1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Machine check handler.
4 *
5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6 * Rest from unknown author(s).
7 * 2004 Andi Kleen. Rewrote most of it.
8 * Copyright 2008 Intel Corporation
9 * Author: Andi Kleen
10 */
11
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47 #include <linux/kexec.h>
48
49 #include <asm/fred.h>
50 #include <asm/cpu_device_id.h>
51 #include <asm/processor.h>
52 #include <asm/traps.h>
53 #include <asm/tlbflush.h>
54 #include <asm/mce.h>
55 #include <asm/msr.h>
56 #include <asm/reboot.h>
57 #include <asm/tdx.h>
58
59 #include "internal.h"
60
61 /* sysfs synchronization */
62 static DEFINE_MUTEX(mce_sysfs_mutex);
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/mce.h>
66
67 #define SPINUNIT 100 /* 100ns */
68
69 DEFINE_PER_CPU(unsigned, mce_exception_count);
70
71 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
72
73 DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
74
75 #define ATTR_LEN 16
76 /* One object for each MCE bank, shared by all CPUs */
77 struct mce_bank_dev {
78 struct device_attribute attr; /* device attribute */
79 char attrname[ATTR_LEN]; /* attribute name */
80 u8 bank; /* bank number */
81 };
82 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
83
84 struct mce_vendor_flags mce_flags __read_mostly;
85
86 struct mca_config mca_cfg __read_mostly = {
87 .bootlog = -1,
88 .monarch_timeout = -1
89 };
90
91 static DEFINE_PER_CPU(struct mce, mces_seen);
92 static unsigned long mce_need_notify;
93
94 /*
95 * MCA banks polled by the period polling timer for corrected events.
96 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
97 */
98 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
99 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
100 };
101
102 /*
103 * MCA banks controlled through firmware first for corrected errors.
104 * This is a global list of banks for which we won't enable CMCI and we
105 * won't poll. Firmware controls these banks and is responsible for
106 * reporting corrected errors through GHES. Uncorrected/recoverable
107 * errors are still notified through a machine check.
108 */
109 mce_banks_t mce_banks_ce_disabled;
110
111 static struct work_struct mce_work;
112 static struct irq_work mce_irq_work;
113
114 /*
115 * CPU/chipset specific EDAC code can register a notifier call here to print
116 * MCE errors in a human-readable form.
117 */
118 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
119
mce_prep_record_common(struct mce * m)120 void mce_prep_record_common(struct mce *m)
121 {
122 memset(m, 0, sizeof(struct mce));
123
124 m->cpuid = cpuid_eax(1);
125 m->cpuvendor = boot_cpu_data.x86_vendor;
126 m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
127 /* need the internal __ version to avoid deadlocks */
128 m->time = __ktime_get_real_seconds();
129 }
130
mce_prep_record_per_cpu(unsigned int cpu,struct mce * m)131 void mce_prep_record_per_cpu(unsigned int cpu, struct mce *m)
132 {
133 m->cpu = cpu;
134 m->extcpu = cpu;
135 m->apicid = cpu_data(cpu).topo.initial_apicid;
136 m->microcode = cpu_data(cpu).microcode;
137 m->ppin = topology_ppin(cpu);
138 m->socketid = topology_physical_package_id(cpu);
139 }
140
141 /* Do initial initialization of a struct mce */
mce_prep_record(struct mce * m)142 void mce_prep_record(struct mce *m)
143 {
144 mce_prep_record_common(m);
145 mce_prep_record_per_cpu(smp_processor_id(), m);
146 }
147
148 DEFINE_PER_CPU(struct mce, injectm);
149 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
150
mce_log(struct mce * m)151 void mce_log(struct mce *m)
152 {
153 if (!mce_gen_pool_add(m))
154 irq_work_queue(&mce_irq_work);
155 }
156 EXPORT_SYMBOL_GPL(mce_log);
157
mce_register_decode_chain(struct notifier_block * nb)158 void mce_register_decode_chain(struct notifier_block *nb)
159 {
160 if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
161 nb->priority > MCE_PRIO_HIGHEST))
162 return;
163
164 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
165 }
166 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
167
mce_unregister_decode_chain(struct notifier_block * nb)168 void mce_unregister_decode_chain(struct notifier_block *nb)
169 {
170 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
171 }
172 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
173
__print_mce(struct mce * m)174 static void __print_mce(struct mce *m)
175 {
176 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
177 m->extcpu,
178 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
179 m->mcgstatus, m->bank, m->status);
180
181 if (m->ip) {
182 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
183 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
184 m->cs, m->ip);
185
186 if (m->cs == __KERNEL_CS)
187 pr_cont("{%pS}", (void *)(unsigned long)m->ip);
188 pr_cont("\n");
189 }
190
191 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
192 if (m->addr)
193 pr_cont("ADDR %llx ", m->addr);
194 if (m->misc)
195 pr_cont("MISC %llx ", m->misc);
196 if (m->ppin)
197 pr_cont("PPIN %llx ", m->ppin);
198
199 if (mce_flags.smca) {
200 if (m->synd)
201 pr_cont("SYND %llx ", m->synd);
202 if (m->ipid)
203 pr_cont("IPID %llx ", m->ipid);
204 }
205
206 pr_cont("\n");
207
208 /*
209 * Note this output is parsed by external tools and old fields
210 * should not be changed.
211 */
212 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
213 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
214 m->microcode);
215 }
216
print_mce(struct mce * m)217 static void print_mce(struct mce *m)
218 {
219 __print_mce(m);
220
221 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
222 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
223 }
224
225 #define PANIC_TIMEOUT 5 /* 5 seconds */
226
227 static atomic_t mce_panicked;
228
229 static int fake_panic;
230 static atomic_t mce_fake_panicked;
231
232 /* Panic in progress. Enable interrupts and wait for final IPI */
wait_for_panic(void)233 static void wait_for_panic(void)
234 {
235 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
236
237 preempt_disable();
238 local_irq_enable();
239 while (timeout-- > 0)
240 udelay(1);
241 if (panic_timeout == 0)
242 panic_timeout = mca_cfg.panic_timeout;
243 panic("Panicing machine check CPU died");
244 }
245
mce_dump_aux_info(struct mce * m)246 static const char *mce_dump_aux_info(struct mce *m)
247 {
248 if (boot_cpu_has_bug(X86_BUG_TDX_PW_MCE))
249 return tdx_dump_mce_info(m);
250
251 return NULL;
252 }
253
mce_panic(const char * msg,struct mce * final,char * exp)254 static noinstr void mce_panic(const char *msg, struct mce *final, char *exp)
255 {
256 struct llist_node *pending;
257 struct mce_evt_llist *l;
258 int apei_err = 0;
259 const char *memmsg;
260
261 /*
262 * Allow instrumentation around external facilities usage. Not that it
263 * matters a whole lot since the machine is going to panic anyway.
264 */
265 instrumentation_begin();
266
267 if (!fake_panic) {
268 /*
269 * Make sure only one CPU runs in machine check panic
270 */
271 if (atomic_inc_return(&mce_panicked) > 1)
272 wait_for_panic();
273 barrier();
274
275 bust_spinlocks(1);
276 console_verbose();
277 } else {
278 /* Don't log too much for fake panic */
279 if (atomic_inc_return(&mce_fake_panicked) > 1)
280 goto out;
281 }
282 pending = mce_gen_pool_prepare_records();
283 /* First print corrected ones that are still unlogged */
284 llist_for_each_entry(l, pending, llnode) {
285 struct mce *m = &l->mce;
286 if (!(m->status & MCI_STATUS_UC)) {
287 print_mce(m);
288 if (!apei_err)
289 apei_err = apei_write_mce(m);
290 }
291 }
292 /* Now print uncorrected but with the final one last */
293 llist_for_each_entry(l, pending, llnode) {
294 struct mce *m = &l->mce;
295 if (!(m->status & MCI_STATUS_UC))
296 continue;
297 if (!final || mce_cmp(m, final)) {
298 print_mce(m);
299 if (!apei_err)
300 apei_err = apei_write_mce(m);
301 }
302 }
303 if (final) {
304 print_mce(final);
305 if (!apei_err)
306 apei_err = apei_write_mce(final);
307 }
308 if (exp)
309 pr_emerg(HW_ERR "Machine check: %s\n", exp);
310
311 memmsg = mce_dump_aux_info(final);
312 if (memmsg)
313 pr_emerg(HW_ERR "Machine check: %s\n", memmsg);
314
315 if (!fake_panic) {
316 if (panic_timeout == 0)
317 panic_timeout = mca_cfg.panic_timeout;
318
319 /*
320 * Kdump skips the poisoned page in order to avoid
321 * touching the error bits again. Poison the page even
322 * if the error is fatal and the machine is about to
323 * panic.
324 */
325 if (kexec_crash_loaded()) {
326 if (final && (final->status & MCI_STATUS_ADDRV)) {
327 struct page *p;
328 p = pfn_to_online_page(final->addr >> PAGE_SHIFT);
329 if (p)
330 SetPageHWPoison(p);
331 }
332 }
333 panic(msg);
334 } else
335 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
336
337 out:
338 instrumentation_end();
339 }
340
341 /* Support code for software error injection */
342
msr_to_offset(u32 msr)343 static int msr_to_offset(u32 msr)
344 {
345 unsigned bank = __this_cpu_read(injectm.bank);
346
347 if (msr == mca_cfg.rip_msr)
348 return offsetof(struct mce, ip);
349 if (msr == mca_msr_reg(bank, MCA_STATUS))
350 return offsetof(struct mce, status);
351 if (msr == mca_msr_reg(bank, MCA_ADDR))
352 return offsetof(struct mce, addr);
353 if (msr == mca_msr_reg(bank, MCA_MISC))
354 return offsetof(struct mce, misc);
355 if (msr == MSR_IA32_MCG_STATUS)
356 return offsetof(struct mce, mcgstatus);
357 return -1;
358 }
359
ex_handler_msr_mce(struct pt_regs * regs,bool wrmsr)360 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr)
361 {
362 if (wrmsr) {
363 pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
364 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
365 regs->ip, (void *)regs->ip);
366 } else {
367 pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
368 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
369 }
370
371 show_stack_regs(regs);
372
373 panic("MCA architectural violation!\n");
374
375 while (true)
376 cpu_relax();
377 }
378
379 /* MSR access wrappers used for error injection */
mce_rdmsrl(u32 msr)380 noinstr u64 mce_rdmsrl(u32 msr)
381 {
382 DECLARE_ARGS(val, low, high);
383
384 if (__this_cpu_read(injectm.finished)) {
385 int offset;
386 u64 ret;
387
388 instrumentation_begin();
389
390 offset = msr_to_offset(msr);
391 if (offset < 0)
392 ret = 0;
393 else
394 ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
395
396 instrumentation_end();
397
398 return ret;
399 }
400
401 /*
402 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
403 * architectural violation and needs to be reported to hw vendor. Panic
404 * the box to not allow any further progress.
405 */
406 asm volatile("1: rdmsr\n"
407 "2:\n"
408 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE)
409 : EAX_EDX_RET(val, low, high) : "c" (msr));
410
411
412 return EAX_EDX_VAL(val, low, high);
413 }
414
mce_wrmsrl(u32 msr,u64 v)415 static noinstr void mce_wrmsrl(u32 msr, u64 v)
416 {
417 u32 low, high;
418
419 if (__this_cpu_read(injectm.finished)) {
420 int offset;
421
422 instrumentation_begin();
423
424 offset = msr_to_offset(msr);
425 if (offset >= 0)
426 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
427
428 instrumentation_end();
429
430 return;
431 }
432
433 low = (u32)v;
434 high = (u32)(v >> 32);
435
436 /* See comment in mce_rdmsrl() */
437 asm volatile("1: wrmsr\n"
438 "2:\n"
439 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE)
440 : : "c" (msr), "a"(low), "d" (high) : "memory");
441 }
442
443 /*
444 * Collect all global (w.r.t. this processor) status about this machine
445 * check into our "mce" struct so that we can use it later to assess
446 * the severity of the problem as we read per-bank specific details.
447 */
mce_gather_info(struct mce * m,struct pt_regs * regs)448 static noinstr void mce_gather_info(struct mce *m, struct pt_regs *regs)
449 {
450 /*
451 * Enable instrumentation around mce_prep_record() which calls external
452 * facilities.
453 */
454 instrumentation_begin();
455 mce_prep_record(m);
456 instrumentation_end();
457
458 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
459 if (regs) {
460 /*
461 * Get the address of the instruction at the time of
462 * the machine check error.
463 */
464 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
465 m->ip = regs->ip;
466 m->cs = regs->cs;
467
468 /*
469 * When in VM86 mode make the cs look like ring 3
470 * always. This is a lie, but it's better than passing
471 * the additional vm86 bit around everywhere.
472 */
473 if (v8086_mode(regs))
474 m->cs |= 3;
475 }
476 /* Use accurate RIP reporting if available. */
477 if (mca_cfg.rip_msr)
478 m->ip = mce_rdmsrl(mca_cfg.rip_msr);
479 }
480 }
481
mce_available(struct cpuinfo_x86 * c)482 int mce_available(struct cpuinfo_x86 *c)
483 {
484 if (mca_cfg.disabled)
485 return 0;
486 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
487 }
488
mce_schedule_work(void)489 static void mce_schedule_work(void)
490 {
491 if (!mce_gen_pool_empty())
492 schedule_work(&mce_work);
493 }
494
mce_irq_work_cb(struct irq_work * entry)495 static void mce_irq_work_cb(struct irq_work *entry)
496 {
497 mce_schedule_work();
498 }
499
mce_usable_address(struct mce * m)500 bool mce_usable_address(struct mce *m)
501 {
502 if (!(m->status & MCI_STATUS_ADDRV))
503 return false;
504
505 switch (m->cpuvendor) {
506 case X86_VENDOR_AMD:
507 return amd_mce_usable_address(m);
508
509 case X86_VENDOR_INTEL:
510 case X86_VENDOR_ZHAOXIN:
511 return intel_mce_usable_address(m);
512
513 default:
514 return true;
515 }
516 }
517 EXPORT_SYMBOL_GPL(mce_usable_address);
518
mce_is_memory_error(struct mce * m)519 bool mce_is_memory_error(struct mce *m)
520 {
521 switch (m->cpuvendor) {
522 case X86_VENDOR_AMD:
523 case X86_VENDOR_HYGON:
524 return amd_mce_is_memory_error(m);
525
526 case X86_VENDOR_INTEL:
527 case X86_VENDOR_ZHAOXIN:
528 /*
529 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
530 *
531 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
532 * indicating a memory error. Bit 8 is used for indicating a
533 * cache hierarchy error. The combination of bit 2 and bit 3
534 * is used for indicating a `generic' cache hierarchy error
535 * But we can't just blindly check the above bits, because if
536 * bit 11 is set, then it is a bus/interconnect error - and
537 * either way the above bits just gives more detail on what
538 * bus/interconnect error happened. Note that bit 12 can be
539 * ignored, as it's the "filter" bit.
540 */
541 return (m->status & 0xef80) == BIT(7) ||
542 (m->status & 0xef00) == BIT(8) ||
543 (m->status & 0xeffc) == 0xc;
544
545 default:
546 return false;
547 }
548 }
549 EXPORT_SYMBOL_GPL(mce_is_memory_error);
550
whole_page(struct mce * m)551 static bool whole_page(struct mce *m)
552 {
553 if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
554 return true;
555
556 return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
557 }
558
mce_is_correctable(struct mce * m)559 bool mce_is_correctable(struct mce *m)
560 {
561 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
562 return false;
563
564 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
565 return false;
566
567 if (m->status & MCI_STATUS_UC)
568 return false;
569
570 return true;
571 }
572 EXPORT_SYMBOL_GPL(mce_is_correctable);
573
mce_early_notifier(struct notifier_block * nb,unsigned long val,void * data)574 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
575 void *data)
576 {
577 struct mce *m = (struct mce *)data;
578
579 if (!m)
580 return NOTIFY_DONE;
581
582 /* Emit the trace record: */
583 trace_mce_record(m);
584
585 set_bit(0, &mce_need_notify);
586
587 mce_notify_irq();
588
589 return NOTIFY_DONE;
590 }
591
592 static struct notifier_block early_nb = {
593 .notifier_call = mce_early_notifier,
594 .priority = MCE_PRIO_EARLY,
595 };
596
uc_decode_notifier(struct notifier_block * nb,unsigned long val,void * data)597 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
598 void *data)
599 {
600 struct mce *mce = (struct mce *)data;
601 unsigned long pfn;
602
603 if (!mce || !mce_usable_address(mce))
604 return NOTIFY_DONE;
605
606 if (mce->severity != MCE_AO_SEVERITY &&
607 mce->severity != MCE_DEFERRED_SEVERITY)
608 return NOTIFY_DONE;
609
610 pfn = (mce->addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
611 if (!memory_failure(pfn, 0)) {
612 set_mce_nospec(pfn);
613 mce->kflags |= MCE_HANDLED_UC;
614 }
615
616 return NOTIFY_OK;
617 }
618
619 static struct notifier_block mce_uc_nb = {
620 .notifier_call = uc_decode_notifier,
621 .priority = MCE_PRIO_UC,
622 };
623
mce_default_notifier(struct notifier_block * nb,unsigned long val,void * data)624 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
625 void *data)
626 {
627 struct mce *m = (struct mce *)data;
628
629 if (!m)
630 return NOTIFY_DONE;
631
632 if (mca_cfg.print_all || !m->kflags)
633 __print_mce(m);
634
635 return NOTIFY_DONE;
636 }
637
638 static struct notifier_block mce_default_nb = {
639 .notifier_call = mce_default_notifier,
640 /* lowest prio, we want it to run last. */
641 .priority = MCE_PRIO_LOWEST,
642 };
643
644 /*
645 * Read ADDR and MISC registers.
646 */
mce_read_aux(struct mce * m,int i)647 static noinstr void mce_read_aux(struct mce *m, int i)
648 {
649 if (m->status & MCI_STATUS_MISCV)
650 m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC));
651
652 if (m->status & MCI_STATUS_ADDRV) {
653 m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR));
654
655 /*
656 * Mask the reported address by the reported granularity.
657 */
658 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
659 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
660 m->addr >>= shift;
661 m->addr <<= shift;
662 }
663
664 smca_extract_err_addr(m);
665 }
666
667 if (mce_flags.smca) {
668 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
669
670 if (m->status & MCI_STATUS_SYNDV)
671 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
672 }
673 }
674
675 DEFINE_PER_CPU(unsigned, mce_poll_count);
676
677 /*
678 * Poll for corrected events or events that happened before reset.
679 * Those are just logged through /dev/mcelog.
680 *
681 * This is executed in standard interrupt context.
682 *
683 * Note: spec recommends to panic for fatal unsignalled
684 * errors here. However this would be quite problematic --
685 * we would need to reimplement the Monarch handling and
686 * it would mess up the exclusion between exception handler
687 * and poll handler -- * so we skip this for now.
688 * These cases should not happen anyways, or only when the CPU
689 * is already totally * confused. In this case it's likely it will
690 * not fully execute the machine check handler either.
691 */
machine_check_poll(enum mcp_flags flags,mce_banks_t * b)692 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
693 {
694 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
695 struct mce m;
696 int i;
697
698 this_cpu_inc(mce_poll_count);
699
700 mce_gather_info(&m, NULL);
701
702 if (flags & MCP_TIMESTAMP)
703 m.tsc = rdtsc();
704
705 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
706 if (!mce_banks[i].ctl || !test_bit(i, *b))
707 continue;
708
709 m.misc = 0;
710 m.addr = 0;
711 m.bank = i;
712
713 barrier();
714 m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
715
716 /*
717 * Update storm tracking here, before checking for the
718 * MCI_STATUS_VAL bit. Valid corrected errors count
719 * towards declaring, or maintaining, storm status. No
720 * error in a bank counts towards avoiding, or ending,
721 * storm status.
722 */
723 if (!mca_cfg.cmci_disabled)
724 mce_track_storm(&m);
725
726 /* If this entry is not valid, ignore it */
727 if (!(m.status & MCI_STATUS_VAL))
728 continue;
729
730 /*
731 * If we are logging everything (at CPU online) or this
732 * is a corrected error, then we must log it.
733 */
734 if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
735 goto log_it;
736
737 /*
738 * Newer Intel systems that support software error
739 * recovery need to make additional checks. Other
740 * CPUs should skip over uncorrected errors, but log
741 * everything else.
742 */
743 if (!mca_cfg.ser) {
744 if (m.status & MCI_STATUS_UC)
745 continue;
746 goto log_it;
747 }
748
749 /* Log "not enabled" (speculative) errors */
750 if (!(m.status & MCI_STATUS_EN))
751 goto log_it;
752
753 /*
754 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
755 * UC == 1 && PCC == 0 && S == 0
756 */
757 if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
758 goto log_it;
759
760 /*
761 * Skip anything else. Presumption is that our read of this
762 * bank is racing with a machine check. Leave the log alone
763 * for do_machine_check() to deal with it.
764 */
765 continue;
766
767 log_it:
768 if (flags & MCP_DONTLOG)
769 goto clear_it;
770
771 mce_read_aux(&m, i);
772 m.severity = mce_severity(&m, NULL, NULL, false);
773 /*
774 * Don't get the IP here because it's unlikely to
775 * have anything to do with the actual error location.
776 */
777
778 if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
779 goto clear_it;
780
781 if (flags & MCP_QUEUE_LOG)
782 mce_gen_pool_add(&m);
783 else
784 mce_log(&m);
785
786 clear_it:
787 /*
788 * Clear state for this bank.
789 */
790 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
791 }
792
793 /*
794 * Don't clear MCG_STATUS here because it's only defined for
795 * exceptions.
796 */
797
798 sync_core();
799 }
800 EXPORT_SYMBOL_GPL(machine_check_poll);
801
802 /*
803 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
804 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
805 * Vol 3B Table 15-20). But this confuses both the code that determines
806 * whether the machine check occurred in kernel or user mode, and also
807 * the severity assessment code. Pretend that EIPV was set, and take the
808 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
809 */
810 static __always_inline void
quirk_sandybridge_ifu(int bank,struct mce * m,struct pt_regs * regs)811 quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
812 {
813 if (bank != 0)
814 return;
815 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
816 return;
817 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
818 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
819 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
820 MCACOD)) !=
821 (MCI_STATUS_UC|MCI_STATUS_EN|
822 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
823 MCI_STATUS_AR|MCACOD_INSTR))
824 return;
825
826 m->mcgstatus |= MCG_STATUS_EIPV;
827 m->ip = regs->ip;
828 m->cs = regs->cs;
829 }
830
831 /*
832 * Disable fast string copy and return from the MCE handler upon the first SRAR
833 * MCE on bank 1 due to a CPU erratum on Intel Skylake/Cascade Lake/Cooper Lake
834 * CPUs.
835 * The fast string copy instructions ("REP; MOVS*") could consume an
836 * uncorrectable memory error in the cache line _right after_ the desired region
837 * to copy and raise an MCE with RIP pointing to the instruction _after_ the
838 * "REP; MOVS*".
839 * This mitigation addresses the issue completely with the caveat of performance
840 * degradation on the CPU affected. This is still better than the OS crashing on
841 * MCEs raised on an irrelevant process due to "REP; MOVS*" accesses from a
842 * kernel context (e.g., copy_page).
843 *
844 * Returns true when fast string copy on CPU has been disabled.
845 */
quirk_skylake_repmov(void)846 static noinstr bool quirk_skylake_repmov(void)
847 {
848 u64 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
849 u64 misc_enable = mce_rdmsrl(MSR_IA32_MISC_ENABLE);
850 u64 mc1_status;
851
852 /*
853 * Apply the quirk only to local machine checks, i.e., no broadcast
854 * sync is needed.
855 */
856 if (!(mcgstatus & MCG_STATUS_LMCES) ||
857 !(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING))
858 return false;
859
860 mc1_status = mce_rdmsrl(MSR_IA32_MCx_STATUS(1));
861
862 /* Check for a software-recoverable data fetch error. */
863 if ((mc1_status &
864 (MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN |
865 MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC |
866 MCI_STATUS_AR | MCI_STATUS_S)) ==
867 (MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
868 MCI_STATUS_ADDRV | MCI_STATUS_MISCV |
869 MCI_STATUS_AR | MCI_STATUS_S)) {
870 misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
871 mce_wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
872 mce_wrmsrl(MSR_IA32_MCx_STATUS(1), 0);
873
874 instrumentation_begin();
875 pr_err_once("Erratum detected, disable fast string copy instructions.\n");
876 instrumentation_end();
877
878 return true;
879 }
880
881 return false;
882 }
883
884 /*
885 * Some Zen-based Instruction Fetch Units set EIPV=RIPV=0 on poison consumption
886 * errors. This means mce_gather_info() will not save the "ip" and "cs" registers.
887 *
888 * However, the context is still valid, so save the "cs" register for later use.
889 *
890 * The "ip" register is truly unknown, so don't save it or fixup EIPV/RIPV.
891 *
892 * The Instruction Fetch Unit is at MCA bank 1 for all affected systems.
893 */
quirk_zen_ifu(int bank,struct mce * m,struct pt_regs * regs)894 static __always_inline void quirk_zen_ifu(int bank, struct mce *m, struct pt_regs *regs)
895 {
896 if (bank != 1)
897 return;
898 if (!(m->status & MCI_STATUS_POISON))
899 return;
900
901 m->cs = regs->cs;
902 }
903
904 /*
905 * Do a quick check if any of the events requires a panic.
906 * This decides if we keep the events around or clear them.
907 */
mce_no_way_out(struct mce * m,char ** msg,unsigned long * validp,struct pt_regs * regs)908 static __always_inline int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
909 struct pt_regs *regs)
910 {
911 char *tmp = *msg;
912 int i;
913
914 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
915 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
916 if (!(m->status & MCI_STATUS_VAL))
917 continue;
918
919 arch___set_bit(i, validp);
920 if (mce_flags.snb_ifu_quirk)
921 quirk_sandybridge_ifu(i, m, regs);
922
923 if (mce_flags.zen_ifu_quirk)
924 quirk_zen_ifu(i, m, regs);
925
926 m->bank = i;
927 if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) {
928 mce_read_aux(m, i);
929 *msg = tmp;
930 return 1;
931 }
932 }
933 return 0;
934 }
935
936 /*
937 * Variable to establish order between CPUs while scanning.
938 * Each CPU spins initially until executing is equal its number.
939 */
940 static atomic_t mce_executing;
941
942 /*
943 * Defines order of CPUs on entry. First CPU becomes Monarch.
944 */
945 static atomic_t mce_callin;
946
947 /*
948 * Track which CPUs entered the MCA broadcast synchronization and which not in
949 * order to print holdouts.
950 */
951 static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
952
953 /*
954 * Check if a timeout waiting for other CPUs happened.
955 */
mce_timed_out(u64 * t,const char * msg)956 static noinstr int mce_timed_out(u64 *t, const char *msg)
957 {
958 int ret = 0;
959
960 /* Enable instrumentation around calls to external facilities */
961 instrumentation_begin();
962
963 /*
964 * The others already did panic for some reason.
965 * Bail out like in a timeout.
966 * rmb() to tell the compiler that system_state
967 * might have been modified by someone else.
968 */
969 rmb();
970 if (atomic_read(&mce_panicked))
971 wait_for_panic();
972 if (!mca_cfg.monarch_timeout)
973 goto out;
974 if ((s64)*t < SPINUNIT) {
975 if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
976 pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
977 cpumask_pr_args(&mce_missing_cpus));
978 mce_panic(msg, NULL, NULL);
979
980 ret = 1;
981 goto out;
982 }
983 *t -= SPINUNIT;
984
985 out:
986 touch_nmi_watchdog();
987
988 instrumentation_end();
989
990 return ret;
991 }
992
993 /*
994 * The Monarch's reign. The Monarch is the CPU who entered
995 * the machine check handler first. It waits for the others to
996 * raise the exception too and then grades them. When any
997 * error is fatal panic. Only then let the others continue.
998 *
999 * The other CPUs entering the MCE handler will be controlled by the
1000 * Monarch. They are called Subjects.
1001 *
1002 * This way we prevent any potential data corruption in a unrecoverable case
1003 * and also makes sure always all CPU's errors are examined.
1004 *
1005 * Also this detects the case of a machine check event coming from outer
1006 * space (not detected by any CPUs) In this case some external agent wants
1007 * us to shut down, so panic too.
1008 *
1009 * The other CPUs might still decide to panic if the handler happens
1010 * in a unrecoverable place, but in this case the system is in a semi-stable
1011 * state and won't corrupt anything by itself. It's ok to let the others
1012 * continue for a bit first.
1013 *
1014 * All the spin loops have timeouts; when a timeout happens a CPU
1015 * typically elects itself to be Monarch.
1016 */
mce_reign(void)1017 static void mce_reign(void)
1018 {
1019 int cpu;
1020 struct mce *m = NULL;
1021 int global_worst = 0;
1022 char *msg = NULL;
1023
1024 /*
1025 * This CPU is the Monarch and the other CPUs have run
1026 * through their handlers.
1027 * Grade the severity of the errors of all the CPUs.
1028 */
1029 for_each_possible_cpu(cpu) {
1030 struct mce *mtmp = &per_cpu(mces_seen, cpu);
1031
1032 if (mtmp->severity > global_worst) {
1033 global_worst = mtmp->severity;
1034 m = &per_cpu(mces_seen, cpu);
1035 }
1036 }
1037
1038 /*
1039 * Cannot recover? Panic here then.
1040 * This dumps all the mces in the log buffer and stops the
1041 * other CPUs.
1042 */
1043 if (m && global_worst >= MCE_PANIC_SEVERITY) {
1044 /* call mce_severity() to get "msg" for panic */
1045 mce_severity(m, NULL, &msg, true);
1046 mce_panic("Fatal machine check", m, msg);
1047 }
1048
1049 /*
1050 * For UC somewhere we let the CPU who detects it handle it.
1051 * Also must let continue the others, otherwise the handling
1052 * CPU could deadlock on a lock.
1053 */
1054
1055 /*
1056 * No machine check event found. Must be some external
1057 * source or one CPU is hung. Panic.
1058 */
1059 if (global_worst <= MCE_KEEP_SEVERITY)
1060 mce_panic("Fatal machine check from unknown source", NULL, NULL);
1061
1062 /*
1063 * Now clear all the mces_seen so that they don't reappear on
1064 * the next mce.
1065 */
1066 for_each_possible_cpu(cpu)
1067 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
1068 }
1069
1070 static atomic_t global_nwo;
1071
1072 /*
1073 * Start of Monarch synchronization. This waits until all CPUs have
1074 * entered the exception handler and then determines if any of them
1075 * saw a fatal event that requires panic. Then it executes them
1076 * in the entry order.
1077 * TBD double check parallel CPU hotunplug
1078 */
mce_start(int * no_way_out)1079 static noinstr int mce_start(int *no_way_out)
1080 {
1081 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1082 int order, ret = -1;
1083
1084 if (!timeout)
1085 return ret;
1086
1087 raw_atomic_add(*no_way_out, &global_nwo);
1088 /*
1089 * Rely on the implied barrier below, such that global_nwo
1090 * is updated before mce_callin.
1091 */
1092 order = raw_atomic_inc_return(&mce_callin);
1093 arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
1094
1095 /* Enable instrumentation around calls to external facilities */
1096 instrumentation_begin();
1097
1098 /*
1099 * Wait for everyone.
1100 */
1101 while (raw_atomic_read(&mce_callin) != num_online_cpus()) {
1102 if (mce_timed_out(&timeout,
1103 "Timeout: Not all CPUs entered broadcast exception handler")) {
1104 raw_atomic_set(&global_nwo, 0);
1105 goto out;
1106 }
1107 ndelay(SPINUNIT);
1108 }
1109
1110 /*
1111 * mce_callin should be read before global_nwo
1112 */
1113 smp_rmb();
1114
1115 if (order == 1) {
1116 /*
1117 * Monarch: Starts executing now, the others wait.
1118 */
1119 raw_atomic_set(&mce_executing, 1);
1120 } else {
1121 /*
1122 * Subject: Now start the scanning loop one by one in
1123 * the original callin order.
1124 * This way when there are any shared banks it will be
1125 * only seen by one CPU before cleared, avoiding duplicates.
1126 */
1127 while (raw_atomic_read(&mce_executing) < order) {
1128 if (mce_timed_out(&timeout,
1129 "Timeout: Subject CPUs unable to finish machine check processing")) {
1130 raw_atomic_set(&global_nwo, 0);
1131 goto out;
1132 }
1133 ndelay(SPINUNIT);
1134 }
1135 }
1136
1137 /*
1138 * Cache the global no_way_out state.
1139 */
1140 *no_way_out = raw_atomic_read(&global_nwo);
1141
1142 ret = order;
1143
1144 out:
1145 instrumentation_end();
1146
1147 return ret;
1148 }
1149
1150 /*
1151 * Synchronize between CPUs after main scanning loop.
1152 * This invokes the bulk of the Monarch processing.
1153 */
mce_end(int order)1154 static noinstr int mce_end(int order)
1155 {
1156 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1157 int ret = -1;
1158
1159 /* Allow instrumentation around external facilities. */
1160 instrumentation_begin();
1161
1162 if (!timeout)
1163 goto reset;
1164 if (order < 0)
1165 goto reset;
1166
1167 /*
1168 * Allow others to run.
1169 */
1170 atomic_inc(&mce_executing);
1171
1172 if (order == 1) {
1173 /*
1174 * Monarch: Wait for everyone to go through their scanning
1175 * loops.
1176 */
1177 while (atomic_read(&mce_executing) <= num_online_cpus()) {
1178 if (mce_timed_out(&timeout,
1179 "Timeout: Monarch CPU unable to finish machine check processing"))
1180 goto reset;
1181 ndelay(SPINUNIT);
1182 }
1183
1184 mce_reign();
1185 barrier();
1186 ret = 0;
1187 } else {
1188 /*
1189 * Subject: Wait for Monarch to finish.
1190 */
1191 while (atomic_read(&mce_executing) != 0) {
1192 if (mce_timed_out(&timeout,
1193 "Timeout: Monarch CPU did not finish machine check processing"))
1194 goto reset;
1195 ndelay(SPINUNIT);
1196 }
1197
1198 /*
1199 * Don't reset anything. That's done by the Monarch.
1200 */
1201 ret = 0;
1202 goto out;
1203 }
1204
1205 /*
1206 * Reset all global state.
1207 */
1208 reset:
1209 atomic_set(&global_nwo, 0);
1210 atomic_set(&mce_callin, 0);
1211 cpumask_setall(&mce_missing_cpus);
1212 barrier();
1213
1214 /*
1215 * Let others run again.
1216 */
1217 atomic_set(&mce_executing, 0);
1218
1219 out:
1220 instrumentation_end();
1221
1222 return ret;
1223 }
1224
mce_clear_state(unsigned long * toclear)1225 static __always_inline void mce_clear_state(unsigned long *toclear)
1226 {
1227 int i;
1228
1229 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1230 if (arch_test_bit(i, toclear))
1231 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1232 }
1233 }
1234
1235 /*
1236 * Cases where we avoid rendezvous handler timeout:
1237 * 1) If this CPU is offline.
1238 *
1239 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1240 * skip those CPUs which remain looping in the 1st kernel - see
1241 * crash_nmi_callback().
1242 *
1243 * Note: there still is a small window between kexec-ing and the new,
1244 * kdump kernel establishing a new #MC handler where a broadcasted MCE
1245 * might not get handled properly.
1246 */
mce_check_crashing_cpu(void)1247 static noinstr bool mce_check_crashing_cpu(void)
1248 {
1249 unsigned int cpu = smp_processor_id();
1250
1251 if (arch_cpu_is_offline(cpu) ||
1252 (crashing_cpu != -1 && crashing_cpu != cpu)) {
1253 u64 mcgstatus;
1254
1255 mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1256
1257 if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1258 if (mcgstatus & MCG_STATUS_LMCES)
1259 return false;
1260 }
1261
1262 if (mcgstatus & MCG_STATUS_RIPV) {
1263 __wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1264 return true;
1265 }
1266 }
1267 return false;
1268 }
1269
1270 static __always_inline int
__mc_scan_banks(struct mce * m,struct pt_regs * regs,struct mce * final,unsigned long * toclear,unsigned long * valid_banks,int no_way_out,int * worst)1271 __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
1272 unsigned long *toclear, unsigned long *valid_banks, int no_way_out,
1273 int *worst)
1274 {
1275 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1276 struct mca_config *cfg = &mca_cfg;
1277 int severity, i, taint = 0;
1278
1279 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1280 arch___clear_bit(i, toclear);
1281 if (!arch_test_bit(i, valid_banks))
1282 continue;
1283
1284 if (!mce_banks[i].ctl)
1285 continue;
1286
1287 m->misc = 0;
1288 m->addr = 0;
1289 m->bank = i;
1290
1291 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
1292 if (!(m->status & MCI_STATUS_VAL))
1293 continue;
1294
1295 /*
1296 * Corrected or non-signaled errors are handled by
1297 * machine_check_poll(). Leave them alone, unless this panics.
1298 */
1299 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1300 !no_way_out)
1301 continue;
1302
1303 /* Set taint even when machine check was not enabled. */
1304 taint++;
1305
1306 severity = mce_severity(m, regs, NULL, true);
1307
1308 /*
1309 * When machine check was for corrected/deferred handler don't
1310 * touch, unless we're panicking.
1311 */
1312 if ((severity == MCE_KEEP_SEVERITY ||
1313 severity == MCE_UCNA_SEVERITY) && !no_way_out)
1314 continue;
1315
1316 arch___set_bit(i, toclear);
1317
1318 /* Machine check event was not enabled. Clear, but ignore. */
1319 if (severity == MCE_NO_SEVERITY)
1320 continue;
1321
1322 mce_read_aux(m, i);
1323
1324 /* assuming valid severity level != 0 */
1325 m->severity = severity;
1326
1327 /*
1328 * Enable instrumentation around the mce_log() call which is
1329 * done in #MC context, where instrumentation is disabled.
1330 */
1331 instrumentation_begin();
1332 mce_log(m);
1333 instrumentation_end();
1334
1335 if (severity > *worst) {
1336 *final = *m;
1337 *worst = severity;
1338 }
1339 }
1340
1341 /* mce_clear_state will clear *final, save locally for use later */
1342 *m = *final;
1343
1344 return taint;
1345 }
1346
kill_me_now(struct callback_head * ch)1347 static void kill_me_now(struct callback_head *ch)
1348 {
1349 struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
1350
1351 p->mce_count = 0;
1352 force_sig(SIGBUS);
1353 }
1354
kill_me_maybe(struct callback_head * cb)1355 static void kill_me_maybe(struct callback_head *cb)
1356 {
1357 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1358 int flags = MF_ACTION_REQUIRED;
1359 unsigned long pfn;
1360 int ret;
1361
1362 p->mce_count = 0;
1363 pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1364
1365 if (!p->mce_ripv)
1366 flags |= MF_MUST_KILL;
1367
1368 pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
1369 ret = memory_failure(pfn, flags);
1370 if (!ret) {
1371 set_mce_nospec(pfn);
1372 sync_core();
1373 return;
1374 }
1375
1376 /*
1377 * -EHWPOISON from memory_failure() means that it already sent SIGBUS
1378 * to the current process with the proper error info,
1379 * -EOPNOTSUPP means hwpoison_filter() filtered the error event,
1380 *
1381 * In both cases, no further processing is required.
1382 */
1383 if (ret == -EHWPOISON || ret == -EOPNOTSUPP)
1384 return;
1385
1386 pr_err("Memory error not recovered");
1387 kill_me_now(cb);
1388 }
1389
kill_me_never(struct callback_head * cb)1390 static void kill_me_never(struct callback_head *cb)
1391 {
1392 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1393 unsigned long pfn;
1394
1395 p->mce_count = 0;
1396 pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr);
1397 pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
1398 if (!memory_failure(pfn, 0))
1399 set_mce_nospec(pfn);
1400 }
1401
queue_task_work(struct mce * m,char * msg,void (* func)(struct callback_head *))1402 static void queue_task_work(struct mce *m, char *msg, void (*func)(struct callback_head *))
1403 {
1404 int count = ++current->mce_count;
1405
1406 /* First call, save all the details */
1407 if (count == 1) {
1408 current->mce_addr = m->addr;
1409 current->mce_kflags = m->kflags;
1410 current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1411 current->mce_whole_page = whole_page(m);
1412 current->mce_kill_me.func = func;
1413 }
1414
1415 /* Ten is likely overkill. Don't expect more than two faults before task_work() */
1416 if (count > 10)
1417 mce_panic("Too many consecutive machine checks while accessing user data", m, msg);
1418
1419 /* Second or later call, make sure page address matches the one from first call */
1420 if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
1421 mce_panic("Consecutive machine checks to different user pages", m, msg);
1422
1423 /* Do not call task_work_add() more than once */
1424 if (count > 1)
1425 return;
1426
1427 task_work_add(current, ¤t->mce_kill_me, TWA_RESUME);
1428 }
1429
1430 /* Handle unconfigured int18 (should never happen) */
unexpected_machine_check(struct pt_regs * regs)1431 static noinstr void unexpected_machine_check(struct pt_regs *regs)
1432 {
1433 instrumentation_begin();
1434 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1435 smp_processor_id());
1436 instrumentation_end();
1437 }
1438
1439 /*
1440 * The actual machine check handler. This only handles real exceptions when
1441 * something got corrupted coming in through int 18.
1442 *
1443 * This is executed in #MC context not subject to normal locking rules.
1444 * This implies that most kernel services cannot be safely used. Don't even
1445 * think about putting a printk in there!
1446 *
1447 * On Intel systems this is entered on all CPUs in parallel through
1448 * MCE broadcast. However some CPUs might be broken beyond repair,
1449 * so be always careful when synchronizing with others.
1450 *
1451 * Tracing and kprobes are disabled: if we interrupted a kernel context
1452 * with IF=1, we need to minimize stack usage. There are also recursion
1453 * issues: if the machine check was due to a failure of the memory
1454 * backing the user stack, tracing that reads the user stack will cause
1455 * potentially infinite recursion.
1456 *
1457 * Currently, the #MC handler calls out to a number of external facilities
1458 * and, therefore, allows instrumentation around them. The optimal thing to
1459 * have would be to do the absolutely minimal work required in #MC context
1460 * and have instrumentation disabled only around that. Further processing can
1461 * then happen in process context where instrumentation is allowed. Achieving
1462 * that requires careful auditing and modifications. Until then, the code
1463 * allows instrumentation temporarily, where required. *
1464 */
do_machine_check(struct pt_regs * regs)1465 noinstr void do_machine_check(struct pt_regs *regs)
1466 {
1467 int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0;
1468 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 };
1469 DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 };
1470 struct mce m, *final;
1471 char *msg = NULL;
1472
1473 if (unlikely(mce_flags.p5))
1474 return pentium_machine_check(regs);
1475 else if (unlikely(mce_flags.winchip))
1476 return winchip_machine_check(regs);
1477 else if (unlikely(!mca_cfg.initialized))
1478 return unexpected_machine_check(regs);
1479
1480 if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov())
1481 goto clear;
1482
1483 /*
1484 * Establish sequential order between the CPUs entering the machine
1485 * check handler.
1486 */
1487 order = -1;
1488
1489 /*
1490 * If no_way_out gets set, there is no safe way to recover from this
1491 * MCE.
1492 */
1493 no_way_out = 0;
1494
1495 /*
1496 * If kill_current_task is not set, there might be a way to recover from this
1497 * error.
1498 */
1499 kill_current_task = 0;
1500
1501 /*
1502 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1503 * on Intel.
1504 */
1505 lmce = 1;
1506
1507 this_cpu_inc(mce_exception_count);
1508
1509 mce_gather_info(&m, regs);
1510 m.tsc = rdtsc();
1511
1512 final = this_cpu_ptr(&mces_seen);
1513 *final = m;
1514
1515 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1516
1517 barrier();
1518
1519 /*
1520 * When no restart IP might need to kill or panic.
1521 * Assume the worst for now, but if we find the
1522 * severity is MCE_AR_SEVERITY we have other options.
1523 */
1524 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1525 kill_current_task = 1;
1526 /*
1527 * Check if this MCE is signaled to only this logical processor,
1528 * on Intel, Zhaoxin only.
1529 */
1530 if (m.cpuvendor == X86_VENDOR_INTEL ||
1531 m.cpuvendor == X86_VENDOR_ZHAOXIN)
1532 lmce = m.mcgstatus & MCG_STATUS_LMCES;
1533
1534 /*
1535 * Local machine check may already know that we have to panic.
1536 * Broadcast machine check begins rendezvous in mce_start()
1537 * Go through all banks in exclusion of the other CPUs. This way we
1538 * don't report duplicated events on shared banks because the first one
1539 * to see it will clear it.
1540 */
1541 if (lmce) {
1542 if (no_way_out)
1543 mce_panic("Fatal local machine check", &m, msg);
1544 } else {
1545 order = mce_start(&no_way_out);
1546 }
1547
1548 taint = __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
1549
1550 if (!no_way_out)
1551 mce_clear_state(toclear);
1552
1553 /*
1554 * Do most of the synchronization with other CPUs.
1555 * When there's any problem use only local no_way_out state.
1556 */
1557 if (!lmce) {
1558 if (mce_end(order) < 0) {
1559 if (!no_way_out)
1560 no_way_out = worst >= MCE_PANIC_SEVERITY;
1561
1562 if (no_way_out)
1563 mce_panic("Fatal machine check on current CPU", &m, msg);
1564 }
1565 } else {
1566 /*
1567 * If there was a fatal machine check we should have
1568 * already called mce_panic earlier in this function.
1569 * Since we re-read the banks, we might have found
1570 * something new. Check again to see if we found a
1571 * fatal error. We call "mce_severity()" again to
1572 * make sure we have the right "msg".
1573 */
1574 if (worst >= MCE_PANIC_SEVERITY) {
1575 mce_severity(&m, regs, &msg, true);
1576 mce_panic("Local fatal machine check!", &m, msg);
1577 }
1578 }
1579
1580 /*
1581 * Enable instrumentation around the external facilities like task_work_add()
1582 * (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this
1583 * properly would need a lot more involved reorganization.
1584 */
1585 instrumentation_begin();
1586
1587 if (taint)
1588 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1589
1590 if (worst != MCE_AR_SEVERITY && !kill_current_task)
1591 goto out;
1592
1593 /* Fault was in user mode and we need to take some action */
1594 if ((m.cs & 3) == 3) {
1595 /* If this triggers there is no way to recover. Die hard. */
1596 BUG_ON(!on_thread_stack() || !user_mode(regs));
1597
1598 if (!mce_usable_address(&m))
1599 queue_task_work(&m, msg, kill_me_now);
1600 else
1601 queue_task_work(&m, msg, kill_me_maybe);
1602
1603 } else if (m.mcgstatus & MCG_STATUS_SEAM_NR) {
1604 /*
1605 * Saved RIP on stack makes it look like the machine check
1606 * was taken in the kernel on the instruction following
1607 * the entry to SEAM mode. But MCG_STATUS_SEAM_NR indicates
1608 * that the machine check was taken inside SEAM non-root
1609 * mode. CPU core has already marked that guest as dead.
1610 * It is OK for the kernel to resume execution at the
1611 * apparent point of the machine check as the fault did
1612 * not occur there. Mark the page as poisoned so it won't
1613 * be added to free list when the guest is terminated.
1614 */
1615 if (mce_usable_address(&m)) {
1616 struct page *p = pfn_to_online_page(m.addr >> PAGE_SHIFT);
1617
1618 if (p)
1619 SetPageHWPoison(p);
1620 }
1621 } else {
1622 /*
1623 * Handle an MCE which has happened in kernel space but from
1624 * which the kernel can recover: ex_has_fault_handler() has
1625 * already verified that the rIP at which the error happened is
1626 * a rIP from which the kernel can recover (by jumping to
1627 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1628 * corresponding exception handler which would do that is the
1629 * proper one.
1630 */
1631 if (m.kflags & MCE_IN_KERNEL_RECOV) {
1632 if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1633 mce_panic("Failed kernel mode recovery", &m, msg);
1634 }
1635
1636 if (m.kflags & MCE_IN_KERNEL_COPYIN)
1637 queue_task_work(&m, msg, kill_me_never);
1638 }
1639
1640 out:
1641 instrumentation_end();
1642
1643 clear:
1644 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1645 }
1646 EXPORT_SYMBOL_GPL(do_machine_check);
1647
1648 #ifndef CONFIG_MEMORY_FAILURE
memory_failure(unsigned long pfn,int flags)1649 int memory_failure(unsigned long pfn, int flags)
1650 {
1651 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1652 BUG_ON(flags & MF_ACTION_REQUIRED);
1653 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1654 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1655 pfn);
1656
1657 return 0;
1658 }
1659 #endif
1660
1661 /*
1662 * Periodic polling timer for "silent" machine check errors. If the
1663 * poller finds an MCE, poll 2x faster. When the poller finds no more
1664 * errors, poll 2x slower (up to check_interval seconds).
1665 */
1666 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1667
1668 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1669 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1670
__start_timer(struct timer_list * t,unsigned long interval)1671 static void __start_timer(struct timer_list *t, unsigned long interval)
1672 {
1673 unsigned long when = jiffies + interval;
1674 unsigned long flags;
1675
1676 local_irq_save(flags);
1677
1678 if (!timer_pending(t) || time_before(when, t->expires))
1679 mod_timer(t, round_jiffies(when));
1680
1681 local_irq_restore(flags);
1682 }
1683
mc_poll_banks_default(void)1684 static void mc_poll_banks_default(void)
1685 {
1686 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1687 }
1688
1689 void (*mc_poll_banks)(void) = mc_poll_banks_default;
1690
should_enable_timer(unsigned long iv)1691 static bool should_enable_timer(unsigned long iv)
1692 {
1693 return !mca_cfg.ignore_ce && iv;
1694 }
1695
mce_timer_fn(struct timer_list * t)1696 static void mce_timer_fn(struct timer_list *t)
1697 {
1698 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1699 unsigned long iv;
1700
1701 WARN_ON(cpu_t != t);
1702
1703 iv = __this_cpu_read(mce_next_interval);
1704
1705 if (mce_available(this_cpu_ptr(&cpu_info)))
1706 mc_poll_banks();
1707
1708 /*
1709 * Alert userspace if needed. If we logged an MCE, reduce the polling
1710 * interval, otherwise increase the polling interval.
1711 */
1712 if (mce_notify_irq())
1713 iv = max(iv / 2, (unsigned long) HZ/100);
1714 else
1715 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1716
1717 if (mce_get_storm_mode()) {
1718 __start_timer(t, HZ);
1719 } else if (should_enable_timer(iv)) {
1720 __this_cpu_write(mce_next_interval, iv);
1721 __start_timer(t, iv);
1722 }
1723 }
1724
1725 /*
1726 * When a storm starts on any bank on this CPU, switch to polling
1727 * once per second. When the storm ends, revert to the default
1728 * polling interval.
1729 */
mce_timer_kick(bool storm)1730 void mce_timer_kick(bool storm)
1731 {
1732 struct timer_list *t = this_cpu_ptr(&mce_timer);
1733
1734 mce_set_storm_mode(storm);
1735
1736 if (storm)
1737 __start_timer(t, HZ);
1738 else
1739 __this_cpu_write(mce_next_interval, check_interval * HZ);
1740 }
1741
1742 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
mce_timer_delete_all(void)1743 static void mce_timer_delete_all(void)
1744 {
1745 int cpu;
1746
1747 for_each_online_cpu(cpu)
1748 del_timer_sync(&per_cpu(mce_timer, cpu));
1749 }
1750
1751 /*
1752 * Notify the user(s) about new machine check events.
1753 * Can be called from interrupt context, but not from machine check/NMI
1754 * context.
1755 */
mce_notify_irq(void)1756 int mce_notify_irq(void)
1757 {
1758 /* Not more than two messages every minute */
1759 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1760
1761 if (test_and_clear_bit(0, &mce_need_notify)) {
1762 mce_work_trigger();
1763
1764 if (__ratelimit(&ratelimit))
1765 pr_info(HW_ERR "Machine check events logged\n");
1766
1767 return 1;
1768 }
1769 return 0;
1770 }
1771 EXPORT_SYMBOL_GPL(mce_notify_irq);
1772
__mcheck_cpu_mce_banks_init(void)1773 static void __mcheck_cpu_mce_banks_init(void)
1774 {
1775 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1776 u8 n_banks = this_cpu_read(mce_num_banks);
1777 int i;
1778
1779 for (i = 0; i < n_banks; i++) {
1780 struct mce_bank *b = &mce_banks[i];
1781
1782 /*
1783 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1784 * the required vendor quirks before
1785 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1786 */
1787 b->ctl = -1ULL;
1788 b->init = true;
1789 }
1790 }
1791
1792 /*
1793 * Initialize Machine Checks for a CPU.
1794 */
__mcheck_cpu_cap_init(void)1795 static void __mcheck_cpu_cap_init(void)
1796 {
1797 u64 cap;
1798 u8 b;
1799
1800 rdmsrl(MSR_IA32_MCG_CAP, cap);
1801
1802 b = cap & MCG_BANKCNT_MASK;
1803
1804 if (b > MAX_NR_BANKS) {
1805 pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1806 smp_processor_id(), MAX_NR_BANKS, b);
1807 b = MAX_NR_BANKS;
1808 }
1809
1810 this_cpu_write(mce_num_banks, b);
1811
1812 __mcheck_cpu_mce_banks_init();
1813
1814 /* Use accurate RIP reporting if available. */
1815 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1816 mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1817
1818 if (cap & MCG_SER_P)
1819 mca_cfg.ser = 1;
1820 }
1821
__mcheck_cpu_init_generic(void)1822 static void __mcheck_cpu_init_generic(void)
1823 {
1824 enum mcp_flags m_fl = 0;
1825 mce_banks_t all_banks;
1826 u64 cap;
1827
1828 if (!mca_cfg.bootlog)
1829 m_fl = MCP_DONTLOG;
1830
1831 /*
1832 * Log the machine checks left over from the previous reset. Log them
1833 * only, do not start processing them. That will happen in mcheck_late_init()
1834 * when all consumers have been registered on the notifier chain.
1835 */
1836 bitmap_fill(all_banks, MAX_NR_BANKS);
1837 machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks);
1838
1839 cr4_set_bits(X86_CR4_MCE);
1840
1841 rdmsrl(MSR_IA32_MCG_CAP, cap);
1842 if (cap & MCG_CTL_P)
1843 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1844 }
1845
__mcheck_cpu_init_clear_banks(void)1846 static void __mcheck_cpu_init_clear_banks(void)
1847 {
1848 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1849 int i;
1850
1851 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1852 struct mce_bank *b = &mce_banks[i];
1853
1854 if (!b->init)
1855 continue;
1856 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
1857 wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1858 }
1859 }
1860
1861 /*
1862 * Do a final check to see if there are any unused/RAZ banks.
1863 *
1864 * This must be done after the banks have been initialized and any quirks have
1865 * been applied.
1866 *
1867 * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1868 * Otherwise, a user who disables a bank will not be able to re-enable it
1869 * without a system reboot.
1870 */
__mcheck_cpu_check_banks(void)1871 static void __mcheck_cpu_check_banks(void)
1872 {
1873 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1874 u64 msrval;
1875 int i;
1876
1877 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1878 struct mce_bank *b = &mce_banks[i];
1879
1880 if (!b->init)
1881 continue;
1882
1883 rdmsrl(mca_msr_reg(i, MCA_CTL), msrval);
1884 b->init = !!msrval;
1885 }
1886 }
1887
1888 /* Add per CPU specific workarounds here */
__mcheck_cpu_apply_quirks(struct cpuinfo_x86 * c)1889 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1890 {
1891 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1892 struct mca_config *cfg = &mca_cfg;
1893
1894 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1895 pr_info("unknown CPU type - not enabling MCE support\n");
1896 return -EOPNOTSUPP;
1897 }
1898
1899 /* This should be disabled by the BIOS, but isn't always */
1900 if (c->x86_vendor == X86_VENDOR_AMD) {
1901 if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1902 /*
1903 * disable GART TBL walk error reporting, which
1904 * trips off incorrectly with the IOMMU & 3ware
1905 * & Cerberus:
1906 */
1907 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1908 }
1909 if (c->x86 < 0x11 && cfg->bootlog < 0) {
1910 /*
1911 * Lots of broken BIOS around that don't clear them
1912 * by default and leave crap in there. Don't log:
1913 */
1914 cfg->bootlog = 0;
1915 }
1916 /*
1917 * Various K7s with broken bank 0 around. Always disable
1918 * by default.
1919 */
1920 if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1921 mce_banks[0].ctl = 0;
1922
1923 /*
1924 * overflow_recov is supported for F15h Models 00h-0fh
1925 * even though we don't have a CPUID bit for it.
1926 */
1927 if (c->x86 == 0x15 && c->x86_model <= 0xf)
1928 mce_flags.overflow_recov = 1;
1929
1930 if (c->x86 >= 0x17 && c->x86 <= 0x1A)
1931 mce_flags.zen_ifu_quirk = 1;
1932
1933 }
1934
1935 if (c->x86_vendor == X86_VENDOR_INTEL) {
1936 /*
1937 * SDM documents that on family 6 bank 0 should not be written
1938 * because it aliases to another special BIOS controlled
1939 * register.
1940 * But it's not aliased anymore on model 0x1a+
1941 * Don't ignore bank 0 completely because there could be a
1942 * valid event later, merely don't write CTL0.
1943 */
1944
1945 if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1946 mce_banks[0].init = false;
1947
1948 /*
1949 * All newer Intel systems support MCE broadcasting. Enable
1950 * synchronization with a one second timeout.
1951 */
1952 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1953 cfg->monarch_timeout < 0)
1954 cfg->monarch_timeout = USEC_PER_SEC;
1955
1956 /*
1957 * There are also broken BIOSes on some Pentium M and
1958 * earlier systems:
1959 */
1960 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1961 cfg->bootlog = 0;
1962
1963 if (c->x86_vfm == INTEL_SANDYBRIDGE_X)
1964 mce_flags.snb_ifu_quirk = 1;
1965
1966 /*
1967 * Skylake, Cascacde Lake and Cooper Lake require a quirk on
1968 * rep movs.
1969 */
1970 if (c->x86_vfm == INTEL_SKYLAKE_X)
1971 mce_flags.skx_repmov_quirk = 1;
1972 }
1973
1974 if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1975 /*
1976 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1977 * synchronization with a one second timeout.
1978 */
1979 if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1980 if (cfg->monarch_timeout < 0)
1981 cfg->monarch_timeout = USEC_PER_SEC;
1982 }
1983 }
1984
1985 if (cfg->monarch_timeout < 0)
1986 cfg->monarch_timeout = 0;
1987 if (cfg->bootlog != 0)
1988 cfg->panic_timeout = 30;
1989
1990 return 0;
1991 }
1992
__mcheck_cpu_ancient_init(struct cpuinfo_x86 * c)1993 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1994 {
1995 if (c->x86 != 5)
1996 return 0;
1997
1998 switch (c->x86_vendor) {
1999 case X86_VENDOR_INTEL:
2000 intel_p5_mcheck_init(c);
2001 mce_flags.p5 = 1;
2002 return 1;
2003 case X86_VENDOR_CENTAUR:
2004 winchip_mcheck_init(c);
2005 mce_flags.winchip = 1;
2006 return 1;
2007 default:
2008 return 0;
2009 }
2010
2011 return 0;
2012 }
2013
2014 /*
2015 * Init basic CPU features needed for early decoding of MCEs.
2016 */
__mcheck_cpu_init_early(struct cpuinfo_x86 * c)2017 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
2018 {
2019 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
2020 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
2021 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR);
2022 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA);
2023 mce_flags.amd_threshold = 1;
2024 }
2025 }
2026
mce_centaur_feature_init(struct cpuinfo_x86 * c)2027 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
2028 {
2029 struct mca_config *cfg = &mca_cfg;
2030
2031 /*
2032 * All newer Centaur CPUs support MCE broadcasting. Enable
2033 * synchronization with a one second timeout.
2034 */
2035 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
2036 c->x86 > 6) {
2037 if (cfg->monarch_timeout < 0)
2038 cfg->monarch_timeout = USEC_PER_SEC;
2039 }
2040 }
2041
mce_zhaoxin_feature_init(struct cpuinfo_x86 * c)2042 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
2043 {
2044 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2045
2046 /*
2047 * These CPUs have MCA bank 8 which reports only one error type called
2048 * SVAD (System View Address Decoder). The reporting of that error is
2049 * controlled by IA32_MC8.CTL.0.
2050 *
2051 * If enabled, prefetching on these CPUs will cause SVAD MCE when
2052 * virtual machines start and result in a system panic. Always disable
2053 * bank 8 SVAD error by default.
2054 */
2055 if ((c->x86 == 7 && c->x86_model == 0x1b) ||
2056 (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
2057 if (this_cpu_read(mce_num_banks) > 8)
2058 mce_banks[8].ctl = 0;
2059 }
2060
2061 intel_init_cmci();
2062 intel_init_lmce();
2063 }
2064
mce_zhaoxin_feature_clear(struct cpuinfo_x86 * c)2065 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
2066 {
2067 intel_clear_lmce();
2068 }
2069
__mcheck_cpu_init_vendor(struct cpuinfo_x86 * c)2070 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
2071 {
2072 switch (c->x86_vendor) {
2073 case X86_VENDOR_INTEL:
2074 mce_intel_feature_init(c);
2075 break;
2076
2077 case X86_VENDOR_AMD: {
2078 mce_amd_feature_init(c);
2079 break;
2080 }
2081
2082 case X86_VENDOR_HYGON:
2083 mce_hygon_feature_init(c);
2084 break;
2085
2086 case X86_VENDOR_CENTAUR:
2087 mce_centaur_feature_init(c);
2088 break;
2089
2090 case X86_VENDOR_ZHAOXIN:
2091 mce_zhaoxin_feature_init(c);
2092 break;
2093
2094 default:
2095 break;
2096 }
2097 }
2098
__mcheck_cpu_clear_vendor(struct cpuinfo_x86 * c)2099 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
2100 {
2101 switch (c->x86_vendor) {
2102 case X86_VENDOR_INTEL:
2103 mce_intel_feature_clear(c);
2104 break;
2105
2106 case X86_VENDOR_ZHAOXIN:
2107 mce_zhaoxin_feature_clear(c);
2108 break;
2109
2110 default:
2111 break;
2112 }
2113 }
2114
mce_start_timer(struct timer_list * t)2115 static void mce_start_timer(struct timer_list *t)
2116 {
2117 unsigned long iv = check_interval * HZ;
2118
2119 if (should_enable_timer(iv)) {
2120 this_cpu_write(mce_next_interval, iv);
2121 __start_timer(t, iv);
2122 }
2123 }
2124
__mcheck_cpu_setup_timer(void)2125 static void __mcheck_cpu_setup_timer(void)
2126 {
2127 struct timer_list *t = this_cpu_ptr(&mce_timer);
2128
2129 timer_setup(t, mce_timer_fn, TIMER_PINNED);
2130 }
2131
__mcheck_cpu_init_timer(void)2132 static void __mcheck_cpu_init_timer(void)
2133 {
2134 struct timer_list *t = this_cpu_ptr(&mce_timer);
2135
2136 timer_setup(t, mce_timer_fn, TIMER_PINNED);
2137 mce_start_timer(t);
2138 }
2139
filter_mce(struct mce * m)2140 bool filter_mce(struct mce *m)
2141 {
2142 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
2143 return amd_filter_mce(m);
2144 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2145 return intel_filter_mce(m);
2146
2147 return false;
2148 }
2149
exc_machine_check_kernel(struct pt_regs * regs)2150 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
2151 {
2152 irqentry_state_t irq_state;
2153
2154 WARN_ON_ONCE(user_mode(regs));
2155
2156 /*
2157 * Only required when from kernel mode. See
2158 * mce_check_crashing_cpu() for details.
2159 */
2160 if (mca_cfg.initialized && mce_check_crashing_cpu())
2161 return;
2162
2163 irq_state = irqentry_nmi_enter(regs);
2164
2165 do_machine_check(regs);
2166
2167 irqentry_nmi_exit(regs, irq_state);
2168 }
2169
exc_machine_check_user(struct pt_regs * regs)2170 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2171 {
2172 irqentry_enter_from_user_mode(regs);
2173
2174 do_machine_check(regs);
2175
2176 irqentry_exit_to_user_mode(regs);
2177 }
2178
2179 #ifdef CONFIG_X86_64
2180 /* MCE hit kernel mode */
DEFINE_IDTENTRY_MCE(exc_machine_check)2181 DEFINE_IDTENTRY_MCE(exc_machine_check)
2182 {
2183 unsigned long dr7;
2184
2185 dr7 = local_db_save();
2186 exc_machine_check_kernel(regs);
2187 local_db_restore(dr7);
2188 }
2189
2190 /* The user mode variant. */
DEFINE_IDTENTRY_MCE_USER(exc_machine_check)2191 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2192 {
2193 unsigned long dr7;
2194
2195 dr7 = local_db_save();
2196 exc_machine_check_user(regs);
2197 local_db_restore(dr7);
2198 }
2199
2200 #ifdef CONFIG_X86_FRED
2201 /*
2202 * When occurred on different ring level, i.e., from user or kernel
2203 * context, #MCE needs to be handled on different stack: User #MCE
2204 * on current task stack, while kernel #MCE on a dedicated stack.
2205 *
2206 * This is exactly how FRED event delivery invokes an exception
2207 * handler: ring 3 event on level 0 stack, i.e., current task stack;
2208 * ring 0 event on the #MCE dedicated stack specified in the
2209 * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED machine check entry
2210 * stub doesn't do stack switch.
2211 */
DEFINE_FREDENTRY_MCE(exc_machine_check)2212 DEFINE_FREDENTRY_MCE(exc_machine_check)
2213 {
2214 unsigned long dr7;
2215
2216 dr7 = local_db_save();
2217 if (user_mode(regs))
2218 exc_machine_check_user(regs);
2219 else
2220 exc_machine_check_kernel(regs);
2221 local_db_restore(dr7);
2222 }
2223 #endif
2224 #else
2225 /* 32bit unified entry point */
DEFINE_IDTENTRY_RAW(exc_machine_check)2226 DEFINE_IDTENTRY_RAW(exc_machine_check)
2227 {
2228 unsigned long dr7;
2229
2230 dr7 = local_db_save();
2231 if (user_mode(regs))
2232 exc_machine_check_user(regs);
2233 else
2234 exc_machine_check_kernel(regs);
2235 local_db_restore(dr7);
2236 }
2237 #endif
2238
2239 /*
2240 * Called for each booted CPU to set up machine checks.
2241 * Must be called with preempt off:
2242 */
mcheck_cpu_init(struct cpuinfo_x86 * c)2243 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2244 {
2245 if (mca_cfg.disabled)
2246 return;
2247
2248 if (__mcheck_cpu_ancient_init(c))
2249 return;
2250
2251 if (!mce_available(c))
2252 return;
2253
2254 __mcheck_cpu_cap_init();
2255
2256 if (__mcheck_cpu_apply_quirks(c) < 0) {
2257 mca_cfg.disabled = 1;
2258 return;
2259 }
2260
2261 if (mce_gen_pool_init()) {
2262 mca_cfg.disabled = 1;
2263 pr_emerg("Couldn't allocate MCE records pool!\n");
2264 return;
2265 }
2266
2267 mca_cfg.initialized = 1;
2268
2269 __mcheck_cpu_init_early(c);
2270 __mcheck_cpu_init_generic();
2271 __mcheck_cpu_init_vendor(c);
2272 __mcheck_cpu_init_clear_banks();
2273 __mcheck_cpu_check_banks();
2274 __mcheck_cpu_setup_timer();
2275 }
2276
2277 /*
2278 * Called for each booted CPU to clear some machine checks opt-ins
2279 */
mcheck_cpu_clear(struct cpuinfo_x86 * c)2280 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2281 {
2282 if (mca_cfg.disabled)
2283 return;
2284
2285 if (!mce_available(c))
2286 return;
2287
2288 /*
2289 * Possibly to clear general settings generic to x86
2290 * __mcheck_cpu_clear_generic(c);
2291 */
2292 __mcheck_cpu_clear_vendor(c);
2293
2294 }
2295
__mce_disable_bank(void * arg)2296 static void __mce_disable_bank(void *arg)
2297 {
2298 int bank = *((int *)arg);
2299 __clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2300 cmci_disable_bank(bank);
2301 }
2302
mce_disable_bank(int bank)2303 void mce_disable_bank(int bank)
2304 {
2305 if (bank >= this_cpu_read(mce_num_banks)) {
2306 pr_warn(FW_BUG
2307 "Ignoring request to disable invalid MCA bank %d.\n",
2308 bank);
2309 return;
2310 }
2311 set_bit(bank, mce_banks_ce_disabled);
2312 on_each_cpu(__mce_disable_bank, &bank, 1);
2313 }
2314
2315 /*
2316 * mce=off Disables machine check
2317 * mce=no_cmci Disables CMCI
2318 * mce=no_lmce Disables LMCE
2319 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2320 * mce=print_all Print all machine check logs to console
2321 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2322 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2323 * monarchtimeout is how long to wait for other CPUs on machine
2324 * check, or 0 to not wait
2325 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2326 and older.
2327 * mce=nobootlog Don't log MCEs from before booting.
2328 * mce=bios_cmci_threshold Don't program the CMCI threshold
2329 * mce=recovery force enable copy_mc_fragile()
2330 */
mcheck_enable(char * str)2331 static int __init mcheck_enable(char *str)
2332 {
2333 struct mca_config *cfg = &mca_cfg;
2334
2335 if (*str == 0) {
2336 enable_p5_mce();
2337 return 1;
2338 }
2339 if (*str == '=')
2340 str++;
2341 if (!strcmp(str, "off"))
2342 cfg->disabled = 1;
2343 else if (!strcmp(str, "no_cmci"))
2344 cfg->cmci_disabled = true;
2345 else if (!strcmp(str, "no_lmce"))
2346 cfg->lmce_disabled = 1;
2347 else if (!strcmp(str, "dont_log_ce"))
2348 cfg->dont_log_ce = true;
2349 else if (!strcmp(str, "print_all"))
2350 cfg->print_all = true;
2351 else if (!strcmp(str, "ignore_ce"))
2352 cfg->ignore_ce = true;
2353 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2354 cfg->bootlog = (str[0] == 'b');
2355 else if (!strcmp(str, "bios_cmci_threshold"))
2356 cfg->bios_cmci_threshold = 1;
2357 else if (!strcmp(str, "recovery"))
2358 cfg->recovery = 1;
2359 else if (isdigit(str[0]))
2360 get_option(&str, &(cfg->monarch_timeout));
2361 else {
2362 pr_info("mce argument %s ignored. Please use /sys\n", str);
2363 return 0;
2364 }
2365 return 1;
2366 }
2367 __setup("mce", mcheck_enable);
2368
mcheck_init(void)2369 int __init mcheck_init(void)
2370 {
2371 mce_register_decode_chain(&early_nb);
2372 mce_register_decode_chain(&mce_uc_nb);
2373 mce_register_decode_chain(&mce_default_nb);
2374
2375 INIT_WORK(&mce_work, mce_gen_pool_process);
2376 init_irq_work(&mce_irq_work, mce_irq_work_cb);
2377
2378 return 0;
2379 }
2380
2381 /*
2382 * mce_syscore: PM support
2383 */
2384
2385 /*
2386 * Disable machine checks on suspend and shutdown. We can't really handle
2387 * them later.
2388 */
mce_disable_error_reporting(void)2389 static void mce_disable_error_reporting(void)
2390 {
2391 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2392 int i;
2393
2394 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2395 struct mce_bank *b = &mce_banks[i];
2396
2397 if (b->init)
2398 wrmsrl(mca_msr_reg(i, MCA_CTL), 0);
2399 }
2400 return;
2401 }
2402
vendor_disable_error_reporting(void)2403 static void vendor_disable_error_reporting(void)
2404 {
2405 /*
2406 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2407 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2408 * is bad, since it will inhibit reporting for all shared resources on
2409 * the socket like the last level cache (LLC), the integrated memory
2410 * controller (iMC), etc.
2411 */
2412 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2413 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2414 boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2415 boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2416 return;
2417
2418 mce_disable_error_reporting();
2419 }
2420
mce_syscore_suspend(void)2421 static int mce_syscore_suspend(void)
2422 {
2423 vendor_disable_error_reporting();
2424 return 0;
2425 }
2426
mce_syscore_shutdown(void)2427 static void mce_syscore_shutdown(void)
2428 {
2429 vendor_disable_error_reporting();
2430 }
2431
2432 /*
2433 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2434 * Only one CPU is active at this time, the others get re-added later using
2435 * CPU hotplug:
2436 */
mce_syscore_resume(void)2437 static void mce_syscore_resume(void)
2438 {
2439 __mcheck_cpu_init_generic();
2440 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2441 __mcheck_cpu_init_clear_banks();
2442 }
2443
2444 static struct syscore_ops mce_syscore_ops = {
2445 .suspend = mce_syscore_suspend,
2446 .shutdown = mce_syscore_shutdown,
2447 .resume = mce_syscore_resume,
2448 };
2449
2450 /*
2451 * mce_device: Sysfs support
2452 */
2453
mce_cpu_restart(void * data)2454 static void mce_cpu_restart(void *data)
2455 {
2456 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2457 return;
2458 __mcheck_cpu_init_generic();
2459 __mcheck_cpu_init_clear_banks();
2460 __mcheck_cpu_init_timer();
2461 }
2462
2463 /* Reinit MCEs after user configuration changes */
mce_restart(void)2464 static void mce_restart(void)
2465 {
2466 mce_timer_delete_all();
2467 on_each_cpu(mce_cpu_restart, NULL, 1);
2468 mce_schedule_work();
2469 }
2470
2471 /* Toggle features for corrected errors */
mce_disable_cmci(void * data)2472 static void mce_disable_cmci(void *data)
2473 {
2474 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2475 return;
2476 cmci_clear();
2477 }
2478
mce_enable_ce(void * all)2479 static void mce_enable_ce(void *all)
2480 {
2481 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2482 return;
2483 cmci_reenable();
2484 cmci_recheck();
2485 if (all)
2486 __mcheck_cpu_init_timer();
2487 }
2488
2489 static const struct bus_type mce_subsys = {
2490 .name = "machinecheck",
2491 .dev_name = "machinecheck",
2492 };
2493
2494 DEFINE_PER_CPU(struct device *, mce_device);
2495
attr_to_bank(struct device_attribute * attr)2496 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2497 {
2498 return container_of(attr, struct mce_bank_dev, attr);
2499 }
2500
show_bank(struct device * s,struct device_attribute * attr,char * buf)2501 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2502 char *buf)
2503 {
2504 u8 bank = attr_to_bank(attr)->bank;
2505 struct mce_bank *b;
2506
2507 if (bank >= per_cpu(mce_num_banks, s->id))
2508 return -EINVAL;
2509
2510 b = &per_cpu(mce_banks_array, s->id)[bank];
2511
2512 if (!b->init)
2513 return -ENODEV;
2514
2515 return sprintf(buf, "%llx\n", b->ctl);
2516 }
2517
set_bank(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2518 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2519 const char *buf, size_t size)
2520 {
2521 u8 bank = attr_to_bank(attr)->bank;
2522 struct mce_bank *b;
2523 u64 new;
2524
2525 if (kstrtou64(buf, 0, &new) < 0)
2526 return -EINVAL;
2527
2528 if (bank >= per_cpu(mce_num_banks, s->id))
2529 return -EINVAL;
2530
2531 b = &per_cpu(mce_banks_array, s->id)[bank];
2532 if (!b->init)
2533 return -ENODEV;
2534
2535 b->ctl = new;
2536
2537 mutex_lock(&mce_sysfs_mutex);
2538 mce_restart();
2539 mutex_unlock(&mce_sysfs_mutex);
2540
2541 return size;
2542 }
2543
set_ignore_ce(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2544 static ssize_t set_ignore_ce(struct device *s,
2545 struct device_attribute *attr,
2546 const char *buf, size_t size)
2547 {
2548 u64 new;
2549
2550 if (kstrtou64(buf, 0, &new) < 0)
2551 return -EINVAL;
2552
2553 mutex_lock(&mce_sysfs_mutex);
2554 if (mca_cfg.ignore_ce ^ !!new) {
2555 if (new) {
2556 /* disable ce features */
2557 mce_timer_delete_all();
2558 on_each_cpu(mce_disable_cmci, NULL, 1);
2559 mca_cfg.ignore_ce = true;
2560 } else {
2561 /* enable ce features */
2562 mca_cfg.ignore_ce = false;
2563 on_each_cpu(mce_enable_ce, (void *)1, 1);
2564 }
2565 }
2566 mutex_unlock(&mce_sysfs_mutex);
2567
2568 return size;
2569 }
2570
set_cmci_disabled(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2571 static ssize_t set_cmci_disabled(struct device *s,
2572 struct device_attribute *attr,
2573 const char *buf, size_t size)
2574 {
2575 u64 new;
2576
2577 if (kstrtou64(buf, 0, &new) < 0)
2578 return -EINVAL;
2579
2580 mutex_lock(&mce_sysfs_mutex);
2581 if (mca_cfg.cmci_disabled ^ !!new) {
2582 if (new) {
2583 /* disable cmci */
2584 on_each_cpu(mce_disable_cmci, NULL, 1);
2585 mca_cfg.cmci_disabled = true;
2586 } else {
2587 /* enable cmci */
2588 mca_cfg.cmci_disabled = false;
2589 on_each_cpu(mce_enable_ce, NULL, 1);
2590 }
2591 }
2592 mutex_unlock(&mce_sysfs_mutex);
2593
2594 return size;
2595 }
2596
store_int_with_restart(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2597 static ssize_t store_int_with_restart(struct device *s,
2598 struct device_attribute *attr,
2599 const char *buf, size_t size)
2600 {
2601 unsigned long old_check_interval = check_interval;
2602 ssize_t ret = device_store_ulong(s, attr, buf, size);
2603
2604 if (check_interval == old_check_interval)
2605 return ret;
2606
2607 mutex_lock(&mce_sysfs_mutex);
2608 mce_restart();
2609 mutex_unlock(&mce_sysfs_mutex);
2610
2611 return ret;
2612 }
2613
2614 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2615 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2616 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2617
2618 static struct dev_ext_attribute dev_attr_check_interval = {
2619 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2620 &check_interval
2621 };
2622
2623 static struct dev_ext_attribute dev_attr_ignore_ce = {
2624 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2625 &mca_cfg.ignore_ce
2626 };
2627
2628 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2629 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2630 &mca_cfg.cmci_disabled
2631 };
2632
2633 static struct device_attribute *mce_device_attrs[] = {
2634 &dev_attr_check_interval.attr,
2635 #ifdef CONFIG_X86_MCELOG_LEGACY
2636 &dev_attr_trigger,
2637 #endif
2638 &dev_attr_monarch_timeout.attr,
2639 &dev_attr_dont_log_ce.attr,
2640 &dev_attr_print_all.attr,
2641 &dev_attr_ignore_ce.attr,
2642 &dev_attr_cmci_disabled.attr,
2643 NULL
2644 };
2645
2646 static cpumask_var_t mce_device_initialized;
2647
mce_device_release(struct device * dev)2648 static void mce_device_release(struct device *dev)
2649 {
2650 kfree(dev);
2651 }
2652
2653 /* Per CPU device init. All of the CPUs still share the same bank device: */
mce_device_create(unsigned int cpu)2654 static int mce_device_create(unsigned int cpu)
2655 {
2656 struct device *dev;
2657 int err;
2658 int i, j;
2659
2660 dev = per_cpu(mce_device, cpu);
2661 if (dev)
2662 return 0;
2663
2664 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2665 if (!dev)
2666 return -ENOMEM;
2667 dev->id = cpu;
2668 dev->bus = &mce_subsys;
2669 dev->release = &mce_device_release;
2670
2671 err = device_register(dev);
2672 if (err) {
2673 put_device(dev);
2674 return err;
2675 }
2676
2677 for (i = 0; mce_device_attrs[i]; i++) {
2678 err = device_create_file(dev, mce_device_attrs[i]);
2679 if (err)
2680 goto error;
2681 }
2682 for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2683 err = device_create_file(dev, &mce_bank_devs[j].attr);
2684 if (err)
2685 goto error2;
2686 }
2687 cpumask_set_cpu(cpu, mce_device_initialized);
2688 per_cpu(mce_device, cpu) = dev;
2689
2690 return 0;
2691 error2:
2692 while (--j >= 0)
2693 device_remove_file(dev, &mce_bank_devs[j].attr);
2694 error:
2695 while (--i >= 0)
2696 device_remove_file(dev, mce_device_attrs[i]);
2697
2698 device_unregister(dev);
2699
2700 return err;
2701 }
2702
mce_device_remove(unsigned int cpu)2703 static void mce_device_remove(unsigned int cpu)
2704 {
2705 struct device *dev = per_cpu(mce_device, cpu);
2706 int i;
2707
2708 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2709 return;
2710
2711 for (i = 0; mce_device_attrs[i]; i++)
2712 device_remove_file(dev, mce_device_attrs[i]);
2713
2714 for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2715 device_remove_file(dev, &mce_bank_devs[i].attr);
2716
2717 device_unregister(dev);
2718 cpumask_clear_cpu(cpu, mce_device_initialized);
2719 per_cpu(mce_device, cpu) = NULL;
2720 }
2721
2722 /* Make sure there are no machine checks on offlined CPUs. */
mce_disable_cpu(void)2723 static void mce_disable_cpu(void)
2724 {
2725 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2726 return;
2727
2728 if (!cpuhp_tasks_frozen)
2729 cmci_clear();
2730
2731 vendor_disable_error_reporting();
2732 }
2733
mce_reenable_cpu(void)2734 static void mce_reenable_cpu(void)
2735 {
2736 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2737 int i;
2738
2739 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2740 return;
2741
2742 if (!cpuhp_tasks_frozen)
2743 cmci_reenable();
2744 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2745 struct mce_bank *b = &mce_banks[i];
2746
2747 if (b->init)
2748 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
2749 }
2750 }
2751
mce_cpu_dead(unsigned int cpu)2752 static int mce_cpu_dead(unsigned int cpu)
2753 {
2754 /* intentionally ignoring frozen here */
2755 if (!cpuhp_tasks_frozen)
2756 cmci_rediscover();
2757 return 0;
2758 }
2759
mce_cpu_online(unsigned int cpu)2760 static int mce_cpu_online(unsigned int cpu)
2761 {
2762 struct timer_list *t = this_cpu_ptr(&mce_timer);
2763
2764 mce_device_create(cpu);
2765 mce_threshold_create_device(cpu);
2766 mce_reenable_cpu();
2767 mce_start_timer(t);
2768 return 0;
2769 }
2770
mce_cpu_pre_down(unsigned int cpu)2771 static int mce_cpu_pre_down(unsigned int cpu)
2772 {
2773 struct timer_list *t = this_cpu_ptr(&mce_timer);
2774
2775 mce_disable_cpu();
2776 del_timer_sync(t);
2777 mce_threshold_remove_device(cpu);
2778 mce_device_remove(cpu);
2779 return 0;
2780 }
2781
mce_init_banks(void)2782 static __init void mce_init_banks(void)
2783 {
2784 int i;
2785
2786 for (i = 0; i < MAX_NR_BANKS; i++) {
2787 struct mce_bank_dev *b = &mce_bank_devs[i];
2788 struct device_attribute *a = &b->attr;
2789
2790 b->bank = i;
2791
2792 sysfs_attr_init(&a->attr);
2793 a->attr.name = b->attrname;
2794 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2795
2796 a->attr.mode = 0644;
2797 a->show = show_bank;
2798 a->store = set_bank;
2799 }
2800 }
2801
2802 /*
2803 * When running on XEN, this initcall is ordered against the XEN mcelog
2804 * initcall:
2805 *
2806 * device_initcall(xen_late_init_mcelog);
2807 * device_initcall_sync(mcheck_init_device);
2808 */
mcheck_init_device(void)2809 static __init int mcheck_init_device(void)
2810 {
2811 int err;
2812
2813 /*
2814 * Check if we have a spare virtual bit. This will only become
2815 * a problem if/when we move beyond 5-level page tables.
2816 */
2817 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2818
2819 if (!mce_available(&boot_cpu_data)) {
2820 err = -EIO;
2821 goto err_out;
2822 }
2823
2824 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2825 err = -ENOMEM;
2826 goto err_out;
2827 }
2828
2829 mce_init_banks();
2830
2831 err = subsys_system_register(&mce_subsys, NULL);
2832 if (err)
2833 goto err_out_mem;
2834
2835 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2836 mce_cpu_dead);
2837 if (err)
2838 goto err_out_mem;
2839
2840 /*
2841 * Invokes mce_cpu_online() on all CPUs which are online when
2842 * the state is installed.
2843 */
2844 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2845 mce_cpu_online, mce_cpu_pre_down);
2846 if (err < 0)
2847 goto err_out_online;
2848
2849 register_syscore_ops(&mce_syscore_ops);
2850
2851 return 0;
2852
2853 err_out_online:
2854 cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2855
2856 err_out_mem:
2857 free_cpumask_var(mce_device_initialized);
2858
2859 err_out:
2860 pr_err("Unable to init MCE device (rc: %d)\n", err);
2861
2862 return err;
2863 }
2864 device_initcall_sync(mcheck_init_device);
2865
2866 /*
2867 * Old style boot options parsing. Only for compatibility.
2868 */
mcheck_disable(char * str)2869 static int __init mcheck_disable(char *str)
2870 {
2871 mca_cfg.disabled = 1;
2872 return 1;
2873 }
2874 __setup("nomce", mcheck_disable);
2875
2876 #ifdef CONFIG_DEBUG_FS
mce_get_debugfs_dir(void)2877 struct dentry *mce_get_debugfs_dir(void)
2878 {
2879 static struct dentry *dmce;
2880
2881 if (!dmce)
2882 dmce = debugfs_create_dir("mce", NULL);
2883
2884 return dmce;
2885 }
2886
mce_reset(void)2887 static void mce_reset(void)
2888 {
2889 atomic_set(&mce_fake_panicked, 0);
2890 atomic_set(&mce_executing, 0);
2891 atomic_set(&mce_callin, 0);
2892 atomic_set(&global_nwo, 0);
2893 cpumask_setall(&mce_missing_cpus);
2894 }
2895
fake_panic_get(void * data,u64 * val)2896 static int fake_panic_get(void *data, u64 *val)
2897 {
2898 *val = fake_panic;
2899 return 0;
2900 }
2901
fake_panic_set(void * data,u64 val)2902 static int fake_panic_set(void *data, u64 val)
2903 {
2904 mce_reset();
2905 fake_panic = val;
2906 return 0;
2907 }
2908
2909 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2910 "%llu\n");
2911
mcheck_debugfs_init(void)2912 static void __init mcheck_debugfs_init(void)
2913 {
2914 struct dentry *dmce;
2915
2916 dmce = mce_get_debugfs_dir();
2917 debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2918 &fake_panic_fops);
2919 }
2920 #else
mcheck_debugfs_init(void)2921 static void __init mcheck_debugfs_init(void) { }
2922 #endif
2923
mcheck_late_init(void)2924 static int __init mcheck_late_init(void)
2925 {
2926 if (mca_cfg.recovery)
2927 enable_copy_mc_fragile();
2928
2929 mcheck_debugfs_init();
2930
2931 /*
2932 * Flush out everything that has been logged during early boot, now that
2933 * everything has been initialized (workqueues, decoders, ...).
2934 */
2935 mce_schedule_work();
2936
2937 return 0;
2938 }
2939 late_initcall(mcheck_late_init);
2940