• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio-integrity.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/highmem.h>
19 #include <linux/blk-crypto.h>
20 #include <linux/xarray.h>
21 
22 #include <trace/events/block.h>
23 #include "blk.h"
24 #include "blk-rq-qos.h"
25 #include "blk-cgroup.h"
26 
27 #define ALLOC_CACHE_THRESHOLD	16
28 #define ALLOC_CACHE_MAX		256
29 
30 struct bio_alloc_cache {
31 	struct bio		*free_list;
32 	struct bio		*free_list_irq;
33 	unsigned int		nr;
34 	unsigned int		nr_irq;
35 };
36 
37 static struct biovec_slab {
38 	int nr_vecs;
39 	char *name;
40 	struct kmem_cache *slab;
41 } bvec_slabs[] __read_mostly = {
42 	{ .nr_vecs = 16, .name = "biovec-16" },
43 	{ .nr_vecs = 64, .name = "biovec-64" },
44 	{ .nr_vecs = 128, .name = "biovec-128" },
45 	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
46 };
47 
biovec_slab(unsigned short nr_vecs)48 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
49 {
50 	switch (nr_vecs) {
51 	/* smaller bios use inline vecs */
52 	case 5 ... 16:
53 		return &bvec_slabs[0];
54 	case 17 ... 64:
55 		return &bvec_slabs[1];
56 	case 65 ... 128:
57 		return &bvec_slabs[2];
58 	case 129 ... BIO_MAX_VECS:
59 		return &bvec_slabs[3];
60 	default:
61 		BUG();
62 		return NULL;
63 	}
64 }
65 
66 /*
67  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
68  * IO code that does not need private memory pools.
69  */
70 struct bio_set fs_bio_set;
71 EXPORT_SYMBOL(fs_bio_set);
72 
73 /*
74  * Our slab pool management
75  */
76 struct bio_slab {
77 	struct kmem_cache *slab;
78 	unsigned int slab_ref;
79 	unsigned int slab_size;
80 	char name[12];
81 };
82 static DEFINE_MUTEX(bio_slab_lock);
83 static DEFINE_XARRAY(bio_slabs);
84 
create_bio_slab(unsigned int size)85 static struct bio_slab *create_bio_slab(unsigned int size)
86 {
87 	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
88 
89 	if (!bslab)
90 		return NULL;
91 
92 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
93 	bslab->slab = kmem_cache_create(bslab->name, size,
94 			ARCH_KMALLOC_MINALIGN,
95 			SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
96 	if (!bslab->slab)
97 		goto fail_alloc_slab;
98 
99 	bslab->slab_ref = 1;
100 	bslab->slab_size = size;
101 
102 	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
103 		return bslab;
104 
105 	kmem_cache_destroy(bslab->slab);
106 
107 fail_alloc_slab:
108 	kfree(bslab);
109 	return NULL;
110 }
111 
bs_bio_slab_size(struct bio_set * bs)112 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
113 {
114 	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
115 }
116 
bio_find_or_create_slab(struct bio_set * bs)117 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
118 {
119 	unsigned int size = bs_bio_slab_size(bs);
120 	struct bio_slab *bslab;
121 
122 	mutex_lock(&bio_slab_lock);
123 	bslab = xa_load(&bio_slabs, size);
124 	if (bslab)
125 		bslab->slab_ref++;
126 	else
127 		bslab = create_bio_slab(size);
128 	mutex_unlock(&bio_slab_lock);
129 
130 	if (bslab)
131 		return bslab->slab;
132 	return NULL;
133 }
134 
bio_put_slab(struct bio_set * bs)135 static void bio_put_slab(struct bio_set *bs)
136 {
137 	struct bio_slab *bslab = NULL;
138 	unsigned int slab_size = bs_bio_slab_size(bs);
139 
140 	mutex_lock(&bio_slab_lock);
141 
142 	bslab = xa_load(&bio_slabs, slab_size);
143 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
144 		goto out;
145 
146 	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
147 
148 	WARN_ON(!bslab->slab_ref);
149 
150 	if (--bslab->slab_ref)
151 		goto out;
152 
153 	xa_erase(&bio_slabs, slab_size);
154 
155 	kmem_cache_destroy(bslab->slab);
156 	kfree(bslab);
157 
158 out:
159 	mutex_unlock(&bio_slab_lock);
160 }
161 
bvec_free(mempool_t * pool,struct bio_vec * bv,unsigned short nr_vecs)162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
163 {
164 	BUG_ON(nr_vecs > BIO_MAX_VECS);
165 
166 	if (nr_vecs == BIO_MAX_VECS)
167 		mempool_free(bv, pool);
168 	else if (nr_vecs > BIO_INLINE_VECS)
169 		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
170 }
171 
172 /*
173  * Make the first allocation restricted and don't dump info on allocation
174  * failures, since we'll fall back to the mempool in case of failure.
175  */
bvec_alloc_gfp(gfp_t gfp)176 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
177 {
178 	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
179 		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
180 }
181 
bvec_alloc(mempool_t * pool,unsigned short * nr_vecs,gfp_t gfp_mask)182 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
183 		gfp_t gfp_mask)
184 {
185 	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
186 
187 	if (WARN_ON_ONCE(!bvs))
188 		return NULL;
189 
190 	/*
191 	 * Upgrade the nr_vecs request to take full advantage of the allocation.
192 	 * We also rely on this in the bvec_free path.
193 	 */
194 	*nr_vecs = bvs->nr_vecs;
195 
196 	/*
197 	 * Try a slab allocation first for all smaller allocations.  If that
198 	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
199 	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
200 	 */
201 	if (*nr_vecs < BIO_MAX_VECS) {
202 		struct bio_vec *bvl;
203 
204 		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
205 		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
206 			return bvl;
207 		*nr_vecs = BIO_MAX_VECS;
208 	}
209 
210 	return mempool_alloc(pool, gfp_mask);
211 }
212 
bio_uninit(struct bio * bio)213 void bio_uninit(struct bio *bio)
214 {
215 #ifdef CONFIG_BLK_CGROUP
216 	if (bio->bi_blkg) {
217 		blkg_put(bio->bi_blkg);
218 		bio->bi_blkg = NULL;
219 	}
220 #endif
221 	if (bio_integrity(bio))
222 		bio_integrity_free(bio);
223 
224 	bio_crypt_free_ctx(bio);
225 }
226 EXPORT_SYMBOL(bio_uninit);
227 
bio_free(struct bio * bio)228 static void bio_free(struct bio *bio)
229 {
230 	struct bio_set *bs = bio->bi_pool;
231 	void *p = bio;
232 
233 	WARN_ON_ONCE(!bs);
234 
235 	bio_uninit(bio);
236 	bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
237 	mempool_free(p - bs->front_pad, &bs->bio_pool);
238 }
239 
240 /*
241  * Users of this function have their own bio allocation. Subsequently,
242  * they must remember to pair any call to bio_init() with bio_uninit()
243  * when IO has completed, or when the bio is released.
244  */
bio_init(struct bio * bio,struct block_device * bdev,struct bio_vec * table,unsigned short max_vecs,blk_opf_t opf)245 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
246 	      unsigned short max_vecs, blk_opf_t opf)
247 {
248 	bio->bi_next = NULL;
249 	bio->bi_bdev = bdev;
250 	bio->bi_opf = opf;
251 	bio->bi_flags = 0;
252 	bio->bi_ioprio = 0;
253 	bio->bi_write_hint = 0;
254 	bio->bi_status = 0;
255 	bio->bi_iter.bi_sector = 0;
256 	bio->bi_iter.bi_size = 0;
257 	bio->bi_iter.bi_idx = 0;
258 	bio->bi_iter.bi_bvec_done = 0;
259 	bio->bi_end_io = NULL;
260 	bio->bi_private = NULL;
261 #ifdef CONFIG_BLK_CGROUP
262 	bio->bi_blkg = NULL;
263 	bio->bi_issue.value = 0;
264 	if (bdev)
265 		bio_associate_blkg(bio);
266 #ifdef CONFIG_BLK_CGROUP_IOCOST
267 	bio->bi_iocost_cost = 0;
268 #endif
269 #endif
270 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
271 	bio->bi_crypt_context = NULL;
272 #if IS_ENABLED(CONFIG_DM_DEFAULT_KEY)
273 	bio->bi_skip_dm_default_key = false;
274 #endif
275 #endif
276 #ifdef CONFIG_BLK_DEV_INTEGRITY
277 	bio->bi_integrity = NULL;
278 #endif
279 	bio->bi_vcnt = 0;
280 
281 	atomic_set(&bio->__bi_remaining, 1);
282 	atomic_set(&bio->__bi_cnt, 1);
283 	bio->bi_cookie = BLK_QC_T_NONE;
284 
285 	bio->bi_max_vecs = max_vecs;
286 	bio->bi_io_vec = table;
287 	bio->bi_pool = NULL;
288 }
289 EXPORT_SYMBOL(bio_init);
290 
291 /**
292  * bio_reset - reinitialize a bio
293  * @bio:	bio to reset
294  * @bdev:	block device to use the bio for
295  * @opf:	operation and flags for bio
296  *
297  * Description:
298  *   After calling bio_reset(), @bio will be in the same state as a freshly
299  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
300  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
301  *   comment in struct bio.
302  */
bio_reset(struct bio * bio,struct block_device * bdev,blk_opf_t opf)303 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
304 {
305 	bio_uninit(bio);
306 	memset(bio, 0, BIO_RESET_BYTES);
307 	atomic_set(&bio->__bi_remaining, 1);
308 	bio->bi_bdev = bdev;
309 	if (bio->bi_bdev)
310 		bio_associate_blkg(bio);
311 	bio->bi_opf = opf;
312 }
313 EXPORT_SYMBOL(bio_reset);
314 
__bio_chain_endio(struct bio * bio)315 static struct bio *__bio_chain_endio(struct bio *bio)
316 {
317 	struct bio *parent = bio->bi_private;
318 
319 	if (bio->bi_status && !parent->bi_status)
320 		parent->bi_status = bio->bi_status;
321 	bio_put(bio);
322 	return parent;
323 }
324 
bio_chain_endio(struct bio * bio)325 static void bio_chain_endio(struct bio *bio)
326 {
327 	bio_endio(__bio_chain_endio(bio));
328 }
329 
330 /**
331  * bio_chain - chain bio completions
332  * @bio: the target bio
333  * @parent: the parent bio of @bio
334  *
335  * The caller won't have a bi_end_io called when @bio completes - instead,
336  * @parent's bi_end_io won't be called until both @parent and @bio have
337  * completed; the chained bio will also be freed when it completes.
338  *
339  * The caller must not set bi_private or bi_end_io in @bio.
340  */
bio_chain(struct bio * bio,struct bio * parent)341 void bio_chain(struct bio *bio, struct bio *parent)
342 {
343 	BUG_ON(bio->bi_private || bio->bi_end_io);
344 
345 	bio->bi_private = parent;
346 	bio->bi_end_io	= bio_chain_endio;
347 	bio_inc_remaining(parent);
348 }
349 EXPORT_SYMBOL(bio_chain);
350 
351 /**
352  * bio_chain_and_submit - submit a bio after chaining it to another one
353  * @prev: bio to chain and submit
354  * @new: bio to chain to
355  *
356  * If @prev is non-NULL, chain it to @new and submit it.
357  *
358  * Return: @new.
359  */
bio_chain_and_submit(struct bio * prev,struct bio * new)360 struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new)
361 {
362 	if (prev) {
363 		bio_chain(prev, new);
364 		submit_bio(prev);
365 	}
366 	return new;
367 }
368 
blk_next_bio(struct bio * bio,struct block_device * bdev,unsigned int nr_pages,blk_opf_t opf,gfp_t gfp)369 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
370 		unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
371 {
372 	return bio_chain_and_submit(bio, bio_alloc(bdev, nr_pages, opf, gfp));
373 }
374 EXPORT_SYMBOL_GPL(blk_next_bio);
375 
bio_alloc_rescue(struct work_struct * work)376 static void bio_alloc_rescue(struct work_struct *work)
377 {
378 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
379 	struct bio *bio;
380 
381 	while (1) {
382 		spin_lock(&bs->rescue_lock);
383 		bio = bio_list_pop(&bs->rescue_list);
384 		spin_unlock(&bs->rescue_lock);
385 
386 		if (!bio)
387 			break;
388 
389 		submit_bio_noacct(bio);
390 	}
391 }
392 
punt_bios_to_rescuer(struct bio_set * bs)393 static void punt_bios_to_rescuer(struct bio_set *bs)
394 {
395 	struct bio_list punt, nopunt;
396 	struct bio *bio;
397 
398 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
399 		return;
400 	/*
401 	 * In order to guarantee forward progress we must punt only bios that
402 	 * were allocated from this bio_set; otherwise, if there was a bio on
403 	 * there for a stacking driver higher up in the stack, processing it
404 	 * could require allocating bios from this bio_set, and doing that from
405 	 * our own rescuer would be bad.
406 	 *
407 	 * Since bio lists are singly linked, pop them all instead of trying to
408 	 * remove from the middle of the list:
409 	 */
410 
411 	bio_list_init(&punt);
412 	bio_list_init(&nopunt);
413 
414 	while ((bio = bio_list_pop(&current->bio_list[0])))
415 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
416 	current->bio_list[0] = nopunt;
417 
418 	bio_list_init(&nopunt);
419 	while ((bio = bio_list_pop(&current->bio_list[1])))
420 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
421 	current->bio_list[1] = nopunt;
422 
423 	spin_lock(&bs->rescue_lock);
424 	bio_list_merge(&bs->rescue_list, &punt);
425 	spin_unlock(&bs->rescue_lock);
426 
427 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
428 }
429 
bio_alloc_irq_cache_splice(struct bio_alloc_cache * cache)430 static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
431 {
432 	unsigned long flags;
433 
434 	/* cache->free_list must be empty */
435 	if (WARN_ON_ONCE(cache->free_list))
436 		return;
437 
438 	local_irq_save(flags);
439 	cache->free_list = cache->free_list_irq;
440 	cache->free_list_irq = NULL;
441 	cache->nr += cache->nr_irq;
442 	cache->nr_irq = 0;
443 	local_irq_restore(flags);
444 }
445 
bio_alloc_percpu_cache(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp,struct bio_set * bs)446 static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
447 		unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
448 		struct bio_set *bs)
449 {
450 	struct bio_alloc_cache *cache;
451 	struct bio *bio;
452 
453 	cache = per_cpu_ptr(bs->cache, get_cpu());
454 	if (!cache->free_list) {
455 		if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
456 			bio_alloc_irq_cache_splice(cache);
457 		if (!cache->free_list) {
458 			put_cpu();
459 			return NULL;
460 		}
461 	}
462 	bio = cache->free_list;
463 	cache->free_list = bio->bi_next;
464 	cache->nr--;
465 	put_cpu();
466 
467 	bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
468 	bio->bi_pool = bs;
469 	return bio;
470 }
471 
472 /**
473  * bio_alloc_bioset - allocate a bio for I/O
474  * @bdev:	block device to allocate the bio for (can be %NULL)
475  * @nr_vecs:	number of bvecs to pre-allocate
476  * @opf:	operation and flags for bio
477  * @gfp_mask:   the GFP_* mask given to the slab allocator
478  * @bs:		the bio_set to allocate from.
479  *
480  * Allocate a bio from the mempools in @bs.
481  *
482  * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
483  * allocate a bio.  This is due to the mempool guarantees.  To make this work,
484  * callers must never allocate more than 1 bio at a time from the general pool.
485  * Callers that need to allocate more than 1 bio must always submit the
486  * previously allocated bio for IO before attempting to allocate a new one.
487  * Failure to do so can cause deadlocks under memory pressure.
488  *
489  * Note that when running under submit_bio_noacct() (i.e. any block driver),
490  * bios are not submitted until after you return - see the code in
491  * submit_bio_noacct() that converts recursion into iteration, to prevent
492  * stack overflows.
493  *
494  * This would normally mean allocating multiple bios under submit_bio_noacct()
495  * would be susceptible to deadlocks, but we have
496  * deadlock avoidance code that resubmits any blocked bios from a rescuer
497  * thread.
498  *
499  * However, we do not guarantee forward progress for allocations from other
500  * mempools. Doing multiple allocations from the same mempool under
501  * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
502  * for per bio allocations.
503  *
504  * Returns: Pointer to new bio on success, NULL on failure.
505  */
bio_alloc_bioset(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp_mask,struct bio_set * bs)506 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
507 			     blk_opf_t opf, gfp_t gfp_mask,
508 			     struct bio_set *bs)
509 {
510 	gfp_t saved_gfp = gfp_mask;
511 	struct bio *bio;
512 	void *p;
513 
514 	/* should not use nobvec bioset for nr_vecs > 0 */
515 	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
516 		return NULL;
517 
518 	if (opf & REQ_ALLOC_CACHE) {
519 		if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
520 			bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
521 						     gfp_mask, bs);
522 			if (bio)
523 				return bio;
524 			/*
525 			 * No cached bio available, bio returned below marked with
526 			 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
527 			 */
528 		} else {
529 			opf &= ~REQ_ALLOC_CACHE;
530 		}
531 	}
532 
533 	/*
534 	 * submit_bio_noacct() converts recursion to iteration; this means if
535 	 * we're running beneath it, any bios we allocate and submit will not be
536 	 * submitted (and thus freed) until after we return.
537 	 *
538 	 * This exposes us to a potential deadlock if we allocate multiple bios
539 	 * from the same bio_set() while running underneath submit_bio_noacct().
540 	 * If we were to allocate multiple bios (say a stacking block driver
541 	 * that was splitting bios), we would deadlock if we exhausted the
542 	 * mempool's reserve.
543 	 *
544 	 * We solve this, and guarantee forward progress, with a rescuer
545 	 * workqueue per bio_set. If we go to allocate and there are bios on
546 	 * current->bio_list, we first try the allocation without
547 	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
548 	 * blocking to the rescuer workqueue before we retry with the original
549 	 * gfp_flags.
550 	 */
551 	if (current->bio_list &&
552 	    (!bio_list_empty(&current->bio_list[0]) ||
553 	     !bio_list_empty(&current->bio_list[1])) &&
554 	    bs->rescue_workqueue)
555 		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
556 
557 	p = mempool_alloc(&bs->bio_pool, gfp_mask);
558 	if (!p && gfp_mask != saved_gfp) {
559 		punt_bios_to_rescuer(bs);
560 		gfp_mask = saved_gfp;
561 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
562 	}
563 	if (unlikely(!p))
564 		return NULL;
565 	if (!mempool_is_saturated(&bs->bio_pool))
566 		opf &= ~REQ_ALLOC_CACHE;
567 
568 	bio = p + bs->front_pad;
569 	if (nr_vecs > BIO_INLINE_VECS) {
570 		struct bio_vec *bvl = NULL;
571 
572 		bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
573 		if (!bvl && gfp_mask != saved_gfp) {
574 			punt_bios_to_rescuer(bs);
575 			gfp_mask = saved_gfp;
576 			bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
577 		}
578 		if (unlikely(!bvl))
579 			goto err_free;
580 
581 		bio_init(bio, bdev, bvl, nr_vecs, opf);
582 	} else if (nr_vecs) {
583 		bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
584 	} else {
585 		bio_init(bio, bdev, NULL, 0, opf);
586 	}
587 
588 	bio->bi_pool = bs;
589 	return bio;
590 
591 err_free:
592 	mempool_free(p, &bs->bio_pool);
593 	return NULL;
594 }
595 EXPORT_SYMBOL(bio_alloc_bioset);
596 
597 /**
598  * bio_kmalloc - kmalloc a bio
599  * @nr_vecs:	number of bio_vecs to allocate
600  * @gfp_mask:   the GFP_* mask given to the slab allocator
601  *
602  * Use kmalloc to allocate a bio (including bvecs).  The bio must be initialized
603  * using bio_init() before use.  To free a bio returned from this function use
604  * kfree() after calling bio_uninit().  A bio returned from this function can
605  * be reused by calling bio_uninit() before calling bio_init() again.
606  *
607  * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
608  * function are not backed by a mempool can fail.  Do not use this function
609  * for allocations in the file system I/O path.
610  *
611  * Returns: Pointer to new bio on success, NULL on failure.
612  */
bio_kmalloc(unsigned short nr_vecs,gfp_t gfp_mask)613 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
614 {
615 	struct bio *bio;
616 
617 	if (nr_vecs > BIO_MAX_INLINE_VECS)
618 		return NULL;
619 	return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
620 }
621 EXPORT_SYMBOL(bio_kmalloc);
622 
zero_fill_bio_iter(struct bio * bio,struct bvec_iter start)623 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
624 {
625 	struct bio_vec bv;
626 	struct bvec_iter iter;
627 
628 	__bio_for_each_segment(bv, bio, iter, start)
629 		memzero_bvec(&bv);
630 }
631 EXPORT_SYMBOL(zero_fill_bio_iter);
632 
633 /**
634  * bio_truncate - truncate the bio to small size of @new_size
635  * @bio:	the bio to be truncated
636  * @new_size:	new size for truncating the bio
637  *
638  * Description:
639  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
640  *   REQ_OP_READ, zero the truncated part. This function should only
641  *   be used for handling corner cases, such as bio eod.
642  */
bio_truncate(struct bio * bio,unsigned new_size)643 static void bio_truncate(struct bio *bio, unsigned new_size)
644 {
645 	struct bio_vec bv;
646 	struct bvec_iter iter;
647 	unsigned int done = 0;
648 	bool truncated = false;
649 
650 	if (new_size >= bio->bi_iter.bi_size)
651 		return;
652 
653 	if (bio_op(bio) != REQ_OP_READ)
654 		goto exit;
655 
656 	bio_for_each_segment(bv, bio, iter) {
657 		if (done + bv.bv_len > new_size) {
658 			unsigned offset;
659 
660 			if (!truncated)
661 				offset = new_size - done;
662 			else
663 				offset = 0;
664 			zero_user(bv.bv_page, bv.bv_offset + offset,
665 				  bv.bv_len - offset);
666 			truncated = true;
667 		}
668 		done += bv.bv_len;
669 	}
670 
671  exit:
672 	/*
673 	 * Don't touch bvec table here and make it really immutable, since
674 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
675 	 * in its .end_bio() callback.
676 	 *
677 	 * It is enough to truncate bio by updating .bi_size since we can make
678 	 * correct bvec with the updated .bi_size for drivers.
679 	 */
680 	bio->bi_iter.bi_size = new_size;
681 }
682 
683 /**
684  * guard_bio_eod - truncate a BIO to fit the block device
685  * @bio:	bio to truncate
686  *
687  * This allows us to do IO even on the odd last sectors of a device, even if the
688  * block size is some multiple of the physical sector size.
689  *
690  * We'll just truncate the bio to the size of the device, and clear the end of
691  * the buffer head manually.  Truly out-of-range accesses will turn into actual
692  * I/O errors, this only handles the "we need to be able to do I/O at the final
693  * sector" case.
694  */
guard_bio_eod(struct bio * bio)695 void guard_bio_eod(struct bio *bio)
696 {
697 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
698 
699 	if (!maxsector)
700 		return;
701 
702 	/*
703 	 * If the *whole* IO is past the end of the device,
704 	 * let it through, and the IO layer will turn it into
705 	 * an EIO.
706 	 */
707 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
708 		return;
709 
710 	maxsector -= bio->bi_iter.bi_sector;
711 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
712 		return;
713 
714 	bio_truncate(bio, maxsector << 9);
715 }
716 
__bio_alloc_cache_prune(struct bio_alloc_cache * cache,unsigned int nr)717 static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
718 				   unsigned int nr)
719 {
720 	unsigned int i = 0;
721 	struct bio *bio;
722 
723 	while ((bio = cache->free_list) != NULL) {
724 		cache->free_list = bio->bi_next;
725 		cache->nr--;
726 		bio_free(bio);
727 		if (++i == nr)
728 			break;
729 	}
730 	return i;
731 }
732 
bio_alloc_cache_prune(struct bio_alloc_cache * cache,unsigned int nr)733 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
734 				  unsigned int nr)
735 {
736 	nr -= __bio_alloc_cache_prune(cache, nr);
737 	if (!READ_ONCE(cache->free_list)) {
738 		bio_alloc_irq_cache_splice(cache);
739 		__bio_alloc_cache_prune(cache, nr);
740 	}
741 }
742 
bio_cpu_dead(unsigned int cpu,struct hlist_node * node)743 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
744 {
745 	struct bio_set *bs;
746 
747 	bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
748 	if (bs->cache) {
749 		struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
750 
751 		bio_alloc_cache_prune(cache, -1U);
752 	}
753 	return 0;
754 }
755 
bio_alloc_cache_destroy(struct bio_set * bs)756 static void bio_alloc_cache_destroy(struct bio_set *bs)
757 {
758 	int cpu;
759 
760 	if (!bs->cache)
761 		return;
762 
763 	cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
764 	for_each_possible_cpu(cpu) {
765 		struct bio_alloc_cache *cache;
766 
767 		cache = per_cpu_ptr(bs->cache, cpu);
768 		bio_alloc_cache_prune(cache, -1U);
769 	}
770 	free_percpu(bs->cache);
771 	bs->cache = NULL;
772 }
773 
bio_put_percpu_cache(struct bio * bio)774 static inline void bio_put_percpu_cache(struct bio *bio)
775 {
776 	struct bio_alloc_cache *cache;
777 
778 	cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
779 	if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX)
780 		goto out_free;
781 
782 	if (in_task()) {
783 		bio_uninit(bio);
784 		bio->bi_next = cache->free_list;
785 		/* Not necessary but helps not to iopoll already freed bios */
786 		bio->bi_bdev = NULL;
787 		cache->free_list = bio;
788 		cache->nr++;
789 	} else if (in_hardirq()) {
790 		lockdep_assert_irqs_disabled();
791 
792 		bio_uninit(bio);
793 		bio->bi_next = cache->free_list_irq;
794 		cache->free_list_irq = bio;
795 		cache->nr_irq++;
796 	} else {
797 		goto out_free;
798 	}
799 	put_cpu();
800 	return;
801 out_free:
802 	put_cpu();
803 	bio_free(bio);
804 }
805 
806 /**
807  * bio_put - release a reference to a bio
808  * @bio:   bio to release reference to
809  *
810  * Description:
811  *   Put a reference to a &struct bio, either one you have gotten with
812  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
813  **/
bio_put(struct bio * bio)814 void bio_put(struct bio *bio)
815 {
816 	if (unlikely(bio_flagged(bio, BIO_REFFED))) {
817 		BUG_ON(!atomic_read(&bio->__bi_cnt));
818 		if (!atomic_dec_and_test(&bio->__bi_cnt))
819 			return;
820 	}
821 	if (bio->bi_opf & REQ_ALLOC_CACHE)
822 		bio_put_percpu_cache(bio);
823 	else
824 		bio_free(bio);
825 }
826 EXPORT_SYMBOL(bio_put);
827 
__bio_clone(struct bio * bio,struct bio * bio_src,gfp_t gfp)828 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
829 {
830 	bio_set_flag(bio, BIO_CLONED);
831 	bio->bi_ioprio = bio_src->bi_ioprio;
832 	bio->bi_write_hint = bio_src->bi_write_hint;
833 	bio->bi_iter = bio_src->bi_iter;
834 
835 	if (bio->bi_bdev) {
836 		if (bio->bi_bdev == bio_src->bi_bdev &&
837 		    bio_flagged(bio_src, BIO_REMAPPED))
838 			bio_set_flag(bio, BIO_REMAPPED);
839 		bio_clone_blkg_association(bio, bio_src);
840 	}
841 
842 	if (bio_crypt_clone(bio, bio_src, gfp) < 0)
843 		return -ENOMEM;
844 	if (bio_integrity(bio_src) &&
845 	    bio_integrity_clone(bio, bio_src, gfp) < 0)
846 		return -ENOMEM;
847 	return 0;
848 }
849 
850 /**
851  * bio_alloc_clone - clone a bio that shares the original bio's biovec
852  * @bdev: block_device to clone onto
853  * @bio_src: bio to clone from
854  * @gfp: allocation priority
855  * @bs: bio_set to allocate from
856  *
857  * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
858  * bio, but not the actual data it points to.
859  *
860  * The caller must ensure that the return bio is not freed before @bio_src.
861  */
bio_alloc_clone(struct block_device * bdev,struct bio * bio_src,gfp_t gfp,struct bio_set * bs)862 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
863 		gfp_t gfp, struct bio_set *bs)
864 {
865 	struct bio *bio;
866 
867 	bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
868 	if (!bio)
869 		return NULL;
870 
871 	if (__bio_clone(bio, bio_src, gfp) < 0) {
872 		bio_put(bio);
873 		return NULL;
874 	}
875 	bio->bi_io_vec = bio_src->bi_io_vec;
876 
877 	return bio;
878 }
879 EXPORT_SYMBOL(bio_alloc_clone);
880 
881 /**
882  * bio_init_clone - clone a bio that shares the original bio's biovec
883  * @bdev: block_device to clone onto
884  * @bio: bio to clone into
885  * @bio_src: bio to clone from
886  * @gfp: allocation priority
887  *
888  * Initialize a new bio in caller provided memory that is a clone of @bio_src.
889  * The caller owns the returned bio, but not the actual data it points to.
890  *
891  * The caller must ensure that @bio_src is not freed before @bio.
892  */
bio_init_clone(struct block_device * bdev,struct bio * bio,struct bio * bio_src,gfp_t gfp)893 int bio_init_clone(struct block_device *bdev, struct bio *bio,
894 		struct bio *bio_src, gfp_t gfp)
895 {
896 	int ret;
897 
898 	bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
899 	ret = __bio_clone(bio, bio_src, gfp);
900 	if (ret)
901 		bio_uninit(bio);
902 	return ret;
903 }
904 EXPORT_SYMBOL(bio_init_clone);
905 
906 /**
907  * bio_full - check if the bio is full
908  * @bio:	bio to check
909  * @len:	length of one segment to be added
910  *
911  * Return true if @bio is full and one segment with @len bytes can't be
912  * added to the bio, otherwise return false
913  */
bio_full(struct bio * bio,unsigned len)914 static inline bool bio_full(struct bio *bio, unsigned len)
915 {
916 	if (bio->bi_vcnt >= bio->bi_max_vecs)
917 		return true;
918 	if (bio->bi_iter.bi_size > UINT_MAX - len)
919 		return true;
920 	return false;
921 }
922 
bvec_try_merge_page(struct bio_vec * bv,struct page * page,unsigned int len,unsigned int off,bool * same_page)923 static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page,
924 		unsigned int len, unsigned int off, bool *same_page)
925 {
926 	size_t bv_end = bv->bv_offset + bv->bv_len;
927 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
928 	phys_addr_t page_addr = page_to_phys(page);
929 
930 	if (vec_end_addr + 1 != page_addr + off)
931 		return false;
932 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
933 		return false;
934 	if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
935 		return false;
936 
937 	*same_page = ((vec_end_addr & PAGE_MASK) == ((page_addr + off) &
938 		     PAGE_MASK));
939 	if (!*same_page) {
940 		if (IS_ENABLED(CONFIG_KMSAN))
941 			return false;
942 		if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE)
943 			return false;
944 	}
945 
946 	bv->bv_len += len;
947 	return true;
948 }
949 
950 /*
951  * Try to merge a page into a segment, while obeying the hardware segment
952  * size limit.
953  *
954  * This is kept around for the integrity metadata, which is still tries
955  * to build the initial bio to the hardware limit and doesn't have proper
956  * helpers to split.  Hopefully this will go away soon.
957  */
bvec_try_merge_hw_page(struct request_queue * q,struct bio_vec * bv,struct page * page,unsigned len,unsigned offset,bool * same_page)958 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
959 		struct page *page, unsigned len, unsigned offset,
960 		bool *same_page)
961 {
962 	unsigned long mask = queue_segment_boundary(q);
963 	phys_addr_t addr1 = bvec_phys(bv);
964 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
965 
966 	if ((addr1 | mask) != (addr2 | mask))
967 		return false;
968 	if (len > queue_max_segment_size(q) - bv->bv_len)
969 		return false;
970 	return bvec_try_merge_page(bv, page, len, offset, same_page);
971 }
972 
973 /**
974  * __bio_add_page - add page(s) to a bio in a new segment
975  * @bio: destination bio
976  * @page: start page to add
977  * @len: length of the data to add, may cross pages
978  * @off: offset of the data relative to @page, may cross pages
979  *
980  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
981  * that @bio has space for another bvec.
982  */
__bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off)983 void __bio_add_page(struct bio *bio, struct page *page,
984 		unsigned int len, unsigned int off)
985 {
986 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
987 	WARN_ON_ONCE(bio_full(bio, len));
988 
989 	bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off);
990 	bio->bi_iter.bi_size += len;
991 	bio->bi_vcnt++;
992 }
993 EXPORT_SYMBOL_GPL(__bio_add_page);
994 
995 /**
996  *	bio_add_page	-	attempt to add page(s) to bio
997  *	@bio: destination bio
998  *	@page: start page to add
999  *	@len: vec entry length, may cross pages
1000  *	@offset: vec entry offset relative to @page, may cross pages
1001  *
1002  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
1003  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1004  */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1005 int bio_add_page(struct bio *bio, struct page *page,
1006 		 unsigned int len, unsigned int offset)
1007 {
1008 	bool same_page = false;
1009 
1010 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1011 		return 0;
1012 	if (bio->bi_iter.bi_size > UINT_MAX - len)
1013 		return 0;
1014 
1015 	if (bio->bi_vcnt > 0 &&
1016 	    bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1],
1017 				page, len, offset, &same_page)) {
1018 		bio->bi_iter.bi_size += len;
1019 		return len;
1020 	}
1021 
1022 	if (bio->bi_vcnt >= bio->bi_max_vecs)
1023 		return 0;
1024 	__bio_add_page(bio, page, len, offset);
1025 	return len;
1026 }
1027 EXPORT_SYMBOL(bio_add_page);
1028 
bio_add_folio_nofail(struct bio * bio,struct folio * folio,size_t len,size_t off)1029 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
1030 			  size_t off)
1031 {
1032 	unsigned long nr = off / PAGE_SIZE;
1033 
1034 	WARN_ON_ONCE(len > UINT_MAX);
1035 	__bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE);
1036 }
1037 EXPORT_SYMBOL_GPL(bio_add_folio_nofail);
1038 
1039 /**
1040  * bio_add_folio - Attempt to add part of a folio to a bio.
1041  * @bio: BIO to add to.
1042  * @folio: Folio to add.
1043  * @len: How many bytes from the folio to add.
1044  * @off: First byte in this folio to add.
1045  *
1046  * Filesystems that use folios can call this function instead of calling
1047  * bio_add_page() for each page in the folio.  If @off is bigger than
1048  * PAGE_SIZE, this function can create a bio_vec that starts in a page
1049  * after the bv_page.  BIOs do not support folios that are 4GiB or larger.
1050  *
1051  * Return: Whether the addition was successful.
1052  */
bio_add_folio(struct bio * bio,struct folio * folio,size_t len,size_t off)1053 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1054 		   size_t off)
1055 {
1056 	unsigned long nr = off / PAGE_SIZE;
1057 
1058 	if (len > UINT_MAX)
1059 		return false;
1060 	return bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE) > 0;
1061 }
1062 EXPORT_SYMBOL(bio_add_folio);
1063 
__bio_release_pages(struct bio * bio,bool mark_dirty)1064 void __bio_release_pages(struct bio *bio, bool mark_dirty)
1065 {
1066 	struct folio_iter fi;
1067 
1068 	bio_for_each_folio_all(fi, bio) {
1069 		size_t nr_pages;
1070 
1071 		if (mark_dirty) {
1072 			folio_lock(fi.folio);
1073 			folio_mark_dirty(fi.folio);
1074 			folio_unlock(fi.folio);
1075 		}
1076 		nr_pages = (fi.offset + fi.length - 1) / PAGE_SIZE -
1077 			   fi.offset / PAGE_SIZE + 1;
1078 		unpin_user_folio(fi.folio, nr_pages);
1079 	}
1080 }
1081 EXPORT_SYMBOL_GPL(__bio_release_pages);
1082 
bio_iov_bvec_set(struct bio * bio,struct iov_iter * iter)1083 void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1084 {
1085 	WARN_ON_ONCE(bio->bi_max_vecs);
1086 
1087 	bio->bi_vcnt = iter->nr_segs;
1088 	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1089 	bio->bi_iter.bi_bvec_done = iter->iov_offset;
1090 	bio->bi_iter.bi_size = iov_iter_count(iter);
1091 	bio_set_flag(bio, BIO_CLONED);
1092 }
1093 
bio_iov_add_folio(struct bio * bio,struct folio * folio,size_t len,size_t offset)1094 static int bio_iov_add_folio(struct bio *bio, struct folio *folio, size_t len,
1095 			     size_t offset)
1096 {
1097 	bool same_page = false;
1098 
1099 	if (WARN_ON_ONCE(bio->bi_iter.bi_size > UINT_MAX - len))
1100 		return -EIO;
1101 
1102 	if (bio->bi_vcnt > 0 &&
1103 	    bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1],
1104 				folio_page(folio, 0), len, offset,
1105 				&same_page)) {
1106 		bio->bi_iter.bi_size += len;
1107 		if (same_page && bio_flagged(bio, BIO_PAGE_PINNED))
1108 			unpin_user_folio(folio, 1);
1109 		return 0;
1110 	}
1111 	bio_add_folio_nofail(bio, folio, len, offset);
1112 	return 0;
1113 }
1114 
get_contig_folio_len(unsigned int * num_pages,struct page ** pages,unsigned int i,struct folio * folio,size_t left,size_t offset)1115 static unsigned int get_contig_folio_len(unsigned int *num_pages,
1116 					 struct page **pages, unsigned int i,
1117 					 struct folio *folio, size_t left,
1118 					 size_t offset)
1119 {
1120 	size_t bytes = left;
1121 	size_t contig_sz = min_t(size_t, PAGE_SIZE - offset, bytes);
1122 	unsigned int j;
1123 
1124 	/*
1125 	 * We might COW a single page in the middle of
1126 	 * a large folio, so we have to check that all
1127 	 * pages belong to the same folio.
1128 	 */
1129 	bytes -= contig_sz;
1130 	for (j = i + 1; j < i + *num_pages; j++) {
1131 		size_t next = min_t(size_t, PAGE_SIZE, bytes);
1132 
1133 		if (page_folio(pages[j]) != folio ||
1134 		    pages[j] != pages[j - 1] + 1) {
1135 			break;
1136 		}
1137 		contig_sz += next;
1138 		bytes -= next;
1139 	}
1140 	*num_pages = j - i;
1141 
1142 	return contig_sz;
1143 }
1144 
1145 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
1146 
1147 /**
1148  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1149  * @bio: bio to add pages to
1150  * @iter: iov iterator describing the region to be mapped
1151  *
1152  * Extracts pages from *iter and appends them to @bio's bvec array.  The pages
1153  * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag.
1154  * For a multi-segment *iter, this function only adds pages from the next
1155  * non-empty segment of the iov iterator.
1156  */
__bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)1157 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1158 {
1159 	iov_iter_extraction_t extraction_flags = 0;
1160 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1161 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1162 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1163 	struct page **pages = (struct page **)bv;
1164 	ssize_t size;
1165 	unsigned int num_pages, i = 0;
1166 	size_t offset, folio_offset, left, len;
1167 	int ret = 0;
1168 
1169 	/*
1170 	 * Move page array up in the allocated memory for the bio vecs as far as
1171 	 * possible so that we can start filling biovecs from the beginning
1172 	 * without overwriting the temporary page array.
1173 	 */
1174 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1175 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1176 
1177 	if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
1178 		extraction_flags |= ITER_ALLOW_P2PDMA;
1179 
1180 	/*
1181 	 * Each segment in the iov is required to be a block size multiple.
1182 	 * However, we may not be able to get the entire segment if it spans
1183 	 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the
1184 	 * result to ensure the bio's total size is correct. The remainder of
1185 	 * the iov data will be picked up in the next bio iteration.
1186 	 */
1187 	size = iov_iter_extract_pages(iter, &pages,
1188 				      UINT_MAX - bio->bi_iter.bi_size,
1189 				      nr_pages, extraction_flags, &offset);
1190 	if (unlikely(size <= 0))
1191 		return size ? size : -EFAULT;
1192 
1193 	nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1194 
1195 	if (bio->bi_bdev) {
1196 		size_t trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1);
1197 		iov_iter_revert(iter, trim);
1198 		size -= trim;
1199 	}
1200 
1201 	if (unlikely(!size)) {
1202 		ret = -EFAULT;
1203 		goto out;
1204 	}
1205 
1206 	for (left = size, i = 0; left > 0; left -= len, i += num_pages) {
1207 		struct page *page = pages[i];
1208 		struct folio *folio = page_folio(page);
1209 
1210 		folio_offset = ((size_t)folio_page_idx(folio, page) <<
1211 			       PAGE_SHIFT) + offset;
1212 
1213 		len = min(folio_size(folio) - folio_offset, left);
1214 
1215 		num_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1216 
1217 		if (num_pages > 1)
1218 			len = get_contig_folio_len(&num_pages, pages, i,
1219 						   folio, left, offset);
1220 
1221 		bio_iov_add_folio(bio, folio, len, folio_offset);
1222 		offset = 0;
1223 	}
1224 
1225 	iov_iter_revert(iter, left);
1226 out:
1227 	while (i < nr_pages)
1228 		bio_release_page(bio, pages[i++]);
1229 
1230 	return ret;
1231 }
1232 
1233 /**
1234  * bio_iov_iter_get_pages - add user or kernel pages to a bio
1235  * @bio: bio to add pages to
1236  * @iter: iov iterator describing the region to be added
1237  *
1238  * This takes either an iterator pointing to user memory, or one pointing to
1239  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1240  * map them into the kernel. On IO completion, the caller should put those
1241  * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1242  * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1243  * to ensure the bvecs and pages stay referenced until the submitted I/O is
1244  * completed by a call to ->ki_complete() or returns with an error other than
1245  * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1246  * on IO completion. If it isn't, then pages should be released.
1247  *
1248  * The function tries, but does not guarantee, to pin as many pages as
1249  * fit into the bio, or are requested in @iter, whatever is smaller. If
1250  * MM encounters an error pinning the requested pages, it stops. Error
1251  * is returned only if 0 pages could be pinned.
1252  */
bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)1253 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1254 {
1255 	int ret = 0;
1256 
1257 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1258 		return -EIO;
1259 
1260 	if (iov_iter_is_bvec(iter)) {
1261 		bio_iov_bvec_set(bio, iter);
1262 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1263 		return 0;
1264 	}
1265 
1266 	if (iov_iter_extract_will_pin(iter))
1267 		bio_set_flag(bio, BIO_PAGE_PINNED);
1268 	do {
1269 		ret = __bio_iov_iter_get_pages(bio, iter);
1270 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1271 
1272 	return bio->bi_vcnt ? 0 : ret;
1273 }
1274 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1275 
submit_bio_wait_endio(struct bio * bio)1276 static void submit_bio_wait_endio(struct bio *bio)
1277 {
1278 	complete(bio->bi_private);
1279 }
1280 
1281 /**
1282  * submit_bio_wait - submit a bio, and wait until it completes
1283  * @bio: The &struct bio which describes the I/O
1284  *
1285  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1286  * bio_endio() on failure.
1287  *
1288  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1289  * result in bio reference to be consumed. The caller must drop the reference
1290  * on his own.
1291  */
submit_bio_wait(struct bio * bio)1292 int submit_bio_wait(struct bio *bio)
1293 {
1294 	DECLARE_COMPLETION_ONSTACK_MAP(done,
1295 			bio->bi_bdev->bd_disk->lockdep_map);
1296 
1297 	bio->bi_private = &done;
1298 	bio->bi_end_io = submit_bio_wait_endio;
1299 	bio->bi_opf |= REQ_SYNC;
1300 	submit_bio(bio);
1301 	blk_wait_io(&done);
1302 
1303 	return blk_status_to_errno(bio->bi_status);
1304 }
1305 EXPORT_SYMBOL(submit_bio_wait);
1306 
bio_wait_end_io(struct bio * bio)1307 static void bio_wait_end_io(struct bio *bio)
1308 {
1309 	complete(bio->bi_private);
1310 	bio_put(bio);
1311 }
1312 
1313 /*
1314  * bio_await_chain - ends @bio and waits for every chained bio to complete
1315  */
bio_await_chain(struct bio * bio)1316 void bio_await_chain(struct bio *bio)
1317 {
1318 	DECLARE_COMPLETION_ONSTACK_MAP(done,
1319 			bio->bi_bdev->bd_disk->lockdep_map);
1320 
1321 	bio->bi_private = &done;
1322 	bio->bi_end_io = bio_wait_end_io;
1323 	bio_endio(bio);
1324 	blk_wait_io(&done);
1325 }
1326 
__bio_advance(struct bio * bio,unsigned bytes)1327 void __bio_advance(struct bio *bio, unsigned bytes)
1328 {
1329 	if (bio_integrity(bio))
1330 		bio_integrity_advance(bio, bytes);
1331 
1332 	bio_crypt_advance(bio, bytes);
1333 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1334 }
1335 EXPORT_SYMBOL(__bio_advance);
1336 
bio_copy_data_iter(struct bio * dst,struct bvec_iter * dst_iter,struct bio * src,struct bvec_iter * src_iter)1337 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1338 			struct bio *src, struct bvec_iter *src_iter)
1339 {
1340 	while (src_iter->bi_size && dst_iter->bi_size) {
1341 		struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1342 		struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1343 		unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1344 		void *src_buf = bvec_kmap_local(&src_bv);
1345 		void *dst_buf = bvec_kmap_local(&dst_bv);
1346 
1347 		memcpy(dst_buf, src_buf, bytes);
1348 
1349 		kunmap_local(dst_buf);
1350 		kunmap_local(src_buf);
1351 
1352 		bio_advance_iter_single(src, src_iter, bytes);
1353 		bio_advance_iter_single(dst, dst_iter, bytes);
1354 	}
1355 }
1356 EXPORT_SYMBOL(bio_copy_data_iter);
1357 
1358 /**
1359  * bio_copy_data - copy contents of data buffers from one bio to another
1360  * @src: source bio
1361  * @dst: destination bio
1362  *
1363  * Stops when it reaches the end of either @src or @dst - that is, copies
1364  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1365  */
bio_copy_data(struct bio * dst,struct bio * src)1366 void bio_copy_data(struct bio *dst, struct bio *src)
1367 {
1368 	struct bvec_iter src_iter = src->bi_iter;
1369 	struct bvec_iter dst_iter = dst->bi_iter;
1370 
1371 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1372 }
1373 EXPORT_SYMBOL(bio_copy_data);
1374 
bio_free_pages(struct bio * bio)1375 void bio_free_pages(struct bio *bio)
1376 {
1377 	struct bio_vec *bvec;
1378 	struct bvec_iter_all iter_all;
1379 
1380 	bio_for_each_segment_all(bvec, bio, iter_all)
1381 		__free_page(bvec->bv_page);
1382 }
1383 EXPORT_SYMBOL(bio_free_pages);
1384 
1385 /*
1386  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1387  * for performing direct-IO in BIOs.
1388  *
1389  * The problem is that we cannot run folio_mark_dirty() from interrupt context
1390  * because the required locks are not interrupt-safe.  So what we can do is to
1391  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1392  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1393  * in process context.
1394  *
1395  * Note that this code is very hard to test under normal circumstances because
1396  * direct-io pins the pages with get_user_pages().  This makes
1397  * is_page_cache_freeable return false, and the VM will not clean the pages.
1398  * But other code (eg, flusher threads) could clean the pages if they are mapped
1399  * pagecache.
1400  *
1401  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1402  * deferred bio dirtying paths.
1403  */
1404 
1405 /*
1406  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1407  */
bio_set_pages_dirty(struct bio * bio)1408 void bio_set_pages_dirty(struct bio *bio)
1409 {
1410 	struct folio_iter fi;
1411 
1412 	bio_for_each_folio_all(fi, bio) {
1413 		folio_lock(fi.folio);
1414 		folio_mark_dirty(fi.folio);
1415 		folio_unlock(fi.folio);
1416 	}
1417 }
1418 EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1419 
1420 /*
1421  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1422  * If they are, then fine.  If, however, some pages are clean then they must
1423  * have been written out during the direct-IO read.  So we take another ref on
1424  * the BIO and re-dirty the pages in process context.
1425  *
1426  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1427  * here on.  It will unpin each page and will run one bio_put() against the
1428  * BIO.
1429  */
1430 
1431 static void bio_dirty_fn(struct work_struct *work);
1432 
1433 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1434 static DEFINE_SPINLOCK(bio_dirty_lock);
1435 static struct bio *bio_dirty_list;
1436 
1437 /*
1438  * This runs in process context
1439  */
bio_dirty_fn(struct work_struct * work)1440 static void bio_dirty_fn(struct work_struct *work)
1441 {
1442 	struct bio *bio, *next;
1443 
1444 	spin_lock_irq(&bio_dirty_lock);
1445 	next = bio_dirty_list;
1446 	bio_dirty_list = NULL;
1447 	spin_unlock_irq(&bio_dirty_lock);
1448 
1449 	while ((bio = next) != NULL) {
1450 		next = bio->bi_private;
1451 
1452 		bio_release_pages(bio, true);
1453 		bio_put(bio);
1454 	}
1455 }
1456 
bio_check_pages_dirty(struct bio * bio)1457 void bio_check_pages_dirty(struct bio *bio)
1458 {
1459 	struct folio_iter fi;
1460 	unsigned long flags;
1461 
1462 	bio_for_each_folio_all(fi, bio) {
1463 		if (!folio_test_dirty(fi.folio))
1464 			goto defer;
1465 	}
1466 
1467 	bio_release_pages(bio, false);
1468 	bio_put(bio);
1469 	return;
1470 defer:
1471 	spin_lock_irqsave(&bio_dirty_lock, flags);
1472 	bio->bi_private = bio_dirty_list;
1473 	bio_dirty_list = bio;
1474 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1475 	schedule_work(&bio_dirty_work);
1476 }
1477 EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1478 
bio_remaining_done(struct bio * bio)1479 static inline bool bio_remaining_done(struct bio *bio)
1480 {
1481 	/*
1482 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1483 	 * we always end io on the first invocation.
1484 	 */
1485 	if (!bio_flagged(bio, BIO_CHAIN))
1486 		return true;
1487 
1488 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1489 
1490 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1491 		bio_clear_flag(bio, BIO_CHAIN);
1492 		return true;
1493 	}
1494 
1495 	return false;
1496 }
1497 
1498 /**
1499  * bio_endio - end I/O on a bio
1500  * @bio:	bio
1501  *
1502  * Description:
1503  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1504  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1505  *   bio unless they own it and thus know that it has an end_io function.
1506  *
1507  *   bio_endio() can be called several times on a bio that has been chained
1508  *   using bio_chain().  The ->bi_end_io() function will only be called the
1509  *   last time.
1510  **/
bio_endio(struct bio * bio)1511 void bio_endio(struct bio *bio)
1512 {
1513 again:
1514 	if (!bio_remaining_done(bio))
1515 		return;
1516 	if (!bio_integrity_endio(bio))
1517 		return;
1518 
1519 	blk_zone_bio_endio(bio);
1520 
1521 	rq_qos_done_bio(bio);
1522 
1523 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1524 		trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1525 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1526 	}
1527 
1528 	/*
1529 	 * Need to have a real endio function for chained bios, otherwise
1530 	 * various corner cases will break (like stacking block devices that
1531 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1532 	 * recursion and blowing the stack. Tail call optimization would
1533 	 * handle this, but compiling with frame pointers also disables
1534 	 * gcc's sibling call optimization.
1535 	 */
1536 	if (bio->bi_end_io == bio_chain_endio) {
1537 		bio = __bio_chain_endio(bio);
1538 		goto again;
1539 	}
1540 
1541 #ifdef CONFIG_BLK_CGROUP
1542 	/*
1543 	 * Release cgroup info.  We shouldn't have to do this here, but quite
1544 	 * a few callers of bio_init fail to call bio_uninit, so we cover up
1545 	 * for that here at least for now.
1546 	 */
1547 	if (bio->bi_blkg) {
1548 		blkg_put(bio->bi_blkg);
1549 		bio->bi_blkg = NULL;
1550 	}
1551 #endif
1552 
1553 	if (bio->bi_end_io)
1554 		bio->bi_end_io(bio);
1555 }
1556 EXPORT_SYMBOL(bio_endio);
1557 
1558 /**
1559  * bio_split - split a bio
1560  * @bio:	bio to split
1561  * @sectors:	number of sectors to split from the front of @bio
1562  * @gfp:	gfp mask
1563  * @bs:		bio set to allocate from
1564  *
1565  * Allocates and returns a new bio which represents @sectors from the start of
1566  * @bio, and updates @bio to represent the remaining sectors.
1567  *
1568  * Unless this is a discard request the newly allocated bio will point
1569  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1570  * neither @bio nor @bs are freed before the split bio.
1571  */
bio_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)1572 struct bio *bio_split(struct bio *bio, int sectors,
1573 		      gfp_t gfp, struct bio_set *bs)
1574 {
1575 	struct bio *split;
1576 
1577 	BUG_ON(sectors <= 0);
1578 	BUG_ON(sectors >= bio_sectors(bio));
1579 
1580 	/* Zone append commands cannot be split */
1581 	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1582 		return NULL;
1583 
1584 	split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1585 	if (!split)
1586 		return NULL;
1587 
1588 	split->bi_iter.bi_size = sectors << 9;
1589 
1590 	if (bio_integrity(split))
1591 		bio_integrity_trim(split);
1592 
1593 	bio_advance(bio, split->bi_iter.bi_size);
1594 
1595 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1596 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1597 
1598 	return split;
1599 }
1600 EXPORT_SYMBOL(bio_split);
1601 
1602 /**
1603  * bio_trim - trim a bio
1604  * @bio:	bio to trim
1605  * @offset:	number of sectors to trim from the front of @bio
1606  * @size:	size we want to trim @bio to, in sectors
1607  *
1608  * This function is typically used for bios that are cloned and submitted
1609  * to the underlying device in parts.
1610  */
bio_trim(struct bio * bio,sector_t offset,sector_t size)1611 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1612 {
1613 	if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1614 			 offset + size > bio_sectors(bio)))
1615 		return;
1616 
1617 	size <<= 9;
1618 	if (offset == 0 && size == bio->bi_iter.bi_size)
1619 		return;
1620 
1621 	bio_advance(bio, offset << 9);
1622 	bio->bi_iter.bi_size = size;
1623 
1624 	if (bio_integrity(bio))
1625 		bio_integrity_trim(bio);
1626 }
1627 EXPORT_SYMBOL_GPL(bio_trim);
1628 
1629 /*
1630  * create memory pools for biovec's in a bio_set.
1631  * use the global biovec slabs created for general use.
1632  */
biovec_init_pool(mempool_t * pool,int pool_entries)1633 int biovec_init_pool(mempool_t *pool, int pool_entries)
1634 {
1635 	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1636 
1637 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1638 }
1639 
1640 /*
1641  * bioset_exit - exit a bioset initialized with bioset_init()
1642  *
1643  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1644  * kzalloc()).
1645  */
bioset_exit(struct bio_set * bs)1646 void bioset_exit(struct bio_set *bs)
1647 {
1648 	bio_alloc_cache_destroy(bs);
1649 	if (bs->rescue_workqueue)
1650 		destroy_workqueue(bs->rescue_workqueue);
1651 	bs->rescue_workqueue = NULL;
1652 
1653 	mempool_exit(&bs->bio_pool);
1654 	mempool_exit(&bs->bvec_pool);
1655 
1656 	bioset_integrity_free(bs);
1657 	if (bs->bio_slab)
1658 		bio_put_slab(bs);
1659 	bs->bio_slab = NULL;
1660 }
1661 EXPORT_SYMBOL(bioset_exit);
1662 
1663 /**
1664  * bioset_init - Initialize a bio_set
1665  * @bs:		pool to initialize
1666  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1667  * @front_pad:	Number of bytes to allocate in front of the returned bio
1668  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1669  *              and %BIOSET_NEED_RESCUER
1670  *
1671  * Description:
1672  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1673  *    to ask for a number of bytes to be allocated in front of the bio.
1674  *    Front pad allocation is useful for embedding the bio inside
1675  *    another structure, to avoid allocating extra data to go with the bio.
1676  *    Note that the bio must be embedded at the END of that structure always,
1677  *    or things will break badly.
1678  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1679  *    for allocating iovecs.  This pool is not needed e.g. for bio_init_clone().
1680  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1681  *    to dispatch queued requests when the mempool runs out of space.
1682  *
1683  */
bioset_init(struct bio_set * bs,unsigned int pool_size,unsigned int front_pad,int flags)1684 int bioset_init(struct bio_set *bs,
1685 		unsigned int pool_size,
1686 		unsigned int front_pad,
1687 		int flags)
1688 {
1689 	bs->front_pad = front_pad;
1690 	if (flags & BIOSET_NEED_BVECS)
1691 		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1692 	else
1693 		bs->back_pad = 0;
1694 
1695 	spin_lock_init(&bs->rescue_lock);
1696 	bio_list_init(&bs->rescue_list);
1697 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1698 
1699 	bs->bio_slab = bio_find_or_create_slab(bs);
1700 	if (!bs->bio_slab)
1701 		return -ENOMEM;
1702 
1703 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1704 		goto bad;
1705 
1706 	if ((flags & BIOSET_NEED_BVECS) &&
1707 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1708 		goto bad;
1709 
1710 	if (flags & BIOSET_NEED_RESCUER) {
1711 		bs->rescue_workqueue = alloc_workqueue("bioset",
1712 							WQ_MEM_RECLAIM, 0);
1713 		if (!bs->rescue_workqueue)
1714 			goto bad;
1715 	}
1716 	if (flags & BIOSET_PERCPU_CACHE) {
1717 		bs->cache = alloc_percpu(struct bio_alloc_cache);
1718 		if (!bs->cache)
1719 			goto bad;
1720 		cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1721 	}
1722 
1723 	return 0;
1724 bad:
1725 	bioset_exit(bs);
1726 	return -ENOMEM;
1727 }
1728 EXPORT_SYMBOL(bioset_init);
1729 
init_bio(void)1730 static int __init init_bio(void)
1731 {
1732 	int i;
1733 
1734 	BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags));
1735 
1736 	bio_integrity_init();
1737 
1738 	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1739 		struct biovec_slab *bvs = bvec_slabs + i;
1740 
1741 		bvs->slab = kmem_cache_create(bvs->name,
1742 				bvs->nr_vecs * sizeof(struct bio_vec), 0,
1743 				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1744 	}
1745 
1746 	cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1747 					bio_cpu_dead);
1748 
1749 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
1750 			BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
1751 		panic("bio: can't allocate bios\n");
1752 
1753 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1754 		panic("bio: can't create integrity pool\n");
1755 
1756 	return 0;
1757 }
1758 subsys_initcall(init_bio);
1759