1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "messages.h"
11 #include "misc.h"
12 #include "ctree.h"
13 #include "transaction.h"
14 #include "btrfs_inode.h"
15 #include "extent_io.h"
16 #include "disk-io.h"
17 #include "compression.h"
18 #include "delalloc-space.h"
19 #include "qgroup.h"
20 #include "subpage.h"
21 #include "file.h"
22 #include "block-group.h"
23 
24 static struct kmem_cache *btrfs_ordered_extent_cache;
25 
entry_end(struct btrfs_ordered_extent * entry)26 static u64 entry_end(struct btrfs_ordered_extent *entry)
27 {
28 	if (entry->file_offset + entry->num_bytes < entry->file_offset)
29 		return (u64)-1;
30 	return entry->file_offset + entry->num_bytes;
31 }
32 
33 /* returns NULL if the insertion worked, or it returns the node it did find
34  * in the tree
35  */
tree_insert(struct rb_root * root,u64 file_offset,struct rb_node * node)36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
37 				   struct rb_node *node)
38 {
39 	struct rb_node **p = &root->rb_node;
40 	struct rb_node *parent = NULL;
41 	struct btrfs_ordered_extent *entry;
42 
43 	while (*p) {
44 		parent = *p;
45 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
46 
47 		if (file_offset < entry->file_offset)
48 			p = &(*p)->rb_left;
49 		else if (file_offset >= entry_end(entry))
50 			p = &(*p)->rb_right;
51 		else
52 			return parent;
53 	}
54 
55 	rb_link_node(node, parent, p);
56 	rb_insert_color(node, root);
57 	return NULL;
58 }
59 
60 /*
61  * look for a given offset in the tree, and if it can't be found return the
62  * first lesser offset
63  */
__tree_search(struct rb_root * root,u64 file_offset,struct rb_node ** prev_ret)64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65 				     struct rb_node **prev_ret)
66 {
67 	struct rb_node *n = root->rb_node;
68 	struct rb_node *prev = NULL;
69 	struct rb_node *test;
70 	struct btrfs_ordered_extent *entry;
71 	struct btrfs_ordered_extent *prev_entry = NULL;
72 
73 	while (n) {
74 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75 		prev = n;
76 		prev_entry = entry;
77 
78 		if (file_offset < entry->file_offset)
79 			n = n->rb_left;
80 		else if (file_offset >= entry_end(entry))
81 			n = n->rb_right;
82 		else
83 			return n;
84 	}
85 	if (!prev_ret)
86 		return NULL;
87 
88 	while (prev && file_offset >= entry_end(prev_entry)) {
89 		test = rb_next(prev);
90 		if (!test)
91 			break;
92 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93 				      rb_node);
94 		if (file_offset < entry_end(prev_entry))
95 			break;
96 
97 		prev = test;
98 	}
99 	if (prev)
100 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101 				      rb_node);
102 	while (prev && file_offset < entry_end(prev_entry)) {
103 		test = rb_prev(prev);
104 		if (!test)
105 			break;
106 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107 				      rb_node);
108 		prev = test;
109 	}
110 	*prev_ret = prev;
111 	return NULL;
112 }
113 
range_overlaps(struct btrfs_ordered_extent * entry,u64 file_offset,u64 len)114 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
115 			  u64 len)
116 {
117 	if (file_offset + len <= entry->file_offset ||
118 	    entry->file_offset + entry->num_bytes <= file_offset)
119 		return 0;
120 	return 1;
121 }
122 
123 /*
124  * look find the first ordered struct that has this offset, otherwise
125  * the first one less than this offset
126  */
ordered_tree_search(struct btrfs_inode * inode,u64 file_offset)127 static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode,
128 						  u64 file_offset)
129 {
130 	struct rb_node *prev = NULL;
131 	struct rb_node *ret;
132 	struct btrfs_ordered_extent *entry;
133 
134 	if (inode->ordered_tree_last) {
135 		entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent,
136 				 rb_node);
137 		if (in_range(file_offset, entry->file_offset, entry->num_bytes))
138 			return inode->ordered_tree_last;
139 	}
140 	ret = __tree_search(&inode->ordered_tree, file_offset, &prev);
141 	if (!ret)
142 		ret = prev;
143 	if (ret)
144 		inode->ordered_tree_last = ret;
145 	return ret;
146 }
147 
alloc_ordered_extent(struct btrfs_inode * inode,u64 file_offset,u64 num_bytes,u64 ram_bytes,u64 disk_bytenr,u64 disk_num_bytes,u64 offset,unsigned long flags,int compress_type)148 static struct btrfs_ordered_extent *alloc_ordered_extent(
149 			struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
150 			u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
151 			u64 offset, unsigned long flags, int compress_type)
152 {
153 	struct btrfs_ordered_extent *entry;
154 	int ret;
155 	u64 qgroup_rsv = 0;
156 	const bool is_nocow = (flags &
157 	       ((1U << BTRFS_ORDERED_NOCOW) | (1U << BTRFS_ORDERED_PREALLOC)));
158 
159 	if (is_nocow) {
160 		/* For nocow write, we can release the qgroup rsv right now */
161 		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv);
162 		if (ret < 0)
163 			return ERR_PTR(ret);
164 	} else {
165 		/*
166 		 * The ordered extent has reserved qgroup space, release now
167 		 * and pass the reserved number for qgroup_record to free.
168 		 */
169 		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv);
170 		if (ret < 0)
171 			return ERR_PTR(ret);
172 	}
173 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
174 	if (!entry) {
175 		if (!is_nocow)
176 			btrfs_qgroup_free_refroot(inode->root->fs_info,
177 						  btrfs_root_id(inode->root),
178 						  qgroup_rsv, BTRFS_QGROUP_RSV_DATA);
179 		return ERR_PTR(-ENOMEM);
180 	}
181 
182 	entry->file_offset = file_offset;
183 	entry->num_bytes = num_bytes;
184 	entry->ram_bytes = ram_bytes;
185 	entry->disk_bytenr = disk_bytenr;
186 	entry->disk_num_bytes = disk_num_bytes;
187 	entry->offset = offset;
188 	entry->bytes_left = num_bytes;
189 	entry->inode = BTRFS_I(igrab(&inode->vfs_inode));
190 	entry->compress_type = compress_type;
191 	entry->truncated_len = (u64)-1;
192 	entry->qgroup_rsv = qgroup_rsv;
193 	entry->flags = flags;
194 	refcount_set(&entry->refs, 1);
195 	init_waitqueue_head(&entry->wait);
196 	INIT_LIST_HEAD(&entry->list);
197 	INIT_LIST_HEAD(&entry->log_list);
198 	INIT_LIST_HEAD(&entry->root_extent_list);
199 	INIT_LIST_HEAD(&entry->work_list);
200 	INIT_LIST_HEAD(&entry->bioc_list);
201 	init_completion(&entry->completion);
202 
203 	/*
204 	 * We don't need the count_max_extents here, we can assume that all of
205 	 * that work has been done at higher layers, so this is truly the
206 	 * smallest the extent is going to get.
207 	 */
208 	spin_lock(&inode->lock);
209 	btrfs_mod_outstanding_extents(inode, 1);
210 	spin_unlock(&inode->lock);
211 
212 	return entry;
213 }
214 
insert_ordered_extent(struct btrfs_ordered_extent * entry)215 static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
216 {
217 	struct btrfs_inode *inode = entry->inode;
218 	struct btrfs_root *root = inode->root;
219 	struct btrfs_fs_info *fs_info = root->fs_info;
220 	struct rb_node *node;
221 
222 	trace_btrfs_ordered_extent_add(inode, entry);
223 
224 	percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
225 				 fs_info->delalloc_batch);
226 
227 	/* One ref for the tree. */
228 	refcount_inc(&entry->refs);
229 
230 	spin_lock_irq(&inode->ordered_tree_lock);
231 	node = tree_insert(&inode->ordered_tree, entry->file_offset,
232 			   &entry->rb_node);
233 	if (unlikely(node))
234 		btrfs_panic(fs_info, -EEXIST,
235 				"inconsistency in ordered tree at offset %llu",
236 				entry->file_offset);
237 	spin_unlock_irq(&inode->ordered_tree_lock);
238 
239 	spin_lock(&root->ordered_extent_lock);
240 	list_add_tail(&entry->root_extent_list,
241 		      &root->ordered_extents);
242 	root->nr_ordered_extents++;
243 	if (root->nr_ordered_extents == 1) {
244 		spin_lock(&fs_info->ordered_root_lock);
245 		BUG_ON(!list_empty(&root->ordered_root));
246 		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
247 		spin_unlock(&fs_info->ordered_root_lock);
248 	}
249 	spin_unlock(&root->ordered_extent_lock);
250 }
251 
252 /*
253  * Add an ordered extent to the per-inode tree.
254  *
255  * @inode:           Inode that this extent is for.
256  * @file_offset:     Logical offset in file where the extent starts.
257  * @num_bytes:       Logical length of extent in file.
258  * @ram_bytes:       Full length of unencoded data.
259  * @disk_bytenr:     Offset of extent on disk.
260  * @disk_num_bytes:  Size of extent on disk.
261  * @offset:          Offset into unencoded data where file data starts.
262  * @flags:           Flags specifying type of extent (1U << BTRFS_ORDERED_*).
263  * @compress_type:   Compression algorithm used for data.
264  *
265  * Most of these parameters correspond to &struct btrfs_file_extent_item. The
266  * tree is given a single reference on the ordered extent that was inserted, and
267  * the returned pointer is given a second reference.
268  *
269  * Return: the new ordered extent or error pointer.
270  */
btrfs_alloc_ordered_extent(struct btrfs_inode * inode,u64 file_offset,const struct btrfs_file_extent * file_extent,unsigned long flags)271 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
272 			struct btrfs_inode *inode, u64 file_offset,
273 			const struct btrfs_file_extent *file_extent, unsigned long flags)
274 {
275 	struct btrfs_ordered_extent *entry;
276 
277 	ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
278 
279 	/*
280 	 * For regular writes, we just use the members in @file_extent.
281 	 *
282 	 * For NOCOW, we don't really care about the numbers except @start and
283 	 * file_extent->num_bytes, as we won't insert a file extent item at all.
284 	 *
285 	 * For PREALLOC, we do not use ordered extent members, but
286 	 * btrfs_mark_extent_written() handles everything.
287 	 *
288 	 * So here we always pass 0 as offset for NOCOW/PREALLOC ordered extents,
289 	 * or btrfs_split_ordered_extent() cannot handle it correctly.
290 	 */
291 	if (flags & ((1U << BTRFS_ORDERED_NOCOW) | (1U << BTRFS_ORDERED_PREALLOC)))
292 		entry = alloc_ordered_extent(inode, file_offset,
293 					     file_extent->num_bytes,
294 					     file_extent->num_bytes,
295 					     file_extent->disk_bytenr + file_extent->offset,
296 					     file_extent->num_bytes, 0, flags,
297 					     file_extent->compression);
298 	else
299 		entry = alloc_ordered_extent(inode, file_offset,
300 					     file_extent->num_bytes,
301 					     file_extent->ram_bytes,
302 					     file_extent->disk_bytenr,
303 					     file_extent->disk_num_bytes,
304 					     file_extent->offset, flags,
305 					     file_extent->compression);
306 	if (!IS_ERR(entry))
307 		insert_ordered_extent(entry);
308 	return entry;
309 }
310 
311 /*
312  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
313  * when an ordered extent is finished.  If the list covers more than one
314  * ordered extent, it is split across multiples.
315  */
btrfs_add_ordered_sum(struct btrfs_ordered_extent * entry,struct btrfs_ordered_sum * sum)316 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
317 			   struct btrfs_ordered_sum *sum)
318 {
319 	struct btrfs_inode *inode = entry->inode;
320 
321 	spin_lock_irq(&inode->ordered_tree_lock);
322 	list_add_tail(&sum->list, &entry->list);
323 	spin_unlock_irq(&inode->ordered_tree_lock);
324 }
325 
btrfs_mark_ordered_extent_error(struct btrfs_ordered_extent * ordered)326 void btrfs_mark_ordered_extent_error(struct btrfs_ordered_extent *ordered)
327 {
328 	if (!test_and_set_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
329 		mapping_set_error(ordered->inode->vfs_inode.i_mapping, -EIO);
330 }
331 
finish_ordered_fn(struct btrfs_work * work)332 static void finish_ordered_fn(struct btrfs_work *work)
333 {
334 	struct btrfs_ordered_extent *ordered_extent;
335 
336 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
337 	btrfs_finish_ordered_io(ordered_extent);
338 }
339 
can_finish_ordered_extent(struct btrfs_ordered_extent * ordered,struct folio * folio,u64 file_offset,u64 len,bool uptodate)340 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
341 				      struct folio *folio, u64 file_offset,
342 				      u64 len, bool uptodate)
343 {
344 	struct btrfs_inode *inode = ordered->inode;
345 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
346 
347 	lockdep_assert_held(&inode->ordered_tree_lock);
348 
349 	if (folio) {
350 		ASSERT(folio->mapping);
351 		ASSERT(folio_pos(folio) <= file_offset);
352 		ASSERT(file_offset + len <= folio_pos(folio) + folio_size(folio));
353 
354 		/*
355 		 * Ordered (Private2) bit indicates whether we still have
356 		 * pending io unfinished for the ordered extent.
357 		 *
358 		 * If there's no such bit, we need to skip to next range.
359 		 */
360 		if (!btrfs_folio_test_ordered(fs_info, folio, file_offset, len))
361 			return false;
362 		btrfs_folio_clear_ordered(fs_info, folio, file_offset, len);
363 	}
364 
365 	/* Now we're fine to update the accounting. */
366 	if (WARN_ON_ONCE(len > ordered->bytes_left)) {
367 		btrfs_crit(fs_info,
368 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
369 			   btrfs_root_id(inode->root), btrfs_ino(inode),
370 			   ordered->file_offset, ordered->num_bytes,
371 			   len, ordered->bytes_left);
372 		ordered->bytes_left = 0;
373 	} else {
374 		ordered->bytes_left -= len;
375 	}
376 
377 	if (!uptodate)
378 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
379 
380 	if (ordered->bytes_left)
381 		return false;
382 
383 	/*
384 	 * All the IO of the ordered extent is finished, we need to queue
385 	 * the finish_func to be executed.
386 	 */
387 	set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
388 	cond_wake_up(&ordered->wait);
389 	refcount_inc(&ordered->refs);
390 	trace_btrfs_ordered_extent_mark_finished(inode, ordered);
391 	return true;
392 }
393 
btrfs_queue_ordered_fn(struct btrfs_ordered_extent * ordered)394 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
395 {
396 	struct btrfs_inode *inode = ordered->inode;
397 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
398 	struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
399 		fs_info->endio_freespace_worker : fs_info->endio_write_workers;
400 
401 	btrfs_init_work(&ordered->work, finish_ordered_fn, NULL);
402 	btrfs_queue_work(wq, &ordered->work);
403 }
404 
btrfs_finish_ordered_extent(struct btrfs_ordered_extent * ordered,struct folio * folio,u64 file_offset,u64 len,bool uptodate)405 void btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
406 				 struct folio *folio, u64 file_offset, u64 len,
407 				 bool uptodate)
408 {
409 	struct btrfs_inode *inode = ordered->inode;
410 	unsigned long flags;
411 	bool ret;
412 
413 	trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
414 
415 	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
416 	ret = can_finish_ordered_extent(ordered, folio, file_offset, len,
417 					uptodate);
418 	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
419 
420 	/*
421 	 * If this is a COW write it means we created new extent maps for the
422 	 * range and they point to unwritten locations if we got an error either
423 	 * before submitting a bio or during IO.
424 	 *
425 	 * We have marked the ordered extent with BTRFS_ORDERED_IOERR, and we
426 	 * are queuing its completion below. During completion, at
427 	 * btrfs_finish_one_ordered(), we will drop the extent maps for the
428 	 * unwritten extents.
429 	 *
430 	 * However because completion runs in a work queue we can end up having
431 	 * a fast fsync running before that. In the case of direct IO, once we
432 	 * unlock the inode the fsync might start, and we queue the completion
433 	 * before unlocking the inode. In the case of buffered IO when writeback
434 	 * finishes (end_bbio_data_write()) we queue the completion, so if the
435 	 * writeback was triggered by a fast fsync, the fsync might start
436 	 * logging before ordered extent completion runs in the work queue.
437 	 *
438 	 * The fast fsync will log file extent items based on the extent maps it
439 	 * finds, so if by the time it collects extent maps the ordered extent
440 	 * completion didn't happen yet, it will log file extent items that
441 	 * point to unwritten extents, resulting in a corruption if a crash
442 	 * happens and the log tree is replayed. Note that a fast fsync does not
443 	 * wait for completion of ordered extents in order to reduce latency.
444 	 *
445 	 * Set a flag in the inode so that the next fast fsync will wait for
446 	 * ordered extents to complete before starting to log.
447 	 */
448 	if (!uptodate && !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
449 		set_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags);
450 
451 	if (ret)
452 		btrfs_queue_ordered_fn(ordered);
453 }
454 
455 /*
456  * Mark all ordered extents io inside the specified range finished.
457  *
458  * @folio:	 The involved folio for the operation.
459  *		 For uncompressed buffered IO, the folio status also needs to be
460  *		 updated to indicate whether the pending ordered io is finished.
461  *		 Can be NULL for direct IO and compressed write.
462  *		 For these cases, callers are ensured they won't execute the
463  *		 endio function twice.
464  *
465  * This function is called for endio, thus the range must have ordered
466  * extent(s) covering it.
467  */
btrfs_mark_ordered_io_finished(struct btrfs_inode * inode,struct folio * folio,u64 file_offset,u64 num_bytes,bool uptodate)468 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
469 				    struct folio *folio, u64 file_offset,
470 				    u64 num_bytes, bool uptodate)
471 {
472 	struct rb_node *node;
473 	struct btrfs_ordered_extent *entry = NULL;
474 	unsigned long flags;
475 	u64 cur = file_offset;
476 
477 	trace_btrfs_writepage_end_io_hook(inode, file_offset,
478 					  file_offset + num_bytes - 1,
479 					  uptodate);
480 
481 	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
482 	while (cur < file_offset + num_bytes) {
483 		u64 entry_end;
484 		u64 end;
485 		u32 len;
486 
487 		node = ordered_tree_search(inode, cur);
488 		/* No ordered extents at all */
489 		if (!node)
490 			break;
491 
492 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
493 		entry_end = entry->file_offset + entry->num_bytes;
494 		/*
495 		 * |<-- OE --->|  |
496 		 *		  cur
497 		 * Go to next OE.
498 		 */
499 		if (cur >= entry_end) {
500 			node = rb_next(node);
501 			/* No more ordered extents, exit */
502 			if (!node)
503 				break;
504 			entry = rb_entry(node, struct btrfs_ordered_extent,
505 					 rb_node);
506 
507 			/* Go to next ordered extent and continue */
508 			cur = entry->file_offset;
509 			continue;
510 		}
511 		/*
512 		 * |	|<--- OE --->|
513 		 * cur
514 		 * Go to the start of OE.
515 		 */
516 		if (cur < entry->file_offset) {
517 			cur = entry->file_offset;
518 			continue;
519 		}
520 
521 		/*
522 		 * Now we are definitely inside one ordered extent.
523 		 *
524 		 * |<--- OE --->|
525 		 *	|
526 		 *	cur
527 		 */
528 		end = min(entry->file_offset + entry->num_bytes,
529 			  file_offset + num_bytes) - 1;
530 		ASSERT(end + 1 - cur < U32_MAX);
531 		len = end + 1 - cur;
532 
533 		if (can_finish_ordered_extent(entry, folio, cur, len, uptodate)) {
534 			spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
535 			btrfs_queue_ordered_fn(entry);
536 			spin_lock_irqsave(&inode->ordered_tree_lock, flags);
537 		}
538 		cur += len;
539 	}
540 	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
541 }
542 
543 /*
544  * Finish IO for one ordered extent across a given range.  The range can only
545  * contain one ordered extent.
546  *
547  * @cached:	 The cached ordered extent. If not NULL, we can skip the tree
548  *               search and use the ordered extent directly.
549  * 		 Will be also used to store the finished ordered extent.
550  * @file_offset: File offset for the finished IO
551  * @io_size:	 Length of the finish IO range
552  *
553  * Return true if the ordered extent is finished in the range, and update
554  * @cached.
555  * Return false otherwise.
556  *
557  * NOTE: The range can NOT cross multiple ordered extents.
558  * Thus caller should ensure the range doesn't cross ordered extents.
559  */
btrfs_dec_test_ordered_pending(struct btrfs_inode * inode,struct btrfs_ordered_extent ** cached,u64 file_offset,u64 io_size)560 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
561 				    struct btrfs_ordered_extent **cached,
562 				    u64 file_offset, u64 io_size)
563 {
564 	struct rb_node *node;
565 	struct btrfs_ordered_extent *entry = NULL;
566 	unsigned long flags;
567 	bool finished = false;
568 
569 	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
570 	if (cached && *cached) {
571 		entry = *cached;
572 		goto have_entry;
573 	}
574 
575 	node = ordered_tree_search(inode, file_offset);
576 	if (!node)
577 		goto out;
578 
579 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
580 have_entry:
581 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
582 		goto out;
583 
584 	if (io_size > entry->bytes_left)
585 		btrfs_crit(inode->root->fs_info,
586 			   "bad ordered accounting left %llu size %llu",
587 		       entry->bytes_left, io_size);
588 
589 	entry->bytes_left -= io_size;
590 
591 	if (entry->bytes_left == 0) {
592 		/*
593 		 * Ensure only one caller can set the flag and finished_ret
594 		 * accordingly
595 		 */
596 		finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
597 		/* test_and_set_bit implies a barrier */
598 		cond_wake_up_nomb(&entry->wait);
599 	}
600 out:
601 	if (finished && cached && entry) {
602 		*cached = entry;
603 		refcount_inc(&entry->refs);
604 		trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
605 	}
606 	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
607 	return finished;
608 }
609 
610 /*
611  * used to drop a reference on an ordered extent.  This will free
612  * the extent if the last reference is dropped
613  */
btrfs_put_ordered_extent(struct btrfs_ordered_extent * entry)614 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
615 {
616 	struct list_head *cur;
617 	struct btrfs_ordered_sum *sum;
618 
619 	trace_btrfs_ordered_extent_put(entry->inode, entry);
620 
621 	if (refcount_dec_and_test(&entry->refs)) {
622 		ASSERT(list_empty(&entry->root_extent_list));
623 		ASSERT(list_empty(&entry->log_list));
624 		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
625 		if (entry->inode)
626 			btrfs_add_delayed_iput(entry->inode);
627 		while (!list_empty(&entry->list)) {
628 			cur = entry->list.next;
629 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
630 			list_del(&sum->list);
631 			kvfree(sum);
632 		}
633 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
634 	}
635 }
636 
637 /*
638  * remove an ordered extent from the tree.  No references are dropped
639  * and waiters are woken up.
640  */
btrfs_remove_ordered_extent(struct btrfs_inode * btrfs_inode,struct btrfs_ordered_extent * entry)641 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
642 				 struct btrfs_ordered_extent *entry)
643 {
644 	struct btrfs_root *root = btrfs_inode->root;
645 	struct btrfs_fs_info *fs_info = root->fs_info;
646 	struct rb_node *node;
647 	bool pending;
648 	bool freespace_inode;
649 
650 	/*
651 	 * If this is a free space inode the thread has not acquired the ordered
652 	 * extents lockdep map.
653 	 */
654 	freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
655 
656 	btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
657 	/* This is paired with alloc_ordered_extent(). */
658 	spin_lock(&btrfs_inode->lock);
659 	btrfs_mod_outstanding_extents(btrfs_inode, -1);
660 	spin_unlock(&btrfs_inode->lock);
661 	if (root != fs_info->tree_root) {
662 		u64 release;
663 
664 		if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
665 			release = entry->disk_num_bytes;
666 		else
667 			release = entry->num_bytes;
668 		btrfs_delalloc_release_metadata(btrfs_inode, release,
669 						test_bit(BTRFS_ORDERED_IOERR,
670 							 &entry->flags));
671 	}
672 
673 	percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
674 				 fs_info->delalloc_batch);
675 
676 	spin_lock_irq(&btrfs_inode->ordered_tree_lock);
677 	node = &entry->rb_node;
678 	rb_erase(node, &btrfs_inode->ordered_tree);
679 	RB_CLEAR_NODE(node);
680 	if (btrfs_inode->ordered_tree_last == node)
681 		btrfs_inode->ordered_tree_last = NULL;
682 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
683 	pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
684 	spin_unlock_irq(&btrfs_inode->ordered_tree_lock);
685 
686 	/*
687 	 * The current running transaction is waiting on us, we need to let it
688 	 * know that we're complete and wake it up.
689 	 */
690 	if (pending) {
691 		struct btrfs_transaction *trans;
692 
693 		/*
694 		 * The checks for trans are just a formality, it should be set,
695 		 * but if it isn't we don't want to deref/assert under the spin
696 		 * lock, so be nice and check if trans is set, but ASSERT() so
697 		 * if it isn't set a developer will notice.
698 		 */
699 		spin_lock(&fs_info->trans_lock);
700 		trans = fs_info->running_transaction;
701 		if (trans)
702 			refcount_inc(&trans->use_count);
703 		spin_unlock(&fs_info->trans_lock);
704 
705 		ASSERT(trans || BTRFS_FS_ERROR(fs_info));
706 		if (trans) {
707 			if (atomic_dec_and_test(&trans->pending_ordered))
708 				wake_up(&trans->pending_wait);
709 			btrfs_put_transaction(trans);
710 		}
711 	}
712 
713 	btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
714 
715 	spin_lock(&root->ordered_extent_lock);
716 	list_del_init(&entry->root_extent_list);
717 	root->nr_ordered_extents--;
718 
719 	trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
720 
721 	if (!root->nr_ordered_extents) {
722 		spin_lock(&fs_info->ordered_root_lock);
723 		BUG_ON(list_empty(&root->ordered_root));
724 		list_del_init(&root->ordered_root);
725 		spin_unlock(&fs_info->ordered_root_lock);
726 	}
727 	spin_unlock(&root->ordered_extent_lock);
728 	wake_up(&entry->wait);
729 	if (!freespace_inode)
730 		btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
731 }
732 
btrfs_run_ordered_extent_work(struct btrfs_work * work)733 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
734 {
735 	struct btrfs_ordered_extent *ordered;
736 
737 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
738 	btrfs_start_ordered_extent(ordered);
739 	complete(&ordered->completion);
740 }
741 
742 /*
743  * Wait for all the ordered extents in a root. Use @bg as range or do whole
744  * range if it's NULL.
745  */
btrfs_wait_ordered_extents(struct btrfs_root * root,u64 nr,const struct btrfs_block_group * bg)746 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
747 			       const struct btrfs_block_group *bg)
748 {
749 	struct btrfs_fs_info *fs_info = root->fs_info;
750 	LIST_HEAD(splice);
751 	LIST_HEAD(skipped);
752 	LIST_HEAD(works);
753 	struct btrfs_ordered_extent *ordered, *next;
754 	u64 count = 0;
755 	u64 range_start, range_len;
756 	u64 range_end;
757 
758 	if (bg) {
759 		range_start = bg->start;
760 		range_len = bg->length;
761 	} else {
762 		range_start = 0;
763 		range_len = U64_MAX;
764 	}
765 	range_end = range_start + range_len;
766 
767 	mutex_lock(&root->ordered_extent_mutex);
768 	spin_lock(&root->ordered_extent_lock);
769 	list_splice_init(&root->ordered_extents, &splice);
770 	while (!list_empty(&splice) && nr) {
771 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
772 					   root_extent_list);
773 
774 		if (range_end <= ordered->disk_bytenr ||
775 		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
776 			list_move_tail(&ordered->root_extent_list, &skipped);
777 			cond_resched_lock(&root->ordered_extent_lock);
778 			continue;
779 		}
780 
781 		list_move_tail(&ordered->root_extent_list,
782 			       &root->ordered_extents);
783 		refcount_inc(&ordered->refs);
784 		spin_unlock(&root->ordered_extent_lock);
785 
786 		btrfs_init_work(&ordered->flush_work,
787 				btrfs_run_ordered_extent_work, NULL);
788 		list_add_tail(&ordered->work_list, &works);
789 		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
790 
791 		cond_resched();
792 		if (nr != U64_MAX)
793 			nr--;
794 		count++;
795 		spin_lock(&root->ordered_extent_lock);
796 	}
797 	list_splice_tail(&skipped, &root->ordered_extents);
798 	list_splice_tail(&splice, &root->ordered_extents);
799 	spin_unlock(&root->ordered_extent_lock);
800 
801 	list_for_each_entry_safe(ordered, next, &works, work_list) {
802 		list_del_init(&ordered->work_list);
803 		wait_for_completion(&ordered->completion);
804 		btrfs_put_ordered_extent(ordered);
805 		cond_resched();
806 	}
807 	mutex_unlock(&root->ordered_extent_mutex);
808 
809 	return count;
810 }
811 
812 /*
813  * Wait for @nr ordered extents that intersect the @bg, or the whole range of
814  * the filesystem if @bg is NULL.
815  */
btrfs_wait_ordered_roots(struct btrfs_fs_info * fs_info,u64 nr,const struct btrfs_block_group * bg)816 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
817 			      const struct btrfs_block_group *bg)
818 {
819 	struct btrfs_root *root;
820 	LIST_HEAD(splice);
821 	u64 done;
822 
823 	mutex_lock(&fs_info->ordered_operations_mutex);
824 	spin_lock(&fs_info->ordered_root_lock);
825 	list_splice_init(&fs_info->ordered_roots, &splice);
826 	while (!list_empty(&splice) && nr) {
827 		root = list_first_entry(&splice, struct btrfs_root,
828 					ordered_root);
829 		root = btrfs_grab_root(root);
830 		BUG_ON(!root);
831 		list_move_tail(&root->ordered_root,
832 			       &fs_info->ordered_roots);
833 		spin_unlock(&fs_info->ordered_root_lock);
834 
835 		done = btrfs_wait_ordered_extents(root, nr, bg);
836 		btrfs_put_root(root);
837 
838 		if (nr != U64_MAX)
839 			nr -= done;
840 
841 		spin_lock(&fs_info->ordered_root_lock);
842 	}
843 	list_splice_tail(&splice, &fs_info->ordered_roots);
844 	spin_unlock(&fs_info->ordered_root_lock);
845 	mutex_unlock(&fs_info->ordered_operations_mutex);
846 }
847 
848 /*
849  * Start IO and wait for a given ordered extent to finish.
850  *
851  * Wait on page writeback for all the pages in the extent and the IO completion
852  * code to insert metadata into the btree corresponding to the extent.
853  */
btrfs_start_ordered_extent(struct btrfs_ordered_extent * entry)854 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
855 {
856 	u64 start = entry->file_offset;
857 	u64 end = start + entry->num_bytes - 1;
858 	struct btrfs_inode *inode = entry->inode;
859 	bool freespace_inode;
860 
861 	trace_btrfs_ordered_extent_start(inode, entry);
862 
863 	/*
864 	 * If this is a free space inode do not take the ordered extents lockdep
865 	 * map.
866 	 */
867 	freespace_inode = btrfs_is_free_space_inode(inode);
868 
869 	/*
870 	 * pages in the range can be dirty, clean or writeback.  We
871 	 * start IO on any dirty ones so the wait doesn't stall waiting
872 	 * for the flusher thread to find them
873 	 */
874 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
875 		filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
876 
877 	if (!freespace_inode)
878 		btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
879 	wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
880 }
881 
882 /*
883  * Used to wait on ordered extents across a large range of bytes.
884  */
btrfs_wait_ordered_range(struct btrfs_inode * inode,u64 start,u64 len)885 int btrfs_wait_ordered_range(struct btrfs_inode *inode, u64 start, u64 len)
886 {
887 	int ret = 0;
888 	int ret_wb = 0;
889 	u64 end;
890 	u64 orig_end;
891 	struct btrfs_ordered_extent *ordered;
892 
893 	if (start + len < start) {
894 		orig_end = OFFSET_MAX;
895 	} else {
896 		orig_end = start + len - 1;
897 		if (orig_end > OFFSET_MAX)
898 			orig_end = OFFSET_MAX;
899 	}
900 
901 	/* start IO across the range first to instantiate any delalloc
902 	 * extents
903 	 */
904 	ret = btrfs_fdatawrite_range(inode, start, orig_end);
905 	if (ret)
906 		return ret;
907 
908 	/*
909 	 * If we have a writeback error don't return immediately. Wait first
910 	 * for any ordered extents that haven't completed yet. This is to make
911 	 * sure no one can dirty the same page ranges and call writepages()
912 	 * before the ordered extents complete - to avoid failures (-EEXIST)
913 	 * when adding the new ordered extents to the ordered tree.
914 	 */
915 	ret_wb = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, orig_end);
916 
917 	end = orig_end;
918 	while (1) {
919 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
920 		if (!ordered)
921 			break;
922 		if (ordered->file_offset > orig_end) {
923 			btrfs_put_ordered_extent(ordered);
924 			break;
925 		}
926 		if (ordered->file_offset + ordered->num_bytes <= start) {
927 			btrfs_put_ordered_extent(ordered);
928 			break;
929 		}
930 		btrfs_start_ordered_extent(ordered);
931 		end = ordered->file_offset;
932 		/*
933 		 * If the ordered extent had an error save the error but don't
934 		 * exit without waiting first for all other ordered extents in
935 		 * the range to complete.
936 		 */
937 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
938 			ret = -EIO;
939 		btrfs_put_ordered_extent(ordered);
940 		if (end == 0 || end == start)
941 			break;
942 		end--;
943 	}
944 	return ret_wb ? ret_wb : ret;
945 }
946 
947 /*
948  * find an ordered extent corresponding to file_offset.  return NULL if
949  * nothing is found, otherwise take a reference on the extent and return it
950  */
btrfs_lookup_ordered_extent(struct btrfs_inode * inode,u64 file_offset)951 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
952 							 u64 file_offset)
953 {
954 	struct rb_node *node;
955 	struct btrfs_ordered_extent *entry = NULL;
956 	unsigned long flags;
957 
958 	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
959 	node = ordered_tree_search(inode, file_offset);
960 	if (!node)
961 		goto out;
962 
963 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
964 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
965 		entry = NULL;
966 	if (entry) {
967 		refcount_inc(&entry->refs);
968 		trace_btrfs_ordered_extent_lookup(inode, entry);
969 	}
970 out:
971 	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
972 	return entry;
973 }
974 
975 /* Since the DIO code tries to lock a wide area we need to look for any ordered
976  * extents that exist in the range, rather than just the start of the range.
977  */
btrfs_lookup_ordered_range(struct btrfs_inode * inode,u64 file_offset,u64 len)978 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
979 		struct btrfs_inode *inode, u64 file_offset, u64 len)
980 {
981 	struct rb_node *node;
982 	struct btrfs_ordered_extent *entry = NULL;
983 
984 	spin_lock_irq(&inode->ordered_tree_lock);
985 	node = ordered_tree_search(inode, file_offset);
986 	if (!node) {
987 		node = ordered_tree_search(inode, file_offset + len);
988 		if (!node)
989 			goto out;
990 	}
991 
992 	while (1) {
993 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
994 		if (range_overlaps(entry, file_offset, len))
995 			break;
996 
997 		if (entry->file_offset >= file_offset + len) {
998 			entry = NULL;
999 			break;
1000 		}
1001 		entry = NULL;
1002 		node = rb_next(node);
1003 		if (!node)
1004 			break;
1005 	}
1006 out:
1007 	if (entry) {
1008 		refcount_inc(&entry->refs);
1009 		trace_btrfs_ordered_extent_lookup_range(inode, entry);
1010 	}
1011 	spin_unlock_irq(&inode->ordered_tree_lock);
1012 	return entry;
1013 }
1014 
1015 /*
1016  * Adds all ordered extents to the given list. The list ends up sorted by the
1017  * file_offset of the ordered extents.
1018  */
btrfs_get_ordered_extents_for_logging(struct btrfs_inode * inode,struct list_head * list)1019 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
1020 					   struct list_head *list)
1021 {
1022 	struct rb_node *n;
1023 
1024 	btrfs_assert_inode_locked(inode);
1025 
1026 	spin_lock_irq(&inode->ordered_tree_lock);
1027 	for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) {
1028 		struct btrfs_ordered_extent *ordered;
1029 
1030 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
1031 
1032 		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
1033 			continue;
1034 
1035 		ASSERT(list_empty(&ordered->log_list));
1036 		list_add_tail(&ordered->log_list, list);
1037 		refcount_inc(&ordered->refs);
1038 		trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
1039 	}
1040 	spin_unlock_irq(&inode->ordered_tree_lock);
1041 }
1042 
1043 /*
1044  * lookup and return any extent before 'file_offset'.  NULL is returned
1045  * if none is found
1046  */
1047 struct btrfs_ordered_extent *
btrfs_lookup_first_ordered_extent(struct btrfs_inode * inode,u64 file_offset)1048 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
1049 {
1050 	struct rb_node *node;
1051 	struct btrfs_ordered_extent *entry = NULL;
1052 
1053 	spin_lock_irq(&inode->ordered_tree_lock);
1054 	node = ordered_tree_search(inode, file_offset);
1055 	if (!node)
1056 		goto out;
1057 
1058 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1059 	refcount_inc(&entry->refs);
1060 	trace_btrfs_ordered_extent_lookup_first(inode, entry);
1061 out:
1062 	spin_unlock_irq(&inode->ordered_tree_lock);
1063 	return entry;
1064 }
1065 
1066 /*
1067  * Lookup the first ordered extent that overlaps the range
1068  * [@file_offset, @file_offset + @len).
1069  *
1070  * The difference between this and btrfs_lookup_first_ordered_extent() is
1071  * that this one won't return any ordered extent that does not overlap the range.
1072  * And the difference against btrfs_lookup_ordered_extent() is, this function
1073  * ensures the first ordered extent gets returned.
1074  */
btrfs_lookup_first_ordered_range(struct btrfs_inode * inode,u64 file_offset,u64 len)1075 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
1076 			struct btrfs_inode *inode, u64 file_offset, u64 len)
1077 {
1078 	struct rb_node *node;
1079 	struct rb_node *cur;
1080 	struct rb_node *prev;
1081 	struct rb_node *next;
1082 	struct btrfs_ordered_extent *entry = NULL;
1083 
1084 	spin_lock_irq(&inode->ordered_tree_lock);
1085 	node = inode->ordered_tree.rb_node;
1086 	/*
1087 	 * Here we don't want to use tree_search() which will use tree->last
1088 	 * and screw up the search order.
1089 	 * And __tree_search() can't return the adjacent ordered extents
1090 	 * either, thus here we do our own search.
1091 	 */
1092 	while (node) {
1093 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1094 
1095 		if (file_offset < entry->file_offset) {
1096 			node = node->rb_left;
1097 		} else if (file_offset >= entry_end(entry)) {
1098 			node = node->rb_right;
1099 		} else {
1100 			/*
1101 			 * Direct hit, got an ordered extent that starts at
1102 			 * @file_offset
1103 			 */
1104 			goto out;
1105 		}
1106 	}
1107 	if (!entry) {
1108 		/* Empty tree */
1109 		goto out;
1110 	}
1111 
1112 	cur = &entry->rb_node;
1113 	/* We got an entry around @file_offset, check adjacent entries */
1114 	if (entry->file_offset < file_offset) {
1115 		prev = cur;
1116 		next = rb_next(cur);
1117 	} else {
1118 		prev = rb_prev(cur);
1119 		next = cur;
1120 	}
1121 	if (prev) {
1122 		entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1123 		if (range_overlaps(entry, file_offset, len))
1124 			goto out;
1125 	}
1126 	if (next) {
1127 		entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1128 		if (range_overlaps(entry, file_offset, len))
1129 			goto out;
1130 	}
1131 	/* No ordered extent in the range */
1132 	entry = NULL;
1133 out:
1134 	if (entry) {
1135 		refcount_inc(&entry->refs);
1136 		trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1137 	}
1138 
1139 	spin_unlock_irq(&inode->ordered_tree_lock);
1140 	return entry;
1141 }
1142 
1143 /*
1144  * Lock the passed range and ensures all pending ordered extents in it are run
1145  * to completion.
1146  *
1147  * @inode:        Inode whose ordered tree is to be searched
1148  * @start:        Beginning of range to flush
1149  * @end:          Last byte of range to lock
1150  * @cached_state: If passed, will return the extent state responsible for the
1151  *                locked range. It's the caller's responsibility to free the
1152  *                cached state.
1153  *
1154  * Always return with the given range locked, ensuring after it's called no
1155  * order extent can be pending.
1156  */
btrfs_lock_and_flush_ordered_range(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state)1157 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1158 					u64 end,
1159 					struct extent_state **cached_state)
1160 {
1161 	struct btrfs_ordered_extent *ordered;
1162 	struct extent_state *cache = NULL;
1163 	struct extent_state **cachedp = &cache;
1164 
1165 	if (cached_state)
1166 		cachedp = cached_state;
1167 
1168 	while (1) {
1169 		lock_extent(&inode->io_tree, start, end, cachedp);
1170 		ordered = btrfs_lookup_ordered_range(inode, start,
1171 						     end - start + 1);
1172 		if (!ordered) {
1173 			/*
1174 			 * If no external cached_state has been passed then
1175 			 * decrement the extra ref taken for cachedp since we
1176 			 * aren't exposing it outside of this function
1177 			 */
1178 			if (!cached_state)
1179 				refcount_dec(&cache->refs);
1180 			break;
1181 		}
1182 		unlock_extent(&inode->io_tree, start, end, cachedp);
1183 		btrfs_start_ordered_extent(ordered);
1184 		btrfs_put_ordered_extent(ordered);
1185 	}
1186 }
1187 
1188 /*
1189  * Lock the passed range and ensure all pending ordered extents in it are run
1190  * to completion in nowait mode.
1191  *
1192  * Return true if btrfs_lock_ordered_range does not return any extents,
1193  * otherwise false.
1194  */
btrfs_try_lock_ordered_range(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state)1195 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1196 				  struct extent_state **cached_state)
1197 {
1198 	struct btrfs_ordered_extent *ordered;
1199 
1200 	if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1201 		return false;
1202 
1203 	ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1204 	if (!ordered)
1205 		return true;
1206 
1207 	btrfs_put_ordered_extent(ordered);
1208 	unlock_extent(&inode->io_tree, start, end, cached_state);
1209 
1210 	return false;
1211 }
1212 
1213 /* Split out a new ordered extent for this first @len bytes of @ordered. */
btrfs_split_ordered_extent(struct btrfs_ordered_extent * ordered,u64 len)1214 struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1215 			struct btrfs_ordered_extent *ordered, u64 len)
1216 {
1217 	struct btrfs_inode *inode = ordered->inode;
1218 	struct btrfs_root *root = inode->root;
1219 	struct btrfs_fs_info *fs_info = root->fs_info;
1220 	u64 file_offset = ordered->file_offset;
1221 	u64 disk_bytenr = ordered->disk_bytenr;
1222 	unsigned long flags = ordered->flags;
1223 	struct btrfs_ordered_sum *sum, *tmpsum;
1224 	struct btrfs_ordered_extent *new;
1225 	struct rb_node *node;
1226 	u64 offset = 0;
1227 
1228 	trace_btrfs_ordered_extent_split(inode, ordered);
1229 
1230 	ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1231 
1232 	/*
1233 	 * The entire bio must be covered by the ordered extent, but we can't
1234 	 * reduce the original extent to a zero length either.
1235 	 */
1236 	if (WARN_ON_ONCE(len >= ordered->num_bytes))
1237 		return ERR_PTR(-EINVAL);
1238 	/*
1239 	 * If our ordered extent had an error there's no point in continuing.
1240 	 * The error may have come from a transaction abort done either by this
1241 	 * task or some other concurrent task, and the transaction abort path
1242 	 * iterates over all existing ordered extents and sets the flag
1243 	 * BTRFS_ORDERED_IOERR on them.
1244 	 */
1245 	if (unlikely(flags & (1U << BTRFS_ORDERED_IOERR))) {
1246 		const int fs_error = BTRFS_FS_ERROR(fs_info);
1247 
1248 		return fs_error ? ERR_PTR(fs_error) : ERR_PTR(-EIO);
1249 	}
1250 	/* We cannot split partially completed ordered extents. */
1251 	if (ordered->bytes_left) {
1252 		ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1253 		if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1254 			return ERR_PTR(-EINVAL);
1255 	}
1256 	/* We cannot split a compressed ordered extent. */
1257 	if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1258 		return ERR_PTR(-EINVAL);
1259 
1260 	new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1261 				   len, 0, flags, ordered->compress_type);
1262 	if (IS_ERR(new))
1263 		return new;
1264 
1265 	/* One ref for the tree. */
1266 	refcount_inc(&new->refs);
1267 
1268 	/*
1269 	 * Take the root's ordered_extent_lock to avoid a race with
1270 	 * btrfs_wait_ordered_extents() when updating the disk_bytenr and
1271 	 * disk_num_bytes fields of the ordered extent below. And we disable
1272 	 * IRQs because the inode's ordered_tree_lock is used in IRQ context
1273 	 * elsewhere.
1274 	 *
1275 	 * There's no concern about a previous caller of
1276 	 * btrfs_wait_ordered_extents() getting the trimmed ordered extent
1277 	 * before we insert the new one, because even if it gets the ordered
1278 	 * extent before it's trimmed and the new one inserted, right before it
1279 	 * uses it or during its use, the ordered extent might have been
1280 	 * trimmed in the meanwhile, and it missed the new ordered extent.
1281 	 * There's no way around this and it's harmless for current use cases,
1282 	 * so we take the root's ordered_extent_lock to fix that race during
1283 	 * trimming and silence tools like KCSAN.
1284 	 */
1285 	spin_lock_irq(&root->ordered_extent_lock);
1286 	spin_lock(&inode->ordered_tree_lock);
1287 
1288 	/*
1289 	 * We don't have overlapping ordered extents (that would imply double
1290 	 * allocation of extents) and we checked above that the split length
1291 	 * does not cross the ordered extent's num_bytes field, so there's
1292 	 * no need to remove it and re-insert it in the tree.
1293 	 */
1294 	ordered->file_offset += len;
1295 	ordered->disk_bytenr += len;
1296 	ordered->num_bytes -= len;
1297 	ordered->disk_num_bytes -= len;
1298 	ordered->ram_bytes -= len;
1299 
1300 	if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1301 		ASSERT(ordered->bytes_left == 0);
1302 		new->bytes_left = 0;
1303 	} else {
1304 		ordered->bytes_left -= len;
1305 	}
1306 
1307 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1308 		if (ordered->truncated_len > len) {
1309 			ordered->truncated_len -= len;
1310 		} else {
1311 			new->truncated_len = ordered->truncated_len;
1312 			ordered->truncated_len = 0;
1313 		}
1314 	}
1315 
1316 	list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1317 		if (offset == len)
1318 			break;
1319 		list_move_tail(&sum->list, &new->list);
1320 		offset += sum->len;
1321 	}
1322 
1323 	node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node);
1324 	if (unlikely(node))
1325 		btrfs_panic(fs_info, -EEXIST,
1326 			"inconsistency in ordered tree at offset %llu after split",
1327 			new->file_offset);
1328 	spin_unlock(&inode->ordered_tree_lock);
1329 
1330 	list_add_tail(&new->root_extent_list, &root->ordered_extents);
1331 	root->nr_ordered_extents++;
1332 	spin_unlock_irq(&root->ordered_extent_lock);
1333 	return new;
1334 }
1335 
ordered_data_init(void)1336 int __init ordered_data_init(void)
1337 {
1338 	btrfs_ordered_extent_cache = KMEM_CACHE(btrfs_ordered_extent, 0);
1339 	if (!btrfs_ordered_extent_cache)
1340 		return -ENOMEM;
1341 
1342 	return 0;
1343 }
1344 
ordered_data_exit(void)1345 void __cold ordered_data_exit(void)
1346 {
1347 	kmem_cache_destroy(btrfs_ordered_extent_cache);
1348 }
1349