1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Implementation of the kernel access vector cache (AVC).
4 *
5 * Authors: Stephen Smalley, <stephen.smalley.work@gmail.com>
6 * James Morris <jmorris@redhat.com>
7 *
8 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
9 * Replaced the avc_lock spinlock by RCU.
10 *
11 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
12 */
13 #include <linux/types.h>
14 #include <linux/stddef.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/fs.h>
18 #include <linux/dcache.h>
19 #include <linux/init.h>
20 #include <linux/skbuff.h>
21 #include <linux/percpu.h>
22 #include <linux/list.h>
23 #include <net/sock.h>
24 #include <linux/un.h>
25 #include <net/af_unix.h>
26 #include <linux/ip.h>
27 #include <linux/audit.h>
28 #include <linux/ipv6.h>
29 #include <net/ipv6.h>
30 #include "avc.h"
31 #include "avc_ss.h"
32 #include "classmap.h"
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/avc.h>
36
37 #define AVC_CACHE_SLOTS 512
38 #define AVC_DEF_CACHE_THRESHOLD 512
39 #define AVC_CACHE_RECLAIM 16
40
41 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
42 #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field)
43 #else
44 #define avc_cache_stats_incr(field) do {} while (0)
45 #endif
46
47 #undef CREATE_TRACE_POINTS
48 #include <trace/hooks/avc.h>
49
50 struct avc_entry {
51 u32 ssid;
52 u32 tsid;
53 u16 tclass;
54 struct av_decision avd;
55 struct avc_xperms_node *xp_node;
56 };
57
58 struct avc_node {
59 struct avc_entry ae;
60 struct hlist_node list; /* anchored in avc_cache->slots[i] */
61 struct rcu_head rhead;
62 };
63
64 struct avc_xperms_decision_node {
65 struct extended_perms_decision xpd;
66 struct list_head xpd_list; /* list of extended_perms_decision */
67 };
68
69 struct avc_xperms_node {
70 struct extended_perms xp;
71 struct list_head xpd_head; /* list head of extended_perms_decision */
72 };
73
74 struct avc_cache {
75 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
76 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
77 atomic_t lru_hint; /* LRU hint for reclaim scan */
78 atomic_t active_nodes;
79 u32 latest_notif; /* latest revocation notification */
80 };
81
82 struct avc_callback_node {
83 int (*callback) (u32 event);
84 u32 events;
85 struct avc_callback_node *next;
86 };
87
88 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
89 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
90 #endif
91
92 struct selinux_avc {
93 unsigned int avc_cache_threshold;
94 struct avc_cache avc_cache;
95 };
96
97 static struct selinux_avc selinux_avc;
98
selinux_avc_init(void)99 void selinux_avc_init(void)
100 {
101 int i;
102
103 selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
104 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
105 INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
106 spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
107 }
108 atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
109 atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
110 }
111
avc_get_cache_threshold(void)112 unsigned int avc_get_cache_threshold(void)
113 {
114 return selinux_avc.avc_cache_threshold;
115 }
116
avc_set_cache_threshold(unsigned int cache_threshold)117 void avc_set_cache_threshold(unsigned int cache_threshold)
118 {
119 selinux_avc.avc_cache_threshold = cache_threshold;
120 }
121
122 static struct avc_callback_node *avc_callbacks __ro_after_init;
123 static struct kmem_cache *avc_node_cachep __ro_after_init;
124 static struct kmem_cache *avc_xperms_data_cachep __ro_after_init;
125 static struct kmem_cache *avc_xperms_decision_cachep __ro_after_init;
126 static struct kmem_cache *avc_xperms_cachep __ro_after_init;
127
avc_hash(u32 ssid,u32 tsid,u16 tclass)128 static inline u32 avc_hash(u32 ssid, u32 tsid, u16 tclass)
129 {
130 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
131 }
132
133 /**
134 * avc_init - Initialize the AVC.
135 *
136 * Initialize the access vector cache.
137 */
avc_init(void)138 void __init avc_init(void)
139 {
140 avc_node_cachep = KMEM_CACHE(avc_node, SLAB_PANIC);
141 avc_xperms_cachep = KMEM_CACHE(avc_xperms_node, SLAB_PANIC);
142 avc_xperms_decision_cachep = KMEM_CACHE(avc_xperms_decision_node, SLAB_PANIC);
143 avc_xperms_data_cachep = KMEM_CACHE(extended_perms_data, SLAB_PANIC);
144 }
145
avc_get_hash_stats(char * page)146 int avc_get_hash_stats(char *page)
147 {
148 int i, chain_len, max_chain_len, slots_used;
149 struct avc_node *node;
150 struct hlist_head *head;
151
152 rcu_read_lock();
153
154 slots_used = 0;
155 max_chain_len = 0;
156 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
157 head = &selinux_avc.avc_cache.slots[i];
158 if (!hlist_empty(head)) {
159 slots_used++;
160 chain_len = 0;
161 hlist_for_each_entry_rcu(node, head, list)
162 chain_len++;
163 if (chain_len > max_chain_len)
164 max_chain_len = chain_len;
165 }
166 }
167
168 rcu_read_unlock();
169
170 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
171 "longest chain: %d\n",
172 atomic_read(&selinux_avc.avc_cache.active_nodes),
173 slots_used, AVC_CACHE_SLOTS, max_chain_len);
174 }
175
176 /*
177 * using a linked list for extended_perms_decision lookup because the list is
178 * always small. i.e. less than 5, typically 1
179 */
avc_xperms_decision_lookup(u8 driver,struct avc_xperms_node * xp_node)180 static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
181 struct avc_xperms_node *xp_node)
182 {
183 struct avc_xperms_decision_node *xpd_node;
184
185 list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
186 if (xpd_node->xpd.driver == driver)
187 return &xpd_node->xpd;
188 }
189 return NULL;
190 }
191
192 static inline unsigned int
avc_xperms_has_perm(struct extended_perms_decision * xpd,u8 perm,u8 which)193 avc_xperms_has_perm(struct extended_perms_decision *xpd,
194 u8 perm, u8 which)
195 {
196 unsigned int rc = 0;
197
198 if ((which == XPERMS_ALLOWED) &&
199 (xpd->used & XPERMS_ALLOWED))
200 rc = security_xperm_test(xpd->allowed->p, perm);
201 else if ((which == XPERMS_AUDITALLOW) &&
202 (xpd->used & XPERMS_AUDITALLOW))
203 rc = security_xperm_test(xpd->auditallow->p, perm);
204 else if ((which == XPERMS_DONTAUDIT) &&
205 (xpd->used & XPERMS_DONTAUDIT))
206 rc = security_xperm_test(xpd->dontaudit->p, perm);
207 return rc;
208 }
209
avc_xperms_allow_perm(struct avc_xperms_node * xp_node,u8 driver,u8 perm)210 static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
211 u8 driver, u8 perm)
212 {
213 struct extended_perms_decision *xpd;
214 security_xperm_set(xp_node->xp.drivers.p, driver);
215 xpd = avc_xperms_decision_lookup(driver, xp_node);
216 if (xpd && xpd->allowed)
217 security_xperm_set(xpd->allowed->p, perm);
218 }
219
avc_xperms_decision_free(struct avc_xperms_decision_node * xpd_node)220 static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
221 {
222 struct extended_perms_decision *xpd;
223
224 xpd = &xpd_node->xpd;
225 if (xpd->allowed)
226 kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
227 if (xpd->auditallow)
228 kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
229 if (xpd->dontaudit)
230 kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
231 kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
232 }
233
avc_xperms_free(struct avc_xperms_node * xp_node)234 static void avc_xperms_free(struct avc_xperms_node *xp_node)
235 {
236 struct avc_xperms_decision_node *xpd_node, *tmp;
237
238 if (!xp_node)
239 return;
240
241 list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
242 list_del(&xpd_node->xpd_list);
243 avc_xperms_decision_free(xpd_node);
244 }
245 kmem_cache_free(avc_xperms_cachep, xp_node);
246 }
247
avc_copy_xperms_decision(struct extended_perms_decision * dest,struct extended_perms_decision * src)248 static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
249 struct extended_perms_decision *src)
250 {
251 dest->driver = src->driver;
252 dest->used = src->used;
253 if (dest->used & XPERMS_ALLOWED)
254 memcpy(dest->allowed->p, src->allowed->p,
255 sizeof(src->allowed->p));
256 if (dest->used & XPERMS_AUDITALLOW)
257 memcpy(dest->auditallow->p, src->auditallow->p,
258 sizeof(src->auditallow->p));
259 if (dest->used & XPERMS_DONTAUDIT)
260 memcpy(dest->dontaudit->p, src->dontaudit->p,
261 sizeof(src->dontaudit->p));
262 }
263
264 /*
265 * similar to avc_copy_xperms_decision, but only copy decision
266 * information relevant to this perm
267 */
avc_quick_copy_xperms_decision(u8 perm,struct extended_perms_decision * dest,struct extended_perms_decision * src)268 static inline void avc_quick_copy_xperms_decision(u8 perm,
269 struct extended_perms_decision *dest,
270 struct extended_perms_decision *src)
271 {
272 /*
273 * compute index of the u32 of the 256 bits (8 u32s) that contain this
274 * command permission
275 */
276 u8 i = perm >> 5;
277
278 dest->used = src->used;
279 if (dest->used & XPERMS_ALLOWED)
280 dest->allowed->p[i] = src->allowed->p[i];
281 if (dest->used & XPERMS_AUDITALLOW)
282 dest->auditallow->p[i] = src->auditallow->p[i];
283 if (dest->used & XPERMS_DONTAUDIT)
284 dest->dontaudit->p[i] = src->dontaudit->p[i];
285 }
286
287 static struct avc_xperms_decision_node
avc_xperms_decision_alloc(u8 which)288 *avc_xperms_decision_alloc(u8 which)
289 {
290 struct avc_xperms_decision_node *xpd_node;
291 struct extended_perms_decision *xpd;
292
293 xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep,
294 GFP_NOWAIT | __GFP_NOWARN);
295 if (!xpd_node)
296 return NULL;
297
298 xpd = &xpd_node->xpd;
299 if (which & XPERMS_ALLOWED) {
300 xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
301 GFP_NOWAIT | __GFP_NOWARN);
302 if (!xpd->allowed)
303 goto error;
304 }
305 if (which & XPERMS_AUDITALLOW) {
306 xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
307 GFP_NOWAIT | __GFP_NOWARN);
308 if (!xpd->auditallow)
309 goto error;
310 }
311 if (which & XPERMS_DONTAUDIT) {
312 xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
313 GFP_NOWAIT | __GFP_NOWARN);
314 if (!xpd->dontaudit)
315 goto error;
316 }
317 return xpd_node;
318 error:
319 avc_xperms_decision_free(xpd_node);
320 return NULL;
321 }
322
avc_add_xperms_decision(struct avc_node * node,struct extended_perms_decision * src)323 static int avc_add_xperms_decision(struct avc_node *node,
324 struct extended_perms_decision *src)
325 {
326 struct avc_xperms_decision_node *dest_xpd;
327
328 dest_xpd = avc_xperms_decision_alloc(src->used);
329 if (!dest_xpd)
330 return -ENOMEM;
331 avc_copy_xperms_decision(&dest_xpd->xpd, src);
332 list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
333 node->ae.xp_node->xp.len++;
334 return 0;
335 }
336
avc_xperms_alloc(void)337 static struct avc_xperms_node *avc_xperms_alloc(void)
338 {
339 struct avc_xperms_node *xp_node;
340
341 xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT | __GFP_NOWARN);
342 if (!xp_node)
343 return xp_node;
344 INIT_LIST_HEAD(&xp_node->xpd_head);
345 return xp_node;
346 }
347
avc_xperms_populate(struct avc_node * node,struct avc_xperms_node * src)348 static int avc_xperms_populate(struct avc_node *node,
349 struct avc_xperms_node *src)
350 {
351 struct avc_xperms_node *dest;
352 struct avc_xperms_decision_node *dest_xpd;
353 struct avc_xperms_decision_node *src_xpd;
354
355 if (src->xp.len == 0)
356 return 0;
357 dest = avc_xperms_alloc();
358 if (!dest)
359 return -ENOMEM;
360
361 memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
362 dest->xp.len = src->xp.len;
363
364 /* for each source xpd allocate a destination xpd and copy */
365 list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
366 dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
367 if (!dest_xpd)
368 goto error;
369 avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
370 list_add(&dest_xpd->xpd_list, &dest->xpd_head);
371 }
372 node->ae.xp_node = dest;
373 return 0;
374 error:
375 avc_xperms_free(dest);
376 return -ENOMEM;
377
378 }
379
avc_xperms_audit_required(u32 requested,struct av_decision * avd,struct extended_perms_decision * xpd,u8 perm,int result,u32 * deniedp)380 static inline u32 avc_xperms_audit_required(u32 requested,
381 struct av_decision *avd,
382 struct extended_perms_decision *xpd,
383 u8 perm,
384 int result,
385 u32 *deniedp)
386 {
387 u32 denied, audited;
388
389 denied = requested & ~avd->allowed;
390 if (unlikely(denied)) {
391 audited = denied & avd->auditdeny;
392 if (audited && xpd) {
393 if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
394 audited = 0;
395 }
396 } else if (result) {
397 audited = denied = requested;
398 } else {
399 audited = requested & avd->auditallow;
400 if (audited && xpd) {
401 if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
402 audited = 0;
403 }
404 }
405
406 *deniedp = denied;
407 return audited;
408 }
409
avc_xperms_audit(u32 ssid,u32 tsid,u16 tclass,u32 requested,struct av_decision * avd,struct extended_perms_decision * xpd,u8 perm,int result,struct common_audit_data * ad)410 static inline int avc_xperms_audit(u32 ssid, u32 tsid, u16 tclass,
411 u32 requested, struct av_decision *avd,
412 struct extended_perms_decision *xpd,
413 u8 perm, int result,
414 struct common_audit_data *ad)
415 {
416 u32 audited, denied;
417
418 audited = avc_xperms_audit_required(
419 requested, avd, xpd, perm, result, &denied);
420 if (likely(!audited))
421 return 0;
422 return slow_avc_audit(ssid, tsid, tclass, requested,
423 audited, denied, result, ad);
424 }
425
avc_node_free(struct rcu_head * rhead)426 static void avc_node_free(struct rcu_head *rhead)
427 {
428 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
429 avc_xperms_free(node->ae.xp_node);
430 kmem_cache_free(avc_node_cachep, node);
431 avc_cache_stats_incr(frees);
432 }
433
avc_node_delete(struct avc_node * node)434 static void avc_node_delete(struct avc_node *node)
435 {
436 trace_android_rvh_selinux_avc_node_delete(node);
437 hlist_del_rcu(&node->list);
438 call_rcu(&node->rhead, avc_node_free);
439 atomic_dec(&selinux_avc.avc_cache.active_nodes);
440 }
441
avc_node_kill(struct avc_node * node)442 static void avc_node_kill(struct avc_node *node)
443 {
444 avc_xperms_free(node->ae.xp_node);
445 kmem_cache_free(avc_node_cachep, node);
446 avc_cache_stats_incr(frees);
447 atomic_dec(&selinux_avc.avc_cache.active_nodes);
448 }
449
avc_node_replace(struct avc_node * new,struct avc_node * old)450 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
451 {
452 trace_android_rvh_selinux_avc_node_replace(old, new);
453 hlist_replace_rcu(&old->list, &new->list);
454 call_rcu(&old->rhead, avc_node_free);
455 atomic_dec(&selinux_avc.avc_cache.active_nodes);
456 }
457
avc_reclaim_node(void)458 static inline int avc_reclaim_node(void)
459 {
460 struct avc_node *node;
461 int hvalue, try, ecx;
462 unsigned long flags;
463 struct hlist_head *head;
464 spinlock_t *lock;
465
466 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
467 hvalue = atomic_inc_return(&selinux_avc.avc_cache.lru_hint) &
468 (AVC_CACHE_SLOTS - 1);
469 head = &selinux_avc.avc_cache.slots[hvalue];
470 lock = &selinux_avc.avc_cache.slots_lock[hvalue];
471
472 if (!spin_trylock_irqsave(lock, flags))
473 continue;
474
475 rcu_read_lock();
476 hlist_for_each_entry(node, head, list) {
477 avc_node_delete(node);
478 avc_cache_stats_incr(reclaims);
479 ecx++;
480 if (ecx >= AVC_CACHE_RECLAIM) {
481 rcu_read_unlock();
482 spin_unlock_irqrestore(lock, flags);
483 goto out;
484 }
485 }
486 rcu_read_unlock();
487 spin_unlock_irqrestore(lock, flags);
488 }
489 out:
490 return ecx;
491 }
492
avc_alloc_node(void)493 static struct avc_node *avc_alloc_node(void)
494 {
495 struct avc_node *node;
496
497 node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT | __GFP_NOWARN);
498 if (!node)
499 goto out;
500
501 INIT_HLIST_NODE(&node->list);
502 avc_cache_stats_incr(allocations);
503
504 if (atomic_inc_return(&selinux_avc.avc_cache.active_nodes) >
505 selinux_avc.avc_cache_threshold)
506 avc_reclaim_node();
507
508 out:
509 return node;
510 }
511
avc_node_populate(struct avc_node * node,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)512 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
513 {
514 node->ae.ssid = ssid;
515 node->ae.tsid = tsid;
516 node->ae.tclass = tclass;
517 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
518 }
519
avc_search_node(u32 ssid,u32 tsid,u16 tclass)520 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
521 {
522 struct avc_node *node, *ret = NULL;
523 u32 hvalue;
524 struct hlist_head *head;
525
526 hvalue = avc_hash(ssid, tsid, tclass);
527 head = &selinux_avc.avc_cache.slots[hvalue];
528 hlist_for_each_entry_rcu(node, head, list) {
529 if (ssid == node->ae.ssid &&
530 tclass == node->ae.tclass &&
531 tsid == node->ae.tsid) {
532 ret = node;
533 break;
534 }
535 }
536
537 return ret;
538 }
539
540 /**
541 * avc_lookup - Look up an AVC entry.
542 * @ssid: source security identifier
543 * @tsid: target security identifier
544 * @tclass: target security class
545 *
546 * Look up an AVC entry that is valid for the
547 * (@ssid, @tsid), interpreting the permissions
548 * based on @tclass. If a valid AVC entry exists,
549 * then this function returns the avc_node.
550 * Otherwise, this function returns NULL.
551 */
avc_lookup(u32 ssid,u32 tsid,u16 tclass)552 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
553 {
554 struct avc_node *node;
555
556 avc_cache_stats_incr(lookups);
557 node = avc_search_node(ssid, tsid, tclass);
558
559 if (node) {
560 trace_android_rvh_selinux_avc_lookup(node, ssid, tsid, tclass);
561 return node;
562 }
563
564 avc_cache_stats_incr(misses);
565 return NULL;
566 }
567
avc_latest_notif_update(u32 seqno,int is_insert)568 static int avc_latest_notif_update(u32 seqno, int is_insert)
569 {
570 int ret = 0;
571 static DEFINE_SPINLOCK(notif_lock);
572 unsigned long flag;
573
574 spin_lock_irqsave(¬if_lock, flag);
575 if (is_insert) {
576 if (seqno < selinux_avc.avc_cache.latest_notif) {
577 pr_warn("SELinux: avc: seqno %d < latest_notif %d\n",
578 seqno, selinux_avc.avc_cache.latest_notif);
579 ret = -EAGAIN;
580 }
581 } else {
582 if (seqno > selinux_avc.avc_cache.latest_notif)
583 selinux_avc.avc_cache.latest_notif = seqno;
584 }
585 spin_unlock_irqrestore(¬if_lock, flag);
586
587 return ret;
588 }
589
590 /**
591 * avc_insert - Insert an AVC entry.
592 * @ssid: source security identifier
593 * @tsid: target security identifier
594 * @tclass: target security class
595 * @avd: resulting av decision
596 * @xp_node: resulting extended permissions
597 *
598 * Insert an AVC entry for the SID pair
599 * (@ssid, @tsid) and class @tclass.
600 * The access vectors and the sequence number are
601 * normally provided by the security server in
602 * response to a security_compute_av() call. If the
603 * sequence number @avd->seqno is not less than the latest
604 * revocation notification, then the function copies
605 * the access vectors into a cache entry.
606 */
avc_insert(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd,struct avc_xperms_node * xp_node)607 static void avc_insert(u32 ssid, u32 tsid, u16 tclass,
608 struct av_decision *avd, struct avc_xperms_node *xp_node)
609 {
610 struct avc_node *pos, *node = NULL;
611 u32 hvalue;
612 unsigned long flag;
613 spinlock_t *lock;
614 struct hlist_head *head;
615
616 if (avc_latest_notif_update(avd->seqno, 1))
617 return;
618
619 node = avc_alloc_node();
620 if (!node)
621 return;
622
623 avc_node_populate(node, ssid, tsid, tclass, avd);
624 if (avc_xperms_populate(node, xp_node)) {
625 avc_node_kill(node);
626 return;
627 }
628
629 hvalue = avc_hash(ssid, tsid, tclass);
630 head = &selinux_avc.avc_cache.slots[hvalue];
631 lock = &selinux_avc.avc_cache.slots_lock[hvalue];
632 spin_lock_irqsave(lock, flag);
633 hlist_for_each_entry(pos, head, list) {
634 if (pos->ae.ssid == ssid &&
635 pos->ae.tsid == tsid &&
636 pos->ae.tclass == tclass) {
637 avc_node_replace(node, pos);
638 goto found;
639 }
640 }
641 hlist_add_head_rcu(&node->list, head);
642 trace_android_rvh_selinux_avc_insert(node);
643 found:
644 spin_unlock_irqrestore(lock, flag);
645 }
646
647 /**
648 * avc_audit_pre_callback - SELinux specific information
649 * will be called by generic audit code
650 * @ab: the audit buffer
651 * @a: audit_data
652 */
avc_audit_pre_callback(struct audit_buffer * ab,void * a)653 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
654 {
655 struct common_audit_data *ad = a;
656 struct selinux_audit_data *sad = ad->selinux_audit_data;
657 u32 av = sad->audited, perm;
658 const char *const *perms;
659 u32 i;
660
661 audit_log_format(ab, "avc: %s ", sad->denied ? "denied" : "granted");
662
663 if (av == 0) {
664 audit_log_format(ab, " null");
665 return;
666 }
667
668 perms = secclass_map[sad->tclass-1].perms;
669
670 audit_log_format(ab, " {");
671 i = 0;
672 perm = 1;
673 while (i < (sizeof(av) * 8)) {
674 if ((perm & av) && perms[i]) {
675 audit_log_format(ab, " %s", perms[i]);
676 av &= ~perm;
677 }
678 i++;
679 perm <<= 1;
680 }
681
682 if (av)
683 audit_log_format(ab, " 0x%x", av);
684
685 audit_log_format(ab, " } for ");
686 }
687
688 /**
689 * avc_audit_post_callback - SELinux specific information
690 * will be called by generic audit code
691 * @ab: the audit buffer
692 * @a: audit_data
693 */
avc_audit_post_callback(struct audit_buffer * ab,void * a)694 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
695 {
696 struct common_audit_data *ad = a;
697 struct selinux_audit_data *sad = ad->selinux_audit_data;
698 char *scontext = NULL;
699 char *tcontext = NULL;
700 const char *tclass = NULL;
701 u32 scontext_len;
702 u32 tcontext_len;
703 int rc;
704
705 rc = security_sid_to_context(sad->ssid, &scontext,
706 &scontext_len);
707 if (rc)
708 audit_log_format(ab, " ssid=%d", sad->ssid);
709 else
710 audit_log_format(ab, " scontext=%s", scontext);
711
712 rc = security_sid_to_context(sad->tsid, &tcontext,
713 &tcontext_len);
714 if (rc)
715 audit_log_format(ab, " tsid=%d", sad->tsid);
716 else
717 audit_log_format(ab, " tcontext=%s", tcontext);
718
719 tclass = secclass_map[sad->tclass-1].name;
720 audit_log_format(ab, " tclass=%s", tclass);
721
722 if (sad->denied)
723 audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1);
724
725 trace_selinux_audited(sad, scontext, tcontext, tclass);
726 kfree(tcontext);
727 kfree(scontext);
728
729 /* in case of invalid context report also the actual context string */
730 rc = security_sid_to_context_inval(sad->ssid, &scontext,
731 &scontext_len);
732 if (!rc && scontext) {
733 if (scontext_len && scontext[scontext_len - 1] == '\0')
734 scontext_len--;
735 audit_log_format(ab, " srawcon=");
736 audit_log_n_untrustedstring(ab, scontext, scontext_len);
737 kfree(scontext);
738 }
739
740 rc = security_sid_to_context_inval(sad->tsid, &scontext,
741 &scontext_len);
742 if (!rc && scontext) {
743 if (scontext_len && scontext[scontext_len - 1] == '\0')
744 scontext_len--;
745 audit_log_format(ab, " trawcon=");
746 audit_log_n_untrustedstring(ab, scontext, scontext_len);
747 kfree(scontext);
748 }
749 }
750
751 /*
752 * This is the slow part of avc audit with big stack footprint.
753 * Note that it is non-blocking and can be called from under
754 * rcu_read_lock().
755 */
slow_avc_audit(u32 ssid,u32 tsid,u16 tclass,u32 requested,u32 audited,u32 denied,int result,struct common_audit_data * a)756 noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
757 u32 requested, u32 audited, u32 denied, int result,
758 struct common_audit_data *a)
759 {
760 struct common_audit_data stack_data;
761 struct selinux_audit_data sad;
762
763 if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)))
764 return -EINVAL;
765
766 if (!a) {
767 a = &stack_data;
768 a->type = LSM_AUDIT_DATA_NONE;
769 }
770
771 sad.tclass = tclass;
772 sad.requested = requested;
773 sad.ssid = ssid;
774 sad.tsid = tsid;
775 sad.audited = audited;
776 sad.denied = denied;
777 sad.result = result;
778
779 a->selinux_audit_data = &sad;
780
781 common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
782 return 0;
783 }
784
785 /**
786 * avc_add_callback - Register a callback for security events.
787 * @callback: callback function
788 * @events: security events
789 *
790 * Register a callback function for events in the set @events.
791 * Returns %0 on success or -%ENOMEM if insufficient memory
792 * exists to add the callback.
793 */
avc_add_callback(int (* callback)(u32 event),u32 events)794 int __init avc_add_callback(int (*callback)(u32 event), u32 events)
795 {
796 struct avc_callback_node *c;
797 int rc = 0;
798
799 c = kmalloc(sizeof(*c), GFP_KERNEL);
800 if (!c) {
801 rc = -ENOMEM;
802 goto out;
803 }
804
805 c->callback = callback;
806 c->events = events;
807 c->next = avc_callbacks;
808 avc_callbacks = c;
809 out:
810 return rc;
811 }
812
813 /**
814 * avc_update_node - Update an AVC entry
815 * @event : Updating event
816 * @perms : Permission mask bits
817 * @driver: xperm driver information
818 * @xperm: xperm permissions
819 * @ssid: AVC entry source sid
820 * @tsid: AVC entry target sid
821 * @tclass : AVC entry target object class
822 * @seqno : sequence number when decision was made
823 * @xpd: extended_perms_decision to be added to the node
824 * @flags: the AVC_* flags, e.g. AVC_EXTENDED_PERMS, or 0.
825 *
826 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
827 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
828 * otherwise, this function updates the AVC entry. The original AVC-entry object
829 * will release later by RCU.
830 */
avc_update_node(u32 event,u32 perms,u8 driver,u8 xperm,u32 ssid,u32 tsid,u16 tclass,u32 seqno,struct extended_perms_decision * xpd,u32 flags)831 static int avc_update_node(u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
832 u32 tsid, u16 tclass, u32 seqno,
833 struct extended_perms_decision *xpd,
834 u32 flags)
835 {
836 u32 hvalue;
837 int rc = 0;
838 unsigned long flag;
839 struct avc_node *pos, *node, *orig = NULL;
840 struct hlist_head *head;
841 spinlock_t *lock;
842
843 node = avc_alloc_node();
844 if (!node) {
845 rc = -ENOMEM;
846 goto out;
847 }
848
849 /* Lock the target slot */
850 hvalue = avc_hash(ssid, tsid, tclass);
851
852 head = &selinux_avc.avc_cache.slots[hvalue];
853 lock = &selinux_avc.avc_cache.slots_lock[hvalue];
854
855 spin_lock_irqsave(lock, flag);
856
857 hlist_for_each_entry(pos, head, list) {
858 if (ssid == pos->ae.ssid &&
859 tsid == pos->ae.tsid &&
860 tclass == pos->ae.tclass &&
861 seqno == pos->ae.avd.seqno){
862 orig = pos;
863 break;
864 }
865 }
866
867 if (!orig) {
868 rc = -ENOENT;
869 avc_node_kill(node);
870 goto out_unlock;
871 }
872
873 /*
874 * Copy and replace original node.
875 */
876
877 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
878
879 if (orig->ae.xp_node) {
880 rc = avc_xperms_populate(node, orig->ae.xp_node);
881 if (rc) {
882 avc_node_kill(node);
883 goto out_unlock;
884 }
885 }
886
887 switch (event) {
888 case AVC_CALLBACK_GRANT:
889 node->ae.avd.allowed |= perms;
890 if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
891 avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
892 break;
893 case AVC_CALLBACK_TRY_REVOKE:
894 case AVC_CALLBACK_REVOKE:
895 node->ae.avd.allowed &= ~perms;
896 break;
897 case AVC_CALLBACK_AUDITALLOW_ENABLE:
898 node->ae.avd.auditallow |= perms;
899 break;
900 case AVC_CALLBACK_AUDITALLOW_DISABLE:
901 node->ae.avd.auditallow &= ~perms;
902 break;
903 case AVC_CALLBACK_AUDITDENY_ENABLE:
904 node->ae.avd.auditdeny |= perms;
905 break;
906 case AVC_CALLBACK_AUDITDENY_DISABLE:
907 node->ae.avd.auditdeny &= ~perms;
908 break;
909 case AVC_CALLBACK_ADD_XPERMS:
910 rc = avc_add_xperms_decision(node, xpd);
911 if (rc) {
912 avc_node_kill(node);
913 goto out_unlock;
914 }
915 break;
916 }
917 avc_node_replace(node, orig);
918 out_unlock:
919 spin_unlock_irqrestore(lock, flag);
920 out:
921 return rc;
922 }
923
924 /**
925 * avc_flush - Flush the cache
926 */
avc_flush(void)927 static void avc_flush(void)
928 {
929 struct hlist_head *head;
930 struct avc_node *node;
931 spinlock_t *lock;
932 unsigned long flag;
933 int i;
934
935 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
936 head = &selinux_avc.avc_cache.slots[i];
937 lock = &selinux_avc.avc_cache.slots_lock[i];
938
939 spin_lock_irqsave(lock, flag);
940 /*
941 * With preemptable RCU, the outer spinlock does not
942 * prevent RCU grace periods from ending.
943 */
944 rcu_read_lock();
945 hlist_for_each_entry(node, head, list)
946 avc_node_delete(node);
947 rcu_read_unlock();
948 spin_unlock_irqrestore(lock, flag);
949 }
950 }
951
952 /**
953 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
954 * @seqno: policy sequence number
955 */
avc_ss_reset(u32 seqno)956 int avc_ss_reset(u32 seqno)
957 {
958 struct avc_callback_node *c;
959 int rc = 0, tmprc;
960
961 avc_flush();
962
963 for (c = avc_callbacks; c; c = c->next) {
964 if (c->events & AVC_CALLBACK_RESET) {
965 tmprc = c->callback(AVC_CALLBACK_RESET);
966 /* save the first error encountered for the return
967 value and continue processing the callbacks */
968 if (!rc)
969 rc = tmprc;
970 }
971 }
972
973 avc_latest_notif_update(seqno, 0);
974 return rc;
975 }
976
977 /**
978 * avc_compute_av - Add an entry to the AVC based on the security policy
979 * @ssid: subject
980 * @tsid: object/target
981 * @tclass: object class
982 * @avd: access vector decision
983 * @xp_node: AVC extended permissions node
984 *
985 * Slow-path helper function for avc_has_perm_noaudit, when the avc_node lookup
986 * fails. Don't inline this, since it's the slow-path and just results in a
987 * bigger stack frame.
988 */
avc_compute_av(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd,struct avc_xperms_node * xp_node)989 static noinline void avc_compute_av(u32 ssid, u32 tsid, u16 tclass,
990 struct av_decision *avd,
991 struct avc_xperms_node *xp_node)
992 {
993 INIT_LIST_HEAD(&xp_node->xpd_head);
994 security_compute_av(ssid, tsid, tclass, avd, &xp_node->xp);
995 avc_insert(ssid, tsid, tclass, avd, xp_node);
996 }
997
avc_denied(u32 ssid,u32 tsid,u16 tclass,u32 requested,u8 driver,u8 xperm,unsigned int flags,struct av_decision * avd)998 static noinline int avc_denied(u32 ssid, u32 tsid,
999 u16 tclass, u32 requested,
1000 u8 driver, u8 xperm, unsigned int flags,
1001 struct av_decision *avd)
1002 {
1003 if (flags & AVC_STRICT)
1004 return -EACCES;
1005
1006 if (enforcing_enabled() &&
1007 !(avd->flags & AVD_FLAGS_PERMISSIVE))
1008 return -EACCES;
1009
1010 avc_update_node(AVC_CALLBACK_GRANT, requested, driver,
1011 xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
1012 return 0;
1013 }
1014
1015 /*
1016 * The avc extended permissions logic adds an additional 256 bits of
1017 * permissions to an avc node when extended permissions for that node are
1018 * specified in the avtab. If the additional 256 permissions is not adequate,
1019 * as-is the case with ioctls, then multiple may be chained together and the
1020 * driver field is used to specify which set contains the permission.
1021 */
avc_has_extended_perms(u32 ssid,u32 tsid,u16 tclass,u32 requested,u8 driver,u8 xperm,struct common_audit_data * ad)1022 int avc_has_extended_perms(u32 ssid, u32 tsid, u16 tclass, u32 requested,
1023 u8 driver, u8 xperm, struct common_audit_data *ad)
1024 {
1025 struct avc_node *node;
1026 struct av_decision avd;
1027 u32 denied;
1028 struct extended_perms_decision local_xpd;
1029 struct extended_perms_decision *xpd = NULL;
1030 struct extended_perms_data allowed;
1031 struct extended_perms_data auditallow;
1032 struct extended_perms_data dontaudit;
1033 struct avc_xperms_node local_xp_node;
1034 struct avc_xperms_node *xp_node;
1035 int rc = 0, rc2;
1036
1037 xp_node = &local_xp_node;
1038 if (WARN_ON(!requested))
1039 return -EACCES;
1040
1041 rcu_read_lock();
1042
1043 node = avc_lookup(ssid, tsid, tclass);
1044 if (unlikely(!node)) {
1045 avc_compute_av(ssid, tsid, tclass, &avd, xp_node);
1046 } else {
1047 memcpy(&avd, &node->ae.avd, sizeof(avd));
1048 xp_node = node->ae.xp_node;
1049 }
1050 /* if extended permissions are not defined, only consider av_decision */
1051 if (!xp_node || !xp_node->xp.len)
1052 goto decision;
1053
1054 local_xpd.allowed = &allowed;
1055 local_xpd.auditallow = &auditallow;
1056 local_xpd.dontaudit = &dontaudit;
1057
1058 xpd = avc_xperms_decision_lookup(driver, xp_node);
1059 if (unlikely(!xpd)) {
1060 /*
1061 * Compute the extended_perms_decision only if the driver
1062 * is flagged
1063 */
1064 if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1065 avd.allowed &= ~requested;
1066 goto decision;
1067 }
1068 rcu_read_unlock();
1069 security_compute_xperms_decision(ssid, tsid, tclass,
1070 driver, &local_xpd);
1071 rcu_read_lock();
1072 avc_update_node(AVC_CALLBACK_ADD_XPERMS, requested,
1073 driver, xperm, ssid, tsid, tclass, avd.seqno,
1074 &local_xpd, 0);
1075 } else {
1076 avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1077 }
1078 xpd = &local_xpd;
1079
1080 if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1081 avd.allowed &= ~requested;
1082
1083 decision:
1084 denied = requested & ~(avd.allowed);
1085 if (unlikely(denied))
1086 rc = avc_denied(ssid, tsid, tclass, requested,
1087 driver, xperm, AVC_EXTENDED_PERMS, &avd);
1088
1089 rcu_read_unlock();
1090
1091 rc2 = avc_xperms_audit(ssid, tsid, tclass, requested,
1092 &avd, xpd, xperm, rc, ad);
1093 if (rc2)
1094 return rc2;
1095 return rc;
1096 }
1097
1098 /**
1099 * avc_perm_nonode - Add an entry to the AVC
1100 * @ssid: subject
1101 * @tsid: object/target
1102 * @tclass: object class
1103 * @requested: requested permissions
1104 * @flags: AVC flags
1105 * @avd: access vector decision
1106 *
1107 * This is the "we have no node" part of avc_has_perm_noaudit(), which is
1108 * unlikely and needs extra stack space for the new node that we generate, so
1109 * don't inline it.
1110 */
avc_perm_nonode(u32 ssid,u32 tsid,u16 tclass,u32 requested,unsigned int flags,struct av_decision * avd)1111 static noinline int avc_perm_nonode(u32 ssid, u32 tsid, u16 tclass,
1112 u32 requested, unsigned int flags,
1113 struct av_decision *avd)
1114 {
1115 u32 denied;
1116 struct avc_xperms_node xp_node;
1117
1118 avc_compute_av(ssid, tsid, tclass, avd, &xp_node);
1119 denied = requested & ~(avd->allowed);
1120 if (unlikely(denied))
1121 return avc_denied(ssid, tsid, tclass, requested, 0, 0,
1122 flags, avd);
1123 return 0;
1124 }
1125
1126 /**
1127 * avc_has_perm_noaudit - Check permissions but perform no auditing.
1128 * @ssid: source security identifier
1129 * @tsid: target security identifier
1130 * @tclass: target security class
1131 * @requested: requested permissions, interpreted based on @tclass
1132 * @flags: AVC_STRICT or 0
1133 * @avd: access vector decisions
1134 *
1135 * Check the AVC to determine whether the @requested permissions are granted
1136 * for the SID pair (@ssid, @tsid), interpreting the permissions
1137 * based on @tclass, and call the security server on a cache miss to obtain
1138 * a new decision and add it to the cache. Return a copy of the decisions
1139 * in @avd. Return %0 if all @requested permissions are granted,
1140 * -%EACCES if any permissions are denied, or another -errno upon
1141 * other errors. This function is typically called by avc_has_perm(),
1142 * but may also be called directly to separate permission checking from
1143 * auditing, e.g. in cases where a lock must be held for the check but
1144 * should be released for the auditing.
1145 */
avc_has_perm_noaudit(u32 ssid,u32 tsid,u16 tclass,u32 requested,unsigned int flags,struct av_decision * avd)1146 inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
1147 u16 tclass, u32 requested,
1148 unsigned int flags,
1149 struct av_decision *avd)
1150 {
1151 u32 denied;
1152 struct avc_node *node;
1153
1154 if (WARN_ON(!requested))
1155 return -EACCES;
1156
1157 rcu_read_lock();
1158 node = avc_lookup(ssid, tsid, tclass);
1159 if (unlikely(!node)) {
1160 rcu_read_unlock();
1161 return avc_perm_nonode(ssid, tsid, tclass, requested,
1162 flags, avd);
1163 }
1164 denied = requested & ~node->ae.avd.allowed;
1165 memcpy(avd, &node->ae.avd, sizeof(*avd));
1166 rcu_read_unlock();
1167
1168 if (unlikely(denied))
1169 return avc_denied(ssid, tsid, tclass, requested, 0, 0,
1170 flags, avd);
1171 return 0;
1172 }
1173
1174 /**
1175 * avc_has_perm - Check permissions and perform any appropriate auditing.
1176 * @ssid: source security identifier
1177 * @tsid: target security identifier
1178 * @tclass: target security class
1179 * @requested: requested permissions, interpreted based on @tclass
1180 * @auditdata: auxiliary audit data
1181 *
1182 * Check the AVC to determine whether the @requested permissions are granted
1183 * for the SID pair (@ssid, @tsid), interpreting the permissions
1184 * based on @tclass, and call the security server on a cache miss to obtain
1185 * a new decision and add it to the cache. Audit the granting or denial of
1186 * permissions in accordance with the policy. Return %0 if all @requested
1187 * permissions are granted, -%EACCES if any permissions are denied, or
1188 * another -errno upon other errors.
1189 */
avc_has_perm(u32 ssid,u32 tsid,u16 tclass,u32 requested,struct common_audit_data * auditdata)1190 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
1191 u32 requested, struct common_audit_data *auditdata)
1192 {
1193 struct av_decision avd;
1194 int rc, rc2;
1195
1196 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0,
1197 &avd);
1198
1199 rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc,
1200 auditdata);
1201 if (rc2)
1202 return rc2;
1203 return rc;
1204 }
1205
avc_policy_seqno(void)1206 u32 avc_policy_seqno(void)
1207 {
1208 return selinux_avc.avc_cache.latest_notif;
1209 }
1210