686 * accounted by later btrfs_qgroup_inherit().
1687 */
1688 btrfs_set_skip_qgroup(trans, objectid);
1689
1690 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1691
1692 if (to_reserve > 0) {
1693 pending->error = btrfs_block_rsv_add(fs_info,
1694 &pending->block_rsv,
1695 to_reserve,
1696 BTRFS_RESERVE_NO_FLUSH);
1697 if (pending->error)
1698 goto clear_skip_qgroup;
1699 }
1700
1701 key.objectid = objectid;
1702 key.offset = (u64)-1;
1703 key.type = BTRFS_ROOT_ITEM_KEY;
1704
1705 rsv = trans->block_rsv;
1706 trans->block_rsv = &pending->block_rsv;
1707 trans->bytes_reserved = trans->block_rsv->reserved;
1708 trace_btrfs_space_reservation(fs_info, "transaction",
1709 trans->transid,
1710 trans->bytes_reserved, 1);
1711 parent_root = BTRFS_I(parent_inode)->root;
1712 ret = record_root_in_trans(trans, parent_root, 0);
1713 if (ret)
1714 goto fail;
1715 cur_time = current_time(parent_inode);
1716
1717 /*
1718 * insert the directory item
1719 */
1720 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1721 if (ret) {
1722 btrfs_abort_transaction(trans, ret);
1723 goto fail;
1724 }
1725
1726 /* check if there is a file/dir which has the same name. */
1727 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1728 btrfs_ino(BTRFS_I(parent_inode)),
1729 &fname.disk_name, 0);
1730 if (dir_item != NULL && !IS_ERR(dir_item)) {
1731 pending->error = -EEXIST;
1732 goto dir_item_existed;
1733 } else if (IS_ERR(dir_item)) {
1734 ret = PTR_ERR(dir_item);
1735 btrfs_abort_transaction(trans, ret);
1736 goto fail;
1737 }
1738 btrfs_release_path(path);
1739
1740 ret = btrfs_create_qgroup(trans, objectid);
1741 if (ret && ret != -EEXIST) {
1742 if (ret != -ENOTCONN || btrfs_qgroup_enabled(fs_info)) {
1743 btrfs_abort_transaction(trans, ret);
1744 goto fail;
1745 }
1746 }
1747
1748 /*
1749 * pull in the delayed directory update
1750 * and the delayed inode item
1751 * otherwise we corrupt the FS during
1752 * snapshot
1753 */
1754 ret = btrfs_run_delayed_items(trans);
1755 if (ret) { /* Transaction aborted */
1756 btrfs_abort_transaction(trans, ret);
1757 goto fail;
1758 }
1759
1760 ret = record_root_in_trans(trans, root, 0);
1761 if (ret) {
1762 btrfs_abort_transaction(trans, ret);
1763 goto fail;
1764 }
1765 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1766 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1767 btrfs_check_and_init_root_item(new_root_item);
1768
1769 root_flags = btrfs_root_flags(new_root_item);
1770 if (pending->readonly)
1771 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1772 else
1773 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1774 btrfs_set_root_flags(new_root_item, root_flags);
1775
1776 btrfs_set_root_generation_v2(new_root_item,
1777 trans->transid);
1778 generate_random_guid(new_root_item->uuid);
1779 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1780 BTRFS_UUID_SIZE);
1781 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1782 memset(new_root_item->received_uuid, 0,
1783 sizeof(new_root_item->received_uuid));
1784 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1785 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1786 btrfs_set_root_stransid(new_root_item, 0);
1787 btrfs_set_root_rtransid(new_root_item, 0);
1788 }
1789 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1790 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1791 btrfs_set_root_otransid(new_root_item, trans->transid);
1792
1793 old = btrfs_lock_root_node(root);
1794 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1795 BTRFS_NESTING_COW);
1796 if (ret) {
1797 btrfs_tree_unlock(old);
1798 free_extent_buffer(old);
1799 btrfs_abort_transaction(trans, ret);
1800 goto fail;
1801 }
1802
1803 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1804 /* clean up in any case */
1805 btrfs_tree_unlock(old);
1806 free_extent_buffer(old);
1807 if (ret) {
1808 btrfs_abort_transaction(trans, ret);
1809 goto fail;
1810 }
1811 /* see comments in should_cow_block() */
1812 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1813 smp_wmb();
1814
1815 btrfs_set_root_node(new_root_item, tmp);
1816 /* record when the snapshot was created in key.offset */
1817 key.offset = trans->transid;
1818 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1819 btrfs_tree_unlock(tmp);
1820 free_extent_buffer(tmp);
1821 if (ret) {
1822 btrfs_abort_transaction(trans, ret);
1823 goto fail;
1824 }
1825
1826 /*
1827 * insert root back/forward references
1828 */
1829 ret = btrfs_add_root_ref(trans, objectid,
1830 btrfs_root_id(parent_root),
1831 btrfs_ino(BTRFS_I(parent_inode)), index,
1832 &fname.disk_name);
1833 if (ret) {
1834 btrfs_abort_transaction(trans, ret);
1835 goto fail;
1836 }
1837
1838 key.offset = (u64)-1;
1839 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev);
1840 if (IS_ERR(pending->snap)) {
1841 ret = PTR_ERR(pending->snap);
1842 pending->snap = NULL;
1843 btrfs_abort_transaction(trans, ret);
1844 goto fail;
1845 }
1846
1847 ret = btrfs_reloc_post_snapshot(trans, pending);
1848 if (ret) {
1849 btrfs_abort_transaction(trans, ret);
1850 goto fail;
1851 }
1852
1853 /*
1854 * Do special qgroup accounting for snapshot, as we do some qgroup
1855 * snapshot hack to do fast snapshot.
1856 * To co-operate with that hack, we do hack again.
1857 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1858 */
1859 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1860 ret = qgroup_account_snapshot(trans, root, parent_root,
1861 pending->inherit, objectid);
1862 else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1863 ret = btrfs_qgroup_inherit(trans, btrfs_root_id(root), objectid,
1864 btrfs_root_id(parent_root), pending->inherit);
1865 if (ret < 0)
1866 goto fail;
1867
1868 ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1869 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1870 index);
1871 if (ret) {
1872 btrfs_abort_transaction(trans, ret);
1873 goto fail;
1874 }
1875
1876 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1877 fname.disk_name.len * 2);
1878 inode_set_mtime_to_ts(parent_inode,
1879 inode_set_ctime_current(parent_inode));
1880 ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode));
1881 if (ret) {
1882 btrfs_abort_transaction(trans, ret);
1883 goto fail;
1884 }
1885 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1886 BTRFS_UUID_KEY_SUBVOL,
1887 objectid);
1888 if (ret) {
1889 btrfs_abort_transaction(trans, ret);
1890 goto fail;
1891 }
1892 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1893 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1894 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1895 objectid);
1896 if (ret && ret != -EEXIST) {
1897 btrfs_abort_transaction(trans, ret);
1898 goto fail;
1899 }
1900 }
1901
1902 fail:
1903 pending->error = ret;
1904 dir_item_existed:
1905 trans->block_rsv = rsv;
1906 trans->bytes_reserved = 0;
1907 clear_skip_qgroup:
1908 btrfs_clear_skip_qgroup(trans);
1909 free_fname:
1910 fscrypt_free_filename(&fname);
1911 free_pending:
1912 kfree(new_root_item);
1913 pending->root_item = NULL;
1914 btrfs_free_path(path);
1915 pending->path = NULL;
1916
1917 return ret;
1918 }
1919
1920 /*
1921 * create all the snapshots we've scheduled for creation
1922 */
create_pending_snapshots(struct btrfs_trans_handle * trans)1923 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1924 {
1925 struct btrfs_pending_snapshot *pending, *next;
1926 struct list_head *head = &trans->transaction->pending_snapshots;
1927 int ret = 0;
1928
1929 list_for_each_entry_safe(pending, next, head, list) {
1930 list_del(&pending->list);
1931 ret = create_pending_snapshot(trans, pending);
1932 if (ret)
1933 break;
1934 }
1935 return ret;
1936 }
1937
update_super_roots(struct btrfs_fs_info * fs_info)1938 static void update_super_roots(struct btrfs_fs_info *fs_info)
1939 {
1940 struct btrfs_root_item *root_item;
1941 struct btrfs_super_block *super;
1942
1943 super = fs_info->super_copy;
1944
1945 root_item = &fs_info->chunk_root->root_item;
1946 super->chunk_root = root_item->bytenr;
1947 super->chunk_root_generation = root_item->generation;
1948 super->chunk_root_level = root_item->level;
1949
1950 root_item = &fs_info->tree_root->root_item;
1951 super->root = root_item->bytenr;
1952 super->generation = root_item->generation;
1953 super->root_level = root_item->level;
1954 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1955 super->cache_generation = root_item->generation;
1956 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1957 super->cache_generation = 0;
1958 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1959 super->uuid_tree_generation = root_item->generation;
1960 }
1961
btrfs_transaction_blocked(struct btrfs_fs_info * info)1962 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1963 {
1964 struct btrfs_transaction *trans;
1965 int ret = 0;
1966
1967 spin_lock(&info->trans_lock);
1968 trans = info->running_transaction;
1969 if (trans)
1970 ret = is_transaction_blocked(trans);
1971 spin_unlock(&info->trans_lock);
1972 return ret;
1973 }
1974
btrfs_commit_transaction_async(struct btrfs_trans_handle * trans)1975 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1976 {
1977 struct btrfs_fs_info *fs_info = trans->fs_info;
1978 struct btrfs_transaction *cur_trans;
1979
1980 /* Kick the transaction kthread. */
1981 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1982 wake_up_process(fs_info->transaction_kthread);
1983
1984 /* take transaction reference */
1985 cur_trans = trans->transaction;
1986 refcount_inc(&cur_trans->use_count);
1987
1988 btrfs_end_transaction(trans);
1989
1990 /*
1991 * Wait for the current transaction commit to start and block
1992 * subsequent transaction joins
1993 */
1994 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
1995 wait_event(fs_info->transaction_blocked_wait,
1996 cur_trans->state >= TRANS_STATE_COMMIT_START ||
1997 TRANS_ABORTED(cur_trans));
1998 btrfs_put_transaction(cur_trans);
1999 }
2000
2001 /*
2002 * If there is a running transaction commit it or if it's already committing,
2003 * wait for its commit to complete. Does not start and commit a new transaction
2004 * if there isn't any running.
2005 */
btrfs_commit_current_transaction(struct btrfs_root * root)2006 int btrfs_commit_current_transaction(struct btrfs_root *root)
2007 {
2008 struct btrfs_trans_handle *trans;
2009
2010 trans = btrfs_attach_transaction_barrier(root);
2011 if (IS_ERR(trans)) {
2012 int ret = PTR_ERR(trans);
2013
2014 return (ret == -ENOENT) ? 0 : ret;
2015 }
2016
2017 return btrfs_commit_transaction(trans);
2018 }
2019
cleanup_transaction(struct btrfs_trans_handle * trans,int err)2020 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
2021 {
2022 struct btrfs_fs_info *fs_info = trans->fs_info;
2023 struct btrfs_transaction *cur_trans = trans->transaction;
2024
2025 WARN_ON(refcount_read(&trans->use_count) > 1);
2026
2027 btrfs_abort_transaction(trans, err);
2028
2029 spin_lock(&fs_info->trans_lock);
2030
2031 /*
2032 * If the transaction is removed from the list, it means this
2033 * transaction has been committed successfully, so it is impossible
2034 * to call the cleanup function.
2035 */
2036 BUG_ON(list_empty(&cur_trans->list));
2037
2038 if (cur_trans == fs_info->running_transaction) {
2039 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2040 spin_unlock(&fs_info->trans_lock);
2041
2042 /*
2043 * The thread has already released the lockdep map as reader
2044 * already in btrfs_commit_transaction().
2045 */
2046 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2047 wait_event(cur_trans->writer_wait,
2048 atomic_read(&cur_trans->num_writers) == 1);
2049
2050 spin_lock(&fs_info->trans_lock);
2051 }
2052
2053 /*
2054 * Now that we know no one else is still using the transaction we can
2055 * remove the transaction from the list of transactions. This avoids
2056 * the transaction kthread from cleaning up the transaction while some
2057 * other task is still using it, which could result in a use-after-free
2058 * on things like log trees, as it forces the transaction kthread to
2059 * wait for this transaction to be cleaned up by us.
2060 */
2061 list_del_init(&cur_trans->list);
2062
2063 spin_unlock(&fs_info->trans_lock);
2064
2065 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2066
2067 spin_lock(&fs_info->trans_lock);
2068 if (cur_trans == fs_info->running_transaction)
2069 fs_info->running_transaction = NULL;
2070 spin_unlock(&fs_info->trans_lock);
2071
2072 if (trans->type & __TRANS_FREEZABLE)
2073 sb_end_intwrite(fs_info->sb);
2074 btrfs_put_transaction(cur_trans);
2075 btrfs_put_transaction(cur_trans);
2076
2077 trace_btrfs_transaction_commit(fs_info);
2078
2079 if (current->journal_info == trans)
2080 current->journal_info = NULL;
2081
2082 /*
2083 * If relocation is running, we can't cancel scrub because that will
2084 * result in a deadlock. Before relocating a block group, relocation
2085 * pauses scrub, then starts and commits a transaction before unpausing
2086 * scrub. If the transaction commit is being done by the relocation
2087 * task or triggered by another task and the relocation task is waiting
2088 * for the commit, and we end up here due to an error in the commit
2089 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2090 * asking for scrub to stop while having it asked to be paused higher
2091 * above in relocation code.
2092 */
2093 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2094 btrfs_scrub_cancel(fs_info);
2095
2096 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2097 }
2098
2099 /*
2100 * Release reserved delayed ref space of all pending block groups of the
2101 * transaction and remove them from the list
2102 */
btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle * trans)2103 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2104 {
2105 struct btrfs_fs_info *fs_info = trans->fs_info;
2106 struct btrfs_block_group *block_group, *tmp;
2107
2108 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2109 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2110 /*
2111 * Not strictly necessary to lock, as no other task will be using a
2112 * block_group on the new_bgs list during a transaction abort.
2113 */
2114 spin_lock(&fs_info->unused_bgs_lock);
2115 list_del_init(&block_group->bg_list);
2116 btrfs_put_block_group(block_group);
2117 spin_unlock(&fs_info->unused_bgs_lock);
2118 }
2119 }
2120
btrfs_start_delalloc_flush(struct btrfs_fs_info * fs_info)2121 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2122 {
2123 /*
2124 * We use try_to_writeback_inodes_sb() here because if we used
2125 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2126 * Currently are holding the fs freeze lock, if we do an async flush
2127 * we'll do btrfs_join_transaction() and deadlock because we need to
2128 * wait for the fs freeze lock. Using the direct flushing we benefit
2129 * from already being in a transaction and our join_transaction doesn't
2130 * have to re-take the fs freeze lock.
2131 *
2132 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2133 * if it can read lock sb->s_umount. It will always be able to lock it,
2134 * except when the filesystem is being unmounted or being frozen, but in
2135 * those cases sync_filesystem() is called, which results in calling
2136 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2137 * Note that we don't call writeback_inodes_sb() directly, because it
2138 * will emit a warning if sb->s_umount is not locked.
2139 */
2140 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2141 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2142 return 0;
2143 }
2144
btrfs_wait_delalloc_flush(struct btrfs_fs_info * fs_info)2145 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2146 {
2147 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2148 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
2149 }
2150
2151 /*
2152 * Add a pending snapshot associated with the given transaction handle to the
2153 * respective handle. This must be called after the transaction commit started
2154 * and while holding fs_info->trans_lock.
2155 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2156 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2157 * returns an error.
2158 */
add_pending_snapshot(struct btrfs_trans_handle * trans)2159 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2160 {
2161 struct btrfs_transaction *cur_trans = trans->transaction;
2162
2163 if (!trans->pending_snapshot)
2164 return;
2165
2166 lockdep_assert_held(&trans->fs_info->trans_lock);
2167 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2168
2169 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2170 }
2171
update_commit_stats(struct btrfs_fs_info * fs_info,ktime_t interval)2172 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2173 {
2174 fs_info->commit_stats.commit_count++;
2175 fs_info->commit_stats.last_commit_dur = interval;
2176 fs_info->commit_stats.max_commit_dur =
2177 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2178 fs_info->commit_stats.total_commit_dur += interval;
2179 }
2180
btrfs_commit_transaction(struct btrfs_trans_handle * trans)2181 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2182 {
2183 struct btrfs_fs_info *fs_info = trans->fs_info;
2184 struct btrfs_transaction *cur_trans = trans->transaction;
2185 struct btrfs_transaction *prev_trans = NULL;
2186 int ret;
2187 ktime_t start_time;
2188 ktime_t interval;
2189
2190 ASSERT(refcount_read(&trans->use_count) == 1);
2191 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2192
2193 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2194
2195 /* Stop the commit early if ->aborted is set */
2196 if (TRANS_ABORTED(cur_trans)) {
2197 ret = cur_trans->aborted;
2198 goto lockdep_trans_commit_start_release;
2199 }
2200
2201 btrfs_trans_release_metadata(trans);
2202 trans->block_rsv = NULL;
2203
2204 /*
2205 * We only want one transaction commit doing the flushing so we do not
2206 * waste a bunch of time on lock contention on the extent root node.
2207 */
2208 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2209 &cur_trans->delayed_refs.flags)) {
2210 /*
2211 * Make a pass through all the delayed refs we have so far.
2212 * Any running threads may add more while we are here.
2213 */
2214 ret = btrfs_run_delayed_refs(trans, 0);
2215 if (ret)
2216 goto lockdep_trans_commit_start_release;
2217 }
2218
2219 btrfs_create_pending_block_groups(trans);
2220
2221 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2222 int run_it = 0;
2223
2224 /* this mutex is also taken before trying to set
2225 * block groups readonly. We need to make sure
2226 * that nobody has set a block group readonly
2227 * after a extents from that block group have been
2228 * allocated for cache files. btrfs_set_block_group_ro
2229 * will wait for the transaction to commit if it
2230 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2231 *
2232 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2233 * only one process starts all the block group IO. It wouldn't
2234 * hurt to have more than one go through, but there's no
2235 * real advantage to it either.
2236 */
2237 mutex_lock(&fs_info->ro_block_group_mutex);
2238 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2239 &cur_trans->flags))
2240 run_it = 1;
2241 mutex_unlock(&fs_info->ro_block_group_mutex);
2242
2243 if (run_it) {
2244 ret = btrfs_start_dirty_block_groups(trans);
2245 if (ret)
2246 goto lockdep_trans_commit_start_release;
2247 }
2248 }
2249
2250 spin_lock(&fs_info->trans_lock);
2251 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2252 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2253
2254 add_pending_snapshot(trans);
2255
2256 spin_unlock(&fs_info->trans_lock);
2257 refcount_inc(&cur_trans->use_count);
2258
2259 if (trans->in_fsync)
2260 want_state = TRANS_STATE_SUPER_COMMITTED;
2261
2262 btrfs_trans_state_lockdep_release(fs_info,
2263 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2264 ret = btrfs_end_transaction(trans);
2265 wait_for_commit(cur_trans, want_state);
2266
2267 if (TRANS_ABORTED(cur_trans))
2268 ret = cur_trans->aborted;
2269
2270 btrfs_put_transaction(cur_trans);
2271
2272 return ret;
2273 }
2274
2275 cur_trans->state = TRANS_STATE_COMMIT_PREP;
2276 wake_up(&fs_info->transaction_blocked_wait);
2277 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2278
2279 if (cur_trans->list.prev != &fs_info->trans_list) {
2280 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2281
2282 if (trans->in_fsync)
2283 want_state = TRANS_STATE_SUPER_COMMITTED;
2284
2285 prev_trans = list_entry(cur_trans->list.prev,
2286 struct btrfs_transaction, list);
2287 if (prev_trans->state < want_state) {
2288 refcount_inc(&prev_trans->use_count);
2289 spin_unlock(&fs_info->trans_lock);
2290
2291 wait_for_commit(prev_trans, want_state);
2292
2293 ret = READ_ONCE(prev_trans->aborted);
2294
2295 btrfs_put_transaction(prev_trans);
2296 if (ret)
2297 goto lockdep_release;
2298 spin_lock(&fs_info->trans_lock);
2299 }
2300 } else {
2301 /*
2302 * The previous transaction was aborted and was already removed
2303 * from the list of transactions at fs_info->trans_list. So we
2304 * abort to prevent writing a new superblock that reflects a
2305 * corrupt state (pointing to trees with unwritten nodes/leafs).
2306 */
2307 if (BTRFS_FS_ERROR(fs_info)) {
2308 spin_unlock(&fs_info->trans_lock);
2309 ret = -EROFS;
2310 goto lockdep_release;
2311 }
2312 }
2313
2314 cur_trans->state = TRANS_STATE_COMMIT_START;
2315 wake_up(&fs_info->transaction_blocked_wait);
2316 spin_unlock(&fs_info->trans_lock);
2317
2318 /*
2319 * Get the time spent on the work done by the commit thread and not
2320 * the time spent waiting on a previous commit
2321 */
2322 start_time = ktime_get_ns();
2323
2324 extwriter_counter_dec(cur_trans, trans->type);
2325
2326 ret = btrfs_start_delalloc_flush(fs_info);
2327 if (ret)
2328 goto lockdep_release;
2329
2330 ret = btrfs_run_delayed_items(trans);
2331 if (ret)
2332 goto lockdep_release;
2333
2334 /*
2335 * The thread has started/joined the transaction thus it holds the
2336 * lockdep map as a reader. It has to release it before acquiring the
2337 * lockdep map as a writer.
2338 */
2339 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2340 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2341 wait_event(cur_trans->writer_wait,
2342 extwriter_counter_read(cur_trans) == 0);
2343
2344 /* some pending stuffs might be added after the previous flush. */
2345 ret = btrfs_run_delayed_items(trans);
2346 if (ret) {
2347 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2348 goto cleanup_transaction;
2349 }
2350
2351 btrfs_wait_delalloc_flush(fs_info);
2352
2353 /*
2354 * Wait for all ordered extents started by a fast fsync that joined this
2355 * transaction. Otherwise if this transaction commits before the ordered
2356 * extents complete we lose logged data after a power failure.
2357 */
2358 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2359 wait_event(cur_trans->pending_wait,
2360 atomic_read(&cur_trans->pending_ordered) == 0);
2361
2362 btrfs_scrub_pause(fs_info);
2363 /*
2364 * Ok now we need to make sure to block out any other joins while we
2365 * commit the transaction. We could have started a join before setting
2366 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2367 */
2368 spin_lock(&fs_info->trans_lock);
2369 add_pending_snapshot(trans);
2370 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2371 spin_unlock(&fs_info->trans_lock);
2372
2373 /*
2374 * The thread has started/joined the transaction thus it holds the
2375 * lockdep map as a reader. It has to release it before acquiring the
2376 * lockdep map as a writer.
2377 */
2378 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2379 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2380 wait_event(cur_trans->writer_wait,
2381 atomic_read(&cur_trans->num_writers) == 1);
2382
2383 /*
2384 * Make lockdep happy by acquiring the state locks after
2385 * btrfs_trans_num_writers is released. If we acquired the state locks
2386 * before releasing the btrfs_trans_num_writers lock then lockdep would
2387 * complain because we did not follow the reverse order unlocking rule.
2388 */
2389 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2390 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2391 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2392
2393 /*
2394 * We've started the commit, clear the flag in case we were triggered to
2395 * do an async commit but somebody else started before the transaction
2396 * kthread could do the work.
2397 */
2398 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2399
2400 if (TRANS_ABORTED(cur_trans)) {
2401 ret = cur_trans->aborted;
2402 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2403 goto scrub_continue;
2404 }
2405 /*
2406 * the reloc mutex makes sure that we stop
2407 * the balancing code from coming in and moving
2408 * extents around in the middle of the commit
2409 */
2410 mutex_lock(&fs_info->reloc_mutex);
2411
2412 /*
2413 * We needn't worry about the delayed items because we will
2414 * deal with them in create_pending_snapshot(), which is the
2415 * core function of the snapshot creation.
2416 */
2417 ret = create_pending_snapshots(trans);
2418 if (ret)
2419 goto unlock_reloc;
2420
2421 /*
2422 * We insert the dir indexes of the snapshots and update the inode
2423 * of the snapshots' parents after the snapshot creation, so there
2424 * are some delayed items which are not dealt with. Now deal with
2425 * them.
2426 *
2427 * We needn't worry that this operation will corrupt the snapshots,
2428 * because all the tree which are snapshoted will be forced to COW
2429 * the nodes and leaves.
2430 */
2431 ret = btrfs_run_delayed_items(trans);
2432 if (ret)
2433 goto unlock_reloc;
2434
2435 ret = btrfs_run_delayed_refs(trans, U64_MAX);
2436 if (ret)
2437 goto unlock_reloc;
2438
2439 /*
2440 * make sure none of the code above managed to slip in a
2441 * delayed item
2442 */
2443 btrfs_assert_delayed_root_empty(fs_info);
2444
2445 WARN_ON(cur_trans != trans->transaction);
2446
2447 ret = commit_fs_roots(trans);
2448 if (ret)
2449 goto unlock_reloc;
2450
2451 /* commit_fs_roots gets rid of all the tree log roots, it is now
2452 * safe to free the root of tree log roots
2453 */
2454 btrfs_free_log_root_tree(trans, fs_info);
2455
2456 /*
2457 * Since fs roots are all committed, we can get a quite accurate
2458 * new_roots. So let's do quota accounting.
2459 */
2460 ret = btrfs_qgroup_account_extents(trans);
2461 if (ret < 0)
2462 goto unlock_reloc;
2463
2464 ret = commit_cowonly_roots(trans);
2465 if (ret)
2466 goto unlock_reloc;
2467
2468 /*
2469 * The tasks which save the space cache and inode cache may also
2470 * update ->aborted, check it.
2471 */
2472 if (TRANS_ABORTED(cur_trans)) {
2473 ret = cur_trans->aborted;
2474 goto unlock_reloc;
2475 }
2476
2477 cur_trans = fs_info->running_transaction;
2478
2479 btrfs_set_root_node(&fs_info->tree_root->root_item,
2480 fs_info->tree_root->node);
2481 list_add_tail(&fs_info->tree_root->dirty_list,
2482 &cur_trans->switch_commits);
2483
2484 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2485 fs_info->chunk_root->node);
2486 list_add_tail(&fs_info->chunk_root->dirty_list,
2487 &cur_trans->switch_commits);
2488
2489 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2490 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2491 fs_info->block_group_root->node);
2492 list_add_tail(&fs_info->block_group_root->dirty_list,
2493 &cur_trans->switch_commits);
2494 }
2495
2496 switch_commit_roots(trans);
2497
2498 ASSERT(list_empty(&cur_trans->dirty_bgs));
2499 ASSERT(list_empty(&cur_trans->io_bgs));
2500 update_super_roots(fs_info);
2501
2502 btrfs_set_super_log_root(fs_info->super_copy, 0);
2503 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2504 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2505 sizeof(*fs_info->super_copy));
2506
2507 btrfs_commit_device_sizes(cur_trans);
2508
2509 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2510 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2511
2512 btrfs_trans_release_chunk_metadata(trans);
2513
2514 /*
2515 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2516 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2517 * make sure that before we commit our superblock, no other task can
2518 * start a new transaction and commit a log tree before we commit our
2519 * superblock. Anyone trying to commit a log tree locks this mutex before
2520 * writing its superblock.
2521 */
2522 mutex_lock(&fs_info->tree_log_mutex);
2523
2524 spin_lock(&fs_info->trans_lock);
2525 cur_trans->state = TRANS_STATE_UNBLOCKED;
2526 fs_info->running_transaction = NULL;
2527 spin_unlock(&fs_info->trans_lock);
2528 mutex_unlock(&fs_info->reloc_mutex);
2529
2530 wake_up(&fs_info->transaction_wait);
2531 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2532
2533 /* If we have features changed, wake up the cleaner to update sysfs. */
2534 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2535 fs_info->cleaner_kthread)
2536 wake_up_process(fs_info->cleaner_kthread);
2537
2538 ret = btrfs_write_and_wait_transaction(trans);
2539 if (ret) {
2540 btrfs_handle_fs_error(fs_info, ret,
2541 "Error while writing out transaction");
2542 mutex_unlock(&fs_info->tree_log_mutex);
2543 goto scrub_continue;
2544 }
2545
2546 ret = write_all_supers(fs_info, 0);
2547 /*
2548 * the super is written, we can safely allow the tree-loggers
2549 * to go about their business
2550 */
2551 mutex_unlock(&fs_info->tree_log_mutex);
2552 if (ret)
2553 goto scrub_continue;
2554
2555 /*
2556 * We needn't acquire the lock here because there is no other task
2557 * which can change it.
2558 */
2559 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2560 wake_up(&cur_trans->commit_wait);
2561 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2562
2563 btrfs_finish_extent_commit(trans);
2564
2565 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2566 btrfs_clear_space_info_full(fs_info);
2567
2568 btrfs_set_last_trans_committed(fs_info, cur_trans->transid);
2569 /*
2570 * We needn't acquire the lock here because there is no other task
2571 * which can change it.
2572 */
2573 cur_trans->state = TRANS_STATE_COMPLETED;
2574 wake_up(&cur_trans->commit_wait);
2575 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2576
2577 spin_lock(&fs_info->trans_lock);
2578 list_del_init(&cur_trans->list);
2579 spin_unlock(&fs_info->trans_lock);
2580
2581 btrfs_put_transaction(cur_trans);
2582 btrfs_put_transaction(cur_trans);
2583
2584 if (trans->type & __TRANS_FREEZABLE)
2585 sb_end_intwrite(fs_info->sb);
2586
2587 trace_btrfs_transaction_commit(fs_info);
2588
2589 interval = ktime_get_ns() - start_time;
2590
2591 btrfs_scrub_continue(fs_info);
2592
2593 if (current->journal_info == trans)
2594 current->journal_info = NULL;
2595
2596 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2597
2598 update_commit_stats(fs_info, interval);
2599
2600 return ret;
2601
2602 unlock_reloc:
2603 mutex_unlock(&fs_info->reloc_mutex);
2604 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2605 scrub_continue:
2606 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2607 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2608 btrfs_scrub_continue(fs_info);
2609 cleanup_transaction:
2610 btrfs_trans_release_metadata(trans);
2611 btrfs_cleanup_pending_block_groups(trans);
2612 btrfs_trans_release_chunk_metadata(trans);
2613 trans->block_rsv = NULL;
2614 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2615 if (current->journal_info == trans)
2616 current->journal_info = NULL;
2617 cleanup_transaction(trans, ret);
2618
2619 return ret;
2620
2621 lockdep_release:
2622 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2623 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2624 goto cleanup_transaction;
2625
2626 lockdep_trans_commit_start_release:
2627 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2628 btrfs_end_transaction(trans);
2629 return ret;
2630 }
2631
2632 /*
2633 * return < 0 if error
2634 * 0 if there are no more dead_roots at the time of call
2635 * 1 there are more to be processed, call me again
2636 *
2637 * The return value indicates there are certainly more snapshots to delete, but
2638 * if there comes a new one during processing, it may return 0. We don't mind,
2639 * because btrfs_commit_super will poke cleaner thread and it will process it a
2640 * few seconds later.
2641 */
btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info * fs_info)2642 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2643 {
2644 struct btrfs_root *root;
2645 int ret;
2646
2647 spin_lock(&fs_info->trans_lock);
2648 if (list_empty(&fs_info->dead_roots)) {
2649 spin_unlock(&fs_info->trans_lock);
2650 return 0;
2651 }
2652 root = list_first_entry(&fs_info->dead_roots,
2653 struct btrfs_root, root_list);
2654 list_del_init(&root->root_list);
2655 spin_unlock(&fs_info->trans_lock);
2656
2657 btrfs_debug(fs_info, "cleaner removing %llu", btrfs_root_id(root));
2658
2659 btrfs_kill_all_delayed_nodes(root);
2660
2661 if (btrfs_header_backref_rev(root->node) <
2662 BTRFS_MIXED_BACKREF_REV)
2663 ret = btrfs_drop_snapshot(root, 0, 0);
2664 else
2665 ret = btrfs_drop_snapshot(root, 1, 0);
2666
2667 btrfs_put_root(root);
2668 return (ret < 0) ? 0 : 1;
2669 }
2670
2671 /*
2672 * We only mark the transaction aborted and then set the file system read-only.
2673 * This will prevent new transactions from starting or trying to join this
2674 * one.
2675 *
2676 * This means that error recovery at the call site is limited to freeing
2677 * any local memory allocations and passing the error code up without
2678 * further cleanup. The transaction should complete as it normally would
2679 * in the call path but will return -EIO.
2680 *
2681 * We'll complete the cleanup in btrfs_end_transaction and
2682 * btrfs_commit_transaction.
2683 */
__btrfs_abort_transaction(struct btrfs_trans_handle * trans,const char * function,unsigned int line,int error,bool first_hit)2684 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2685 const char *function,
2686 unsigned int line, int error, bool first_hit)
2687 {
2688 struct btrfs_fs_info *fs_info = trans->fs_info;
2689
2690 WRITE_ONCE(trans->aborted, error);
2691 WRITE_ONCE(trans->transaction->aborted, error);
2692 if (first_hit && error == -ENOSPC)
2693 btrfs_dump_space_info_for_trans_abort(fs_info);
2694 /* Wake up anybody who may be waiting on this transaction */
2695 wake_up(&fs_info->transaction_wait);
2696 wake_up(&fs_info->transaction_blocked_wait);
2697 __btrfs_handle_fs_error(fs_info, function, line, error, NULL);
2698 }
2699
btrfs_transaction_init(void)2700 int __init btrfs_transaction_init(void)
2701 {
2702 btrfs_trans_handle_cachep = KMEM_CACHE(btrfs_trans_handle, SLAB_TEMPORARY);
2703 if (!btrfs_trans_handle_cachep)
2704 return -ENOMEM;
2705 return 0;
2706 }
2707
btrfs_transaction_exit(void)2708 void __cold btrfs_transaction_exit(void)
2709 {
2710 kmem_cache_destroy(btrfs_trans_handle_cachep);
2711 }
2712