1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <linux/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "ordered-data.h"
43 #include "xattr.h"
44 #include "tree-log.h"
45 #include "bio.h"
46 #include "compression.h"
47 #include "locking.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
53 #include "zoned.h"
54 #include "subpage.h"
55 #include "inode-item.h"
56 #include "fs.h"
57 #include "accessors.h"
58 #include "extent-tree.h"
59 #include "root-tree.h"
60 #include "defrag.h"
61 #include "dir-item.h"
62 #include "file-item.h"
63 #include "uuid-tree.h"
64 #include "ioctl.h"
65 #include "file.h"
66 #include "acl.h"
67 #include "relocation.h"
68 #include "verity.h"
69 #include "super.h"
70 #include "orphan.h"
71 #include "backref.h"
72 #include "raid-stripe-tree.h"
73 #include "fiemap.h"
74
75 struct btrfs_iget_args {
76 u64 ino;
77 struct btrfs_root *root;
78 };
79
80 struct btrfs_rename_ctx {
81 /* Output field. Stores the index number of the old directory entry. */
82 u64 index;
83 };
84
85 /*
86 * Used by data_reloc_print_warning_inode() to pass needed info for filename
87 * resolution and output of error message.
88 */
89 struct data_reloc_warn {
90 struct btrfs_path path;
91 struct btrfs_fs_info *fs_info;
92 u64 extent_item_size;
93 u64 logical;
94 int mirror_num;
95 };
96
97 /*
98 * For the file_extent_tree, we want to hold the inode lock when we lookup and
99 * update the disk_i_size, but lockdep will complain because our io_tree we hold
100 * the tree lock and get the inode lock when setting delalloc. These two things
101 * are unrelated, so make a class for the file_extent_tree so we don't get the
102 * two locking patterns mixed up.
103 */
104 static struct lock_class_key file_extent_tree_class;
105
106 static const struct inode_operations btrfs_dir_inode_operations;
107 static const struct inode_operations btrfs_symlink_inode_operations;
108 static const struct inode_operations btrfs_special_inode_operations;
109 static const struct inode_operations btrfs_file_inode_operations;
110 static const struct address_space_operations btrfs_aops;
111 static const struct file_operations btrfs_dir_file_operations;
112
113 static struct kmem_cache *btrfs_inode_cachep;
114
115 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
116 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
117
118 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
119 struct folio *locked_folio, u64 start,
120 u64 end, struct writeback_control *wbc,
121 bool pages_dirty);
122
data_reloc_print_warning_inode(u64 inum,u64 offset,u64 num_bytes,u64 root,void * warn_ctx)123 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
124 u64 root, void *warn_ctx)
125 {
126 struct data_reloc_warn *warn = warn_ctx;
127 struct btrfs_fs_info *fs_info = warn->fs_info;
128 struct extent_buffer *eb;
129 struct btrfs_inode_item *inode_item;
130 struct inode_fs_paths *ipath = NULL;
131 struct btrfs_root *local_root;
132 struct btrfs_key key;
133 unsigned int nofs_flag;
134 u32 nlink;
135 int ret;
136
137 local_root = btrfs_get_fs_root(fs_info, root, true);
138 if (IS_ERR(local_root)) {
139 ret = PTR_ERR(local_root);
140 goto err;
141 }
142
143 /* This makes the path point to (inum INODE_ITEM ioff). */
144 key.objectid = inum;
145 key.type = BTRFS_INODE_ITEM_KEY;
146 key.offset = 0;
147
148 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
149 if (ret) {
150 btrfs_put_root(local_root);
151 btrfs_release_path(&warn->path);
152 goto err;
153 }
154
155 eb = warn->path.nodes[0];
156 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
157 nlink = btrfs_inode_nlink(eb, inode_item);
158 btrfs_release_path(&warn->path);
159
160 nofs_flag = memalloc_nofs_save();
161 ipath = init_ipath(4096, local_root, &warn->path);
162 memalloc_nofs_restore(nofs_flag);
163 if (IS_ERR(ipath)) {
164 btrfs_put_root(local_root);
165 ret = PTR_ERR(ipath);
166 ipath = NULL;
167 /*
168 * -ENOMEM, not a critical error, just output an generic error
169 * without filename.
170 */
171 btrfs_warn(fs_info,
172 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
173 warn->logical, warn->mirror_num, root, inum, offset);
174 return ret;
175 }
176 ret = paths_from_inode(inum, ipath);
177 if (ret < 0)
178 goto err;
179
180 /*
181 * We deliberately ignore the bit ipath might have been too small to
182 * hold all of the paths here
183 */
184 for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
185 btrfs_warn(fs_info,
186 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
187 warn->logical, warn->mirror_num, root, inum, offset,
188 fs_info->sectorsize, nlink,
189 (char *)(unsigned long)ipath->fspath->val[i]);
190 }
191
192 btrfs_put_root(local_root);
193 free_ipath(ipath);
194 return 0;
195
196 err:
197 btrfs_warn(fs_info,
198 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
199 warn->logical, warn->mirror_num, root, inum, offset, ret);
200
201 free_ipath(ipath);
202 return ret;
203 }
204
205 /*
206 * Do extra user-friendly error output (e.g. lookup all the affected files).
207 *
208 * Return true if we succeeded doing the backref lookup.
209 * Return false if such lookup failed, and has to fallback to the old error message.
210 */
print_data_reloc_error(const struct btrfs_inode * inode,u64 file_off,const u8 * csum,const u8 * csum_expected,int mirror_num)211 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
212 const u8 *csum, const u8 *csum_expected,
213 int mirror_num)
214 {
215 struct btrfs_fs_info *fs_info = inode->root->fs_info;
216 struct btrfs_path path = { 0 };
217 struct btrfs_key found_key = { 0 };
218 struct extent_buffer *eb;
219 struct btrfs_extent_item *ei;
220 const u32 csum_size = fs_info->csum_size;
221 u64 logical;
222 u64 flags;
223 u32 item_size;
224 int ret;
225
226 mutex_lock(&fs_info->reloc_mutex);
227 logical = btrfs_get_reloc_bg_bytenr(fs_info);
228 mutex_unlock(&fs_info->reloc_mutex);
229
230 if (logical == U64_MAX) {
231 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
232 btrfs_warn_rl(fs_info,
233 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
234 btrfs_root_id(inode->root), btrfs_ino(inode), file_off,
235 CSUM_FMT_VALUE(csum_size, csum),
236 CSUM_FMT_VALUE(csum_size, csum_expected),
237 mirror_num);
238 return;
239 }
240
241 logical += file_off;
242 btrfs_warn_rl(fs_info,
243 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
244 btrfs_root_id(inode->root),
245 btrfs_ino(inode), file_off, logical,
246 CSUM_FMT_VALUE(csum_size, csum),
247 CSUM_FMT_VALUE(csum_size, csum_expected),
248 mirror_num);
249
250 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
251 if (ret < 0) {
252 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
253 logical, ret);
254 return;
255 }
256 eb = path.nodes[0];
257 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
258 item_size = btrfs_item_size(eb, path.slots[0]);
259 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
260 unsigned long ptr = 0;
261 u64 ref_root;
262 u8 ref_level;
263
264 while (true) {
265 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
266 item_size, &ref_root,
267 &ref_level);
268 if (ret < 0) {
269 btrfs_warn_rl(fs_info,
270 "failed to resolve tree backref for logical %llu: %d",
271 logical, ret);
272 break;
273 }
274 if (ret > 0)
275 break;
276
277 btrfs_warn_rl(fs_info,
278 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
279 logical, mirror_num,
280 (ref_level ? "node" : "leaf"),
281 ref_level, ref_root);
282 }
283 btrfs_release_path(&path);
284 } else {
285 struct btrfs_backref_walk_ctx ctx = { 0 };
286 struct data_reloc_warn reloc_warn = { 0 };
287
288 btrfs_release_path(&path);
289
290 ctx.bytenr = found_key.objectid;
291 ctx.extent_item_pos = logical - found_key.objectid;
292 ctx.fs_info = fs_info;
293
294 reloc_warn.logical = logical;
295 reloc_warn.extent_item_size = found_key.offset;
296 reloc_warn.mirror_num = mirror_num;
297 reloc_warn.fs_info = fs_info;
298
299 iterate_extent_inodes(&ctx, true,
300 data_reloc_print_warning_inode, &reloc_warn);
301 }
302 }
303
btrfs_print_data_csum_error(struct btrfs_inode * inode,u64 logical_start,u8 * csum,u8 * csum_expected,int mirror_num)304 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
305 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
306 {
307 struct btrfs_root *root = inode->root;
308 const u32 csum_size = root->fs_info->csum_size;
309
310 /* For data reloc tree, it's better to do a backref lookup instead. */
311 if (btrfs_root_id(root) == BTRFS_DATA_RELOC_TREE_OBJECTID)
312 return print_data_reloc_error(inode, logical_start, csum,
313 csum_expected, mirror_num);
314
315 /* Output without objectid, which is more meaningful */
316 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) {
317 btrfs_warn_rl(root->fs_info,
318 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
319 btrfs_root_id(root), btrfs_ino(inode),
320 logical_start,
321 CSUM_FMT_VALUE(csum_size, csum),
322 CSUM_FMT_VALUE(csum_size, csum_expected),
323 mirror_num);
324 } else {
325 btrfs_warn_rl(root->fs_info,
326 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
327 btrfs_root_id(root), btrfs_ino(inode),
328 logical_start,
329 CSUM_FMT_VALUE(csum_size, csum),
330 CSUM_FMT_VALUE(csum_size, csum_expected),
331 mirror_num);
332 }
333 }
334
335 /*
336 * Lock inode i_rwsem based on arguments passed.
337 *
338 * ilock_flags can have the following bit set:
339 *
340 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
341 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
342 * return -EAGAIN
343 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
344 */
btrfs_inode_lock(struct btrfs_inode * inode,unsigned int ilock_flags)345 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
346 {
347 if (ilock_flags & BTRFS_ILOCK_SHARED) {
348 if (ilock_flags & BTRFS_ILOCK_TRY) {
349 if (!inode_trylock_shared(&inode->vfs_inode))
350 return -EAGAIN;
351 else
352 return 0;
353 }
354 inode_lock_shared(&inode->vfs_inode);
355 } else {
356 if (ilock_flags & BTRFS_ILOCK_TRY) {
357 if (!inode_trylock(&inode->vfs_inode))
358 return -EAGAIN;
359 else
360 return 0;
361 }
362 inode_lock(&inode->vfs_inode);
363 }
364 if (ilock_flags & BTRFS_ILOCK_MMAP)
365 down_write(&inode->i_mmap_lock);
366 return 0;
367 }
368
369 /*
370 * Unock inode i_rwsem.
371 *
372 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
373 * to decide whether the lock acquired is shared or exclusive.
374 */
btrfs_inode_unlock(struct btrfs_inode * inode,unsigned int ilock_flags)375 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
376 {
377 if (ilock_flags & BTRFS_ILOCK_MMAP)
378 up_write(&inode->i_mmap_lock);
379 if (ilock_flags & BTRFS_ILOCK_SHARED)
380 inode_unlock_shared(&inode->vfs_inode);
381 else
382 inode_unlock(&inode->vfs_inode);
383 }
384
385 /*
386 * Cleanup all submitted ordered extents in specified range to handle errors
387 * from the btrfs_run_delalloc_range() callback.
388 *
389 * NOTE: caller must ensure that when an error happens, it can not call
390 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
391 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
392 * to be released, which we want to happen only when finishing the ordered
393 * extent (btrfs_finish_ordered_io()).
394 */
btrfs_cleanup_ordered_extents(struct btrfs_inode * inode,struct folio * locked_folio,u64 offset,u64 bytes)395 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
396 struct folio *locked_folio,
397 u64 offset, u64 bytes)
398 {
399 unsigned long index = offset >> PAGE_SHIFT;
400 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
401 u64 page_start = 0, page_end = 0;
402 struct folio *folio;
403
404 if (locked_folio) {
405 page_start = folio_pos(locked_folio);
406 page_end = page_start + folio_size(locked_folio) - 1;
407 }
408
409 while (index <= end_index) {
410 /*
411 * For locked page, we will call btrfs_mark_ordered_io_finished
412 * through btrfs_mark_ordered_io_finished() on it
413 * in run_delalloc_range() for the error handling, which will
414 * clear page Ordered and run the ordered extent accounting.
415 *
416 * Here we can't just clear the Ordered bit, or
417 * btrfs_mark_ordered_io_finished() would skip the accounting
418 * for the page range, and the ordered extent will never finish.
419 */
420 if (locked_folio && index == (page_start >> PAGE_SHIFT)) {
421 index++;
422 continue;
423 }
424 folio = __filemap_get_folio(inode->vfs_inode.i_mapping, index, 0, 0);
425 index++;
426 if (IS_ERR(folio))
427 continue;
428
429 /*
430 * Here we just clear all Ordered bits for every page in the
431 * range, then btrfs_mark_ordered_io_finished() will handle
432 * the ordered extent accounting for the range.
433 */
434 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio,
435 offset, bytes);
436 folio_put(folio);
437 }
438
439 if (locked_folio) {
440 /* The locked page covers the full range, nothing needs to be done */
441 if (bytes + offset <= page_start + folio_size(locked_folio))
442 return;
443 /*
444 * In case this page belongs to the delalloc range being
445 * instantiated then skip it, since the first page of a range is
446 * going to be properly cleaned up by the caller of
447 * run_delalloc_range
448 */
449 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
450 bytes = offset + bytes - folio_pos(locked_folio) -
451 folio_size(locked_folio);
452 offset = folio_pos(locked_folio) + folio_size(locked_folio);
453 }
454 }
455
456 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
457 }
458
459 static int btrfs_dirty_inode(struct btrfs_inode *inode);
460
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct btrfs_new_inode_args * args)461 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
462 struct btrfs_new_inode_args *args)
463 {
464 int err;
465
466 if (args->default_acl) {
467 err = __btrfs_set_acl(trans, args->inode, args->default_acl,
468 ACL_TYPE_DEFAULT);
469 if (err)
470 return err;
471 }
472 if (args->acl) {
473 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
474 if (err)
475 return err;
476 }
477 if (!args->default_acl && !args->acl)
478 cache_no_acl(args->inode);
479 return btrfs_xattr_security_init(trans, args->inode, args->dir,
480 &args->dentry->d_name);
481 }
482
483 /*
484 * this does all the hard work for inserting an inline extent into
485 * the btree. The caller should have done a btrfs_drop_extents so that
486 * no overlapping inline items exist in the btree
487 */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_inode * inode,bool extent_inserted,size_t size,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)488 static int insert_inline_extent(struct btrfs_trans_handle *trans,
489 struct btrfs_path *path,
490 struct btrfs_inode *inode, bool extent_inserted,
491 size_t size, size_t compressed_size,
492 int compress_type,
493 struct folio *compressed_folio,
494 bool update_i_size)
495 {
496 struct btrfs_root *root = inode->root;
497 struct extent_buffer *leaf;
498 const u32 sectorsize = trans->fs_info->sectorsize;
499 char *kaddr;
500 unsigned long ptr;
501 struct btrfs_file_extent_item *ei;
502 int ret;
503 size_t cur_size = size;
504 u64 i_size;
505
506 /*
507 * The decompressed size must still be no larger than a sector. Under
508 * heavy race, we can have size == 0 passed in, but that shouldn't be a
509 * big deal and we can continue the insertion.
510 */
511 ASSERT(size <= sectorsize);
512
513 /*
514 * The compressed size also needs to be no larger than a sector.
515 * That's also why we only need one page as the parameter.
516 */
517 if (compressed_folio)
518 ASSERT(compressed_size <= sectorsize);
519 else
520 ASSERT(compressed_size == 0);
521
522 if (compressed_size && compressed_folio)
523 cur_size = compressed_size;
524
525 if (!extent_inserted) {
526 struct btrfs_key key;
527 size_t datasize;
528
529 key.objectid = btrfs_ino(inode);
530 key.offset = 0;
531 key.type = BTRFS_EXTENT_DATA_KEY;
532
533 datasize = btrfs_file_extent_calc_inline_size(cur_size);
534 ret = btrfs_insert_empty_item(trans, root, path, &key,
535 datasize);
536 if (ret)
537 goto fail;
538 }
539 leaf = path->nodes[0];
540 ei = btrfs_item_ptr(leaf, path->slots[0],
541 struct btrfs_file_extent_item);
542 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
543 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
544 btrfs_set_file_extent_encryption(leaf, ei, 0);
545 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
546 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
547 ptr = btrfs_file_extent_inline_start(ei);
548
549 if (compress_type != BTRFS_COMPRESS_NONE) {
550 kaddr = kmap_local_folio(compressed_folio, 0);
551 write_extent_buffer(leaf, kaddr, ptr, compressed_size);
552 kunmap_local(kaddr);
553
554 btrfs_set_file_extent_compression(leaf, ei,
555 compress_type);
556 } else {
557 struct folio *folio;
558
559 folio = __filemap_get_folio(inode->vfs_inode.i_mapping,
560 0, 0, 0);
561 ASSERT(!IS_ERR(folio));
562 btrfs_set_file_extent_compression(leaf, ei, 0);
563 kaddr = kmap_local_folio(folio, 0);
564 write_extent_buffer(leaf, kaddr, ptr, size);
565 kunmap_local(kaddr);
566 folio_put(folio);
567 }
568 btrfs_mark_buffer_dirty(trans, leaf);
569 btrfs_release_path(path);
570
571 /*
572 * We align size to sectorsize for inline extents just for simplicity
573 * sake.
574 */
575 ret = btrfs_inode_set_file_extent_range(inode, 0,
576 ALIGN(size, root->fs_info->sectorsize));
577 if (ret)
578 goto fail;
579
580 /*
581 * We're an inline extent, so nobody can extend the file past i_size
582 * without locking a page we already have locked.
583 *
584 * We must do any i_size and inode updates before we unlock the pages.
585 * Otherwise we could end up racing with unlink.
586 */
587 i_size = i_size_read(&inode->vfs_inode);
588 if (update_i_size && size > i_size) {
589 i_size_write(&inode->vfs_inode, size);
590 i_size = size;
591 }
592 inode->disk_i_size = i_size;
593
594 fail:
595 return ret;
596 }
597
can_cow_file_range_inline(struct btrfs_inode * inode,u64 offset,u64 size,size_t compressed_size)598 static bool can_cow_file_range_inline(struct btrfs_inode *inode,
599 u64 offset, u64 size,
600 size_t compressed_size)
601 {
602 struct btrfs_fs_info *fs_info = inode->root->fs_info;
603 u64 data_len = (compressed_size ?: size);
604
605 /* Inline extents must start at offset 0. */
606 if (offset != 0)
607 return false;
608
609 /*
610 * Due to the page size limit, for subpage we can only trigger the
611 * writeback for the dirty sectors of page, that means data writeback
612 * is doing more writeback than what we want.
613 *
614 * This is especially unexpected for some call sites like fallocate,
615 * where we only increase i_size after everything is done.
616 * This means we can trigger inline extent even if we didn't want to.
617 * So here we skip inline extent creation completely.
618 */
619 if (fs_info->sectorsize != PAGE_SIZE)
620 return false;
621
622 /* Inline extents are limited to sectorsize. */
623 if (size > fs_info->sectorsize)
624 return false;
625
626 /* We cannot exceed the maximum inline data size. */
627 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
628 return false;
629
630 /* We cannot exceed the user specified max_inline size. */
631 if (data_len > fs_info->max_inline)
632 return false;
633
634 /* Inline extents must be the entirety of the file. */
635 if (size < i_size_read(&inode->vfs_inode))
636 return false;
637
638 return true;
639 }
640
641 /*
642 * conditionally insert an inline extent into the file. This
643 * does the checks required to make sure the data is small enough
644 * to fit as an inline extent.
645 *
646 * If being used directly, you must have already checked we're allowed to cow
647 * the range by getting true from can_cow_file_range_inline().
648 */
__cow_file_range_inline(struct btrfs_inode * inode,u64 offset,u64 size,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)649 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, u64 offset,
650 u64 size, size_t compressed_size,
651 int compress_type,
652 struct folio *compressed_folio,
653 bool update_i_size)
654 {
655 struct btrfs_drop_extents_args drop_args = { 0 };
656 struct btrfs_root *root = inode->root;
657 struct btrfs_fs_info *fs_info = root->fs_info;
658 struct btrfs_trans_handle *trans;
659 u64 data_len = (compressed_size ?: size);
660 int ret;
661 struct btrfs_path *path;
662
663 path = btrfs_alloc_path();
664 if (!path)
665 return -ENOMEM;
666
667 trans = btrfs_join_transaction(root);
668 if (IS_ERR(trans)) {
669 btrfs_free_path(path);
670 return PTR_ERR(trans);
671 }
672 trans->block_rsv = &inode->block_rsv;
673
674 drop_args.path = path;
675 drop_args.start = 0;
676 drop_args.end = fs_info->sectorsize;
677 drop_args.drop_cache = true;
678 drop_args.replace_extent = true;
679 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
680 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
681 if (ret) {
682 btrfs_abort_transaction(trans, ret);
683 goto out;
684 }
685
686 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
687 size, compressed_size, compress_type,
688 compressed_folio, update_i_size);
689 if (ret && ret != -ENOSPC) {
690 btrfs_abort_transaction(trans, ret);
691 goto out;
692 } else if (ret == -ENOSPC) {
693 ret = 1;
694 goto out;
695 }
696
697 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
698 ret = btrfs_update_inode(trans, inode);
699 if (ret && ret != -ENOSPC) {
700 btrfs_abort_transaction(trans, ret);
701 goto out;
702 } else if (ret == -ENOSPC) {
703 ret = 1;
704 goto out;
705 }
706
707 btrfs_set_inode_full_sync(inode);
708 out:
709 /*
710 * Don't forget to free the reserved space, as for inlined extent
711 * it won't count as data extent, free them directly here.
712 * And at reserve time, it's always aligned to page size, so
713 * just free one page here.
714 */
715 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL);
716 btrfs_free_path(path);
717 btrfs_end_transaction(trans);
718 return ret;
719 }
720
cow_file_range_inline(struct btrfs_inode * inode,struct folio * locked_folio,u64 offset,u64 end,size_t compressed_size,int compress_type,struct folio * compressed_folio,bool update_i_size)721 static noinline int cow_file_range_inline(struct btrfs_inode *inode,
722 struct folio *locked_folio,
723 u64 offset, u64 end,
724 size_t compressed_size,
725 int compress_type,
726 struct folio *compressed_folio,
727 bool update_i_size)
728 {
729 struct extent_state *cached = NULL;
730 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
731 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED;
732 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1);
733 int ret;
734
735 if (!can_cow_file_range_inline(inode, offset, size, compressed_size))
736 return 1;
737
738 lock_extent(&inode->io_tree, offset, end, &cached);
739 ret = __cow_file_range_inline(inode, offset, size, compressed_size,
740 compress_type, compressed_folio,
741 update_i_size);
742 if (ret > 0) {
743 unlock_extent(&inode->io_tree, offset, end, &cached);
744 return ret;
745 }
746
747 /*
748 * In the successful case (ret == 0 here), cow_file_range will return 1.
749 *
750 * Quite a bit further up the callstack in extent_writepage(), ret == 1
751 * is treated as a short circuited success and does not unlock the folio,
752 * so we must do it here.
753 *
754 * In the failure case, the locked_folio does get unlocked by
755 * btrfs_folio_end_all_writers, which asserts that it is still locked
756 * at that point, so we must *not* unlock it here.
757 *
758 * The other two callsites in compress_file_range do not have a
759 * locked_folio, so they are not relevant to this logic.
760 */
761 if (ret == 0)
762 locked_folio = NULL;
763
764 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached,
765 clear_flags, PAGE_UNLOCK |
766 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
767 return ret;
768 }
769
770 struct async_extent {
771 u64 start;
772 u64 ram_size;
773 u64 compressed_size;
774 struct folio **folios;
775 unsigned long nr_folios;
776 int compress_type;
777 struct list_head list;
778 };
779
780 struct async_chunk {
781 struct btrfs_inode *inode;
782 struct folio *locked_folio;
783 u64 start;
784 u64 end;
785 blk_opf_t write_flags;
786 struct list_head extents;
787 struct cgroup_subsys_state *blkcg_css;
788 struct btrfs_work work;
789 struct async_cow *async_cow;
790 };
791
792 struct async_cow {
793 atomic_t num_chunks;
794 struct async_chunk chunks[];
795 };
796
add_async_extent(struct async_chunk * cow,u64 start,u64 ram_size,u64 compressed_size,struct folio ** folios,unsigned long nr_folios,int compress_type)797 static noinline int add_async_extent(struct async_chunk *cow,
798 u64 start, u64 ram_size,
799 u64 compressed_size,
800 struct folio **folios,
801 unsigned long nr_folios,
802 int compress_type)
803 {
804 struct async_extent *async_extent;
805
806 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
807 if (!async_extent)
808 return -ENOMEM;
809 async_extent->start = start;
810 async_extent->ram_size = ram_size;
811 async_extent->compressed_size = compressed_size;
812 async_extent->folios = folios;
813 async_extent->nr_folios = nr_folios;
814 async_extent->compress_type = compress_type;
815 list_add_tail(&async_extent->list, &cow->extents);
816 return 0;
817 }
818
819 /*
820 * Check if the inode needs to be submitted to compression, based on mount
821 * options, defragmentation, properties or heuristics.
822 */
inode_need_compress(struct btrfs_inode * inode,u64 start,u64 end)823 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
824 u64 end)
825 {
826 struct btrfs_fs_info *fs_info = inode->root->fs_info;
827
828 if (!btrfs_inode_can_compress(inode)) {
829 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
830 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
831 btrfs_ino(inode));
832 return 0;
833 }
834 /*
835 * Special check for subpage.
836 *
837 * We lock the full page then run each delalloc range in the page, thus
838 * for the following case, we will hit some subpage specific corner case:
839 *
840 * 0 32K 64K
841 * | |///////| |///////|
842 * \- A \- B
843 *
844 * In above case, both range A and range B will try to unlock the full
845 * page [0, 64K), causing the one finished later will have page
846 * unlocked already, triggering various page lock requirement BUG_ON()s.
847 *
848 * So here we add an artificial limit that subpage compression can only
849 * if the range is fully page aligned.
850 *
851 * In theory we only need to ensure the first page is fully covered, but
852 * the tailing partial page will be locked until the full compression
853 * finishes, delaying the write of other range.
854 *
855 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
856 * first to prevent any submitted async extent to unlock the full page.
857 * By this, we can ensure for subpage case that only the last async_cow
858 * will unlock the full page.
859 */
860 if (fs_info->sectorsize < PAGE_SIZE) {
861 if (!PAGE_ALIGNED(start) ||
862 !PAGE_ALIGNED(end + 1))
863 return 0;
864 }
865
866 /* force compress */
867 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
868 return 1;
869 /* defrag ioctl */
870 if (inode->defrag_compress)
871 return 1;
872 /* bad compression ratios */
873 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
874 return 0;
875 if (btrfs_test_opt(fs_info, COMPRESS) ||
876 inode->flags & BTRFS_INODE_COMPRESS ||
877 inode->prop_compress)
878 return btrfs_compress_heuristic(inode, start, end);
879 return 0;
880 }
881
inode_should_defrag(struct btrfs_inode * inode,u64 start,u64 end,u64 num_bytes,u32 small_write)882 static inline void inode_should_defrag(struct btrfs_inode *inode,
883 u64 start, u64 end, u64 num_bytes, u32 small_write)
884 {
885 /* If this is a small write inside eof, kick off a defrag */
886 if (num_bytes < small_write &&
887 (start > 0 || end + 1 < inode->disk_i_size))
888 btrfs_add_inode_defrag(inode, small_write);
889 }
890
extent_range_clear_dirty_for_io(struct inode * inode,u64 start,u64 end)891 static int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
892 {
893 unsigned long end_index = end >> PAGE_SHIFT;
894 struct folio *folio;
895 int ret = 0;
896
897 for (unsigned long index = start >> PAGE_SHIFT;
898 index <= end_index; index++) {
899 folio = __filemap_get_folio(inode->i_mapping, index, 0, 0);
900 if (IS_ERR(folio)) {
901 if (!ret)
902 ret = PTR_ERR(folio);
903 continue;
904 }
905 folio_clear_dirty_for_io(folio);
906 folio_put(folio);
907 }
908 return ret;
909 }
910
911 /*
912 * Work queue call back to started compression on a file and pages.
913 *
914 * This is done inside an ordered work queue, and the compression is spread
915 * across many cpus. The actual IO submission is step two, and the ordered work
916 * queue takes care of making sure that happens in the same order things were
917 * put onto the queue by writepages and friends.
918 *
919 * If this code finds it can't get good compression, it puts an entry onto the
920 * work queue to write the uncompressed bytes. This makes sure that both
921 * compressed inodes and uncompressed inodes are written in the same order that
922 * the flusher thread sent them down.
923 */
compress_file_range(struct btrfs_work * work)924 static void compress_file_range(struct btrfs_work *work)
925 {
926 struct async_chunk *async_chunk =
927 container_of(work, struct async_chunk, work);
928 struct btrfs_inode *inode = async_chunk->inode;
929 struct btrfs_fs_info *fs_info = inode->root->fs_info;
930 struct address_space *mapping = inode->vfs_inode.i_mapping;
931 u64 blocksize = fs_info->sectorsize;
932 u64 start = async_chunk->start;
933 u64 end = async_chunk->end;
934 u64 actual_end;
935 u64 i_size;
936 int ret = 0;
937 struct folio **folios;
938 unsigned long nr_folios;
939 unsigned long total_compressed = 0;
940 unsigned long total_in = 0;
941 unsigned int poff;
942 int i;
943 int compress_type = fs_info->compress_type;
944
945 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
946
947 /*
948 * We need to call clear_page_dirty_for_io on each page in the range.
949 * Otherwise applications with the file mmap'd can wander in and change
950 * the page contents while we are compressing them.
951 */
952 ret = extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
953
954 /*
955 * All the folios should have been locked thus no failure.
956 *
957 * And even if some folios are missing, btrfs_compress_folios()
958 * would handle them correctly, so here just do an ASSERT() check for
959 * early logic errors.
960 */
961 ASSERT(ret == 0);
962
963 /*
964 * We need to save i_size before now because it could change in between
965 * us evaluating the size and assigning it. This is because we lock and
966 * unlock the page in truncate and fallocate, and then modify the i_size
967 * later on.
968 *
969 * The barriers are to emulate READ_ONCE, remove that once i_size_read
970 * does that for us.
971 */
972 barrier();
973 i_size = i_size_read(&inode->vfs_inode);
974 barrier();
975 actual_end = min_t(u64, i_size, end + 1);
976 again:
977 folios = NULL;
978 nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
979 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES);
980
981 /*
982 * we don't want to send crud past the end of i_size through
983 * compression, that's just a waste of CPU time. So, if the
984 * end of the file is before the start of our current
985 * requested range of bytes, we bail out to the uncompressed
986 * cleanup code that can deal with all of this.
987 *
988 * It isn't really the fastest way to fix things, but this is a
989 * very uncommon corner.
990 */
991 if (actual_end <= start)
992 goto cleanup_and_bail_uncompressed;
993
994 total_compressed = actual_end - start;
995
996 /*
997 * Skip compression for a small file range(<=blocksize) that
998 * isn't an inline extent, since it doesn't save disk space at all.
999 */
1000 if (total_compressed <= blocksize &&
1001 (start > 0 || end + 1 < inode->disk_i_size))
1002 goto cleanup_and_bail_uncompressed;
1003
1004 /*
1005 * For subpage case, we require full page alignment for the sector
1006 * aligned range.
1007 * Thus we must also check against @actual_end, not just @end.
1008 */
1009 if (blocksize < PAGE_SIZE) {
1010 if (!PAGE_ALIGNED(start) ||
1011 !PAGE_ALIGNED(round_up(actual_end, blocksize)))
1012 goto cleanup_and_bail_uncompressed;
1013 }
1014
1015 total_compressed = min_t(unsigned long, total_compressed,
1016 BTRFS_MAX_UNCOMPRESSED);
1017 total_in = 0;
1018 ret = 0;
1019
1020 /*
1021 * We do compression for mount -o compress and when the inode has not
1022 * been flagged as NOCOMPRESS. This flag can change at any time if we
1023 * discover bad compression ratios.
1024 */
1025 if (!inode_need_compress(inode, start, end))
1026 goto cleanup_and_bail_uncompressed;
1027
1028 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS);
1029 if (!folios) {
1030 /*
1031 * Memory allocation failure is not a fatal error, we can fall
1032 * back to uncompressed code.
1033 */
1034 goto cleanup_and_bail_uncompressed;
1035 }
1036
1037 if (inode->defrag_compress)
1038 compress_type = inode->defrag_compress;
1039 else if (inode->prop_compress)
1040 compress_type = inode->prop_compress;
1041
1042 /* Compression level is applied here. */
1043 ret = btrfs_compress_folios(compress_type | (fs_info->compress_level << 4),
1044 mapping, start, folios, &nr_folios, &total_in,
1045 &total_compressed);
1046 if (ret)
1047 goto mark_incompressible;
1048
1049 /*
1050 * Zero the tail end of the last page, as we might be sending it down
1051 * to disk.
1052 */
1053 poff = offset_in_page(total_compressed);
1054 if (poff)
1055 folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff);
1056
1057 /*
1058 * Try to create an inline extent.
1059 *
1060 * If we didn't compress the entire range, try to create an uncompressed
1061 * inline extent, else a compressed one.
1062 *
1063 * Check cow_file_range() for why we don't even try to create inline
1064 * extent for the subpage case.
1065 */
1066 if (total_in < actual_end)
1067 ret = cow_file_range_inline(inode, NULL, start, end, 0,
1068 BTRFS_COMPRESS_NONE, NULL, false);
1069 else
1070 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed,
1071 compress_type, folios[0], false);
1072 if (ret <= 0) {
1073 if (ret < 0)
1074 mapping_set_error(mapping, -EIO);
1075 goto free_pages;
1076 }
1077
1078 /*
1079 * We aren't doing an inline extent. Round the compressed size up to a
1080 * block size boundary so the allocator does sane things.
1081 */
1082 total_compressed = ALIGN(total_compressed, blocksize);
1083
1084 /*
1085 * One last check to make sure the compression is really a win, compare
1086 * the page count read with the blocks on disk, compression must free at
1087 * least one sector.
1088 */
1089 total_in = round_up(total_in, fs_info->sectorsize);
1090 if (total_compressed + blocksize > total_in)
1091 goto mark_incompressible;
1092
1093 /*
1094 * The async work queues will take care of doing actual allocation on
1095 * disk for these compressed pages, and will submit the bios.
1096 */
1097 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios,
1098 nr_folios, compress_type);
1099 BUG_ON(ret);
1100 if (start + total_in < end) {
1101 start += total_in;
1102 cond_resched();
1103 goto again;
1104 }
1105 return;
1106
1107 mark_incompressible:
1108 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1109 inode->flags |= BTRFS_INODE_NOCOMPRESS;
1110 cleanup_and_bail_uncompressed:
1111 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1112 BTRFS_COMPRESS_NONE);
1113 BUG_ON(ret);
1114 free_pages:
1115 if (folios) {
1116 for (i = 0; i < nr_folios; i++) {
1117 WARN_ON(folios[i]->mapping);
1118 btrfs_free_compr_folio(folios[i]);
1119 }
1120 kfree(folios);
1121 }
1122 }
1123
free_async_extent_pages(struct async_extent * async_extent)1124 static void free_async_extent_pages(struct async_extent *async_extent)
1125 {
1126 int i;
1127
1128 if (!async_extent->folios)
1129 return;
1130
1131 for (i = 0; i < async_extent->nr_folios; i++) {
1132 WARN_ON(async_extent->folios[i]->mapping);
1133 btrfs_free_compr_folio(async_extent->folios[i]);
1134 }
1135 kfree(async_extent->folios);
1136 async_extent->nr_folios = 0;
1137 async_extent->folios = NULL;
1138 }
1139
submit_uncompressed_range(struct btrfs_inode * inode,struct async_extent * async_extent,struct folio * locked_folio)1140 static void submit_uncompressed_range(struct btrfs_inode *inode,
1141 struct async_extent *async_extent,
1142 struct folio *locked_folio)
1143 {
1144 u64 start = async_extent->start;
1145 u64 end = async_extent->start + async_extent->ram_size - 1;
1146 int ret;
1147 struct writeback_control wbc = {
1148 .sync_mode = WB_SYNC_ALL,
1149 .range_start = start,
1150 .range_end = end,
1151 .no_cgroup_owner = 1,
1152 };
1153
1154 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1155 ret = run_delalloc_cow(inode, locked_folio, start, end,
1156 &wbc, false);
1157 wbc_detach_inode(&wbc);
1158 if (ret < 0) {
1159 btrfs_cleanup_ordered_extents(inode, locked_folio,
1160 start, end - start + 1);
1161 if (locked_folio) {
1162 const u64 page_start = folio_pos(locked_folio);
1163
1164 folio_start_writeback(locked_folio);
1165 folio_end_writeback(locked_folio);
1166 btrfs_mark_ordered_io_finished(inode, locked_folio,
1167 page_start, PAGE_SIZE,
1168 !ret);
1169 mapping_set_error(locked_folio->mapping, ret);
1170 folio_unlock(locked_folio);
1171 }
1172 }
1173 }
1174
submit_one_async_extent(struct async_chunk * async_chunk,struct async_extent * async_extent,u64 * alloc_hint)1175 static void submit_one_async_extent(struct async_chunk *async_chunk,
1176 struct async_extent *async_extent,
1177 u64 *alloc_hint)
1178 {
1179 struct btrfs_inode *inode = async_chunk->inode;
1180 struct extent_io_tree *io_tree = &inode->io_tree;
1181 struct btrfs_root *root = inode->root;
1182 struct btrfs_fs_info *fs_info = root->fs_info;
1183 struct btrfs_ordered_extent *ordered;
1184 struct btrfs_file_extent file_extent;
1185 struct btrfs_key ins;
1186 struct folio *locked_folio = NULL;
1187 struct extent_state *cached = NULL;
1188 struct extent_map *em;
1189 int ret = 0;
1190 bool free_pages = false;
1191 u64 start = async_extent->start;
1192 u64 end = async_extent->start + async_extent->ram_size - 1;
1193
1194 if (async_chunk->blkcg_css)
1195 kthread_associate_blkcg(async_chunk->blkcg_css);
1196
1197 /*
1198 * If async_chunk->locked_folio is in the async_extent range, we need to
1199 * handle it.
1200 */
1201 if (async_chunk->locked_folio) {
1202 u64 locked_folio_start = folio_pos(async_chunk->locked_folio);
1203 u64 locked_folio_end = locked_folio_start +
1204 folio_size(async_chunk->locked_folio) - 1;
1205
1206 if (!(start >= locked_folio_end || end <= locked_folio_start))
1207 locked_folio = async_chunk->locked_folio;
1208 }
1209
1210 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1211 ASSERT(!async_extent->folios);
1212 ASSERT(async_extent->nr_folios == 0);
1213 submit_uncompressed_range(inode, async_extent, locked_folio);
1214 free_pages = true;
1215 goto done;
1216 }
1217
1218 ret = btrfs_reserve_extent(root, async_extent->ram_size,
1219 async_extent->compressed_size,
1220 async_extent->compressed_size,
1221 0, *alloc_hint, &ins, 1, 1);
1222 if (ret) {
1223 /*
1224 * We can't reserve contiguous space for the compressed size.
1225 * Unlikely, but it's possible that we could have enough
1226 * non-contiguous space for the uncompressed size instead. So
1227 * fall back to uncompressed.
1228 */
1229 submit_uncompressed_range(inode, async_extent, locked_folio);
1230 free_pages = true;
1231 goto done;
1232 }
1233
1234 lock_extent(io_tree, start, end, &cached);
1235
1236 /* Here we're doing allocation and writeback of the compressed pages */
1237 file_extent.disk_bytenr = ins.objectid;
1238 file_extent.disk_num_bytes = ins.offset;
1239 file_extent.ram_bytes = async_extent->ram_size;
1240 file_extent.num_bytes = async_extent->ram_size;
1241 file_extent.offset = 0;
1242 file_extent.compression = async_extent->compress_type;
1243
1244 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
1245 if (IS_ERR(em)) {
1246 ret = PTR_ERR(em);
1247 goto out_free_reserve;
1248 }
1249 free_extent_map(em);
1250
1251 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1252 1U << BTRFS_ORDERED_COMPRESSED);
1253 if (IS_ERR(ordered)) {
1254 btrfs_drop_extent_map_range(inode, start, end, false);
1255 ret = PTR_ERR(ordered);
1256 goto out_free_reserve;
1257 }
1258 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1259
1260 /* Clear dirty, set writeback and unlock the pages. */
1261 extent_clear_unlock_delalloc(inode, start, end,
1262 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC,
1263 PAGE_UNLOCK | PAGE_START_WRITEBACK);
1264 btrfs_submit_compressed_write(ordered,
1265 async_extent->folios, /* compressed_folios */
1266 async_extent->nr_folios,
1267 async_chunk->write_flags, true);
1268 *alloc_hint = ins.objectid + ins.offset;
1269 done:
1270 if (async_chunk->blkcg_css)
1271 kthread_associate_blkcg(NULL);
1272 if (free_pages)
1273 free_async_extent_pages(async_extent);
1274 kfree(async_extent);
1275 return;
1276
1277 out_free_reserve:
1278 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1279 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1280 mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1281 extent_clear_unlock_delalloc(inode, start, end,
1282 NULL, &cached,
1283 EXTENT_LOCKED | EXTENT_DELALLOC |
1284 EXTENT_DELALLOC_NEW |
1285 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1286 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1287 PAGE_END_WRITEBACK);
1288 free_async_extent_pages(async_extent);
1289 if (async_chunk->blkcg_css)
1290 kthread_associate_blkcg(NULL);
1291 btrfs_debug(fs_info,
1292 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1293 btrfs_root_id(root), btrfs_ino(inode), start,
1294 async_extent->ram_size, ret);
1295 kfree(async_extent);
1296 }
1297
btrfs_get_extent_allocation_hint(struct btrfs_inode * inode,u64 start,u64 num_bytes)1298 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1299 u64 num_bytes)
1300 {
1301 struct extent_map_tree *em_tree = &inode->extent_tree;
1302 struct extent_map *em;
1303 u64 alloc_hint = 0;
1304
1305 read_lock(&em_tree->lock);
1306 em = search_extent_mapping(em_tree, start, num_bytes);
1307 if (em) {
1308 /*
1309 * if block start isn't an actual block number then find the
1310 * first block in this inode and use that as a hint. If that
1311 * block is also bogus then just don't worry about it.
1312 */
1313 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) {
1314 free_extent_map(em);
1315 em = search_extent_mapping(em_tree, 0, 0);
1316 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
1317 alloc_hint = extent_map_block_start(em);
1318 if (em)
1319 free_extent_map(em);
1320 } else {
1321 alloc_hint = extent_map_block_start(em);
1322 free_extent_map(em);
1323 }
1324 }
1325 read_unlock(&em_tree->lock);
1326
1327 return alloc_hint;
1328 }
1329
1330 /*
1331 * when extent_io.c finds a delayed allocation range in the file,
1332 * the call backs end up in this code. The basic idea is to
1333 * allocate extents on disk for the range, and create ordered data structs
1334 * in ram to track those extents.
1335 *
1336 * locked_folio is the folio that writepage had locked already. We use
1337 * it to make sure we don't do extra locks or unlocks.
1338 *
1339 * When this function fails, it unlocks all pages except @locked_folio.
1340 *
1341 * When this function successfully creates an inline extent, it returns 1 and
1342 * unlocks all pages including locked_folio and starts I/O on them.
1343 * (In reality inline extents are limited to a single page, so locked_folio is
1344 * the only page handled anyway).
1345 *
1346 * When this function succeed and creates a normal extent, the page locking
1347 * status depends on the passed in flags:
1348 *
1349 * - If @keep_locked is set, all pages are kept locked.
1350 * - Else all pages except for @locked_folio are unlocked.
1351 *
1352 * When a failure happens in the second or later iteration of the
1353 * while-loop, the ordered extents created in previous iterations are kept
1354 * intact. So, the caller must clean them up by calling
1355 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1356 * example.
1357 */
cow_file_range(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,u64 * done_offset,bool keep_locked,bool no_inline)1358 static noinline int cow_file_range(struct btrfs_inode *inode,
1359 struct folio *locked_folio, u64 start,
1360 u64 end, u64 *done_offset,
1361 bool keep_locked, bool no_inline)
1362 {
1363 struct btrfs_root *root = inode->root;
1364 struct btrfs_fs_info *fs_info = root->fs_info;
1365 struct extent_state *cached = NULL;
1366 u64 alloc_hint = 0;
1367 u64 orig_start = start;
1368 u64 num_bytes;
1369 unsigned long ram_size;
1370 u64 cur_alloc_size = 0;
1371 u64 min_alloc_size;
1372 u64 blocksize = fs_info->sectorsize;
1373 struct btrfs_key ins;
1374 struct extent_map *em;
1375 unsigned clear_bits;
1376 unsigned long page_ops;
1377 bool extent_reserved = false;
1378 int ret = 0;
1379
1380 if (btrfs_is_free_space_inode(inode)) {
1381 ret = -EINVAL;
1382 goto out_unlock;
1383 }
1384
1385 num_bytes = ALIGN(end - start + 1, blocksize);
1386 num_bytes = max(blocksize, num_bytes);
1387 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1388
1389 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1390
1391 if (!no_inline) {
1392 /* lets try to make an inline extent */
1393 ret = cow_file_range_inline(inode, locked_folio, start, end, 0,
1394 BTRFS_COMPRESS_NONE, NULL, false);
1395 if (ret <= 0) {
1396 /*
1397 * We succeeded, return 1 so the caller knows we're done
1398 * with this page and already handled the IO.
1399 *
1400 * If there was an error then cow_file_range_inline() has
1401 * already done the cleanup.
1402 */
1403 if (ret == 0)
1404 ret = 1;
1405 goto done;
1406 }
1407 }
1408
1409 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes);
1410
1411 /*
1412 * We're not doing compressed IO, don't unlock the first page (which
1413 * the caller expects to stay locked), don't clear any dirty bits and
1414 * don't set any writeback bits.
1415 *
1416 * Do set the Ordered (Private2) bit so we know this page was properly
1417 * setup for writepage.
1418 */
1419 page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1420 page_ops |= PAGE_SET_ORDERED;
1421
1422 /*
1423 * Relocation relies on the relocated extents to have exactly the same
1424 * size as the original extents. Normally writeback for relocation data
1425 * extents follows a NOCOW path because relocation preallocates the
1426 * extents. However, due to an operation such as scrub turning a block
1427 * group to RO mode, it may fallback to COW mode, so we must make sure
1428 * an extent allocated during COW has exactly the requested size and can
1429 * not be split into smaller extents, otherwise relocation breaks and
1430 * fails during the stage where it updates the bytenr of file extent
1431 * items.
1432 */
1433 if (btrfs_is_data_reloc_root(root))
1434 min_alloc_size = num_bytes;
1435 else
1436 min_alloc_size = fs_info->sectorsize;
1437
1438 while (num_bytes > 0) {
1439 struct btrfs_ordered_extent *ordered;
1440 struct btrfs_file_extent file_extent;
1441
1442 cur_alloc_size = num_bytes;
1443 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1444 min_alloc_size, 0, alloc_hint,
1445 &ins, 1, 1);
1446 if (ret == -EAGAIN) {
1447 /*
1448 * btrfs_reserve_extent only returns -EAGAIN for zoned
1449 * file systems, which is an indication that there are
1450 * no active zones to allocate from at the moment.
1451 *
1452 * If this is the first loop iteration, wait for at
1453 * least one zone to finish before retrying the
1454 * allocation. Otherwise ask the caller to write out
1455 * the already allocated blocks before coming back to
1456 * us, or return -ENOSPC if it can't handle retries.
1457 */
1458 ASSERT(btrfs_is_zoned(fs_info));
1459 if (start == orig_start) {
1460 wait_on_bit_io(&inode->root->fs_info->flags,
1461 BTRFS_FS_NEED_ZONE_FINISH,
1462 TASK_UNINTERRUPTIBLE);
1463 continue;
1464 }
1465 if (done_offset) {
1466 /*
1467 * Move @end to the end of the processed range,
1468 * and exit the loop to unlock the processed extents.
1469 */
1470 end = start - 1;
1471 ret = 0;
1472 break;
1473 }
1474 ret = -ENOSPC;
1475 }
1476 if (ret < 0)
1477 goto out_unlock;
1478 cur_alloc_size = ins.offset;
1479 extent_reserved = true;
1480
1481 ram_size = ins.offset;
1482 file_extent.disk_bytenr = ins.objectid;
1483 file_extent.disk_num_bytes = ins.offset;
1484 file_extent.num_bytes = ins.offset;
1485 file_extent.ram_bytes = ins.offset;
1486 file_extent.offset = 0;
1487 file_extent.compression = BTRFS_COMPRESS_NONE;
1488
1489 /*
1490 * Locked range will be released either during error clean up or
1491 * after the whole range is finished.
1492 */
1493 lock_extent(&inode->io_tree, start, start + ram_size - 1,
1494 &cached);
1495
1496 em = btrfs_create_io_em(inode, start, &file_extent,
1497 BTRFS_ORDERED_REGULAR);
1498 if (IS_ERR(em)) {
1499 unlock_extent(&inode->io_tree, start,
1500 start + ram_size - 1, &cached);
1501 ret = PTR_ERR(em);
1502 goto out_reserve;
1503 }
1504 free_extent_map(em);
1505
1506 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1507 1U << BTRFS_ORDERED_REGULAR);
1508 if (IS_ERR(ordered)) {
1509 unlock_extent(&inode->io_tree, start,
1510 start + ram_size - 1, &cached);
1511 ret = PTR_ERR(ordered);
1512 goto out_drop_extent_cache;
1513 }
1514
1515 if (btrfs_is_data_reloc_root(root)) {
1516 ret = btrfs_reloc_clone_csums(ordered);
1517
1518 /*
1519 * Only drop cache here, and process as normal.
1520 *
1521 * We must not allow extent_clear_unlock_delalloc()
1522 * at out_unlock label to free meta of this ordered
1523 * extent, as its meta should be freed by
1524 * btrfs_finish_ordered_io().
1525 *
1526 * So we must continue until @start is increased to
1527 * skip current ordered extent.
1528 */
1529 if (ret)
1530 btrfs_drop_extent_map_range(inode, start,
1531 start + ram_size - 1,
1532 false);
1533 }
1534 btrfs_put_ordered_extent(ordered);
1535
1536 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1537
1538 if (num_bytes < ram_size)
1539 num_bytes = 0;
1540 else
1541 num_bytes -= ram_size;
1542 alloc_hint = ins.objectid + ins.offset;
1543 start += ram_size;
1544 extent_reserved = false;
1545
1546 /*
1547 * btrfs_reloc_clone_csums() error, since start is increased
1548 * extent_clear_unlock_delalloc() at out_unlock label won't
1549 * free metadata of current ordered extent, we're OK to exit.
1550 */
1551 if (ret)
1552 goto out_unlock;
1553 }
1554 extent_clear_unlock_delalloc(inode, orig_start, end, locked_folio, &cached,
1555 EXTENT_LOCKED | EXTENT_DELALLOC, page_ops);
1556 done:
1557 if (done_offset)
1558 *done_offset = end;
1559 return ret;
1560
1561 out_drop_extent_cache:
1562 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1563 out_reserve:
1564 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1565 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1566 out_unlock:
1567 /*
1568 * Now, we have three regions to clean up:
1569 *
1570 * |-------(1)----|---(2)---|-------------(3)----------|
1571 * `- orig_start `- start `- start + ram_size `- end
1572 *
1573 * We process each region below.
1574 */
1575
1576 /*
1577 * For the range (1). We have already instantiated the ordered extents
1578 * for this region. They are cleaned up by
1579 * btrfs_cleanup_ordered_extents() in e.g,
1580 * btrfs_run_delalloc_range().
1581 * EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV
1582 * are also handled by the cleanup function.
1583 *
1584 * So here we only clear EXTENT_LOCKED and EXTENT_DELALLOC flag, and
1585 * finish the writeback of the involved folios, which will be never submitted.
1586 */
1587 if (orig_start < start) {
1588 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC;
1589 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1590
1591 if (!locked_folio)
1592 mapping_set_error(inode->vfs_inode.i_mapping, ret);
1593 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1594 locked_folio, NULL, clear_bits, page_ops);
1595 }
1596
1597 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1598 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1599 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1600
1601 /*
1602 * For the range (2). If we reserved an extent for our delalloc range
1603 * (or a subrange) and failed to create the respective ordered extent,
1604 * then it means that when we reserved the extent we decremented the
1605 * extent's size from the data space_info's bytes_may_use counter and
1606 * incremented the space_info's bytes_reserved counter by the same
1607 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1608 * to decrement again the data space_info's bytes_may_use counter,
1609 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1610 */
1611 if (extent_reserved) {
1612 extent_clear_unlock_delalloc(inode, start,
1613 start + ram_size - 1,
1614 locked_folio, &cached, clear_bits,
1615 page_ops);
1616 btrfs_qgroup_free_data(inode, NULL, start, ram_size, NULL);
1617 start += ram_size;
1618 }
1619
1620 /*
1621 * For the range (3). We never touched the region. In addition to the
1622 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1623 * space_info's bytes_may_use counter, reserved in
1624 * btrfs_check_data_free_space().
1625 */
1626 if (start < end) {
1627 clear_bits |= EXTENT_CLEAR_DATA_RESV;
1628 extent_clear_unlock_delalloc(inode, start, end, locked_folio,
1629 &cached, clear_bits, page_ops);
1630 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1, NULL);
1631 }
1632 return ret;
1633 }
1634
1635 /*
1636 * Phase two of compressed writeback. This is the ordered portion of the code,
1637 * which only gets called in the order the work was queued. We walk all the
1638 * async extents created by compress_file_range and send them down to the disk.
1639 *
1640 * If called with @do_free == true then it'll try to finish the work and free
1641 * the work struct eventually.
1642 */
submit_compressed_extents(struct btrfs_work * work,bool do_free)1643 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
1644 {
1645 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1646 work);
1647 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1648 struct async_extent *async_extent;
1649 unsigned long nr_pages;
1650 u64 alloc_hint = 0;
1651
1652 if (do_free) {
1653 struct async_cow *async_cow;
1654
1655 btrfs_add_delayed_iput(async_chunk->inode);
1656 if (async_chunk->blkcg_css)
1657 css_put(async_chunk->blkcg_css);
1658
1659 async_cow = async_chunk->async_cow;
1660 if (atomic_dec_and_test(&async_cow->num_chunks))
1661 kvfree(async_cow);
1662 return;
1663 }
1664
1665 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1666 PAGE_SHIFT;
1667
1668 while (!list_empty(&async_chunk->extents)) {
1669 async_extent = list_entry(async_chunk->extents.next,
1670 struct async_extent, list);
1671 list_del(&async_extent->list);
1672 submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1673 }
1674
1675 /* atomic_sub_return implies a barrier */
1676 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1677 5 * SZ_1M)
1678 cond_wake_up_nomb(&fs_info->async_submit_wait);
1679 }
1680
run_delalloc_compressed(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc)1681 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1682 struct folio *locked_folio, u64 start,
1683 u64 end, struct writeback_control *wbc)
1684 {
1685 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1686 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1687 struct async_cow *ctx;
1688 struct async_chunk *async_chunk;
1689 unsigned long nr_pages;
1690 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1691 int i;
1692 unsigned nofs_flag;
1693 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1694
1695 nofs_flag = memalloc_nofs_save();
1696 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1697 memalloc_nofs_restore(nofs_flag);
1698 if (!ctx)
1699 return false;
1700
1701 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1702
1703 async_chunk = ctx->chunks;
1704 atomic_set(&ctx->num_chunks, num_chunks);
1705
1706 for (i = 0; i < num_chunks; i++) {
1707 u64 cur_end = min(end, start + SZ_512K - 1);
1708
1709 /*
1710 * igrab is called higher up in the call chain, take only the
1711 * lightweight reference for the callback lifetime
1712 */
1713 ihold(&inode->vfs_inode);
1714 async_chunk[i].async_cow = ctx;
1715 async_chunk[i].inode = inode;
1716 async_chunk[i].start = start;
1717 async_chunk[i].end = cur_end;
1718 async_chunk[i].write_flags = write_flags;
1719 INIT_LIST_HEAD(&async_chunk[i].extents);
1720
1721 /*
1722 * The locked_folio comes all the way from writepage and its
1723 * the original folio we were actually given. As we spread
1724 * this large delalloc region across multiple async_chunk
1725 * structs, only the first struct needs a pointer to
1726 * locked_folio.
1727 *
1728 * This way we don't need racey decisions about who is supposed
1729 * to unlock it.
1730 */
1731 if (locked_folio) {
1732 /*
1733 * Depending on the compressibility, the pages might or
1734 * might not go through async. We want all of them to
1735 * be accounted against wbc once. Let's do it here
1736 * before the paths diverge. wbc accounting is used
1737 * only for foreign writeback detection and doesn't
1738 * need full accuracy. Just account the whole thing
1739 * against the first page.
1740 */
1741 wbc_account_cgroup_owner(wbc, locked_folio,
1742 cur_end - start);
1743 async_chunk[i].locked_folio = locked_folio;
1744 locked_folio = NULL;
1745 } else {
1746 async_chunk[i].locked_folio = NULL;
1747 }
1748
1749 if (blkcg_css != blkcg_root_css) {
1750 css_get(blkcg_css);
1751 async_chunk[i].blkcg_css = blkcg_css;
1752 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1753 } else {
1754 async_chunk[i].blkcg_css = NULL;
1755 }
1756
1757 btrfs_init_work(&async_chunk[i].work, compress_file_range,
1758 submit_compressed_extents);
1759
1760 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1761 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1762
1763 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1764
1765 start = cur_end + 1;
1766 }
1767 return true;
1768 }
1769
1770 /*
1771 * Run the delalloc range from start to end, and write back any dirty pages
1772 * covered by the range.
1773 */
run_delalloc_cow(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc,bool pages_dirty)1774 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1775 struct folio *locked_folio, u64 start,
1776 u64 end, struct writeback_control *wbc,
1777 bool pages_dirty)
1778 {
1779 u64 done_offset = end;
1780 int ret;
1781
1782 while (start <= end) {
1783 ret = cow_file_range(inode, locked_folio, start, end,
1784 &done_offset, true, false);
1785 if (ret)
1786 return ret;
1787 extent_write_locked_range(&inode->vfs_inode, locked_folio,
1788 start, done_offset, wbc, pages_dirty);
1789 start = done_offset + 1;
1790 }
1791
1792 return 1;
1793 }
1794
fallback_to_cow(struct btrfs_inode * inode,struct folio * locked_folio,const u64 start,const u64 end)1795 static int fallback_to_cow(struct btrfs_inode *inode,
1796 struct folio *locked_folio, const u64 start,
1797 const u64 end)
1798 {
1799 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1800 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1801 const u64 range_bytes = end + 1 - start;
1802 struct extent_io_tree *io_tree = &inode->io_tree;
1803 struct extent_state *cached_state = NULL;
1804 u64 range_start = start;
1805 u64 count;
1806 int ret;
1807
1808 /*
1809 * If EXTENT_NORESERVE is set it means that when the buffered write was
1810 * made we had not enough available data space and therefore we did not
1811 * reserve data space for it, since we though we could do NOCOW for the
1812 * respective file range (either there is prealloc extent or the inode
1813 * has the NOCOW bit set).
1814 *
1815 * However when we need to fallback to COW mode (because for example the
1816 * block group for the corresponding extent was turned to RO mode by a
1817 * scrub or relocation) we need to do the following:
1818 *
1819 * 1) We increment the bytes_may_use counter of the data space info.
1820 * If COW succeeds, it allocates a new data extent and after doing
1821 * that it decrements the space info's bytes_may_use counter and
1822 * increments its bytes_reserved counter by the same amount (we do
1823 * this at btrfs_add_reserved_bytes()). So we need to increment the
1824 * bytes_may_use counter to compensate (when space is reserved at
1825 * buffered write time, the bytes_may_use counter is incremented);
1826 *
1827 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1828 * that if the COW path fails for any reason, it decrements (through
1829 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1830 * data space info, which we incremented in the step above.
1831 *
1832 * If we need to fallback to cow and the inode corresponds to a free
1833 * space cache inode or an inode of the data relocation tree, we must
1834 * also increment bytes_may_use of the data space_info for the same
1835 * reason. Space caches and relocated data extents always get a prealloc
1836 * extent for them, however scrub or balance may have set the block
1837 * group that contains that extent to RO mode and therefore force COW
1838 * when starting writeback.
1839 */
1840 lock_extent(io_tree, start, end, &cached_state);
1841 count = count_range_bits(io_tree, &range_start, end, range_bytes,
1842 EXTENT_NORESERVE, 0, NULL);
1843 if (count > 0 || is_space_ino || is_reloc_ino) {
1844 u64 bytes = count;
1845 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1846 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1847
1848 if (is_space_ino || is_reloc_ino)
1849 bytes = range_bytes;
1850
1851 spin_lock(&sinfo->lock);
1852 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1853 spin_unlock(&sinfo->lock);
1854
1855 if (count > 0)
1856 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1857 NULL);
1858 }
1859 unlock_extent(io_tree, start, end, &cached_state);
1860
1861 /*
1862 * Don't try to create inline extents, as a mix of inline extent that
1863 * is written out and unlocked directly and a normal NOCOW extent
1864 * doesn't work.
1865 */
1866 ret = cow_file_range(inode, locked_folio, start, end, NULL, false,
1867 true);
1868 ASSERT(ret != 1);
1869 return ret;
1870 }
1871
1872 struct can_nocow_file_extent_args {
1873 /* Input fields. */
1874
1875 /* Start file offset of the range we want to NOCOW. */
1876 u64 start;
1877 /* End file offset (inclusive) of the range we want to NOCOW. */
1878 u64 end;
1879 bool writeback_path;
1880 bool strict;
1881 /*
1882 * Free the path passed to can_nocow_file_extent() once it's not needed
1883 * anymore.
1884 */
1885 bool free_path;
1886
1887 /*
1888 * Output fields. Only set when can_nocow_file_extent() returns 1.
1889 * The expected file extent for the NOCOW write.
1890 */
1891 struct btrfs_file_extent file_extent;
1892 };
1893
1894 /*
1895 * Check if we can NOCOW the file extent that the path points to.
1896 * This function may return with the path released, so the caller should check
1897 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1898 *
1899 * Returns: < 0 on error
1900 * 0 if we can not NOCOW
1901 * 1 if we can NOCOW
1902 */
can_nocow_file_extent(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_inode * inode,struct can_nocow_file_extent_args * args)1903 static int can_nocow_file_extent(struct btrfs_path *path,
1904 struct btrfs_key *key,
1905 struct btrfs_inode *inode,
1906 struct can_nocow_file_extent_args *args)
1907 {
1908 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1909 struct extent_buffer *leaf = path->nodes[0];
1910 struct btrfs_root *root = inode->root;
1911 struct btrfs_file_extent_item *fi;
1912 struct btrfs_root *csum_root;
1913 u64 io_start;
1914 u64 extent_end;
1915 u8 extent_type;
1916 int can_nocow = 0;
1917 int ret = 0;
1918 bool nowait = path->nowait;
1919
1920 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1921 extent_type = btrfs_file_extent_type(leaf, fi);
1922
1923 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1924 goto out;
1925
1926 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1927 extent_type == BTRFS_FILE_EXTENT_REG)
1928 goto out;
1929
1930 /*
1931 * If the extent was created before the generation where the last snapshot
1932 * for its subvolume was created, then this implies the extent is shared,
1933 * hence we must COW.
1934 */
1935 if (!args->strict &&
1936 btrfs_file_extent_generation(leaf, fi) <=
1937 btrfs_root_last_snapshot(&root->root_item))
1938 goto out;
1939
1940 /* An explicit hole, must COW. */
1941 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
1942 goto out;
1943
1944 /* Compressed/encrypted/encoded extents must be COWed. */
1945 if (btrfs_file_extent_compression(leaf, fi) ||
1946 btrfs_file_extent_encryption(leaf, fi) ||
1947 btrfs_file_extent_other_encoding(leaf, fi))
1948 goto out;
1949
1950 extent_end = btrfs_file_extent_end(path);
1951
1952 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1953 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1954 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1955 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi);
1956 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi);
1957
1958 /*
1959 * The following checks can be expensive, as they need to take other
1960 * locks and do btree or rbtree searches, so release the path to avoid
1961 * blocking other tasks for too long.
1962 */
1963 btrfs_release_path(path);
1964
1965 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1966 key->offset - args->file_extent.offset,
1967 args->file_extent.disk_bytenr, args->strict, path);
1968 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1969 if (ret != 0)
1970 goto out;
1971
1972 if (args->free_path) {
1973 /*
1974 * We don't need the path anymore, plus through the
1975 * btrfs_lookup_csums_list() call below we will end up allocating
1976 * another path. So free the path to avoid unnecessary extra
1977 * memory usage.
1978 */
1979 btrfs_free_path(path);
1980 path = NULL;
1981 }
1982
1983 /* If there are pending snapshots for this root, we must COW. */
1984 if (args->writeback_path && !is_freespace_inode &&
1985 atomic_read(&root->snapshot_force_cow))
1986 goto out;
1987
1988 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start;
1989 args->file_extent.offset += args->start - key->offset;
1990 io_start = args->file_extent.disk_bytenr + args->file_extent.offset;
1991
1992 /*
1993 * Force COW if csums exist in the range. This ensures that csums for a
1994 * given extent are either valid or do not exist.
1995 */
1996
1997 csum_root = btrfs_csum_root(root->fs_info, io_start);
1998 ret = btrfs_lookup_csums_list(csum_root, io_start,
1999 io_start + args->file_extent.num_bytes - 1,
2000 NULL, nowait);
2001 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
2002 if (ret != 0)
2003 goto out;
2004
2005 can_nocow = 1;
2006 out:
2007 if (args->free_path && path)
2008 btrfs_free_path(path);
2009
2010 return ret < 0 ? ret : can_nocow;
2011 }
2012
2013 /*
2014 * Cleanup the dirty folios which will never be submitted due to error.
2015 *
2016 * When running a delalloc range, we may need to split the ranges (due to
2017 * fragmentation or NOCOW). If we hit an error in the later part, we will error
2018 * out and previously successfully executed range will never be submitted, thus
2019 * we have to cleanup those folios by clearing their dirty flag, starting and
2020 * finishing the writeback.
2021 */
cleanup_dirty_folios(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,int error)2022 static void cleanup_dirty_folios(struct btrfs_inode *inode,
2023 struct folio *locked_folio,
2024 u64 start, u64 end, int error)
2025 {
2026 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2027 struct address_space *mapping = inode->vfs_inode.i_mapping;
2028 pgoff_t start_index = start >> PAGE_SHIFT;
2029 pgoff_t end_index = end >> PAGE_SHIFT;
2030 u32 len;
2031
2032 ASSERT(end + 1 - start < U32_MAX);
2033 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
2034 IS_ALIGNED(end + 1, fs_info->sectorsize));
2035 len = end + 1 - start;
2036
2037 /*
2038 * Handle the locked folio first.
2039 * The btrfs_folio_clamp_*() helpers can handle range out of the folio case.
2040 */
2041 btrfs_folio_clamp_finish_io(fs_info, locked_folio, start, len);
2042
2043 for (pgoff_t index = start_index; index <= end_index; index++) {
2044 struct folio *folio;
2045
2046 /* Already handled at the beginning. */
2047 if (index == locked_folio->index)
2048 continue;
2049 folio = __filemap_get_folio(mapping, index, FGP_LOCK, GFP_NOFS);
2050 /* Cache already dropped, no need to do any cleanup. */
2051 if (IS_ERR(folio))
2052 continue;
2053 btrfs_folio_clamp_finish_io(fs_info, locked_folio, start, len);
2054 folio_unlock(folio);
2055 folio_put(folio);
2056 }
2057 mapping_set_error(mapping, error);
2058 }
2059
nocow_one_range(struct btrfs_inode * inode,struct folio * locked_folio,struct extent_state ** cached,struct can_nocow_file_extent_args * nocow_args,u64 file_pos,bool is_prealloc)2060 static int nocow_one_range(struct btrfs_inode *inode, struct folio *locked_folio,
2061 struct extent_state **cached,
2062 struct can_nocow_file_extent_args *nocow_args,
2063 u64 file_pos, bool is_prealloc)
2064 {
2065 struct btrfs_ordered_extent *ordered;
2066 u64 len = nocow_args->file_extent.num_bytes;
2067 u64 end = file_pos + len - 1;
2068 int ret = 0;
2069
2070 lock_extent(&inode->io_tree, file_pos, end, cached);
2071
2072 if (is_prealloc) {
2073 struct extent_map *em;
2074
2075 em = btrfs_create_io_em(inode, file_pos, &nocow_args->file_extent,
2076 BTRFS_ORDERED_PREALLOC);
2077 if (IS_ERR(em)) {
2078 unlock_extent(&inode->io_tree, file_pos, end, cached);
2079 return PTR_ERR(em);
2080 }
2081 free_extent_map(em);
2082 }
2083
2084 ordered = btrfs_alloc_ordered_extent(inode, file_pos, &nocow_args->file_extent,
2085 is_prealloc
2086 ? (1U << BTRFS_ORDERED_PREALLOC)
2087 : (1U << BTRFS_ORDERED_NOCOW));
2088 if (IS_ERR(ordered)) {
2089 if (is_prealloc)
2090 btrfs_drop_extent_map_range(inode, file_pos, end, false);
2091 unlock_extent(&inode->io_tree, file_pos, end, cached);
2092 return PTR_ERR(ordered);
2093 }
2094
2095 if (btrfs_is_data_reloc_root(inode->root))
2096 /*
2097 * Errors are handled later, as we must prevent
2098 * extent_clear_unlock_delalloc() in error handler from freeing
2099 * metadata of the created ordered extent.
2100 */
2101 ret = btrfs_reloc_clone_csums(ordered);
2102 btrfs_put_ordered_extent(ordered);
2103
2104 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached,
2105 EXTENT_LOCKED | EXTENT_DELALLOC |
2106 EXTENT_CLEAR_DATA_RESV,
2107 PAGE_UNLOCK | PAGE_SET_ORDERED);
2108
2109 /*
2110 * btrfs_reloc_clone_csums() error, now we're OK to call error handler,
2111 * as metadata for created ordered extent will only be freed by
2112 * btrfs_finish_ordered_io().
2113 */
2114 return ret;
2115 }
2116
2117 /*
2118 * when nowcow writeback call back. This checks for snapshots or COW copies
2119 * of the extents that exist in the file, and COWs the file as required.
2120 *
2121 * If no cow copies or snapshots exist, we write directly to the existing
2122 * blocks on disk
2123 */
run_delalloc_nocow(struct btrfs_inode * inode,struct folio * locked_folio,const u64 start,const u64 end)2124 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
2125 struct folio *locked_folio,
2126 const u64 start, const u64 end)
2127 {
2128 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2129 struct btrfs_root *root = inode->root;
2130 struct btrfs_path *path;
2131 u64 cow_start = (u64)-1;
2132 /*
2133 * If not 0, represents the inclusive end of the last fallback_to_cow()
2134 * range. Only for error handling.
2135 */
2136 u64 cow_end = 0;
2137 u64 cur_offset = start;
2138 int ret;
2139 bool check_prev = true;
2140 u64 ino = btrfs_ino(inode);
2141 struct can_nocow_file_extent_args nocow_args = { 0 };
2142
2143 /*
2144 * Normally on a zoned device we're only doing COW writes, but in case
2145 * of relocation on a zoned filesystem serializes I/O so that we're only
2146 * writing sequentially and can end up here as well.
2147 */
2148 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
2149
2150 path = btrfs_alloc_path();
2151 if (!path) {
2152 ret = -ENOMEM;
2153 goto error;
2154 }
2155
2156 nocow_args.end = end;
2157 nocow_args.writeback_path = true;
2158
2159 while (cur_offset <= end) {
2160 struct btrfs_block_group *nocow_bg = NULL;
2161 struct btrfs_key found_key;
2162 struct btrfs_file_extent_item *fi;
2163 struct extent_buffer *leaf;
2164 struct extent_state *cached_state = NULL;
2165 u64 extent_end;
2166 int extent_type;
2167
2168 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2169 cur_offset, 0);
2170 if (ret < 0)
2171 goto error;
2172
2173 /*
2174 * If there is no extent for our range when doing the initial
2175 * search, then go back to the previous slot as it will be the
2176 * one containing the search offset
2177 */
2178 if (ret > 0 && path->slots[0] > 0 && check_prev) {
2179 leaf = path->nodes[0];
2180 btrfs_item_key_to_cpu(leaf, &found_key,
2181 path->slots[0] - 1);
2182 if (found_key.objectid == ino &&
2183 found_key.type == BTRFS_EXTENT_DATA_KEY)
2184 path->slots[0]--;
2185 }
2186 check_prev = false;
2187 next_slot:
2188 /* Go to next leaf if we have exhausted the current one */
2189 leaf = path->nodes[0];
2190 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2191 ret = btrfs_next_leaf(root, path);
2192 if (ret < 0)
2193 goto error;
2194 if (ret > 0)
2195 break;
2196 leaf = path->nodes[0];
2197 }
2198
2199 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2200
2201 /* Didn't find anything for our INO */
2202 if (found_key.objectid > ino)
2203 break;
2204 /*
2205 * Keep searching until we find an EXTENT_ITEM or there are no
2206 * more extents for this inode
2207 */
2208 if (WARN_ON_ONCE(found_key.objectid < ino) ||
2209 found_key.type < BTRFS_EXTENT_DATA_KEY) {
2210 path->slots[0]++;
2211 goto next_slot;
2212 }
2213
2214 /* Found key is not EXTENT_DATA_KEY or starts after req range */
2215 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2216 found_key.offset > end)
2217 break;
2218
2219 /*
2220 * If the found extent starts after requested offset, then
2221 * adjust cur_offset to be right before this extent begins.
2222 */
2223 if (found_key.offset > cur_offset) {
2224 if (cow_start == (u64)-1)
2225 cow_start = cur_offset;
2226 cur_offset = found_key.offset;
2227 goto next_slot;
2228 }
2229
2230 /*
2231 * Found extent which begins before our range and potentially
2232 * intersect it
2233 */
2234 fi = btrfs_item_ptr(leaf, path->slots[0],
2235 struct btrfs_file_extent_item);
2236 extent_type = btrfs_file_extent_type(leaf, fi);
2237 /* If this is triggered then we have a memory corruption. */
2238 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2239 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2240 ret = -EUCLEAN;
2241 goto error;
2242 }
2243 extent_end = btrfs_file_extent_end(path);
2244
2245 /*
2246 * If the extent we got ends before our current offset, skip to
2247 * the next extent.
2248 */
2249 if (extent_end <= cur_offset) {
2250 path->slots[0]++;
2251 goto next_slot;
2252 }
2253
2254 nocow_args.start = cur_offset;
2255 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2256 if (ret < 0)
2257 goto error;
2258 if (ret == 0)
2259 goto must_cow;
2260
2261 ret = 0;
2262 nocow_bg = btrfs_inc_nocow_writers(fs_info,
2263 nocow_args.file_extent.disk_bytenr +
2264 nocow_args.file_extent.offset);
2265 if (!nocow_bg) {
2266 must_cow:
2267 /*
2268 * If we can't perform NOCOW writeback for the range,
2269 * then record the beginning of the range that needs to
2270 * be COWed. It will be written out before the next
2271 * NOCOW range if we find one, or when exiting this
2272 * loop.
2273 */
2274 if (cow_start == (u64)-1)
2275 cow_start = cur_offset;
2276 cur_offset = extent_end;
2277 if (cur_offset > end)
2278 break;
2279 if (!path->nodes[0])
2280 continue;
2281 path->slots[0]++;
2282 goto next_slot;
2283 }
2284
2285 /*
2286 * COW range from cow_start to found_key.offset - 1. As the key
2287 * will contain the beginning of the first extent that can be
2288 * NOCOW, following one which needs to be COW'ed
2289 */
2290 if (cow_start != (u64)-1) {
2291 ret = fallback_to_cow(inode, locked_folio, cow_start,
2292 found_key.offset - 1);
2293 cow_start = (u64)-1;
2294 if (ret) {
2295 cow_end = found_key.offset - 1;
2296 btrfs_dec_nocow_writers(nocow_bg);
2297 goto error;
2298 }
2299 }
2300
2301 ret = nocow_one_range(inode, locked_folio, &cached_state,
2302 &nocow_args, cur_offset,
2303 extent_type == BTRFS_FILE_EXTENT_PREALLOC);
2304 btrfs_dec_nocow_writers(nocow_bg);
2305 if (ret < 0)
2306 goto error;
2307 cur_offset = extent_end;
2308 }
2309 btrfs_release_path(path);
2310
2311 if (cur_offset <= end && cow_start == (u64)-1)
2312 cow_start = cur_offset;
2313
2314 if (cow_start != (u64)-1) {
2315 ret = fallback_to_cow(inode, locked_folio, cow_start, end);
2316 cow_start = (u64)-1;
2317 if (ret) {
2318 cow_end = end;
2319 goto error;
2320 }
2321 }
2322
2323 btrfs_free_path(path);
2324 return 0;
2325
2326 error:
2327 /*
2328 * There are several error cases:
2329 *
2330 * 1) Failed without falling back to COW
2331 * start cur_offset end
2332 * |/////////////| |
2333 *
2334 * For range [start, cur_offset) the folios are already unlocked (except
2335 * @locked_folio), EXTENT_DELALLOC already removed.
2336 * Only need to clear the dirty flag as they will never be submitted.
2337 * Ordered extent and extent maps are handled by
2338 * btrfs_mark_ordered_io_finished() inside run_delalloc_range().
2339 *
2340 * 2) Failed with error from fallback_to_cow()
2341 * start cur_offset cow_end end
2342 * |/////////////|-----------| |
2343 *
2344 * For range [start, cur_offset) it's the same as case 1).
2345 * But for range [cur_offset, cow_end), the folios have dirty flag
2346 * cleared and unlocked, EXTENT_DEALLLOC cleared by cow_file_range().
2347 *
2348 * Thus we should not call extent_clear_unlock_delalloc() on range
2349 * [cur_offset, cow_end), as the folios are already unlocked.
2350 *
2351 * So clear the folio dirty flags for [start, cur_offset) first.
2352 */
2353 if (cur_offset > start)
2354 cleanup_dirty_folios(inode, locked_folio, start, cur_offset - 1, ret);
2355
2356 /*
2357 * If an error happened while a COW region is outstanding, cur_offset
2358 * needs to be reset to @cow_end + 1 to skip the COW range, as
2359 * cow_file_range() will do the proper cleanup at error.
2360 */
2361 if (cow_end)
2362 cur_offset = cow_end + 1;
2363
2364 /*
2365 * We need to lock the extent here because we're clearing DELALLOC and
2366 * we're not locked at this point.
2367 */
2368 if (cur_offset < end) {
2369 struct extent_state *cached = NULL;
2370
2371 lock_extent(&inode->io_tree, cur_offset, end, &cached);
2372 extent_clear_unlock_delalloc(inode, cur_offset, end,
2373 locked_folio, &cached,
2374 EXTENT_LOCKED | EXTENT_DELALLOC |
2375 EXTENT_DEFRAG |
2376 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2377 PAGE_START_WRITEBACK |
2378 PAGE_END_WRITEBACK);
2379 btrfs_qgroup_free_data(inode, NULL, cur_offset, end - cur_offset + 1, NULL);
2380 }
2381 btrfs_free_path(path);
2382 return ret;
2383 }
2384
should_nocow(struct btrfs_inode * inode,u64 start,u64 end)2385 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2386 {
2387 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2388 if (inode->defrag_bytes &&
2389 test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
2390 return false;
2391 return true;
2392 }
2393 return false;
2394 }
2395
2396 /*
2397 * Function to process delayed allocation (create CoW) for ranges which are
2398 * being touched for the first time.
2399 */
btrfs_run_delalloc_range(struct btrfs_inode * inode,struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc)2400 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio,
2401 u64 start, u64 end, struct writeback_control *wbc)
2402 {
2403 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2404 int ret;
2405
2406 /*
2407 * The range must cover part of the @locked_folio, or a return of 1
2408 * can confuse the caller.
2409 */
2410 ASSERT(!(end <= folio_pos(locked_folio) ||
2411 start >= folio_pos(locked_folio) + folio_size(locked_folio)));
2412
2413 if (should_nocow(inode, start, end)) {
2414 ret = run_delalloc_nocow(inode, locked_folio, start, end);
2415 goto out;
2416 }
2417
2418 if (btrfs_inode_can_compress(inode) &&
2419 inode_need_compress(inode, start, end) &&
2420 run_delalloc_compressed(inode, locked_folio, start, end, wbc))
2421 return 1;
2422
2423 if (zoned)
2424 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc,
2425 true);
2426 else
2427 ret = cow_file_range(inode, locked_folio, start, end, NULL,
2428 false, false);
2429
2430 out:
2431 if (ret < 0)
2432 btrfs_cleanup_ordered_extents(inode, NULL, start, end - start + 1);
2433 return ret;
2434 }
2435
btrfs_split_delalloc_extent(struct btrfs_inode * inode,struct extent_state * orig,u64 split)2436 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2437 struct extent_state *orig, u64 split)
2438 {
2439 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2440 u64 size;
2441
2442 lockdep_assert_held(&inode->io_tree.lock);
2443
2444 /* not delalloc, ignore it */
2445 if (!(orig->state & EXTENT_DELALLOC))
2446 return;
2447
2448 size = orig->end - orig->start + 1;
2449 if (size > fs_info->max_extent_size) {
2450 u32 num_extents;
2451 u64 new_size;
2452
2453 /*
2454 * See the explanation in btrfs_merge_delalloc_extent, the same
2455 * applies here, just in reverse.
2456 */
2457 new_size = orig->end - split + 1;
2458 num_extents = count_max_extents(fs_info, new_size);
2459 new_size = split - orig->start;
2460 num_extents += count_max_extents(fs_info, new_size);
2461 if (count_max_extents(fs_info, size) >= num_extents)
2462 return;
2463 }
2464
2465 spin_lock(&inode->lock);
2466 btrfs_mod_outstanding_extents(inode, 1);
2467 spin_unlock(&inode->lock);
2468 }
2469
2470 /*
2471 * Handle merged delayed allocation extents so we can keep track of new extents
2472 * that are just merged onto old extents, such as when we are doing sequential
2473 * writes, so we can properly account for the metadata space we'll need.
2474 */
btrfs_merge_delalloc_extent(struct btrfs_inode * inode,struct extent_state * new,struct extent_state * other)2475 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2476 struct extent_state *other)
2477 {
2478 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2479 u64 new_size, old_size;
2480 u32 num_extents;
2481
2482 lockdep_assert_held(&inode->io_tree.lock);
2483
2484 /* not delalloc, ignore it */
2485 if (!(other->state & EXTENT_DELALLOC))
2486 return;
2487
2488 if (new->start > other->start)
2489 new_size = new->end - other->start + 1;
2490 else
2491 new_size = other->end - new->start + 1;
2492
2493 /* we're not bigger than the max, unreserve the space and go */
2494 if (new_size <= fs_info->max_extent_size) {
2495 spin_lock(&inode->lock);
2496 btrfs_mod_outstanding_extents(inode, -1);
2497 spin_unlock(&inode->lock);
2498 return;
2499 }
2500
2501 /*
2502 * We have to add up either side to figure out how many extents were
2503 * accounted for before we merged into one big extent. If the number of
2504 * extents we accounted for is <= the amount we need for the new range
2505 * then we can return, otherwise drop. Think of it like this
2506 *
2507 * [ 4k][MAX_SIZE]
2508 *
2509 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2510 * need 2 outstanding extents, on one side we have 1 and the other side
2511 * we have 1 so they are == and we can return. But in this case
2512 *
2513 * [MAX_SIZE+4k][MAX_SIZE+4k]
2514 *
2515 * Each range on their own accounts for 2 extents, but merged together
2516 * they are only 3 extents worth of accounting, so we need to drop in
2517 * this case.
2518 */
2519 old_size = other->end - other->start + 1;
2520 num_extents = count_max_extents(fs_info, old_size);
2521 old_size = new->end - new->start + 1;
2522 num_extents += count_max_extents(fs_info, old_size);
2523 if (count_max_extents(fs_info, new_size) >= num_extents)
2524 return;
2525
2526 spin_lock(&inode->lock);
2527 btrfs_mod_outstanding_extents(inode, -1);
2528 spin_unlock(&inode->lock);
2529 }
2530
btrfs_add_delalloc_inode(struct btrfs_inode * inode)2531 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode)
2532 {
2533 struct btrfs_root *root = inode->root;
2534 struct btrfs_fs_info *fs_info = root->fs_info;
2535
2536 spin_lock(&root->delalloc_lock);
2537 ASSERT(list_empty(&inode->delalloc_inodes));
2538 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2539 root->nr_delalloc_inodes++;
2540 if (root->nr_delalloc_inodes == 1) {
2541 spin_lock(&fs_info->delalloc_root_lock);
2542 ASSERT(list_empty(&root->delalloc_root));
2543 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots);
2544 spin_unlock(&fs_info->delalloc_root_lock);
2545 }
2546 spin_unlock(&root->delalloc_lock);
2547 }
2548
btrfs_del_delalloc_inode(struct btrfs_inode * inode)2549 void btrfs_del_delalloc_inode(struct btrfs_inode *inode)
2550 {
2551 struct btrfs_root *root = inode->root;
2552 struct btrfs_fs_info *fs_info = root->fs_info;
2553
2554 lockdep_assert_held(&root->delalloc_lock);
2555
2556 /*
2557 * We may be called after the inode was already deleted from the list,
2558 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(),
2559 * and then later through btrfs_clear_delalloc_extent() while the inode
2560 * still has ->delalloc_bytes > 0.
2561 */
2562 if (!list_empty(&inode->delalloc_inodes)) {
2563 list_del_init(&inode->delalloc_inodes);
2564 root->nr_delalloc_inodes--;
2565 if (!root->nr_delalloc_inodes) {
2566 ASSERT(list_empty(&root->delalloc_inodes));
2567 spin_lock(&fs_info->delalloc_root_lock);
2568 ASSERT(!list_empty(&root->delalloc_root));
2569 list_del_init(&root->delalloc_root);
2570 spin_unlock(&fs_info->delalloc_root_lock);
2571 }
2572 }
2573 }
2574
2575 /*
2576 * Properly track delayed allocation bytes in the inode and to maintain the
2577 * list of inodes that have pending delalloc work to be done.
2578 */
btrfs_set_delalloc_extent(struct btrfs_inode * inode,struct extent_state * state,u32 bits)2579 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2580 u32 bits)
2581 {
2582 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2583
2584 lockdep_assert_held(&inode->io_tree.lock);
2585
2586 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2587 WARN_ON(1);
2588 /*
2589 * set_bit and clear bit hooks normally require _irqsave/restore
2590 * but in this case, we are only testing for the DELALLOC
2591 * bit, which is only set or cleared with irqs on
2592 */
2593 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2594 u64 len = state->end + 1 - state->start;
2595 u64 prev_delalloc_bytes;
2596 u32 num_extents = count_max_extents(fs_info, len);
2597
2598 spin_lock(&inode->lock);
2599 btrfs_mod_outstanding_extents(inode, num_extents);
2600 spin_unlock(&inode->lock);
2601
2602 /* For sanity tests */
2603 if (btrfs_is_testing(fs_info))
2604 return;
2605
2606 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2607 fs_info->delalloc_batch);
2608 spin_lock(&inode->lock);
2609 prev_delalloc_bytes = inode->delalloc_bytes;
2610 inode->delalloc_bytes += len;
2611 if (bits & EXTENT_DEFRAG)
2612 inode->defrag_bytes += len;
2613 spin_unlock(&inode->lock);
2614
2615 /*
2616 * We don't need to be under the protection of the inode's lock,
2617 * because we are called while holding the inode's io_tree lock
2618 * and are therefore protected against concurrent calls of this
2619 * function and btrfs_clear_delalloc_extent().
2620 */
2621 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0)
2622 btrfs_add_delalloc_inode(inode);
2623 }
2624
2625 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2626 (bits & EXTENT_DELALLOC_NEW)) {
2627 spin_lock(&inode->lock);
2628 inode->new_delalloc_bytes += state->end + 1 - state->start;
2629 spin_unlock(&inode->lock);
2630 }
2631 }
2632
2633 /*
2634 * Once a range is no longer delalloc this function ensures that proper
2635 * accounting happens.
2636 */
btrfs_clear_delalloc_extent(struct btrfs_inode * inode,struct extent_state * state,u32 bits)2637 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2638 struct extent_state *state, u32 bits)
2639 {
2640 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2641 u64 len = state->end + 1 - state->start;
2642 u32 num_extents = count_max_extents(fs_info, len);
2643
2644 lockdep_assert_held(&inode->io_tree.lock);
2645
2646 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2647 spin_lock(&inode->lock);
2648 inode->defrag_bytes -= len;
2649 spin_unlock(&inode->lock);
2650 }
2651
2652 /*
2653 * set_bit and clear bit hooks normally require _irqsave/restore
2654 * but in this case, we are only testing for the DELALLOC
2655 * bit, which is only set or cleared with irqs on
2656 */
2657 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2658 struct btrfs_root *root = inode->root;
2659 u64 new_delalloc_bytes;
2660
2661 spin_lock(&inode->lock);
2662 btrfs_mod_outstanding_extents(inode, -num_extents);
2663 spin_unlock(&inode->lock);
2664
2665 /*
2666 * We don't reserve metadata space for space cache inodes so we
2667 * don't need to call delalloc_release_metadata if there is an
2668 * error.
2669 */
2670 if (bits & EXTENT_CLEAR_META_RESV &&
2671 root != fs_info->tree_root)
2672 btrfs_delalloc_release_metadata(inode, len, true);
2673
2674 /* For sanity tests. */
2675 if (btrfs_is_testing(fs_info))
2676 return;
2677
2678 if (!btrfs_is_data_reloc_root(root) &&
2679 !btrfs_is_free_space_inode(inode) &&
2680 !(state->state & EXTENT_NORESERVE) &&
2681 (bits & EXTENT_CLEAR_DATA_RESV))
2682 btrfs_free_reserved_data_space_noquota(fs_info, len);
2683
2684 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2685 fs_info->delalloc_batch);
2686 spin_lock(&inode->lock);
2687 inode->delalloc_bytes -= len;
2688 new_delalloc_bytes = inode->delalloc_bytes;
2689 spin_unlock(&inode->lock);
2690
2691 /*
2692 * We don't need to be under the protection of the inode's lock,
2693 * because we are called while holding the inode's io_tree lock
2694 * and are therefore protected against concurrent calls of this
2695 * function and btrfs_set_delalloc_extent().
2696 */
2697 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) {
2698 spin_lock(&root->delalloc_lock);
2699 btrfs_del_delalloc_inode(inode);
2700 spin_unlock(&root->delalloc_lock);
2701 }
2702 }
2703
2704 if ((state->state & EXTENT_DELALLOC_NEW) &&
2705 (bits & EXTENT_DELALLOC_NEW)) {
2706 spin_lock(&inode->lock);
2707 ASSERT(inode->new_delalloc_bytes >= len);
2708 inode->new_delalloc_bytes -= len;
2709 if (bits & EXTENT_ADD_INODE_BYTES)
2710 inode_add_bytes(&inode->vfs_inode, len);
2711 spin_unlock(&inode->lock);
2712 }
2713 }
2714
2715 /*
2716 * given a list of ordered sums record them in the inode. This happens
2717 * at IO completion time based on sums calculated at bio submission time.
2718 */
add_pending_csums(struct btrfs_trans_handle * trans,struct list_head * list)2719 static int add_pending_csums(struct btrfs_trans_handle *trans,
2720 struct list_head *list)
2721 {
2722 struct btrfs_ordered_sum *sum;
2723 struct btrfs_root *csum_root = NULL;
2724 int ret;
2725
2726 list_for_each_entry(sum, list, list) {
2727 trans->adding_csums = true;
2728 if (!csum_root)
2729 csum_root = btrfs_csum_root(trans->fs_info,
2730 sum->logical);
2731 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2732 trans->adding_csums = false;
2733 if (ret)
2734 return ret;
2735 }
2736 return 0;
2737 }
2738
btrfs_find_new_delalloc_bytes(struct btrfs_inode * inode,const u64 start,const u64 len,struct extent_state ** cached_state)2739 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2740 const u64 start,
2741 const u64 len,
2742 struct extent_state **cached_state)
2743 {
2744 u64 search_start = start;
2745 const u64 end = start + len - 1;
2746
2747 while (search_start < end) {
2748 const u64 search_len = end - search_start + 1;
2749 struct extent_map *em;
2750 u64 em_len;
2751 int ret = 0;
2752
2753 em = btrfs_get_extent(inode, NULL, search_start, search_len);
2754 if (IS_ERR(em))
2755 return PTR_ERR(em);
2756
2757 if (em->disk_bytenr != EXTENT_MAP_HOLE)
2758 goto next;
2759
2760 em_len = em->len;
2761 if (em->start < search_start)
2762 em_len -= search_start - em->start;
2763 if (em_len > search_len)
2764 em_len = search_len;
2765
2766 ret = set_extent_bit(&inode->io_tree, search_start,
2767 search_start + em_len - 1,
2768 EXTENT_DELALLOC_NEW, cached_state);
2769 next:
2770 search_start = extent_map_end(em);
2771 free_extent_map(em);
2772 if (ret)
2773 return ret;
2774 }
2775 return 0;
2776 }
2777
btrfs_set_extent_delalloc(struct btrfs_inode * inode,u64 start,u64 end,unsigned int extra_bits,struct extent_state ** cached_state)2778 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2779 unsigned int extra_bits,
2780 struct extent_state **cached_state)
2781 {
2782 WARN_ON(PAGE_ALIGNED(end));
2783
2784 if (start >= i_size_read(&inode->vfs_inode) &&
2785 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2786 /*
2787 * There can't be any extents following eof in this case so just
2788 * set the delalloc new bit for the range directly.
2789 */
2790 extra_bits |= EXTENT_DELALLOC_NEW;
2791 } else {
2792 int ret;
2793
2794 ret = btrfs_find_new_delalloc_bytes(inode, start,
2795 end + 1 - start,
2796 cached_state);
2797 if (ret)
2798 return ret;
2799 }
2800
2801 return set_extent_bit(&inode->io_tree, start, end,
2802 EXTENT_DELALLOC | extra_bits, cached_state);
2803 }
2804
2805 /* see btrfs_writepage_start_hook for details on why this is required */
2806 struct btrfs_writepage_fixup {
2807 struct folio *folio;
2808 struct btrfs_inode *inode;
2809 struct btrfs_work work;
2810 };
2811
btrfs_writepage_fixup_worker(struct btrfs_work * work)2812 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2813 {
2814 struct btrfs_writepage_fixup *fixup =
2815 container_of(work, struct btrfs_writepage_fixup, work);
2816 struct btrfs_ordered_extent *ordered;
2817 struct extent_state *cached_state = NULL;
2818 struct extent_changeset *data_reserved = NULL;
2819 struct folio *folio = fixup->folio;
2820 struct btrfs_inode *inode = fixup->inode;
2821 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2822 u64 page_start = folio_pos(folio);
2823 u64 page_end = folio_pos(folio) + folio_size(folio) - 1;
2824 int ret = 0;
2825 bool free_delalloc_space = true;
2826
2827 /*
2828 * This is similar to page_mkwrite, we need to reserve the space before
2829 * we take the folio lock.
2830 */
2831 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2832 folio_size(folio));
2833 again:
2834 folio_lock(folio);
2835
2836 /*
2837 * Before we queued this fixup, we took a reference on the folio.
2838 * folio->mapping may go NULL, but it shouldn't be moved to a different
2839 * address space.
2840 */
2841 if (!folio->mapping || !folio_test_dirty(folio) ||
2842 !folio_test_checked(folio)) {
2843 /*
2844 * Unfortunately this is a little tricky, either
2845 *
2846 * 1) We got here and our folio had already been dealt with and
2847 * we reserved our space, thus ret == 0, so we need to just
2848 * drop our space reservation and bail. This can happen the
2849 * first time we come into the fixup worker, or could happen
2850 * while waiting for the ordered extent.
2851 * 2) Our folio was already dealt with, but we happened to get an
2852 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2853 * this case we obviously don't have anything to release, but
2854 * because the folio was already dealt with we don't want to
2855 * mark the folio with an error, so make sure we're resetting
2856 * ret to 0. This is why we have this check _before_ the ret
2857 * check, because we do not want to have a surprise ENOSPC
2858 * when the folio was already properly dealt with.
2859 */
2860 if (!ret) {
2861 btrfs_delalloc_release_extents(inode, folio_size(folio));
2862 btrfs_delalloc_release_space(inode, data_reserved,
2863 page_start, folio_size(folio),
2864 true);
2865 }
2866 ret = 0;
2867 goto out_page;
2868 }
2869
2870 /*
2871 * We can't mess with the folio state unless it is locked, so now that
2872 * it is locked bail if we failed to make our space reservation.
2873 */
2874 if (ret)
2875 goto out_page;
2876
2877 lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2878
2879 /* already ordered? We're done */
2880 if (folio_test_ordered(folio))
2881 goto out_reserved;
2882
2883 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2884 if (ordered) {
2885 unlock_extent(&inode->io_tree, page_start, page_end,
2886 &cached_state);
2887 folio_unlock(folio);
2888 btrfs_start_ordered_extent(ordered);
2889 btrfs_put_ordered_extent(ordered);
2890 goto again;
2891 }
2892
2893 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2894 &cached_state);
2895 if (ret)
2896 goto out_reserved;
2897
2898 /*
2899 * Everything went as planned, we're now the owner of a dirty page with
2900 * delayed allocation bits set and space reserved for our COW
2901 * destination.
2902 *
2903 * The page was dirty when we started, nothing should have cleaned it.
2904 */
2905 BUG_ON(!folio_test_dirty(folio));
2906 free_delalloc_space = false;
2907 out_reserved:
2908 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2909 if (free_delalloc_space)
2910 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2911 PAGE_SIZE, true);
2912 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2913 out_page:
2914 if (ret) {
2915 /*
2916 * We hit ENOSPC or other errors. Update the mapping and page
2917 * to reflect the errors and clean the page.
2918 */
2919 mapping_set_error(folio->mapping, ret);
2920 btrfs_mark_ordered_io_finished(inode, folio, page_start,
2921 folio_size(folio), !ret);
2922 folio_clear_dirty_for_io(folio);
2923 }
2924 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
2925 folio_unlock(folio);
2926 folio_put(folio);
2927 kfree(fixup);
2928 extent_changeset_free(data_reserved);
2929 /*
2930 * As a precaution, do a delayed iput in case it would be the last iput
2931 * that could need flushing space. Recursing back to fixup worker would
2932 * deadlock.
2933 */
2934 btrfs_add_delayed_iput(inode);
2935 }
2936
2937 /*
2938 * There are a few paths in the higher layers of the kernel that directly
2939 * set the folio dirty bit without asking the filesystem if it is a
2940 * good idea. This causes problems because we want to make sure COW
2941 * properly happens and the data=ordered rules are followed.
2942 *
2943 * In our case any range that doesn't have the ORDERED bit set
2944 * hasn't been properly setup for IO. We kick off an async process
2945 * to fix it up. The async helper will wait for ordered extents, set
2946 * the delalloc bit and make it safe to write the folio.
2947 */
btrfs_writepage_cow_fixup(struct folio * folio)2948 int btrfs_writepage_cow_fixup(struct folio *folio)
2949 {
2950 struct inode *inode = folio->mapping->host;
2951 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2952 struct btrfs_writepage_fixup *fixup;
2953
2954 /* This folio has ordered extent covering it already */
2955 if (folio_test_ordered(folio))
2956 return 0;
2957
2958 /*
2959 * folio_checked is set below when we create a fixup worker for this
2960 * folio, don't try to create another one if we're already
2961 * folio_test_checked.
2962 *
2963 * The extent_io writepage code will redirty the foio if we send back
2964 * EAGAIN.
2965 */
2966 if (folio_test_checked(folio))
2967 return -EAGAIN;
2968
2969 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2970 if (!fixup)
2971 return -EAGAIN;
2972
2973 /*
2974 * We are already holding a reference to this inode from
2975 * write_cache_pages. We need to hold it because the space reservation
2976 * takes place outside of the folio lock, and we can't trust
2977 * page->mapping outside of the folio lock.
2978 */
2979 ihold(inode);
2980 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
2981 folio_get(folio);
2982 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
2983 fixup->folio = folio;
2984 fixup->inode = BTRFS_I(inode);
2985 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2986
2987 return -EAGAIN;
2988 }
2989
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 file_pos,struct btrfs_file_extent_item * stack_fi,const bool update_inode_bytes,u64 qgroup_reserved)2990 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2991 struct btrfs_inode *inode, u64 file_pos,
2992 struct btrfs_file_extent_item *stack_fi,
2993 const bool update_inode_bytes,
2994 u64 qgroup_reserved)
2995 {
2996 struct btrfs_root *root = inode->root;
2997 const u64 sectorsize = root->fs_info->sectorsize;
2998 struct btrfs_path *path;
2999 struct extent_buffer *leaf;
3000 struct btrfs_key ins;
3001 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
3002 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
3003 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
3004 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
3005 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
3006 struct btrfs_drop_extents_args drop_args = { 0 };
3007 int ret;
3008
3009 path = btrfs_alloc_path();
3010 if (!path)
3011 return -ENOMEM;
3012
3013 /*
3014 * we may be replacing one extent in the tree with another.
3015 * The new extent is pinned in the extent map, and we don't want
3016 * to drop it from the cache until it is completely in the btree.
3017 *
3018 * So, tell btrfs_drop_extents to leave this extent in the cache.
3019 * the caller is expected to unpin it and allow it to be merged
3020 * with the others.
3021 */
3022 drop_args.path = path;
3023 drop_args.start = file_pos;
3024 drop_args.end = file_pos + num_bytes;
3025 drop_args.replace_extent = true;
3026 drop_args.extent_item_size = sizeof(*stack_fi);
3027 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
3028 if (ret)
3029 goto out;
3030
3031 if (!drop_args.extent_inserted) {
3032 ins.objectid = btrfs_ino(inode);
3033 ins.offset = file_pos;
3034 ins.type = BTRFS_EXTENT_DATA_KEY;
3035
3036 ret = btrfs_insert_empty_item(trans, root, path, &ins,
3037 sizeof(*stack_fi));
3038 if (ret)
3039 goto out;
3040 }
3041 leaf = path->nodes[0];
3042 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
3043 write_extent_buffer(leaf, stack_fi,
3044 btrfs_item_ptr_offset(leaf, path->slots[0]),
3045 sizeof(struct btrfs_file_extent_item));
3046
3047 btrfs_mark_buffer_dirty(trans, leaf);
3048 btrfs_release_path(path);
3049
3050 /*
3051 * If we dropped an inline extent here, we know the range where it is
3052 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
3053 * number of bytes only for that range containing the inline extent.
3054 * The remaining of the range will be processed when clearning the
3055 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
3056 */
3057 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
3058 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
3059
3060 inline_size = drop_args.bytes_found - inline_size;
3061 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
3062 drop_args.bytes_found -= inline_size;
3063 num_bytes -= sectorsize;
3064 }
3065
3066 if (update_inode_bytes)
3067 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
3068
3069 ins.objectid = disk_bytenr;
3070 ins.offset = disk_num_bytes;
3071 ins.type = BTRFS_EXTENT_ITEM_KEY;
3072
3073 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
3074 if (ret)
3075 goto out;
3076
3077 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
3078 file_pos - offset,
3079 qgroup_reserved, &ins);
3080 out:
3081 btrfs_free_path(path);
3082
3083 return ret;
3084 }
3085
btrfs_release_delalloc_bytes(struct btrfs_fs_info * fs_info,u64 start,u64 len)3086 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3087 u64 start, u64 len)
3088 {
3089 struct btrfs_block_group *cache;
3090
3091 cache = btrfs_lookup_block_group(fs_info, start);
3092 ASSERT(cache);
3093
3094 spin_lock(&cache->lock);
3095 cache->delalloc_bytes -= len;
3096 spin_unlock(&cache->lock);
3097
3098 btrfs_put_block_group(cache);
3099 }
3100
insert_ordered_extent_file_extent(struct btrfs_trans_handle * trans,struct btrfs_ordered_extent * oe)3101 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3102 struct btrfs_ordered_extent *oe)
3103 {
3104 struct btrfs_file_extent_item stack_fi;
3105 bool update_inode_bytes;
3106 u64 num_bytes = oe->num_bytes;
3107 u64 ram_bytes = oe->ram_bytes;
3108
3109 memset(&stack_fi, 0, sizeof(stack_fi));
3110 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3111 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3112 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3113 oe->disk_num_bytes);
3114 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3115 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
3116 num_bytes = oe->truncated_len;
3117 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3118 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3119 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3120 /* Encryption and other encoding is reserved and all 0 */
3121
3122 /*
3123 * For delalloc, when completing an ordered extent we update the inode's
3124 * bytes when clearing the range in the inode's io tree, so pass false
3125 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3126 * except if the ordered extent was truncated.
3127 */
3128 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3129 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3130 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3131
3132 return insert_reserved_file_extent(trans, oe->inode,
3133 oe->file_offset, &stack_fi,
3134 update_inode_bytes, oe->qgroup_rsv);
3135 }
3136
3137 /*
3138 * As ordered data IO finishes, this gets called so we can finish
3139 * an ordered extent if the range of bytes in the file it covers are
3140 * fully written.
3141 */
btrfs_finish_one_ordered(struct btrfs_ordered_extent * ordered_extent)3142 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3143 {
3144 struct btrfs_inode *inode = ordered_extent->inode;
3145 struct btrfs_root *root = inode->root;
3146 struct btrfs_fs_info *fs_info = root->fs_info;
3147 struct btrfs_trans_handle *trans = NULL;
3148 struct extent_io_tree *io_tree = &inode->io_tree;
3149 struct extent_state *cached_state = NULL;
3150 u64 start, end;
3151 int compress_type = 0;
3152 int ret = 0;
3153 u64 logical_len = ordered_extent->num_bytes;
3154 bool freespace_inode;
3155 bool truncated = false;
3156 bool clear_reserved_extent = true;
3157 unsigned int clear_bits = EXTENT_DEFRAG;
3158
3159 start = ordered_extent->file_offset;
3160 end = start + ordered_extent->num_bytes - 1;
3161
3162 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3163 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3164 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3165 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3166 clear_bits |= EXTENT_DELALLOC_NEW;
3167
3168 freespace_inode = btrfs_is_free_space_inode(inode);
3169 if (!freespace_inode)
3170 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3171
3172 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3173 ret = -EIO;
3174 goto out;
3175 }
3176
3177 if (btrfs_is_zoned(fs_info))
3178 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3179 ordered_extent->disk_num_bytes);
3180
3181 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3182 truncated = true;
3183 logical_len = ordered_extent->truncated_len;
3184 /* Truncated the entire extent, don't bother adding */
3185 if (!logical_len)
3186 goto out;
3187 }
3188
3189 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3190 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3191
3192 btrfs_inode_safe_disk_i_size_write(inode, 0);
3193 if (freespace_inode)
3194 trans = btrfs_join_transaction_spacecache(root);
3195 else
3196 trans = btrfs_join_transaction(root);
3197 if (IS_ERR(trans)) {
3198 ret = PTR_ERR(trans);
3199 trans = NULL;
3200 goto out;
3201 }
3202 trans->block_rsv = &inode->block_rsv;
3203 ret = btrfs_update_inode_fallback(trans, inode);
3204 if (ret) /* -ENOMEM or corruption */
3205 btrfs_abort_transaction(trans, ret);
3206
3207 ret = btrfs_insert_raid_extent(trans, ordered_extent);
3208 if (ret)
3209 btrfs_abort_transaction(trans, ret);
3210
3211 goto out;
3212 }
3213
3214 clear_bits |= EXTENT_LOCKED;
3215 lock_extent(io_tree, start, end, &cached_state);
3216
3217 if (freespace_inode)
3218 trans = btrfs_join_transaction_spacecache(root);
3219 else
3220 trans = btrfs_join_transaction(root);
3221 if (IS_ERR(trans)) {
3222 ret = PTR_ERR(trans);
3223 trans = NULL;
3224 goto out;
3225 }
3226
3227 trans->block_rsv = &inode->block_rsv;
3228
3229 ret = btrfs_insert_raid_extent(trans, ordered_extent);
3230 if (ret)
3231 goto out;
3232
3233 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3234 compress_type = ordered_extent->compress_type;
3235 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3236 BUG_ON(compress_type);
3237 ret = btrfs_mark_extent_written(trans, inode,
3238 ordered_extent->file_offset,
3239 ordered_extent->file_offset +
3240 logical_len);
3241 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3242 ordered_extent->disk_num_bytes);
3243 } else {
3244 BUG_ON(root == fs_info->tree_root);
3245 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3246 if (!ret) {
3247 clear_reserved_extent = false;
3248 btrfs_release_delalloc_bytes(fs_info,
3249 ordered_extent->disk_bytenr,
3250 ordered_extent->disk_num_bytes);
3251 }
3252 }
3253 if (ret < 0) {
3254 btrfs_abort_transaction(trans, ret);
3255 goto out;
3256 }
3257
3258 ret = unpin_extent_cache(inode, ordered_extent->file_offset,
3259 ordered_extent->num_bytes, trans->transid);
3260 if (ret < 0) {
3261 btrfs_abort_transaction(trans, ret);
3262 goto out;
3263 }
3264
3265 ret = add_pending_csums(trans, &ordered_extent->list);
3266 if (ret) {
3267 btrfs_abort_transaction(trans, ret);
3268 goto out;
3269 }
3270
3271 /*
3272 * If this is a new delalloc range, clear its new delalloc flag to
3273 * update the inode's number of bytes. This needs to be done first
3274 * before updating the inode item.
3275 */
3276 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3277 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3278 clear_extent_bit(&inode->io_tree, start, end,
3279 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3280 &cached_state);
3281
3282 btrfs_inode_safe_disk_i_size_write(inode, 0);
3283 ret = btrfs_update_inode_fallback(trans, inode);
3284 if (ret) { /* -ENOMEM or corruption */
3285 btrfs_abort_transaction(trans, ret);
3286 goto out;
3287 }
3288 out:
3289 clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3290 &cached_state);
3291
3292 if (trans)
3293 btrfs_end_transaction(trans);
3294
3295 if (ret || truncated) {
3296 u64 unwritten_start = start;
3297
3298 /*
3299 * If we failed to finish this ordered extent for any reason we
3300 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3301 * extent, and mark the inode with the error if it wasn't
3302 * already set. Any error during writeback would have already
3303 * set the mapping error, so we need to set it if we're the ones
3304 * marking this ordered extent as failed.
3305 */
3306 if (ret)
3307 btrfs_mark_ordered_extent_error(ordered_extent);
3308
3309 if (truncated)
3310 unwritten_start += logical_len;
3311 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3312
3313 /*
3314 * Drop extent maps for the part of the extent we didn't write.
3315 *
3316 * We have an exception here for the free_space_inode, this is
3317 * because when we do btrfs_get_extent() on the free space inode
3318 * we will search the commit root. If this is a new block group
3319 * we won't find anything, and we will trip over the assert in
3320 * writepage where we do ASSERT(em->block_start !=
3321 * EXTENT_MAP_HOLE).
3322 *
3323 * Theoretically we could also skip this for any NOCOW extent as
3324 * we don't mess with the extent map tree in the NOCOW case, but
3325 * for now simply skip this if we are the free space inode.
3326 */
3327 if (!btrfs_is_free_space_inode(inode))
3328 btrfs_drop_extent_map_range(inode, unwritten_start,
3329 end, false);
3330
3331 /*
3332 * If the ordered extent had an IOERR or something else went
3333 * wrong we need to return the space for this ordered extent
3334 * back to the allocator. We only free the extent in the
3335 * truncated case if we didn't write out the extent at all.
3336 *
3337 * If we made it past insert_reserved_file_extent before we
3338 * errored out then we don't need to do this as the accounting
3339 * has already been done.
3340 */
3341 if ((ret || !logical_len) &&
3342 clear_reserved_extent &&
3343 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3344 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3345 /*
3346 * Discard the range before returning it back to the
3347 * free space pool
3348 */
3349 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3350 btrfs_discard_extent(fs_info,
3351 ordered_extent->disk_bytenr,
3352 ordered_extent->disk_num_bytes,
3353 NULL);
3354 btrfs_free_reserved_extent(fs_info,
3355 ordered_extent->disk_bytenr,
3356 ordered_extent->disk_num_bytes, 1);
3357 /*
3358 * Actually free the qgroup rsv which was released when
3359 * the ordered extent was created.
3360 */
3361 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root),
3362 ordered_extent->qgroup_rsv,
3363 BTRFS_QGROUP_RSV_DATA);
3364 }
3365 }
3366
3367 /*
3368 * This needs to be done to make sure anybody waiting knows we are done
3369 * updating everything for this ordered extent.
3370 */
3371 btrfs_remove_ordered_extent(inode, ordered_extent);
3372
3373 /* once for us */
3374 btrfs_put_ordered_extent(ordered_extent);
3375 /* once for the tree */
3376 btrfs_put_ordered_extent(ordered_extent);
3377
3378 return ret;
3379 }
3380
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered)3381 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3382 {
3383 if (btrfs_is_zoned(ordered->inode->root->fs_info) &&
3384 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3385 list_empty(&ordered->bioc_list))
3386 btrfs_finish_ordered_zoned(ordered);
3387 return btrfs_finish_one_ordered(ordered);
3388 }
3389
3390 /*
3391 * Verify the checksum for a single sector without any extra action that depend
3392 * on the type of I/O.
3393 */
btrfs_check_sector_csum(struct btrfs_fs_info * fs_info,struct page * page,u32 pgoff,u8 * csum,const u8 * const csum_expected)3394 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3395 u32 pgoff, u8 *csum, const u8 * const csum_expected)
3396 {
3397 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3398 char *kaddr;
3399
3400 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3401
3402 shash->tfm = fs_info->csum_shash;
3403
3404 kaddr = kmap_local_page(page) + pgoff;
3405 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3406 kunmap_local(kaddr);
3407
3408 if (memcmp(csum, csum_expected, fs_info->csum_size))
3409 return -EIO;
3410 return 0;
3411 }
3412
3413 /*
3414 * Verify the checksum of a single data sector.
3415 *
3416 * @bbio: btrfs_io_bio which contains the csum
3417 * @dev: device the sector is on
3418 * @bio_offset: offset to the beginning of the bio (in bytes)
3419 * @bv: bio_vec to check
3420 *
3421 * Check if the checksum on a data block is valid. When a checksum mismatch is
3422 * detected, report the error and fill the corrupted range with zero.
3423 *
3424 * Return %true if the sector is ok or had no checksum to start with, else %false.
3425 */
btrfs_data_csum_ok(struct btrfs_bio * bbio,struct btrfs_device * dev,u32 bio_offset,struct bio_vec * bv)3426 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3427 u32 bio_offset, struct bio_vec *bv)
3428 {
3429 struct btrfs_inode *inode = bbio->inode;
3430 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3431 u64 file_offset = bbio->file_offset + bio_offset;
3432 u64 end = file_offset + bv->bv_len - 1;
3433 u8 *csum_expected;
3434 u8 csum[BTRFS_CSUM_SIZE];
3435
3436 ASSERT(bv->bv_len == fs_info->sectorsize);
3437
3438 if (!bbio->csum)
3439 return true;
3440
3441 if (btrfs_is_data_reloc_root(inode->root) &&
3442 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3443 NULL)) {
3444 /* Skip the range without csum for data reloc inode */
3445 clear_extent_bits(&inode->io_tree, file_offset, end,
3446 EXTENT_NODATASUM);
3447 return true;
3448 }
3449
3450 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3451 fs_info->csum_size;
3452 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3453 csum_expected))
3454 goto zeroit;
3455 return true;
3456
3457 zeroit:
3458 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3459 bbio->mirror_num);
3460 if (dev)
3461 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3462 memzero_bvec(bv);
3463 return false;
3464 }
3465
3466 /*
3467 * Perform a delayed iput on @inode.
3468 *
3469 * @inode: The inode we want to perform iput on
3470 *
3471 * This function uses the generic vfs_inode::i_count to track whether we should
3472 * just decrement it (in case it's > 1) or if this is the last iput then link
3473 * the inode to the delayed iput machinery. Delayed iputs are processed at
3474 * transaction commit time/superblock commit/cleaner kthread.
3475 */
btrfs_add_delayed_iput(struct btrfs_inode * inode)3476 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3477 {
3478 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3479 unsigned long flags;
3480
3481 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3482 return;
3483
3484 atomic_inc(&fs_info->nr_delayed_iputs);
3485 /*
3486 * Need to be irq safe here because we can be called from either an irq
3487 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3488 * context.
3489 */
3490 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3491 ASSERT(list_empty(&inode->delayed_iput));
3492 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3493 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3494 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3495 wake_up_process(fs_info->cleaner_kthread);
3496 }
3497
run_delayed_iput_locked(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3498 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3499 struct btrfs_inode *inode)
3500 {
3501 list_del_init(&inode->delayed_iput);
3502 spin_unlock_irq(&fs_info->delayed_iput_lock);
3503 iput(&inode->vfs_inode);
3504 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3505 wake_up(&fs_info->delayed_iputs_wait);
3506 spin_lock_irq(&fs_info->delayed_iput_lock);
3507 }
3508
btrfs_run_delayed_iput(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3509 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3510 struct btrfs_inode *inode)
3511 {
3512 if (!list_empty(&inode->delayed_iput)) {
3513 spin_lock_irq(&fs_info->delayed_iput_lock);
3514 if (!list_empty(&inode->delayed_iput))
3515 run_delayed_iput_locked(fs_info, inode);
3516 spin_unlock_irq(&fs_info->delayed_iput_lock);
3517 }
3518 }
3519
btrfs_run_delayed_iputs(struct btrfs_fs_info * fs_info)3520 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3521 {
3522 /*
3523 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3524 * calls btrfs_add_delayed_iput() and that needs to lock
3525 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3526 * prevent a deadlock.
3527 */
3528 spin_lock_irq(&fs_info->delayed_iput_lock);
3529 while (!list_empty(&fs_info->delayed_iputs)) {
3530 struct btrfs_inode *inode;
3531
3532 inode = list_first_entry(&fs_info->delayed_iputs,
3533 struct btrfs_inode, delayed_iput);
3534 run_delayed_iput_locked(fs_info, inode);
3535 if (need_resched()) {
3536 spin_unlock_irq(&fs_info->delayed_iput_lock);
3537 cond_resched();
3538 spin_lock_irq(&fs_info->delayed_iput_lock);
3539 }
3540 }
3541 spin_unlock_irq(&fs_info->delayed_iput_lock);
3542 }
3543
3544 /*
3545 * Wait for flushing all delayed iputs
3546 *
3547 * @fs_info: the filesystem
3548 *
3549 * This will wait on any delayed iputs that are currently running with KILLABLE
3550 * set. Once they are all done running we will return, unless we are killed in
3551 * which case we return EINTR. This helps in user operations like fallocate etc
3552 * that might get blocked on the iputs.
3553 *
3554 * Return EINTR if we were killed, 0 if nothing's pending
3555 */
btrfs_wait_on_delayed_iputs(struct btrfs_fs_info * fs_info)3556 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3557 {
3558 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3559 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3560 if (ret)
3561 return -EINTR;
3562 return 0;
3563 }
3564
3565 /*
3566 * This creates an orphan entry for the given inode in case something goes wrong
3567 * in the middle of an unlink.
3568 */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3569 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3570 struct btrfs_inode *inode)
3571 {
3572 int ret;
3573
3574 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3575 if (ret && ret != -EEXIST) {
3576 btrfs_abort_transaction(trans, ret);
3577 return ret;
3578 }
3579
3580 return 0;
3581 }
3582
3583 /*
3584 * We have done the delete so we can go ahead and remove the orphan item for
3585 * this particular inode.
3586 */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3587 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3588 struct btrfs_inode *inode)
3589 {
3590 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3591 }
3592
3593 /*
3594 * this cleans up any orphans that may be left on the list from the last use
3595 * of this root.
3596 */
btrfs_orphan_cleanup(struct btrfs_root * root)3597 int btrfs_orphan_cleanup(struct btrfs_root *root)
3598 {
3599 struct btrfs_fs_info *fs_info = root->fs_info;
3600 struct btrfs_path *path;
3601 struct extent_buffer *leaf;
3602 struct btrfs_key key, found_key;
3603 struct btrfs_trans_handle *trans;
3604 struct inode *inode;
3605 u64 last_objectid = 0;
3606 int ret = 0, nr_unlink = 0;
3607
3608 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3609 return 0;
3610
3611 path = btrfs_alloc_path();
3612 if (!path) {
3613 ret = -ENOMEM;
3614 goto out;
3615 }
3616 path->reada = READA_BACK;
3617
3618 key.objectid = BTRFS_ORPHAN_OBJECTID;
3619 key.type = BTRFS_ORPHAN_ITEM_KEY;
3620 key.offset = (u64)-1;
3621
3622 while (1) {
3623 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3624 if (ret < 0)
3625 goto out;
3626
3627 /*
3628 * if ret == 0 means we found what we were searching for, which
3629 * is weird, but possible, so only screw with path if we didn't
3630 * find the key and see if we have stuff that matches
3631 */
3632 if (ret > 0) {
3633 ret = 0;
3634 if (path->slots[0] == 0)
3635 break;
3636 path->slots[0]--;
3637 }
3638
3639 /* pull out the item */
3640 leaf = path->nodes[0];
3641 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3642
3643 /* make sure the item matches what we want */
3644 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3645 break;
3646 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3647 break;
3648
3649 /* release the path since we're done with it */
3650 btrfs_release_path(path);
3651
3652 /*
3653 * this is where we are basically btrfs_lookup, without the
3654 * crossing root thing. we store the inode number in the
3655 * offset of the orphan item.
3656 */
3657
3658 if (found_key.offset == last_objectid) {
3659 /*
3660 * We found the same inode as before. This means we were
3661 * not able to remove its items via eviction triggered
3662 * by an iput(). A transaction abort may have happened,
3663 * due to -ENOSPC for example, so try to grab the error
3664 * that lead to a transaction abort, if any.
3665 */
3666 btrfs_err(fs_info,
3667 "Error removing orphan entry, stopping orphan cleanup");
3668 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3669 goto out;
3670 }
3671
3672 last_objectid = found_key.offset;
3673
3674 found_key.objectid = found_key.offset;
3675 found_key.type = BTRFS_INODE_ITEM_KEY;
3676 found_key.offset = 0;
3677 inode = btrfs_iget(last_objectid, root);
3678 if (IS_ERR(inode)) {
3679 ret = PTR_ERR(inode);
3680 inode = NULL;
3681 if (ret != -ENOENT)
3682 goto out;
3683 }
3684
3685 if (!inode && root == fs_info->tree_root) {
3686 struct btrfs_root *dead_root;
3687 int is_dead_root = 0;
3688
3689 /*
3690 * This is an orphan in the tree root. Currently these
3691 * could come from 2 sources:
3692 * a) a root (snapshot/subvolume) deletion in progress
3693 * b) a free space cache inode
3694 * We need to distinguish those two, as the orphan item
3695 * for a root must not get deleted before the deletion
3696 * of the snapshot/subvolume's tree completes.
3697 *
3698 * btrfs_find_orphan_roots() ran before us, which has
3699 * found all deleted roots and loaded them into
3700 * fs_info->fs_roots_radix. So here we can find if an
3701 * orphan item corresponds to a deleted root by looking
3702 * up the root from that radix tree.
3703 */
3704
3705 spin_lock(&fs_info->fs_roots_radix_lock);
3706 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3707 (unsigned long)found_key.objectid);
3708 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3709 is_dead_root = 1;
3710 spin_unlock(&fs_info->fs_roots_radix_lock);
3711
3712 if (is_dead_root) {
3713 /* prevent this orphan from being found again */
3714 key.offset = found_key.objectid - 1;
3715 continue;
3716 }
3717
3718 }
3719
3720 /*
3721 * If we have an inode with links, there are a couple of
3722 * possibilities:
3723 *
3724 * 1. We were halfway through creating fsverity metadata for the
3725 * file. In that case, the orphan item represents incomplete
3726 * fsverity metadata which must be cleaned up with
3727 * btrfs_drop_verity_items and deleting the orphan item.
3728
3729 * 2. Old kernels (before v3.12) used to create an
3730 * orphan item for truncate indicating that there were possibly
3731 * extent items past i_size that needed to be deleted. In v3.12,
3732 * truncate was changed to update i_size in sync with the extent
3733 * items, but the (useless) orphan item was still created. Since
3734 * v4.18, we don't create the orphan item for truncate at all.
3735 *
3736 * So, this item could mean that we need to do a truncate, but
3737 * only if this filesystem was last used on a pre-v3.12 kernel
3738 * and was not cleanly unmounted. The odds of that are quite
3739 * slim, and it's a pain to do the truncate now, so just delete
3740 * the orphan item.
3741 *
3742 * It's also possible that this orphan item was supposed to be
3743 * deleted but wasn't. The inode number may have been reused,
3744 * but either way, we can delete the orphan item.
3745 */
3746 if (!inode || inode->i_nlink) {
3747 if (inode) {
3748 ret = btrfs_drop_verity_items(BTRFS_I(inode));
3749 iput(inode);
3750 inode = NULL;
3751 if (ret)
3752 goto out;
3753 }
3754 trans = btrfs_start_transaction(root, 1);
3755 if (IS_ERR(trans)) {
3756 ret = PTR_ERR(trans);
3757 goto out;
3758 }
3759 btrfs_debug(fs_info, "auto deleting %Lu",
3760 found_key.objectid);
3761 ret = btrfs_del_orphan_item(trans, root,
3762 found_key.objectid);
3763 btrfs_end_transaction(trans);
3764 if (ret)
3765 goto out;
3766 continue;
3767 }
3768
3769 nr_unlink++;
3770
3771 /* this will do delete_inode and everything for us */
3772 iput(inode);
3773 }
3774 /* release the path since we're done with it */
3775 btrfs_release_path(path);
3776
3777 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3778 trans = btrfs_join_transaction(root);
3779 if (!IS_ERR(trans))
3780 btrfs_end_transaction(trans);
3781 }
3782
3783 if (nr_unlink)
3784 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3785
3786 out:
3787 if (ret)
3788 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3789 btrfs_free_path(path);
3790 return ret;
3791 }
3792
3793 /*
3794 * very simple check to peek ahead in the leaf looking for xattrs. If we
3795 * don't find any xattrs, we know there can't be any acls.
3796 *
3797 * slot is the slot the inode is in, objectid is the objectid of the inode
3798 */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3799 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3800 int slot, u64 objectid,
3801 int *first_xattr_slot)
3802 {
3803 u32 nritems = btrfs_header_nritems(leaf);
3804 struct btrfs_key found_key;
3805 static u64 xattr_access = 0;
3806 static u64 xattr_default = 0;
3807 int scanned = 0;
3808
3809 if (!xattr_access) {
3810 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3811 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3812 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3813 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3814 }
3815
3816 slot++;
3817 *first_xattr_slot = -1;
3818 while (slot < nritems) {
3819 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3820
3821 /* we found a different objectid, there must not be acls */
3822 if (found_key.objectid != objectid)
3823 return 0;
3824
3825 /* we found an xattr, assume we've got an acl */
3826 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3827 if (*first_xattr_slot == -1)
3828 *first_xattr_slot = slot;
3829 if (found_key.offset == xattr_access ||
3830 found_key.offset == xattr_default)
3831 return 1;
3832 }
3833
3834 /*
3835 * we found a key greater than an xattr key, there can't
3836 * be any acls later on
3837 */
3838 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3839 return 0;
3840
3841 slot++;
3842 scanned++;
3843
3844 /*
3845 * it goes inode, inode backrefs, xattrs, extents,
3846 * so if there are a ton of hard links to an inode there can
3847 * be a lot of backrefs. Don't waste time searching too hard,
3848 * this is just an optimization
3849 */
3850 if (scanned >= 8)
3851 break;
3852 }
3853 /* we hit the end of the leaf before we found an xattr or
3854 * something larger than an xattr. We have to assume the inode
3855 * has acls
3856 */
3857 if (*first_xattr_slot == -1)
3858 *first_xattr_slot = slot;
3859 return 1;
3860 }
3861
btrfs_init_file_extent_tree(struct btrfs_inode * inode)3862 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode)
3863 {
3864 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3865
3866 if (WARN_ON_ONCE(inode->file_extent_tree))
3867 return 0;
3868 if (btrfs_fs_incompat(fs_info, NO_HOLES))
3869 return 0;
3870 if (!S_ISREG(inode->vfs_inode.i_mode))
3871 return 0;
3872 if (btrfs_is_free_space_inode(inode))
3873 return 0;
3874
3875 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL);
3876 if (!inode->file_extent_tree)
3877 return -ENOMEM;
3878
3879 extent_io_tree_init(fs_info, inode->file_extent_tree, IO_TREE_INODE_FILE_EXTENT);
3880 /* Lockdep class is set only for the file extent tree. */
3881 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class);
3882
3883 return 0;
3884 }
3885
3886 /*
3887 * read an inode from the btree into the in-memory inode
3888 */
btrfs_read_locked_inode(struct inode * inode,struct btrfs_path * in_path)3889 static int btrfs_read_locked_inode(struct inode *inode,
3890 struct btrfs_path *in_path)
3891 {
3892 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3893 struct btrfs_path *path = in_path;
3894 struct extent_buffer *leaf;
3895 struct btrfs_inode_item *inode_item;
3896 struct btrfs_root *root = BTRFS_I(inode)->root;
3897 struct btrfs_key location;
3898 unsigned long ptr;
3899 int maybe_acls;
3900 u32 rdev;
3901 int ret;
3902 bool filled = false;
3903 int first_xattr_slot;
3904
3905 ret = btrfs_init_file_extent_tree(BTRFS_I(inode));
3906 if (ret)
3907 return ret;
3908
3909 ret = btrfs_fill_inode(inode, &rdev);
3910 if (!ret)
3911 filled = true;
3912
3913 if (!path) {
3914 path = btrfs_alloc_path();
3915 if (!path)
3916 return -ENOMEM;
3917 }
3918
3919 btrfs_get_inode_key(BTRFS_I(inode), &location);
3920
3921 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3922 if (ret) {
3923 if (path != in_path)
3924 btrfs_free_path(path);
3925 return ret;
3926 }
3927
3928 leaf = path->nodes[0];
3929
3930 if (filled)
3931 goto cache_index;
3932
3933 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3934 struct btrfs_inode_item);
3935 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3936 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3937 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3938 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3939 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3940 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3941 round_up(i_size_read(inode), fs_info->sectorsize));
3942
3943 inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime),
3944 btrfs_timespec_nsec(leaf, &inode_item->atime));
3945
3946 inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
3947 btrfs_timespec_nsec(leaf, &inode_item->mtime));
3948
3949 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3950 btrfs_timespec_nsec(leaf, &inode_item->ctime));
3951
3952 BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
3953 BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
3954
3955 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3956 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3957 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3958
3959 inode_set_iversion_queried(inode,
3960 btrfs_inode_sequence(leaf, inode_item));
3961 inode->i_generation = BTRFS_I(inode)->generation;
3962 inode->i_rdev = 0;
3963 rdev = btrfs_inode_rdev(leaf, inode_item);
3964
3965 if (S_ISDIR(inode->i_mode))
3966 BTRFS_I(inode)->index_cnt = (u64)-1;
3967
3968 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3969 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3970
3971 cache_index:
3972 /*
3973 * If we were modified in the current generation and evicted from memory
3974 * and then re-read we need to do a full sync since we don't have any
3975 * idea about which extents were modified before we were evicted from
3976 * cache.
3977 *
3978 * This is required for both inode re-read from disk and delayed inode
3979 * in the delayed_nodes xarray.
3980 */
3981 if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info))
3982 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3983 &BTRFS_I(inode)->runtime_flags);
3984
3985 /*
3986 * We don't persist the id of the transaction where an unlink operation
3987 * against the inode was last made. So here we assume the inode might
3988 * have been evicted, and therefore the exact value of last_unlink_trans
3989 * lost, and set it to last_trans to avoid metadata inconsistencies
3990 * between the inode and its parent if the inode is fsync'ed and the log
3991 * replayed. For example, in the scenario:
3992 *
3993 * touch mydir/foo
3994 * ln mydir/foo mydir/bar
3995 * sync
3996 * unlink mydir/bar
3997 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3998 * xfs_io -c fsync mydir/foo
3999 * <power failure>
4000 * mount fs, triggers fsync log replay
4001 *
4002 * We must make sure that when we fsync our inode foo we also log its
4003 * parent inode, otherwise after log replay the parent still has the
4004 * dentry with the "bar" name but our inode foo has a link count of 1
4005 * and doesn't have an inode ref with the name "bar" anymore.
4006 *
4007 * Setting last_unlink_trans to last_trans is a pessimistic approach,
4008 * but it guarantees correctness at the expense of occasional full
4009 * transaction commits on fsync if our inode is a directory, or if our
4010 * inode is not a directory, logging its parent unnecessarily.
4011 */
4012 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
4013
4014 /*
4015 * Same logic as for last_unlink_trans. We don't persist the generation
4016 * of the last transaction where this inode was used for a reflink
4017 * operation, so after eviction and reloading the inode we must be
4018 * pessimistic and assume the last transaction that modified the inode.
4019 */
4020 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
4021
4022 path->slots[0]++;
4023 if (inode->i_nlink != 1 ||
4024 path->slots[0] >= btrfs_header_nritems(leaf))
4025 goto cache_acl;
4026
4027 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4028 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
4029 goto cache_acl;
4030
4031 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4032 if (location.type == BTRFS_INODE_REF_KEY) {
4033 struct btrfs_inode_ref *ref;
4034
4035 ref = (struct btrfs_inode_ref *)ptr;
4036 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
4037 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
4038 struct btrfs_inode_extref *extref;
4039
4040 extref = (struct btrfs_inode_extref *)ptr;
4041 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
4042 extref);
4043 }
4044 cache_acl:
4045 /*
4046 * try to precache a NULL acl entry for files that don't have
4047 * any xattrs or acls
4048 */
4049 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
4050 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
4051 if (first_xattr_slot != -1) {
4052 path->slots[0] = first_xattr_slot;
4053 ret = btrfs_load_inode_props(inode, path);
4054 if (ret)
4055 btrfs_err(fs_info,
4056 "error loading props for ino %llu (root %llu): %d",
4057 btrfs_ino(BTRFS_I(inode)),
4058 btrfs_root_id(root), ret);
4059 }
4060 if (path != in_path)
4061 btrfs_free_path(path);
4062
4063 if (!maybe_acls)
4064 cache_no_acl(inode);
4065
4066 switch (inode->i_mode & S_IFMT) {
4067 case S_IFREG:
4068 inode->i_mapping->a_ops = &btrfs_aops;
4069 inode->i_fop = &btrfs_file_operations;
4070 inode->i_op = &btrfs_file_inode_operations;
4071 break;
4072 case S_IFDIR:
4073 inode->i_fop = &btrfs_dir_file_operations;
4074 inode->i_op = &btrfs_dir_inode_operations;
4075 break;
4076 case S_IFLNK:
4077 inode->i_op = &btrfs_symlink_inode_operations;
4078 inode_nohighmem(inode);
4079 inode->i_mapping->a_ops = &btrfs_aops;
4080 break;
4081 default:
4082 inode->i_op = &btrfs_special_inode_operations;
4083 init_special_inode(inode, inode->i_mode, rdev);
4084 break;
4085 }
4086
4087 btrfs_sync_inode_flags_to_i_flags(inode);
4088 return 0;
4089 }
4090
4091 /*
4092 * given a leaf and an inode, copy the inode fields into the leaf
4093 */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)4094 static void fill_inode_item(struct btrfs_trans_handle *trans,
4095 struct extent_buffer *leaf,
4096 struct btrfs_inode_item *item,
4097 struct inode *inode)
4098 {
4099 struct btrfs_map_token token;
4100 u64 flags;
4101
4102 btrfs_init_map_token(&token, leaf);
4103
4104 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4105 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4106 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
4107 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4108 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4109
4110 btrfs_set_token_timespec_sec(&token, &item->atime,
4111 inode_get_atime_sec(inode));
4112 btrfs_set_token_timespec_nsec(&token, &item->atime,
4113 inode_get_atime_nsec(inode));
4114
4115 btrfs_set_token_timespec_sec(&token, &item->mtime,
4116 inode_get_mtime_sec(inode));
4117 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4118 inode_get_mtime_nsec(inode));
4119
4120 btrfs_set_token_timespec_sec(&token, &item->ctime,
4121 inode_get_ctime_sec(inode));
4122 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4123 inode_get_ctime_nsec(inode));
4124
4125 btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec);
4126 btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec);
4127
4128 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
4129 btrfs_set_token_inode_generation(&token, item,
4130 BTRFS_I(inode)->generation);
4131 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4132 btrfs_set_token_inode_transid(&token, item, trans->transid);
4133 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4134 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4135 BTRFS_I(inode)->ro_flags);
4136 btrfs_set_token_inode_flags(&token, item, flags);
4137 btrfs_set_token_inode_block_group(&token, item, 0);
4138 }
4139
4140 /*
4141 * copy everything in the in-memory inode into the btree.
4142 */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4143 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4144 struct btrfs_inode *inode)
4145 {
4146 struct btrfs_inode_item *inode_item;
4147 struct btrfs_path *path;
4148 struct extent_buffer *leaf;
4149 struct btrfs_key key;
4150 int ret;
4151
4152 path = btrfs_alloc_path();
4153 if (!path)
4154 return -ENOMEM;
4155
4156 btrfs_get_inode_key(inode, &key);
4157 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1);
4158 if (ret) {
4159 if (ret > 0)
4160 ret = -ENOENT;
4161 goto failed;
4162 }
4163
4164 leaf = path->nodes[0];
4165 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4166 struct btrfs_inode_item);
4167
4168 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4169 btrfs_mark_buffer_dirty(trans, leaf);
4170 btrfs_set_inode_last_trans(trans, inode);
4171 ret = 0;
4172 failed:
4173 btrfs_free_path(path);
4174 return ret;
4175 }
4176
4177 /*
4178 * copy everything in the in-memory inode into the btree.
4179 */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4180 int btrfs_update_inode(struct btrfs_trans_handle *trans,
4181 struct btrfs_inode *inode)
4182 {
4183 struct btrfs_root *root = inode->root;
4184 struct btrfs_fs_info *fs_info = root->fs_info;
4185 int ret;
4186
4187 /*
4188 * If the inode is a free space inode, we can deadlock during commit
4189 * if we put it into the delayed code.
4190 *
4191 * The data relocation inode should also be directly updated
4192 * without delay
4193 */
4194 if (!btrfs_is_free_space_inode(inode)
4195 && !btrfs_is_data_reloc_root(root)
4196 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4197 btrfs_update_root_times(trans, root);
4198
4199 ret = btrfs_delayed_update_inode(trans, inode);
4200 if (!ret)
4201 btrfs_set_inode_last_trans(trans, inode);
4202 return ret;
4203 }
4204
4205 return btrfs_update_inode_item(trans, inode);
4206 }
4207
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)4208 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4209 struct btrfs_inode *inode)
4210 {
4211 int ret;
4212
4213 ret = btrfs_update_inode(trans, inode);
4214 if (ret == -ENOSPC)
4215 return btrfs_update_inode_item(trans, inode);
4216 return ret;
4217 }
4218
4219 /*
4220 * unlink helper that gets used here in inode.c and in the tree logging
4221 * recovery code. It remove a link in a directory with a given name, and
4222 * also drops the back refs in the inode to the directory
4223 */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name,struct btrfs_rename_ctx * rename_ctx)4224 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4225 struct btrfs_inode *dir,
4226 struct btrfs_inode *inode,
4227 const struct fscrypt_str *name,
4228 struct btrfs_rename_ctx *rename_ctx)
4229 {
4230 struct btrfs_root *root = dir->root;
4231 struct btrfs_fs_info *fs_info = root->fs_info;
4232 struct btrfs_path *path;
4233 int ret = 0;
4234 struct btrfs_dir_item *di;
4235 u64 index;
4236 u64 ino = btrfs_ino(inode);
4237 u64 dir_ino = btrfs_ino(dir);
4238
4239 path = btrfs_alloc_path();
4240 if (!path) {
4241 ret = -ENOMEM;
4242 goto out;
4243 }
4244
4245 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4246 if (IS_ERR_OR_NULL(di)) {
4247 ret = di ? PTR_ERR(di) : -ENOENT;
4248 goto err;
4249 }
4250 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4251 if (ret)
4252 goto err;
4253 btrfs_release_path(path);
4254
4255 /*
4256 * If we don't have dir index, we have to get it by looking up
4257 * the inode ref, since we get the inode ref, remove it directly,
4258 * it is unnecessary to do delayed deletion.
4259 *
4260 * But if we have dir index, needn't search inode ref to get it.
4261 * Since the inode ref is close to the inode item, it is better
4262 * that we delay to delete it, and just do this deletion when
4263 * we update the inode item.
4264 */
4265 if (inode->dir_index) {
4266 ret = btrfs_delayed_delete_inode_ref(inode);
4267 if (!ret) {
4268 index = inode->dir_index;
4269 goto skip_backref;
4270 }
4271 }
4272
4273 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4274 if (ret) {
4275 btrfs_info(fs_info,
4276 "failed to delete reference to %.*s, inode %llu parent %llu",
4277 name->len, name->name, ino, dir_ino);
4278 btrfs_abort_transaction(trans, ret);
4279 goto err;
4280 }
4281 skip_backref:
4282 if (rename_ctx)
4283 rename_ctx->index = index;
4284
4285 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4286 if (ret) {
4287 btrfs_abort_transaction(trans, ret);
4288 goto err;
4289 }
4290
4291 /*
4292 * If we are in a rename context, we don't need to update anything in the
4293 * log. That will be done later during the rename by btrfs_log_new_name().
4294 * Besides that, doing it here would only cause extra unnecessary btree
4295 * operations on the log tree, increasing latency for applications.
4296 */
4297 if (!rename_ctx) {
4298 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4299 btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4300 }
4301
4302 /*
4303 * If we have a pending delayed iput we could end up with the final iput
4304 * being run in btrfs-cleaner context. If we have enough of these built
4305 * up we can end up burning a lot of time in btrfs-cleaner without any
4306 * way to throttle the unlinks. Since we're currently holding a ref on
4307 * the inode we can run the delayed iput here without any issues as the
4308 * final iput won't be done until after we drop the ref we're currently
4309 * holding.
4310 */
4311 btrfs_run_delayed_iput(fs_info, inode);
4312 err:
4313 btrfs_free_path(path);
4314 if (ret)
4315 goto out;
4316
4317 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4318 inode_inc_iversion(&inode->vfs_inode);
4319 inode_set_ctime_current(&inode->vfs_inode);
4320 inode_inc_iversion(&dir->vfs_inode);
4321 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4322 ret = btrfs_update_inode(trans, dir);
4323 out:
4324 return ret;
4325 }
4326
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name)4327 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4328 struct btrfs_inode *dir, struct btrfs_inode *inode,
4329 const struct fscrypt_str *name)
4330 {
4331 int ret;
4332
4333 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4334 if (!ret) {
4335 drop_nlink(&inode->vfs_inode);
4336 ret = btrfs_update_inode(trans, inode);
4337 }
4338 return ret;
4339 }
4340
4341 /*
4342 * helper to start transaction for unlink and rmdir.
4343 *
4344 * unlink and rmdir are special in btrfs, they do not always free space, so
4345 * if we cannot make our reservations the normal way try and see if there is
4346 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4347 * allow the unlink to occur.
4348 */
__unlink_start_trans(struct btrfs_inode * dir)4349 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4350 {
4351 struct btrfs_root *root = dir->root;
4352
4353 return btrfs_start_transaction_fallback_global_rsv(root,
4354 BTRFS_UNLINK_METADATA_UNITS);
4355 }
4356
btrfs_unlink(struct inode * dir,struct dentry * dentry)4357 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4358 {
4359 struct btrfs_trans_handle *trans;
4360 struct inode *inode = d_inode(dentry);
4361 int ret;
4362 struct fscrypt_name fname;
4363
4364 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4365 if (ret)
4366 return ret;
4367
4368 /* This needs to handle no-key deletions later on */
4369
4370 trans = __unlink_start_trans(BTRFS_I(dir));
4371 if (IS_ERR(trans)) {
4372 ret = PTR_ERR(trans);
4373 goto fscrypt_free;
4374 }
4375
4376 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4377 false);
4378
4379 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4380 &fname.disk_name);
4381 if (ret)
4382 goto end_trans;
4383
4384 if (inode->i_nlink == 0) {
4385 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4386 if (ret)
4387 goto end_trans;
4388 }
4389
4390 end_trans:
4391 btrfs_end_transaction(trans);
4392 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4393 fscrypt_free:
4394 fscrypt_free_filename(&fname);
4395 return ret;
4396 }
4397
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct dentry * dentry)4398 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4399 struct btrfs_inode *dir, struct dentry *dentry)
4400 {
4401 struct btrfs_root *root = dir->root;
4402 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4403 struct btrfs_path *path;
4404 struct extent_buffer *leaf;
4405 struct btrfs_dir_item *di;
4406 struct btrfs_key key;
4407 u64 index;
4408 int ret;
4409 u64 objectid;
4410 u64 dir_ino = btrfs_ino(dir);
4411 struct fscrypt_name fname;
4412
4413 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4414 if (ret)
4415 return ret;
4416
4417 /* This needs to handle no-key deletions later on */
4418
4419 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4420 objectid = btrfs_root_id(inode->root);
4421 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4422 objectid = inode->ref_root_id;
4423 } else {
4424 WARN_ON(1);
4425 fscrypt_free_filename(&fname);
4426 return -EINVAL;
4427 }
4428
4429 path = btrfs_alloc_path();
4430 if (!path) {
4431 ret = -ENOMEM;
4432 goto out;
4433 }
4434
4435 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4436 &fname.disk_name, -1);
4437 if (IS_ERR_OR_NULL(di)) {
4438 ret = di ? PTR_ERR(di) : -ENOENT;
4439 goto out;
4440 }
4441
4442 leaf = path->nodes[0];
4443 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4444 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4445 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4446 if (ret) {
4447 btrfs_abort_transaction(trans, ret);
4448 goto out;
4449 }
4450 btrfs_release_path(path);
4451
4452 /*
4453 * This is a placeholder inode for a subvolume we didn't have a
4454 * reference to at the time of the snapshot creation. In the meantime
4455 * we could have renamed the real subvol link into our snapshot, so
4456 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4457 * Instead simply lookup the dir_index_item for this entry so we can
4458 * remove it. Otherwise we know we have a ref to the root and we can
4459 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4460 */
4461 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4462 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4463 if (IS_ERR(di)) {
4464 ret = PTR_ERR(di);
4465 btrfs_abort_transaction(trans, ret);
4466 goto out;
4467 }
4468
4469 leaf = path->nodes[0];
4470 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4471 index = key.offset;
4472 btrfs_release_path(path);
4473 } else {
4474 ret = btrfs_del_root_ref(trans, objectid,
4475 btrfs_root_id(root), dir_ino,
4476 &index, &fname.disk_name);
4477 if (ret) {
4478 btrfs_abort_transaction(trans, ret);
4479 goto out;
4480 }
4481 }
4482
4483 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4484 if (ret) {
4485 btrfs_abort_transaction(trans, ret);
4486 goto out;
4487 }
4488
4489 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4490 inode_inc_iversion(&dir->vfs_inode);
4491 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4492 ret = btrfs_update_inode_fallback(trans, dir);
4493 if (ret)
4494 btrfs_abort_transaction(trans, ret);
4495 out:
4496 btrfs_free_path(path);
4497 fscrypt_free_filename(&fname);
4498 return ret;
4499 }
4500
4501 /*
4502 * Helper to check if the subvolume references other subvolumes or if it's
4503 * default.
4504 */
may_destroy_subvol(struct btrfs_root * root)4505 static noinline int may_destroy_subvol(struct btrfs_root *root)
4506 {
4507 struct btrfs_fs_info *fs_info = root->fs_info;
4508 struct btrfs_path *path;
4509 struct btrfs_dir_item *di;
4510 struct btrfs_key key;
4511 struct fscrypt_str name = FSTR_INIT("default", 7);
4512 u64 dir_id;
4513 int ret;
4514
4515 path = btrfs_alloc_path();
4516 if (!path)
4517 return -ENOMEM;
4518
4519 /* Make sure this root isn't set as the default subvol */
4520 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4521 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4522 dir_id, &name, 0);
4523 if (di && !IS_ERR(di)) {
4524 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4525 if (key.objectid == btrfs_root_id(root)) {
4526 ret = -EPERM;
4527 btrfs_err(fs_info,
4528 "deleting default subvolume %llu is not allowed",
4529 key.objectid);
4530 goto out;
4531 }
4532 btrfs_release_path(path);
4533 }
4534
4535 key.objectid = btrfs_root_id(root);
4536 key.type = BTRFS_ROOT_REF_KEY;
4537 key.offset = (u64)-1;
4538
4539 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4540 if (ret < 0)
4541 goto out;
4542 if (ret == 0) {
4543 /*
4544 * Key with offset -1 found, there would have to exist a root
4545 * with such id, but this is out of valid range.
4546 */
4547 ret = -EUCLEAN;
4548 goto out;
4549 }
4550
4551 ret = 0;
4552 if (path->slots[0] > 0) {
4553 path->slots[0]--;
4554 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4555 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY)
4556 ret = -ENOTEMPTY;
4557 }
4558 out:
4559 btrfs_free_path(path);
4560 return ret;
4561 }
4562
4563 /* Delete all dentries for inodes belonging to the root */
btrfs_prune_dentries(struct btrfs_root * root)4564 static void btrfs_prune_dentries(struct btrfs_root *root)
4565 {
4566 struct btrfs_fs_info *fs_info = root->fs_info;
4567 struct btrfs_inode *inode;
4568 u64 min_ino = 0;
4569
4570 if (!BTRFS_FS_ERROR(fs_info))
4571 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4572
4573 inode = btrfs_find_first_inode(root, min_ino);
4574 while (inode) {
4575 if (atomic_read(&inode->vfs_inode.i_count) > 1)
4576 d_prune_aliases(&inode->vfs_inode);
4577
4578 min_ino = btrfs_ino(inode) + 1;
4579 /*
4580 * btrfs_drop_inode() will have it removed from the inode
4581 * cache when its usage count hits zero.
4582 */
4583 iput(&inode->vfs_inode);
4584 cond_resched();
4585 inode = btrfs_find_first_inode(root, min_ino);
4586 }
4587 }
4588
btrfs_delete_subvolume(struct btrfs_inode * dir,struct dentry * dentry)4589 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4590 {
4591 struct btrfs_root *root = dir->root;
4592 struct btrfs_fs_info *fs_info = root->fs_info;
4593 struct inode *inode = d_inode(dentry);
4594 struct btrfs_root *dest = BTRFS_I(inode)->root;
4595 struct btrfs_trans_handle *trans;
4596 struct btrfs_block_rsv block_rsv;
4597 u64 root_flags;
4598 u64 qgroup_reserved = 0;
4599 int ret;
4600
4601 down_write(&fs_info->subvol_sem);
4602
4603 /*
4604 * Don't allow to delete a subvolume with send in progress. This is
4605 * inside the inode lock so the error handling that has to drop the bit
4606 * again is not run concurrently.
4607 */
4608 spin_lock(&dest->root_item_lock);
4609 if (dest->send_in_progress) {
4610 spin_unlock(&dest->root_item_lock);
4611 btrfs_warn(fs_info,
4612 "attempt to delete subvolume %llu during send",
4613 btrfs_root_id(dest));
4614 ret = -EPERM;
4615 goto out_up_write;
4616 }
4617 if (atomic_read(&dest->nr_swapfiles)) {
4618 spin_unlock(&dest->root_item_lock);
4619 btrfs_warn(fs_info,
4620 "attempt to delete subvolume %llu with active swapfile",
4621 btrfs_root_id(root));
4622 ret = -EPERM;
4623 goto out_up_write;
4624 }
4625 root_flags = btrfs_root_flags(&dest->root_item);
4626 btrfs_set_root_flags(&dest->root_item,
4627 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4628 spin_unlock(&dest->root_item_lock);
4629
4630 ret = may_destroy_subvol(dest);
4631 if (ret)
4632 goto out_undead;
4633
4634 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4635 /*
4636 * One for dir inode,
4637 * two for dir entries,
4638 * two for root ref/backref.
4639 */
4640 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4641 if (ret)
4642 goto out_undead;
4643 qgroup_reserved = block_rsv.qgroup_rsv_reserved;
4644
4645 trans = btrfs_start_transaction(root, 0);
4646 if (IS_ERR(trans)) {
4647 ret = PTR_ERR(trans);
4648 goto out_release;
4649 }
4650 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
4651 qgroup_reserved = 0;
4652 trans->block_rsv = &block_rsv;
4653 trans->bytes_reserved = block_rsv.size;
4654
4655 btrfs_record_snapshot_destroy(trans, dir);
4656
4657 ret = btrfs_unlink_subvol(trans, dir, dentry);
4658 if (ret) {
4659 btrfs_abort_transaction(trans, ret);
4660 goto out_end_trans;
4661 }
4662
4663 ret = btrfs_record_root_in_trans(trans, dest);
4664 if (ret) {
4665 btrfs_abort_transaction(trans, ret);
4666 goto out_end_trans;
4667 }
4668
4669 memset(&dest->root_item.drop_progress, 0,
4670 sizeof(dest->root_item.drop_progress));
4671 btrfs_set_root_drop_level(&dest->root_item, 0);
4672 btrfs_set_root_refs(&dest->root_item, 0);
4673
4674 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4675 ret = btrfs_insert_orphan_item(trans,
4676 fs_info->tree_root,
4677 btrfs_root_id(dest));
4678 if (ret) {
4679 btrfs_abort_transaction(trans, ret);
4680 goto out_end_trans;
4681 }
4682 }
4683
4684 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4685 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest));
4686 if (ret && ret != -ENOENT) {
4687 btrfs_abort_transaction(trans, ret);
4688 goto out_end_trans;
4689 }
4690 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4691 ret = btrfs_uuid_tree_remove(trans,
4692 dest->root_item.received_uuid,
4693 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4694 btrfs_root_id(dest));
4695 if (ret && ret != -ENOENT) {
4696 btrfs_abort_transaction(trans, ret);
4697 goto out_end_trans;
4698 }
4699 }
4700
4701 free_anon_bdev(dest->anon_dev);
4702 dest->anon_dev = 0;
4703 out_end_trans:
4704 trans->block_rsv = NULL;
4705 trans->bytes_reserved = 0;
4706 ret = btrfs_end_transaction(trans);
4707 inode->i_flags |= S_DEAD;
4708 out_release:
4709 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
4710 if (qgroup_reserved)
4711 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
4712 out_undead:
4713 if (ret) {
4714 spin_lock(&dest->root_item_lock);
4715 root_flags = btrfs_root_flags(&dest->root_item);
4716 btrfs_set_root_flags(&dest->root_item,
4717 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4718 spin_unlock(&dest->root_item_lock);
4719 }
4720 out_up_write:
4721 up_write(&fs_info->subvol_sem);
4722 if (!ret) {
4723 d_invalidate(dentry);
4724 btrfs_prune_dentries(dest);
4725 ASSERT(dest->send_in_progress == 0);
4726 }
4727
4728 return ret;
4729 }
4730
btrfs_rmdir(struct inode * dir,struct dentry * dentry)4731 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4732 {
4733 struct inode *inode = d_inode(dentry);
4734 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4735 int ret = 0;
4736 struct btrfs_trans_handle *trans;
4737 struct fscrypt_name fname;
4738
4739 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4740 return -ENOTEMPTY;
4741 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4742 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4743 btrfs_err(fs_info,
4744 "extent tree v2 doesn't support snapshot deletion yet");
4745 return -EOPNOTSUPP;
4746 }
4747 return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4748 }
4749
4750 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4751 if (ret)
4752 return ret;
4753
4754 /* This needs to handle no-key deletions later on */
4755
4756 trans = __unlink_start_trans(BTRFS_I(dir));
4757 if (IS_ERR(trans)) {
4758 ret = PTR_ERR(trans);
4759 goto out_notrans;
4760 }
4761
4762 /*
4763 * Propagate the last_unlink_trans value of the deleted dir to its
4764 * parent directory. This is to prevent an unrecoverable log tree in the
4765 * case we do something like this:
4766 * 1) create dir foo
4767 * 2) create snapshot under dir foo
4768 * 3) delete the snapshot
4769 * 4) rmdir foo
4770 * 5) mkdir foo
4771 * 6) fsync foo or some file inside foo
4772 *
4773 * This is because we can't unlink other roots when replaying the dir
4774 * deletes for directory foo.
4775 */
4776 if (BTRFS_I(inode)->last_unlink_trans >= trans->transid)
4777 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4778
4779 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4780 ret = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4781 goto out;
4782 }
4783
4784 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4785 if (ret)
4786 goto out;
4787
4788 /* now the directory is empty */
4789 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4790 &fname.disk_name);
4791 if (!ret)
4792 btrfs_i_size_write(BTRFS_I(inode), 0);
4793 out:
4794 btrfs_end_transaction(trans);
4795 out_notrans:
4796 btrfs_btree_balance_dirty(fs_info);
4797 fscrypt_free_filename(&fname);
4798
4799 return ret;
4800 }
4801
4802 /*
4803 * Read, zero a chunk and write a block.
4804 *
4805 * @inode - inode that we're zeroing
4806 * @from - the offset to start zeroing
4807 * @len - the length to zero, 0 to zero the entire range respective to the
4808 * offset
4809 * @front - zero up to the offset instead of from the offset on
4810 *
4811 * This will find the block for the "from" offset and cow the block and zero the
4812 * part we want to zero. This is used with truncate and hole punching.
4813 */
btrfs_truncate_block(struct btrfs_inode * inode,loff_t from,loff_t len,int front)4814 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4815 int front)
4816 {
4817 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4818 struct address_space *mapping = inode->vfs_inode.i_mapping;
4819 struct extent_io_tree *io_tree = &inode->io_tree;
4820 struct btrfs_ordered_extent *ordered;
4821 struct extent_state *cached_state = NULL;
4822 struct extent_changeset *data_reserved = NULL;
4823 bool only_release_metadata = false;
4824 u32 blocksize = fs_info->sectorsize;
4825 pgoff_t index = from >> PAGE_SHIFT;
4826 unsigned offset = from & (blocksize - 1);
4827 struct folio *folio;
4828 gfp_t mask = btrfs_alloc_write_mask(mapping);
4829 size_t write_bytes = blocksize;
4830 int ret = 0;
4831 u64 block_start;
4832 u64 block_end;
4833
4834 if (IS_ALIGNED(offset, blocksize) &&
4835 (!len || IS_ALIGNED(len, blocksize)))
4836 goto out;
4837
4838 block_start = round_down(from, blocksize);
4839 block_end = block_start + blocksize - 1;
4840
4841 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4842 blocksize, false);
4843 if (ret < 0) {
4844 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4845 /* For nocow case, no need to reserve data space */
4846 only_release_metadata = true;
4847 } else {
4848 goto out;
4849 }
4850 }
4851 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4852 if (ret < 0) {
4853 if (!only_release_metadata)
4854 btrfs_free_reserved_data_space(inode, data_reserved,
4855 block_start, blocksize);
4856 goto out;
4857 }
4858 again:
4859 folio = __filemap_get_folio(mapping, index,
4860 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
4861 if (IS_ERR(folio)) {
4862 if (only_release_metadata)
4863 btrfs_delalloc_release_metadata(inode, blocksize, true);
4864 else
4865 btrfs_delalloc_release_space(inode, data_reserved,
4866 block_start, blocksize, true);
4867 btrfs_delalloc_release_extents(inode, blocksize);
4868 ret = -ENOMEM;
4869 goto out;
4870 }
4871
4872 if (!folio_test_uptodate(folio)) {
4873 ret = btrfs_read_folio(NULL, folio);
4874 folio_lock(folio);
4875 if (folio->mapping != mapping) {
4876 folio_unlock(folio);
4877 folio_put(folio);
4878 goto again;
4879 }
4880 if (!folio_test_uptodate(folio)) {
4881 ret = -EIO;
4882 goto out_unlock;
4883 }
4884 }
4885
4886 /*
4887 * We unlock the page after the io is completed and then re-lock it
4888 * above. release_folio() could have come in between that and cleared
4889 * folio private, but left the page in the mapping. Set the page mapped
4890 * here to make sure it's properly set for the subpage stuff.
4891 */
4892 ret = set_folio_extent_mapped(folio);
4893 if (ret < 0)
4894 goto out_unlock;
4895
4896 folio_wait_writeback(folio);
4897
4898 lock_extent(io_tree, block_start, block_end, &cached_state);
4899
4900 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4901 if (ordered) {
4902 unlock_extent(io_tree, block_start, block_end, &cached_state);
4903 folio_unlock(folio);
4904 folio_put(folio);
4905 btrfs_start_ordered_extent(ordered);
4906 btrfs_put_ordered_extent(ordered);
4907 goto again;
4908 }
4909
4910 clear_extent_bit(&inode->io_tree, block_start, block_end,
4911 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4912 &cached_state);
4913
4914 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4915 &cached_state);
4916 if (ret) {
4917 unlock_extent(io_tree, block_start, block_end, &cached_state);
4918 goto out_unlock;
4919 }
4920
4921 if (offset != blocksize) {
4922 if (!len)
4923 len = blocksize - offset;
4924 if (front)
4925 folio_zero_range(folio, block_start - folio_pos(folio),
4926 offset);
4927 else
4928 folio_zero_range(folio,
4929 (block_start - folio_pos(folio)) + offset,
4930 len);
4931 }
4932 btrfs_folio_clear_checked(fs_info, folio, block_start,
4933 block_end + 1 - block_start);
4934 btrfs_folio_set_dirty(fs_info, folio, block_start,
4935 block_end + 1 - block_start);
4936 unlock_extent(io_tree, block_start, block_end, &cached_state);
4937
4938 if (only_release_metadata)
4939 set_extent_bit(&inode->io_tree, block_start, block_end,
4940 EXTENT_NORESERVE, NULL);
4941
4942 out_unlock:
4943 if (ret) {
4944 if (only_release_metadata)
4945 btrfs_delalloc_release_metadata(inode, blocksize, true);
4946 else
4947 btrfs_delalloc_release_space(inode, data_reserved,
4948 block_start, blocksize, true);
4949 }
4950 btrfs_delalloc_release_extents(inode, blocksize);
4951 folio_unlock(folio);
4952 folio_put(folio);
4953 out:
4954 if (only_release_metadata)
4955 btrfs_check_nocow_unlock(inode);
4956 extent_changeset_free(data_reserved);
4957 return ret;
4958 }
4959
maybe_insert_hole(struct btrfs_inode * inode,u64 offset,u64 len)4960 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
4961 {
4962 struct btrfs_root *root = inode->root;
4963 struct btrfs_fs_info *fs_info = root->fs_info;
4964 struct btrfs_trans_handle *trans;
4965 struct btrfs_drop_extents_args drop_args = { 0 };
4966 int ret;
4967
4968 /*
4969 * If NO_HOLES is enabled, we don't need to do anything.
4970 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4971 * or btrfs_update_inode() will be called, which guarantee that the next
4972 * fsync will know this inode was changed and needs to be logged.
4973 */
4974 if (btrfs_fs_incompat(fs_info, NO_HOLES))
4975 return 0;
4976
4977 /*
4978 * 1 - for the one we're dropping
4979 * 1 - for the one we're adding
4980 * 1 - for updating the inode.
4981 */
4982 trans = btrfs_start_transaction(root, 3);
4983 if (IS_ERR(trans))
4984 return PTR_ERR(trans);
4985
4986 drop_args.start = offset;
4987 drop_args.end = offset + len;
4988 drop_args.drop_cache = true;
4989
4990 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4991 if (ret) {
4992 btrfs_abort_transaction(trans, ret);
4993 btrfs_end_transaction(trans);
4994 return ret;
4995 }
4996
4997 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4998 if (ret) {
4999 btrfs_abort_transaction(trans, ret);
5000 } else {
5001 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
5002 btrfs_update_inode(trans, inode);
5003 }
5004 btrfs_end_transaction(trans);
5005 return ret;
5006 }
5007
5008 /*
5009 * This function puts in dummy file extents for the area we're creating a hole
5010 * for. So if we are truncating this file to a larger size we need to insert
5011 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5012 * the range between oldsize and size
5013 */
btrfs_cont_expand(struct btrfs_inode * inode,loff_t oldsize,loff_t size)5014 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
5015 {
5016 struct btrfs_root *root = inode->root;
5017 struct btrfs_fs_info *fs_info = root->fs_info;
5018 struct extent_io_tree *io_tree = &inode->io_tree;
5019 struct extent_map *em = NULL;
5020 struct extent_state *cached_state = NULL;
5021 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5022 u64 block_end = ALIGN(size, fs_info->sectorsize);
5023 u64 last_byte;
5024 u64 cur_offset;
5025 u64 hole_size;
5026 int ret = 0;
5027
5028 /*
5029 * If our size started in the middle of a block we need to zero out the
5030 * rest of the block before we expand the i_size, otherwise we could
5031 * expose stale data.
5032 */
5033 ret = btrfs_truncate_block(inode, oldsize, 0, 0);
5034 if (ret)
5035 return ret;
5036
5037 if (size <= hole_start)
5038 return 0;
5039
5040 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5041 &cached_state);
5042 cur_offset = hole_start;
5043 while (1) {
5044 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset);
5045 if (IS_ERR(em)) {
5046 ret = PTR_ERR(em);
5047 em = NULL;
5048 break;
5049 }
5050 last_byte = min(extent_map_end(em), block_end);
5051 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5052 hole_size = last_byte - cur_offset;
5053
5054 if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
5055 struct extent_map *hole_em;
5056
5057 ret = maybe_insert_hole(inode, cur_offset, hole_size);
5058 if (ret)
5059 break;
5060
5061 ret = btrfs_inode_set_file_extent_range(inode,
5062 cur_offset, hole_size);
5063 if (ret)
5064 break;
5065
5066 hole_em = alloc_extent_map();
5067 if (!hole_em) {
5068 btrfs_drop_extent_map_range(inode, cur_offset,
5069 cur_offset + hole_size - 1,
5070 false);
5071 btrfs_set_inode_full_sync(inode);
5072 goto next;
5073 }
5074 hole_em->start = cur_offset;
5075 hole_em->len = hole_size;
5076
5077 hole_em->disk_bytenr = EXTENT_MAP_HOLE;
5078 hole_em->disk_num_bytes = 0;
5079 hole_em->ram_bytes = hole_size;
5080 hole_em->generation = btrfs_get_fs_generation(fs_info);
5081
5082 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
5083 free_extent_map(hole_em);
5084 } else {
5085 ret = btrfs_inode_set_file_extent_range(inode,
5086 cur_offset, hole_size);
5087 if (ret)
5088 break;
5089 }
5090 next:
5091 free_extent_map(em);
5092 em = NULL;
5093 cur_offset = last_byte;
5094 if (cur_offset >= block_end)
5095 break;
5096 }
5097 free_extent_map(em);
5098 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
5099 return ret;
5100 }
5101
btrfs_setsize(struct inode * inode,struct iattr * attr)5102 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5103 {
5104 struct btrfs_root *root = BTRFS_I(inode)->root;
5105 struct btrfs_trans_handle *trans;
5106 loff_t oldsize = i_size_read(inode);
5107 loff_t newsize = attr->ia_size;
5108 int mask = attr->ia_valid;
5109 int ret;
5110
5111 /*
5112 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5113 * special case where we need to update the times despite not having
5114 * these flags set. For all other operations the VFS set these flags
5115 * explicitly if it wants a timestamp update.
5116 */
5117 if (newsize != oldsize) {
5118 inode_inc_iversion(inode);
5119 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5120 inode_set_mtime_to_ts(inode,
5121 inode_set_ctime_current(inode));
5122 }
5123 }
5124
5125 if (newsize > oldsize) {
5126 /*
5127 * Don't do an expanding truncate while snapshotting is ongoing.
5128 * This is to ensure the snapshot captures a fully consistent
5129 * state of this file - if the snapshot captures this expanding
5130 * truncation, it must capture all writes that happened before
5131 * this truncation.
5132 */
5133 btrfs_drew_write_lock(&root->snapshot_lock);
5134 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5135 if (ret) {
5136 btrfs_drew_write_unlock(&root->snapshot_lock);
5137 return ret;
5138 }
5139
5140 trans = btrfs_start_transaction(root, 1);
5141 if (IS_ERR(trans)) {
5142 btrfs_drew_write_unlock(&root->snapshot_lock);
5143 return PTR_ERR(trans);
5144 }
5145
5146 i_size_write(inode, newsize);
5147 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5148 pagecache_isize_extended(inode, oldsize, newsize);
5149 ret = btrfs_update_inode(trans, BTRFS_I(inode));
5150 btrfs_drew_write_unlock(&root->snapshot_lock);
5151 btrfs_end_transaction(trans);
5152 } else {
5153 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5154
5155 if (btrfs_is_zoned(fs_info)) {
5156 ret = btrfs_wait_ordered_range(BTRFS_I(inode),
5157 ALIGN(newsize, fs_info->sectorsize),
5158 (u64)-1);
5159 if (ret)
5160 return ret;
5161 }
5162
5163 /*
5164 * We're truncating a file that used to have good data down to
5165 * zero. Make sure any new writes to the file get on disk
5166 * on close.
5167 */
5168 if (newsize == 0)
5169 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5170 &BTRFS_I(inode)->runtime_flags);
5171
5172 truncate_setsize(inode, newsize);
5173
5174 inode_dio_wait(inode);
5175
5176 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5177 if (ret && inode->i_nlink) {
5178 int err;
5179
5180 /*
5181 * Truncate failed, so fix up the in-memory size. We
5182 * adjusted disk_i_size down as we removed extents, so
5183 * wait for disk_i_size to be stable and then update the
5184 * in-memory size to match.
5185 */
5186 err = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
5187 if (err)
5188 return err;
5189 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5190 }
5191 }
5192
5193 return ret;
5194 }
5195
btrfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)5196 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5197 struct iattr *attr)
5198 {
5199 struct inode *inode = d_inode(dentry);
5200 struct btrfs_root *root = BTRFS_I(inode)->root;
5201 int err;
5202
5203 if (btrfs_root_readonly(root))
5204 return -EROFS;
5205
5206 err = setattr_prepare(idmap, dentry, attr);
5207 if (err)
5208 return err;
5209
5210 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5211 err = btrfs_setsize(inode, attr);
5212 if (err)
5213 return err;
5214 }
5215
5216 if (attr->ia_valid) {
5217 setattr_copy(idmap, inode, attr);
5218 inode_inc_iversion(inode);
5219 err = btrfs_dirty_inode(BTRFS_I(inode));
5220
5221 if (!err && attr->ia_valid & ATTR_MODE)
5222 err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5223 }
5224
5225 return err;
5226 }
5227
5228 /*
5229 * While truncating the inode pages during eviction, we get the VFS
5230 * calling btrfs_invalidate_folio() against each folio of the inode. This
5231 * is slow because the calls to btrfs_invalidate_folio() result in a
5232 * huge amount of calls to lock_extent() and clear_extent_bit(),
5233 * which keep merging and splitting extent_state structures over and over,
5234 * wasting lots of time.
5235 *
5236 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5237 * skip all those expensive operations on a per folio basis and do only
5238 * the ordered io finishing, while we release here the extent_map and
5239 * extent_state structures, without the excessive merging and splitting.
5240 */
evict_inode_truncate_pages(struct inode * inode)5241 static void evict_inode_truncate_pages(struct inode *inode)
5242 {
5243 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5244 struct rb_node *node;
5245
5246 ASSERT(inode->i_state & I_FREEING);
5247 truncate_inode_pages_final(&inode->i_data);
5248
5249 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5250
5251 /*
5252 * Keep looping until we have no more ranges in the io tree.
5253 * We can have ongoing bios started by readahead that have
5254 * their endio callback (extent_io.c:end_bio_extent_readpage)
5255 * still in progress (unlocked the pages in the bio but did not yet
5256 * unlocked the ranges in the io tree). Therefore this means some
5257 * ranges can still be locked and eviction started because before
5258 * submitting those bios, which are executed by a separate task (work
5259 * queue kthread), inode references (inode->i_count) were not taken
5260 * (which would be dropped in the end io callback of each bio).
5261 * Therefore here we effectively end up waiting for those bios and
5262 * anyone else holding locked ranges without having bumped the inode's
5263 * reference count - if we don't do it, when they access the inode's
5264 * io_tree to unlock a range it may be too late, leading to an
5265 * use-after-free issue.
5266 */
5267 spin_lock(&io_tree->lock);
5268 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5269 struct extent_state *state;
5270 struct extent_state *cached_state = NULL;
5271 u64 start;
5272 u64 end;
5273 unsigned state_flags;
5274
5275 node = rb_first(&io_tree->state);
5276 state = rb_entry(node, struct extent_state, rb_node);
5277 start = state->start;
5278 end = state->end;
5279 state_flags = state->state;
5280 spin_unlock(&io_tree->lock);
5281
5282 lock_extent(io_tree, start, end, &cached_state);
5283
5284 /*
5285 * If still has DELALLOC flag, the extent didn't reach disk,
5286 * and its reserved space won't be freed by delayed_ref.
5287 * So we need to free its reserved space here.
5288 * (Refer to comment in btrfs_invalidate_folio, case 2)
5289 *
5290 * Note, end is the bytenr of last byte, so we need + 1 here.
5291 */
5292 if (state_flags & EXTENT_DELALLOC)
5293 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5294 end - start + 1, NULL);
5295
5296 clear_extent_bit(io_tree, start, end,
5297 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5298 &cached_state);
5299
5300 cond_resched();
5301 spin_lock(&io_tree->lock);
5302 }
5303 spin_unlock(&io_tree->lock);
5304 }
5305
evict_refill_and_join(struct btrfs_root * root,struct btrfs_block_rsv * rsv)5306 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5307 struct btrfs_block_rsv *rsv)
5308 {
5309 struct btrfs_fs_info *fs_info = root->fs_info;
5310 struct btrfs_trans_handle *trans;
5311 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5312 int ret;
5313
5314 /*
5315 * Eviction should be taking place at some place safe because of our
5316 * delayed iputs. However the normal flushing code will run delayed
5317 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5318 *
5319 * We reserve the delayed_refs_extra here again because we can't use
5320 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5321 * above. We reserve our extra bit here because we generate a ton of
5322 * delayed refs activity by truncating.
5323 *
5324 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5325 * if we fail to make this reservation we can re-try without the
5326 * delayed_refs_extra so we can make some forward progress.
5327 */
5328 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5329 BTRFS_RESERVE_FLUSH_EVICT);
5330 if (ret) {
5331 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5332 BTRFS_RESERVE_FLUSH_EVICT);
5333 if (ret) {
5334 btrfs_warn(fs_info,
5335 "could not allocate space for delete; will truncate on mount");
5336 return ERR_PTR(-ENOSPC);
5337 }
5338 delayed_refs_extra = 0;
5339 }
5340
5341 trans = btrfs_join_transaction(root);
5342 if (IS_ERR(trans))
5343 return trans;
5344
5345 if (delayed_refs_extra) {
5346 trans->block_rsv = &fs_info->trans_block_rsv;
5347 trans->bytes_reserved = delayed_refs_extra;
5348 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5349 delayed_refs_extra, true);
5350 }
5351 return trans;
5352 }
5353
btrfs_evict_inode(struct inode * inode)5354 void btrfs_evict_inode(struct inode *inode)
5355 {
5356 struct btrfs_fs_info *fs_info;
5357 struct btrfs_trans_handle *trans;
5358 struct btrfs_root *root = BTRFS_I(inode)->root;
5359 struct btrfs_block_rsv *rsv = NULL;
5360 int ret;
5361
5362 trace_btrfs_inode_evict(inode);
5363
5364 if (!root) {
5365 fsverity_cleanup_inode(inode);
5366 clear_inode(inode);
5367 return;
5368 }
5369
5370 fs_info = inode_to_fs_info(inode);
5371 evict_inode_truncate_pages(inode);
5372
5373 if (inode->i_nlink &&
5374 ((btrfs_root_refs(&root->root_item) != 0 &&
5375 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) ||
5376 btrfs_is_free_space_inode(BTRFS_I(inode))))
5377 goto out;
5378
5379 if (is_bad_inode(inode))
5380 goto out;
5381
5382 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5383 goto out;
5384
5385 if (inode->i_nlink > 0) {
5386 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5387 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID);
5388 goto out;
5389 }
5390
5391 /*
5392 * This makes sure the inode item in tree is uptodate and the space for
5393 * the inode update is released.
5394 */
5395 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5396 if (ret)
5397 goto out;
5398
5399 /*
5400 * This drops any pending insert or delete operations we have for this
5401 * inode. We could have a delayed dir index deletion queued up, but
5402 * we're removing the inode completely so that'll be taken care of in
5403 * the truncate.
5404 */
5405 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5406
5407 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5408 if (!rsv)
5409 goto out;
5410 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5411 rsv->failfast = true;
5412
5413 btrfs_i_size_write(BTRFS_I(inode), 0);
5414
5415 while (1) {
5416 struct btrfs_truncate_control control = {
5417 .inode = BTRFS_I(inode),
5418 .ino = btrfs_ino(BTRFS_I(inode)),
5419 .new_size = 0,
5420 .min_type = 0,
5421 };
5422
5423 trans = evict_refill_and_join(root, rsv);
5424 if (IS_ERR(trans))
5425 goto out;
5426
5427 trans->block_rsv = rsv;
5428
5429 ret = btrfs_truncate_inode_items(trans, root, &control);
5430 trans->block_rsv = &fs_info->trans_block_rsv;
5431 btrfs_end_transaction(trans);
5432 /*
5433 * We have not added new delayed items for our inode after we
5434 * have flushed its delayed items, so no need to throttle on
5435 * delayed items. However we have modified extent buffers.
5436 */
5437 btrfs_btree_balance_dirty_nodelay(fs_info);
5438 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5439 goto out;
5440 else if (!ret)
5441 break;
5442 }
5443
5444 /*
5445 * Errors here aren't a big deal, it just means we leave orphan items in
5446 * the tree. They will be cleaned up on the next mount. If the inode
5447 * number gets reused, cleanup deletes the orphan item without doing
5448 * anything, and unlink reuses the existing orphan item.
5449 *
5450 * If it turns out that we are dropping too many of these, we might want
5451 * to add a mechanism for retrying these after a commit.
5452 */
5453 trans = evict_refill_and_join(root, rsv);
5454 if (!IS_ERR(trans)) {
5455 trans->block_rsv = rsv;
5456 btrfs_orphan_del(trans, BTRFS_I(inode));
5457 trans->block_rsv = &fs_info->trans_block_rsv;
5458 btrfs_end_transaction(trans);
5459 }
5460
5461 out:
5462 btrfs_free_block_rsv(fs_info, rsv);
5463 /*
5464 * If we didn't successfully delete, the orphan item will still be in
5465 * the tree and we'll retry on the next mount. Again, we might also want
5466 * to retry these periodically in the future.
5467 */
5468 btrfs_remove_delayed_node(BTRFS_I(inode));
5469 fsverity_cleanup_inode(inode);
5470 clear_inode(inode);
5471 }
5472
5473 /*
5474 * Return the key found in the dir entry in the location pointer, fill @type
5475 * with BTRFS_FT_*, and return 0.
5476 *
5477 * If no dir entries were found, returns -ENOENT.
5478 * If found a corrupted location in dir entry, returns -EUCLEAN.
5479 */
btrfs_inode_by_name(struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_key * location,u8 * type)5480 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5481 struct btrfs_key *location, u8 *type)
5482 {
5483 struct btrfs_dir_item *di;
5484 struct btrfs_path *path;
5485 struct btrfs_root *root = dir->root;
5486 int ret = 0;
5487 struct fscrypt_name fname;
5488
5489 path = btrfs_alloc_path();
5490 if (!path)
5491 return -ENOMEM;
5492
5493 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5494 if (ret < 0)
5495 goto out;
5496 /*
5497 * fscrypt_setup_filename() should never return a positive value, but
5498 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5499 */
5500 ASSERT(ret == 0);
5501
5502 /* This needs to handle no-key deletions later on */
5503
5504 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5505 &fname.disk_name, 0);
5506 if (IS_ERR_OR_NULL(di)) {
5507 ret = di ? PTR_ERR(di) : -ENOENT;
5508 goto out;
5509 }
5510
5511 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5512 if (location->type != BTRFS_INODE_ITEM_KEY &&
5513 location->type != BTRFS_ROOT_ITEM_KEY) {
5514 ret = -EUCLEAN;
5515 btrfs_warn(root->fs_info,
5516 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5517 __func__, fname.disk_name.name, btrfs_ino(dir),
5518 location->objectid, location->type, location->offset);
5519 }
5520 if (!ret)
5521 *type = btrfs_dir_ftype(path->nodes[0], di);
5522 out:
5523 fscrypt_free_filename(&fname);
5524 btrfs_free_path(path);
5525 return ret;
5526 }
5527
5528 /*
5529 * when we hit a tree root in a directory, the btrfs part of the inode
5530 * needs to be changed to reflect the root directory of the tree root. This
5531 * is kind of like crossing a mount point.
5532 */
fixup_tree_root_location(struct btrfs_fs_info * fs_info,struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5533 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5534 struct btrfs_inode *dir,
5535 struct dentry *dentry,
5536 struct btrfs_key *location,
5537 struct btrfs_root **sub_root)
5538 {
5539 struct btrfs_path *path;
5540 struct btrfs_root *new_root;
5541 struct btrfs_root_ref *ref;
5542 struct extent_buffer *leaf;
5543 struct btrfs_key key;
5544 int ret;
5545 int err = 0;
5546 struct fscrypt_name fname;
5547
5548 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5549 if (ret)
5550 return ret;
5551
5552 path = btrfs_alloc_path();
5553 if (!path) {
5554 err = -ENOMEM;
5555 goto out;
5556 }
5557
5558 err = -ENOENT;
5559 key.objectid = btrfs_root_id(dir->root);
5560 key.type = BTRFS_ROOT_REF_KEY;
5561 key.offset = location->objectid;
5562
5563 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5564 if (ret) {
5565 if (ret < 0)
5566 err = ret;
5567 goto out;
5568 }
5569
5570 leaf = path->nodes[0];
5571 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5572 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5573 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5574 goto out;
5575
5576 ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5577 (unsigned long)(ref + 1), fname.disk_name.len);
5578 if (ret)
5579 goto out;
5580
5581 btrfs_release_path(path);
5582
5583 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5584 if (IS_ERR(new_root)) {
5585 err = PTR_ERR(new_root);
5586 goto out;
5587 }
5588
5589 *sub_root = new_root;
5590 location->objectid = btrfs_root_dirid(&new_root->root_item);
5591 location->type = BTRFS_INODE_ITEM_KEY;
5592 location->offset = 0;
5593 err = 0;
5594 out:
5595 btrfs_free_path(path);
5596 fscrypt_free_filename(&fname);
5597 return err;
5598 }
5599
btrfs_add_inode_to_root(struct btrfs_inode * inode,bool prealloc)5600 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc)
5601 {
5602 struct btrfs_root *root = inode->root;
5603 struct btrfs_inode *existing;
5604 const u64 ino = btrfs_ino(inode);
5605 int ret;
5606
5607 if (inode_unhashed(&inode->vfs_inode))
5608 return 0;
5609
5610 if (prealloc) {
5611 ret = xa_reserve(&root->inodes, ino, GFP_NOFS);
5612 if (ret)
5613 return ret;
5614 }
5615
5616 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC);
5617
5618 if (xa_is_err(existing)) {
5619 ret = xa_err(existing);
5620 ASSERT(ret != -EINVAL);
5621 ASSERT(ret != -ENOMEM);
5622 return ret;
5623 } else if (existing) {
5624 WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING)));
5625 }
5626
5627 return 0;
5628 }
5629
btrfs_del_inode_from_root(struct btrfs_inode * inode)5630 static void btrfs_del_inode_from_root(struct btrfs_inode *inode)
5631 {
5632 struct btrfs_root *root = inode->root;
5633 struct btrfs_inode *entry;
5634 bool empty = false;
5635
5636 xa_lock(&root->inodes);
5637 /*
5638 * This btrfs_inode is being freed and has already been unhashed at this
5639 * point. It's possible that another btrfs_inode has already been
5640 * allocated for the same inode and inserted itself into the root, so
5641 * don't delete it in that case.
5642 *
5643 * Note that this shouldn't need to allocate memory, so the gfp flags
5644 * don't really matter.
5645 */
5646 entry = __xa_cmpxchg(&root->inodes, btrfs_ino(inode), inode, NULL,
5647 GFP_ATOMIC);
5648 if (entry == inode)
5649 empty = xa_empty(&root->inodes);
5650 xa_unlock(&root->inodes);
5651
5652 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5653 xa_lock(&root->inodes);
5654 empty = xa_empty(&root->inodes);
5655 xa_unlock(&root->inodes);
5656 if (empty)
5657 btrfs_add_dead_root(root);
5658 }
5659 }
5660
5661
btrfs_init_locked_inode(struct inode * inode,void * p)5662 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5663 {
5664 struct btrfs_iget_args *args = p;
5665
5666 btrfs_set_inode_number(BTRFS_I(inode), args->ino);
5667 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5668
5669 if (args->root && args->root == args->root->fs_info->tree_root &&
5670 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5671 set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5672 &BTRFS_I(inode)->runtime_flags);
5673 return 0;
5674 }
5675
btrfs_find_actor(struct inode * inode,void * opaque)5676 static int btrfs_find_actor(struct inode *inode, void *opaque)
5677 {
5678 struct btrfs_iget_args *args = opaque;
5679
5680 return args->ino == btrfs_ino(BTRFS_I(inode)) &&
5681 args->root == BTRFS_I(inode)->root;
5682 }
5683
btrfs_iget_locked(u64 ino,struct btrfs_root * root)5684 static struct inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root)
5685 {
5686 struct inode *inode;
5687 struct btrfs_iget_args args;
5688 unsigned long hashval = btrfs_inode_hash(ino, root);
5689
5690 args.ino = ino;
5691 args.root = root;
5692
5693 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor,
5694 btrfs_init_locked_inode,
5695 (void *)&args);
5696 return inode;
5697 }
5698
5699 /*
5700 * Get an inode object given its inode number and corresponding root.
5701 * Path can be preallocated to prevent recursing back to iget through
5702 * allocator. NULL is also valid but may require an additional allocation
5703 * later.
5704 */
btrfs_iget_path(u64 ino,struct btrfs_root * root,struct btrfs_path * path)5705 struct inode *btrfs_iget_path(u64 ino, struct btrfs_root *root,
5706 struct btrfs_path *path)
5707 {
5708 struct inode *inode;
5709 int ret;
5710
5711 inode = btrfs_iget_locked(ino, root);
5712 if (!inode)
5713 return ERR_PTR(-ENOMEM);
5714
5715 if (!(inode->i_state & I_NEW))
5716 return inode;
5717
5718 ret = btrfs_read_locked_inode(inode, path);
5719 /*
5720 * ret > 0 can come from btrfs_search_slot called by
5721 * btrfs_read_locked_inode(), this means the inode item was not found.
5722 */
5723 if (ret > 0)
5724 ret = -ENOENT;
5725 if (ret < 0)
5726 goto error;
5727
5728 ret = btrfs_add_inode_to_root(BTRFS_I(inode), true);
5729 if (ret < 0)
5730 goto error;
5731
5732 unlock_new_inode(inode);
5733
5734 return inode;
5735 error:
5736 iget_failed(inode);
5737 return ERR_PTR(ret);
5738 }
5739
btrfs_iget(u64 ino,struct btrfs_root * root)5740 struct inode *btrfs_iget(u64 ino, struct btrfs_root *root)
5741 {
5742 return btrfs_iget_path(ino, root, NULL);
5743 }
5744
new_simple_dir(struct inode * dir,struct btrfs_key * key,struct btrfs_root * root)5745 static struct inode *new_simple_dir(struct inode *dir,
5746 struct btrfs_key *key,
5747 struct btrfs_root *root)
5748 {
5749 struct timespec64 ts;
5750 struct inode *inode = new_inode(dir->i_sb);
5751
5752 if (!inode)
5753 return ERR_PTR(-ENOMEM);
5754
5755 BTRFS_I(inode)->root = btrfs_grab_root(root);
5756 BTRFS_I(inode)->ref_root_id = key->objectid;
5757 set_bit(BTRFS_INODE_ROOT_STUB, &BTRFS_I(inode)->runtime_flags);
5758 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5759
5760 btrfs_set_inode_number(BTRFS_I(inode), BTRFS_EMPTY_SUBVOL_DIR_OBJECTID);
5761 /*
5762 * We only need lookup, the rest is read-only and there's no inode
5763 * associated with the dentry
5764 */
5765 inode->i_op = &simple_dir_inode_operations;
5766 inode->i_opflags &= ~IOP_XATTR;
5767 inode->i_fop = &simple_dir_operations;
5768 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5769
5770 ts = inode_set_ctime_current(inode);
5771 inode_set_mtime_to_ts(inode, ts);
5772 inode_set_atime_to_ts(inode, inode_get_atime(dir));
5773 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
5774 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
5775
5776 inode->i_uid = dir->i_uid;
5777 inode->i_gid = dir->i_gid;
5778
5779 return inode;
5780 }
5781
5782 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5783 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5784 static_assert(BTRFS_FT_DIR == FT_DIR);
5785 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5786 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5787 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5788 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5789 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5790
btrfs_inode_type(struct inode * inode)5791 static inline u8 btrfs_inode_type(struct inode *inode)
5792 {
5793 return fs_umode_to_ftype(inode->i_mode);
5794 }
5795
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)5796 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5797 {
5798 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
5799 struct inode *inode;
5800 struct btrfs_root *root = BTRFS_I(dir)->root;
5801 struct btrfs_root *sub_root = root;
5802 struct btrfs_key location = { 0 };
5803 u8 di_type = 0;
5804 int ret = 0;
5805
5806 if (dentry->d_name.len > BTRFS_NAME_LEN)
5807 return ERR_PTR(-ENAMETOOLONG);
5808
5809 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5810 if (ret < 0)
5811 return ERR_PTR(ret);
5812
5813 if (location.type == BTRFS_INODE_ITEM_KEY) {
5814 inode = btrfs_iget(location.objectid, root);
5815 if (IS_ERR(inode))
5816 return inode;
5817
5818 /* Do extra check against inode mode with di_type */
5819 if (btrfs_inode_type(inode) != di_type) {
5820 btrfs_crit(fs_info,
5821 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5822 inode->i_mode, btrfs_inode_type(inode),
5823 di_type);
5824 iput(inode);
5825 return ERR_PTR(-EUCLEAN);
5826 }
5827 return inode;
5828 }
5829
5830 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5831 &location, &sub_root);
5832 if (ret < 0) {
5833 if (ret != -ENOENT)
5834 inode = ERR_PTR(ret);
5835 else
5836 inode = new_simple_dir(dir, &location, root);
5837 } else {
5838 inode = btrfs_iget(location.objectid, sub_root);
5839 btrfs_put_root(sub_root);
5840
5841 if (IS_ERR(inode))
5842 return inode;
5843
5844 down_read(&fs_info->cleanup_work_sem);
5845 if (!sb_rdonly(inode->i_sb))
5846 ret = btrfs_orphan_cleanup(sub_root);
5847 up_read(&fs_info->cleanup_work_sem);
5848 if (ret) {
5849 iput(inode);
5850 inode = ERR_PTR(ret);
5851 }
5852 }
5853
5854 return inode;
5855 }
5856
btrfs_dentry_delete(const struct dentry * dentry)5857 static int btrfs_dentry_delete(const struct dentry *dentry)
5858 {
5859 struct btrfs_root *root;
5860 struct inode *inode = d_inode(dentry);
5861
5862 if (!inode && !IS_ROOT(dentry))
5863 inode = d_inode(dentry->d_parent);
5864
5865 if (inode) {
5866 root = BTRFS_I(inode)->root;
5867 if (btrfs_root_refs(&root->root_item) == 0)
5868 return 1;
5869
5870 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5871 return 1;
5872 }
5873 return 0;
5874 }
5875
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)5876 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5877 unsigned int flags)
5878 {
5879 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5880
5881 if (inode == ERR_PTR(-ENOENT))
5882 inode = NULL;
5883 return d_splice_alias(inode, dentry);
5884 }
5885
5886 /*
5887 * Find the highest existing sequence number in a directory and then set the
5888 * in-memory index_cnt variable to the first free sequence number.
5889 */
btrfs_set_inode_index_count(struct btrfs_inode * inode)5890 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5891 {
5892 struct btrfs_root *root = inode->root;
5893 struct btrfs_key key, found_key;
5894 struct btrfs_path *path;
5895 struct extent_buffer *leaf;
5896 int ret;
5897
5898 key.objectid = btrfs_ino(inode);
5899 key.type = BTRFS_DIR_INDEX_KEY;
5900 key.offset = (u64)-1;
5901
5902 path = btrfs_alloc_path();
5903 if (!path)
5904 return -ENOMEM;
5905
5906 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5907 if (ret < 0)
5908 goto out;
5909 /* FIXME: we should be able to handle this */
5910 if (ret == 0)
5911 goto out;
5912 ret = 0;
5913
5914 if (path->slots[0] == 0) {
5915 inode->index_cnt = BTRFS_DIR_START_INDEX;
5916 goto out;
5917 }
5918
5919 path->slots[0]--;
5920
5921 leaf = path->nodes[0];
5922 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5923
5924 if (found_key.objectid != btrfs_ino(inode) ||
5925 found_key.type != BTRFS_DIR_INDEX_KEY) {
5926 inode->index_cnt = BTRFS_DIR_START_INDEX;
5927 goto out;
5928 }
5929
5930 inode->index_cnt = found_key.offset + 1;
5931 out:
5932 btrfs_free_path(path);
5933 return ret;
5934 }
5935
btrfs_get_dir_last_index(struct btrfs_inode * dir,u64 * index)5936 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5937 {
5938 int ret = 0;
5939
5940 btrfs_inode_lock(dir, 0);
5941 if (dir->index_cnt == (u64)-1) {
5942 ret = btrfs_inode_delayed_dir_index_count(dir);
5943 if (ret) {
5944 ret = btrfs_set_inode_index_count(dir);
5945 if (ret)
5946 goto out;
5947 }
5948 }
5949
5950 /* index_cnt is the index number of next new entry, so decrement it. */
5951 *index = dir->index_cnt - 1;
5952 out:
5953 btrfs_inode_unlock(dir, 0);
5954
5955 return ret;
5956 }
5957
5958 /*
5959 * All this infrastructure exists because dir_emit can fault, and we are holding
5960 * the tree lock when doing readdir. For now just allocate a buffer and copy
5961 * our information into that, and then dir_emit from the buffer. This is
5962 * similar to what NFS does, only we don't keep the buffer around in pagecache
5963 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5964 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5965 * tree lock.
5966 */
btrfs_opendir(struct inode * inode,struct file * file)5967 static int btrfs_opendir(struct inode *inode, struct file *file)
5968 {
5969 struct btrfs_file_private *private;
5970 u64 last_index;
5971 int ret;
5972
5973 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5974 if (ret)
5975 return ret;
5976
5977 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5978 if (!private)
5979 return -ENOMEM;
5980 private->last_index = last_index;
5981 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5982 if (!private->filldir_buf) {
5983 kfree(private);
5984 return -ENOMEM;
5985 }
5986 file->private_data = private;
5987 return 0;
5988 }
5989
btrfs_dir_llseek(struct file * file,loff_t offset,int whence)5990 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5991 {
5992 struct btrfs_file_private *private = file->private_data;
5993 int ret;
5994
5995 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5996 &private->last_index);
5997 if (ret)
5998 return ret;
5999
6000 return generic_file_llseek(file, offset, whence);
6001 }
6002
6003 struct dir_entry {
6004 u64 ino;
6005 u64 offset;
6006 unsigned type;
6007 int name_len;
6008 };
6009
btrfs_filldir(void * addr,int entries,struct dir_context * ctx)6010 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
6011 {
6012 while (entries--) {
6013 struct dir_entry *entry = addr;
6014 char *name = (char *)(entry + 1);
6015
6016 ctx->pos = get_unaligned(&entry->offset);
6017 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
6018 get_unaligned(&entry->ino),
6019 get_unaligned(&entry->type)))
6020 return 1;
6021 addr += sizeof(struct dir_entry) +
6022 get_unaligned(&entry->name_len);
6023 ctx->pos++;
6024 }
6025 return 0;
6026 }
6027
btrfs_real_readdir(struct file * file,struct dir_context * ctx)6028 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
6029 {
6030 struct inode *inode = file_inode(file);
6031 struct btrfs_root *root = BTRFS_I(inode)->root;
6032 struct btrfs_file_private *private = file->private_data;
6033 struct btrfs_dir_item *di;
6034 struct btrfs_key key;
6035 struct btrfs_key found_key;
6036 struct btrfs_path *path;
6037 void *addr;
6038 LIST_HEAD(ins_list);
6039 LIST_HEAD(del_list);
6040 int ret;
6041 char *name_ptr;
6042 int name_len;
6043 int entries = 0;
6044 int total_len = 0;
6045 bool put = false;
6046 struct btrfs_key location;
6047
6048 if (!dir_emit_dots(file, ctx))
6049 return 0;
6050
6051 path = btrfs_alloc_path();
6052 if (!path)
6053 return -ENOMEM;
6054
6055 addr = private->filldir_buf;
6056 path->reada = READA_FORWARD;
6057
6058 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index,
6059 &ins_list, &del_list);
6060
6061 again:
6062 key.type = BTRFS_DIR_INDEX_KEY;
6063 key.offset = ctx->pos;
6064 key.objectid = btrfs_ino(BTRFS_I(inode));
6065
6066 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
6067 struct dir_entry *entry;
6068 struct extent_buffer *leaf = path->nodes[0];
6069 u8 ftype;
6070
6071 if (found_key.objectid != key.objectid)
6072 break;
6073 if (found_key.type != BTRFS_DIR_INDEX_KEY)
6074 break;
6075 if (found_key.offset < ctx->pos)
6076 continue;
6077 if (found_key.offset > private->last_index)
6078 break;
6079 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6080 continue;
6081 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
6082 name_len = btrfs_dir_name_len(leaf, di);
6083 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6084 PAGE_SIZE) {
6085 btrfs_release_path(path);
6086 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6087 if (ret)
6088 goto nopos;
6089 addr = private->filldir_buf;
6090 entries = 0;
6091 total_len = 0;
6092 goto again;
6093 }
6094
6095 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
6096 entry = addr;
6097 name_ptr = (char *)(entry + 1);
6098 read_extent_buffer(leaf, name_ptr,
6099 (unsigned long)(di + 1), name_len);
6100 put_unaligned(name_len, &entry->name_len);
6101 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
6102 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6103 put_unaligned(location.objectid, &entry->ino);
6104 put_unaligned(found_key.offset, &entry->offset);
6105 entries++;
6106 addr += sizeof(struct dir_entry) + name_len;
6107 total_len += sizeof(struct dir_entry) + name_len;
6108 }
6109 /* Catch error encountered during iteration */
6110 if (ret < 0)
6111 goto err;
6112
6113 btrfs_release_path(path);
6114
6115 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6116 if (ret)
6117 goto nopos;
6118
6119 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6120 if (ret)
6121 goto nopos;
6122
6123 /*
6124 * Stop new entries from being returned after we return the last
6125 * entry.
6126 *
6127 * New directory entries are assigned a strictly increasing
6128 * offset. This means that new entries created during readdir
6129 * are *guaranteed* to be seen in the future by that readdir.
6130 * This has broken buggy programs which operate on names as
6131 * they're returned by readdir. Until we re-use freed offsets
6132 * we have this hack to stop new entries from being returned
6133 * under the assumption that they'll never reach this huge
6134 * offset.
6135 *
6136 * This is being careful not to overflow 32bit loff_t unless the
6137 * last entry requires it because doing so has broken 32bit apps
6138 * in the past.
6139 */
6140 if (ctx->pos >= INT_MAX)
6141 ctx->pos = LLONG_MAX;
6142 else
6143 ctx->pos = INT_MAX;
6144 nopos:
6145 ret = 0;
6146 err:
6147 if (put)
6148 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list);
6149 btrfs_free_path(path);
6150 return ret;
6151 }
6152
6153 /*
6154 * This is somewhat expensive, updating the tree every time the
6155 * inode changes. But, it is most likely to find the inode in cache.
6156 * FIXME, needs more benchmarking...there are no reasons other than performance
6157 * to keep or drop this code.
6158 */
btrfs_dirty_inode(struct btrfs_inode * inode)6159 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6160 {
6161 struct btrfs_root *root = inode->root;
6162 struct btrfs_fs_info *fs_info = root->fs_info;
6163 struct btrfs_trans_handle *trans;
6164 int ret;
6165
6166 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6167 return 0;
6168
6169 trans = btrfs_join_transaction(root);
6170 if (IS_ERR(trans))
6171 return PTR_ERR(trans);
6172
6173 ret = btrfs_update_inode(trans, inode);
6174 if (ret == -ENOSPC || ret == -EDQUOT) {
6175 /* whoops, lets try again with the full transaction */
6176 btrfs_end_transaction(trans);
6177 trans = btrfs_start_transaction(root, 1);
6178 if (IS_ERR(trans))
6179 return PTR_ERR(trans);
6180
6181 ret = btrfs_update_inode(trans, inode);
6182 }
6183 btrfs_end_transaction(trans);
6184 if (inode->delayed_node)
6185 btrfs_balance_delayed_items(fs_info);
6186
6187 return ret;
6188 }
6189
6190 /*
6191 * This is a copy of file_update_time. We need this so we can return error on
6192 * ENOSPC for updating the inode in the case of file write and mmap writes.
6193 */
btrfs_update_time(struct inode * inode,int flags)6194 static int btrfs_update_time(struct inode *inode, int flags)
6195 {
6196 struct btrfs_root *root = BTRFS_I(inode)->root;
6197 bool dirty;
6198
6199 if (btrfs_root_readonly(root))
6200 return -EROFS;
6201
6202 dirty = inode_update_timestamps(inode, flags);
6203 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6204 }
6205
6206 /*
6207 * helper to find a free sequence number in a given directory. This current
6208 * code is very simple, later versions will do smarter things in the btree
6209 */
btrfs_set_inode_index(struct btrfs_inode * dir,u64 * index)6210 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6211 {
6212 int ret = 0;
6213
6214 if (dir->index_cnt == (u64)-1) {
6215 ret = btrfs_inode_delayed_dir_index_count(dir);
6216 if (ret) {
6217 ret = btrfs_set_inode_index_count(dir);
6218 if (ret)
6219 return ret;
6220 }
6221 }
6222
6223 *index = dir->index_cnt;
6224 dir->index_cnt++;
6225
6226 return ret;
6227 }
6228
btrfs_insert_inode_locked(struct inode * inode)6229 static int btrfs_insert_inode_locked(struct inode *inode)
6230 {
6231 struct btrfs_iget_args args;
6232
6233 args.ino = btrfs_ino(BTRFS_I(inode));
6234 args.root = BTRFS_I(inode)->root;
6235
6236 return insert_inode_locked4(inode,
6237 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6238 btrfs_find_actor, &args);
6239 }
6240
btrfs_new_inode_prepare(struct btrfs_new_inode_args * args,unsigned int * trans_num_items)6241 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6242 unsigned int *trans_num_items)
6243 {
6244 struct inode *dir = args->dir;
6245 struct inode *inode = args->inode;
6246 int ret;
6247
6248 if (!args->orphan) {
6249 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6250 &args->fname);
6251 if (ret)
6252 return ret;
6253 }
6254
6255 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6256 if (ret) {
6257 fscrypt_free_filename(&args->fname);
6258 return ret;
6259 }
6260
6261 /* 1 to add inode item */
6262 *trans_num_items = 1;
6263 /* 1 to add compression property */
6264 if (BTRFS_I(dir)->prop_compress)
6265 (*trans_num_items)++;
6266 /* 1 to add default ACL xattr */
6267 if (args->default_acl)
6268 (*trans_num_items)++;
6269 /* 1 to add access ACL xattr */
6270 if (args->acl)
6271 (*trans_num_items)++;
6272 #ifdef CONFIG_SECURITY
6273 /* 1 to add LSM xattr */
6274 if (dir->i_security)
6275 (*trans_num_items)++;
6276 #endif
6277 if (args->orphan) {
6278 /* 1 to add orphan item */
6279 (*trans_num_items)++;
6280 } else {
6281 /*
6282 * 1 to add dir item
6283 * 1 to add dir index
6284 * 1 to update parent inode item
6285 *
6286 * No need for 1 unit for the inode ref item because it is
6287 * inserted in a batch together with the inode item at
6288 * btrfs_create_new_inode().
6289 */
6290 *trans_num_items += 3;
6291 }
6292 return 0;
6293 }
6294
btrfs_new_inode_args_destroy(struct btrfs_new_inode_args * args)6295 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6296 {
6297 posix_acl_release(args->acl);
6298 posix_acl_release(args->default_acl);
6299 fscrypt_free_filename(&args->fname);
6300 }
6301
6302 /*
6303 * Inherit flags from the parent inode.
6304 *
6305 * Currently only the compression flags and the cow flags are inherited.
6306 */
btrfs_inherit_iflags(struct btrfs_inode * inode,struct btrfs_inode * dir)6307 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6308 {
6309 unsigned int flags;
6310
6311 flags = dir->flags;
6312
6313 if (flags & BTRFS_INODE_NOCOMPRESS) {
6314 inode->flags &= ~BTRFS_INODE_COMPRESS;
6315 inode->flags |= BTRFS_INODE_NOCOMPRESS;
6316 } else if (flags & BTRFS_INODE_COMPRESS) {
6317 inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6318 inode->flags |= BTRFS_INODE_COMPRESS;
6319 }
6320
6321 if (flags & BTRFS_INODE_NODATACOW) {
6322 inode->flags |= BTRFS_INODE_NODATACOW;
6323 if (S_ISREG(inode->vfs_inode.i_mode))
6324 inode->flags |= BTRFS_INODE_NODATASUM;
6325 }
6326
6327 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6328 }
6329
btrfs_create_new_inode(struct btrfs_trans_handle * trans,struct btrfs_new_inode_args * args)6330 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6331 struct btrfs_new_inode_args *args)
6332 {
6333 struct timespec64 ts;
6334 struct inode *dir = args->dir;
6335 struct inode *inode = args->inode;
6336 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6337 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6338 struct btrfs_root *root;
6339 struct btrfs_inode_item *inode_item;
6340 struct btrfs_path *path;
6341 u64 objectid;
6342 struct btrfs_inode_ref *ref;
6343 struct btrfs_key key[2];
6344 u32 sizes[2];
6345 struct btrfs_item_batch batch;
6346 unsigned long ptr;
6347 int ret;
6348 bool xa_reserved = false;
6349
6350 path = btrfs_alloc_path();
6351 if (!path)
6352 return -ENOMEM;
6353
6354 if (!args->subvol)
6355 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6356 root = BTRFS_I(inode)->root;
6357
6358 ret = btrfs_init_file_extent_tree(BTRFS_I(inode));
6359 if (ret)
6360 goto out;
6361
6362 ret = btrfs_get_free_objectid(root, &objectid);
6363 if (ret)
6364 goto out;
6365 btrfs_set_inode_number(BTRFS_I(inode), objectid);
6366
6367 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS);
6368 if (ret)
6369 goto out;
6370 xa_reserved = true;
6371
6372 if (args->orphan) {
6373 /*
6374 * O_TMPFILE, set link count to 0, so that after this point, we
6375 * fill in an inode item with the correct link count.
6376 */
6377 set_nlink(inode, 0);
6378 } else {
6379 trace_btrfs_inode_request(dir);
6380
6381 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6382 if (ret)
6383 goto out;
6384 }
6385
6386 if (S_ISDIR(inode->i_mode))
6387 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6388
6389 BTRFS_I(inode)->generation = trans->transid;
6390 inode->i_generation = BTRFS_I(inode)->generation;
6391
6392 /*
6393 * We don't have any capability xattrs set here yet, shortcut any
6394 * queries for the xattrs here. If we add them later via the inode
6395 * security init path or any other path this flag will be cleared.
6396 */
6397 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
6398
6399 /*
6400 * Subvolumes don't inherit flags from their parent directory.
6401 * Originally this was probably by accident, but we probably can't
6402 * change it now without compatibility issues.
6403 */
6404 if (!args->subvol)
6405 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6406
6407 if (S_ISREG(inode->i_mode)) {
6408 if (btrfs_test_opt(fs_info, NODATASUM))
6409 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6410 if (btrfs_test_opt(fs_info, NODATACOW))
6411 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6412 BTRFS_INODE_NODATASUM;
6413 }
6414
6415 ret = btrfs_insert_inode_locked(inode);
6416 if (ret < 0) {
6417 if (!args->orphan)
6418 BTRFS_I(dir)->index_cnt--;
6419 goto out;
6420 }
6421
6422 /*
6423 * We could have gotten an inode number from somebody who was fsynced
6424 * and then removed in this same transaction, so let's just set full
6425 * sync since it will be a full sync anyway and this will blow away the
6426 * old info in the log.
6427 */
6428 btrfs_set_inode_full_sync(BTRFS_I(inode));
6429
6430 key[0].objectid = objectid;
6431 key[0].type = BTRFS_INODE_ITEM_KEY;
6432 key[0].offset = 0;
6433
6434 sizes[0] = sizeof(struct btrfs_inode_item);
6435
6436 if (!args->orphan) {
6437 /*
6438 * Start new inodes with an inode_ref. This is slightly more
6439 * efficient for small numbers of hard links since they will
6440 * be packed into one item. Extended refs will kick in if we
6441 * add more hard links than can fit in the ref item.
6442 */
6443 key[1].objectid = objectid;
6444 key[1].type = BTRFS_INODE_REF_KEY;
6445 if (args->subvol) {
6446 key[1].offset = objectid;
6447 sizes[1] = 2 + sizeof(*ref);
6448 } else {
6449 key[1].offset = btrfs_ino(BTRFS_I(dir));
6450 sizes[1] = name->len + sizeof(*ref);
6451 }
6452 }
6453
6454 batch.keys = &key[0];
6455 batch.data_sizes = &sizes[0];
6456 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6457 batch.nr = args->orphan ? 1 : 2;
6458 ret = btrfs_insert_empty_items(trans, root, path, &batch);
6459 if (ret != 0) {
6460 btrfs_abort_transaction(trans, ret);
6461 goto discard;
6462 }
6463
6464 ts = simple_inode_init_ts(inode);
6465 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6466 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
6467
6468 /*
6469 * We're going to fill the inode item now, so at this point the inode
6470 * must be fully initialized.
6471 */
6472
6473 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6474 struct btrfs_inode_item);
6475 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6476 sizeof(*inode_item));
6477 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6478
6479 if (!args->orphan) {
6480 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6481 struct btrfs_inode_ref);
6482 ptr = (unsigned long)(ref + 1);
6483 if (args->subvol) {
6484 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6485 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6486 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6487 } else {
6488 btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6489 name->len);
6490 btrfs_set_inode_ref_index(path->nodes[0], ref,
6491 BTRFS_I(inode)->dir_index);
6492 write_extent_buffer(path->nodes[0], name->name, ptr,
6493 name->len);
6494 }
6495 }
6496
6497 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
6498 /*
6499 * We don't need the path anymore, plus inheriting properties, adding
6500 * ACLs, security xattrs, orphan item or adding the link, will result in
6501 * allocating yet another path. So just free our path.
6502 */
6503 btrfs_free_path(path);
6504 path = NULL;
6505
6506 if (args->subvol) {
6507 struct inode *parent;
6508
6509 /*
6510 * Subvolumes inherit properties from their parent subvolume,
6511 * not the directory they were created in.
6512 */
6513 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root);
6514 if (IS_ERR(parent)) {
6515 ret = PTR_ERR(parent);
6516 } else {
6517 ret = btrfs_inode_inherit_props(trans, inode, parent);
6518 iput(parent);
6519 }
6520 } else {
6521 ret = btrfs_inode_inherit_props(trans, inode, dir);
6522 }
6523 if (ret) {
6524 btrfs_err(fs_info,
6525 "error inheriting props for ino %llu (root %llu): %d",
6526 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret);
6527 }
6528
6529 /*
6530 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6531 * probably a bug.
6532 */
6533 if (!args->subvol) {
6534 ret = btrfs_init_inode_security(trans, args);
6535 if (ret) {
6536 btrfs_abort_transaction(trans, ret);
6537 goto discard;
6538 }
6539 }
6540
6541 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false);
6542 if (WARN_ON(ret)) {
6543 /* Shouldn't happen, we used xa_reserve() before. */
6544 btrfs_abort_transaction(trans, ret);
6545 goto discard;
6546 }
6547
6548 trace_btrfs_inode_new(inode);
6549 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6550
6551 btrfs_update_root_times(trans, root);
6552
6553 if (args->orphan) {
6554 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6555 } else {
6556 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6557 0, BTRFS_I(inode)->dir_index);
6558 }
6559 if (ret) {
6560 btrfs_abort_transaction(trans, ret);
6561 goto discard;
6562 }
6563
6564 return 0;
6565
6566 discard:
6567 /*
6568 * discard_new_inode() calls iput(), but the caller owns the reference
6569 * to the inode.
6570 */
6571 ihold(inode);
6572 discard_new_inode(inode);
6573 out:
6574 if (xa_reserved)
6575 xa_release(&root->inodes, objectid);
6576
6577 btrfs_free_path(path);
6578 return ret;
6579 }
6580
6581 /*
6582 * utility function to add 'inode' into 'parent_inode' with
6583 * a give name and a given sequence number.
6584 * if 'add_backref' is true, also insert a backref from the
6585 * inode to the parent directory.
6586 */
btrfs_add_link(struct btrfs_trans_handle * trans,struct btrfs_inode * parent_inode,struct btrfs_inode * inode,const struct fscrypt_str * name,int add_backref,u64 index)6587 int btrfs_add_link(struct btrfs_trans_handle *trans,
6588 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6589 const struct fscrypt_str *name, int add_backref, u64 index)
6590 {
6591 int ret = 0;
6592 struct btrfs_key key;
6593 struct btrfs_root *root = parent_inode->root;
6594 u64 ino = btrfs_ino(inode);
6595 u64 parent_ino = btrfs_ino(parent_inode);
6596
6597 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6598 memcpy(&key, &inode->root->root_key, sizeof(key));
6599 } else {
6600 key.objectid = ino;
6601 key.type = BTRFS_INODE_ITEM_KEY;
6602 key.offset = 0;
6603 }
6604
6605 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6606 ret = btrfs_add_root_ref(trans, key.objectid,
6607 btrfs_root_id(root), parent_ino,
6608 index, name);
6609 } else if (add_backref) {
6610 ret = btrfs_insert_inode_ref(trans, root, name,
6611 ino, parent_ino, index);
6612 }
6613
6614 /* Nothing to clean up yet */
6615 if (ret)
6616 return ret;
6617
6618 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6619 btrfs_inode_type(&inode->vfs_inode), index);
6620 if (ret == -EEXIST || ret == -EOVERFLOW)
6621 goto fail_dir_item;
6622 else if (ret) {
6623 btrfs_abort_transaction(trans, ret);
6624 return ret;
6625 }
6626
6627 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6628 name->len * 2);
6629 inode_inc_iversion(&parent_inode->vfs_inode);
6630 /*
6631 * If we are replaying a log tree, we do not want to update the mtime
6632 * and ctime of the parent directory with the current time, since the
6633 * log replay procedure is responsible for setting them to their correct
6634 * values (the ones it had when the fsync was done).
6635 */
6636 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6637 inode_set_mtime_to_ts(&parent_inode->vfs_inode,
6638 inode_set_ctime_current(&parent_inode->vfs_inode));
6639
6640 ret = btrfs_update_inode(trans, parent_inode);
6641 if (ret)
6642 btrfs_abort_transaction(trans, ret);
6643 return ret;
6644
6645 fail_dir_item:
6646 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6647 u64 local_index;
6648 int err;
6649 err = btrfs_del_root_ref(trans, key.objectid,
6650 btrfs_root_id(root), parent_ino,
6651 &local_index, name);
6652 if (err)
6653 btrfs_abort_transaction(trans, err);
6654 } else if (add_backref) {
6655 u64 local_index;
6656 int err;
6657
6658 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6659 &local_index);
6660 if (err)
6661 btrfs_abort_transaction(trans, err);
6662 }
6663
6664 /* Return the original error code */
6665 return ret;
6666 }
6667
btrfs_create_common(struct inode * dir,struct dentry * dentry,struct inode * inode)6668 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6669 struct inode *inode)
6670 {
6671 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6672 struct btrfs_root *root = BTRFS_I(dir)->root;
6673 struct btrfs_new_inode_args new_inode_args = {
6674 .dir = dir,
6675 .dentry = dentry,
6676 .inode = inode,
6677 };
6678 unsigned int trans_num_items;
6679 struct btrfs_trans_handle *trans;
6680 int err;
6681
6682 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6683 if (err)
6684 goto out_inode;
6685
6686 trans = btrfs_start_transaction(root, trans_num_items);
6687 if (IS_ERR(trans)) {
6688 err = PTR_ERR(trans);
6689 goto out_new_inode_args;
6690 }
6691
6692 err = btrfs_create_new_inode(trans, &new_inode_args);
6693 if (!err)
6694 d_instantiate_new(dentry, inode);
6695
6696 btrfs_end_transaction(trans);
6697 btrfs_btree_balance_dirty(fs_info);
6698 out_new_inode_args:
6699 btrfs_new_inode_args_destroy(&new_inode_args);
6700 out_inode:
6701 if (err)
6702 iput(inode);
6703 return err;
6704 }
6705
btrfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6706 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6707 struct dentry *dentry, umode_t mode, dev_t rdev)
6708 {
6709 struct inode *inode;
6710
6711 inode = new_inode(dir->i_sb);
6712 if (!inode)
6713 return -ENOMEM;
6714 inode_init_owner(idmap, inode, dir, mode);
6715 inode->i_op = &btrfs_special_inode_operations;
6716 init_special_inode(inode, inode->i_mode, rdev);
6717 return btrfs_create_common(dir, dentry, inode);
6718 }
6719
btrfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6720 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6721 struct dentry *dentry, umode_t mode, bool excl)
6722 {
6723 struct inode *inode;
6724
6725 inode = new_inode(dir->i_sb);
6726 if (!inode)
6727 return -ENOMEM;
6728 inode_init_owner(idmap, inode, dir, mode);
6729 inode->i_fop = &btrfs_file_operations;
6730 inode->i_op = &btrfs_file_inode_operations;
6731 inode->i_mapping->a_ops = &btrfs_aops;
6732 return btrfs_create_common(dir, dentry, inode);
6733 }
6734
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6735 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6736 struct dentry *dentry)
6737 {
6738 struct btrfs_trans_handle *trans = NULL;
6739 struct btrfs_root *root = BTRFS_I(dir)->root;
6740 struct inode *inode = d_inode(old_dentry);
6741 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
6742 struct fscrypt_name fname;
6743 u64 index;
6744 int err;
6745 int drop_inode = 0;
6746
6747 /* do not allow sys_link's with other subvols of the same device */
6748 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root))
6749 return -EXDEV;
6750
6751 if (inode->i_nlink >= BTRFS_LINK_MAX)
6752 return -EMLINK;
6753
6754 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6755 if (err)
6756 goto fail;
6757
6758 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6759 if (err)
6760 goto fail;
6761
6762 /*
6763 * 2 items for inode and inode ref
6764 * 2 items for dir items
6765 * 1 item for parent inode
6766 * 1 item for orphan item deletion if O_TMPFILE
6767 */
6768 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6769 if (IS_ERR(trans)) {
6770 err = PTR_ERR(trans);
6771 trans = NULL;
6772 goto fail;
6773 }
6774
6775 /* There are several dir indexes for this inode, clear the cache. */
6776 BTRFS_I(inode)->dir_index = 0ULL;
6777 inc_nlink(inode);
6778 inode_inc_iversion(inode);
6779 inode_set_ctime_current(inode);
6780 ihold(inode);
6781 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6782
6783 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6784 &fname.disk_name, 1, index);
6785
6786 if (err) {
6787 drop_inode = 1;
6788 } else {
6789 struct dentry *parent = dentry->d_parent;
6790
6791 err = btrfs_update_inode(trans, BTRFS_I(inode));
6792 if (err)
6793 goto fail;
6794 if (inode->i_nlink == 1) {
6795 /*
6796 * If new hard link count is 1, it's a file created
6797 * with open(2) O_TMPFILE flag.
6798 */
6799 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6800 if (err)
6801 goto fail;
6802 }
6803 d_instantiate(dentry, inode);
6804 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6805 }
6806
6807 fail:
6808 fscrypt_free_filename(&fname);
6809 if (trans)
6810 btrfs_end_transaction(trans);
6811 if (drop_inode) {
6812 inode_dec_link_count(inode);
6813 iput(inode);
6814 }
6815 btrfs_btree_balance_dirty(fs_info);
6816 return err;
6817 }
6818
btrfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)6819 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6820 struct dentry *dentry, umode_t mode)
6821 {
6822 struct inode *inode;
6823
6824 inode = new_inode(dir->i_sb);
6825 if (!inode)
6826 return -ENOMEM;
6827 inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6828 inode->i_op = &btrfs_dir_inode_operations;
6829 inode->i_fop = &btrfs_dir_file_operations;
6830 return btrfs_create_common(dir, dentry, inode);
6831 }
6832
uncompress_inline(struct btrfs_path * path,struct folio * folio,struct btrfs_file_extent_item * item)6833 static noinline int uncompress_inline(struct btrfs_path *path,
6834 struct folio *folio,
6835 struct btrfs_file_extent_item *item)
6836 {
6837 int ret;
6838 struct extent_buffer *leaf = path->nodes[0];
6839 char *tmp;
6840 size_t max_size;
6841 unsigned long inline_size;
6842 unsigned long ptr;
6843 int compress_type;
6844
6845 compress_type = btrfs_file_extent_compression(leaf, item);
6846 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6847 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6848 tmp = kmalloc(inline_size, GFP_NOFS);
6849 if (!tmp)
6850 return -ENOMEM;
6851 ptr = btrfs_file_extent_inline_start(item);
6852
6853 read_extent_buffer(leaf, tmp, ptr, inline_size);
6854
6855 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6856 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size,
6857 max_size);
6858
6859 /*
6860 * decompression code contains a memset to fill in any space between the end
6861 * of the uncompressed data and the end of max_size in case the decompressed
6862 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6863 * the end of an inline extent and the beginning of the next block, so we
6864 * cover that region here.
6865 */
6866
6867 if (max_size < PAGE_SIZE)
6868 folio_zero_range(folio, max_size, PAGE_SIZE - max_size);
6869 kfree(tmp);
6870 return ret;
6871 }
6872
read_inline_extent(struct btrfs_inode * inode,struct btrfs_path * path,struct folio * folio)6873 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6874 struct folio *folio)
6875 {
6876 struct btrfs_file_extent_item *fi;
6877 void *kaddr;
6878 size_t copy_size;
6879
6880 if (!folio || folio_test_uptodate(folio))
6881 return 0;
6882
6883 ASSERT(folio_pos(folio) == 0);
6884
6885 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6886 struct btrfs_file_extent_item);
6887 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6888 return uncompress_inline(path, folio, fi);
6889
6890 copy_size = min_t(u64, PAGE_SIZE,
6891 btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6892 kaddr = kmap_local_folio(folio, 0);
6893 read_extent_buffer(path->nodes[0], kaddr,
6894 btrfs_file_extent_inline_start(fi), copy_size);
6895 kunmap_local(kaddr);
6896 if (copy_size < PAGE_SIZE)
6897 folio_zero_range(folio, copy_size, PAGE_SIZE - copy_size);
6898 return 0;
6899 }
6900
6901 /*
6902 * Lookup the first extent overlapping a range in a file.
6903 *
6904 * @inode: file to search in
6905 * @page: page to read extent data into if the extent is inline
6906 * @start: file offset
6907 * @len: length of range starting at @start
6908 *
6909 * Return the first &struct extent_map which overlaps the given range, reading
6910 * it from the B-tree and caching it if necessary. Note that there may be more
6911 * extents which overlap the given range after the returned extent_map.
6912 *
6913 * If @page is not NULL and the extent is inline, this also reads the extent
6914 * data directly into the page and marks the extent up to date in the io_tree.
6915 *
6916 * Return: ERR_PTR on error, non-NULL extent_map on success.
6917 */
btrfs_get_extent(struct btrfs_inode * inode,struct folio * folio,u64 start,u64 len)6918 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6919 struct folio *folio, u64 start, u64 len)
6920 {
6921 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6922 int ret = 0;
6923 u64 extent_start = 0;
6924 u64 extent_end = 0;
6925 u64 objectid = btrfs_ino(inode);
6926 int extent_type = -1;
6927 struct btrfs_path *path = NULL;
6928 struct btrfs_root *root = inode->root;
6929 struct btrfs_file_extent_item *item;
6930 struct extent_buffer *leaf;
6931 struct btrfs_key found_key;
6932 struct extent_map *em = NULL;
6933 struct extent_map_tree *em_tree = &inode->extent_tree;
6934
6935 read_lock(&em_tree->lock);
6936 em = lookup_extent_mapping(em_tree, start, len);
6937 read_unlock(&em_tree->lock);
6938
6939 if (em) {
6940 if (em->start > start || em->start + em->len <= start)
6941 free_extent_map(em);
6942 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio)
6943 free_extent_map(em);
6944 else
6945 goto out;
6946 }
6947 em = alloc_extent_map();
6948 if (!em) {
6949 ret = -ENOMEM;
6950 goto out;
6951 }
6952 em->start = EXTENT_MAP_HOLE;
6953 em->disk_bytenr = EXTENT_MAP_HOLE;
6954 em->len = (u64)-1;
6955
6956 path = btrfs_alloc_path();
6957 if (!path) {
6958 ret = -ENOMEM;
6959 goto out;
6960 }
6961
6962 /* Chances are we'll be called again, so go ahead and do readahead */
6963 path->reada = READA_FORWARD;
6964
6965 /*
6966 * The same explanation in load_free_space_cache applies here as well,
6967 * we only read when we're loading the free space cache, and at that
6968 * point the commit_root has everything we need.
6969 */
6970 if (btrfs_is_free_space_inode(inode)) {
6971 path->search_commit_root = 1;
6972 path->skip_locking = 1;
6973 }
6974
6975 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6976 if (ret < 0) {
6977 goto out;
6978 } else if (ret > 0) {
6979 if (path->slots[0] == 0)
6980 goto not_found;
6981 path->slots[0]--;
6982 ret = 0;
6983 }
6984
6985 leaf = path->nodes[0];
6986 item = btrfs_item_ptr(leaf, path->slots[0],
6987 struct btrfs_file_extent_item);
6988 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6989 if (found_key.objectid != objectid ||
6990 found_key.type != BTRFS_EXTENT_DATA_KEY) {
6991 /*
6992 * If we backup past the first extent we want to move forward
6993 * and see if there is an extent in front of us, otherwise we'll
6994 * say there is a hole for our whole search range which can
6995 * cause problems.
6996 */
6997 extent_end = start;
6998 goto next;
6999 }
7000
7001 extent_type = btrfs_file_extent_type(leaf, item);
7002 extent_start = found_key.offset;
7003 extent_end = btrfs_file_extent_end(path);
7004 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7005 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7006 /* Only regular file could have regular/prealloc extent */
7007 if (!S_ISREG(inode->vfs_inode.i_mode)) {
7008 ret = -EUCLEAN;
7009 btrfs_crit(fs_info,
7010 "regular/prealloc extent found for non-regular inode %llu",
7011 btrfs_ino(inode));
7012 goto out;
7013 }
7014 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7015 extent_start);
7016 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7017 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7018 path->slots[0],
7019 extent_start);
7020 }
7021 next:
7022 if (start >= extent_end) {
7023 path->slots[0]++;
7024 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7025 ret = btrfs_next_leaf(root, path);
7026 if (ret < 0)
7027 goto out;
7028 else if (ret > 0)
7029 goto not_found;
7030
7031 leaf = path->nodes[0];
7032 }
7033 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7034 if (found_key.objectid != objectid ||
7035 found_key.type != BTRFS_EXTENT_DATA_KEY)
7036 goto not_found;
7037 if (start + len <= found_key.offset)
7038 goto not_found;
7039 if (start > found_key.offset)
7040 goto next;
7041
7042 /* New extent overlaps with existing one */
7043 em->start = start;
7044 em->len = found_key.offset - start;
7045 em->disk_bytenr = EXTENT_MAP_HOLE;
7046 goto insert;
7047 }
7048
7049 btrfs_extent_item_to_extent_map(inode, path, item, em);
7050
7051 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7052 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7053 goto insert;
7054 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7055 /*
7056 * Inline extent can only exist at file offset 0. This is
7057 * ensured by tree-checker and inline extent creation path.
7058 * Thus all members representing file offsets should be zero.
7059 */
7060 ASSERT(extent_start == 0);
7061 ASSERT(em->start == 0);
7062
7063 /*
7064 * btrfs_extent_item_to_extent_map() should have properly
7065 * initialized em members already.
7066 *
7067 * Other members are not utilized for inline extents.
7068 */
7069 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE);
7070 ASSERT(em->len == fs_info->sectorsize);
7071
7072 ret = read_inline_extent(inode, path, folio);
7073 if (ret < 0)
7074 goto out;
7075 goto insert;
7076 }
7077 not_found:
7078 em->start = start;
7079 em->len = len;
7080 em->disk_bytenr = EXTENT_MAP_HOLE;
7081 insert:
7082 ret = 0;
7083 btrfs_release_path(path);
7084 if (em->start > start || extent_map_end(em) <= start) {
7085 btrfs_err(fs_info,
7086 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7087 em->start, em->len, start, len);
7088 ret = -EIO;
7089 goto out;
7090 }
7091
7092 write_lock(&em_tree->lock);
7093 ret = btrfs_add_extent_mapping(inode, &em, start, len);
7094 write_unlock(&em_tree->lock);
7095 out:
7096 btrfs_free_path(path);
7097
7098 trace_btrfs_get_extent(root, inode, em);
7099
7100 if (ret) {
7101 free_extent_map(em);
7102 return ERR_PTR(ret);
7103 }
7104 return em;
7105 }
7106
btrfs_extent_readonly(struct btrfs_fs_info * fs_info,u64 bytenr)7107 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7108 {
7109 struct btrfs_block_group *block_group;
7110 bool readonly = false;
7111
7112 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7113 if (!block_group || block_group->ro)
7114 readonly = true;
7115 if (block_group)
7116 btrfs_put_block_group(block_group);
7117 return readonly;
7118 }
7119
7120 /*
7121 * Check if we can do nocow write into the range [@offset, @offset + @len)
7122 *
7123 * @offset: File offset
7124 * @len: The length to write, will be updated to the nocow writeable
7125 * range
7126 * @orig_start: (optional) Return the original file offset of the file extent
7127 * @orig_len: (optional) Return the original on-disk length of the file extent
7128 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7129 * @strict: if true, omit optimizations that might force us into unnecessary
7130 * cow. e.g., don't trust generation number.
7131 *
7132 * Return:
7133 * >0 and update @len if we can do nocow write
7134 * 0 if we can't do nocow write
7135 * <0 if error happened
7136 *
7137 * NOTE: This only checks the file extents, caller is responsible to wait for
7138 * any ordered extents.
7139 */
can_nocow_extent(struct inode * inode,u64 offset,u64 * len,struct btrfs_file_extent * file_extent,bool nowait,bool strict)7140 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7141 struct btrfs_file_extent *file_extent,
7142 bool nowait, bool strict)
7143 {
7144 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
7145 struct can_nocow_file_extent_args nocow_args = { 0 };
7146 struct btrfs_path *path;
7147 int ret;
7148 struct extent_buffer *leaf;
7149 struct btrfs_root *root = BTRFS_I(inode)->root;
7150 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7151 struct btrfs_file_extent_item *fi;
7152 struct btrfs_key key;
7153 int found_type;
7154
7155 path = btrfs_alloc_path();
7156 if (!path)
7157 return -ENOMEM;
7158 path->nowait = nowait;
7159
7160 ret = btrfs_lookup_file_extent(NULL, root, path,
7161 btrfs_ino(BTRFS_I(inode)), offset, 0);
7162 if (ret < 0)
7163 goto out;
7164
7165 if (ret == 1) {
7166 if (path->slots[0] == 0) {
7167 /* can't find the item, must cow */
7168 ret = 0;
7169 goto out;
7170 }
7171 path->slots[0]--;
7172 }
7173 ret = 0;
7174 leaf = path->nodes[0];
7175 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7176 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7177 key.type != BTRFS_EXTENT_DATA_KEY) {
7178 /* not our file or wrong item type, must cow */
7179 goto out;
7180 }
7181
7182 if (key.offset > offset) {
7183 /* Wrong offset, must cow */
7184 goto out;
7185 }
7186
7187 if (btrfs_file_extent_end(path) <= offset)
7188 goto out;
7189
7190 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7191 found_type = btrfs_file_extent_type(leaf, fi);
7192
7193 nocow_args.start = offset;
7194 nocow_args.end = offset + *len - 1;
7195 nocow_args.strict = strict;
7196 nocow_args.free_path = true;
7197
7198 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7199 /* can_nocow_file_extent() has freed the path. */
7200 path = NULL;
7201
7202 if (ret != 1) {
7203 /* Treat errors as not being able to NOCOW. */
7204 ret = 0;
7205 goto out;
7206 }
7207
7208 ret = 0;
7209 if (btrfs_extent_readonly(fs_info,
7210 nocow_args.file_extent.disk_bytenr +
7211 nocow_args.file_extent.offset))
7212 goto out;
7213
7214 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7215 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7216 u64 range_end;
7217
7218 range_end = round_up(offset + nocow_args.file_extent.num_bytes,
7219 root->fs_info->sectorsize) - 1;
7220 ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC);
7221 if (ret) {
7222 ret = -EAGAIN;
7223 goto out;
7224 }
7225 }
7226
7227 if (file_extent)
7228 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent));
7229
7230 *len = nocow_args.file_extent.num_bytes;
7231 ret = 1;
7232 out:
7233 btrfs_free_path(path);
7234 return ret;
7235 }
7236
7237 /* The callers of this must take lock_extent() */
btrfs_create_io_em(struct btrfs_inode * inode,u64 start,const struct btrfs_file_extent * file_extent,int type)7238 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start,
7239 const struct btrfs_file_extent *file_extent,
7240 int type)
7241 {
7242 struct extent_map *em;
7243 int ret;
7244
7245 /*
7246 * Note the missing NOCOW type.
7247 *
7248 * For pure NOCOW writes, we should not create an io extent map, but
7249 * just reusing the existing one.
7250 * Only PREALLOC writes (NOCOW write into preallocated range) can
7251 * create an io extent map.
7252 */
7253 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7254 type == BTRFS_ORDERED_COMPRESSED ||
7255 type == BTRFS_ORDERED_REGULAR);
7256
7257 switch (type) {
7258 case BTRFS_ORDERED_PREALLOC:
7259 /* We're only referring part of a larger preallocated extent. */
7260 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7261 break;
7262 case BTRFS_ORDERED_REGULAR:
7263 /* COW results a new extent matching our file extent size. */
7264 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes);
7265 ASSERT(file_extent->ram_bytes == file_extent->num_bytes);
7266
7267 /* Since it's a new extent, we should not have any offset. */
7268 ASSERT(file_extent->offset == 0);
7269 break;
7270 case BTRFS_ORDERED_COMPRESSED:
7271 /* Must be compressed. */
7272 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE);
7273
7274 /*
7275 * Encoded write can make us to refer to part of the
7276 * uncompressed extent.
7277 */
7278 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7279 break;
7280 }
7281
7282 em = alloc_extent_map();
7283 if (!em)
7284 return ERR_PTR(-ENOMEM);
7285
7286 em->start = start;
7287 em->len = file_extent->num_bytes;
7288 em->disk_bytenr = file_extent->disk_bytenr;
7289 em->disk_num_bytes = file_extent->disk_num_bytes;
7290 em->ram_bytes = file_extent->ram_bytes;
7291 em->generation = -1;
7292 em->offset = file_extent->offset;
7293 em->flags |= EXTENT_FLAG_PINNED;
7294 if (type == BTRFS_ORDERED_COMPRESSED)
7295 extent_map_set_compression(em, file_extent->compression);
7296
7297 ret = btrfs_replace_extent_map_range(inode, em, true);
7298 if (ret) {
7299 free_extent_map(em);
7300 return ERR_PTR(ret);
7301 }
7302
7303 /* em got 2 refs now, callers needs to do free_extent_map once. */
7304 return em;
7305 }
7306
7307 /*
7308 * For release_folio() and invalidate_folio() we have a race window where
7309 * folio_end_writeback() is called but the subpage spinlock is not yet released.
7310 * If we continue to release/invalidate the page, we could cause use-after-free
7311 * for subpage spinlock. So this function is to spin and wait for subpage
7312 * spinlock.
7313 */
wait_subpage_spinlock(struct folio * folio)7314 static void wait_subpage_spinlock(struct folio *folio)
7315 {
7316 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
7317 struct btrfs_subpage *subpage;
7318
7319 if (!btrfs_is_subpage(fs_info, folio->mapping))
7320 return;
7321
7322 ASSERT(folio_test_private(folio) && folio_get_private(folio));
7323 subpage = folio_get_private(folio);
7324
7325 /*
7326 * This may look insane as we just acquire the spinlock and release it,
7327 * without doing anything. But we just want to make sure no one is
7328 * still holding the subpage spinlock.
7329 * And since the page is not dirty nor writeback, and we have page
7330 * locked, the only possible way to hold a spinlock is from the endio
7331 * function to clear page writeback.
7332 *
7333 * Here we just acquire the spinlock so that all existing callers
7334 * should exit and we're safe to release/invalidate the page.
7335 */
7336 spin_lock_irq(&subpage->lock);
7337 spin_unlock_irq(&subpage->lock);
7338 }
7339
btrfs_launder_folio(struct folio * folio)7340 static int btrfs_launder_folio(struct folio *folio)
7341 {
7342 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio),
7343 PAGE_SIZE, NULL);
7344 }
7345
__btrfs_release_folio(struct folio * folio,gfp_t gfp_flags)7346 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7347 {
7348 if (try_release_extent_mapping(folio, gfp_flags)) {
7349 wait_subpage_spinlock(folio);
7350 clear_folio_extent_mapped(folio);
7351 return true;
7352 }
7353 return false;
7354 }
7355
btrfs_release_folio(struct folio * folio,gfp_t gfp_flags)7356 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7357 {
7358 if (folio_test_writeback(folio) || folio_test_dirty(folio))
7359 return false;
7360 return __btrfs_release_folio(folio, gfp_flags);
7361 }
7362
7363 #ifdef CONFIG_MIGRATION
btrfs_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)7364 static int btrfs_migrate_folio(struct address_space *mapping,
7365 struct folio *dst, struct folio *src,
7366 enum migrate_mode mode)
7367 {
7368 int ret = filemap_migrate_folio(mapping, dst, src, mode);
7369
7370 if (ret != MIGRATEPAGE_SUCCESS)
7371 return ret;
7372
7373 if (folio_test_ordered(src)) {
7374 folio_clear_ordered(src);
7375 folio_set_ordered(dst);
7376 }
7377
7378 return MIGRATEPAGE_SUCCESS;
7379 }
7380 #else
7381 #define btrfs_migrate_folio NULL
7382 #endif
7383
btrfs_invalidate_folio(struct folio * folio,size_t offset,size_t length)7384 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7385 size_t length)
7386 {
7387 struct btrfs_inode *inode = folio_to_inode(folio);
7388 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7389 struct extent_io_tree *tree = &inode->io_tree;
7390 struct extent_state *cached_state = NULL;
7391 u64 page_start = folio_pos(folio);
7392 u64 page_end = page_start + folio_size(folio) - 1;
7393 u64 cur;
7394 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7395
7396 /*
7397 * We have folio locked so no new ordered extent can be created on this
7398 * page, nor bio can be submitted for this folio.
7399 *
7400 * But already submitted bio can still be finished on this folio.
7401 * Furthermore, endio function won't skip folio which has Ordered
7402 * (Private2) already cleared, so it's possible for endio and
7403 * invalidate_folio to do the same ordered extent accounting twice
7404 * on one folio.
7405 *
7406 * So here we wait for any submitted bios to finish, so that we won't
7407 * do double ordered extent accounting on the same folio.
7408 */
7409 folio_wait_writeback(folio);
7410 wait_subpage_spinlock(folio);
7411
7412 /*
7413 * For subpage case, we have call sites like
7414 * btrfs_punch_hole_lock_range() which passes range not aligned to
7415 * sectorsize.
7416 * If the range doesn't cover the full folio, we don't need to and
7417 * shouldn't clear page extent mapped, as folio->private can still
7418 * record subpage dirty bits for other part of the range.
7419 *
7420 * For cases that invalidate the full folio even the range doesn't
7421 * cover the full folio, like invalidating the last folio, we're
7422 * still safe to wait for ordered extent to finish.
7423 */
7424 if (!(offset == 0 && length == folio_size(folio))) {
7425 btrfs_release_folio(folio, GFP_NOFS);
7426 return;
7427 }
7428
7429 if (!inode_evicting)
7430 lock_extent(tree, page_start, page_end, &cached_state);
7431
7432 cur = page_start;
7433 while (cur < page_end) {
7434 struct btrfs_ordered_extent *ordered;
7435 u64 range_end;
7436 u32 range_len;
7437 u32 extra_flags = 0;
7438
7439 ordered = btrfs_lookup_first_ordered_range(inode, cur,
7440 page_end + 1 - cur);
7441 if (!ordered) {
7442 range_end = page_end;
7443 /*
7444 * No ordered extent covering this range, we are safe
7445 * to delete all extent states in the range.
7446 */
7447 extra_flags = EXTENT_CLEAR_ALL_BITS;
7448 goto next;
7449 }
7450 if (ordered->file_offset > cur) {
7451 /*
7452 * There is a range between [cur, oe->file_offset) not
7453 * covered by any ordered extent.
7454 * We are safe to delete all extent states, and handle
7455 * the ordered extent in the next iteration.
7456 */
7457 range_end = ordered->file_offset - 1;
7458 extra_flags = EXTENT_CLEAR_ALL_BITS;
7459 goto next;
7460 }
7461
7462 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
7463 page_end);
7464 ASSERT(range_end + 1 - cur < U32_MAX);
7465 range_len = range_end + 1 - cur;
7466 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) {
7467 /*
7468 * If Ordered (Private2) is cleared, it means endio has
7469 * already been executed for the range.
7470 * We can't delete the extent states as
7471 * btrfs_finish_ordered_io() may still use some of them.
7472 */
7473 goto next;
7474 }
7475 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len);
7476
7477 /*
7478 * IO on this page will never be started, so we need to account
7479 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
7480 * here, must leave that up for the ordered extent completion.
7481 *
7482 * This will also unlock the range for incoming
7483 * btrfs_finish_ordered_io().
7484 */
7485 if (!inode_evicting)
7486 clear_extent_bit(tree, cur, range_end,
7487 EXTENT_DELALLOC |
7488 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7489 EXTENT_DEFRAG, &cached_state);
7490
7491 spin_lock_irq(&inode->ordered_tree_lock);
7492 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7493 ordered->truncated_len = min(ordered->truncated_len,
7494 cur - ordered->file_offset);
7495 spin_unlock_irq(&inode->ordered_tree_lock);
7496
7497 /*
7498 * If the ordered extent has finished, we're safe to delete all
7499 * the extent states of the range, otherwise
7500 * btrfs_finish_ordered_io() will get executed by endio for
7501 * other pages, so we can't delete extent states.
7502 */
7503 if (btrfs_dec_test_ordered_pending(inode, &ordered,
7504 cur, range_end + 1 - cur)) {
7505 btrfs_finish_ordered_io(ordered);
7506 /*
7507 * The ordered extent has finished, now we're again
7508 * safe to delete all extent states of the range.
7509 */
7510 extra_flags = EXTENT_CLEAR_ALL_BITS;
7511 }
7512 next:
7513 if (ordered)
7514 btrfs_put_ordered_extent(ordered);
7515 /*
7516 * Qgroup reserved space handler
7517 * Sector(s) here will be either:
7518 *
7519 * 1) Already written to disk or bio already finished
7520 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
7521 * Qgroup will be handled by its qgroup_record then.
7522 * btrfs_qgroup_free_data() call will do nothing here.
7523 *
7524 * 2) Not written to disk yet
7525 * Then btrfs_qgroup_free_data() call will clear the
7526 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
7527 * reserved data space.
7528 * Since the IO will never happen for this page.
7529 */
7530 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
7531 if (!inode_evicting) {
7532 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
7533 EXTENT_DELALLOC | EXTENT_UPTODATE |
7534 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
7535 extra_flags, &cached_state);
7536 }
7537 cur = range_end + 1;
7538 }
7539 /*
7540 * We have iterated through all ordered extents of the page, the page
7541 * should not have Ordered (Private2) anymore, or the above iteration
7542 * did something wrong.
7543 */
7544 ASSERT(!folio_test_ordered(folio));
7545 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
7546 if (!inode_evicting)
7547 __btrfs_release_folio(folio, GFP_NOFS);
7548 clear_folio_extent_mapped(folio);
7549 }
7550
btrfs_truncate(struct btrfs_inode * inode,bool skip_writeback)7551 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
7552 {
7553 struct btrfs_truncate_control control = {
7554 .inode = inode,
7555 .ino = btrfs_ino(inode),
7556 .min_type = BTRFS_EXTENT_DATA_KEY,
7557 .clear_extent_range = true,
7558 };
7559 struct btrfs_root *root = inode->root;
7560 struct btrfs_fs_info *fs_info = root->fs_info;
7561 struct btrfs_block_rsv *rsv;
7562 int ret;
7563 struct btrfs_trans_handle *trans;
7564 u64 mask = fs_info->sectorsize - 1;
7565 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
7566
7567 if (!skip_writeback) {
7568 ret = btrfs_wait_ordered_range(inode,
7569 inode->vfs_inode.i_size & (~mask),
7570 (u64)-1);
7571 if (ret)
7572 return ret;
7573 }
7574
7575 /*
7576 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
7577 * things going on here:
7578 *
7579 * 1) We need to reserve space to update our inode.
7580 *
7581 * 2) We need to have something to cache all the space that is going to
7582 * be free'd up by the truncate operation, but also have some slack
7583 * space reserved in case it uses space during the truncate (thank you
7584 * very much snapshotting).
7585 *
7586 * And we need these to be separate. The fact is we can use a lot of
7587 * space doing the truncate, and we have no earthly idea how much space
7588 * we will use, so we need the truncate reservation to be separate so it
7589 * doesn't end up using space reserved for updating the inode. We also
7590 * need to be able to stop the transaction and start a new one, which
7591 * means we need to be able to update the inode several times, and we
7592 * have no idea of knowing how many times that will be, so we can't just
7593 * reserve 1 item for the entirety of the operation, so that has to be
7594 * done separately as well.
7595 *
7596 * So that leaves us with
7597 *
7598 * 1) rsv - for the truncate reservation, which we will steal from the
7599 * transaction reservation.
7600 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
7601 * updating the inode.
7602 */
7603 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
7604 if (!rsv)
7605 return -ENOMEM;
7606 rsv->size = min_size;
7607 rsv->failfast = true;
7608
7609 /*
7610 * 1 for the truncate slack space
7611 * 1 for updating the inode.
7612 */
7613 trans = btrfs_start_transaction(root, 2);
7614 if (IS_ERR(trans)) {
7615 ret = PTR_ERR(trans);
7616 goto out;
7617 }
7618
7619 /* Migrate the slack space for the truncate to our reserve */
7620 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
7621 min_size, false);
7622 /*
7623 * We have reserved 2 metadata units when we started the transaction and
7624 * min_size matches 1 unit, so this should never fail, but if it does,
7625 * it's not critical we just fail truncation.
7626 */
7627 if (WARN_ON(ret)) {
7628 btrfs_end_transaction(trans);
7629 goto out;
7630 }
7631
7632 trans->block_rsv = rsv;
7633
7634 while (1) {
7635 struct extent_state *cached_state = NULL;
7636 const u64 new_size = inode->vfs_inode.i_size;
7637 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
7638
7639 control.new_size = new_size;
7640 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7641 /*
7642 * We want to drop from the next block forward in case this new
7643 * size is not block aligned since we will be keeping the last
7644 * block of the extent just the way it is.
7645 */
7646 btrfs_drop_extent_map_range(inode,
7647 ALIGN(new_size, fs_info->sectorsize),
7648 (u64)-1, false);
7649
7650 ret = btrfs_truncate_inode_items(trans, root, &control);
7651
7652 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
7653 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
7654
7655 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7656
7657 trans->block_rsv = &fs_info->trans_block_rsv;
7658 if (ret != -ENOSPC && ret != -EAGAIN)
7659 break;
7660
7661 ret = btrfs_update_inode(trans, inode);
7662 if (ret)
7663 break;
7664
7665 btrfs_end_transaction(trans);
7666 btrfs_btree_balance_dirty(fs_info);
7667
7668 trans = btrfs_start_transaction(root, 2);
7669 if (IS_ERR(trans)) {
7670 ret = PTR_ERR(trans);
7671 trans = NULL;
7672 break;
7673 }
7674
7675 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
7676 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
7677 rsv, min_size, false);
7678 /*
7679 * We have reserved 2 metadata units when we started the
7680 * transaction and min_size matches 1 unit, so this should never
7681 * fail, but if it does, it's not critical we just fail truncation.
7682 */
7683 if (WARN_ON(ret))
7684 break;
7685
7686 trans->block_rsv = rsv;
7687 }
7688
7689 /*
7690 * We can't call btrfs_truncate_block inside a trans handle as we could
7691 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
7692 * know we've truncated everything except the last little bit, and can
7693 * do btrfs_truncate_block and then update the disk_i_size.
7694 */
7695 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
7696 btrfs_end_transaction(trans);
7697 btrfs_btree_balance_dirty(fs_info);
7698
7699 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
7700 if (ret)
7701 goto out;
7702 trans = btrfs_start_transaction(root, 1);
7703 if (IS_ERR(trans)) {
7704 ret = PTR_ERR(trans);
7705 goto out;
7706 }
7707 btrfs_inode_safe_disk_i_size_write(inode, 0);
7708 }
7709
7710 if (trans) {
7711 int ret2;
7712
7713 trans->block_rsv = &fs_info->trans_block_rsv;
7714 ret2 = btrfs_update_inode(trans, inode);
7715 if (ret2 && !ret)
7716 ret = ret2;
7717
7718 ret2 = btrfs_end_transaction(trans);
7719 if (ret2 && !ret)
7720 ret = ret2;
7721 btrfs_btree_balance_dirty(fs_info);
7722 }
7723 out:
7724 btrfs_free_block_rsv(fs_info, rsv);
7725 /*
7726 * So if we truncate and then write and fsync we normally would just
7727 * write the extents that changed, which is a problem if we need to
7728 * first truncate that entire inode. So set this flag so we write out
7729 * all of the extents in the inode to the sync log so we're completely
7730 * safe.
7731 *
7732 * If no extents were dropped or trimmed we don't need to force the next
7733 * fsync to truncate all the inode's items from the log and re-log them
7734 * all. This means the truncate operation did not change the file size,
7735 * or changed it to a smaller size but there was only an implicit hole
7736 * between the old i_size and the new i_size, and there were no prealloc
7737 * extents beyond i_size to drop.
7738 */
7739 if (control.extents_found > 0)
7740 btrfs_set_inode_full_sync(inode);
7741
7742 return ret;
7743 }
7744
btrfs_new_subvol_inode(struct mnt_idmap * idmap,struct inode * dir)7745 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
7746 struct inode *dir)
7747 {
7748 struct inode *inode;
7749
7750 inode = new_inode(dir->i_sb);
7751 if (inode) {
7752 /*
7753 * Subvolumes don't inherit the sgid bit or the parent's gid if
7754 * the parent's sgid bit is set. This is probably a bug.
7755 */
7756 inode_init_owner(idmap, inode, NULL,
7757 S_IFDIR | (~current_umask() & S_IRWXUGO));
7758 inode->i_op = &btrfs_dir_inode_operations;
7759 inode->i_fop = &btrfs_dir_file_operations;
7760 }
7761 return inode;
7762 }
7763
btrfs_alloc_inode(struct super_block * sb)7764 struct inode *btrfs_alloc_inode(struct super_block *sb)
7765 {
7766 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
7767 struct btrfs_inode *ei;
7768 struct inode *inode;
7769
7770 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
7771 if (!ei)
7772 return NULL;
7773
7774 ei->root = NULL;
7775 ei->generation = 0;
7776 ei->last_trans = 0;
7777 ei->last_sub_trans = 0;
7778 ei->logged_trans = 0;
7779 ei->delalloc_bytes = 0;
7780 /* new_delalloc_bytes and last_dir_index_offset are in a union. */
7781 ei->new_delalloc_bytes = 0;
7782 ei->defrag_bytes = 0;
7783 ei->disk_i_size = 0;
7784 ei->flags = 0;
7785 ei->ro_flags = 0;
7786 /*
7787 * ->index_cnt will be properly initialized later when creating a new
7788 * inode (btrfs_create_new_inode()) or when reading an existing inode
7789 * from disk (btrfs_read_locked_inode()).
7790 */
7791 ei->csum_bytes = 0;
7792 ei->dir_index = 0;
7793 ei->last_unlink_trans = 0;
7794 ei->last_reflink_trans = 0;
7795 ei->last_log_commit = 0;
7796
7797 spin_lock_init(&ei->lock);
7798 ei->outstanding_extents = 0;
7799 if (sb->s_magic != BTRFS_TEST_MAGIC)
7800 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
7801 BTRFS_BLOCK_RSV_DELALLOC);
7802 ei->runtime_flags = 0;
7803 ei->prop_compress = BTRFS_COMPRESS_NONE;
7804 ei->defrag_compress = BTRFS_COMPRESS_NONE;
7805
7806 ei->delayed_node = NULL;
7807
7808 ei->i_otime_sec = 0;
7809 ei->i_otime_nsec = 0;
7810
7811 inode = &ei->vfs_inode;
7812 extent_map_tree_init(&ei->extent_tree);
7813
7814 /* This io tree sets the valid inode. */
7815 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
7816 ei->io_tree.inode = ei;
7817
7818 ei->file_extent_tree = NULL;
7819
7820 mutex_init(&ei->log_mutex);
7821 spin_lock_init(&ei->ordered_tree_lock);
7822 ei->ordered_tree = RB_ROOT;
7823 ei->ordered_tree_last = NULL;
7824 INIT_LIST_HEAD(&ei->delalloc_inodes);
7825 INIT_LIST_HEAD(&ei->delayed_iput);
7826 init_rwsem(&ei->i_mmap_lock);
7827
7828 return inode;
7829 }
7830
7831 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)7832 void btrfs_test_destroy_inode(struct inode *inode)
7833 {
7834 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
7835 kfree(BTRFS_I(inode)->file_extent_tree);
7836 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7837 }
7838 #endif
7839
btrfs_free_inode(struct inode * inode)7840 void btrfs_free_inode(struct inode *inode)
7841 {
7842 kfree(BTRFS_I(inode)->file_extent_tree);
7843 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7844 }
7845
btrfs_destroy_inode(struct inode * vfs_inode)7846 void btrfs_destroy_inode(struct inode *vfs_inode)
7847 {
7848 struct btrfs_ordered_extent *ordered;
7849 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
7850 struct btrfs_root *root = inode->root;
7851 bool freespace_inode;
7852
7853 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
7854 WARN_ON(vfs_inode->i_data.nrpages);
7855 WARN_ON(inode->block_rsv.reserved);
7856 WARN_ON(inode->block_rsv.size);
7857 WARN_ON(inode->outstanding_extents);
7858 if (!S_ISDIR(vfs_inode->i_mode)) {
7859 WARN_ON(inode->delalloc_bytes);
7860 WARN_ON(inode->new_delalloc_bytes);
7861 WARN_ON(inode->csum_bytes);
7862 }
7863 if (!root || !btrfs_is_data_reloc_root(root))
7864 WARN_ON(inode->defrag_bytes);
7865
7866 /*
7867 * This can happen where we create an inode, but somebody else also
7868 * created the same inode and we need to destroy the one we already
7869 * created.
7870 */
7871 if (!root)
7872 return;
7873
7874 /*
7875 * If this is a free space inode do not take the ordered extents lockdep
7876 * map.
7877 */
7878 freespace_inode = btrfs_is_free_space_inode(inode);
7879
7880 while (1) {
7881 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7882 if (!ordered)
7883 break;
7884 else {
7885 btrfs_err(root->fs_info,
7886 "found ordered extent %llu %llu on inode cleanup",
7887 ordered->file_offset, ordered->num_bytes);
7888
7889 if (!freespace_inode)
7890 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
7891
7892 btrfs_remove_ordered_extent(inode, ordered);
7893 btrfs_put_ordered_extent(ordered);
7894 btrfs_put_ordered_extent(ordered);
7895 }
7896 }
7897 btrfs_qgroup_check_reserved_leak(inode);
7898 btrfs_del_inode_from_root(inode);
7899 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
7900 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
7901 btrfs_put_root(inode->root);
7902 }
7903
btrfs_drop_inode(struct inode * inode)7904 int btrfs_drop_inode(struct inode *inode)
7905 {
7906 struct btrfs_root *root = BTRFS_I(inode)->root;
7907
7908 if (root == NULL)
7909 return 1;
7910
7911 /* the snap/subvol tree is on deleting */
7912 if (btrfs_root_refs(&root->root_item) == 0)
7913 return 1;
7914 else
7915 return generic_drop_inode(inode);
7916 }
7917
init_once(void * foo)7918 static void init_once(void *foo)
7919 {
7920 struct btrfs_inode *ei = foo;
7921
7922 inode_init_once(&ei->vfs_inode);
7923 }
7924
btrfs_destroy_cachep(void)7925 void __cold btrfs_destroy_cachep(void)
7926 {
7927 /*
7928 * Make sure all delayed rcu free inodes are flushed before we
7929 * destroy cache.
7930 */
7931 rcu_barrier();
7932 kmem_cache_destroy(btrfs_inode_cachep);
7933 }
7934
btrfs_init_cachep(void)7935 int __init btrfs_init_cachep(void)
7936 {
7937 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
7938 sizeof(struct btrfs_inode), 0,
7939 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
7940 init_once);
7941 if (!btrfs_inode_cachep)
7942 return -ENOMEM;
7943
7944 return 0;
7945 }
7946
btrfs_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)7947 static int btrfs_getattr(struct mnt_idmap *idmap,
7948 const struct path *path, struct kstat *stat,
7949 u32 request_mask, unsigned int flags)
7950 {
7951 u64 delalloc_bytes;
7952 u64 inode_bytes;
7953 struct inode *inode = d_inode(path->dentry);
7954 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize;
7955 u32 bi_flags = BTRFS_I(inode)->flags;
7956 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
7957
7958 stat->result_mask |= STATX_BTIME;
7959 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
7960 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
7961 if (bi_flags & BTRFS_INODE_APPEND)
7962 stat->attributes |= STATX_ATTR_APPEND;
7963 if (bi_flags & BTRFS_INODE_COMPRESS)
7964 stat->attributes |= STATX_ATTR_COMPRESSED;
7965 if (bi_flags & BTRFS_INODE_IMMUTABLE)
7966 stat->attributes |= STATX_ATTR_IMMUTABLE;
7967 if (bi_flags & BTRFS_INODE_NODUMP)
7968 stat->attributes |= STATX_ATTR_NODUMP;
7969 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
7970 stat->attributes |= STATX_ATTR_VERITY;
7971
7972 stat->attributes_mask |= (STATX_ATTR_APPEND |
7973 STATX_ATTR_COMPRESSED |
7974 STATX_ATTR_IMMUTABLE |
7975 STATX_ATTR_NODUMP);
7976
7977 generic_fillattr(idmap, request_mask, inode, stat);
7978 stat->dev = BTRFS_I(inode)->root->anon_dev;
7979
7980 stat->subvol = BTRFS_I(inode)->root->root_key.objectid;
7981 stat->result_mask |= STATX_SUBVOL;
7982
7983 spin_lock(&BTRFS_I(inode)->lock);
7984 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
7985 inode_bytes = inode_get_bytes(inode);
7986 spin_unlock(&BTRFS_I(inode)->lock);
7987 stat->blocks = (ALIGN(inode_bytes, blocksize) +
7988 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
7989 return 0;
7990 }
7991
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)7992 static int btrfs_rename_exchange(struct inode *old_dir,
7993 struct dentry *old_dentry,
7994 struct inode *new_dir,
7995 struct dentry *new_dentry)
7996 {
7997 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
7998 struct btrfs_trans_handle *trans;
7999 unsigned int trans_num_items;
8000 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8001 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8002 struct inode *new_inode = new_dentry->d_inode;
8003 struct inode *old_inode = old_dentry->d_inode;
8004 struct btrfs_rename_ctx old_rename_ctx;
8005 struct btrfs_rename_ctx new_rename_ctx;
8006 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8007 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8008 u64 old_idx = 0;
8009 u64 new_idx = 0;
8010 int ret;
8011 int ret2;
8012 bool need_abort = false;
8013 bool logs_pinned = false;
8014 struct fscrypt_name old_fname, new_fname;
8015 struct fscrypt_str *old_name, *new_name;
8016
8017 /*
8018 * For non-subvolumes allow exchange only within one subvolume, in the
8019 * same inode namespace. Two subvolumes (represented as directory) can
8020 * be exchanged as they're a logical link and have a fixed inode number.
8021 */
8022 if (root != dest &&
8023 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8024 new_ino != BTRFS_FIRST_FREE_OBJECTID))
8025 return -EXDEV;
8026
8027 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8028 if (ret)
8029 return ret;
8030
8031 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8032 if (ret) {
8033 fscrypt_free_filename(&old_fname);
8034 return ret;
8035 }
8036
8037 old_name = &old_fname.disk_name;
8038 new_name = &new_fname.disk_name;
8039
8040 /* close the race window with snapshot create/destroy ioctl */
8041 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8042 new_ino == BTRFS_FIRST_FREE_OBJECTID)
8043 down_read(&fs_info->subvol_sem);
8044
8045 /*
8046 * For each inode:
8047 * 1 to remove old dir item
8048 * 1 to remove old dir index
8049 * 1 to add new dir item
8050 * 1 to add new dir index
8051 * 1 to update parent inode
8052 *
8053 * If the parents are the same, we only need to account for one
8054 */
8055 trans_num_items = (old_dir == new_dir ? 9 : 10);
8056 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8057 /*
8058 * 1 to remove old root ref
8059 * 1 to remove old root backref
8060 * 1 to add new root ref
8061 * 1 to add new root backref
8062 */
8063 trans_num_items += 4;
8064 } else {
8065 /*
8066 * 1 to update inode item
8067 * 1 to remove old inode ref
8068 * 1 to add new inode ref
8069 */
8070 trans_num_items += 3;
8071 }
8072 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8073 trans_num_items += 4;
8074 else
8075 trans_num_items += 3;
8076 trans = btrfs_start_transaction(root, trans_num_items);
8077 if (IS_ERR(trans)) {
8078 ret = PTR_ERR(trans);
8079 goto out_notrans;
8080 }
8081
8082 if (dest != root) {
8083 ret = btrfs_record_root_in_trans(trans, dest);
8084 if (ret)
8085 goto out_fail;
8086 }
8087
8088 /*
8089 * We need to find a free sequence number both in the source and
8090 * in the destination directory for the exchange.
8091 */
8092 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8093 if (ret)
8094 goto out_fail;
8095 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8096 if (ret)
8097 goto out_fail;
8098
8099 BTRFS_I(old_inode)->dir_index = 0ULL;
8100 BTRFS_I(new_inode)->dir_index = 0ULL;
8101
8102 /* Reference for the source. */
8103 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8104 /* force full log commit if subvolume involved. */
8105 btrfs_set_log_full_commit(trans);
8106 } else {
8107 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8108 btrfs_ino(BTRFS_I(new_dir)),
8109 old_idx);
8110 if (ret)
8111 goto out_fail;
8112 need_abort = true;
8113 }
8114
8115 /* And now for the dest. */
8116 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8117 /* force full log commit if subvolume involved. */
8118 btrfs_set_log_full_commit(trans);
8119 } else {
8120 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8121 btrfs_ino(BTRFS_I(old_dir)),
8122 new_idx);
8123 if (ret) {
8124 if (need_abort)
8125 btrfs_abort_transaction(trans, ret);
8126 goto out_fail;
8127 }
8128 }
8129
8130 /* Update inode version and ctime/mtime. */
8131 inode_inc_iversion(old_dir);
8132 inode_inc_iversion(new_dir);
8133 inode_inc_iversion(old_inode);
8134 inode_inc_iversion(new_inode);
8135 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8136
8137 if (old_ino != BTRFS_FIRST_FREE_OBJECTID &&
8138 new_ino != BTRFS_FIRST_FREE_OBJECTID) {
8139 /*
8140 * If we are renaming in the same directory (and it's not for
8141 * root entries) pin the log early to prevent any concurrent
8142 * task from logging the directory after we removed the old
8143 * entries and before we add the new entries, otherwise that
8144 * task can sync a log without any entry for the inodes we are
8145 * renaming and therefore replaying that log, if a power failure
8146 * happens after syncing the log, would result in deleting the
8147 * inodes.
8148 *
8149 * If the rename affects two different directories, we want to
8150 * make sure the that there's no log commit that contains
8151 * updates for only one of the directories but not for the
8152 * other.
8153 *
8154 * If we are renaming an entry for a root, we don't care about
8155 * log updates since we called btrfs_set_log_full_commit().
8156 */
8157 btrfs_pin_log_trans(root);
8158 btrfs_pin_log_trans(dest);
8159 logs_pinned = true;
8160 }
8161
8162 if (old_dentry->d_parent != new_dentry->d_parent) {
8163 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8164 BTRFS_I(old_inode), true);
8165 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8166 BTRFS_I(new_inode), true);
8167 }
8168
8169 /* src is a subvolume */
8170 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8171 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8172 } else { /* src is an inode */
8173 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8174 BTRFS_I(old_dentry->d_inode),
8175 old_name, &old_rename_ctx);
8176 if (!ret)
8177 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8178 }
8179 if (ret) {
8180 btrfs_abort_transaction(trans, ret);
8181 goto out_fail;
8182 }
8183
8184 /* dest is a subvolume */
8185 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8186 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8187 } else { /* dest is an inode */
8188 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8189 BTRFS_I(new_dentry->d_inode),
8190 new_name, &new_rename_ctx);
8191 if (!ret)
8192 ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
8193 }
8194 if (ret) {
8195 btrfs_abort_transaction(trans, ret);
8196 goto out_fail;
8197 }
8198
8199 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8200 new_name, 0, old_idx);
8201 if (ret) {
8202 btrfs_abort_transaction(trans, ret);
8203 goto out_fail;
8204 }
8205
8206 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8207 old_name, 0, new_idx);
8208 if (ret) {
8209 btrfs_abort_transaction(trans, ret);
8210 goto out_fail;
8211 }
8212
8213 if (old_inode->i_nlink == 1)
8214 BTRFS_I(old_inode)->dir_index = old_idx;
8215 if (new_inode->i_nlink == 1)
8216 BTRFS_I(new_inode)->dir_index = new_idx;
8217
8218 /*
8219 * Do the log updates for all inodes.
8220 *
8221 * If either entry is for a root we don't need to update the logs since
8222 * we've called btrfs_set_log_full_commit() before.
8223 */
8224 if (logs_pinned) {
8225 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8226 old_rename_ctx.index, new_dentry->d_parent);
8227 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8228 new_rename_ctx.index, old_dentry->d_parent);
8229 }
8230
8231 out_fail:
8232 if (logs_pinned) {
8233 btrfs_end_log_trans(root);
8234 btrfs_end_log_trans(dest);
8235 }
8236 ret2 = btrfs_end_transaction(trans);
8237 ret = ret ? ret : ret2;
8238 out_notrans:
8239 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8240 old_ino == BTRFS_FIRST_FREE_OBJECTID)
8241 up_read(&fs_info->subvol_sem);
8242
8243 fscrypt_free_filename(&new_fname);
8244 fscrypt_free_filename(&old_fname);
8245 return ret;
8246 }
8247
new_whiteout_inode(struct mnt_idmap * idmap,struct inode * dir)8248 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8249 struct inode *dir)
8250 {
8251 struct inode *inode;
8252
8253 inode = new_inode(dir->i_sb);
8254 if (inode) {
8255 inode_init_owner(idmap, inode, dir,
8256 S_IFCHR | WHITEOUT_MODE);
8257 inode->i_op = &btrfs_special_inode_operations;
8258 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8259 }
8260 return inode;
8261 }
8262
btrfs_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)8263 static int btrfs_rename(struct mnt_idmap *idmap,
8264 struct inode *old_dir, struct dentry *old_dentry,
8265 struct inode *new_dir, struct dentry *new_dentry,
8266 unsigned int flags)
8267 {
8268 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8269 struct btrfs_new_inode_args whiteout_args = {
8270 .dir = old_dir,
8271 .dentry = old_dentry,
8272 };
8273 struct btrfs_trans_handle *trans;
8274 unsigned int trans_num_items;
8275 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8276 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8277 struct inode *new_inode = d_inode(new_dentry);
8278 struct inode *old_inode = d_inode(old_dentry);
8279 struct btrfs_rename_ctx rename_ctx;
8280 u64 index = 0;
8281 int ret;
8282 int ret2;
8283 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8284 struct fscrypt_name old_fname, new_fname;
8285 bool logs_pinned = false;
8286
8287 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8288 return -EPERM;
8289
8290 /* we only allow rename subvolume link between subvolumes */
8291 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8292 return -EXDEV;
8293
8294 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8295 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8296 return -ENOTEMPTY;
8297
8298 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8299 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8300 return -ENOTEMPTY;
8301
8302 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8303 if (ret)
8304 return ret;
8305
8306 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8307 if (ret) {
8308 fscrypt_free_filename(&old_fname);
8309 return ret;
8310 }
8311
8312 /* check for collisions, even if the name isn't there */
8313 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
8314 if (ret) {
8315 if (ret == -EEXIST) {
8316 /* we shouldn't get
8317 * eexist without a new_inode */
8318 if (WARN_ON(!new_inode)) {
8319 goto out_fscrypt_names;
8320 }
8321 } else {
8322 /* maybe -EOVERFLOW */
8323 goto out_fscrypt_names;
8324 }
8325 }
8326 ret = 0;
8327
8328 /*
8329 * we're using rename to replace one file with another. Start IO on it
8330 * now so we don't add too much work to the end of the transaction
8331 */
8332 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8333 filemap_flush(old_inode->i_mapping);
8334
8335 if (flags & RENAME_WHITEOUT) {
8336 whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
8337 if (!whiteout_args.inode) {
8338 ret = -ENOMEM;
8339 goto out_fscrypt_names;
8340 }
8341 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
8342 if (ret)
8343 goto out_whiteout_inode;
8344 } else {
8345 /* 1 to update the old parent inode. */
8346 trans_num_items = 1;
8347 }
8348
8349 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8350 /* Close the race window with snapshot create/destroy ioctl */
8351 down_read(&fs_info->subvol_sem);
8352 /*
8353 * 1 to remove old root ref
8354 * 1 to remove old root backref
8355 * 1 to add new root ref
8356 * 1 to add new root backref
8357 */
8358 trans_num_items += 4;
8359 } else {
8360 /*
8361 * 1 to update inode
8362 * 1 to remove old inode ref
8363 * 1 to add new inode ref
8364 */
8365 trans_num_items += 3;
8366 }
8367 /*
8368 * 1 to remove old dir item
8369 * 1 to remove old dir index
8370 * 1 to add new dir item
8371 * 1 to add new dir index
8372 */
8373 trans_num_items += 4;
8374 /* 1 to update new parent inode if it's not the same as the old parent */
8375 if (new_dir != old_dir)
8376 trans_num_items++;
8377 if (new_inode) {
8378 /*
8379 * 1 to update inode
8380 * 1 to remove inode ref
8381 * 1 to remove dir item
8382 * 1 to remove dir index
8383 * 1 to possibly add orphan item
8384 */
8385 trans_num_items += 5;
8386 }
8387 trans = btrfs_start_transaction(root, trans_num_items);
8388 if (IS_ERR(trans)) {
8389 ret = PTR_ERR(trans);
8390 goto out_notrans;
8391 }
8392
8393 if (dest != root) {
8394 ret = btrfs_record_root_in_trans(trans, dest);
8395 if (ret)
8396 goto out_fail;
8397 }
8398
8399 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
8400 if (ret)
8401 goto out_fail;
8402
8403 BTRFS_I(old_inode)->dir_index = 0ULL;
8404 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8405 /* force full log commit if subvolume involved. */
8406 btrfs_set_log_full_commit(trans);
8407 } else {
8408 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
8409 old_ino, btrfs_ino(BTRFS_I(new_dir)),
8410 index);
8411 if (ret)
8412 goto out_fail;
8413 }
8414
8415 inode_inc_iversion(old_dir);
8416 inode_inc_iversion(new_dir);
8417 inode_inc_iversion(old_inode);
8418 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8419
8420 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8421 /*
8422 * If we are renaming in the same directory (and it's not a
8423 * root entry) pin the log to prevent any concurrent task from
8424 * logging the directory after we removed the old entry and
8425 * before we add the new entry, otherwise that task can sync
8426 * a log without any entry for the inode we are renaming and
8427 * therefore replaying that log, if a power failure happens
8428 * after syncing the log, would result in deleting the inode.
8429 *
8430 * If the rename affects two different directories, we want to
8431 * make sure the that there's no log commit that contains
8432 * updates for only one of the directories but not for the
8433 * other.
8434 *
8435 * If we are renaming an entry for a root, we don't care about
8436 * log updates since we called btrfs_set_log_full_commit().
8437 */
8438 btrfs_pin_log_trans(root);
8439 btrfs_pin_log_trans(dest);
8440 logs_pinned = true;
8441 }
8442
8443 if (old_dentry->d_parent != new_dentry->d_parent)
8444 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8445 BTRFS_I(old_inode), true);
8446
8447 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8448 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8449 } else {
8450 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8451 BTRFS_I(d_inode(old_dentry)),
8452 &old_fname.disk_name, &rename_ctx);
8453 if (!ret)
8454 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8455 }
8456 if (ret) {
8457 btrfs_abort_transaction(trans, ret);
8458 goto out_fail;
8459 }
8460
8461 if (new_inode) {
8462 inode_inc_iversion(new_inode);
8463 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
8464 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8465 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8466 BUG_ON(new_inode->i_nlink == 0);
8467 } else {
8468 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8469 BTRFS_I(d_inode(new_dentry)),
8470 &new_fname.disk_name);
8471 }
8472 if (!ret && new_inode->i_nlink == 0)
8473 ret = btrfs_orphan_add(trans,
8474 BTRFS_I(d_inode(new_dentry)));
8475 if (ret) {
8476 btrfs_abort_transaction(trans, ret);
8477 goto out_fail;
8478 }
8479 }
8480
8481 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8482 &new_fname.disk_name, 0, index);
8483 if (ret) {
8484 btrfs_abort_transaction(trans, ret);
8485 goto out_fail;
8486 }
8487
8488 if (old_inode->i_nlink == 1)
8489 BTRFS_I(old_inode)->dir_index = index;
8490
8491 if (logs_pinned)
8492 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8493 rename_ctx.index, new_dentry->d_parent);
8494
8495 if (flags & RENAME_WHITEOUT) {
8496 ret = btrfs_create_new_inode(trans, &whiteout_args);
8497 if (ret) {
8498 btrfs_abort_transaction(trans, ret);
8499 goto out_fail;
8500 } else {
8501 unlock_new_inode(whiteout_args.inode);
8502 iput(whiteout_args.inode);
8503 whiteout_args.inode = NULL;
8504 }
8505 }
8506 out_fail:
8507 if (logs_pinned) {
8508 btrfs_end_log_trans(root);
8509 btrfs_end_log_trans(dest);
8510 }
8511 ret2 = btrfs_end_transaction(trans);
8512 ret = ret ? ret : ret2;
8513 out_notrans:
8514 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8515 up_read(&fs_info->subvol_sem);
8516 if (flags & RENAME_WHITEOUT)
8517 btrfs_new_inode_args_destroy(&whiteout_args);
8518 out_whiteout_inode:
8519 if (flags & RENAME_WHITEOUT)
8520 iput(whiteout_args.inode);
8521 out_fscrypt_names:
8522 fscrypt_free_filename(&old_fname);
8523 fscrypt_free_filename(&new_fname);
8524 return ret;
8525 }
8526
btrfs_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)8527 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
8528 struct dentry *old_dentry, struct inode *new_dir,
8529 struct dentry *new_dentry, unsigned int flags)
8530 {
8531 int ret;
8532
8533 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
8534 return -EINVAL;
8535
8536 if (flags & RENAME_EXCHANGE)
8537 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
8538 new_dentry);
8539 else
8540 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
8541 new_dentry, flags);
8542
8543 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
8544
8545 return ret;
8546 }
8547
8548 struct btrfs_delalloc_work {
8549 struct inode *inode;
8550 struct completion completion;
8551 struct list_head list;
8552 struct btrfs_work work;
8553 };
8554
btrfs_run_delalloc_work(struct btrfs_work * work)8555 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8556 {
8557 struct btrfs_delalloc_work *delalloc_work;
8558 struct inode *inode;
8559
8560 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8561 work);
8562 inode = delalloc_work->inode;
8563 filemap_flush(inode->i_mapping);
8564 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8565 &BTRFS_I(inode)->runtime_flags))
8566 filemap_flush(inode->i_mapping);
8567
8568 iput(inode);
8569 complete(&delalloc_work->completion);
8570 }
8571
btrfs_alloc_delalloc_work(struct inode * inode)8572 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8573 {
8574 struct btrfs_delalloc_work *work;
8575
8576 work = kmalloc(sizeof(*work), GFP_NOFS);
8577 if (!work)
8578 return NULL;
8579
8580 init_completion(&work->completion);
8581 INIT_LIST_HEAD(&work->list);
8582 work->inode = inode;
8583 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
8584
8585 return work;
8586 }
8587
8588 /*
8589 * some fairly slow code that needs optimization. This walks the list
8590 * of all the inodes with pending delalloc and forces them to disk.
8591 */
start_delalloc_inodes(struct btrfs_root * root,struct writeback_control * wbc,bool snapshot,bool in_reclaim_context)8592 static int start_delalloc_inodes(struct btrfs_root *root,
8593 struct writeback_control *wbc, bool snapshot,
8594 bool in_reclaim_context)
8595 {
8596 struct btrfs_inode *binode;
8597 struct inode *inode;
8598 struct btrfs_delalloc_work *work, *next;
8599 LIST_HEAD(works);
8600 LIST_HEAD(splice);
8601 int ret = 0;
8602 bool full_flush = wbc->nr_to_write == LONG_MAX;
8603
8604 mutex_lock(&root->delalloc_mutex);
8605 spin_lock(&root->delalloc_lock);
8606 list_splice_init(&root->delalloc_inodes, &splice);
8607 while (!list_empty(&splice)) {
8608 binode = list_entry(splice.next, struct btrfs_inode,
8609 delalloc_inodes);
8610
8611 list_move_tail(&binode->delalloc_inodes,
8612 &root->delalloc_inodes);
8613
8614 if (in_reclaim_context &&
8615 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
8616 continue;
8617
8618 inode = igrab(&binode->vfs_inode);
8619 if (!inode) {
8620 cond_resched_lock(&root->delalloc_lock);
8621 continue;
8622 }
8623 spin_unlock(&root->delalloc_lock);
8624
8625 if (snapshot)
8626 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
8627 &binode->runtime_flags);
8628 if (full_flush) {
8629 work = btrfs_alloc_delalloc_work(inode);
8630 if (!work) {
8631 iput(inode);
8632 ret = -ENOMEM;
8633 goto out;
8634 }
8635 list_add_tail(&work->list, &works);
8636 btrfs_queue_work(root->fs_info->flush_workers,
8637 &work->work);
8638 } else {
8639 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
8640 btrfs_add_delayed_iput(BTRFS_I(inode));
8641 if (ret || wbc->nr_to_write <= 0)
8642 goto out;
8643 }
8644 cond_resched();
8645 spin_lock(&root->delalloc_lock);
8646 }
8647 spin_unlock(&root->delalloc_lock);
8648
8649 out:
8650 list_for_each_entry_safe(work, next, &works, list) {
8651 list_del_init(&work->list);
8652 wait_for_completion(&work->completion);
8653 kfree(work);
8654 }
8655
8656 if (!list_empty(&splice)) {
8657 spin_lock(&root->delalloc_lock);
8658 list_splice_tail(&splice, &root->delalloc_inodes);
8659 spin_unlock(&root->delalloc_lock);
8660 }
8661 mutex_unlock(&root->delalloc_mutex);
8662 return ret;
8663 }
8664
btrfs_start_delalloc_snapshot(struct btrfs_root * root,bool in_reclaim_context)8665 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
8666 {
8667 struct writeback_control wbc = {
8668 .nr_to_write = LONG_MAX,
8669 .sync_mode = WB_SYNC_NONE,
8670 .range_start = 0,
8671 .range_end = LLONG_MAX,
8672 };
8673 struct btrfs_fs_info *fs_info = root->fs_info;
8674
8675 if (BTRFS_FS_ERROR(fs_info))
8676 return -EROFS;
8677
8678 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
8679 }
8680
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,long nr,bool in_reclaim_context)8681 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
8682 bool in_reclaim_context)
8683 {
8684 struct writeback_control wbc = {
8685 .nr_to_write = nr,
8686 .sync_mode = WB_SYNC_NONE,
8687 .range_start = 0,
8688 .range_end = LLONG_MAX,
8689 };
8690 struct btrfs_root *root;
8691 LIST_HEAD(splice);
8692 int ret;
8693
8694 if (BTRFS_FS_ERROR(fs_info))
8695 return -EROFS;
8696
8697 mutex_lock(&fs_info->delalloc_root_mutex);
8698 spin_lock(&fs_info->delalloc_root_lock);
8699 list_splice_init(&fs_info->delalloc_roots, &splice);
8700 while (!list_empty(&splice)) {
8701 /*
8702 * Reset nr_to_write here so we know that we're doing a full
8703 * flush.
8704 */
8705 if (nr == LONG_MAX)
8706 wbc.nr_to_write = LONG_MAX;
8707
8708 root = list_first_entry(&splice, struct btrfs_root,
8709 delalloc_root);
8710 root = btrfs_grab_root(root);
8711 BUG_ON(!root);
8712 list_move_tail(&root->delalloc_root,
8713 &fs_info->delalloc_roots);
8714 spin_unlock(&fs_info->delalloc_root_lock);
8715
8716 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
8717 btrfs_put_root(root);
8718 if (ret < 0 || wbc.nr_to_write <= 0)
8719 goto out;
8720 spin_lock(&fs_info->delalloc_root_lock);
8721 }
8722 spin_unlock(&fs_info->delalloc_root_lock);
8723
8724 ret = 0;
8725 out:
8726 if (!list_empty(&splice)) {
8727 spin_lock(&fs_info->delalloc_root_lock);
8728 list_splice_tail(&splice, &fs_info->delalloc_roots);
8729 spin_unlock(&fs_info->delalloc_root_lock);
8730 }
8731 mutex_unlock(&fs_info->delalloc_root_mutex);
8732 return ret;
8733 }
8734
btrfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)8735 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
8736 struct dentry *dentry, const char *symname)
8737 {
8738 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
8739 struct btrfs_trans_handle *trans;
8740 struct btrfs_root *root = BTRFS_I(dir)->root;
8741 struct btrfs_path *path;
8742 struct btrfs_key key;
8743 struct inode *inode;
8744 struct btrfs_new_inode_args new_inode_args = {
8745 .dir = dir,
8746 .dentry = dentry,
8747 };
8748 unsigned int trans_num_items;
8749 int err;
8750 int name_len;
8751 int datasize;
8752 unsigned long ptr;
8753 struct btrfs_file_extent_item *ei;
8754 struct extent_buffer *leaf;
8755
8756 name_len = strlen(symname);
8757 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
8758 return -ENAMETOOLONG;
8759
8760 inode = new_inode(dir->i_sb);
8761 if (!inode)
8762 return -ENOMEM;
8763 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
8764 inode->i_op = &btrfs_symlink_inode_operations;
8765 inode_nohighmem(inode);
8766 inode->i_mapping->a_ops = &btrfs_aops;
8767 btrfs_i_size_write(BTRFS_I(inode), name_len);
8768 inode_set_bytes(inode, name_len);
8769
8770 new_inode_args.inode = inode;
8771 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
8772 if (err)
8773 goto out_inode;
8774 /* 1 additional item for the inline extent */
8775 trans_num_items++;
8776
8777 trans = btrfs_start_transaction(root, trans_num_items);
8778 if (IS_ERR(trans)) {
8779 err = PTR_ERR(trans);
8780 goto out_new_inode_args;
8781 }
8782
8783 err = btrfs_create_new_inode(trans, &new_inode_args);
8784 if (err)
8785 goto out;
8786
8787 path = btrfs_alloc_path();
8788 if (!path) {
8789 err = -ENOMEM;
8790 btrfs_abort_transaction(trans, err);
8791 discard_new_inode(inode);
8792 inode = NULL;
8793 goto out;
8794 }
8795 key.objectid = btrfs_ino(BTRFS_I(inode));
8796 key.offset = 0;
8797 key.type = BTRFS_EXTENT_DATA_KEY;
8798 datasize = btrfs_file_extent_calc_inline_size(name_len);
8799 err = btrfs_insert_empty_item(trans, root, path, &key,
8800 datasize);
8801 if (err) {
8802 btrfs_abort_transaction(trans, err);
8803 btrfs_free_path(path);
8804 discard_new_inode(inode);
8805 inode = NULL;
8806 goto out;
8807 }
8808 leaf = path->nodes[0];
8809 ei = btrfs_item_ptr(leaf, path->slots[0],
8810 struct btrfs_file_extent_item);
8811 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8812 btrfs_set_file_extent_type(leaf, ei,
8813 BTRFS_FILE_EXTENT_INLINE);
8814 btrfs_set_file_extent_encryption(leaf, ei, 0);
8815 btrfs_set_file_extent_compression(leaf, ei, 0);
8816 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8817 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8818
8819 ptr = btrfs_file_extent_inline_start(ei);
8820 write_extent_buffer(leaf, symname, ptr, name_len);
8821 btrfs_mark_buffer_dirty(trans, leaf);
8822 btrfs_free_path(path);
8823
8824 d_instantiate_new(dentry, inode);
8825 err = 0;
8826 out:
8827 btrfs_end_transaction(trans);
8828 btrfs_btree_balance_dirty(fs_info);
8829 out_new_inode_args:
8830 btrfs_new_inode_args_destroy(&new_inode_args);
8831 out_inode:
8832 if (err)
8833 iput(inode);
8834 return err;
8835 }
8836
insert_prealloc_file_extent(struct btrfs_trans_handle * trans_in,struct btrfs_inode * inode,struct btrfs_key * ins,u64 file_offset)8837 static struct btrfs_trans_handle *insert_prealloc_file_extent(
8838 struct btrfs_trans_handle *trans_in,
8839 struct btrfs_inode *inode,
8840 struct btrfs_key *ins,
8841 u64 file_offset)
8842 {
8843 struct btrfs_file_extent_item stack_fi;
8844 struct btrfs_replace_extent_info extent_info;
8845 struct btrfs_trans_handle *trans = trans_in;
8846 struct btrfs_path *path;
8847 u64 start = ins->objectid;
8848 u64 len = ins->offset;
8849 u64 qgroup_released = 0;
8850 int ret;
8851
8852 memset(&stack_fi, 0, sizeof(stack_fi));
8853
8854 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
8855 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
8856 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
8857 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
8858 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
8859 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
8860 /* Encryption and other encoding is reserved and all 0 */
8861
8862 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
8863 if (ret < 0)
8864 return ERR_PTR(ret);
8865
8866 if (trans) {
8867 ret = insert_reserved_file_extent(trans, inode,
8868 file_offset, &stack_fi,
8869 true, qgroup_released);
8870 if (ret)
8871 goto free_qgroup;
8872 return trans;
8873 }
8874
8875 extent_info.disk_offset = start;
8876 extent_info.disk_len = len;
8877 extent_info.data_offset = 0;
8878 extent_info.data_len = len;
8879 extent_info.file_offset = file_offset;
8880 extent_info.extent_buf = (char *)&stack_fi;
8881 extent_info.is_new_extent = true;
8882 extent_info.update_times = true;
8883 extent_info.qgroup_reserved = qgroup_released;
8884 extent_info.insertions = 0;
8885
8886 path = btrfs_alloc_path();
8887 if (!path) {
8888 ret = -ENOMEM;
8889 goto free_qgroup;
8890 }
8891
8892 ret = btrfs_replace_file_extents(inode, path, file_offset,
8893 file_offset + len - 1, &extent_info,
8894 &trans);
8895 btrfs_free_path(path);
8896 if (ret)
8897 goto free_qgroup;
8898 return trans;
8899
8900 free_qgroup:
8901 /*
8902 * We have released qgroup data range at the beginning of the function,
8903 * and normally qgroup_released bytes will be freed when committing
8904 * transaction.
8905 * But if we error out early, we have to free what we have released
8906 * or we leak qgroup data reservation.
8907 */
8908 btrfs_qgroup_free_refroot(inode->root->fs_info,
8909 btrfs_root_id(inode->root), qgroup_released,
8910 BTRFS_QGROUP_RSV_DATA);
8911 return ERR_PTR(ret);
8912 }
8913
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)8914 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8915 u64 start, u64 num_bytes, u64 min_size,
8916 loff_t actual_len, u64 *alloc_hint,
8917 struct btrfs_trans_handle *trans)
8918 {
8919 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
8920 struct extent_map *em;
8921 struct btrfs_root *root = BTRFS_I(inode)->root;
8922 struct btrfs_key ins;
8923 u64 cur_offset = start;
8924 u64 clear_offset = start;
8925 u64 i_size;
8926 u64 cur_bytes;
8927 u64 last_alloc = (u64)-1;
8928 int ret = 0;
8929 bool own_trans = true;
8930 u64 end = start + num_bytes - 1;
8931
8932 if (trans)
8933 own_trans = false;
8934 while (num_bytes > 0) {
8935 cur_bytes = min_t(u64, num_bytes, SZ_256M);
8936 cur_bytes = max(cur_bytes, min_size);
8937 /*
8938 * If we are severely fragmented we could end up with really
8939 * small allocations, so if the allocator is returning small
8940 * chunks lets make its job easier by only searching for those
8941 * sized chunks.
8942 */
8943 cur_bytes = min(cur_bytes, last_alloc);
8944 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
8945 min_size, 0, *alloc_hint, &ins, 1, 0);
8946 if (ret)
8947 break;
8948
8949 /*
8950 * We've reserved this space, and thus converted it from
8951 * ->bytes_may_use to ->bytes_reserved. Any error that happens
8952 * from here on out we will only need to clear our reservation
8953 * for the remaining unreserved area, so advance our
8954 * clear_offset by our extent size.
8955 */
8956 clear_offset += ins.offset;
8957
8958 last_alloc = ins.offset;
8959 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
8960 &ins, cur_offset);
8961 /*
8962 * Now that we inserted the prealloc extent we can finally
8963 * decrement the number of reservations in the block group.
8964 * If we did it before, we could race with relocation and have
8965 * relocation miss the reserved extent, making it fail later.
8966 */
8967 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
8968 if (IS_ERR(trans)) {
8969 ret = PTR_ERR(trans);
8970 btrfs_free_reserved_extent(fs_info, ins.objectid,
8971 ins.offset, 0);
8972 break;
8973 }
8974
8975 em = alloc_extent_map();
8976 if (!em) {
8977 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
8978 cur_offset + ins.offset - 1, false);
8979 btrfs_set_inode_full_sync(BTRFS_I(inode));
8980 goto next;
8981 }
8982
8983 em->start = cur_offset;
8984 em->len = ins.offset;
8985 em->disk_bytenr = ins.objectid;
8986 em->offset = 0;
8987 em->disk_num_bytes = ins.offset;
8988 em->ram_bytes = ins.offset;
8989 em->flags |= EXTENT_FLAG_PREALLOC;
8990 em->generation = trans->transid;
8991
8992 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
8993 free_extent_map(em);
8994 next:
8995 num_bytes -= ins.offset;
8996 cur_offset += ins.offset;
8997 *alloc_hint = ins.objectid + ins.offset;
8998
8999 inode_inc_iversion(inode);
9000 inode_set_ctime_current(inode);
9001 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9002 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9003 (actual_len > inode->i_size) &&
9004 (cur_offset > inode->i_size)) {
9005 if (cur_offset > actual_len)
9006 i_size = actual_len;
9007 else
9008 i_size = cur_offset;
9009 i_size_write(inode, i_size);
9010 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9011 }
9012
9013 ret = btrfs_update_inode(trans, BTRFS_I(inode));
9014
9015 if (ret) {
9016 btrfs_abort_transaction(trans, ret);
9017 if (own_trans)
9018 btrfs_end_transaction(trans);
9019 break;
9020 }
9021
9022 if (own_trans) {
9023 btrfs_end_transaction(trans);
9024 trans = NULL;
9025 }
9026 }
9027 if (clear_offset < end)
9028 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9029 end - clear_offset + 1);
9030 return ret;
9031 }
9032
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9033 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9034 u64 start, u64 num_bytes, u64 min_size,
9035 loff_t actual_len, u64 *alloc_hint)
9036 {
9037 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9038 min_size, actual_len, alloc_hint,
9039 NULL);
9040 }
9041
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)9042 int btrfs_prealloc_file_range_trans(struct inode *inode,
9043 struct btrfs_trans_handle *trans, int mode,
9044 u64 start, u64 num_bytes, u64 min_size,
9045 loff_t actual_len, u64 *alloc_hint)
9046 {
9047 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9048 min_size, actual_len, alloc_hint, trans);
9049 }
9050
btrfs_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)9051 static int btrfs_permission(struct mnt_idmap *idmap,
9052 struct inode *inode, int mask)
9053 {
9054 struct btrfs_root *root = BTRFS_I(inode)->root;
9055 umode_t mode = inode->i_mode;
9056
9057 if (mask & MAY_WRITE &&
9058 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9059 if (btrfs_root_readonly(root))
9060 return -EROFS;
9061 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9062 return -EACCES;
9063 }
9064 return generic_permission(idmap, inode, mask);
9065 }
9066
btrfs_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)9067 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9068 struct file *file, umode_t mode)
9069 {
9070 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
9071 struct btrfs_trans_handle *trans;
9072 struct btrfs_root *root = BTRFS_I(dir)->root;
9073 struct inode *inode;
9074 struct btrfs_new_inode_args new_inode_args = {
9075 .dir = dir,
9076 .dentry = file->f_path.dentry,
9077 .orphan = true,
9078 };
9079 unsigned int trans_num_items;
9080 int ret;
9081
9082 inode = new_inode(dir->i_sb);
9083 if (!inode)
9084 return -ENOMEM;
9085 inode_init_owner(idmap, inode, dir, mode);
9086 inode->i_fop = &btrfs_file_operations;
9087 inode->i_op = &btrfs_file_inode_operations;
9088 inode->i_mapping->a_ops = &btrfs_aops;
9089
9090 new_inode_args.inode = inode;
9091 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9092 if (ret)
9093 goto out_inode;
9094
9095 trans = btrfs_start_transaction(root, trans_num_items);
9096 if (IS_ERR(trans)) {
9097 ret = PTR_ERR(trans);
9098 goto out_new_inode_args;
9099 }
9100
9101 ret = btrfs_create_new_inode(trans, &new_inode_args);
9102
9103 /*
9104 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9105 * set it to 1 because d_tmpfile() will issue a warning if the count is
9106 * 0, through:
9107 *
9108 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9109 */
9110 set_nlink(inode, 1);
9111
9112 if (!ret) {
9113 d_tmpfile(file, inode);
9114 unlock_new_inode(inode);
9115 mark_inode_dirty(inode);
9116 }
9117
9118 btrfs_end_transaction(trans);
9119 btrfs_btree_balance_dirty(fs_info);
9120 out_new_inode_args:
9121 btrfs_new_inode_args_destroy(&new_inode_args);
9122 out_inode:
9123 if (ret)
9124 iput(inode);
9125 return finish_open_simple(file, ret);
9126 }
9127
btrfs_set_range_writeback(struct btrfs_inode * inode,u64 start,u64 end)9128 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
9129 {
9130 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9131 unsigned long index = start >> PAGE_SHIFT;
9132 unsigned long end_index = end >> PAGE_SHIFT;
9133 struct folio *folio;
9134 u32 len;
9135
9136 ASSERT(end + 1 - start <= U32_MAX);
9137 len = end + 1 - start;
9138 while (index <= end_index) {
9139 folio = __filemap_get_folio(inode->vfs_inode.i_mapping, index, 0, 0);
9140 ASSERT(!IS_ERR(folio)); /* folios should be in the extent_io_tree */
9141
9142 /* This is for data, which doesn't yet support larger folio. */
9143 ASSERT(folio_order(folio) == 0);
9144 btrfs_folio_set_writeback(fs_info, folio, start, len);
9145 folio_put(folio);
9146 index++;
9147 }
9148 }
9149
btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info * fs_info,int compress_type)9150 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9151 int compress_type)
9152 {
9153 switch (compress_type) {
9154 case BTRFS_COMPRESS_NONE:
9155 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9156 case BTRFS_COMPRESS_ZLIB:
9157 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9158 case BTRFS_COMPRESS_LZO:
9159 /*
9160 * The LZO format depends on the sector size. 64K is the maximum
9161 * sector size that we support.
9162 */
9163 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9164 return -EINVAL;
9165 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9166 (fs_info->sectorsize_bits - 12);
9167 case BTRFS_COMPRESS_ZSTD:
9168 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9169 default:
9170 return -EUCLEAN;
9171 }
9172 }
9173
btrfs_encoded_read_inline(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state ** cached_state,u64 extent_start,size_t count,struct btrfs_ioctl_encoded_io_args * encoded,bool * unlocked)9174 static ssize_t btrfs_encoded_read_inline(
9175 struct kiocb *iocb,
9176 struct iov_iter *iter, u64 start,
9177 u64 lockend,
9178 struct extent_state **cached_state,
9179 u64 extent_start, size_t count,
9180 struct btrfs_ioctl_encoded_io_args *encoded,
9181 bool *unlocked)
9182 {
9183 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9184 struct btrfs_root *root = inode->root;
9185 struct btrfs_fs_info *fs_info = root->fs_info;
9186 struct extent_io_tree *io_tree = &inode->io_tree;
9187 struct btrfs_path *path;
9188 struct extent_buffer *leaf;
9189 struct btrfs_file_extent_item *item;
9190 u64 ram_bytes;
9191 unsigned long ptr;
9192 void *tmp;
9193 ssize_t ret;
9194
9195 path = btrfs_alloc_path();
9196 if (!path) {
9197 ret = -ENOMEM;
9198 goto out;
9199 }
9200 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9201 extent_start, 0);
9202 if (ret) {
9203 if (ret > 0) {
9204 /* The extent item disappeared? */
9205 ret = -EIO;
9206 }
9207 goto out;
9208 }
9209 leaf = path->nodes[0];
9210 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9211
9212 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9213 ptr = btrfs_file_extent_inline_start(item);
9214
9215 encoded->len = min_t(u64, extent_start + ram_bytes,
9216 inode->vfs_inode.i_size) - iocb->ki_pos;
9217 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9218 btrfs_file_extent_compression(leaf, item));
9219 if (ret < 0)
9220 goto out;
9221 encoded->compression = ret;
9222 if (encoded->compression) {
9223 size_t inline_size;
9224
9225 inline_size = btrfs_file_extent_inline_item_len(leaf,
9226 path->slots[0]);
9227 if (inline_size > count) {
9228 ret = -ENOBUFS;
9229 goto out;
9230 }
9231 count = inline_size;
9232 encoded->unencoded_len = ram_bytes;
9233 encoded->unencoded_offset = iocb->ki_pos - extent_start;
9234 } else {
9235 count = min_t(u64, count, encoded->len);
9236 encoded->len = count;
9237 encoded->unencoded_len = count;
9238 ptr += iocb->ki_pos - extent_start;
9239 }
9240
9241 tmp = kmalloc(count, GFP_NOFS);
9242 if (!tmp) {
9243 ret = -ENOMEM;
9244 goto out;
9245 }
9246 read_extent_buffer(leaf, tmp, ptr, count);
9247 btrfs_release_path(path);
9248 unlock_extent(io_tree, start, lockend, cached_state);
9249 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9250 *unlocked = true;
9251
9252 ret = copy_to_iter(tmp, count, iter);
9253 if (ret != count)
9254 ret = -EFAULT;
9255 kfree(tmp);
9256 out:
9257 btrfs_free_path(path);
9258 return ret;
9259 }
9260
9261 struct btrfs_encoded_read_private {
9262 wait_queue_head_t wait;
9263 atomic_t pending;
9264 blk_status_t status;
9265 };
9266
btrfs_encoded_read_endio(struct btrfs_bio * bbio)9267 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9268 {
9269 struct btrfs_encoded_read_private *priv = bbio->private;
9270
9271 if (bbio->bio.bi_status) {
9272 /*
9273 * The memory barrier implied by the atomic_dec_return() here
9274 * pairs with the memory barrier implied by the
9275 * atomic_dec_return() or io_wait_event() in
9276 * btrfs_encoded_read_regular_fill_pages() to ensure that this
9277 * write is observed before the load of status in
9278 * btrfs_encoded_read_regular_fill_pages().
9279 */
9280 WRITE_ONCE(priv->status, bbio->bio.bi_status);
9281 }
9282 if (atomic_dec_and_test(&priv->pending))
9283 wake_up(&priv->wait);
9284 bio_put(&bbio->bio);
9285 }
9286
btrfs_encoded_read_regular_fill_pages(struct btrfs_inode * inode,u64 disk_bytenr,u64 disk_io_size,struct page ** pages)9287 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9288 u64 disk_bytenr, u64 disk_io_size,
9289 struct page **pages)
9290 {
9291 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9292 struct btrfs_encoded_read_private *priv;
9293 unsigned long i = 0;
9294 struct btrfs_bio *bbio;
9295 int ret;
9296
9297 priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS);
9298 if (!priv)
9299 return -ENOMEM;
9300
9301 init_waitqueue_head(&priv->wait);
9302 atomic_set(&priv->pending, 1);
9303 priv->status = 0;
9304
9305 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9306 btrfs_encoded_read_endio, priv);
9307 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9308 bbio->inode = inode;
9309
9310 do {
9311 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9312
9313 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9314 atomic_inc(&priv->pending);
9315 btrfs_submit_bbio(bbio, 0);
9316
9317 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9318 btrfs_encoded_read_endio, priv);
9319 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9320 bbio->inode = inode;
9321 continue;
9322 }
9323
9324 i++;
9325 disk_bytenr += bytes;
9326 disk_io_size -= bytes;
9327 } while (disk_io_size);
9328
9329 atomic_inc(&priv->pending);
9330 btrfs_submit_bbio(bbio, 0);
9331
9332 if (atomic_dec_return(&priv->pending))
9333 io_wait_event(priv->wait, !atomic_read(&priv->pending));
9334 /* See btrfs_encoded_read_endio() for ordering. */
9335 ret = blk_status_to_errno(READ_ONCE(priv->status));
9336 kfree(priv);
9337 return ret;
9338 }
9339
btrfs_encoded_read_regular(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state ** cached_state,u64 disk_bytenr,u64 disk_io_size,size_t count,bool compressed,bool * unlocked)9340 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter,
9341 u64 start, u64 lockend,
9342 struct extent_state **cached_state,
9343 u64 disk_bytenr, u64 disk_io_size,
9344 size_t count, bool compressed, bool *unlocked)
9345 {
9346 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9347 struct extent_io_tree *io_tree = &inode->io_tree;
9348 struct page **pages;
9349 unsigned long nr_pages, i;
9350 u64 cur;
9351 size_t page_offset;
9352 ssize_t ret;
9353
9354 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
9355 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
9356 if (!pages)
9357 return -ENOMEM;
9358 ret = btrfs_alloc_page_array(nr_pages, pages, false);
9359 if (ret) {
9360 ret = -ENOMEM;
9361 goto out;
9362 }
9363
9364 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr,
9365 disk_io_size, pages);
9366 if (ret)
9367 goto out;
9368
9369 unlock_extent(io_tree, start, lockend, cached_state);
9370 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9371 *unlocked = true;
9372
9373 if (compressed) {
9374 i = 0;
9375 page_offset = 0;
9376 } else {
9377 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
9378 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
9379 }
9380 cur = 0;
9381 while (cur < count) {
9382 size_t bytes = min_t(size_t, count - cur,
9383 PAGE_SIZE - page_offset);
9384
9385 if (copy_page_to_iter(pages[i], page_offset, bytes,
9386 iter) != bytes) {
9387 ret = -EFAULT;
9388 goto out;
9389 }
9390 i++;
9391 cur += bytes;
9392 page_offset = 0;
9393 }
9394 ret = count;
9395 out:
9396 for (i = 0; i < nr_pages; i++) {
9397 if (pages[i])
9398 __free_page(pages[i]);
9399 }
9400 kfree(pages);
9401 return ret;
9402 }
9403
btrfs_encoded_read(struct kiocb * iocb,struct iov_iter * iter,struct btrfs_ioctl_encoded_io_args * encoded,struct extent_state ** cached_state,u64 * disk_bytenr,u64 * disk_io_size)9404 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
9405 struct btrfs_ioctl_encoded_io_args *encoded,
9406 struct extent_state **cached_state,
9407 u64 *disk_bytenr, u64 *disk_io_size)
9408 {
9409 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9410 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9411 struct extent_io_tree *io_tree = &inode->io_tree;
9412 ssize_t ret;
9413 size_t count = iov_iter_count(iter);
9414 u64 start, lockend;
9415 struct extent_map *em;
9416 bool unlocked = false;
9417
9418 file_accessed(iocb->ki_filp);
9419
9420 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
9421
9422 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
9423 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9424 return 0;
9425 }
9426 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
9427 /*
9428 * We don't know how long the extent containing iocb->ki_pos is, but if
9429 * it's compressed we know that it won't be longer than this.
9430 */
9431 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
9432
9433 for (;;) {
9434 struct btrfs_ordered_extent *ordered;
9435
9436 ret = btrfs_wait_ordered_range(inode, start,
9437 lockend - start + 1);
9438 if (ret)
9439 goto out_unlock_inode;
9440 lock_extent(io_tree, start, lockend, cached_state);
9441 ordered = btrfs_lookup_ordered_range(inode, start,
9442 lockend - start + 1);
9443 if (!ordered)
9444 break;
9445 btrfs_put_ordered_extent(ordered);
9446 unlock_extent(io_tree, start, lockend, cached_state);
9447 cond_resched();
9448 }
9449
9450 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1);
9451 if (IS_ERR(em)) {
9452 ret = PTR_ERR(em);
9453 goto out_unlock_extent;
9454 }
9455
9456 if (em->disk_bytenr == EXTENT_MAP_INLINE) {
9457 u64 extent_start = em->start;
9458
9459 /*
9460 * For inline extents we get everything we need out of the
9461 * extent item.
9462 */
9463 free_extent_map(em);
9464 em = NULL;
9465 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
9466 cached_state, extent_start,
9467 count, encoded, &unlocked);
9468 goto out;
9469 }
9470
9471 /*
9472 * We only want to return up to EOF even if the extent extends beyond
9473 * that.
9474 */
9475 encoded->len = min_t(u64, extent_map_end(em),
9476 inode->vfs_inode.i_size) - iocb->ki_pos;
9477 if (em->disk_bytenr == EXTENT_MAP_HOLE ||
9478 (em->flags & EXTENT_FLAG_PREALLOC)) {
9479 *disk_bytenr = EXTENT_MAP_HOLE;
9480 count = min_t(u64, count, encoded->len);
9481 encoded->len = count;
9482 encoded->unencoded_len = count;
9483 } else if (extent_map_is_compressed(em)) {
9484 *disk_bytenr = em->disk_bytenr;
9485 /*
9486 * Bail if the buffer isn't large enough to return the whole
9487 * compressed extent.
9488 */
9489 if (em->disk_num_bytes > count) {
9490 ret = -ENOBUFS;
9491 goto out_em;
9492 }
9493 *disk_io_size = em->disk_num_bytes;
9494 count = em->disk_num_bytes;
9495 encoded->unencoded_len = em->ram_bytes;
9496 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset);
9497 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9498 extent_map_compression(em));
9499 if (ret < 0)
9500 goto out_em;
9501 encoded->compression = ret;
9502 } else {
9503 *disk_bytenr = extent_map_block_start(em) + (start - em->start);
9504 if (encoded->len > count)
9505 encoded->len = count;
9506 /*
9507 * Don't read beyond what we locked. This also limits the page
9508 * allocations that we'll do.
9509 */
9510 *disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
9511 count = start + *disk_io_size - iocb->ki_pos;
9512 encoded->len = count;
9513 encoded->unencoded_len = count;
9514 *disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize);
9515 }
9516 free_extent_map(em);
9517 em = NULL;
9518
9519 if (*disk_bytenr == EXTENT_MAP_HOLE) {
9520 unlock_extent(io_tree, start, lockend, cached_state);
9521 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9522 unlocked = true;
9523 ret = iov_iter_zero(count, iter);
9524 if (ret != count)
9525 ret = -EFAULT;
9526 } else {
9527 ret = -EIOCBQUEUED;
9528 goto out_em;
9529 }
9530
9531 out:
9532 if (ret >= 0)
9533 iocb->ki_pos += encoded->len;
9534 out_em:
9535 free_extent_map(em);
9536 out_unlock_extent:
9537 /* Leave inode and extent locked if we need to do a read. */
9538 if (!unlocked && ret != -EIOCBQUEUED)
9539 unlock_extent(io_tree, start, lockend, cached_state);
9540 out_unlock_inode:
9541 if (!unlocked && ret != -EIOCBQUEUED)
9542 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9543 return ret;
9544 }
9545
btrfs_do_encoded_write(struct kiocb * iocb,struct iov_iter * from,const struct btrfs_ioctl_encoded_io_args * encoded)9546 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
9547 const struct btrfs_ioctl_encoded_io_args *encoded)
9548 {
9549 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9550 struct btrfs_root *root = inode->root;
9551 struct btrfs_fs_info *fs_info = root->fs_info;
9552 struct extent_io_tree *io_tree = &inode->io_tree;
9553 struct extent_changeset *data_reserved = NULL;
9554 struct extent_state *cached_state = NULL;
9555 struct btrfs_ordered_extent *ordered;
9556 struct btrfs_file_extent file_extent;
9557 int compression;
9558 size_t orig_count;
9559 u64 start, end;
9560 u64 num_bytes, ram_bytes, disk_num_bytes;
9561 unsigned long nr_folios, i;
9562 struct folio **folios;
9563 struct btrfs_key ins;
9564 bool extent_reserved = false;
9565 struct extent_map *em;
9566 ssize_t ret;
9567
9568 switch (encoded->compression) {
9569 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
9570 compression = BTRFS_COMPRESS_ZLIB;
9571 break;
9572 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
9573 compression = BTRFS_COMPRESS_ZSTD;
9574 break;
9575 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
9576 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
9577 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
9578 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
9579 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
9580 /* The sector size must match for LZO. */
9581 if (encoded->compression -
9582 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
9583 fs_info->sectorsize_bits)
9584 return -EINVAL;
9585 compression = BTRFS_COMPRESS_LZO;
9586 break;
9587 default:
9588 return -EINVAL;
9589 }
9590 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
9591 return -EINVAL;
9592
9593 /*
9594 * Compressed extents should always have checksums, so error out if we
9595 * have a NOCOW file or inode was created while mounted with NODATASUM.
9596 */
9597 if (inode->flags & BTRFS_INODE_NODATASUM)
9598 return -EINVAL;
9599
9600 orig_count = iov_iter_count(from);
9601
9602 /* The extent size must be sane. */
9603 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
9604 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
9605 return -EINVAL;
9606
9607 /*
9608 * The compressed data must be smaller than the decompressed data.
9609 *
9610 * It's of course possible for data to compress to larger or the same
9611 * size, but the buffered I/O path falls back to no compression for such
9612 * data, and we don't want to break any assumptions by creating these
9613 * extents.
9614 *
9615 * Note that this is less strict than the current check we have that the
9616 * compressed data must be at least one sector smaller than the
9617 * decompressed data. We only want to enforce the weaker requirement
9618 * from old kernels that it is at least one byte smaller.
9619 */
9620 if (orig_count >= encoded->unencoded_len)
9621 return -EINVAL;
9622
9623 /* The extent must start on a sector boundary. */
9624 start = iocb->ki_pos;
9625 if (!IS_ALIGNED(start, fs_info->sectorsize))
9626 return -EINVAL;
9627
9628 /*
9629 * The extent must end on a sector boundary. However, we allow a write
9630 * which ends at or extends i_size to have an unaligned length; we round
9631 * up the extent size and set i_size to the unaligned end.
9632 */
9633 if (start + encoded->len < inode->vfs_inode.i_size &&
9634 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
9635 return -EINVAL;
9636
9637 /* Finally, the offset in the unencoded data must be sector-aligned. */
9638 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
9639 return -EINVAL;
9640
9641 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
9642 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
9643 end = start + num_bytes - 1;
9644
9645 /*
9646 * If the extent cannot be inline, the compressed data on disk must be
9647 * sector-aligned. For convenience, we extend it with zeroes if it
9648 * isn't.
9649 */
9650 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
9651 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
9652 folios = kvcalloc(nr_folios, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
9653 if (!folios)
9654 return -ENOMEM;
9655 for (i = 0; i < nr_folios; i++) {
9656 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
9657 char *kaddr;
9658
9659 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0);
9660 if (!folios[i]) {
9661 ret = -ENOMEM;
9662 goto out_folios;
9663 }
9664 kaddr = kmap_local_folio(folios[i], 0);
9665 if (copy_from_iter(kaddr, bytes, from) != bytes) {
9666 kunmap_local(kaddr);
9667 ret = -EFAULT;
9668 goto out_folios;
9669 }
9670 if (bytes < PAGE_SIZE)
9671 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
9672 kunmap_local(kaddr);
9673 }
9674
9675 for (;;) {
9676 struct btrfs_ordered_extent *ordered;
9677
9678 ret = btrfs_wait_ordered_range(inode, start, num_bytes);
9679 if (ret)
9680 goto out_folios;
9681 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
9682 start >> PAGE_SHIFT,
9683 end >> PAGE_SHIFT);
9684 if (ret)
9685 goto out_folios;
9686 lock_extent(io_tree, start, end, &cached_state);
9687 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
9688 if (!ordered &&
9689 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
9690 break;
9691 if (ordered)
9692 btrfs_put_ordered_extent(ordered);
9693 unlock_extent(io_tree, start, end, &cached_state);
9694 cond_resched();
9695 }
9696
9697 /*
9698 * We don't use the higher-level delalloc space functions because our
9699 * num_bytes and disk_num_bytes are different.
9700 */
9701 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
9702 if (ret)
9703 goto out_unlock;
9704 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
9705 if (ret)
9706 goto out_free_data_space;
9707 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
9708 false);
9709 if (ret)
9710 goto out_qgroup_free_data;
9711
9712 /* Try an inline extent first. */
9713 if (encoded->unencoded_len == encoded->len &&
9714 encoded->unencoded_offset == 0 &&
9715 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) {
9716 ret = __cow_file_range_inline(inode, start, encoded->len,
9717 orig_count, compression, folios[0],
9718 true);
9719 if (ret <= 0) {
9720 if (ret == 0)
9721 ret = orig_count;
9722 goto out_delalloc_release;
9723 }
9724 }
9725
9726 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
9727 disk_num_bytes, 0, 0, &ins, 1, 1);
9728 if (ret)
9729 goto out_delalloc_release;
9730 extent_reserved = true;
9731
9732 file_extent.disk_bytenr = ins.objectid;
9733 file_extent.disk_num_bytes = ins.offset;
9734 file_extent.num_bytes = num_bytes;
9735 file_extent.ram_bytes = ram_bytes;
9736 file_extent.offset = encoded->unencoded_offset;
9737 file_extent.compression = compression;
9738 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
9739 if (IS_ERR(em)) {
9740 ret = PTR_ERR(em);
9741 goto out_free_reserved;
9742 }
9743 free_extent_map(em);
9744
9745 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
9746 (1U << BTRFS_ORDERED_ENCODED) |
9747 (1U << BTRFS_ORDERED_COMPRESSED));
9748 if (IS_ERR(ordered)) {
9749 btrfs_drop_extent_map_range(inode, start, end, false);
9750 ret = PTR_ERR(ordered);
9751 goto out_free_reserved;
9752 }
9753 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9754
9755 if (start + encoded->len > inode->vfs_inode.i_size)
9756 i_size_write(&inode->vfs_inode, start + encoded->len);
9757
9758 unlock_extent(io_tree, start, end, &cached_state);
9759
9760 btrfs_delalloc_release_extents(inode, num_bytes);
9761
9762 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false);
9763 ret = orig_count;
9764 goto out;
9765
9766 out_free_reserved:
9767 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9768 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
9769 out_delalloc_release:
9770 btrfs_delalloc_release_extents(inode, num_bytes);
9771 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
9772 out_qgroup_free_data:
9773 if (ret < 0)
9774 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
9775 out_free_data_space:
9776 /*
9777 * If btrfs_reserve_extent() succeeded, then we already decremented
9778 * bytes_may_use.
9779 */
9780 if (!extent_reserved)
9781 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
9782 out_unlock:
9783 unlock_extent(io_tree, start, end, &cached_state);
9784 out_folios:
9785 for (i = 0; i < nr_folios; i++) {
9786 if (folios[i])
9787 folio_put(folios[i]);
9788 }
9789 kvfree(folios);
9790 out:
9791 if (ret >= 0)
9792 iocb->ki_pos += encoded->len;
9793 return ret;
9794 }
9795
9796 #ifdef CONFIG_SWAP
9797 /*
9798 * Add an entry indicating a block group or device which is pinned by a
9799 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9800 * negative errno on failure.
9801 */
btrfs_add_swapfile_pin(struct inode * inode,void * ptr,bool is_block_group)9802 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9803 bool is_block_group)
9804 {
9805 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9806 struct btrfs_swapfile_pin *sp, *entry;
9807 struct rb_node **p;
9808 struct rb_node *parent = NULL;
9809
9810 sp = kmalloc(sizeof(*sp), GFP_NOFS);
9811 if (!sp)
9812 return -ENOMEM;
9813 sp->ptr = ptr;
9814 sp->inode = inode;
9815 sp->is_block_group = is_block_group;
9816 sp->bg_extent_count = 1;
9817
9818 spin_lock(&fs_info->swapfile_pins_lock);
9819 p = &fs_info->swapfile_pins.rb_node;
9820 while (*p) {
9821 parent = *p;
9822 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9823 if (sp->ptr < entry->ptr ||
9824 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9825 p = &(*p)->rb_left;
9826 } else if (sp->ptr > entry->ptr ||
9827 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9828 p = &(*p)->rb_right;
9829 } else {
9830 if (is_block_group)
9831 entry->bg_extent_count++;
9832 spin_unlock(&fs_info->swapfile_pins_lock);
9833 kfree(sp);
9834 return 1;
9835 }
9836 }
9837 rb_link_node(&sp->node, parent, p);
9838 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9839 spin_unlock(&fs_info->swapfile_pins_lock);
9840 return 0;
9841 }
9842
9843 /* Free all of the entries pinned by this swapfile. */
btrfs_free_swapfile_pins(struct inode * inode)9844 static void btrfs_free_swapfile_pins(struct inode *inode)
9845 {
9846 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9847 struct btrfs_swapfile_pin *sp;
9848 struct rb_node *node, *next;
9849
9850 spin_lock(&fs_info->swapfile_pins_lock);
9851 node = rb_first(&fs_info->swapfile_pins);
9852 while (node) {
9853 next = rb_next(node);
9854 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
9855 if (sp->inode == inode) {
9856 rb_erase(&sp->node, &fs_info->swapfile_pins);
9857 if (sp->is_block_group) {
9858 btrfs_dec_block_group_swap_extents(sp->ptr,
9859 sp->bg_extent_count);
9860 btrfs_put_block_group(sp->ptr);
9861 }
9862 kfree(sp);
9863 }
9864 node = next;
9865 }
9866 spin_unlock(&fs_info->swapfile_pins_lock);
9867 }
9868
9869 struct btrfs_swap_info {
9870 u64 start;
9871 u64 block_start;
9872 u64 block_len;
9873 u64 lowest_ppage;
9874 u64 highest_ppage;
9875 unsigned long nr_pages;
9876 int nr_extents;
9877 };
9878
btrfs_add_swap_extent(struct swap_info_struct * sis,struct btrfs_swap_info * bsi)9879 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
9880 struct btrfs_swap_info *bsi)
9881 {
9882 unsigned long nr_pages;
9883 unsigned long max_pages;
9884 u64 first_ppage, first_ppage_reported, next_ppage;
9885 int ret;
9886
9887 /*
9888 * Our swapfile may have had its size extended after the swap header was
9889 * written. In that case activating the swapfile should not go beyond
9890 * the max size set in the swap header.
9891 */
9892 if (bsi->nr_pages >= sis->max)
9893 return 0;
9894
9895 max_pages = sis->max - bsi->nr_pages;
9896 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
9897 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
9898
9899 if (first_ppage >= next_ppage)
9900 return 0;
9901 nr_pages = next_ppage - first_ppage;
9902 nr_pages = min(nr_pages, max_pages);
9903
9904 first_ppage_reported = first_ppage;
9905 if (bsi->start == 0)
9906 first_ppage_reported++;
9907 if (bsi->lowest_ppage > first_ppage_reported)
9908 bsi->lowest_ppage = first_ppage_reported;
9909 if (bsi->highest_ppage < (next_ppage - 1))
9910 bsi->highest_ppage = next_ppage - 1;
9911
9912 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
9913 if (ret < 0)
9914 return ret;
9915 bsi->nr_extents += ret;
9916 bsi->nr_pages += nr_pages;
9917 return 0;
9918 }
9919
btrfs_swap_deactivate(struct file * file)9920 static void btrfs_swap_deactivate(struct file *file)
9921 {
9922 struct inode *inode = file_inode(file);
9923
9924 btrfs_free_swapfile_pins(inode);
9925 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
9926 }
9927
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)9928 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
9929 sector_t *span)
9930 {
9931 struct inode *inode = file_inode(file);
9932 struct btrfs_root *root = BTRFS_I(inode)->root;
9933 struct btrfs_fs_info *fs_info = root->fs_info;
9934 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9935 struct extent_state *cached_state = NULL;
9936 struct btrfs_chunk_map *map = NULL;
9937 struct btrfs_device *device = NULL;
9938 struct btrfs_swap_info bsi = {
9939 .lowest_ppage = (sector_t)-1ULL,
9940 };
9941 struct btrfs_backref_share_check_ctx *backref_ctx = NULL;
9942 struct btrfs_path *path = NULL;
9943 int ret = 0;
9944 u64 isize;
9945 u64 prev_extent_end = 0;
9946
9947 /*
9948 * Acquire the inode's mmap lock to prevent races with memory mapped
9949 * writes, as they could happen after we flush delalloc below and before
9950 * we lock the extent range further below. The inode was already locked
9951 * up in the call chain.
9952 */
9953 btrfs_assert_inode_locked(BTRFS_I(inode));
9954 down_write(&BTRFS_I(inode)->i_mmap_lock);
9955
9956 /*
9957 * If the swap file was just created, make sure delalloc is done. If the
9958 * file changes again after this, the user is doing something stupid and
9959 * we don't really care.
9960 */
9961 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
9962 if (ret)
9963 goto out_unlock_mmap;
9964
9965 /*
9966 * The inode is locked, so these flags won't change after we check them.
9967 */
9968 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
9969 btrfs_warn(fs_info, "swapfile must not be compressed");
9970 ret = -EINVAL;
9971 goto out_unlock_mmap;
9972 }
9973 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
9974 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
9975 ret = -EINVAL;
9976 goto out_unlock_mmap;
9977 }
9978 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
9979 btrfs_warn(fs_info, "swapfile must not be checksummed");
9980 ret = -EINVAL;
9981 goto out_unlock_mmap;
9982 }
9983
9984 path = btrfs_alloc_path();
9985 backref_ctx = btrfs_alloc_backref_share_check_ctx();
9986 if (!path || !backref_ctx) {
9987 ret = -ENOMEM;
9988 goto out_unlock_mmap;
9989 }
9990
9991 /*
9992 * Balance or device remove/replace/resize can move stuff around from
9993 * under us. The exclop protection makes sure they aren't running/won't
9994 * run concurrently while we are mapping the swap extents, and
9995 * fs_info->swapfile_pins prevents them from running while the swap
9996 * file is active and moving the extents. Note that this also prevents
9997 * a concurrent device add which isn't actually necessary, but it's not
9998 * really worth the trouble to allow it.
9999 */
10000 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10001 btrfs_warn(fs_info,
10002 "cannot activate swapfile while exclusive operation is running");
10003 ret = -EBUSY;
10004 goto out_unlock_mmap;
10005 }
10006
10007 /*
10008 * Prevent snapshot creation while we are activating the swap file.
10009 * We do not want to race with snapshot creation. If snapshot creation
10010 * already started before we bumped nr_swapfiles from 0 to 1 and
10011 * completes before the first write into the swap file after it is
10012 * activated, than that write would fallback to COW.
10013 */
10014 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10015 btrfs_exclop_finish(fs_info);
10016 btrfs_warn(fs_info,
10017 "cannot activate swapfile because snapshot creation is in progress");
10018 ret = -EINVAL;
10019 goto out_unlock_mmap;
10020 }
10021 /*
10022 * Snapshots can create extents which require COW even if NODATACOW is
10023 * set. We use this counter to prevent snapshots. We must increment it
10024 * before walking the extents because we don't want a concurrent
10025 * snapshot to run after we've already checked the extents.
10026 *
10027 * It is possible that subvolume is marked for deletion but still not
10028 * removed yet. To prevent this race, we check the root status before
10029 * activating the swapfile.
10030 */
10031 spin_lock(&root->root_item_lock);
10032 if (btrfs_root_dead(root)) {
10033 spin_unlock(&root->root_item_lock);
10034
10035 btrfs_drew_write_unlock(&root->snapshot_lock);
10036 btrfs_exclop_finish(fs_info);
10037 btrfs_warn(fs_info,
10038 "cannot activate swapfile because subvolume %llu is being deleted",
10039 btrfs_root_id(root));
10040 ret = -EPERM;
10041 goto out_unlock_mmap;
10042 }
10043 atomic_inc(&root->nr_swapfiles);
10044 spin_unlock(&root->root_item_lock);
10045
10046 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10047
10048 lock_extent(io_tree, 0, isize - 1, &cached_state);
10049 while (prev_extent_end < isize) {
10050 struct btrfs_key key;
10051 struct extent_buffer *leaf;
10052 struct btrfs_file_extent_item *ei;
10053 struct btrfs_block_group *bg;
10054 u64 logical_block_start;
10055 u64 physical_block_start;
10056 u64 extent_gen;
10057 u64 disk_bytenr;
10058 u64 len;
10059
10060 key.objectid = btrfs_ino(BTRFS_I(inode));
10061 key.type = BTRFS_EXTENT_DATA_KEY;
10062 key.offset = prev_extent_end;
10063
10064 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
10065 if (ret < 0)
10066 goto out;
10067
10068 /*
10069 * If key not found it means we have an implicit hole (NO_HOLES
10070 * is enabled).
10071 */
10072 if (ret > 0) {
10073 btrfs_warn(fs_info, "swapfile must not have holes");
10074 ret = -EINVAL;
10075 goto out;
10076 }
10077
10078 leaf = path->nodes[0];
10079 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
10080
10081 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
10082 /*
10083 * It's unlikely we'll ever actually find ourselves
10084 * here, as a file small enough to fit inline won't be
10085 * big enough to store more than the swap header, but in
10086 * case something changes in the future, let's catch it
10087 * here rather than later.
10088 */
10089 btrfs_warn(fs_info, "swapfile must not be inline");
10090 ret = -EINVAL;
10091 goto out;
10092 }
10093
10094 if (btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
10095 btrfs_warn(fs_info, "swapfile must not be compressed");
10096 ret = -EINVAL;
10097 goto out;
10098 }
10099
10100 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
10101 if (disk_bytenr == 0) {
10102 btrfs_warn(fs_info, "swapfile must not have holes");
10103 ret = -EINVAL;
10104 goto out;
10105 }
10106
10107 logical_block_start = disk_bytenr + btrfs_file_extent_offset(leaf, ei);
10108 extent_gen = btrfs_file_extent_generation(leaf, ei);
10109 prev_extent_end = btrfs_file_extent_end(path);
10110
10111 if (prev_extent_end > isize)
10112 len = isize - key.offset;
10113 else
10114 len = btrfs_file_extent_num_bytes(leaf, ei);
10115
10116 backref_ctx->curr_leaf_bytenr = leaf->start;
10117
10118 /*
10119 * Don't need the path anymore, release to avoid deadlocks when
10120 * calling btrfs_is_data_extent_shared() because when joining a
10121 * transaction it can block waiting for the current one's commit
10122 * which in turn may be trying to lock the same leaf to flush
10123 * delayed items for example.
10124 */
10125 btrfs_release_path(path);
10126
10127 ret = btrfs_is_data_extent_shared(BTRFS_I(inode), disk_bytenr,
10128 extent_gen, backref_ctx);
10129 if (ret < 0) {
10130 goto out;
10131 } else if (ret > 0) {
10132 btrfs_warn(fs_info,
10133 "swapfile must not be copy-on-write");
10134 ret = -EINVAL;
10135 goto out;
10136 }
10137
10138 map = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10139 if (IS_ERR(map)) {
10140 ret = PTR_ERR(map);
10141 goto out;
10142 }
10143
10144 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10145 btrfs_warn(fs_info,
10146 "swapfile must have single data profile");
10147 ret = -EINVAL;
10148 goto out;
10149 }
10150
10151 if (device == NULL) {
10152 device = map->stripes[0].dev;
10153 ret = btrfs_add_swapfile_pin(inode, device, false);
10154 if (ret == 1)
10155 ret = 0;
10156 else if (ret)
10157 goto out;
10158 } else if (device != map->stripes[0].dev) {
10159 btrfs_warn(fs_info, "swapfile must be on one device");
10160 ret = -EINVAL;
10161 goto out;
10162 }
10163
10164 physical_block_start = (map->stripes[0].physical +
10165 (logical_block_start - map->start));
10166 btrfs_free_chunk_map(map);
10167 map = NULL;
10168
10169 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10170 if (!bg) {
10171 btrfs_warn(fs_info,
10172 "could not find block group containing swapfile");
10173 ret = -EINVAL;
10174 goto out;
10175 }
10176
10177 if (!btrfs_inc_block_group_swap_extents(bg)) {
10178 btrfs_warn(fs_info,
10179 "block group for swapfile at %llu is read-only%s",
10180 bg->start,
10181 atomic_read(&fs_info->scrubs_running) ?
10182 " (scrub running)" : "");
10183 btrfs_put_block_group(bg);
10184 ret = -EINVAL;
10185 goto out;
10186 }
10187
10188 ret = btrfs_add_swapfile_pin(inode, bg, true);
10189 if (ret) {
10190 btrfs_put_block_group(bg);
10191 if (ret == 1)
10192 ret = 0;
10193 else
10194 goto out;
10195 }
10196
10197 if (bsi.block_len &&
10198 bsi.block_start + bsi.block_len == physical_block_start) {
10199 bsi.block_len += len;
10200 } else {
10201 if (bsi.block_len) {
10202 ret = btrfs_add_swap_extent(sis, &bsi);
10203 if (ret)
10204 goto out;
10205 }
10206 bsi.start = key.offset;
10207 bsi.block_start = physical_block_start;
10208 bsi.block_len = len;
10209 }
10210
10211 if (fatal_signal_pending(current)) {
10212 ret = -EINTR;
10213 goto out;
10214 }
10215
10216 cond_resched();
10217 }
10218
10219 if (bsi.block_len)
10220 ret = btrfs_add_swap_extent(sis, &bsi);
10221
10222 out:
10223 if (!IS_ERR_OR_NULL(map))
10224 btrfs_free_chunk_map(map);
10225
10226 unlock_extent(io_tree, 0, isize - 1, &cached_state);
10227
10228 if (ret)
10229 btrfs_swap_deactivate(file);
10230
10231 btrfs_drew_write_unlock(&root->snapshot_lock);
10232
10233 btrfs_exclop_finish(fs_info);
10234
10235 out_unlock_mmap:
10236 up_write(&BTRFS_I(inode)->i_mmap_lock);
10237 btrfs_free_backref_share_ctx(backref_ctx);
10238 btrfs_free_path(path);
10239 if (ret)
10240 return ret;
10241
10242 if (device)
10243 sis->bdev = device->bdev;
10244 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10245 sis->max = bsi.nr_pages;
10246 sis->pages = bsi.nr_pages - 1;
10247 sis->highest_bit = bsi.nr_pages - 1;
10248 return bsi.nr_extents;
10249 }
10250 #else
btrfs_swap_deactivate(struct file * file)10251 static void btrfs_swap_deactivate(struct file *file)
10252 {
10253 }
10254
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10255 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10256 sector_t *span)
10257 {
10258 return -EOPNOTSUPP;
10259 }
10260 #endif
10261
10262 /*
10263 * Update the number of bytes used in the VFS' inode. When we replace extents in
10264 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10265 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10266 * always get a correct value.
10267 */
btrfs_update_inode_bytes(struct btrfs_inode * inode,const u64 add_bytes,const u64 del_bytes)10268 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10269 const u64 add_bytes,
10270 const u64 del_bytes)
10271 {
10272 if (add_bytes == del_bytes)
10273 return;
10274
10275 spin_lock(&inode->lock);
10276 if (del_bytes > 0)
10277 inode_sub_bytes(&inode->vfs_inode, del_bytes);
10278 if (add_bytes > 0)
10279 inode_add_bytes(&inode->vfs_inode, add_bytes);
10280 spin_unlock(&inode->lock);
10281 }
10282
10283 /*
10284 * Verify that there are no ordered extents for a given file range.
10285 *
10286 * @inode: The target inode.
10287 * @start: Start offset of the file range, should be sector size aligned.
10288 * @end: End offset (inclusive) of the file range, its value +1 should be
10289 * sector size aligned.
10290 *
10291 * This should typically be used for cases where we locked an inode's VFS lock in
10292 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10293 * we have flushed all delalloc in the range, we have waited for all ordered
10294 * extents in the range to complete and finally we have locked the file range in
10295 * the inode's io_tree.
10296 */
btrfs_assert_inode_range_clean(struct btrfs_inode * inode,u64 start,u64 end)10297 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10298 {
10299 struct btrfs_root *root = inode->root;
10300 struct btrfs_ordered_extent *ordered;
10301
10302 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10303 return;
10304
10305 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10306 if (ordered) {
10307 btrfs_err(root->fs_info,
10308 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10309 start, end, btrfs_ino(inode), btrfs_root_id(root),
10310 ordered->file_offset,
10311 ordered->file_offset + ordered->num_bytes - 1);
10312 btrfs_put_ordered_extent(ordered);
10313 }
10314
10315 ASSERT(ordered == NULL);
10316 }
10317
10318 /*
10319 * Find the first inode with a minimum number.
10320 *
10321 * @root: The root to search for.
10322 * @min_ino: The minimum inode number.
10323 *
10324 * Find the first inode in the @root with a number >= @min_ino and return it.
10325 * Returns NULL if no such inode found.
10326 */
btrfs_find_first_inode(struct btrfs_root * root,u64 min_ino)10327 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino)
10328 {
10329 struct btrfs_inode *inode;
10330 unsigned long from = min_ino;
10331
10332 xa_lock(&root->inodes);
10333 while (true) {
10334 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT);
10335 if (!inode)
10336 break;
10337 if (igrab(&inode->vfs_inode))
10338 break;
10339
10340 from = btrfs_ino(inode) + 1;
10341 cond_resched_lock(&root->inodes.xa_lock);
10342 }
10343 xa_unlock(&root->inodes);
10344
10345 return inode;
10346 }
10347
10348 static const struct inode_operations btrfs_dir_inode_operations = {
10349 .getattr = btrfs_getattr,
10350 .lookup = btrfs_lookup,
10351 .create = btrfs_create,
10352 .unlink = btrfs_unlink,
10353 .link = btrfs_link,
10354 .mkdir = btrfs_mkdir,
10355 .rmdir = btrfs_rmdir,
10356 .rename = btrfs_rename2,
10357 .symlink = btrfs_symlink,
10358 .setattr = btrfs_setattr,
10359 .mknod = btrfs_mknod,
10360 .listxattr = btrfs_listxattr,
10361 .permission = btrfs_permission,
10362 .get_inode_acl = btrfs_get_acl,
10363 .set_acl = btrfs_set_acl,
10364 .update_time = btrfs_update_time,
10365 .tmpfile = btrfs_tmpfile,
10366 .fileattr_get = btrfs_fileattr_get,
10367 .fileattr_set = btrfs_fileattr_set,
10368 };
10369
10370 static const struct file_operations btrfs_dir_file_operations = {
10371 .llseek = btrfs_dir_llseek,
10372 .read = generic_read_dir,
10373 .iterate_shared = btrfs_real_readdir,
10374 .open = btrfs_opendir,
10375 .unlocked_ioctl = btrfs_ioctl,
10376 #ifdef CONFIG_COMPAT
10377 .compat_ioctl = btrfs_compat_ioctl,
10378 #endif
10379 .release = btrfs_release_file,
10380 .fsync = btrfs_sync_file,
10381 };
10382
10383 /*
10384 * btrfs doesn't support the bmap operation because swapfiles
10385 * use bmap to make a mapping of extents in the file. They assume
10386 * these extents won't change over the life of the file and they
10387 * use the bmap result to do IO directly to the drive.
10388 *
10389 * the btrfs bmap call would return logical addresses that aren't
10390 * suitable for IO and they also will change frequently as COW
10391 * operations happen. So, swapfile + btrfs == corruption.
10392 *
10393 * For now we're avoiding this by dropping bmap.
10394 */
10395 static const struct address_space_operations btrfs_aops = {
10396 .read_folio = btrfs_read_folio,
10397 .writepages = btrfs_writepages,
10398 .readahead = btrfs_readahead,
10399 .invalidate_folio = btrfs_invalidate_folio,
10400 .launder_folio = btrfs_launder_folio,
10401 .release_folio = btrfs_release_folio,
10402 .migrate_folio = btrfs_migrate_folio,
10403 .dirty_folio = filemap_dirty_folio,
10404 .error_remove_folio = generic_error_remove_folio,
10405 .swap_activate = btrfs_swap_activate,
10406 .swap_deactivate = btrfs_swap_deactivate,
10407 };
10408
10409 static const struct inode_operations btrfs_file_inode_operations = {
10410 .getattr = btrfs_getattr,
10411 .setattr = btrfs_setattr,
10412 .listxattr = btrfs_listxattr,
10413 .permission = btrfs_permission,
10414 .fiemap = btrfs_fiemap,
10415 .get_inode_acl = btrfs_get_acl,
10416 .set_acl = btrfs_set_acl,
10417 .update_time = btrfs_update_time,
10418 .fileattr_get = btrfs_fileattr_get,
10419 .fileattr_set = btrfs_fileattr_set,
10420 };
10421 static const struct inode_operations btrfs_special_inode_operations = {
10422 .getattr = btrfs_getattr,
10423 .setattr = btrfs_setattr,
10424 .permission = btrfs_permission,
10425 .listxattr = btrfs_listxattr,
10426 .get_inode_acl = btrfs_get_acl,
10427 .set_acl = btrfs_set_acl,
10428 .update_time = btrfs_update_time,
10429 };
10430 static const struct inode_operations btrfs_symlink_inode_operations = {
10431 .get_link = page_get_link,
10432 .getattr = btrfs_getattr,
10433 .setattr = btrfs_setattr,
10434 .permission = btrfs_permission,
10435 .listxattr = btrfs_listxattr,
10436 .update_time = btrfs_update_time,
10437 };
10438
10439 const struct dentry_operations btrfs_dentry_operations = {
10440 .d_delete = btrfs_dentry_delete,
10441 };
10442